WorldWideScience

Sample records for high-altitude balloon launches

  1. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  2. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build < 4 kg payloads. The high-altitude balloon program provides an engaging laboratory, gives challenging field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along

  3. High-Altitude Balloon Launches and Hands-On Sensors for Effective Student Learning in Astronomy and STEM

    Science.gov (United States)

    Voss, H. D.; Dailey, J.; Snyder, S. J.

    2011-09-01

    Students creating and flying experiments into near-space using a low-cost balloon High-Altitude Research Platform (HARP) greatly advance understanding in introductory astronomy and advanced classes across several disciplines. Remote sensing above 98% of the atmosphere using cameras, image intensifiers, IR, and UV sensors provides access to the heavens and large regions of the earth below. In situ and limb atmospheric gas measurements, near-space stratosphere measurements, and cosmic rays engage students in areas from planetary atmospheres to supernova acceleration. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build less than 4 kg payloads. The HARP program provides an engaging laboratory, gives challenging science, technology, engineering, and mathematics (STEM) field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Over a seven-year period, Taylor University, an undergraduate liberal arts school, has successfully launched over 230 HARP systems to altitudes over 30 km (100% retrieval success with rapid recovery) with flight times between two and six hours. The HARP payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergraduate). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded, leading to representatives from more than 52

  4. High altitude balloon experiments at IIA

    Science.gov (United States)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  5. An automatic parachute release for high altitude scientific balloons

    Science.gov (United States)

    Field, Chris

    NASA's Columbia Scientific Balloon Facility launches high altitude scientific research balloons at many locations around the world. Locations like Antarctica are flat for hundreds of miles and have nothing to snag a parachute consequently causing it to be more important to separate the parachute from the payload than in an area with vegetation and fences. Scientists are now building one of a kind payloads costing millions of dollars, taking five years or more to build, and are requesting multiple flights. In addition to that, the data gathering rate of many science payloads far exceeds the data downlink rate on over-the-horizon flights therefore making a recovery of at least the data hard drives a "minimum success requirement". The older mentality in ballooning; separating the parachute and payload from the balloon and getting it on the ground is more important than separating the parachute after the payload is on the ground has changed. It is now equally as important to separate the parachute from the gondola to prevent damage from dragging. Until now, commands had to be sent to separate the parachute from the gondola at approximately 60K ft, 30K ft, and 10K ft to use the Semi Automatic Parachute Release (SAPR), which is after the sometimes violent parachute opening shock. By using the Gondola controlled Automatic Parachute Release (GAPR) all commanding is done prior to termination, making the parachute release fully autonomous.

  6. Superpressure Tow Balloon for Extending Durations and Modifying Trajectories of High Altitude Balloon Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation involves the concept of using a Superpressure Tow Balloon (STB) with existing NASA high altitude balloon designs to form a tandem balloon...

  7. The University of Alberta High Altitude Balloon Program

    Science.gov (United States)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  8. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  9. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-altitude balloon flights are an inexpensive method used to lift payloads to high altitudes. Federal Aviation Administration (FAA) regulations permit payloads...

  10. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    Science.gov (United States)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    High altitude ballooning is typically used for scientific missions including stratospheric observations, aerological observations, and near space environment technology demonstration. The usage of stratospheric balloons is a cost effective method to pursue several scientific and technological avenues against using satellites in the void of space. Based on the Indian Institute of Astrophysics (IIA) ballooning program for studying Comet ISON using high altitude ballooning, a cost effective flight tracking and recovery package for ballooning missions has been developed using open source hardware. The flight tracking and recovery package is based on using Automatic Packet Reporting System (APRS) and has a redundant Global System for Mobile Communications (GSM) based Global Positioning System (GPS) tracker. The APRS based tracker uses AX.25 protocol for transmission of the GPS coordinates (latitude, longitude, altitude, time) alongside the heading and health parameters of the board (voltage, temperature). APRS uses amateur radio frequencies where data is transmitted in packet messaging format, modulated by radio signals. The receiver uses Very High Frequency (VHF) transceiver to demodulate the APRS signals. The data received will be decoded using MixW (open source software). A bridge will be established between the decoding software and the APRS software. The flight path will be predicted before the launch and the real time position co-ordinates will be used to obtain the real time flight path that will be uploaded online using the bridge connection. We also use open source APRS software to decode and Google Earth to display the real time flight path. Several ballooning campaigns do not employ payload data transmission in real time, which makes the flight tracking and package recovery vital for data collection and recovery of flight instruments. The flight tracking and recovery package implemented in our missions allow independent development of the payload package

  11. An Overview of High-Altitude Balloon Experiments at the Indian Institute of Astrophysics

    CERN Document Server

    Safonova, Margarita; Sreejith, A G; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, S; Nirmal, K; Talnikar, Sameer; Hadigal, Shripathy; Prakash, Ajin; Murthy, Jayant

    2016-01-01

    The High-Altitude Ballooning programme began at Indian Institute of Astrophysics, Bangalore, in the year 2011 with the primary purpose of developing and flying low-cost scientific payloads on a balloon-borne platform. Some of the science goals are studies of the phenomena occurring in the upper atmosphere, of airglow and zodiacal light, and observations of extended astronomical objects such as, for example, comets, from near space (20 to 30 km). A brief summary and results of the tethered flights carried out at CREST campus are given in Ref.~1. Here we present a complete overview of the 9 free-flying balloon experiments conducted from March 2013 to November 2014. We describe the launch procedures, payloads, methods of tracking and recovery of the payloads. Since we fall in the light/medium balloon category, the weight of the payload is limited to less than 5 kg --- we use a 3-D printer to fabricate lightweight boxes and structures for our experiments. We are also developing in-house lightweight sensors and co...

  12. Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms

    Science.gov (United States)

    Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah

    2016-01-01

    High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.

  13. High Altitude Infrasound Measurements using Balloon-Borne Arrays

    Science.gov (United States)

    Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.

    2015-12-01

    For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.

  14. High-Altitude Ballooning Program at the Indian Institute of Astrophysics

    CERN Document Server

    Nayak, A; Safonova, M; Murthy, Jayant

    2013-01-01

    We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bangalore. Recent advances in balloons as well as in electronics have made possible scientific payloads at costs accessible to university departments. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but to also explore phenomena occurring in the upper atmosphere, including sprites and meteorite impacts, using balloon-borne payloads. This paper discusses the results of three tethered balloon experiments carried out at the CREST campus of IIA, Hosakote and our plans for the future. We also describe the stages of payload development for these experiments.

  15. A high-altitude balloon platform for determining exchange of carbon dioxide over agricultural landscapes

    Science.gov (United States)

    Bouche, Angie; Beck-Winchatz, Bernhard; Potosnak, Mark J.

    2016-11-01

    The exchange of carbon dioxide between the terrestrial biosphere and the atmosphere is a key process in the global carbon cycle. Given emissions from fossil fuel combustion and the appropriation of net primary productivity by human activities, understanding the carbon dioxide exchange of cropland agroecosystems is critical for evaluating future trajectories of climate change. In addition, human manipulation of agroecosystems has been proposed as a technique of removing carbon dioxide from the atmosphere via practices such as no-tillage and cover crops. We propose a novel method of measuring the exchange of carbon dioxide over croplands using a high-altitude balloon (HAB) platform. The HAB methodology measures two sequential vertical profiles of carbon dioxide mixing ratio, and the surface exchange is calculated using a fixed-mass column approach. This methodology is relatively inexpensive, does not rely on any assumptions besides spatial homogeneity (no horizontal advection) and provides data over a spatial scale between stationary flux towers and satellite-based inversion calculations. The HAB methodology was employed during the 2014 and 2015 growing seasons in central Illinois, and the results are compared to satellite-based NDVI values and a flux tower located relatively near the launch site in Bondville, Illinois. These initial favorable results demonstrate the utility of the methodology for providing carbon dioxide exchange data over a large (10-100 km) spatial area. One drawback is its relatively limited temporal coverage. While recruiting citizen scientists to perform the launches could provide a more extensive dataset, the HAB methodology is not appropriate for providing estimates of net annual carbon dioxide exchange. Instead, a HAB dataset could provide an important check for upscaling flux tower results and verifying satellite-derived exchange estimates.

  16. Current Status of a NASA High-Altitude Balloon-Based Observatory for Planetary Science

    Science.gov (United States)

    Varga, Denise M.; Dischner, Zach

    2015-01-01

    Recent studies have shown that progress can be made on over 20% of the key questions called out in the current Planetary Science Decadal Survey by a high-altitude balloon-borne observatory. Therefore, NASA has been assessing concepts for a gondola-based observatory that would achieve the greatest possible science return in a low-risk and cost-effective manner. This paper addresses results from the 2014 Balloon Observation Platform for Planetary Science (BOPPS) mission, namely successes in the design and performance of the Fine Pointing System. The paper also addresses technical challenges facing the new Gondola for High Altitude Planetary Science (GHAPS) reusable platform, including thermal control for the Optical Telescope Assembly, power generation and management, and weight-saving considerations that the team will be assessing in 2015 and beyond.

  17. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    Science.gov (United States)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  18. Combining Undergraduate Student Curriculum, Research, and Outreach: High-altitude Balloon and Rockets

    Science.gov (United States)

    Davis, E. J.; Nielsen, K.

    2015-12-01

    The Society of Physics Students chapter at Utah Valley University (UVU) recently established a high altitude balloon project to provide students with research opportunities. This highly successful program involves students not only from physics but also from other STEM fields and non-STEM subjects, and as such acts as a unique outreach program for the department of physics. Examples of experiments performed with the balloon project are: 3D-acceleration measurements, altitude/pressure/temperature measurements, ozone monitoring, bio-aerosol collection, and solar panel performance output. All these experiment are designed and build by groups of students either as part of research projects or through class participation as the projects link with the curriculum in several courses. Most recently, a group of UVU students have initiated the implementation of small rockets capable of carrying payloads to this high-altitude program. Both balloon and rocket platforms are fundamental in-situ measuring techniques for numerous geoscience subjects, and are arguably best illustrated by the NASA balloon and sounding rocket programs. In this presentation, we give an overview of the program and how it is 1) being implemented into the curriculum, 2) provide unique research opportunities for students, and 3) specific outreach activities.

  19. SPARCL: a high-altitude tethered balloon-based optical space-to-ground communication system

    Science.gov (United States)

    Badesha, Surjit S.

    2002-12-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has conducted a feasibility study to determine if a high altitude (20 km) tethered balloon-based space-to-ground optical communication system is a feasible concept. To support this effort, a detailed concept definition was developed and associated issues were identified and analyzed systematically. Of all the adverse atmospheric phenomena, cloud coverage was identified as the most prohibitive obstacle for a space-to-ground optical communication link. However, by placing a receiver on a balloon at a 20 km altitude, the proposed high altitude system avoids virtually all atmospheric effects. A practical notional scenario was developed (i.e. surveillance and/or reconnaissance of a regional conflict) involving end-to-end optical communication architecture to identify system elements, system level requirements, and to quantify realistic data rate requirements. Analysis of the proposed space-to-ground communication elements indicates that while significant development is required, the system is technically feasible and is a very cost effective 24/7solution.

  20. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  1. Space-quality data from balloon-borne telescopes: the High Altitude Lensing Observatory (HALO)

    CERN Document Server

    Rhodes, Jason; Booth, Jeffrey; Massey, Richard; Liewer, Kurt; Smith, Roger; Amara, Adam; Aldrich, Jack; Berge, Joel; Bezawada, Naidu; Brugarolas, Paul; Clark, Paul; Dubbeldam, Cornelis M; Ellis, Richard; Frenk, Carlos; Gallie, Angus; Heavens, Alan; Henry, David; Jullo, Eric; Kitching, Thomas; Lanzi, James; Lilly, Simon; Lunney, David; Miyazaki, Satoshi; Morris, David; Paine, Christopher; Peacock, John; Pellegrino, Sergio; Pittock, Roger; Pool, Peter; Refregier, Alexandre; Seiffert, Michael; Sharples, Ray; Smith, Alexandra; Stuchlik, David; Taylor, Andy; Teplitz, Harry; Vanderveld, R Ali; Wu, James

    2012-01-01

    We present a method for attaining sub-arcsecond pointing stability during sub- orbital balloon flights, as designed for in the High Altitude Lensing Observatory (HALO) concept. The pointing method presented here has the potential to perform near-space quality optical astronomical imaging at 1-2% of the cost of space-based missions. We also discuss an architecture that can achieve sufficient thermomechanical stability to match the pointing stability. This concept is motivated by advances in the development and testing of Ultra Long Duration Balloon (ULDB) flights which promise to allow observation campaigns lasting more than three months. The design incorporates a multi-stage pointing architecture comprising: a gondola coarse azimuth control system, a multi-axis nested gimbal frame structure with arcsecond stability, a telescope de-rotator to eliminate field rotation, and a fine guidance stage consisting of both a telescope mounted angular rate sensor and guide CCDs in the focal plane to drive a fast-steering ...

  2. The High Altitude Balloon Experiment demonstration of acquisition, tracking, and pointing technologies (HABE-ATP)

    Science.gov (United States)

    Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.

    1995-01-01

    The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target

  3. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  4. Performance of the high-altitude balloon experiment Roto-lok drive gimbal systems

    Science.gov (United States)

    Schulthess, Marcus R.; Ardaman, Andrew A.; Baugh, Steven; Carson, Donald G.

    1994-07-01

    This paper presents and discusses laboratory performance measurements of a Roto-Lok drive system for the HABE azimuth and elevation gimbals. The HABE system is a 7,000 lb acquisition tracking and pointing (ATP) balloon-launched vehicle. The primary azimuth and elevation drive systems are zero-backlash torque multipliers referred to by the trade name Roto-Lok rotary drive and designed by Sagebrush Technology, Inc. The Roto-Lok used in the azimuth gimbal has a limited 320 deg of angular travel; therefore, it is supplemented with a secondary drive element to provide unlimited travel. This secondary drive is used to counteract the gross angles resulting from the freely rotating nature of the untethered balloon system. The Roto-Lok drive is used for the fine tracking and pointing of the gimbals. Both the azimuth and elevation Rota-Lok drives are tandem drives with an end-to-end ratio of 72:1. Performance specifications developed from the mission requirements are compared against the actual system performance measurements. The entire gimbaled azimuth and elevation systems are required to point in inertial space to less than 250 (mu) rad RMS over the band DC to 100 Hz for each axis. Performance measurements better than the specification were measured. The primary gimbal base-motion disturbances, however, are due to the motor cogging torque or torque ripple. A brief discussion of the measurement methods and the control system used to drive the gimbals is presented. Several system anomalies, such as the structural compliance between the drive element and the inertial rate sensors and the coarse gear backlash, are discussed in terms of their impact on the gimbal control system.

  5. Development of ultra-thin polyethylene balloons for high altitude research upto mesosphere

    CERN Document Server

    Kumar, B Suneel; Ojha, D K; Peter, G Stalin; Vasudevan, R; Anand, D; Kulkarni, P M; Reddy, V Anmi; Rao, T V; Sreenivasan, S

    2014-01-01

    Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 microns for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000 grams rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenisation of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 microns for fabrication of balloons capable of penetrating mesosphere ...

  6. Astronomy from the Upper Stratosphere: Key Discoveries and New Opportunities from High Altitude Scientific Balloons

    Science.gov (United States)

    Fissel, Laura M.

    2017-01-01

    Stratospheric balloons offer a near-space astronomy platform for a small fraction of the cost of an equivalent satellite. These balloons can lift scientific payloads of up to 6,000 lbs as high as 40 km above the Earth’s surface (above >99.5% of the atmosphere). In this presentation I will discuss the contribution that scientific balloon experiments have made to astronomy, from the early days when astronomers had to accompany their telescopes to the stratosphere, to the present era where automated payloads are in some cases able to achieve a pointing precision of better than an arcsecond. In particular, I will discuss the important contributions that balloon telescopes have made to our current understanding of the Universe through detailed measurements of the Cosmic Microwave Background. I will also show how recent observations from sub-millimeter balloon telescopes such as BLAST and BLASTPol have been used to study both star formation and magnetic fields of nearby giant molecular clouds in unprecedented detail, and also to constrain models of interstellar dust composition. With improving ballooning technology, such as NASA’s new Super-Pressure Balloon program, we will soon have the capability for science flights of several months (rather than weeks) duration, thus beginning an exciting new era in balloon astronomy.

  7. High Altitude Weather Balloons to Support Rayleigh and Sodium Lidar Studies of the Troposphere, Stratosphere and Mesosphere at the Amundsen-Scott South Pole Station

    Science.gov (United States)

    Papen, George

    1995-01-01

    This proposal funded 100 high altitude weather balloons costing $15,500 to support the deployment of a Rayleigh/Raman/Na lidar at the South Pole. One year of measurements have been completed and it is estimated that the balloons will provide another 1-2 years of data.

  8. High Altitude Ballooning as a Mechanism for Teaching NGSS-Related Geoscience Content and Classroom Activities for Pre- and In-Service Teachers

    Science.gov (United States)

    Urban, M. A.; Kroeger, T.

    2014-12-01

    Training in-service and pre-service K-12 science teachers to understand and structure appropriate instructional opportunities for addressing cross-cutting concepts and engineering design with students in their classrooms is critical given the emphases in the Next Generation Science Standards (NGSS). One mechanism for doing so involves utilizing high altitude ballooning as a tool for providing authentic investigation opportunities in the geosciences. As individual states review and make decisions about what role the NGSS will play in their standards, it is important for college and university science teacher preparation programs to prepare current and future teachers to become more comfortable with designing research investigations, controlling variables, anticipating cross-disciplinary connections, refining and analyzing data, and communicating the findings of real and contrived scientific investigation. Many undergraduate and professional development research possibilities exist through high altitude ballooning, including: microbiological experimentation at high altitudes, microcontroller use for context-specific data collection, near-space system development and design, balloon flight-track modeling, and more. Example projects and findings will be shared. Equally important to creating appropriate learning activities to address NGSS expectations is understanding the context-specific needs and available resources existing in K-12 science classrooms. Findings from semi-structured interviews with a focus group of pre-service and practicing teachers will be presented -- from both participants and non-participants in high altitude ballooning activities -- related to how high altitude ballooning could be (or already is) being used to meet NGSS and state science standards. The two primary outcomes of the presentation are to: 1) inform science teacher preparation programs for purposes of structuring useful and appropriate science methods activities; 2) frame the K-12

  9. Measurement of atmospheric turbulence strength at high altitude with balloon-borne temperature sensors

    Science.gov (United States)

    Bufton, J. L.

    1974-01-01

    A technique to measure a vertical profile of the optical strength of turbulence employs the measurement of a root mean square temperature difference between two microthermal probes carried aloft as part of a balloon payload. Microthermal fluctuations provide a measure for the density fluctuations of turbulence. Examination of recorded profiles of refractive-index structure coefficients reveals a turbulence structure which is organized into multiple, thin groupings of strong turbulence separated by relatively quiescent intervals of variable length.

  10. Exploring Venus with high-altitude balloons: Science objectives and mission architectures

    Science.gov (United States)

    Baines, Kevin; Limaye, Sanjay; Zahnle, Kevin; Atreya, Sushil K.

    Following the trailblazing flights of the 1985 twin Soviet VEGA balloons, missions to fly in the high atmosphere of Venus near 55 km altitude have been proposed to both NASA's Discovery Program and ESA's Cosmic Vision. Such missions would address a variety of fundamental science issues highlighted in a variety of high-level NASA-authorized science documents in recent years, including the Decadal Study, various NASA roadmaps, and recommendations coming out of the Venus Exploration Analysis Group (VEXAG). Such missions would in particular address key questions of Venus's origin, evolution, and current state, including detailed measurements of (1) trace gases associated with Venus's active photoand thermo-chemistry and (2) measurements of vertical motions and local temperature which characterize convective and wave processes. As an example of what can be done with a small mission (less than 500M US dollars), the Venus Aerostatic-Lift Observatories for in-situ Research (VALOR) Discovery mission will be discussed. This mission would fly twin balloon-borne aerostats over temperate and polar latitudes, sampling rare gases, chemicals and dynamics in two distinct latitude regions for several days. A variety of scenarios for the origin, formation, and evolution of Venus would be tested by sampling all the noble gases and their isotopes, especially the heaviest elements never reliably measured previously: xenon and krypton. Riding the gravity and planetary waves of Venus, the VALOR balloons would sample the chemistry, meteorology and dynamics of Venus's sulfur-cloud region. Tracked by an array of Earth-based telescopes, zonal, meridional, and vertical winds would be measured with unprecedented precision. Such measurements would help to develop a fundamental understanding of (1) the circulation of Venus, especially its enigmatic super-rotation, (2) the nature of Venus's sulfur cycle, key to Venus's current climate, and (3) how Venus formed and evolved over the aeons.

  11. A high-altitude balloon experiment to probe stratospheric electric fields from low latitudes

    Science.gov (United States)

    Gurubaran, Subramanian; Shanmugam, Manu; Jawahar, Kaliappan; Emperumal, Kaliappan; Mahavarkar, Prasanna; Buduru, Suneel Kumar

    2017-02-01

    The Earth's electrical environment hosts a giant electrical circuit, often referred to as the global electric circuit (GEC), linking the various sources of electrical generators located in the lower atmosphere, the ionosphere and the magnetosphere. The middle atmosphere (stratosphere and mesosphere) has been traditionally believed to be passively transmitting electric fields generated elsewhere. Some observations have reported anomalously large electric fields at these altitudes, and the scientific community has had to revisit the earlier hypothesis time and again. At stratospheric altitudes and especially at low latitudes, horizontal electric fields are believed to be of ionospheric origin. Though measurements of these fields from a balloon platform are challenging because of their small magnitudes (around a few mV m-1), a suitably designed long-duration balloon experiment capable of detecting such small fields can provide useful information on the time evolution of ionospheric electric fields, which is otherwise possible only using radar or satellite in situ measurements. We present herein details of one such experiment, BEENS (Balloon Experiment on the Electrodynamics of Near Space), carried out from a low-latitude site in India. The instrument package for this experiment is comprised of four deployable booms for measurements of horizontal electric fields and one inclined boom for vertical electric field measurements, all equipped with conducting spheres at the tip. The experiment was conducted from Hyderabad (17.5° N, 78.6° E) during the post-midnight hours on 14 December 2013. In spite of a few shortcomings we report herein, a noticeable feature of the observations has been the detection of horizontal electric fields of ˜ 5 mV m-1 at the stratospheric altitudes of ˜ 35 km.

  12. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  13. The 2009 Space Science Component of UNH Project SMART and High School Students Building a High-Altitude Balloon Payload

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Chen, L.; Farrugia, C. J.; Frederick-Frost, K.; Goelzer, S.; Kucharek, H.; Messeder, R.; Moebius, E.; Puhl-Quinn, P. A.; Torbert, R. B.

    2009-12-01

    For the past 19 years the University of New Hampshire has offered a unique research and education opportunity to motivated high-school students called Project SMART (Science and Mathematics Achievement through Research Training). The Space Science module is strongly research based. Students work in teams of two on real research projects carved from the research programs of the faculty. The projects are carefully chosen to match the abilities of the students. The students receive classes in basic physics as well as lectures in space science to help them with their work. This year the research included the analysis of magnetic reconnection observations and Crater FTE observation, both by the CLUSTER spacecraft, the building of Faraday cups for thermal ion measurements in our thermal vacuum facility, and analysis of the IBEX star sensor. In addition to this, the students work on one combined project and for the past several years this project has been the building of a payload for a high-altitude balloon. The students learn to integrate telemetry and GPS location hardware while they build several small experiments that they then fly to the upper reaches of the Earth's atmosphere. This year the payload included a small video camera and the payload flew to 96,000 feet, capturing images of weather patterns as well as the curvature of the Earth, thickness of the atmosphere, and black space. In addition to still photos, we will be showing 2- and 7-minute versions of the 90-minute flight video that include footage from peak altitude, the bursting of the balloon, and initial descent.

  14. Design and simulation of ex-range gliding wing of high altitude air-launched autonomous underwater vehicles based on SIMULINK

    Institute of Scientific and Technical Information of China (English)

    Pan Changjun; Guo Yingqing

    2013-01-01

    High altitude air-launched autonomous underwater vehicle (AL-AUV) is a new anti-submarine field,which is designed on the Lockheed Martin's high altitude anti-submarine warfare weapons concept (HAAWC) and conducts the basic aerodynamic feasibility in a series of wind tunnel trials.The AL-AUV is composed of a traditional torpedo-like AUV,an additional ex-range gliding wings unit and a descending parachute unit.In order to accurately and conveniently investigate the dynamic and static characteristic of high altitude AL-AUV,a simulation platform is established based on MATLAB/SIMULINK and an AUV 6DOF (Degree of Freedom) dynamic model.Executing the simulation platform for different wing's parameters and initial fixing angle,a set of AUV gliding data is generated.Analyzing the recorded simulation result,the velocity and pitch characteristics of AL-AUV deployed at varying wing areas and initial setting angle,the optimal wing area is selected for specific AUV model.Then the comparative simulations of AL-AUV with the selected wings are completed,which simulate the AUV gliding through idealized windless air environment and gliding with Dryden wind influence.The result indicates that the method of wing design and simulation with the simulation platform based on SIMULINK is accurately effective and suitable to be widely employed.

  15. Development of the High Altitude Student Platform

    Science.gov (United States)

    Guzik, T. G.; Besse, S.; Calongne, A.; Dominique, A.; Ellison, S. B.; Gould, R.; Granger, D.; Olano, D.; Smith, D.; Stewart, M.; Wefel, J. P.

    2008-11-01

    The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15 20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.

  16. Adaptation to High Altitude

    OpenAIRE

    1984-01-01

    Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude native...

  17. High Altitude Cerebral Edema

    Science.gov (United States)

    1986-03-01

    such enzyme inhibition would favor the creation of a metabolic acidosis to offset the hypoxic respiratory alkalosis of high altitude hyperventilation...that some of their symptoms might be due to the early respiratory alkalosis seen upon arrival at high altitude. Unfortunately 23 out of the 30 subjects...i I Hamilton-16 was negative in all cases and normal respiratory excursions were seen. CSF chemistries and cell counts were normal. Houston and

  18. Adaptation to High Altitude

    Directory of Open Access Journals (Sweden)

    H. S. Nayar

    1984-10-01

    Full Text Available Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude natives is well documented. RBC count, haemoglobin and haematocrit increase whereas arterial oxyhaemoglobin saturation percentage decreases at high altitude. Diuretics (Furosemide have no role in adaptation to high altitude and adequate body hydration must be maintained.The ultimate adaptive mechanisms occur at tissue level which facilitate the diffusion of oxygen from blood to tissue and its utilization. The work capacity decreases at high altitude and a relationship between load carried and speed of marching has been determined at various altitudes. Although altitude has an adverse effect on process of cold acclimatization, yet it is possible to induce cold acclimatization by exposing subjects to a temperature of 0° to -5°C for a period of three hours daily for three weeks. The caloric requirements increase at high altitudes and are 4,286 K Cal and 4,380 K Cal at 13000 feet (3950 m and 17000 feet (5170 m, respectively.

  19. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  20. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  1. Thermodynamic model and numerical simulation of high altitude balloon ascending process%高空气球热力学模型与上升过程仿真分析

    Institute of Scientific and Technical Information of China (English)

    吕明云; 巫资春

    2011-01-01

    Based on the analysis of the high-altitude balloon thermodynamic environment, a coupling dynamic model was established to describe its thermodynamics and kinetics. The model was used to simulate the ascending and floating processes of a high altitude balloon. The results show that the inner helium temperature will present “supercool” during its ascending process, and “supercool” is more pronounced during the stratosphere region, with the inner helium temperature 19 K below the surrounding air temperature. Because of “supercool”, its ascending velocity profile take on double “V” shape. The inner helium temperature presents “superheat” during the daytime floating process due to strong sun radiation and weak convection with air, and the inner helium average temperature is 39 K higher than that of the surrounding air, with 648.8 Pa super-pressure. The ascending velocity profile and inner helium temperature profile of the numerical simulation good agreement with experimental flight data shows that the established model is accurate.%基于对高空气球热力学环境的分析,建立了热力学与动力学耦合的高空气球动力学模型;并采用该模型对某高空气球的上升与驻留过程进行仿真分析.结果表明:高空气球上升过程中内部氦气存在"超冷"现象,其中平流层区域"超冷"明显,氦气平均温差为-19 K;由于"超冷",其上升速度曲线呈双"V"形变化;强太阳辐射与弱对流环境使驻留过程中氦气呈现"超热"现象,平衡时氦气平均温度比环境温度高39 K,球内氦气超压648.8 Pa.数值仿真的速度、平均温度变化规律与相关飞行试验数据相吻合,说明该仿真模型是有效的.

  2. Implementation of a High-Altitude Balloon Payload to Study Thermospheric Wind Speeds through Redline Airglow Emissions of Atomic Oxygen at 630 nm via a Split-field Etalon Doppler Imager Utilizing a Fabry-Perot Interferometer.

    Science.gov (United States)

    Terry, L. B.; Fullmer, R.; Swenson, C.; Marchant, A.; Hooser, P.; Victors, J.; Muchmore, K.; Yin, L.

    2015-12-01

    Little data exists on the wind velocity characteristics of the upper atmosphere. The Red Line Air Glow Experiment is designed to measure the relative density and velocity of the thermosphere at altitudes approximately ranging between 250 and 350 km. To accomplish this, a Split-Field Etalon Imager will make doppler shift interferometry measurements of the oxygen redline at 630 nm wavelength airglow a using a high altitude balloon platform floating at 36 km. The imager collects up to 10 images per hour. Velocity resolution is within a 5 m/s. The Etalon is thermally controlled to within 1 deg C to achieve this goal. The pointing direction of the sensor is determined post-filght using GPS, IMU and three sun imaging sensors. An experimental star camera is included with a potential pointing accuracy of under 5 arc-min. The instrument first flew from Fort Sumner N,M., on August 26, 2014. Due to the short duration (3.5 hours) of the data collection period on this flight, a second flight was requested and awarded, to take place around September 10, 2015. This flight will allow for data collection over a 24 hour period. Both flight results will be included in the final presentation. This project was designed and built by an undergraduate team including students from physics, aerospace, electrical and mechanical engineering and management at both Utah State University and the University of Maryland Eastern Shores as a NASA's Undergraduate Student Instrument Project (USIP).

  3. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude.

  4. Ear - blocked at high altitudes

    Science.gov (United States)

    High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... eustachian tube is a connection between the middle ear (the space deep to the eardrum) and the ...

  5. Energy at high altitude.

    Science.gov (United States)

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  6. High Altitude Dermatology

    Science.gov (United States)

    Singh, Lt. Col. G K

    2017-01-01

    Approximately, 140 million people worldwide live permanently at high altitudes (HAs) and approximately another 40 million people travel to HA area (HAA) every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV) light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc.), cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc.) nail changes (koilonychias), airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma) are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place. PMID:28216727

  7. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  8. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  9. Aerial imagery and structure-from-motion based DEM reconstruction of region-sized areas (Sierra Arana, Spain and Namur Province, Belgium) using an high-altitude drifting balloon platform.

    Science.gov (United States)

    Burlet, Christian; María Mateos, Rosa; Azañón, Jose Miguel; Perez, José Vicente; Vanbrabant, Yves

    2015-04-01

    A new type of untethered balloon based mapping platform allows affordable remote sensing applications from higher altitudes and with a greater range and payload capacity than common motorized UAV's. The airborne device, called "Stratochip", is based on a dual helium balloons configuration. At a defined altitude (comprised between 1000 and 30000m), the first balloon is released, drastically reducing the platform climbing rate. The payload (up to 10kg) can then drift in a sub-horizontal trajectory until it leaves a pre-defined area of interest. Leaving the pre-defined area, the second balloon is released and the payload is recovered after a parachute landing. The predicted flight path of the Stratochip, launch site and surveyed area are calculated using both forecasted (NOAA model) and real-time (inborne instruments) meteorological data, along with the physical parameters of the balloons and parachute. The predicted recovery area can also be refined in real-time to secure and facilitate equipment retrieval. In this study, we present the results of two cartographic campaigns made in Belgium (Famennian outcrops near Beauraing, Namur Province) and Spain (karstic field in the Eastern part of Sierra Arana, Granada region). Those campaigns aimed to test the usability of the Stratochip to survey a large area at medium altitudes (3000m-8000m) and produced an updated Digital Elevation Model and orthophoto mosaic of those regions. For that purpose, the instrument installed in the Stratochip payload was constituted of a digital camera stabilized with two IMU's and two brushless motors. An automated routine then tilted the camera at predefined angles while taking pictures of the ground. This technique allowed to maximize the photogrammetric information collected on a single pass flight, and improved the DEM reconstruction quality, using structure-from-motion algorithms. Three sets of data (DEM + orthophoto) were created from those campaigns, using pictures sets collected a

  10. Cardiovascular physiology at high altitude.

    Science.gov (United States)

    Hooper, T; Mellor, A

    2011-03-01

    The role of the cardiovascular system is to deliver oxygenated blood to the tissues and remove metabolic effluent. It is clear that this complex system will have to adapt to maintain oxygen deliver in the profound hypoxia of high altitude. The literature on the adaptation of both the systemic and pulmonary circulations to high altitude is reviewed.

  11. The high altitude student platform (HASP) for student-built payloads

    Science.gov (United States)

    Guzik, T. Gregory; Wefel, John P.

    An outstanding issue with aerospace workforce development is what should be done at the university level to attract and prepare undergraduates for an aerospace career. One approach adopted by many institutions is to lead students through the design and development of small payloads (less than about 500 grams) that can be carried up to high altitude (around 30 km) by a latex sounding balloon. This approach has been very successful in helping students to integrate their content knowledge with practical skills and to understand the end-to-end process of aerospace project development. Sounding balloons, however, are usually constrained in flight duration (˜30 min above 24 km) and payload weight, limiting the kinds investigations that are possible. Student built picosatellites, such as CubeSats, can be placed in low Earth orbit removing the flight duration constraint, but the delays between satellite development and launch can be years. Here, we present the inexpensive high altitude student platform (HASP) that is designed to carry at least eight student payloads at a time to an altitude of about 36 km with flight durations of 15 20 h using a small zero-pressure polyethylene film balloon. This platform provides a flight capability greater than sounding balloons and can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. The HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. HASP is lightweight, has simple mission requirements providing flexibility in the launch schedule, will provide a flight test opportunity at the end of each academic year.

  12. Cleft formation in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  13. Stratospheric Balloon Platforms for Near Space Access

    Science.gov (United States)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries

  14. Cold Stress at High Altitudes

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  15. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    Science.gov (United States)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  16. High Altitude Cooking and Food Safety

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... 286) Actions ${title} Loading... High Altitude Cooking and Food Safety What is considered a high altitude? How is ...

  17. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth's Stratosphere

    Science.gov (United States)

    Anderson, James G.

    1999-01-01

    Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.

  18. A Low-Cost Launch Assistance System for Orbital Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Oleg Nizhnik

    2012-01-01

    Full Text Available The author reviews the state of art of nonrocket launch assistance systems (LASs for spaceflight focusing on air launch options. The author proposes an alternative technologically feasible LAS based on a combination of approaches: air launch, high-altitude balloon, and tethered LAS. Proposed LAS can be implemented with the existing off-the-shelf hardware delivering 7 kg to low-earth orbit for the 5200 USD per kg. Proposed design can deliver larger reduction in price and larger orbital payloads with the future advances in the aerostats, ropes, electrical motors, and terrestrial power networks.

  19. 1962 Satellite High Altitude Radiation Belt Database

    Science.gov (United States)

    2014-03-01

    TR-14-18 1962 Satellite High Altitude Radiation Belt Database Approved for public release; distribution is unlimited. March...the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database”, AFRL-VS-PS-TR- 2006-1079, Air Force Research Laboratory...Roth, B., “Blue Ribbon Panel and Support Work Assessing the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database

  20. Economy of Adaptation to High Altitude

    Institute of Scientific and Technical Information of China (English)

    Jean-Paul Richalet

    2004-01-01

    @@ The international meeting that will be held in Xining and Lhasa in August 2004 will be a wonderful occasion to share facts and concepts dealing with adaptation to high altitude. Life at high altitude is a challenge for thousands of animal species and millions of humans residing or visiting high altitude regions of the world. To try to understand the physiological mechanisms involved in the adaptation processes to high altitude hypoxia, it is convenient to start by defining what is "extreme" from a biological point of view.

  1. Aspirated Compressors for High Altitude Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  2. Kajian Teknologi High Altitude Platform (HAP [Study of High Altitude Platform (HAP Technology

    Directory of Open Access Journals (Sweden)

    Amry Daulat Gultom

    2016-07-01

    Full Text Available High Altitude Platform (HAP merupakan solusi alternatif untuk mengatasi keterbatasan infrastruktur terestrial maupun satelit. HAP merupakan pesawat ataupun balon udara yang ditempatkan pada ketinggian 20-50 km di atas permukaan bumi. Kelebihan yang utama dari HAP adalah kemudahan dalam penempatan, fleksibilitas, biaya operasionalnya rendah, delay  propagasi rendah, sudut elevasi lebar, cakupan yang luas. Penelitian ini dilakukan untuk mengetahui potensi HAP untuk komunikasi pita lebar dan perkembangannya di Indonesia. Analisis dilakukan secara deskriptif dengan mengolah data literatur yang didapat. Hasil penelitian menunjukkan bahwa di Indonesia terdapat potensi teknologi HAP untuk komunikasi pita lebar dengan lebar pita 2x300 MHz di band 27,9-28,2 GHz dan 31-31,3 GHz. Namun, belum ada peraturan yang mengatur alokasi frekuensi untuk HAP secara khusus di Indonesia.*****High Altitude Platform (HAP has been developed as an alternative solution in order to overcome limitation of terrestrial and satellite communication system. HAP is an aircraft or balloon situated on 20-50 km above the earth. Main advantages of HAP are flexibility in deployment, low propagation delay, wide elevation angle and broad coverage. The research is conducted to gather HAP potential for broadband communication and its development in Indonesia. Analysis is conducted by descriptive analysis from literature study gather. The research result shows that in Indonesia, there is potential of HAP technology for broadband communication with 2x300 MHz bandwidth within 27,9-28,2 GHz and 31-31,3 GHz. Yet, there are no specific regulations managing frequency allocation for HAP in Indonesia.

  3. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  4. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  5. Pupillary light reaction during high altitude exposure.

    Directory of Open Access Journals (Sweden)

    Maximilian Schultheiss

    Full Text Available PURPOSE: This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS. This work is related to the Tübingen High Altitude Ophthalmology (THAO study. METHODS: Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity were quantified in 14 healthy volunteers at baseline (341 m and high altitude (4559 m over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline and the 95% confidence interval for each time point. RESULTS: During high altitude exposure the initial diameter size was significantly reduced (p<0.05. In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05 on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. CONCLUSIONS: Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS.

  6. Pupillary Light Reaction during High Altitude Exposure

    Science.gov (United States)

    Schatz, Andreas; Wilhelm, Barbara; Peters, Tobias; Fischer, M. Dominik; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian; Willmann, Gabriel

    2014-01-01

    Purpose This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP) and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. Methods Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity) were quantified in 14 healthy volunteers at baseline (341 m) and high altitude (4559 m) over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline) and the 95% confidence interval for each time point. Results During high altitude exposure the initial diameter size was significantly reduced (p<0.05). In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05) on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. Conclusions Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS. PMID:24503770

  7. Developmental functional adaptation to high altitude: review.

    Science.gov (United States)

    Frisancho, A Roberto

    2013-01-01

    Various approaches have been used to understand the origins of the functional traits that characterize the Andean high-altitude native. Based on the conceptual framework of developmental functional adaptation which postulates that environmental influences during the period of growth and development have long lasting effects that may be expressed during adulthood, we initiated a series of studies addressed at determining the pattern of physical growth and the contribution of growth and development to the attainment of full functional adaptation to high-altitude of low and high altitude natives living under rural and urban conditions. Current research indicate that: (a) the pattern of growth at high altitude due to limited nutritional resources, physical growth in body size is delayed but growth in lung volumes is accelerated because of hypoxic stress); (b) low-altitude male and female urban natives can attain a full functional adaptation to high altitude by exposure to high-altitude hypoxia during the period of growth and development; (c) both experimental studies on animals and comparative human studies indicate that exposure to high altitude during the period of growth and development results in the attainment of a large residual lung volume; (d) this developmentally acquired enlarged residual lung volume and its associated increase in alveolar area when combined with the increased tissue capillarization and moderate increase in red blood cells and hemoglobin concentration contributes to the successful functional adaptation of the Andean high-altitude native to hypoxia; and (e) any specific genetic traits that are related to the successful functional adaptation of Andean high-altitude natives have yet to be identified.

  8. Low-Cost Propellant Launch to LEO from a Tethered Balloon - Economic and Thermal Analysis

    Science.gov (United States)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.

    2010-01-01

    This paper provides new analysis of the economics of low-cost propellant launch coupled with dry hardware re-use, and of the thermal control of the liquid hydrogen once on-orbit. One conclusion is that this approach enables an overall reduction in the cost-permission by as much as a factor of five as compared to current approaches for human exploration of the moon, Mars, and near-Earth asteroids.

  9. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  10. the APL Balloonborne High Altitude Research Platform (HARP)

    Science.gov (United States)

    Adams, D.; Arnold, S.; Bernasconi, P.

    2015-09-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed and demonstrated a multi-purpose stratospheric balloonborne gondola known as the High Altitude Research Platform (HARP). HARP provides the power, mechanical supports, thermal control, and data transmission for multiple forms of high-altitude scientific research equipment. The platform has been used for astronomy, cosmology and heliophysics experiments but can also be applied to atmospheric studies, space weather and other forms of high altitude research. HARP has executed five missions. The first was Flare Genesis from Antarctica in 1993 and the most recent was the Balloon Observation Platform for Planetary Science (BOPPS) from New Mexico in 2014. HARP will next be used to perform again the Stratospheric Terahertz Observatory mission, a mission that it first performed in 2009. The structure, composed of an aluminum framework is designed for easy transport and field assembly while providing ready access to the payload and supporting avionics. A light-weighted structure, capable of supporting Ultra-Long Duration Balloon (ULDB) flights that can last more than 100 days is available. Scientific research payloads as heavy as 600 kg (1322 pounds) and requiring up to 800 Watts electrical power can be supported. The platform comprises all subsystems required to support and operate the science payload, including both line-of-sight (LOS) and over-the-horizon (0TH) telecommunications, the latter provided by Iridium Pilot. Electrical power is produced by solar panels for multi-day missions and batteries for single-day missions. The avionics design is primarily single-string; however, use of ruggedized industrial components provides high reliability. The avionics features a Command and Control (C&C) computer and a Pointing Control System (PCS) computer housed within a common unpressurized unit. The avionics operates from ground pressure to 2 Torr and over a temperature range from —30 C to +85 C

  11. Nationwide Eclipse Ballooning Project

    Science.gov (United States)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  12. Development of an Ozone UV DIAL System at the High Altitude Research Station Jungfraujoch

    Science.gov (United States)

    Bartlome, M.; Simeonov, V.; Parlange, M.; van den Bergh, H.

    2009-04-01

    An ozone UV Differential Absorption Lidar (DIAL) system is developed and added to the existing multi-wavelength Lidar operated at the High Altitude Research Station Jungfraujoch (HARSJ, 3580 m ASL, 46.55° N, 7.98° E). The system is based on a quadrupled Nd:YAG laser (Continuum Powerlite 8000) providing the laser emission of 266 nm at a repetition rate of 10 Hz. The initial radiation is focused through a high pressure Nitrogen-Raman cell responsible for the generation of the DIAL wavelengths suitable for ozone detection (284, 304 nm) by the stimulated Raman scattering technique. The 76 cm diameter Cassegrain telescope in the HARSJ's astronomical dome is used as receiver for measurements up to the tropopause. The existing multi-wavelength polychromator fixed at the telescopes rear end is equipped with the additional ozone detection channel. The performance of the system is illustrated by inter-comparison with an ECC ozone sonde launched by the Swiss Meteorological Institute at Payerne (SMI, 491 m ASL, 46.83°N, 6.96 E). The retrieved data are found to be in good agreement with the balloon sounding and cover an altitude range of 2 to 10 km above the HARSJ. Since the scientific community disagrees about the real amount of air mass exchange driven by stratosphere troposphere exchange (STE), this new instrument is capable to supply the STE research with remote sensing data from an unique location.

  13. PoGOLino: a scintillator-based balloon-borne neutron detector

    CERN Document Server

    Kole, Merlin; Fukazawa, Yasushi; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mozsi; Moretti, Elena; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki

    2014-01-01

    PoGOLino is a balloon-borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors that make use of LiCAF, a novel neutron sensitive scintillator, sandwiched by BGO crystals for background reduction. The experiment was launched on March 20th 2013 from the Esrange Space Centre, Northern Sweden (geomagnetic latitude of $65^\\circ$), for a three hour flight during which the instrument took data up to an altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.

  14. Pulmonary Embolism Masquerading as High Altitude Pulmonary Edema at High Altitude.

    Science.gov (United States)

    Pandey, Prativa; Lohani, Benu; Murphy, Holly

    2016-12-01

    Pandey, Prativa, Benu Lohani, and Holly Murphy. Pulmonary embolism masquerading as high altitude pulmonary edema at high altitude. High Alt Med Biol. 17:353-358, 2016.-Pulmonary embolism (PE) at high altitude is a rare entity that can masquerade as or occur in conjunction with high altitude pulmonary edema (HAPE) and can complicate the diagnosis and management. When HAPE cases do not improve rapidly with descent, other diagnoses, including PE, ought to be considered. From 2013 to 2015, we identified eight cases of PE among 303 patients with initial diagnosis of HAPE. Upon further evaluation, five had deep vein thrombosis (DVT). One woman had a contraceptive ring and seven patients had no known thrombotic risks. PE can coexist with or mimic HAPE and should be considered in patients presenting with shortness of breath from high altitude regardless of thrombotic risk.

  15. Thermal Design and Analysis of the Optical Telescope Assembly for the Gondola for High Altitude Planetary Science

    Science.gov (United States)

    O'Connor, Brian; Brooks, Thomas

    2017-01-01

    The NASA Gondola for High Altitude Planetary Science (GHAPS) project is an effort to design, build, and fly a balloon-borne platform for planetary science missions. GHAPS observations will be in the 300 nm to 5 micron wavelength region covering UV, visible, and near-mid IR. The primary element of the project is the Optical Telescope Assembly (OTA). It is a one meter aperture narrow-field-of-view telescope that contains the primary and secondary mirrors, the support system/metering structure, a secondary mirror focusing system, baffles, and insulation. This paper presents the thermal design and analysis that has been done to support the design of the OTA. A major part of the thermal analysis was bounding the flight environment for the six potential Columbia Scientific Balloon Facility launch sites. These analyses were used to give input into the Structural Thermal Optical Performance (STOP) analysis of the telescope. Also the analysis was used to select heater sizes for the few OTA associated electronic components. Currently the telescope is scheduled to have its first flight in 2019.

  16. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  17. Sleep of Andean high altitude natives.

    Science.gov (United States)

    Coote, J H; Stone, B M; Tsang, G

    1992-01-01

    The structure of sleep in lowland visitors to altitudes greater than 4000 m is grossly disturbed. There are no data on sleep in long-term residents of high altitudes. This paper describes an electroencephalographic study of sleep in high altitude dwellers who were born in and are permanent residents of Cerro de Pasco in the Peruvian Andes, situated at 4330 m. Eight healthy male volunteers aged between 18 and 69 years were studied. Sleep was measured on three consecutive nights for each subject. Electroencephalographs, submental electromyographs and electro-oculograms were recorded. Only data from the third night were used in the analysis. The sleep patterns of these subjects resembled the normal sleep patterns described by others in lowlanders at sea level. There were significant amounts of slow wave sleep in the younger subjects and rapid eye movement sleep seemed unimpaired.

  18. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  19. Can High Altitude Influence Cytokines and Sleep?

    Science.gov (United States)

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  20. High-altitude physiology: lessons from Tibet

    Science.gov (United States)

    Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili

    2013-05-01

    Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (Pcardiac output and muscle O2 diffusional conductance, but neither ventilation nor the alveolar-arterial PO2 difference (AaPO2) varied with [Hb]. In contrast, Andean high altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].

  1. Breathing and sleep at high altitude.

    Science.gov (United States)

    Ainslie, Philip N; Lucas, Samuel J E; Burgess, Keith R

    2013-09-15

    We provide an updated review on the current understanding of breathing and sleep at high altitude in humans. We conclude that: (1) progressive changes in pH initiated by the respiratory alkalosis do not underlie early (48 h), complex cellular and neurochemical re-organization occurs both in the peripheral chemoreceptors as well as within the central nervous system. The latter is likely influenced by central acid-base changes secondary to the extent of the initial respiratory responses to initial exposure to high altitude; (3) sleep at high altitude is disturbed by various factors, but principally by periodic breathing; (4) the extent of periodic breathing during sleep at altitude intensifies with duration and severity of exposure; (5) complex interactions between hypoxic-induced enhancement in peripheral and central chemoreflexes and cerebral blood flow--leading to higher loop gain and breathing instability--underpin this development of periodic breathing during sleep; (6) because periodic breathing may elevate rather than reduce mean SaO2 during sleep, this may represent an adaptive rather than maladaptive response; (7) although oral acetazolamide is an effective means to reduce periodic breathing by 50-80%, recent studies using positive airway pressure devices to increase dead space, hyponotics and theophylline are emerging but appear less practical and effective compared to acetazolamide. Finally, we suggest avenues for future research, and discuss implications for understanding sleep pathology.

  2. Precision High Altitude Star Tracker Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Motivation: The long, successful history of scientific ballooning, coupled with tightening budgets, has led to a surge of interest in the scientific potential of...

  3. Is High Altitude Pulmonary Edema Relevant to Hawai‘i?

    Science.gov (United States)

    2014-01-01

    High altitude clinical syndromes have been described in the medical literature but may be under recognized in the state of Hawai‘i. As tourism increases, high altitude injuries may follow given the easy access to high altitude attractions. Visitors and clinicians should be aware of the dangers associated with the rapid ascent to high altitudes in the perceived comfort of a vehicle. This paper will review the basic pathophysiology, prevention, and treatment of the most serious of the high altitude clinical syndromes, high altitude pulmonary edema. PMID:25478294

  4. Sleep at high altitude: guesses and facts.

    Science.gov (United States)

    Bloch, Konrad E; Buenzli, Jana C; Latshang, Tsogyal D; Ulrich, Silvia

    2015-12-15

    Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8-4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiorespiratory disease.

  5. High-Altitude Platforms - Present Situation and Technology Trends

    Directory of Open Access Journals (Sweden)

    Flavio Araripe D'Oliveira

    2016-07-01

    Full Text Available High-altitude platforms (HAPs are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or satellite, bringing back attention to the development of HAP. This article aims to survey the history of HAPs, the current state-of-the-art (April 2016, technology trends and challenges. The main focus of this review will be on technologies directly related to the aerial platform, inserted in the aeronautical engineering field of knowledge, not detailing aspects of the telecommunications area.

  6. AIAA Educator Academy: The Space Weather Balloon Module

    Science.gov (United States)

    Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.

    2013-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each

  7. Oxygen ion energization observed at high altitudes

    Directory of Open Access Journals (Sweden)

    M. Waara

    2010-04-01

    Full Text Available We present a case study of significant heating (up to 8 keV perpendicular to the geomagnetic field of outflowing oxygen ions at high altitude (12 RE above the polar cap. The shape of the distribution functions indicates that most of the heating occurs locally (within 0.2–0.4 RE in altitude. This is a clear example of local ion energization at much higher altitude than usually reported. In contrast to many events at lower altitudes, it is not likely that the locally observed wave fields can cause the observed ion energization. Also, it is not likely that the ions have drifted from some nearby energization region to the point of observation. This suggests that additional fundamentally different ion energization mechanisms are present at high altitudes. One possibility is that the magnetic moment of the ions is not conserved, resulting in slower outflow velocities and longer time for ion energization.

  8. The High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  9. Scientific ballooning in Brazil

    Science.gov (United States)

    Corrêa, R.; Rinke, E.; Fernandes, J. O.; Villela, T.

    We present an overview of the scientific ballooning activities that took place in Brazil over the past 30 years as well as the current ongoing efforts in the area. We also briefly describe the balloon launching facility that exists at the Instituto Nacional de Pesquisas Espaciais (National Institute for Space Research) — INPE. Up to now, over 100 scientific balloon experiments, related to Astrophysics, Aeronomy, and Geophysics were launched from Brazil taking advantage of the country's continental dimensions, a well-defined rain season, and a low population density, which offer excellent conditions for scientific ballooning activities. Balloons with volumes up to 500,000 cubic meters can be launched from INPE's balloon launching base (latitude S 22° 4' 2″; longitude W 044° 58' 41″). The availability of good roads and several inland airports in Brazil provides the necessary structure for safe payload retrieval and its rapid return to the balloon base. There are several airports throughout Brazil that can also be used as balloon launching bases, mainly in the country's Eastern region. Overflights of more than 1,000 kilometers are possible and easily attained. Balloon flights ranging from a few hours to long duration flights can be safely verified. The constant climate monitoring through the use of weather satellites information received at INPE provides the necessary data to determine the necessary conditions for a long duration flight. INPE's Center for Weather Forecast and Climate Studies (CPTEC) provides the necessary weather forecast support for launch and payload retrieval.

  10. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  11. HAWC - The High Altitude Water Cherenkov Detector

    Science.gov (United States)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  12. Sleep apneas and high altitude newcomers.

    Science.gov (United States)

    Goldenberg, F; Richalet, J P; Onnen, I; Antezana, A M

    1992-10-01

    Sleep and respiration data from two French medical high altitude expeditions (Annapurna 4,800 m and Mt Sajama 6,542 m) are presented. Difficulties in maintaining sleep and a SWS decrease were found with periodic breathing (PB) during both non-REM and REM sleep. Extent of PB varied considerably among subjects and was not correlated to the number of arousals but to the intercurrent wakefulness duration. There was a positive correlation between the time spent in PB and the individual hypoxic ventilatory drive. The relation between PB, nocturnal desaturation, and mountain sickness intensity are discussed. Acclimatization decreased the latency toward PB and improved sleep. Hypnotic benzodiazepine intake (loprazolam 1 mg) did not worsen either SWS depression or apneas and allowed normal sleep reappearance after acclimatization.

  13. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    Science.gov (United States)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  14. Clefting in pumpkin balloons

    Science.gov (United States)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  15. THE HIGH ALTITUDE GAMMA RAY OBSERVATORY, HAWC

    Directory of Open Access Journals (Sweden)

    M. M. González

    2011-01-01

    Full Text Available El volcán Sierra Negra en Puebla, México fue seleccionado para albergar a HAWC (High Altitude Water Cherenkov, un observatorio de gran apertura (2Pi sr, único en el mundo, capaz de observar contínuamente el cielo a energías de 0.1 a 100 TeV. HAWC consiste en un arreglo a una altitud de 4100 m sobre el nivel del mar de 300 contenedores de 7.3 m de diámetro y 5 m de altura llenos de agua pura y sensores de luz que observan partículas sumamente energ´eticas provenientes de los eventos más violentos del universo y será 15 veces más sensible que su antecesor Milagro. Las aportaciones científicas de Milagro han demostrado las capacidades únicas de este tipo de observatorios. En este trabajo se presentará HAWC y se discutirá brevemente su caso científico y capacidades.

  16. Solar electric energy supply at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Knaupp, W.; Mundschau, E. [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung (ZSW), Ulm (Germany)

    2004-04-01

    Solar-hydrogen systems were analyzed regarding their usability as energy supply system for high altitude platforms. In a first step for an assessment of solar and photovoltaic resources near-ground spectral transmittances of atmosphere were extended with simplified height correction functions to achieve spectral irradiance descriptions versus atmospheric height up to 25 km. The influence of atmospheric height to different solar cell technologies regarding electrical performance was quantified at some examples for the aspect of spectral distribution with the help of the introduced spectral height factor. The main attention during analysis of the whole solar-hydrogen energy system was directed to characteristics of current or near term available technology. Specific power weight of photovoltaic system, electrolyzer, fuel cell and gas tanks and their dependence on operation mode and power range were assessed. A pre-design of a solar-hydrogen energy system was carried out for an airship (volume 580,000 m3) withstanding continuous wind speeds up to {approx} 130 km/h. The calculated coverage ratio of photovoltaic and load share of energy system mark the frame of usability. Depending on the airship size, shape and other external boundary conditions the total electrical energy demand could be covered by a solar-hydrogen energy system of current or near term technology for full year operation. However further investigations are necessary regarding e.g. further mass reductions. (author)

  17. The High-Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  18. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  19. The High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  20. The High Altitude Water Cherenkov Observatory

    CERN Document Server

    ,

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV gamma-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV gamma-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from gamma-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first thirty WCDs (forming an array approximately the size of Milagro) were deployed in Summer...

  1. Pulmonary embolism in young natives of high altitude

    Directory of Open Access Journals (Sweden)

    Sanjay Singhal

    2016-01-01

    Full Text Available Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude.

  2. High altitude pulmonary oedema (HAPE) in an Indian pilgrim.

    Science.gov (United States)

    Panthi, Sagar; Basnyat, Buddha

    2013-11-01

    Increasing number of Hindu pilgrims visit the Himalayas where some of them suffer from high altitude illness including the life threatening forms, high altitude pulmonary oedema (HAPE) and high altitude cerebral oedema. Compared to tourists and trekkers, pilgrims are usually ignorant about altitude illness. This is a case of a pilgrim who suffered from HAPE on his trip to Kailash-Mansarovar and is brought to a tertiary level hospital in Kathmandu. This report emphasises on how to treat a patient with HAPE, a disease which is increasingly being seen in the high altitude pilgrim population.

  3. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  4. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  5. Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

    Science.gov (United States)

    Mertens, Christopher J.

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.

  6. Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation.

    Science.gov (United States)

    Luo, Yongjun; Yang, Xiaohong; Gao, Yuqi

    2013-08-01

    Mitochondria are the energy metabolism centers of the cell. More than 95% of cellular energy is produced by mitochondrial oxidative phosphorylation. Hypoxia affects a wide range of energy generation and consumption processes in animals. The most important mechanisms limiting ATP consumption increase the efficiency of ATP production and accommodate the reduced production of ATP by the body. All of these mechanisms relate to changes in mitochondrial function. Mitochondrial function can be affected by variations in mitochondrial DNA, including polymorphisms, content changes, and deletions. These variations play an important role in acclimatization or adaptation to hypoxia. In this paper, the association between mitochondrial genome sequences and high-altitude adaptation is reviewed.

  7. The Kilimanjaro score for assessing fitness to fly paragliders at high altitude.

    Science.gov (United States)

    Wilkes, Matt; Simpson, Alistair; Knox, Matt; Summers, Luke

    2013-09-01

    Extreme sports such as paragliding are increasing in popularity, providing continued challenges for the development of safe practice techniques. In January and February 2013, the Wings of Kilimanjaro expedition aimed to launch 95 paragliders from the summit of Mount Kilimanjaro, 5790 m above sea level. A safe launch was paramount but risked being impaired by adverse environmental conditions, in particular the pathophysiological effects of high altitude. There are no existing scores to assess fitness for high-altitude paraglider launches present in the literature. A novel scoring system, the Kilimanjaro Score, was therefore developed to rapidly assess pilots pre-flight. The Kilimanjaro Score aimed to assess cognition, memory, and visual-spatial skill within the context of standard pre-flight checks. Further testing, including the Lake Louise Score, was to be performed if the pilot's Kilimanjaro Score was deemed unsatisfactory. We present the Kilimanjaro Score here for comment and refinement, and we invite other parties to consider its use in the field for high altitude paragliding activities.

  8. Introductory address: lessons to be learned from high altitude.

    Science.gov (United States)

    Houston, C S

    1979-07-01

    A historical account of the important landmarks in man's experience with the high altitude environment is followed by comments on the important stages in the understanding of its physiological effects. The work of The Mount Logan High Altitude Physiology Study on acute mountain sickness is reviewed from its inception in 1967 until the present.

  9. Soldier at High Altitude: Problem & Preventive Measures

    Directory of Open Access Journals (Sweden)

    S.S Purkayastha

    2000-04-01

    Full Text Available Due to military and j trategic reasons, a large body of troops is being regularly dcployed in the snowbound areas through ut the Himalayan regions to guard Ihe Ironliers. Thc mountain environment at high 'allitude (HA consisls of several faclors alien lo plain dwellers, which evoke a series of physiological responses in human system. Some of the sea' level residents on induction to HA suffer from several unloward symploms of HA" ailmenls varying from mild-lo-severe degrees. Suddenexposure to HA is detrimental to physical and mental  performance of the low landers and  certain cases, may even lead to dreaded condition like high altitude pulmonary oedema (HAPO. These may make a man Jisturbed physically and mentally. So, there is a need lo prevent such hazards v(hich ispossible if the individual is aware of the problems and prevenlive measures ofHA ailments in advance, before going to HA for a safe and happy living there. Hence, a noble effort has been made to provide guidelines to create awareness about physical and physiological problems of life at HA and themethods of protection against its ill-effects for the soldiers, mountaineers and sojourners conducting scientific trials it HA. In th.:s revieJ, an attempt has been made to describe vital aspects of HA in a popular way, st~ing with its concept and various environmental factors which exert considerableettects on human body functions, heallh and performance on exposure to such environment, on the b¥is of a series of studies coitlucted at Ithe Defence Institute of Physiology & Allied Sciences, Delhi, oVer the years. The most important featurelof HA (3,000 m and above is hypoxia or deficiency ofoxygej1 in the body. Olher cnvironmental tactors are: scverc cold, high velocity wind, low rclalivc humidily, high solar radiatior, increased ultraviolet radialion and difficult terrain. These faclors are responsible for various HA cWtdc old syndromes, viz., acute mountain sickness, HAPO, dehydration,4

  10. Low Cost Variable Conductance Heat Pipe for Balloon Payload Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While continuously increasing in complexity, the payloads of terrestrial high altitude balloons need a thermal management system to reject their waste heat and to...

  11. High Altitude Supersonic Target (HAST), Phase 2

    Science.gov (United States)

    1974-08-01

    prelaunch load is less for the payload configuration due to a reduction in TM syjtcm readout This load exists from safety pin pull until launch...the safe position with a two-position safety pin . The rotor is also secured internally with a solenoid operated pin. In this locked position, the... safety pin is pulled out, the rotor is unlocked and is allowed to rotate 13°, where the solenoid pin holds it. At this point the solenoid circuit is

  12. Aging, High Altitude, and Blood Pressure: A Complex Relationship.

    Science.gov (United States)

    Parati, Gianfranco; Ochoa, Juan Eugenio; Torlasco, Camilla; Salvi, Paolo; Lombardi, Carolina; Bilo, Grzegorz

    2015-06-01

    Parati, Gianfranco, Juan Eugenio Ochoa, Camilla Torlasco, Paolo Salvi, Carolina Lombardi, and Grzegorz Bilo. Aging, high altitude, and blood pressure: A complex relationship. High Alt Biol Med 16:97-109, 2015.--Both aging and high altitude exposure may induce important changes in BP regulation, leading to significant increases in BP levels. By inducing atherosclerotic changes, stiffening of large arteries, renal dysfunction, and arterial baroreflex impairment, advancing age may induce progressive increases in systolic BP levels, promoting development and progression of arterial hypertension. It is also known, although mainly from studies in young or middle-aged subjects, that exposure to high altitude may influence different mechanisms involved in BP regulation (i.e., neural central and reflex control of sympathetic activity), leading to important increases in BP levels. The evidence is less clear, however, on whether and to what extent advancing age may influence the BP response to acute or chronic high altitude exposure. This is a question not only of scientific interest but also of practical relevance given the consistent number of elderly individuals who are exposed for short time periods (either for leisure or work) or live permanently at high altitude, in whom arterial hypertension is frequently observed. This article will review the evidence available on the relationship between aging and blood pressure levels at high altitude, the pathophysiological mechanisms behind this complex association, as well as some questions of practical interest regarding antihypertensive treatment in elderly subjects, and the effects of antihypertensive drugs on blood pressure response during high altitude exposure.

  13. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  14. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  15. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  16. Travelling to new heights: practical high altitude medicine.

    Science.gov (United States)

    Plant, Tracie; Aref-Adib, Golnar

    2008-06-01

    Over 40 million people travel to high altitude for both work and pleasure each year, and all of them are at risk of the acute effects of hypoxia. This article reviews the prevention, diagnostic features and treatments of these illnesses.

  17. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  18. Increased oxidative stress following acute and chronic high altitude exposure.

    Science.gov (United States)

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  19. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions, design scheme, the main performances and parameters of the test facilities, as well as...

  20. The effect of high altitude on nasal nitric oxide levels.

    Science.gov (United States)

    Altundag, Aytug; Salihoglu, Murat; Cayonu, Melih; Cingi, Cemal; Tekeli, Hakan; Hummel, Thomas

    2014-09-01

    The aim of the present study was to investigate whether nasal nitric oxide (nNO) levels change in relation to high altitude in a natural setting where the weather conditions were favorable. The present study included 41 healthy volunteers without a history of acute rhinosinusitis within 3 weeks and nasal polyposis. The study group consisted of 31 males (76 %) and 10 females (24 %) and the mean age of the study population was 38 ± 10 years. The volunteers encamped for 2 days in a mountain village at an altitude of 1,500 m above sea level (masl) and proceeded to highlands at an altitude of 2,200 masl throughout the day. The measurements of nNO were done randomly, either first at the mountain village or at sea level. Each participant had nNO values both at sea level and at high altitude at the end of the study. The nNO values of sea level and high altitude were compared to investigate the effect of high altitude on nNO levels. The mean of average nNO measurements at the high altitude was 74.2 ± 41 parts-per-billion (ppb) and the mean of the measurements at sea level was 93.4 ± 45 ppb. The change in nNO depending on the altitude level was statistically significant (p high altitude even if the weather conditions were favorable, such as temperature, humidity, and wind.

  1. Yellow Balloon in a Briar Patch.

    Science.gov (United States)

    Cooper, Frank; Fitzmaurice, Robert W.

    1978-01-01

    As part of a meteorology unit, sixth grade science students launched helium balloons with attached return postcards. This article describes Weather Service monitoring of the balloons and postcard return results. (MA)

  2. Shilajit: A panacea for high-altitude problems.

    Science.gov (United States)

    Meena, Harsahay; Pandey, H K; Arya, M C; Ahmed, Zakwan

    2010-01-01

    High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a "health rejuvenator" and help to overcome high-altitude related problems.

  3. Travel to High Altitude Following Solid Organ Transplantation.

    Science.gov (United States)

    Luks, Andrew M

    2016-09-01

    Luks, Andrew M. Clinician's corner: travel to high altitude following solid organ transplantation. High Alt Med Biol. 17:147-156, 2016.-As they regain active lifestyles following successful organ transplantation, transplant recipients may travel to high altitude for a variety of activities, including skiing, climbing, and trekking. This review is intended to provide information for medical providers who may encounter transplant patients seeking advice before planned high altitude travel or care for medical issues that develop during the actual sojourn. There is currently limited information in the literature about outcomes during high-altitude travel following solid organ transplantation, but the available evidence suggests that the physiologic responses to hypobaric hypoxia are comparable to those seen in nontransplanted individuals and well-selected transplant recipients with no evidence of organ rejection can tolerate ascents as high as 6200 m. All transplant recipients planning high-altitude travel should undergo pretravel assessment and counseling with an emphasis on the recognition, prevention, and treatment of altitude illness, as well as the importance of preventing infection and limiting sun exposure. Transplant recipients can use the standard medications for altitude illness prophylaxis and treatment, but the choice and dose of medication should take into account the patient's preexisting medication regimen and current renal function. With careful attention to these and other details, the healthy transplant recipient can safely experience the rewards of traveling in the mountains.

  4. Power Systems Design for Long Duration Ballooning

    Science.gov (United States)

    Stilwell, Bryan; Chuzel, Alain

    2016-01-01

    The Columbia Scientific Balloon Facility has been designing and building high-altitude balloon power systems for over 26 years. With that experience, we have found certain types of PV panels, batteries, and charge controllers that are reliable in stratospheric environments. The ultimate goal is to ensure that power systems will provide power reliably throughout the duration of an LDB flight. The purpose of this presentation is to provide some general guidelines and best practices for power system design.

  5. Children's exercise capacity at high altitude in Tibet.

    Science.gov (United States)

    Bianba; Andersen, Lars Bo; Stigum, Hein; Ouzhuluobu; Bjertness, Espen

    2014-11-01

    Maximal oxygen uptake (exercise capacity) is a vital parameter in the evaluation of adaptation to high altitude, providing an index of the integrated function of the oxygen transport system. Previous studies of maximal oxygen uptake in population at high altitude have mainly focused on adults and adolescents, though data on children are uncommon. Maximal oxygen uptake can be measured directly, using an oxygen analyser, or indirectly through the development of equations for estimation from the maximal power output (W(max)). Such estimations and studies of the physiological aspects of children's capacity to work and live at different altitudes in Tibet ancestry were not reported previously, although differences similar to those seen in adults may be expected to occur. The present paper summarized the findings of studies on exercise capacity among children living at high altitude in Tibet.

  6. Microcomputer-controlled high-altitude data aquisition system

    Science.gov (United States)

    1985-05-01

    A new microcomputer controlled high altitude data acquisition system was developed. The system provides a new technique for data acquisition from China's astronomical, meteorological and other high altitude experiments and opens up new territory in microcomputer applications. This microcomputer controlled high altitude data acquisition system is made up of a Z80 single board computer, 10 K memory expansion board, and keyboard and display board which can collect 16 analog signals simultaneously, and through analog/digital conversion can convert external analog signals into digital signals then encode them in a certain form through program modulation and store them on audio cassette. The data is immediately retrieved from the tape and sent to the surface microcomputer system for data processing and analysis.

  7. The yak genome and adaptation to life at high altitude.

    Science.gov (United States)

    Qiu, Qiang; Zhang, Guojie; Ma, Tao; Qian, Wubin; Wang, Junyi; Ye, Zhiqiang; Cao, Changchang; Hu, Quanjun; Kim, Jaebum; Larkin, Denis M; Auvil, Loretta; Capitanu, Boris; Ma, Jian; Lewin, Harris A; Qian, Xiaoju; Lang, Yongshan; Zhou, Ran; Wang, Lizhong; Wang, Kun; Xia, Jinquan; Liao, Shengguang; Pan, Shengkai; Lu, Xu; Hou, Haolong; Wang, Yan; Zang, Xuetao; Yin, Ye; Ma, Hui; Zhang, Jian; Wang, Zhaofeng; Zhang, Yingmei; Zhang, Dawei; Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang; Liu, Wenbin; Zhang, Yan; Huang, Zhiyong; Zhang, Shengxiang; Long, Ruijun; Yang, Huanming; Wang, Jian; Lenstra, Johannes A; Cooper, David N; Wu, Yi; Wang, Jun; Shi, Peng; Wang, Jian; Liu, Jianquan

    2012-07-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.

  8. Overview Of The Scientific Balloon Activity in Sweden 2014-2016

    Science.gov (United States)

    Abrahamsson, Mattias; Lockowandt, Christian; Andersson, Kent

    2016-07-01

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from Esrange since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times of 4-5 days are very beneficial for astronomical payloads, such as telescopes that need long observation times. Circumpolar flights of more than two weeks are possible if Russian overflight permission exists. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. Since last COSPAR a number of interesting balloon flights have been performed from Esrange. In late 2014 parachute tests for the ExoMars programme was performed by drop-test from balloons. This was followed up on in the summer of 2015 with full end-to-end dynamic stability tests of Earth re-entry capsule shapes. Several balloon

  9. Pumpkin Balloon

    OpenAIRE

    Nishimura, Jun; 西村, 純

    1992-01-01

    The Pumpkin shaped balloons, which are the extreme case of the heart-type balloons had been studied as one of the promising candidate of the super pressure balloons. Here, detailed studies for the features of the pumpkin balloons are described, particularly by comparing with those of the spherical shaped super pressure balloons.

  10. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  11. Neurophysiological Problems in Snow Bound High Altitude Areas

    Directory of Open Access Journals (Sweden)

    W. Selvamurthy

    1984-10-01

    Full Text Available A series of studies have been conducted to evaluate the neurophysiological responses in young healthy soldiers during acclimatization at 3,500m altitude in Western Himalayas. The responses of autonomic nervous system, electroencephalogram hypothalamic thermoregulatory efficiency, orthostatic tolerance, sleep profile and effects of sleep deprivation have been studied in fresh inductees during three to five weeks of acclimatization at high altitude and compared with those of one year acclimatized lowlanders and high altitude natives. Physiological significance of these neurophysiological responses in the process of altitude adaptation is discussed in the light of current knowledge in the field.

  12. Effects of Ascent to High Altitude on Human Antimycobacterial Immunity

    Science.gov (United States)

    Aldridge, Robert W.; Siedner, Mark J.; Necochea, Alejandro; Leybell, Inna; Valencia, Teresa; Herrera, Beatriz; Wiles, Siouxsie; Friedland, Jon S.; Gilman, Robert H.; Evans, Carlton A.

    2013-01-01

    Background Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. Methods Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants’ whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG) mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants’ whole blood versus positive-control culture broth and versus negative-control plasma. Results Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p≤0.002) of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p≤0.01) of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents. Conclusions An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or

  13. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior st

  14. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  15. Pathophysiology of acute mountain sickness and high altitude pulmonary oedema

    DEFF Research Database (Denmark)

    Sutton, J R; Lassen, N

    1979-01-01

    We review the evidence that acute mountain sickness (AMS) and high altitude pulmonary oedema (HAPO) occur together more often than is realized. We hypothesize that AMS and HAPO have a common pathophysiological basis: both are due to increased pressure and flow in the microcirculation, causing...

  16. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a f

  17. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects imme

  18. Reduced autonomic activity during stepwise exposure to high altitude

    NARCIS (Netherlands)

    Sevre, K; Bendz, B; Hanko, E; Nakstad, AR; Hauge, A; Kasin, JI; Lefrandt, JD; Smit, AJ; Eide, [No Value; Rostrup, M

    2001-01-01

    Several studies have shown increased sympathetic activity during acute exposure to hypobaric hypoxia. In a recent field study we found reduced plasma catecholamines during the first days after a stepwise ascent to high altitude. In the present study 14 subjects were exposed to a simulated ascent in

  19. Abnormal blood flow in the sublingual microcirculation at high altitude

    NARCIS (Netherlands)

    Martin, D.S.; Ince, C.; Goedhart, P.; Levett, D.Z.H.; Grocott, M.P.W.

    2009-01-01

    We report the first direct observations of deranged microcirculatory blood flow at high altitude, using sidestream dark-field imaging. Images of the sublingual microcirculation were obtained from a group of 12 volunteers during a climbing expedition to Cho Oyu (8,201 m) in the Himalayas.

  20. Acute occlusive mesenteric ischemia in high altitude of ...

    African Journals Online (AJOL)

    in our region. Keywords: Acute mesenteric ischemia, high altitude, Saudi Arabia. Résumé .... Saudi Arabia for many diseases such as stroke,[13] deep venous .... intestinal vascular failure: a collective review of 43 cases in Taiwan. Br J Clin ...

  1. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects imme

  2. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...

  3. Preparation for football competition at moderate to high altitude.

    Science.gov (United States)

    Gore, C J; McSharry, P E; Hewitt, A J; Saunders, P U

    2008-08-01

    Analysis of approximately 100 years of home-and-away South American World Cup matches illustrate that football competition at moderate/high altitude (>2000 m) favors the home team, although this is more than compensated by the likelihood of sea-level teams winning at home against the same opponents who have descended from altitude. Nevertheless, the home team advantage at altitudes above approximately 2000 m may reflect that traditionally, teams from sea level or low altitude have not spent 1-2 weeks acclimatizing at altitude. Despite large differences between individuals, in the first few days at high altitude (e.g. La Paz, 3600 m) some players experience symptoms of acute mountain sickness (AMS) such as headache and disrupted sleep, and their maximum aerobic power (VO2max) is approximately 25% reduced while their ventilation, heart rate and blood lactate during submaximal exercise are elevated. Simulated altitude for a few weeks before competition at altitude can be used to attain partial ventilatory acclimation and ameliorated symptoms of AMS. The variety of simulated altitude exposures usually created with enriched nitrogen mixtures of air include resting or exercising for a few hours per day or sleeping approximately 8 h/night in hypoxia. Preparation for competition at moderate/high altitude by training at altitude is probably superior to simulated exposure; however, the optimal duration at moderate/high altitude is unclear. Preparing for 1-2 weeks at moderate/high altitude is a reasonable compromise between the benefits associated with overcoming AMS and partial restoration of VO2max vs the likelihood of detraining.

  4. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    Science.gov (United States)

    Brutsaert, Tom

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  5. Basic development of a small balloon-mounted telemetry and its operation system by university students

    Science.gov (United States)

    Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Kono, Hiroki

    In Japan, the high altitude balloon for scientific observation has been continuously launched by JAXA. The balloon has a possibility to reach 50 km altitude without tight environmental condition for onboard equipments, operating with a cost lower than sounding rockets, however, development of the large-scale scientific observation balloons by university laboratories is still difficult. Being coupled with recent improvement of semiconductor sensors, laboratory-basis balloon experiments using small weather balloons has been becoming easily in these years. Owing to an advantage of wide land fields in continental regions, the launch of such small balloons has become to be carried out many times especially in continental countries (e.g. Near Space Ventures, Inc., 2013). Although the balloon is very small as its diameter of 6 feet, excluding its extra buoyancy and the weight of the balloon itself, it is expected that about 2 kg loading capacity is remained for payloads to send it up to about 35 km altitude. However, operation of such balloons in Japan is not in general because precise prediction of a landing area of the payload is difficult, thus high-risk situation for balloon releases is remained. In this study, we aim to achieve practical engineering experiments of weather balloons in Japan to be used for scientific observation within university laboratory level as an educational context. Here we report an approach of developing many devices for a small tethered balloon currently in progress. We evaluated an accuracy of altitude measurement by using a laboratory developed altitude data logger system that consists of a GPS-module and a barometric altimeter. Diameter of the balloon was about 1.4 m. Being fulfilled with about 1440 L helium, it produced buoyancy of about 15.7 N. Taking into account of total weight including the mooring equipments, available payload mass becomes to be about 1100 g. Applying an advantage of a 3D printer of FDM (Fused Deposition Modeling

  6. Near ultraviolet spectrograph for balloon platform

    Science.gov (United States)

    Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2015-06-01

    Small and compact scientific payloads may be easily designed constructed and own on high altitude balloons. Despite the fact that large orbital observatories provide accurate observations and statistical studies of remote and/or faint space sources, small telescopes on board balloons or rockets are still attractive because of their low cost and rapid response time. We describe here a near ultraviolet (NUV) spectrograph designed to be own on a high{altitude balloon platform. Our basic optical design is a modified Czerny-Turner system using off the shelf optics. We compare different methods of aberration corrections in such a system. We intend the system to be portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in UV. We plan on using an image intensified CMOS sensor operating in photon counting mode as the detector of choice.

  7. Initial Feasibility Assessment of a High Altitude Long Endurance Airship

    Science.gov (United States)

    Colozza, Anthony; Dolce, James (Technical Monitor)

    2003-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines the feasibility of this concept. Factors such as time of year, latitude, wind speeds and payload are considered in establishing the capabilities of a given size airship. East and West coast operation were evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. A modular system design was chosen with four independent power/propulsion units utilized by the airship. Results on payload capacity and flight envelope (latitude and time of year) were produced for a range of airship sizes.

  8. Results from the Science Instrument Definition Team for the Gondola for High Altitude Planetary Science Project

    Science.gov (United States)

    Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.

    2016-10-01

    The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.

  9. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  10. Body Structure and Respiratory Efficiency among High Altitude Himalayan Populations

    OpenAIRE

    2005-01-01

    To understand the morphological and physiological variations among the temporary and permanent residents of high altitude, this study was undertaken at Leh, Ladakh. It is situated at 3500 m (11500 feet) above sea level, the mean barometric pressure was 500 tors and air temperature varied from 2 °C to 20 °C. The highland Tibetans showed broadest chest and most developed musculature closely followed by Ladakhi Bods. These high altude natives also displayed significantly higher value of vital ca...

  11. Lens autofluorescence is not increased at high altitude

    DEFF Research Database (Denmark)

    Kessel, Line; Kofoed, Peter Kristian; Zubieta-Calleja, Gustavo

    2010-01-01

    PURPOSE: To study the relation between ambient environmental ultraviolet radiation exposure and lens fluorescence. METHODS: Non-invasive lens fluorometry measurements were compared in healthy Bolivian and Danish subjects. Background ultraviolet radiation was 4.5 times higher in Bolivia than...... in Denmark. RESULTS: No significant differences in lens fluorescence or transmittance were found between Bolivian and Danish volunteers. CONCLUSION: Age-corrected lens fluorescence and transmittance were comparable for healthy participants living at high altitude near the equator and healthy volunteers...

  12. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  13. Blood-Brain Barrier Changes in High Altitude.

    Science.gov (United States)

    Lafuente, José V; Bermudez, Garazi; Camargo-Arce, Lorena; Bulnes, Susana

    2016-01-01

    Cerebral syndromes related to high-altitude exposure are becoming more frequent as the number of trips to high altitudes has increased in the last decade. The commonest symptom is headache, followed by acute mountain sickness (AMS) and high-altitude cerebral edema (HACE), which can be fatal. The pathophysiology of these syndromes is not fully understood. The classical "tight-fit hypothesis" posits that there are some anatomical variations that would obstruct the sinovenous outflow and worsen vasogenic edema and intracranial hypertension reactive to hypoxia. This could explain microhemorrhages seen in autopsies. However, recent magnetic resonance imaging studies have demonstrated some components of cytotoxic edema in HACE absent in AMS, suggesting a dysfunction in water balance at the cellular level. Currently, the "red-ox theory" supports trigemino-vascular system activation by free radicals formed after hypoxia and the consequent oxidative stress cascades. Apart from trigemino-vascular system activation, free radicals can also provoke membrane destabilisation mediated by lipid peroxidation, inflammation, and local hypoxia inducible factor-1α and vascular endothelial growth factor activation, resulting in gross blood-brain barrier (BBB) dysfunction. Besides alterations in endothelial cells such as increased pinocytotic vesicles and disassembly of interendothelial tight junction proteins, capillary permeability may also increase with subsequent swelling of astrocyte end-feet. In conclusion, although the pathophysiology of AMS and HACE is not completely understood, recent evidence proposes a multifactorial entity, with brain swelling and compromise of the BBB considered to play an important role. A fuller comprehension of these processes is crucial to reduce and prevent BBB alterations during high-altitude exposure.

  14. Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia.

    Science.gov (United States)

    Jefferson, J Ashley; Escudero, Elizabeth; Hurtado, Maria-Elena; Kelly, Jackeline Pando; Swenson, Erik R; Wener, Mark H; Burnier, Michel; Maillard, Marc; Schreiner, George F; Schoene, Robert B; Hurtado, Abdias; Johnson, Richard J

    2002-06-01

    Chronic exposure to high altitude is associated with the development of erythrocytosis, proteinuria, and, in some cases, hyperuricemia. We examined the relationship between high-altitude polycythemia and proteinuria and hyperuricemia in Cerro de Pasco, Peru (altitude, 4,300 m). We studied 25 adult men with hematocrits less than 65% and 27 subjects with excessive erythrocytosis (EE; hematocrit > 65%) living in Cerro de Pasco, Peru and compared them with 28 control subjects living in Lima, Peru (at sea level) and after 48 hours of exposure to high altitude. Serum urate levels were significantly elevated in patients with EE at altitude, and gout occurred in 4 of 27 of these subjects. Urate level strongly correlated with hematocrit (r = 0.71; P < 0.0001). Urate production (24-hour urine urate excretion and urine urate-creatinine ratio) was increased in this group compared with those at sea level. Fractional urate excretion was not increased, and fractional lithium excretion was reduced, in keeping with increased proximal reabsorption of filtrate. Significantly higher blood pressures and decreased renin levels in the EE group were in keeping with increased proximal sodium reabsorption. Serum urate levels correlated with mean blood pressure (r = 0.50; P < 0.0001). Significant proteinuria was more prevalent in the EE group despite normal renal function. Hyperuricemia is common in subjects living at high altitude and associated with EE, hypertension, and proteinuria. The increase in uric acid levels appears to be caused by increased urate generation secondary to systemic hypoxia, although a relative impairment in renal excretion also may contribute.

  15. Effectiveness of Preacclimatization Strategies for High-Altitude Exposure

    Science.gov (United States)

    2013-01-01

    hypobaric conditions. IAE 15, 15 d of intermittent altitude exposure; IAE 7, 7 d of intermittent altitude expo- sure; NH (Sleep), Ambient normobaric hypoxia ...than those using norm(!)baric hypoxia (breathing, ង.9% ox-ygen). Key Words: hypobaric hypoxia , normobaric hypoxia , staging, acute mountain sickness...large decrements in endurance exercise performance occur when unacclimatized individuals rapidly ascend to high altitudes. Six altitude and hypoxia

  16. The genetic architecture of adaptations to high altitude in Ethiopia.

    Science.gov (United States)

    Alkorta-Aranburu, Gorka; Beall, Cynthia M; Witonsky, David B; Gebremedhin, Amha; Pritchard, Jonathan K; Di Rienzo, Anna

    2012-01-01

    Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  17. Joseph Barcroft's studies of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2013-10-15

    Joseph Barcroft (1872-1947) was an eminent British physiologist who made contributions to many areas. Some of his studies at high altitude and related topics are reviewed here. In a remarkable experiment he spent 6 days in a small sealed room while the oxygen concentration of the air gradually fell, simulating an ascent to an altitude of nearly 5,500 m. The study was prompted by earlier reports by J. S. Haldane that the lung secreted oxygen at high altitude. Barcroft tested this by having blood removed from an exposed radial artery during both rest and exercise. No evidence for oxygen secretion was found, and the combination of 6 days incarceration and the loss of an artery was heroic. To obtain more data, Barcroft organized an expedition to Cerro de Pasco, Peru, altitude 4,300 m, that included investigators from both Cambridge, UK and Harvard. Again oxygen secretion was ruled out. The protocol included neuropsychometric measurements, and Barcroft famously concluded that all dwellers at high altitude are persons of impaired physical and mental powers, an assertion that has been hotly debated. Another colorful experiment in a low-pressure chamber involved reducing the pressure below that at the summit of Mt. Everest but giving the subjects 100% oxygen to breathe while exercising as a climber would on Everest. The conclusion was that it would be possible to reach the summit while breathing 100% oxygen. Barcroft was exceptional for his self-experimentation under hazardous conditions.

  18. Efficient ozone generator for ozone layer enrichment from high altitude balloon

    Science.gov (United States)

    Filiouguine, Igor V.; Kostiouchenko, Sergey V.; Koudriavtsev, Nikolay N.; Starikovskaya, Svetlana M.

    1994-01-01

    The possibilities of ozone production at low gas pressures by nanosecond high voltage discharge has been investigated. The measurements of ozone synthesis in N2-O2 mixtures have been performed. The explanation of experimental results is suggested. The possible ways of ozone yield growth are analyzed.

  19. Scientific Ballooning Activities and Recent Developments in Technology and Instrumentation of the TIFR Balloon Facility, Hyderabad

    Science.gov (United States)

    Buduru, Suneel Kumar

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.

  20. 'Ome' on the range: update on high-altitude acclimatization/adaptation and disease.

    Science.gov (United States)

    Luo, Yongjun; Wang, Yuxiao; Lu, Hongxiang; Gao, Yuqi

    2014-11-01

    The main physiological challenge in high-altitude plateau environments is hypoxia. When people living in a plain environment migrate to the plateau, they face the threat of hypoxia. Most people can acclimatize to high altitudes; the acclimatization process mainly consists of short-term hyperventilation and long-term compensation by increased oxygen uptake, transport, and use due to increased red blood cell mass, myoglobin, and mitochondria. If individuals cannot acclimatize to high altitude, they may suffer from a high-altitude disease, such as acute mountain disease (AMS), high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE) or chronic mountain sickness (CMS). Because some individuals are more susceptible to high altitude diseases than others, the incidence of these high-altitude diseases is variable and cannot be predicted. Studying "omes" using genomics, proteomics, metabolomics, transcriptomics, lipidomics, immunomics, glycomics and RNomics can help us understand the factors that mediate susceptibility to high altitude illnesses. Moreover, analysis of the "omes" using a systems biology approach may provide a greater understanding of high-altitude illness pathogenesis and improve the efficiency of the diagnosis and treatment of high-altitude illnesses in the future. Below, we summarize the current literature regarding the role of "omes" in high-altitude acclimatization/adaptation and disease and discuss key research gaps to better understand the contribution of "omes" to high-altitude illness susceptibility.

  1. The genetic architecture of adaptations to high altitude in Ethiopia.

    Directory of Open Access Journals (Sweden)

    Gorka Alkorta-Aranburu

    Full Text Available Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  2. Ergogenic properties of metformin in simulated high altitude.

    Science.gov (United States)

    Scalzo, Rebecca L; Paris, Hunter L; Binns, Scott E; Davis, Janelle L; Beals, Joseph W; Melby, Christopher L; Luckasen, Gary J; Hickey, Matthew S; Miller, Benjamin F; Hamilton, Karyn L; Bell, Christopher

    2017-07-01

    Metformin augments glucose/glycogen regulation and may acutely promote fatigue resistance during high-intensity exercise. In hypobaric environments, such as high altitude, the important contribution of carbohydrates to physiological function is accentuated as glucose/glycogen dependence is increased. Because hypoxia/hypobaria decreases insulin sensitivity, replenishing skeletal muscle glycogen in high altitude becomes challenging and subsequent physical performance may be compromised. We hypothesized that in conditions where glycogen repletion was critical to physical outcomes, metformin would attenuate hypoxia-mediated decrements in exercise performance. On three separate randomly ordered occasions, 13 healthy men performed glycogen-depleting exercise and ingested a low-carbohydrate dinner (1200 kcals, metformin (500 mg BID) was consumed 3 days prior to each hypoxia visit. Subjects completed a 12.5 km cycle ergometer time trial 3.5 hours following breakfast. Hypoxia decreased resting and exercise oxyhemoglobin saturation (Pmetformin affected the glucose response to breakfast (P=.977), however, compared with placebo, metformin lowered insulin concentration in hypoxia 45 minutes after breakfast (64.1±6.6 μU/mL vs 48.5±7.8 μU/mL; mean±SE; Pmetformin (+81%; P=.006), but not in hypoxia with placebo (+27%; P=.167). Hypoxia decreased time trial performance compared with normoxia (Pmetformin (+1.6±0.3 minutes). These results indicate that metformin promotes glycogen synthesis but not endurance exercise performance in healthy men exposed to simulated high altitude. © 2017 John Wiley & Sons Australia, Ltd.

  3. First scientific contributions from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    León Vargas, H.; HAWC Collaboration

    2015-09-01

    The High Altitude Water Cherenkov Observatory (HAWC), located at the slopes of the volcanoes Sierra Negra and Pico de Orizaba in Mexico, was inaugurated on March 20, 2015. However, data taking started in August 2013 with a partially deployed observatory and since then the instrument has collected data as it got closer to its final configuration. HAWC is a ground based TeV gamma-ray observatory with a large field of view that will be used to study the Northern sky with high sensitivity. In this contribution we present some of the results obtained with the partially built instrument and the expected capabilities to detect different phenomena with the complete observatory.

  4. Edema pulmonar de gran altura HIGH ALTITUDE PULMONARY EDEMA

    Directory of Open Access Journals (Sweden)

    FELIPE UNDURRAGA M

    2003-04-01

    Full Text Available Las enfermedades de altura son de causa cerebral y pulmonar. Las primeras se refieren fundamentalmente al mal agudo de montaña y al edema cerebral de altura y las segundas al edema pulmonar agudo de montaña. Actuales evidencias señalan que el edema cerebral sería un fenómeno universal de los que ascienden a altura y que tres de cada cuatro individuos sanos que se expongan a altura desarrollarán un edema pulmonar agudo de montaña subclínico. La hipoxia de altura es la responsable de estos cuadros y los sujetos susceptibles serían aquellos que genéticamente tienen una respuesta ventilatoria reducida a la hipoxia y una exagerada respuesta vasopresora pulmonar al ejercicio.Se presenta un caso de edema pulmonar agudo de montaña en un deportista previamente sano que participó en una expedición al cerro El Plomo (5.280 msnm en la Cordillera de los Andes central. Posteriormente, se comenta la fisiopatología y tratamiento de esta condiciónHigh altitude diseases are originated from brain and lung. The first are Acute Mountain Sickness and Brain edema and the second is High Altitude Pulmonary Edema (HAPE. Current evidence shows that brain edema is an universal event of the people who are exposed to high altitude. By other hand 3 out of 4 healthy subjects exposed to high altitude will present a subclinical HAPE. Hypoxia of altitude is the responsable for this condition. The susceptible subjects would be those who genetically have a low ventilatory response to hypoxia and an exaggerated increase of vascular pulmonary pressure during exercise. A clinical case of acute pulmonary edema in a young sportman who participated in an expedition to Cerro El Plomo (5.280 m in Chilean Central Andes Mountains is presented. Pathophysiology and treatment of these conditions are discussed

  5. Magnetic Monopole Search at high altitude with the SLIM experiment

    CERN Document Server

    Balestra, S; Cozzi, M; Errico, M; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Mandrioli, G; Marcellini, S; Margiotta, A; Medinaceli, E; Patrizii, L; Pinfold, J L; Popa, V; Qureshi, I E; Saavedra, O; Sahnoun, Z; Sirri, G; Spurio, M; Togo, V; Velarde, A; Zanini, A

    2008-01-01

    The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to Intermediate Mass Magnetic Monopoles, with masses 10^5 < M <10^{12} GeV. From the analysis of the full detector exposed for more than 4 years a flux upper limit of 1.3 x 10^{-15} cm^{-2} s^{-1} sr^{-1} for downgoing fast Intermediate Mass Monopoles was established at the 90% C.L.

  6. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2008-06-01

    Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  7. Contemporary sediment production and transfer in high-altitude glaciers

    Science.gov (United States)

    Owen, Lewis A.; Derbyshire, Edward; Scott, Christine H.

    2003-01-01

    The nature of fine-grained sediment production and transfer in high-altitude debris-covered glaciers was studied by examining the Rakhiot and Chungphar glaciers in the Nanga Parbat Himalaya, Northern Pakistan. Transport pathways, from the source areas to the glacier snout, were mapped and samples collected for particle size analysis and scanning electron microscopy. Positive down-glacier trends in sediment fining and increased weathering showed that debris transport in the supraglacial zone of these Himalayan glaciers is an important contributor to contemporary glacial sediment production, resulting in intense comminution that yields large volumes of fine sediment. These findings cast doubt on the traditional view that the basal traction zone of glaciers is the only major source of fine sediment production in glaciated environments, although that view may hold true for classic alpine glaciers that are at lower altitudes and, as a consequence, generally have less supraglacial debris cover. To test this hypothesis, the Glacier de Cheilon, in the Swiss Alps was also studied. This glacier did not exhibit such striking down-glacier trends in the particle size characteristics measured. It is thus suggested that a thick debris-cover may be an important source of fine-grained sediments on glaciers that occur in high-altitude environments.

  8. Semianalytic Integration of High-Altitude Orbits under Lunisolar Effects

    Directory of Open Access Journals (Sweden)

    Martin Lara

    2012-01-01

    Full Text Available The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double averaging procedure that removes both the mean anomaly of the satellite and that of the moon. Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation of the expansion of the third-body disturbing function up to the second degree. Using canonical perturbation theory, the averaging is carried out up to the order where second-order terms in the Earth oblateness coefficient are apparent. This truncation order forces to take into account up to the fifth degree in the expansion of the lunar disturbing function. The small values of the moon’s orbital eccentricity and inclination with respect to the ecliptic allow for some simplification. Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity, it is not restricted to low-eccentricity orbits.

  9. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2011-01-01

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in indi

  10. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    Mol, P. De; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2011-01-01

    OBJECTIVE: Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in ind

  11. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    Mol, P. De; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2011-01-01

    OBJECTIVE: Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  12. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  13. Scientific ballooning in India: recent developments

    Science.gov (United States)

    Joshi, M. N.; Damle, S. V.

    The National Scientific Balloon Facility (NBF) of the Tata Institute of Fundamental Research (TIFR) has been conducting regular balloon flights for various experiments in the areas of Space Astronomy and Atmospheric Sciences. A continuous improvement in all aspects of Scientific Ballooning through a sustained R and D programme ensures uptodate services and a better handle on the design specifications for the balloon. Recent developments in balloon grade films, continuous improvements in design specifications, balloon manufacturing methods, flight operational procedures and improved balloon flight capabilities have resulted in a greatly improved flight performance in the last five years. A launch capability upgradation programme in terms of new launch spool and new launch vehicle has been initiated to be able to safely launch balloons with gross lifts upto 3500 kg, balloon volumes upto 450,000 m^3 and payloads upto 1400 kg. A series of steps have been initiated to improve long duration flight capabilities. In this paper, we present details on some of these aspects of Scientific Ballooning in India.

  14. A challenge to the highest balloon altitude

    Science.gov (United States)

    Saito, Y.; Akita, D.; Fuke, H.; Iijima, I.; Izutsu, N.; Kato, Y.; Kawada, J.; Matsuzaka, Y.; Mizuta, E.; Namiki, M.; Nonaka, N.; Ohta, S.; Sato, T.; Seo, M.; Takada, A.; Tamura, K.; Toriumi, M.; Yamagami, T.; Yamada, K.; Yoshida, T.; Matsushima, K.; Tanaka, S.

    2012-02-01

    Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.

  15. Hybrid Global Communication Architecture with Balloons and Satellites

    Science.gov (United States)

    Pignolet, G.; Celeste, A.; Erb, B.

    2002-01-01

    Global space communication systems have been developed now for more than three decades, based mainly on geostationary satellites or almost equivalent systems such as the Molnya orbit concepts. The last decade of the twentieth century has seen the emergence of satellite constellations in low or medium Earth orbit, in order to improve accessibility in terms of visibility at higher latitudes and limited size or power requirement for ground equipment. However such systems are complex to operate, there are still many situations where connection may remain difficult to achieve, and commercial benefits are still to be proven. A new concept, using a network combination of geostationary relay satellites and high altitude stratospheric platforms may well overcome the inconveniences of both geostationary systems and satellite constellations to improve greatly global communication in the future. The emergence of enabling technologies developed in Japan and in several other countries will soon make it possible to fly helium balloons in the upper layers of the atmosphere, at altitudes of 20 km or more. At such an altitude, well above the meteorological disturbances and the jet-streams, the stratosphere enjoys a regular wind at moderate speeds ranging between 10 m/s and 30 m/s, depending on latitude and also on season. It is possible for balloons powered by electric engines to fly non- stop upstream of the wind in order to remain stationary above a particular location. Large balloons, with sizes up to 300 m in length, would be able to carry sub-satellite communication payloads, as well as observation apparatus and scientific equipment. The range of visibility for easy both-way communication between the balloon and operators or customers on the ground could be as large as 200 km in radius. Most current studies consider a combination of solar cells and storage batteries to power the balloons, but microwave beam wireless power transportation from the ground could be a very

  16. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  17. Status of the large high altitude air shower observatory project

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Min, E-mail: zham@ihep.ac.cn [Key Laboratory of Astroparticle and Cosmic Ray, Institute of High Energy Physics, YuQuan Road 19 B, 100049 Beijing (China)

    2012-11-11

    The Large High Altitude Air Shower Observatory (LHAASO) project is a multipurpose project. The main scientific tasks can be summarized as follows: (1) searching for galactic cosmic ray origins through gamma ray source detection above 30 TeV; (2) wide field of view survey for gamma ray sources at energies higher than 100 GeV; (3) energy spectrum measurements for individual cosmic ray species from 30 TeV to 10 PeV. To target above tasks, a complex detector array is designed. This paper describes the progress on the research and development of all kind of detectors. Construction and operation of a prototype detector array at Tibet site with 4300 m a.s.l. are also presented.

  18. STEERABLE ANTENNAS MOVEMENT COMPENSATION FOR HIGH ALTITUDE PLATFORM

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenyong; Liu Xiaowei; Li Zhuoshi

    2011-01-01

    High Altitude Platform (HAP) must compensate for relative motion with respect to the ground because of the stratosphere complexity,which is important to guarantee Quality of Service(QoS) in intended coverage area.With analysis on HAP movement models for predicting the geographical coverage in the cases of shift horizontally and vertically,yaw,roll and pitch,the mechanisms of steerable antennas movement compensation are investigated.The mechanism is applied to a scenario of 127 cell architecture,with a cell cluster size of four.By the simulation results of Carrier to Interference Ratio (CIR),the steerable antenna movement compensation mechanism decrease influence of HAP movement and guarantee effective coverage of the service area.

  19. First year results of the High Altitude Water Cherenkov observatory

    CERN Document Server

    Carramiñana, Alberto

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (>95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volc\\'an Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC gamma-ray observatory.

  20. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew

    2017-08-23

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  1. High-altitude wind resources in the Middle East.

    Science.gov (United States)

    Yip, Chak Man Andrew; Gunturu, Udaya Bhaskar; Stenchikov, Georgiy L

    2017-08-29

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  2. Radiation Physics for Space and High Altitude Air Travel

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  3. First year results of the High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Carramiñana, Alberto

    2016-10-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory.

  4. The High-Altitude Water Cherenkov Observatory: First Light

    Science.gov (United States)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  5. Gamma ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model Overview

    CERN Document Server

    Thompson, D J; Williams, S; Grove, J E; Mizuno, T; Sadrozinski, H F W

    2002-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (>20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under c...

  6. Attitude determination for balloon-borne experiments

    CERN Document Server

    Gandilo, N N; Amiri, M; Angile, F E; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Devlin, M J; Dober, B; Dore, O P; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Fukui, Y; Galitzki, N; Gambrel, A E; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Klein, J; Korotkov, A L; Kuo, C L; MacTavish, C J; Mason, P V; Matthews, T G; Megerian, K G; Moncelsi, L; Morford, T A; Mroczkowski, T K; Nagy, J M; Netterfield, C B; Novak, G; Nutter, D; O'Brient, R; Pascale, E; Poidevin, F; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Savini, G; Scott, D; Shariff, J A; Soler, J D; Thomas, N E; Trangsrud, A; Truch, M D; Tucker, C E; Tucker, G S; Tucker, R S; Turner, A D; Ward-Thompson, D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of SPIDER, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. ...

  7. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  8. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  9. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  10. Ataxia, acute mountain sickness, and high altitude cerebral edema

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Ma Siqing; Bian Huiping; Zhang Minming

    2013-01-01

    Previous investigations suggest that ataxia is common and often one of the most reliable warning signs of high altitude cerebral edema(HACE).The aim of this study was to investigate the diagnostic role of ataxia in acute mountain sickness (AMS) and HACE among mountain rescuers on the quake areas,and in approaching the relation between AMS and HACE.After the earthquake on April 14,2010,approximately 24080 lowland rescuers were rapidly transported from sea level or lowlands to the mountainous rescue sites at 3750 ~ 4568 m,and extremely hardly worked for an emergency treatment after arrival.Assessments of acute altitude illness on the quake areas were using the Lake Louise Scoring System.73 % of the rescuers were found to be developed AMS.The incidence of high altitude pulmonary edema(HAPE) and HACE was 0.73 % and 0.26 %,respectively,on the second to third day at altitude.Ataxia sign was measured by simple tests of coordination including a modified Romberg test.The clinical features of 62 patients with HACE were analyzed.It was found that the most frequent,serious neurological symptoms and signs were altered mental status(50/62,80.6 %)and truncal ataxia (47/62,75.8 %).Mental status change was rated slightly higher than ataxia,but ataxia occurred earlier than mental status change and other symptoms.The earliest sign of ataxia was a vague unsteadiness of gait,which may be present alone in association with or without AMS.Advanced ataxia was correlated with the AMS scores,but mild ataxia did not correlate with AMS scores at altitudes of 3750~4568 m.Of them,14 patients were further examined by computerized tomographic scanning of the brain and cerebral magnetic resonance imagines were examined in another 15 cases.These imaging studies indicated that the presence of the cerebral edema was in 97 % of cases who were clinically diagnosed as HACE (28/29).Ataxia seems to be a reliable sign of advanced AMS or HACE,so does altered mental status.

  11. NASA Super Pressure Balloon

    Science.gov (United States)

    Fairbrother, Debbie

    2017-01-01

    NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tone of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.

  12. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds.

    Science.gov (United States)

    Zhou, Taicheng; Shen, Xuejuan; Irwin, David M; Shen, Yongyi; Zhang, Yaping

    2014-09-01

    Galliform birds inhabit very diverse habitats, including plateaus that are above 3000 m in altitude. At high altitude, lower temperature and hypoxia are two important factors influencing survival. Mitochondria, as the ultimate oxygen transductor, play an important role in aerobic respiration through oxidative phosphorylation (OXPHOS). We analyzed the mitochondrial genomes of six high-altitude phasianidae birds and sixteen low-altitude relatives in an attempt to determine the role of mitochondrial genes in high-altitude adaptation. We reconstructed the phylogenetic relationships of these phasianidae birds and relatives and found at least four lineages that independently occupied this high-altitude habitat. Selective analyses revealed significant evidence for positive selection in the genes ND2, ND4, and ATP6 in three of the high-altitude lineages. This result strongly suggests that adaptive evolution of mitochondrial genes played a critical role during the independent acclimatization to high altitude by galliform birds.

  13. Medical continuing education: reform of teaching methods about high altitude disease in China.

    Science.gov (United States)

    Luo, Yongjun; Zhou, Qiquan; Huang, Jianjun; Luo, Rong; Yang, Xiaohong; Gao, Yuqi

    2013-06-01

    The purpose of high altitude continuing medical education is to adapt knowledge and skills for practical application on the plateau. Most trainees have experience with academic education and grassroots work experience on the plateau, so they want knowledge about new advances in the pathogenesis, diagnosis, and treatment of high altitude disease. As such, traditional classroom teaching methods are not useful to them. Training objects, content, and methods should attempt to conduct a variety of teaching practices. Through continuing medical education on high altitude disease, the authors seek to change the traditional teaching model away from a single classroom and traditional written examinations to expand trainees' abilities. These innovative methods of training can improve both the quality of teaching and students' abilities to prevent and treat acute mountain sickness, high altitude pulmonary edema, high altitude cerebral edema, and chronic mountain sickness to increase the quality of high altitude medical care.

  14. Latest news from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  15. 21st Century Lightning Protection for High Altitude Observatories

    Science.gov (United States)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  16. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  17. Increased choroidal thickness in patient with high-altitude retinopathy

    Directory of Open Access Journals (Sweden)

    Kyoko Hirukawa-Nakayama

    2014-01-01

    Full Text Available We report a case of high-altitude retinopathy with increased choroidal thickness detected by spectral-domain optical coherence tomography (SD-OCT. A 36-year-old Japanese man developed an acute vision decrease in his left eye after he had trekked at an altitude of 4600 m in Tibet for 1 week. His visual acuity was 20/20 OD and 20/200 OS with refractive errors of − 0.25 diopters (D OD and − 0.50 D OS 3 weeks after the onset of the visual decrease. Funduscopic examinations revealed multiple intraretinal hemorrhages bilaterally and a macular hemorrhage in the left eye. SD-OCT showed that the thickness of choroidal layer at the fovea was 530 μm OD and 490 μm OS which is thicker than that in normal subjects of approximately 300 μm. We suggest that the increase in the retinal blood flow under hypoxic conditions may be associated with an increase in the choroidal blood flow resulting in an increase in choroidal thickness.

  18. Scientific verification of High Altitude Water Cherenkov observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Antonio, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); Sparks, Kathryne [Department of Physics, Pennsylvania State University, University Park, PA (United States); Alfaro, Ruben [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); González, María Magdalena; Patricelli, Barbara; Fraija, Nissim [Instituto de Astronomia, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico)

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ∼200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m{sup 2}, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  19. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  20. HCN ice in Titan's high-altitude southern polar cloud

    CERN Document Server

    de Kok, Remco J; Maltagliati, Luca; Irwin, Patrick G J; Vinatier, Sandrine

    2014-01-01

    Titan's middle atmosphere is currently experiencing a rapid change of season after northern spring arrived in 2009. A large cloud was observed for the first time above Titan's southern pole in May 2012, at an altitude of 300 km. This altitude previously showed a temperature maximum and condensation was not expected for any of Titan's atmospheric gases. Here we show that this cloud is composed of micron-sized hydrogen cyanide (HCN) ice particles. The presence of HCN particles at this altitude, together with new temperature determinations from mid-infrared observations, indicate a very dramatic cooling of Titan's atmosphere inside the winter polar vortex in early 2012. Such a cooling is completely contrary to previously measured high-altitude warming in the polar vortex, and temperatures are a hundred degrees colder than predicted by circulation models. Besides elucidating the nature of Titan's mysterious polar cloud, these results thus show that post-equinox cooling at the winter pole is much more efficient th...

  1. High altitude headache occurs frequently among construction workers in Yushu

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Li Shuzhi; Jin Xinhui; Zhang Jianqing

    2013-01-01

    The aim was to measure the incidence of high altitude headache (HAH) and to determine clinical features,as well as the relation between acute mountain sickness (AMS) and HAH through a prospective study.We conducted a questionnaire-based study among construction workers in Yushu after a serious earthquake; they were under reconstruction using a structured questionnaire incorporating International Headache Society (IHS) and AMS Lake Louise Scoring System.A total of 608 workers were enrolled after their first ascent to altitudes of 3 750~4528 m.The results showed that 96 % reported at least 1 HAH(median 3.8,range from 1 to 10) in workers at a mean altitude of 4250 m.The magnitude of headache was divided as mild (38 %),moderate (44 %) and severe (18 %).This study indicates that HAH is the most common symptom of acute altitude exposure and closely correlated with altitude (r=0.165,p<0.001).However,52 % of headache was one of the main symptoms of AMS,while the other 48 % was the sole symptom of HAH.On the contrary we found that 2 % of AMS without headache,thus the "painless AMS" actually existed.The clinical features of HAH are presented,and the relationship between AMS and HAH is discussed.

  2. Naturally enhanced ion-acoustic lines at high altitudes

    Directory of Open Access Journals (Sweden)

    Y. Ogawa

    2006-12-01

    Full Text Available Naturally enhanced ion-acoustic lines (NEIALs between 1200 and 1900 km altitude are investigated. The NEIALs were found in the background gates of data from the European Incoherent Scatter (EISCAT Svalbard radar (ESR at 78° N looking field-aligned. Only strongly enhanced lines are detected at such high altitudes. The estimated enhancement above incoherent scattering integrated over the antenna beam and preintegration time of 10 s reaches about 10 000. Both lines are always enhanced above 1000 km altitude, and the downshifted line, corresponding to upward propagating ion-acoustic waves, is always stronger than the upshifted line, for downgoing waves. The ratio of the downshifted and upshifted peaks is often remarkably constant along a profile. Using the line positions as indicators of the ion-acoustic speeds and the bulk drift velocity, we find that the bulk drift does not exceed the ion-acoustic (sound speed, but extrapolation of the profiles suggests that the sound barrier is reached around 2000 km in one event. The highest ion-acoustic speed is seen near 600 km, above the density peak, indicating that electrons are heated not only by ionizing precipitation but significantly also by upgoing waves. Upflow continues to speed up above the estimated temperature maximum. A certain qualitative similarity to the solar corona seems to be the case.

  3. High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    Science.gov (United States)

    Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  4. Highlights from the High Altitude Water Cherenkov Observatory

    CERN Document Server

    Pretz, John

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 TeV gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a numb...

  5. High altitude hypoxia and blood pressure dysregulation in adult chickens.

    Science.gov (United States)

    Herrera, E A; Salinas, C E; Blanco, C E; Villena, M; Giussani, D A

    2013-02-01

    Although it is accepted that impaired placental perfusion in complicated pregnancy can slow fetal growth and programme an increased risk of cardiovascular dysfunction at adulthood, the relative contribution of reductions in fetal nutrition and in fetal oxygenation as the triggering stimulus remains unclear. By combining high altitude (HA) with the chick embryo model, we have previously isolated the direct effects of HA hypoxia on embryonic growth and cardiovascular development before hatching. This study isolated the effects of developmental hypoxia on cardiovascular function measured in vivo in conscious adult male and female chickens. Chick embryos were incubated, hatched and raised at sea level (SL, nine males and nine females) or incubated, hatched and raised at HA (seven males and seven females). At 6 months of age, vascular catheters were inserted under general anaesthesia. Five days later, basal blood gas status, basal cardiovascular function and cardiac baroreflex responses were investigated. HA chickens had significantly lower basal arterial PO2 and haemoglobin saturation, and significantly higher haematocrit than SL chickens, independent of the sex of the animal. HA chickens had significantly lower arterial blood pressure than SL chickens, independent of the sex of the animal. Although the gain of the arterial baroreflex was decreased in HA relative to SL male chickens, it was increased in HA relative to SL female chickens. We show that development at HA lowers basal arterial blood pressure and alters baroreflex sensitivity in a sex-dependent manner at adulthood.

  6. Scientific verification of High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  7. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Directory of Open Access Journals (Sweden)

    Pandey P

    2015-11-01

    Full Text Available Priyanka Pandey,1,2 Ghulam Mohammad,1,3 Yogendra Singh,1,2 MA Qadar Pasha1,2 1Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, Maharashtra, 3Department of Medicine, SNM Hospital, Leh, Ladakh, Jammu and Kashmir, IndiaObjective: To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early, and morbid disorder, high altitude pulmonary edema (HAPE. This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation.Methods: For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225, HAPE controls (n=210, and highlanders (n=259 by Sequenom MS (TOF-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups.Results: A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728 with HAPE (P=0.03 and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336 with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively. ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009. MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006 and lower association with adaptation (P=1E–06, whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001 and higher association with adaptation (P=1E–06. Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working

  8. Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements

    Science.gov (United States)

    Joyce, C. J.; Schwadron, N. A.; Townsend, L. W.; deWet, W. C.; Wilson, J. K.; Spence, H. E.; Tobiska, W. K.; Shelton-Mur, K.; Yarborough, A.; Harvey, J.; Herbst, A.; Koske-Phillips, A.; Molina, F.; Omondi, S.; Reid, C.; Reid, D.; Shultz, J.; Stephenson, B.; McDevitt, M.; Phillips, T.

    2016-09-01

    We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). This study demonstrates an updated atmospheric radiation model that uses new dose tables to improve the accuracy of the modeled dose rates. Additionally, a method for computing geomagnetic cutoffs is incorporated into the model in order to account for location-dependent effects of the magnetosphere. Newly available measurements of atmospheric dose rates from instruments aboard commercial aircraft and high-altitude balloons enable us to evaluate the accuracy of the model in computing atmospheric dose rates. When compared to the available observations, the model seems to be reasonably accurate in modeling atmospheric radiation levels, overestimating airline dose rates by an average of 20%, which falls within the uncertainty limit recommended by the International Commission on Radiation Units and Measurements (ICRU). Additionally, measurements made aboard high-altitude balloons during simultaneous launches from New Hampshire and California provide an additional comparison to the model. We also find that the newly incorporated geomagnetic cutoff method enables the model to represent radiation variability as a function of location with sufficient accuracy.

  9. Universal stratospheric balloon gradiometer

    Science.gov (United States)

    Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay

    The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG

  10. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  11. Effect of simulated high-altitude hypoxia on Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Jing-jing HUANG

    2012-04-01

    Full Text Available Objective To investigate the effects of simulated high-altitude hypoxia on the detection rate and endotoxin level of Porphyromonas gingivalis (Pg of subgingival bacterial plagues in rabbit periodontitis models. Methods Forty male rabbits were randomly divided into four groups, namely, normoxia control group (group A1, normoxia experimental group (group A2, hypoxia control group (group B1, and hypoxia experimental group (group B2. Each group included 10 rabbits. Periodontitis models was established in groups A2 and B2 combined by ligating both lower central incisors with steel ligature and feeding periodontitis diets, and then the animals were housed in a hypoxia chamber (simulating 5000m altitude, 23h per day. Groups A1 and A2 were raised normal diet in normoxia environment. After eight weeks, the rabbit periodontitis model was evaluated by observing radiographic features of the X-ray films and histopathologic changes under a light microscope. Subgingival plague sample from periodontal pockets on both lower central incisors were collected for isolation, culture and identification of Pg, and for detection of the endotoxin level. Results The histopathologic observation and X-ray examination results showed that the periodontitis of rabbits in group B2 was significantly more severe than that in group A2. The detection rates of Pg in group A1, A2, B1 and B2 was 0%, 50%, 55% and 95% (P < 0.05. Pg detection rate and endotoxin level were higher in group B2 (95%, 0.46±0.04EU/ml than in group A2 (50%, 0.38±0.02EU/ml, P < 0.05. Conclusions The process speed and damage degree of periodontitis in hypoxic environment is higher than that in normoxic environment. Moreover, the hypoxic environment is more suitable in the colonization of Pg with higher endotoxin level in subgingival plague.

  12. Lidar observations of high-altitude aerosol layers (cirrus clouds)

    Science.gov (United States)

    Deleva, Atanaska D.; Grigorov, Ivan V.

    2013-03-01

    Aerosols, clouds and aerosol-cloud interactions are recognized as the key factors influencing the climate. Clouds are the primary modulators of the Earth's radiative budget. This paper focuses on the detection of high-altitude aerosol layers in the troposphere over mid-latitude lidar station in Sofia, Bulgaria. They are situated in the height-region 6 km÷16 km, with thickness in the range 0.2 km÷5 km and have varying optical characteristics. On the basis of the general utilized classification of the Cirrus clouds, high values of the calculated atmospheric backscatter coefficient and Angströmexponent estimation results we conclude that the registered strongly scattered aerosol layers are Cirrus clouds. Lidar measurements are performed with an aerosol lidar, equipped with Nd:YAG laser at wavelengths 532 nm and 1064 nm. Mainly, lidar data are presented in terms of vertical atmospheric backscatter coefficient profiles. We also include 2Dcolormap in height-time coordinates build on the basis of so called range corrected signals. It shows in general changes of the aerosol stratification over the lidar station during the measurement period. We employed HYSPLIT backward trajectories and DREAM forecasts to analyze the lidar profile outlines and characterize the events during which Cirrus cloud samples were observed. So was remarked that most of the results were obtained during Saharan dust long-way transport over the city of Sofia. Reported experimental examples are extracted from regular lidar investigations of the atmosphere within the frame of European project EARLINET.

  13. SiPM-based azimuthal position sensor in ANITA-IV Hi-Cal Antarctic balloon experiment

    Science.gov (United States)

    Novikov, A.; Besson, D.; Chernysheva, I.; Dmitrenko, V.; Grachev, V.; Petrenko, D.; Prohira, S.; Shustov, A.; Ulin, S.; Uteshev, Z.; Vlasik, K.

    2017-01-01

    Hi-Cal (High-Altitude Calibration) is a balloon-borne experiment that will be launched in December, 2016 in Antarctica following ANITA-IV (Antarctic Impulsive Transient Antenna) and will generate a broad-band pulse over the frequency range expected from radiation induced by a cosmic ray shower. Here, we describe a device based on an array of silicon photomultipliers (SiPMs) for determination of the azimuthal position of Hi-Cal. The angular resolution of the device is about 3 degrees. Since at the float altitude of ˜38 km the pressure will be ˜0.5 mbar and temperature ˜ - 20 °C, the equipment has been tested in a chamber over a range of corresponding pressures (0.5 ÷ 1000) mbar and temperatures (-40 ÷ +50) °C.

  14. Gamma Ray and Very Low Frequency Radio Observations from a Balloon-Borne Platform

    Science.gov (United States)

    Quinn, C.; Sheldon, A.; Cully, C. M.; Davalos, A.; Osakwe, C.; Galts, D.; Delfin, J.; Duffin, C.; Mansell, J.; Russel, M.; Bootsma, M.; Williams, R.; Patrick, M.; Mazzino, M. L.; Knudsen, D. J.

    2015-12-01

    The University of Calgary's Student Organization for Aerospace Research (SOAR) built an instrument to participate in the High Altitude Student Platform (HASP) initiative organized by Louisiana State University and supported by the NASA Balloon Program Office (BPO) and the Louisiana Space Consortium (LaSPACE). The HASP platform will be launched in early September 2015 from Fort Sumner, New Mexico and will reach heights of 36 kilometers with a flight duration of 15 to 20 hours. The instrument, Atmospheric Phenomenon Observer Gamma/VLF Emissions Experiment (APOGEE), measures Terrestrial Gamma-Ray Flashes (TGF) and sferics from lightning strikes with the use of Geiger tubes and a VLF detector. TGFs, which are quick bursts of high energy radiation that can occur alongside lightning, are believed to be the result of Relativistic Runaway Electron Avalanche (RREA). RREA occurs when a large number of relativistic electrons overcome atmospheric frictional forces and accelerate to relativistic velocities which excite secondary electrons that collide with the atmosphere causing bremsstrahlung radiation. Lightning strikes also produce sferics within the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands which can be detected and used to locate the strikes. The goal of APOGEE is to further investigate the link between TGFs and RREA. These phenomena are very difficult to measure together as Bremsstrahlung radiation is easily detected from space but ionospheric reflection facilitates surface detection of sferics. A high altitude balloon provides a unique opportunity to study both phenomena using one instrument because both phenomena can easily be detected from its altitude. APOGEE has been designed and built by undergraduate students at the University of Calgary with faculty assistance and funding, and is equipped with three devices for data collection: a camera to have visual conformation of events, a series of Geiger Tubes to obtain directional gamma readings, and

  15. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai

    Science.gov (United States)

    Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan

    2017-04-01

    A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.

  16. Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas

    Science.gov (United States)

    Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.

    2010-12-01

    For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.

  17. Schistosomiasis transmission at high altitude crater lakes in Western Uganda

    Directory of Open Access Journals (Sweden)

    Philbert Clouds

    2008-08-01

    Full Text Available Abstract Background Contrary to previous reports which indicated no transmission of schistosomiasis at altitude >1,400 m above sea level in Uganda, in this study it has been established that schistosomiasis transmission can take place at an altitude range of 1487–1682 m above sea level in western Uganda. Methods An epidemiological survey of intestinal schistosomiasis was carried out in school children staying around 13 high altitude crater lakes in Western Uganda. Stool samples were collected and then processed with the Kato-Katz technique using 42 mg templates. Thereafter schistosome eggs were counted under a microscope and eggs per gram (epg of stool calculated. A semi-structured questionnaire was used to obtain demographic data and information on risk factors. Results 36.7% of the pupils studied used crater lakes as the main source of domestic water and the crater lakes studied were at altitude ranging from 1487–1682 m above sea level. 84.6% of the crater lakes studied were infective with over 50% of the users infected. The overall prevalence of Schistosoma mansoni infection was 27.8% (103/370 with stool egg load ranging from 24–6048 per gram of stool. 84.3%( 312 had light infections (400 egg/gm of stool. Prevalence was highest in the age group 12–14 years (49.5% and geometric mean intensity was highest in the age group 9–11 years (238 epg. The prevalence and geometric mean intensity of infection among girls was lower (26%; 290 epg compared to that of boys (29.6%; 463 epg (t = 4.383, p Conclusion and recommendations The altitudinal threshold for S. mansoni transmission in Uganda has changed and use of crater water at an altitude higher than 1,400 m above sea level poses a risk of acquiring S. mansoni infection in western Uganda. However, further research is required to establish whether the observed altitudinal threshold change is as a result of climate change or other factors. It is also necessary to establish the impact this could

  18. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology.

    Science.gov (United States)

    Scherrer, Urs; Allemann, Yves; Jayet, Pierre-Yves; Rexhaj, Emrush; Sartori, Claudio

    2010-01-01

    High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.

  19. Meteorological Support in Scientific Ballooning

    Science.gov (United States)

    Schwantes, Chris; Mullenax, Robert

    2017-01-01

    The weather affects every portion of a scientific balloon mission, from payload integration to launch, float, and impact and recovery. Forecasting for these missions is very specialized and unique in many aspects. CSBF Meteorology incorporates data from NWSNCEP, as well as several international meteorological organizations, and NCAR. This presentation will detail the tools used and specifics on how CSBF Meteorology produces its forecasts.

  20. Airborne Internet Providing Tethered Balloon System

    Directory of Open Access Journals (Sweden)

    Suvriti Dhawan1

    2015-12-01

    Full Text Available In this paper we shall introduce a new system for providing wireless network communication over a specified area using ’lighter than air’ balloons. This technology will replace the existing fiber optic network system. This will be done by using a tethered balloon along with the payload (containing a receiver, a transmitter and a radio communication device.This payload will be suspended from the ground at an altitude (depending on the area of coverage required. Users under this area will be able to access this system directly for internet connectivity. This system can be used over large areas like universities, companies and societies to provide internet facility to their users through Wi-Fi or over an area where the user is specified (commercial purposes. Currently Google is working on similar idea called the ’Google Loon’ in which they use high altitude balloons which float at an altitude twice as high as air planes and the weather. They recently tested this system over New-Zealand by providing internet to their pilot testers on ground. Their balloons not being stationary, move with directional winds and have to be replaced one after the other to maintain consistency. This can be a huge problem over the areas where upper atmospheric winds are not in favorable direction. We can resolve this problem by using our stationary tethered balloon system which can communicate with the loon balloons to provide internet facility over a desired area. Moreover when our balloon will communicate with the loon balloon it will increase the coverage area as the loon balloon has to communicate to a point which is above the ground. Our system will not only replace the existing fiber optic system but it will also be selfsustaining i.e. It will generate its own power using solar panels.

  1. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Science.gov (United States)

    Pandey, Priyanka; Mohammad, Ghulam; Singh, Yogendra; Qadar Pasha, MA

    2015-01-01

    Objective To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early), and morbid disorder, high altitude pulmonary edema (HAPE). This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation. Methods For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225), HAPE controls (n=210), and highlanders (n=259) by Sequenom MS (TOF)-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups. Results A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728) with HAPE (P=0.03) and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336) with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively). ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009). MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006) and lower association with adaptation (P=1E–06), whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001) and higher association with adaptation (P=1E–06). Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working of ROCK2 and MYLK. Conclusion The data suggest the association of ROCK2 with HAPE and MYLK with HAPE and adaptation in Indian population. The outcome has provided new insights into the physiology of HAPE and adaptation. PMID:26586960

  2. Centurion solar-powered high-altitude aircraft in flight

    Science.gov (United States)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  3. Report on the Activities of National Balloon Facility, Hyderabad

    Science.gov (United States)

    Vasudevan, Rajagopalan; Sreenivasan, S.; Suneel Kumar, B.; Kulkarni, P. M.

    2012-07-01

    More than five and half decades back, the Indian Balloon Group at Tata Institute of Fundamental Research, Mumbai started development of stratospheric zero pressure balloon technology and today it is one among the leading balloon groups in the world. For the past 40 years, the Institute has been operating a Scientific Balloon Facility at Hyderabad and carried out 478 balloon flights for various disciplines of space sciences like primary cosmic ray studies, X ray, Gamma Ray, Infra Red Astronomies and Atmospheric science maintaining 100% success rate during the past nine years. The Balloon Facility has the capability to build balloons of volume up to 750,000 Cu.M. as well as carrying out R & D in all aspects of scientific ballooning like balloon engineering, balloon material development, general and flight support instrumentation. A continued effort in R & D for ultra thin balloon material for High Altitude Sounding Flights has resulted in lowering the thickness of the proven indigenous Antrix film initially from 6 to 3.8 microns in the first phase and further reduction to 2.7 microns in the second phase. A test balloon of volume 5000 Cu.M. using the 2.7 micron film attained a record altitude of 45.0 Km. amsl with 1 Kg. GPS sonde payload. A 60,000 Cu.M. balloon fabricated out of 3.8 micron film capable of reaching 47 Km. Altitude with 10 Kg. Payload is awaiting trial. This report briefly describes our balloon activities during the past two years. In atmospheric sciences, aerosol studies were made with OPC,QCM,Aethelometer, Nephelometer,MWR, CIMEL Sun Photometer and Raman LIDAR.Measuments of vertical profile of Meteorological parameters and ozone upto stratosphere using GPS Radiosonde and Ozone sonde is made respectively.Study of Ionospheric tomography is done with CADI and CRABEX.

  4. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  5. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    Science.gov (United States)

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-05-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347-356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205-214), and isoform 1 of fibrinogen α chain precursor (FGA 588-624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  6. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  7. Outdoor Activity and High Altitude Exposure During Pregnancy: A Survey of 459 Pregnancies.

    Science.gov (United States)

    Keyes, Linda E; Hackett, Peter H; Luks, Andrew M

    2016-06-01

    To evaluate whether women engage in outdoor activities and high altitude travel during pregnancy; the health care advice received regarding high altitude during pregnancy; and the association between high altitude exposure and self-reported pregnancy complications. An online survey of women with at least 1 pregnancy distributed on websites and e-mail lists targeting mothers and/or mountain activities. Outcome measures were outdoor activities during pregnancy, high altitude (>2440 m) exposure during pregnancy, and pregnancy and perinatal complications. Hiking, running, and swimming were the most common activities performed during pregnancy. Women traveled to high altitude in over half of the pregnancies (244/459), and most did not receive counseling regarding altitude (355, 77%), although a small proportion (14, 3%) were told not to go above 2440 m. Rates of miscarriage and most other complications were similar between pregnancies with and without travel above 2440 m. Pregnancies with high altitude exposure were more likely to have preterm labor (odds ratio [OR] 2.3; 95% CI 0.97-5.4; P = .05). Babies born to women who went to high altitude during pregnancy were more likely to need oxygen at birth (OR 2.34; 95% CI 1.04-5.26; P < .05) but had similar rates of neonatal intensive care unit admission (P = not significant). Our results suggest pregnant women who are active in outdoor sports and travel to high altitude have a low rate of complications. Given the limitations of our data, further research is necessary on the risks associated with high altitude travel and physical activity and how these apply to the general population. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. Missing correlation of retinal vessel diameter with high-altitude headache

    Science.gov (United States)

    Willmann, Gabriel; Fischer, M Dominik; Schommer, Kai; Bärtsch, Peter; Gekeler, Florian; Schatz, Andreas

    2014-01-01

    The most common altitude-related symptom, high-altitude headache (HAH), has recently been suggested to originate from restricted cerebral venous drainage in the presence of increased inflow caused by hypoxia. In support of this novel hypothesis, retinal venous distension was shown to correlate with the degree of HAH. We quantified for the first time retinal vessel diameter changes at 4559 m using infrared fundus images obtained from a state of the art Spectralis™ HRA+OCT with a semiautomatic VesselMap 1® software. High-altitude exposure resulted in altered arterial and venous diameter changes at high altitude, however, independent of headache burden. PMID:25356382

  9. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    ) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite......Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen...

  10. High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition

    Directory of Open Access Journals (Sweden)

    Kenneth S. Whitlow,

    2014-11-01

    Full Text Available High altitude pulmonary edema (HAPE is a form of high altitude illness characterized by cough, dyspnea upon exertion progressing to dyspnea at rest and eventual death, seen in patients who ascend over 2,500 meters, particularly if that ascent is rapid. This case describes a patient with no prior history of HAPE and extensive experience hiking above 2,500 meters who developed progressive dyspnea and cough while ascending to 3,200 meters. His risk factors included rapid ascent, high altitude, male sex, and a possible genetic predisposition for HAPE. [West J Emerg Med. 2014;15(7:–0.

  11. High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition

    Science.gov (United States)

    Whitlow, Kenneth S.; Davis, Babette W.

    2014-01-01

    High altitude pulmonary edema (HAPE) is a form of high altitude illness characterized by cough, dyspnea upon exertion progressing to dyspnea at rest and eventual death, seen in patients who ascend over 2,500 meters, particularly if that ascent is rapid. This case describes a patient with no prior history of HAPE and extensive experience hiking above 2,500 meters who developed progressive dyspnea and cough while ascending to 3,200 meters. His risk factors included rapid ascent, high altitude, male sex, and a possible genetic predisposition for HAPE. PMID:25493133

  12. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  13. Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space...

  14. Is Pulse Oximetry Useful for Screening Neonates for Critical Congenital Heart Disease at High Altitudes?

    Science.gov (United States)

    Hoffman, Julien I E

    2016-06-01

    Now that pulse oximetry is used widely to screen for critical congenital heart disease, it is time to consider whether this screening method is applicable to those who live at high altitudes. Consideration of basic physical principles and reports from the literature indicate that not only is the 95 % cutoff point for arterial oxygen saturation incorrect at high altitudes, but the lower saturations are accompanied by greater variability and therefore there is the possibility of a greater percentage of false-positive screening tests at high altitudes. Because of ethnic differences in response to high altitudes, normative data will have to be collected separately in different countries and perhaps for different ethnic groups.

  15. QT interval changes in term pregnant women living at moderately high altitude.

    Science.gov (United States)

    Batmaz, G; Aksoy, A N; Aydın, S; Ay, N K; Dane, B

    2016-01-01

    This study aimed to compare the QT interval changes in women with term pregnancy living at moderately high altitude (1890 m in Erzurum, Turkey) with those of women living at sea level (31 m in İstanbul, Turkey). One-hundred ten women (n = 55, for each group) with full-term and single child pregnancies. Two different locations in that state were selected: İstanbul, Turkey, which is at 31 m above sea level (Group 1) and Erzurum, Turkey, at 1890 m above sea level (Group 2). Physicians from the two locations participated in the study. We estimated QTc, QTc Max, QTc Min, QT, and QTcd intervals. Moderately high altitude group had significantly longer QT parameters (QTc, QTc Max, QTc Min, QT, and QTcd intervals) compared with sea level group (P anges occur in term pregnant women living moderately high altitude. These changes may be associated with pregnancy-related cardiovascular complications in moderately high altitude.

  16. Subclinical high altitude pulmonary edema:A clinical observation of 12 cases in Yushu

    Institute of Scientific and Technical Information of China (English)

    Li Shuzhi; Zheng Bihai; Wu Tianyi; Chen Huixing; Zhang Ming

    2013-01-01

    During the Yushu Earthquake on April 14,2010,a high incidence of acute high altitude illness was observed in the mountain rescuers,and 0.73 % of these patients suffered from high altitude pulmonary edema,of which 12 patients developed subclinical pulmonary edema and concomitantly contracted acute mountain sickness.Symptoms and signs were atypically high heart rate with high respiratory rate,striking cyanosis,and significantly low oxygen saturation,whereas no moist rates were heard on auscultation,and Chest X-ray showed peripheral with a patchy distribution of mottled infiltrations in one or both lung fields.We believe that subclinical high altitude pulmonary edema is an earliest stage of pulmonary edema at high altitude.The possible pathogenesis and the diagnosis were discussed.

  17. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  18. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial.......059) to limit mass-specific maximal oxidative phosphorylation capacity. These data suggest that 9-11 days of exposure to high altitude do not markedly modify integrated measures of mitochondrial functional capacity in skeletal muscle despite significant decrements in the concentrations of enzymes involved...

  19. Analysis of mitochondrial DNA in Tibetan gastric cancer patients at high altitude

    OpenAIRE

    Jiang, Jun; Zhao, Jun-Hui; Wang, Xue-Lian; DI, JI; Liu, Zhi-Bo; Li, Guo-Yuan; WANG, MIAO-ZHOU; Li, Yan; Chen, Rong; Ge, Ri-Li

    2015-01-01

    The highest risk areas of gastric cancer are currently Japan, Korea and China; Qinghai, a high-altitude area, has one of the highest gastric cancer rates in China. The incidence of gastric cancer is higher in the Tibetan ethnic group compared to that in the Han ethnic group in Qinghai. This study was conducted to determine the clinical characteristics of mitochondrial DNA (mtDNA) mutations and copy numbers among Tibetans with gastric cancer residing at high altitudes and investigate the assoc...

  20. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  1. ROCK2 and MYLK variants and high-altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2016-08-01

    Full Text Available Gaurav Sikri, Srinivasa Bhattachar Department of Physiology, Armed Forces Medical College, Pune, Maharashtra, IndiaWe have read the article titled “ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation” by Pandey et al1 with profound interest. View the original paper by Pandey and colleagues.

  2. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  3. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  4. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein

    Science.gov (United States)

    Hu, Sheng Li; Xiong, Wei; Dai, Zhi Qiang; Zhao, Heng Li; Feng, Hua

    2016-01-01

    Hypersensitive C-reaction protein (hsCRP) may be a risk factor for cognitive impairment resulting from Alzheimer’s disease (AD), stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200) detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6), and homocysteine was estimated at 500m altitude, 3650m altitude, 3day, 1, and 3 month post arriving at the base camp (4400m), and 1 month after coming back to the 500m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400m). P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction. PMID:26731740

  5. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  6. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    Science.gov (United States)

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered.

  7. Effect of high altitude exposure on spermatogenesis and epididymal sperm count in male rats.

    Science.gov (United States)

    Gasco, M; Rubio, J; Chung, A; Villegas, L; Gonzales, G F

    2003-12-01

    The present study was designed to determine the effect of exposure to high altitude on spermatogenesis using transillumination technique and sperm count in male rats. In addition, the effect of oral intubation for intragastric administration of vehicle on testicular parameters in adult male rats in a schedule of 42 days was assessed. Male rats were exposed to Cerro de Pasco (Peru) at 4340 m for 3, 7, 14, 21, 28, 35 and 42 days resulting in a modification of the pattern of the seminiferous tubule stages. At day 3, stages I, IV-V, VI, VII and IX-XI were relatively shorter at high altitude than at sea level. At day 7, stages VIII, IX-XI, XII and XIII-XIV were reduced. At day 14, stages VII, VIII and IX-XI were reduced. At day 21 and 28, stages VIII, XII and XIII-XIV were significantly increased at high altitude. At day 35 an increase in stage XIII-XIV was observed. At day 42, stages II-III, IX-XI and XII were significantly increased at high altitude. Epididymal sperm count was significantly reduced at day 7 of exposure to high altitude and maintained low levels with respect to sea level up to 42 days. In conclusion, high altitude exposure affects spermatogenesis, particularly onset of mitosis and spermiation. This in turn affects epididymal sperm count.

  8. Measurements of gondola motion on a stratospheric balloon flight

    CERN Document Server

    Safonova, Margarita; Sreejith, A G; Sarpotdar, Mayuresh; Ambily, S; Prakash, Ajin; Mathew, Joice; Murthy, Jayant; Anand, Devarajan; Kapardhi, B V N; Kumar, B Suneel; Kulkarni, P M

    2016-01-01

    Balloon experiments are an economically feasible method of conducting observations in astronomy that are not possible from the ground. The astronomical payload may include a telescope, a detector, and a pointing/stabilization system. Determining the attitude of the payload is of primary importance in such applications, to accurately point the detector/telescope to the desired direction. This is especially important in generally unstable lightweight balloon flights. However, the conditions at float altitudes, which can be reached by zero pressure balloons, could be more stable, enabling accurate pointings. We have used the Inertial Measurement Unit (IMU), placed on a stratospheric zero pressure balloon, to observe 3-axis motion of a balloon payload over a fight time of 4.5 hours, from launch to the float altitude of 31.2 km. The balloon was launched under nominal atmospheric conditions on May 8th 2016, from a Tata Institute of Fundamental Research Balloon Facility, Hyderabad.

  9. The First Large Balloon Launch from Antarctica

    Science.gov (United States)

    1988-09-26

    mounted, 20 x18 ft structure with a tracking antenna on its roof. Next to the telemetry station a Jamesway shelter was erected for work space, equipment...storage, and crew shelter. (The Jamesway shown in Figure 4 is an insulated, fabric- covered-arch building similar to a Quonset hut.) 44 Figure 3

  10. Astronomical observations with the University College London balloon borne telescope

    Science.gov (United States)

    Jennings, R. E.

    1974-01-01

    The characteristics of a telescope system which was developed for high altitude balloon astronomy are discussed. A drawing of the optical system of the telescope is provided. A sample of the signals recorded during one of the flights is included. The correlation between the infrared flux and the radio continuum flux is analyzed. A far infrared map of the radio and infrared peaks of selected stars is developed. The spectrum of the planet Saturn is plotted to show intensity as compared with wavenumber.

  11. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  12. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension.

    Science.gov (United States)

    Berger, Marc M; Dehnert, Christoph; Bailey, Damian M; Luks, Andrew M; Menold, Elmar; Castell, Christian; Schendler, Guido; Faoro, Vitalie; Mairbäurl, Heimo; Bärtsch, Peter; Swenson, Erik R

    2009-01-01

    Berger, Marc M., Christoph Dehnert, Damian M. Bailey, Andrew M. Luks, Elmar Menold, Christian Castell, Guido Schendler, Vitalie Faoro, Heimo Mairbäurl, Peter Bärtsch, and Eric R. Swenson. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension. High Alt. Med. Biol. 10:17-24, 2009.- Thirty-four mountaineers were studied at low (110 m) and high altitude (4559 m) to evaluate if increased pulmonary artery systolic pressure (PASP) at high altitude is associated with increased pulmonary endothelin-1 (ET-1) availability and alterations in nitrite metabolism across the lung. Blood samples were obtained using central venous and radial artery catheters for plasma ET-1 and nitrite. Pulmonary blood flow was measured by inert gas rebreathing to calculate transpulmonary exchange of plasma ET-1 and nitrite, and PASP was assessed by transthoracic Doppler echocardiography. After ascent to high altitude, PASP increased from 23 +/- 4 to 39 +/- 10 mmHg. Arterial and central venous plasma ET-1 increased, while plasma nitrite did not change significantly. At low altitude there was a transpulmonary loss of plasma ET-1, but a transpulmonary gain at high altitude. In contrast was a transpulmonary gain of plasma nitrite at low altitude and a transpulmonary loss at high altitude. PASP positively correlated with a transpulmonary gain of plasma ET-1 and negatively correlated with a transpulmonary loss of plasma nitrite. These results suggest that a transpulmonary gain of plasma ET- 1 is associated with higher PASP at high altitude. Transpulmonary loss of plasma nitrite indicates either less pulmonary nitric oxide (NO) production, which contributes to higher PASP, or increased NO bioavailability arising from nitrite reduction, which may oppose ET-1-mediated vasoconstriction.

  13. Difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite

    Directory of Open Access Journals (Sweden)

    Ming-ke JIAO

    2017-02-01

    Full Text Available Objective To determine the difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite during the wound healing. Methods Twenty four male rats were randomly divided into control group (n=8, normal frostbite group (n=8, and high-altitude group (n=8. The normal frostbite group rats were frozen to produce mid-degree frostbite models by controlling the freezing time with liquid nitrogen penetration equipment. The high-altitude frostbite group rats were acclimated to a hypoxic and low-pressure environment for 1 week, and then the high-altitude frostbite models were constructed by the same way with liquid nitrogen penetration apparatus. On days 3, 7, 11, 15, 19, and 23 after modeling, the recovery situation of blood circulation of each group was observed with contrast ultrasonography by injecting SonoVue micro-bubble into rats' tail. Finally, the micro-bubble concentration (MC was calculated to confirm the blood circulation recovery with software Image Pro. Results At different time points, the wound area of the high-altitude frostbite group was bigger than that of the normal frostbite group, and the MC of control group was always about (27±0.2×109/ml. On day 3, 7, 11, 15, 19, and 23, the MC was significantly lower in the high-altitude frostbite group than in the control group and normal frostbite group (P<0.05. The MC of normal frostbite group was significantly lower than that of the control group on day 3, 7, 11, 15 and 19 (P<0.05. In addition, no obvious difference in MC was found between normal group and control group on the 23th day (P<0.05. Conclusion The blood microcirculation recovery after high-altitude frostbite is significantly slower than the normal frostbite. DOI: 10.11855/j.issn.0577-7402.2017.01.13

  14. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.

  15. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    Science.gov (United States)

    Immerzeel, Walter; Wanders, Niko; Lutz, Arthur; Shea, Joseph; Bierkens, Marc

    2016-04-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  16. Chronic intermittent high altitude exposure, occupation, and body mass index in workers of mining industry.

    Science.gov (United States)

    Esenamanova, Marina K; Kochkorova, Firuza A; Tsivinskaya, Tatyana A; Vinnikov, Denis; Aikimbaev, Kairgeldy

    2014-09-01

    The obesity and overweight rates in population exposed to chronic intermittent exposure to high altitudes are not well studied. The aim of the retrospective study was to evaluate whether there are differences in body mass index in different occupation groups working in intermittent shifts at mining industry at high altitude: 3800-4500 meters above sea level. Our study demonstrated that obesity and overweight are common in workers of high altitude mining industry exposed to chronic intermittent hypoxia. The obesity rate was lowest among miners as compared to blue- and white-collar employees (9.5% vs. 15.6% and 14.7%, p=0.013). Obesity and overweight were associated with older age, higher rates of increased blood pressure (8.79% and 5.72% vs. 1.92%), cholesterol (45.8% and 45.6% vs. 32.8%) and glucose (4.3% and 1.26% vs. 0.57%) levels as compared to normal body mass index category (pmining industry exposed to intermittent high-altitude hypoxia. Therefore, assessment and monitoring of body mass index seems to be essential in those who live and work at high altitudes to supply the correct nutrition, modify risk factors, and prevent related disorders.

  17. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  18. Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations

    Science.gov (United States)

    Puspitarini, L.; Määttänen, A.; Fouchet, T.; Kleinboehl, A.; Kass, D. M.; Schofield, J. T.

    2016-11-01

    High altitude clouds have been observed in the Martian atmosphere. However, their properties still remain to be characterized. Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO) is an instrument that measures radiances in the thermal infrared, both in limb and nadir views. It allows us to retrieve vertical profiles of radiance, temperature and aerosols. Using the MCS data and radiative transfer model coupled with an automated inversion routine, we can investigate the chemical composition of the high altitude clouds. We will present the first results on the properties of the clouds. CO2 ice is the best candidate to be the main component of some high altitude clouds due to the most similar spectral variation compared to water ice or dust, in agreement with previous studies. Using cloud composition of contaminated CO2 ice (dust core surrounded by CO2 ice) might improve the fitting result, but further study is needed.

  19. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    Science.gov (United States)

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  20. Circulatory adaptation to long-term high altitude exposure in Aymaras and Caucasians.

    Science.gov (United States)

    Stuber, Thomas; Scherrer, Urs

    2010-01-01

    About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.

  1. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Science.gov (United States)

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  2. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Paul B.; Zaveri, Rahul A.; Flocke, Frank M.; Mao, Huitimg; Hartley, Tom; DeAmicis, Pam; Deonandan, Indira; Contrerars-Jimenez, G.; Martinez-Antonio, O.; Figueroa Estrada, M.; Greenberg, David; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Montzka, DeeDee; Crounse, J. D.; Wennberg, P. O.; Apel, Eric; Madronich, Sasha; de Foy, B.

    2010-08-04

    One of the major objectives of the Megacities Initiative: Local And Global Research 3 Observations (MILAGRO 2006) campaign was to investigate the long-range transport of 4 Mexico City Metropolitan Area (MCMA) pollution outflow and its downwind impacts on air 5 quality and climate. Four aircraft (DOE G-1, NSF/NCAR C-130, NASA-J31, and NASA 6 DC-8) made extensive chemical, aerosol, and radiation measurements above MCMA and over 7 1000 km downwind in order to characterize the evolution of MCMA pollution as it aged and 8 dispersed over the central Mexican plateau and the Gulf of Mexico. As part of this effort, 9 free-floating Controlled-Meteorological (CMET) balloons, capable of changing altitude on 10 command via satellite, characterized the MCMA outflow by performing repeated soundings 11 during the transit. In this paper, we present an analysis based on the data from two CMET 12 balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated 13 downwind with the outflow for nearly 30 hours. Continuous profile measurements made by 14 the balloons show the evolving structure of the MCMA outflow in considerable detail: its 15 stability and stratification, interaction with other air masses, mixing episodes, and dispersion 16 into the regional background. Air parcel trajectories, computed directly from the balloon 17 wind profiles, show three different transport pathways for Mexico City outflow on 18-19 18 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) low-altitude flow 19 over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf, 20 and (c) the same decoupling scenario with entrainment into a cleaner westerly jet below the 21 plateau. The C-130 intercepted the balloon-based trajectories three times on 19 March, once 22 along each transport pathway. In all three cases, distinct peaks in the urban tracer signature 23 and LIDAR backscatter imagery provided evidence for Mexico City air

  3. High altitude and hemoglobin function in the vultures Gyps rueppelli and Aegypius monachus

    DEFF Research Database (Denmark)

    Weber, Roy E.; Hiebl, Inge; Braunitzer, Gerhard

    1988-01-01

    structures of the constituent polypeptide chains to trace molecular adaptations to high-altitude respiration, and to physiological factors (pulmonary hypoxia and hypocapnia, body temperature shifts, and lung and nasal gas and heat exchange) to discern their possible survival value at altitudes of 11300 m.......Functional characteristics of the stripped composite hemoglobins (Hbs) of lhevultures Gyps rueppellii and Aegypills monachus that can fly at extremely high altitudes, and of component Hbs of G. rueppellii are reported, in relation to influences of pH, temperalure and inositol hexaphosphate. G...

  4. Out of air: Is going to high altitude safe for your patient?

    Science.gov (United States)

    Mendenhall, Ann M; Forest, Christopher P

    2017-08-01

    As more people travel to high altitudes for recreation or work, more travelers with underlying medical conditions will need advice before traveling or treatment for altitude illness. This article focuses on the two main issues for travelers: whether travel to a high altitude will have a negative effect on their underlying medical condition and whether the medical condition increases the patient's risk of developing altitude illness. Although patients with severe pulmonary or cardiac conditions are most at risk in the hypoxic environment, other conditions such as diabetes and pregnancy warrant attention as well.

  5. An overview of instrumentation capabilities for Scientific ballooning in India

    Science.gov (United States)

    Devarajan, Anand; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Bangaru, Kapardhi; Trivedi, Dharmesh; Rodi, Ashish; Ojha, Devendra; Koli, Santosh

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) in India, launches scientific balloons for research in the field of astronomy, astrobiology and atmospheric sciences. TIFR-BF not only has the capability to design, fabricate and launch zero-pressure balloons, but also provide operational and engineering support for launching them. The Control Instrumentation Group (CIG) at the balloon facility handles all electronics related to telemetry, telecommand, tracking, real-time data display, data storage, air-safety and payload recovery. In the recent past, it has designed and developed customized electronics and payload orientation mechanism to meet specific experimental objectives. Small, inexpensive and rugged industrial grade radio data modems were successfully deployed in balloon flights for low bit rate data and image telemetry. This paper will provide an overview and in-flight performance of some of the recent developments in instrumentation and electronics systems. Our plans for future upgradations will also be discussed.

  6. Incidence of high altitude pulmonary edema in low-landers during re-exposure to high altitude after a sojourn in the plains

    Science.gov (United States)

    Apte, C.V.; Tomar, R.K.S.; Sharma, D.

    2015-01-01

    Background There is uncertainty whether acclimatized low-landers who return to high altitude after a sojourn at low altitude have a higher incidence of pulmonary edema than during the first exposure to high altitude. Methods This was a prospective cohort study consisting of men ascending to 3400 m by road (N = 1003) or by air (N = 4178). The study compared the incidence of high altitude pulmonary edema during first exposure vs the incidence during re-exposure in each of these cohorts. Results Pulmonary edema occurred in 13 of the 4178 entries by air (Incidence: 0.31%, 95% CI: 0.18%–0.53%). The incidence during first exposure was 0.18% (0.05%–0.66%) and 0.36% (0.2%–0.64%) during re-exposure (Fisher Exact Test for differences in the incidence (two-tailed) p = 0.534). The relative risk for the re-exposure cohort was 1.95 (95% CI, 0.43%–8.80%). Pulmonary edema occurred in 3 of the 1003 road entrants (Incidence: 0.30%, 95% CI: 0.08%–0.95%). All three cases occurred in the re-exposure cohort. Conclusion The large overlap of confidence intervals between incidence during first exposure and re-exposure; the nature of the confidence interval of the relative risk; and the result of the Fisher exact test, all suggest that this difference in incidence could have occurred purely by chance. We did not find evidence for a significantly higher incidence of HAPE during re-entry to HA after a sojourn in the plains. PMID:26288488

  7. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  8. Study of high-altitude radar altimeter model accuracy and SITAN performance using HAAFT data

    Energy Technology Data Exchange (ETDEWEB)

    Shieves, T.C.; Callahan, M.W.

    1979-07-01

    Radar altimetry data, inertial navigation data, and scoring data were collected under the HAAFT program by Martin Marietta Corporation for the United States Air Force over several areas in the western United States at altitudes ranging from 3 to 20 km. The study reported here uses the HAAFT data in conjunction with Defense Mapping Agency (DMA) topographic data to evaluate the accuracy of a high-altitude pulsed-radar altimeter model and the resulting performance of the terrain-aided guidance concept SITAN. Previous SITAN flight tests at low altitudes (less than 1500 m AGL) have demonstrated 6-20 m CEP. The high-altitude flight test data analyzed herein show a SITAN CEP of 120 m. The radar altimeter model was required to achieve this performance includes the effects of the internal track loop, AGC loop, antenna beamwidth, and the terrain radar cross section and provided a factor of 6 improvement over simple nadir ground clearance for rough terrain. It is postulated that high-altitude CEP could be reduced to 50 m or less if an altimeter were designed specifically for high-altitude terrain sensing.

  9. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  10. Update on high altitude cerebral edema including recent work on the eye.

    Science.gov (United States)

    Willmann, Gabriel; Gekeler, Florian; Schommer, Kai; Bärtsch, Peter

    2014-06-01

    This review summarizes recent research on high altitude cerebral edema (HACE) and on the eye with focus on the retina and optic nerve as visible brain tissue at high altitude. Hemosiderin deposits in the corpus callosum have been characterized as rather specific long-lasting footprints of HACE, indicating a leak of the blood-brain barrier (BBB) and resulting in microhemorrhages. These are compatible with the concept of increased capillary pressure due to venous outflow limitation as suggested by Wilson et al. There are no human data on the role of vascular permeability in HACE, while animal models of uncertain relevance for human HACE suggest that an impaired integrity of the BBB through VEGF and ROS is more important than hemodynamic changes. Examinations by ultrasound show an inconsistent increase of the optic nerve sheath diameter, whereas unequivocal optic disc swelling (ODS), increased retinal vessel diameter, as well as retinal vessel leakage occur at high altitude. However, whether these morphological changes correlate with symptoms of AMS as a possible precursor of HACE or high altitude headache supporting the concept of venous outflow limitation remains questionable and is discussed in detail in this article.

  11. A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya

    NARCIS (Netherlands)

    Shea, J. M.; Wagnon, P.; Immerzeel, W. W.; Biron, R.; Brun, F.; Pellicciotti, F.

    2015-01-01

    Meteorological studies in high-mountain environments form the basis of our understanding of catchment hydrology and glacier accumulation and melt processes, yet high-altitude (>4000 m above sea level, asl) observatories are rare. This research presents meteorological data recorded between December 2

  12. Oxygen enrichment and its application to life support systems for workers in high-altitude areas.

    Science.gov (United States)

    Li, Yongling; Liu, Yingshu

    2014-01-01

    Workers coming from lowland regions are at risk of developing acute mountain sickness (AMS) when working in low oxygen high-altitude areas. The aim of this study was to improve the conditions that lead to hypoxia and ensure the safety of the high-altitude workers. We analyzed the influence of low atmospheric pressure on the oxygen enrichment process in high-altitude areas using an engineering method called low-pressure swing adsorption (LPSA). Fourteen male subjects were screened and divided into three groups by type of oxygen supply system used: (1) oxygen cylinder group; (2) LPSA oxygen dispersal group; and (3) control group. These tests included arterial oxygen saturation (SaO2), pulse rate (PR), breaths per minute (BPM), and blood pressure (BP). The results showed that after supplying oxygen using the LPSA method at the tunnel face, the SaO2 of workers increased; the incidence of acute mountain sickness, PR, and BPM significantly decreased. The LPSA life support system was found to be a simple, convenient, efficient, reliable, and applicable approach to ensure proper working conditions at construction sites in high-altitude areas.

  13. Prevalence of Hypertension in a Tribal Land Locked Population at High Altitude

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Raina

    2016-01-01

    Full Text Available Introduction. Extensive pubmed search reveals paucity of data on prevalence of hypertension in tribal population at high altitude. The data is all the more scarce from our part of India. Studies among tribal populations at high altitudes provide an interesting epidemiological window to study human evolution and adaptation to hypobaric hypoxia. Material and Methods. 401 participants above the age of 20 years were evaluated for blood pressure using a stratified simple random technique among villages located at high altitude. Results. Out of a total of 401 individuals studied 43 (males: 35; females: 8 were identified as hypertensive yielding a crude prevalence of 10.7%. The prevalence was higher in males (35/270; 12.9% as compared to females (8/131; 6%. Prevalence was the highest in the age group of 30–39 among males (16/35; 45.7% while it was the highest in the age group of 40–49 among females (7/8; 87%. Conclusions. Prevalence of 10.5% is noteworthy when interpreted in light of prevalence of hypertension in general population especially if hypobaric hypoxia is considered to have a protective effect on blood pressure in high altitude native populations.

  14. Prevalence of Hypertension in a Tribal Land Locked Population at High Altitude

    Science.gov (United States)

    Raina, Sunil Kumar; Chander, Vishav; Prasher, Chaman Lal; Raina, Sujeet

    2016-01-01

    Introduction. Extensive pubmed search reveals paucity of data on prevalence of hypertension in tribal population at high altitude. The data is all the more scarce from our part of India. Studies among tribal populations at high altitudes provide an interesting epidemiological window to study human evolution and adaptation to hypobaric hypoxia. Material and Methods. 401 participants above the age of 20 years were evaluated for blood pressure using a stratified simple random technique among villages located at high altitude. Results. Out of a total of 401 individuals studied 43 (males: 35; females: 8) were identified as hypertensive yielding a crude prevalence of 10.7%. The prevalence was higher in males (35/270; 12.9%) as compared to females (8/131; 6%). Prevalence was the highest in the age group of 30–39 among males (16/35; 45.7%) while it was the highest in the age group of 40–49 among females (7/8; 87%). Conclusions. Prevalence of 10.5% is noteworthy when interpreted in light of prevalence of hypertension in general population especially if hypobaric hypoxia is considered to have a protective effect on blood pressure in high altitude native populations. PMID:26989560

  15. Pregnancy at high altitude in the Andes leads to increased total vessel density in healthy newborns

    NARCIS (Netherlands)

    Gassmann, N.N. (Norina N.); H.A. van Elteren (Hugo); T.G. Goos (Tom); Morales, C.R. (Claudia R.); Rivera-Ch, M. (Maria); D.S. Martin; Peralta, P.C. (Patricia Cabala); Del Carpio, A.P. (Agustin Passano); MacHaca, S.A. (Saul Aranibar); Huicho, L. (Luis); I.K.M. Reiss (Irwin); Gassmann, M. (Max); R.C.J. de Jonge (Rogier)

    2016-01-01

    markdownabstractThe developing human fetus is able to cope with the physiological reduction in oxygen supply occurring in utero. However, it is not known if microvascularization of the fetus is augmented when pregnancy occurs at high altitude. Fifty-three healthy term newborns in Puno, Peru (3,840

  16. On the High Altitude Platform (HAP W-CDMA System Capacity

    Directory of Open Access Journals (Sweden)

    L. de Haro-Ariet

    2004-06-01

    Full Text Available The performance of a downlink power control model, based on a n-thpower distance law, is evaluated for high altitude platform station(HAPS W-CDMA systems. The downlink capacity using this model iscompared with the uplink capacity. It is shown that the uplink capacityis higher than the downlink capacity.

  17. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    . At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...

  18. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    Science.gov (United States)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  19. Metabolic Effects of High Altitude Trekking in Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; Fokkert, Marion J.; de Vries, Suzanna T.; de Koning, Eelco J. P.; Dikkeschei, Bert D.; Gans, Rijnold O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2012-01-01

    OBJECTIVE-Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Thirteen individuals with type 2 diabetes took part, in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  20. Metabolic effects of high altitude trekking in patients with type 2 diabetes

    NARCIS (Netherlands)

    Mol, P. de; Fokkert, M.J.; Vries, S.T. de; Koning, E.J. de; Dikkeschei, B.D.; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2012-01-01

    OBJECTIVE Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirteen individuals with type 2 diabetes took part in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco, a

  1. Elevated Suicide Rates at High Altitude: Sociodemographic and Health Issues May Be to Blame

    Science.gov (United States)

    Betz, Marian E.; Valley, Morgan A.; Lowenstein, Steven R.; Hedegaard, Holly; Thomas, Deborah; Stallones, Lorann; Honigman, Benjamin

    2011-01-01

    Suicide rates are higher at high altitudes; some hypothesize that hypoxia is the cause. We examined 8,871 suicides recorded in 2006 in 15 states by the National Violent Death Reporting System, with the victim's home county altitude determined from the National Elevation Dataset through FIPS code matching. We grouped cases by altitude (low less…

  2. Comments on “High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition”

    Directory of Open Access Journals (Sweden)

    Gaurav Sikri

    2015-10-01

    Full Text Available We appreciate the letter to the editor and are pleased to respond regarding our recent case study regarding high altitude pulmonary edema in an experienced mountaineer. The letter raises some valid questions regarding our treatment decisions. With this, as with most emergency department (ED patients, it must be understood that the initial treatment reflected the breadth of our differential diagnosis.

  3. The body weight loss during acute exposure to high-altitude hypoxia in sea level residents.

    Science.gov (United States)

    Ge, Ri-Li; Wood, Helen; Yang, Hui-Huang; Liu, Yi-Ning; Wang, Xiu-Juan; Babb, Tony

    2010-12-25

    Weight loss is frequently observed after acute exposure to high altitude. However, the magnitude and rate of weight loss during acute exposure to high altitude has not been clarified in a controlled prospective study. The present study was performed to evaluate weight loss at high altitude. A group of 120 male subjects [aged (32±6) years] who worked on the construction of the Golmud-Lhasa Railway at Kunlun Mountain (altitude of 4 678 m) served as volunteer subjects for this study. Eighty-five workers normally resided at sea level (sea level group) and 35 normally resided at an altitude of 2 200 m (moderate altitude group). Body weight, body mass index (BMI), and waist circumference were measured in all subjects after a 7-day stay at Golmud (altitude of 2 800 m, baseline measurements). Measurements were repeated after 33-day working on Kunlun Mountain. In order to examine the daily rate of weight loss at high altitude, body weight was measured in 20 subjects from the sea level group (sea level subset group) each morning before breakfast for 33 d at Kunlun Mountain. According to guidelines established by the Lake Louise acute mountain sickness (AMS) consensus report, each subject completed an AMS self-report questionnaire two days after arriving at Kunlun Mountain. After 33-day stay at an altitude of 4 678 m, the average weight loss for the sea level group was 10.4% (range 6.5% to 29%), while the average for the moderate altitude group was 2.2% (-2% to 9.1%). The degree of weight loss (Δ weight loss) after a 33-day stay at an altitude of 4 678 m was significantly correlated with baseline body weight in the sea level group (r=0.677, P0.05). In the sea level subset group, a significant weight loss was observed within 20 d, but the weight remained stable thereafter. AMS-score at high altitude was significantly higher in the sea level group (4.69±2.48) than that in the moderate altitude group (2.97±1.38), and was significantly correlated with baseline body weight

  4. High altitude syndromes at intermediate altitudes: a pilot study in the Australian Alps.

    Science.gov (United States)

    Slaney, Graham; Cook, Angus; Weinstein, Philip

    2013-10-01

    Our hypothesis is that symptoms of high altitude syndromes are detectable even at intermediate altitudes, as commonly encountered under Australian conditions (flatus expulsion (HAFE). Symptoms of high altitude syndromes are of growing concern because of the global trend toward increasing numbers of tourists and workers exposed to both rapid ascent and sustained physical activity at high altitude. However, in Australia, high altitude medicine has almost no profile because of our relatively low altitudes by international standards. Three factors lead us to believe that altitude sickness in Australia deserves more serious consideration: Australia is subject to rapid growth in alpine recreational industries; altitude sickness is highly variable between individuals, and some people do experience symptoms already at 1500 m; and there is potential for an occupational health and safety issue amongst workers. To test this hypothesis we examined the relationship between any high altitude symptoms and a rapid ascent to an intermediate altitude (1800 m) by undertaking an intervention study in a cohort of eight medical clinic staff, conducted during July of the 2012 (Southern Hemisphere) ski season, using self-reporting questionnaires, at Mansfield (316 m above sea level) and at the Ski Resort of Mt Buller (1800 m), Victoria, Australia. The intervention consisted of ascent by car from Mansfield to Mt Buller (approx. 40 min drive). Participants completed a self-reporting questionnaire including demographic data and information on frequency of normal homeostatic processes (fluid intake and output, food intake and output, symptoms including thirst and headaches, and frequency of passing wind or urine). Data were recorded in hourly periods extending over 18 h before and 18 h after ascent. We found that the frequency of flatus production more than doubled following ascent, with a post-ascent frequency of approximately 14 expulsions per person over the 18 h recording period (Rate

  5. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α.

    Science.gov (United States)

    van Patot, Martha C Tissot; Gassmann, Max

    2011-01-01

    Living at high altitude is demanding and thus drives adaptational mechanisms. The Tibetan population has had a longer evolutionary period to adapt to high altitude than other mountain populations such as Andeans. As a result, some Tibetans living at high altitudes do not show markedly elevated red blood cell production as compared to South American high altitude natives such as Quechuas or Aymaras, thereby avoiding high blood viscosity creating cardiovascular risk. Unexpectedly, the responsible mutation(s) reducing red blood cell production do not involve either the gene encoding the blood hormone erythropoietin (Epo), or the corresponding regulatory sequences flanking the Epo gene. Similarly, functional mutations in the hypoxia-inducible transcription factor 1α (HIF-1α) gene that represents the oxygen-dependent subunit of the HIF-1 heterodimer, the latter being the main regulator of over 100 hypoxia-inducible genes, have not been described so far. It was not until very recently that three independent groups showed that the gene encoding HIF-2α, EPAS-1 (Wenger et al. 1997), represents a key gene mutated in Tibetan populations adapted to living at high altitudes (Beall et al. 2010 , Yi et al. 2010 , Simonson et al. 2010). Hypoxia-inducible transcription factors were first identified by the description of HIF-1 (Semenza et al. 1991 , 1992), which was subsequently found to enhance transcription of multiple genes that encode proteins necessary for rescuing from hypoxic exposure, including erythropoietic, angiogenic and glycolytic proteins. Then HIF-2 was identified (Ema et al. 1997 ; Flamme et al. 1997 ; Hogenesch et al. 1997 ; and Tian et al. 1997) and although it is highly similar to HIF-1 and has the potential to bind (Camenisch et al. 2001) and mediate (Mole et al. 2009) many of the same genes as HIF-1, its biological actions in response to hypoxia are distinct from those of HIF-1 (reviewed by Loboda et al. 2010). By now, several of these HIF-2 mediated

  6. Role of the altitude level on cerebral autoregulation in residents at high altitude.

    Science.gov (United States)

    Jansen, Gerard F A; Krins, Anne; Basnyat, Buddha; Odoom, Joseph A; Ince, Can

    2007-08-01

    Cerebral autoregulation is impaired in Himalayan high-altitude residents who live above 4,200 m. This study was undertaken to determine the altitude at which this impairment of autoregulation occurs. A second aim of the study was to test the hypothesis that administration of oxygen can reverse this impairment in autoregulation at high altitudes. In four groups of 10 Himalayan high-altitude dwellers residing at 1,330, 2,650, 3,440, and 4,243 m, arterial oxygen saturation (Sa(O(2))), blood pressure, and middle cerebral artery blood velocity were monitored during infusion of phenylephrine to determine static cerebral autoregulation. On the basis of these measurements, the cerebral autoregulation index (AI) was calculated. Normally, AI is between zero and 1. AI of 0 implies absent autoregulation, and AI of 1 implies intact autoregulation. At 1,330 m (Sa(O(2)) = 97%), 2,650 m (Sa(O(2)) = 96%), and 3,440 m (Sa(O(2)) = 93%), AI values (mean +/- SD) were, respectively, 0.63 +/- 0.27, 0.57 +/- 0.22, and 0.57 +/- 0.15. At 4,243 m (Sa(O(2)) = 88%), AI was 0.22 +/- 0.18 (P < 0.0005, compared with AI at the lower altitudes) and increased to 0.49 +/- 0.23 (P = 0.008, paired t-test) when oxygen was administered (Sa(O(2)) = 98%). In conclusion, high-altitude residents living at 4,243 m have almost total loss of cerebral autoregulation, which improved during oxygen administration. Those people living at 3,440 m and lower have still functioning cerebral autoregulation. This study showed that the altitude region between 3,440 and 4,243 m, marked by Sa(O(2)) in the high-altitude dwellers of 93% and 88%, is a transitional zone, above which cerebral autoregulation becomes critically impaired.

  7. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.

    Science.gov (United States)

    Zhao, Xiaoling; Wu, Nan; Zhu, Qing; Gaur, Uma; Gu, Ting; Li, Diyan

    2016-09-01

    The problem of hypoxia adaptation in high altitudes is an unsolved brainteaser in the field of life sciences. As one of the best chicken breeds with adaptability to highland environment, the Tibetan chicken, is genetically different from lowland chicken breeds. In order to gain a better understanding of the mechanism of hypoxic adaptability in high altitude, in the present study, we focused on the MT-COI together with ATP-6 gene to explore the regulatory mechanisms for hypoxia adaptability in Tibet chicken. Here, we sequenced MT-COI of 29 Tibetan chickens and 30 Chinese domestic chickens and ATP-6 gene of 28 Tibetan chickens and 29 Chinese domestic chickens. In MT-COI gene, 9 single nucleotide polymorphisms (SNPs) were detected though none of these was a missense mutation, confirming the fact that MT-COI gene is a largely conservative sequence. In ATP-6 gene, 6 single nucleotide polymorphisms (SNPs) were detected and we found a missense mutation (m.9441G > A) in the ATP-6 gene of Tibetan chicken resulting in an amino acid substitution. Due to the critical role of ATP-6 gene in the proton translocation and energy metabolism, we speculated the possibility of this mutation playing an important role in easier energy conversion and metabolism in Tibetan chickens than Chinese domestic chickens so as to better adapt to the harsh environment of the high-altitude areas. The Median-joining profile also suggested that haplotype Ha2 has the ancestral position to the other haplotypes and has significant relationship with high-altitude adaptation in ATP-6 gene. Therefore, we considered that the polymorphism (m.9441G > A) in the ATP-6 gene may affect the specific functions of ATP-6 enzyme relating to high-altitude adaptation of Tibetan chicken and MT-COI gene is a largely conservative sequence.

  8. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations

    Directory of Open Access Journals (Sweden)

    Bigham Abigail W

    2009-12-01

    Full Text Available Abstract High-altitude environments (>2,500 m provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor (HIF pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF-targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude.

  9. 10 meter Sub-Orbital Large Balloon Reflector (LBR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Besides serving as a launch vehicle, the carrier balloon provides a stable mount for the enclosed telescope. Looking up, the LBR will serve as a telescope. Looking...

  10. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude

  11. Structural and functional changes of the human macula during acute exposure to high altitude.

    Directory of Open Access Journals (Sweden)

    M Dominik Fischer

    Full Text Available BACKGROUND: This study aimed to quantify structural and functional changes at the macula during acute exposure to high altitude and to assess their structure/function relationship. This work is related to the Tuebingen High Altitude Ophthalmology (THAO study. METHODOLOGY/PRINCIPAL FINDINGS: Spectral domain optical coherence tomography and microperimetry were used to quantify changes of central retinal structure and function in 14 healthy subjects during acute exposure to high altitude (4559 m. High-resolution volume scans and fundus-controlled microperimetry of the posterior pole were performed in addition to best-corrected visual acuity (BCVA measurements and assessment of acute mountain sickness. Analysis of measurements at altitude vs. baseline revealed increased total retinal thickness (TRT in all four outer ETDRS grid subfields during acute altitude exposure (TRT(outer = 2.80 ± 1.00 μm; mean change ± 95%CI. This change was inverted towards the inner four subfields (TRT(inner = -1.89 ± 0.97 μm with significant reduction of TRT in the fovea (TRT(foveal = -6.62 ± 0.90 μm at altitude. BCVA revealed no significant difference compared to baseline (0.06 ± 0.08 logMAR. Microperimetry showed stable mean sensitivity in all but the foveal subfield (MS(foveal = -1.12 ± 0.68 dB. At baseline recordings before and >2 weeks after high altitude exposure, all subjects showed equal levels with no sign of persisting structural or functional sequels. CONCLUSIONS/SIGNIFICANCE: During acute exposure to high altitude central retinal thickness is subject to minor, yet statistically significant changes. These alterations describe a function of eccentricity with an increase in regions with relatively higher retinal nerve fiber content and vascular arcades. However, these changes did not correlate with measures of central retinal function or acute mountain sickness. For the first time a quantitative approach has been used to assess these changes during acute

  12. Structural and Functional Changes of the Human Macula during Acute Exposure to High Altitude

    Science.gov (United States)

    Fischer, M. Dominik; Willmann, Gabriel; Schatz, Andreas; Schommer, Kai; Zhour, Ahmad; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian

    2012-01-01

    Background This study aimed to quantify structural and functional changes at the macula during acute exposure to high altitude and to assess their structure/function relationship. This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings Spectral domain optical coherence tomography and microperimetry were used to quantify changes of central retinal structure and function in 14 healthy subjects during acute exposure to high altitude (4559 m). High-resolution volume scans and fundus-controlled microperimetry of the posterior pole were performed in addition to best-corrected visual acuity (BCVA) measurements and assessment of acute mountain sickness. Analysis of measurements at altitude vs. baseline revealed increased total retinal thickness (TRT) in all four outer ETDRS grid subfields during acute altitude exposure (TRTouter = 2.80±1.00 μm; mean change±95%CI). This change was inverted towards the inner four subfields (TRTinner = −1.89±0.97 μm) with significant reduction of TRT in the fovea (TRTfoveal = −6.62±0.90 μm) at altitude. BCVA revealed no significant difference compared to baseline (0.06±0.08 logMAR). Microperimetry showed stable mean sensitivity in all but the foveal subfield (MSfoveal = −1.12±0.68 dB). At baseline recordings before and >2 weeks after high altitude exposure, all subjects showed equal levels with no sign of persisting structural or functional sequels. Conclusions/Significance During acute exposure to high altitude central retinal thickness is subject to minor, yet statistically significant changes. These alterations describe a function of eccentricity with an increase in regions with relatively higher retinal nerve fiber content and vascular arcades. However, these changes did not correlate with measures of central retinal function or acute mountain sickness. For the first time a quantitative approach has been used to assess these changes during acute, non

  13. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carni

  14. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carni

  15. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12

  16. Effect of reduced pressure, vibration and orientation to simulate high altitude testing of liquid pharmaceutical glass and plastic bottles

    NARCIS (Netherlands)

    Singh, S. Paul; Burgess, Gary; Kremer, Matt; Lockhart, Hugh

    2007-01-01

    This paper discusses the impact of high-altitude shipments of glass and plastic bottles on package integrity. High altitudes are encountered when trucks travel over mountain passes and when cargo and feeder aircraft transport packages in non-pressurized or partially pressurized cargo holds. This is

  17. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    Science.gov (United States)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  18. Operating Water Cherenkov Detectors in high altitude sites for the Large Aperture GRB Observatory

    CERN Document Server

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01

    Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.

  19. Association between Serum Interleukin-17A Level and High-Altitude Deacclimatization Syndrome.

    Science.gov (United States)

    He, Binfeng; Li, Hongli; Hu, Mingdong; Dong, Weijie; Wei, Zhenghua; Li, Jin; Yao, Wei; Guo, Xiaolan

    2016-01-01

    High-altitude deacclimatization syndrome (HADAS) is emerging as a severe public health issue that threatens the quality of life of individuals who return to lower altitude from high altitude. In this study, we measured serum levels of SOD, MDA, IL-17A, IL-10, TNF-α, and HADAS score in HADAS subjects at baseline and 50th and 100th days and to evaluate the relationship between interleukins, including IL-17A, and HADAS. Our data showed that and the serum IL-17A levels and HADAS score decreased over time in the HADAS group, and serum IL-17A levels were significantly higher in the HADAS group at baseline and 50th day compared with controls (p HADAS subjects compared with controls (p HADAS incidence and severity (p HADAS incidence than serum levels of IL-17A or IL-10 alone. These data suggest that serum levels of IL-17A are a novel predictive index of HADAS.

  20. A strategy for reducing neonatal mortality at high altitude using oxygen conditioning.

    Science.gov (United States)

    West, J B

    2015-11-01

    Neonatal mortality increases with altitude. For example, in Peru the incidence of neonatal mortality in the highlands has been shown to be about double that at lower altitudes. An important factor is the low inspired PO2 of newborn babies. Typically, expectant mothers at high altitude will travel to low altitude to have their babies if possible, but often this is not feasible because of economic factors. The procedure described here raises the oxygen concentration in the air of rooms where neonates are being housed and, in effect, this means that both the mother and baby are at a much lower altitude. Oxygen conditioning is similar to air conditioning except that the oxygen concentration of the air is increased rather than the temperature being reduced. The procedure is now used at high altitude in many hotels, dormitories and telescope facilities, and has been shown to be feasible and effective.

  1. [High frequency of dyslipidemia and impaired fasting glycemia in a high altitude Peruvian population].

    Science.gov (United States)

    Málaga, Germán; Zevallos-Palacios, Claudia; Lazo, María de los Ángeles; Huayanay, Carlos

    2010-01-01

    We performed a cross sectional study in Lari (3600 m), a highland rural community from Arequipa, Peru. We evaluated a body mass index (BMI), glycemia and lipid profile in 74 over 18 year persons. The mean age was 51.7 ± 18.0 years, 62.2% were women, mean of BMI was 25.6 ± 3.7. Prevalence of hypercholesterolemia was 40.6%, "low HDL" in 77% of the population (93.5% in women vs 50% in men, p <0.001) and elevated level of LDL was 71.7%. The prevalence of impaired fasting glycemia was 27%. In conclusion, we found high prevalence of impaired fasting glycemia, hypercholesterolemia and especially "low HDL" in high altitude rural natives. These findings must be considered to realize interventions in high altitude populations to avoid future cardiovascular complications.

  2. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    Science.gov (United States)

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  3. A gloss of Chronic Hypoxia in normal and diseased individuals at high altitude

    Institute of Scientific and Technical Information of China (English)

    Zubieta-Castillo,G.; Zubieta-Calleja,G.R.; Zubieta-Calleja L.

    2004-01-01

    @@ Introduction Millenary populations that live at high altitude in different continents like Asia (1) and South America (8), have endured biological adaptation in very adverse environmental conditions, of which to our understanding, paradoxically, chronic hypoxia is the most tolerable. Patients with pulmonary diseases at high altitude tolerate tissue hypoxia with an arterial tension (PaO2) even as low as 30 mmHg. Current scientific knowledge has made progress in many areas, clarifying many doubts, however due to preconception and lack of broad social studies chronic hypoxia is still not fully understood. Beings that inhabit different areas of the planet earth have lived under a variety of different hostile conditions: intense cold in the polar regions,intense heat in Africa and in the Middle East desserts,great pressure in the depth of the oceans, intense darkness of the caves and naturally the hypoxia of extreme altitudes.

  4. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    Directory of Open Access Journals (Sweden)

    P. B. Voss

    2010-02-01

    Full Text Available One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006 campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis based on the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three different transport pathways on 18–19 March: (a high-altitude advection of the top of the MCMA mixed layer, (b mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf, and (c low-altitude outflow with entrainment into a cleaner westerly jet below the plateau. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways. In all three cases, distinct peaks in the urban tracer signatures and LIDAR backscatter imagery were consistent with MCMA pollution. The coherence of the high-altitude outflow was well preserved

  5. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A.S.H.; Dommen, J.; Furger, M.; Graber, W.K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  6. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    OpenAIRE

    2016-01-01

    ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot) on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of a...

  7. Feasibility of Laser Power Transmission to a High-Altitude Unmanned Aerial Vehicle

    Science.gov (United States)

    2011-01-01

    possible to imagine the laser beam arriving at the UAV from above, perhaps bounced down from a satel- lite or airship , but this seems like an excessive...thus lending themselves to applica- tion on the aerodynamic surfaces of a UAV. InGaAs cells can also be used to convert laser light at longer wavelengths...Design and Predictions for a High-Altitude (Low- Reynolds-Number) Aerodynamic Flight Experiment, Edwards Air Force Base, Calif.: NASA Dryden Flight

  8. America’s Achilles Heel: Defense Against High-altitude Electromagnetic Pulse-policy vs. Practice

    Science.gov (United States)

    2014-12-12

    Energy Regulatory Commission FM Field Manual GRID Act Grid Reliability and Infrastructure Defense Act HEMP High-Altitude Electromagnetic Pulse JP...product to the end user.41 Across the U.S., there are upwards of 40,000 miles of gathering lines from the oil wells, both on and offshore , that feed into...particles are emitted at nearly the speed of light. The emissions can cause disturbances in the solar wind that disrupt satellites and create powerful

  9. Fasciola hepatica and lymnaeid snails occurring at very high altitude in South America.

    Science.gov (United States)

    Mas-Coma, S; Funatsu, I R; Bargues, M D

    2001-01-01

    Fascioliasis due to the digenean species Fasciola hepatica has recently proved to be an important public health problem, with human cases reported in countries of the five continents, including severe symptoms and pathology, with singular epidemiological characteristics, and presenting human endemic areas ranging from hypo- to hyperendemic. One of the singular epidemiological characteristics of human fascioliasis is the link of the hyperendemic areas to very high altitude regions, at least in South America. The Northern Bolivian Altiplano, located at very high altitude (3800-4100 m), presents the highest prevalences and intensities of human fascioliasis known. Sequences of the internal transcribed spacers ITS-1 and ITS-2 of the nuclear ribosomal DNA of Altiplanic Fasciola hepatica and the intermediate snail host Lymnaea truncatula suggest that both were recently introduced from Europe. Studies were undertaken to understand how the liver fluke and its lymnaeid snail host adapted to the extreme environmental conditions of the high altitude and succeeded in giving rise to high infection rates. In experimental infections of Altiplanic lymnaeids carried out with liver fluke isolates from Altiplanic sheep and cattle, the following aspects were studied: miracidium development inside the egg, infectivity of miracidia, prepatent period, shedding period, chronobiology of cercarial emergence, number of cercariae shed by individual snails, survival of molluscs at the beginning of the shedding process, survival of infected snails after the end of the shedding period and longevity of shedding and non-shedding snails. When comparing the development characteristics of European F. hepatica and L. truncatula, a longer cercarial shedding period and a higher cercarial production were observed, both aspects related to a greater survival capacity of the infected lymnaeid snails from the Altiplano. These differences would appear to favour transmission and may be interpreted as strategies

  10. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas.

    Directory of Open Access Journals (Sweden)

    Masayuki Hanaoka

    Full Text Available Sherpas comprise a population of Tibetan ancestry in the Himalayan region that is renowned for its mountaineering prowess. The very small amount of available genetic information for Sherpas is insufficient to explain their physiological ability to adapt to high-altitude hypoxia. Recent genetic evidence has indicated that natural selection on the endothelial PAS domain protein 1 (EPAS1 gene was occurred in the Tibetan population during their occupation in the Tibetan Plateau for millennia. Tibetan-specific variations in EPAS1 may regulate the physiological responses to high-altitude hypoxia via a hypoxia-inducible transcription factor pathway. We examined three significant tag single-nucleotide polymorphisms (SNPs, rs13419896, rs4953354, and rs4953388 in the EPAS1 gene in Sherpas, and compared these variants with Tibetan highlanders on the Tibetan Plateau as well as with non-Sherpa lowlanders. We found that Sherpas and Tibetans on the Tibetan Plateau exhibit similar patterns in three EPAS1 significant tag SNPs, but these patterns are the reverse of those in non-Sherpa lowlanders. The three SNPs were in strong linkage in Sherpas, but in weak linkage in non-Sherpas. Importantly, the haplotype structured by the Sherpa-dominant alleles was present in Sherpas but rarely present in non-Sherpas. Surprisingly, the average level of serum erythropoietin in Sherpas at 3440 m was equal to that in non-Sherpas at 1300 m, indicating a resistant response of erythropoietin to high-altitude hypoxia in Sherpas. These observations strongly suggest that EPAS1 is under selection for adaptation to the high-altitude life of Tibetan populations, including Sherpas. Understanding of the mechanism of hypoxia tolerance in Tibetans is expected to provide lights to the therapeutic solutions of some hypoxia-related human diseases, such as cardiovascular disease and cancer.

  11. Influence of acute exposure to high altitude on basal and postprandial plasma levels of gastroenteropancreatic peptides.

    Directory of Open Access Journals (Sweden)

    Rudolf L Riepl

    Full Text Available Acute mountain sickness (AMS is characterized by headache often accompanied by gastrointestinal complaints that vary from anorexia through nausea to vomiting. The aim of this study was to investigate the influence of high altitude on plasma levels of gastroenteropancreatic (GEP peptides and their association to AMS symptoms. Plasma levels of 6 GEP peptides were measured by radioimmunoassay in 11 subjects at 490 m (Munich, Germany and, after rapid passive ascent to 3454 m (Jungfraujoch, Switzerland, over the course of three days. In a second study (n = 5, the same peptides and ghrelin were measured in subjects who consumed standardized liquid meals at these two elevations. AMS symptoms and oxygen saturation were monitored. In the first study, both fasting (morning 8 a.m. and stimulated (evening 8 p.m. plasma levels of pancreatic polypeptide (PP and cholecystokinin (CCK were significantly lower at high altitude as compared to baseline, whereas gastrin and motilin concentrations were significantly increased. Fasting plasma neurotensin was significantly enhanced whereas stimulated levels were reduced. Both fasting and stimulated plasma motilin levels correlated with gastrointestinal symptom severity (r = 0.294, p = 0.05, and r = 0.41, p = 0.006, respectively. Mean O(2-saturation dropped from 96% to 88% at high altitude. In the second study, meal-stimulated integrated (= area under curve plasma CCK, PP, and neurotensin values were significantly suppressed at high altitude, whereas integrated levels of gastrin were increased and integrated VIP and ghrelin levels were unchanged. In summary, our data show that acute exposure to a hypobaric hypoxic environment causes significant changes in fasting and stimulated plasma levels of GEP peptides over consecutive days and after a standardized meal. The changes of peptide levels were not uniform. Based on the inhibition of PP and neurotensin release a reduction of the cholinergic tone can be postulated.

  12. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  13. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    OpenAIRE

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured mig...

  14. Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain Sickness

    OpenAIRE

    Villafuerte, Francisco C.; Macarlupú, José Luis; Anza-Ramírez, Cecilia; Corrales-Melgar, Daniela; Vizcardo-Galindo, Gustavo; Corante, Noemí; León-Velarde, Fabiola

    2014-01-01

    Excessive erythrocytosis (EE) is the hallmark of chronic mountain sickness (CMS), a prevalent syndrome in high-altitude Andean populations. Although hypoxemia represents its underlying stimulus, why some individuals develop EE despite having altitude-normal blood erythropoietin (Epo) concentration is still unclear. A soluble form of the Epo receptor (sEpoR) has been identified in human blood and competes directly for Epo with its membrane counterpart (mEpoR). Thus, reduced levels of circulati...

  15. On the HEMP (high-altitude electromagnetic pulse) environment for protective relays

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.E.; Wiggins, C.M.; Salas, T.M. (BDM International, Inc., Albuquerque, NM (USA)); Barnes, P.R. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    An assessment of the transient environment for protective relays produced by high-altitude electromagnetic pulse (HEMP) events is presented in this paper. Several mechanisms for coupling of HEMP to relay terminals are used to develop estimates of possible HEMP threats to relays. These predicted relay responses to HEMP events are compared to measured data on a solid state based relay's impulse strength. 12 refs., 13 figs., 3 tabs.

  16. Placental villus morphology in relation to maternal hypoxia at high altitude.

    Science.gov (United States)

    Espinoza, J; Sebire, N J; McAuliffe, F; Krampl, E; Nicolaides, K H

    2001-07-01

    Pregnancy at high altitude is associated with maternal hypoxaemic hypoxia with resultant intervillus blood hypoxia. Maternal haemoglobin concentration and blood gases were measured in pregnant women in two cities in Peru; Lima at sea level (n=18) and Cerro de Pasco at 4300 metres above sea level (n=12). Following delivery, placental sections from both groups were examined histomorphometrically using an image analysis system. Villus diameter, villus cross-sectional area, capillary diameter, capillary cross-sectional area and the percentage of villus cross-sectional area occupied by villus capillaries were calculated and parameters were compared between the two altitude groups. Maternal haemoglobin concentration and maternal blood pH were significantly higher, and maternal pO(2), pCO(2)and O(2)saturation were significantly lower in the high altitude group compared to those at sea level. The villus vessel area as a percentage of villus cross-sectional area and capillary diameter were significantly greater in the cases from the high altitude group and villus vessel area as a percentage of the villus cross-sectional area was significantly related to maternal pO(2)(r=-0.7, P=0.01), and maternal pCO(2)(r=0.7, P=0.02), but multiple regression analysis demonstrated that only pO(2)remained significantly independently associated with these villus histological findings (P=0.03). Placental terminal villi from term pregnancies at high altitude show different morphological features from pregnancies at sea level, and these changes are primarily related to maternal pO(2). The predominant morphological alteration is an increase in villus capillary diameter and therefore of the proportion of villus cross-sectional area occupied by capillary lumens.

  17. Interplanetary dust particles, not wind blown dust, control high altitude ice clouds on Mars

    Science.gov (United States)

    Hartwick, Victoria; Toon, Owen B.

    2016-10-01

    Water ice clouds on Mars are commonly observed at high altitudes. However, current generation Mars three-dimensional general circulation models (GCM) struggle to reproduce clouds above approximately 20-30 km. On Mars, as on Earth, ice cloud formation likely initiates by heterogeneous nucleation, which requires a population of suspended ice nuclei contiguous with supersaturated atmospheric water vapor. Although supersaturation is observed at high altitudes and has been reproduced in models, models predict very few ice nuclei. The small number of ice nuclei in the upper atmosphere is due to the assumption in Mars GCMs that the only source of ice nuclei is dust from the Martian surface. However, terrestrial mesospheric noctilucent clouds have been shown to form by ice nucleation on particles originating from ablated micrometeroids. Therefore, it is reasonable to assume that a population of micrometeoric ablation biproducts on Mars exists and can act as a site for cloud nucleation at high altitudes. We present simulations using the Community Atmosphere Model for Mars (MarsCAM) based on the National Center for Atmospheric Research (NCAR) Community Atmosphere Model for Earth,coupled with a physically based, state-of-the-art cloud and dust physics model, the Community Aerosol and Radiation Model for Atmospheres (CARMA) to show that ablating micrometeoroids can yield abundant ice nuclei throughout the upper atmosphere of Mars. We find that simulations including a constant annual micrometeoroid flux allows us to reproduce the observed properties of high altitude water ice clouds including vertical distribution and particle size. In general, effective radius decreases with increasing altitude. We have additionally explored the impact of variable ablation rates. Preliminary results suggest that relatively high ablation rates, near or greater than 50%, are required to reproduce observed cloud features.

  18. Emission characteristics of a heavy-duty diesel engine at simulated high altitudes.

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Liu, Zhihua; Wang, Chu; Yu, Linxiao; Ding, Yan

    2011-08-01

    In order to evaluate the effects of altitude on the pollutant emissions of a diesel engine, an experimental research was carried out using an engine test bench with an altitude simulation system. The emissions of HC, CO, NOx, smoke, and particle number of a heavy-duty diesel engine were measured under steady state operating conditions at sea level and simulated altitudes of 1000 and 2000 m. The experimental results indicate that the high altitude increases the emissions of HC, CO and smoke of the diesel engine, the average increasing rates of which are 30%, 35% and 34% with addition of altitude of 1000 m, respectively. The effect of high altitudes on the NOx emission varies with the engine types and working conditions. At 1000 m the particles number emissions are 1.6 to 4.2 times the levels at the low altitude. The pattern of the particle size distributions at 1000 m is similar with that at sea-level, which is the mono-modal lognormal distribution with geometric mean diameter around 0.1 μm. However, the peak number concentrations of particles are bigger and the exhausted particles are smaller at the high altitude.

  19. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  20. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.

    Science.gov (United States)

    Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2016-02-23

    Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems.

  1. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption.

    Science.gov (United States)

    Hu, Quanjun; Ma, Tao; Wang, Kun; Xu, Ting; Liu, Jianquan; Qiu, Qiang

    2012-11-07

    The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  2. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    Science.gov (United States)

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. Copyright © 2015 the American Physiological Society.

  3. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Directory of Open Access Journals (Sweden)

    Jinchuan Xing

    Full Text Available Deedu (DU Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR, neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1, as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG. Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1 shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  4. Changes in body fluid compartments on re-induction to high altitude and effect of diuretics

    Science.gov (United States)

    Singh, M. V.; Rawal, S. B.; Tyagi, A. K.; Bhagat, Maj J. K.; Parshad, R.; Divekar, H. M.

    1988-03-01

    Studies were carried out in 29 healthy young adults in the Indian Army stationed in the plains and posted at an elevation of 3500 m for more than 6 months. After exposure to a low elevation in Delhi (260 m) for 3 weeks they were reinduced to a height of 3500 m. The subjects were divided into three groups, each of which was treated with either placebo or acetazolamide or spironolactone. The drug treatment was started immediately after their landing at high altitude and continued for 2 days only. Total body water, extracellular fluid, intracellular fluid, plasma volume, blood pH, PaO2, PaCO2 and blood viscosity were determined on exposure at Delhi and on re-induction to high altitude. Plasma volume was increased after the descent from high altitude and remained high for up to 21 day's study. This increased plasma volume may have some significance in the pathogenesis of pulmonary oedema. Total body water and intracellular fluid content were increased at 260 m elevation, while extracellular fluid decreased. On re-induction there was a decrease in total body water with no change in the extracellular fluid content.

  5. Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

    Science.gov (United States)

    Lee, Jaewon; Park, Inchun; Kim, Junsik; Lee, Jaejin; Hwang, Junga; Kim, Young-chul

    2014-03-01

    This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a highaltitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of 15.27 mSv) of aircrew at the high-altitude are an order of magnitude larger than those (an average of 0.30 mSv) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC- 800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.

  6. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption

    Directory of Open Access Journals (Sweden)

    Hu Quanjun

    2012-11-01

    Full Text Available Abstract Background The yak (Bos grunniens is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  7. On the Survival of High-Altitude Open Clusters within the Milky Way Galaxy Tides

    CERN Document Server

    Martinez-Medina, L A; Peimbert, A; Moreno, E

    2016-01-01

    It is a common assumption that high-altitude open clusters live longer compared with clusters moving close to the Galactic plane. This is because at high altitudes, open clusters are far from the disruptive effects of in-plane substructures, such as spiral arms, molecular clouds and the bar. However, an important aspect to consider in this scenario is that orbits of high-altitude open clusters will eventually cross the Galactic plane, where the vertical tidal field of the disk is strong. In this work we simulate the interaction of open clusters with the tidal field of a detailed Milky Way Galactic model at different average altitudes and galactocentric radii. We find that the life expectancy of clusters decreases as the maximum orbital altitude increases and reaches a minimum at altitudes of approximately 600 pc. Clusters near the Galactic plane live longer because they do not experience strong vertical tidal shocks from the Galactic disk; then, for orbital altitudes higher than 600 pc, clusters start again t...

  8. A GIS-aided response model of high-altitude permafrost to global change

    Institute of Scientific and Technical Information of China (English)

    李新; 程国栋

    1999-01-01

    Two models are used to simulate the high-altitude permafrost distribution on the Qinghai-Xizang Plateau. The two models are the "altitude model", a Gaussian distribution function used to describe the latitudinal zonation of permafrost based on the three-dimensional rules of high-altitude permafrost, and the "frost number model", a dimensionless ratio defined by manipulation of freezing and thawing degree-day sums. The results show that the "altitude model" can simulate the high-altitude permafrost distribution under present climate conditions accurately. Given the essential hypotheses and using the GCM scenarios from HADCM2, the "altitude model" is used for predicting the permafrost distribution change on the Qinghai-Xizang Plateau. The results show that the permafrost on the plateau will not change significantly during 20—50 a, the percentage of the total disappeared area will not be over 19%. However, by the year 2099, if the air temperature increases by an average of 2.91℃ on the plateau, the decre

  9. Effect of high altitude on sensitivity to the taste of phenylthiocarbamide

    Science.gov (United States)

    Singh, S. B.; Chatterjee, A.; Panjwani, U.; Yadav, D. K.; Selvamurthy, W.; Sharma, K. N.

    Sensitivity to the taste of phenylthiocarbamide (PTC) was studied using the Harris-Kalmus method in healthy human volunteers at sea level and then subsequently at an altitude of 3500 m over a period of 3 weeks, after which they were brought back to sea level. Blood sugar, insulin and blood cortisol levels were estimated weekly. The results indicated that, out of 51 subjects studied, 26 (55%) were PTC tasters at sea level. Eight of those unable to taste PTC at sea level tested as tasters at high altitude, and 2 of them reverted to being non-tasters on return to sea level. In the blood, an increase in cortisol and blood insulin levels was seen without any significant change in sugar levels. All the changes recorded at high altitude tended to return to basal values after re-induction to sea level. The study suggests that high-altitude hypoxia in some way, possibly involving changes in hormonal profile among other factors, causes an alteration in sensitivity to the taste of PTC, resulting in some of the individuals shifting to lower PTC sensitivity.

  10. Flight Performance of an advanced CZT Imaging Detector in a Balloon-borne Wide-Field Hard X-ray Telescope - ProtoEXIST1

    CERN Document Server

    Hong, J; Grindlay, J; Barthelemy, S; Baker, R; Garson, A; Krawczynski, H; Apple, J; Cleveland, W H

    2011-01-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes. The CZT detector plane in ProtoEXIST1 consists of an 8 x 8 array of closely tiled 2 cm x 2 cm x 0.5 cm thick pixellated CZT crystals, each with 8 x 8 pixels, covering a 256 cm^2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30 - 600 keV band for imaging, allowing a fully coded field of view of 9 Deg x 9 Deg with an angular resolution of 20 arcmin. To reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. ...

  11. High altitude environmental monitoring: the SHARE project and CEOP-HE

    Science.gov (United States)

    Tartari, G.

    2009-04-01

    Mountain areas above 2,500 m a.s.l. constitute about 25% of the Earth's surface and play a fundamental role in the global water balance, while influencing global climate and atmospheric circulation systems. Several millions, including lowlanders, are directly affected by the impacts of climate change on glaciers and water resource distribution. Mountains and high altitude plateaus are subject to the highest rate of temperature increase (e.g., Tibetan Plateau) and are recognized as particularly vulnerable to the effects of climate change. In spite of this, the number of permanent monitoring sites in the major environmental networks decreases with altitude. On a sample of two hundred high altitude automatic weather stations located above 2,500 m a.s.l., less than 20% are over 4,000 m, while there are only 24 stations in the world that could be considered "complete" high altitude observatories. Furthermore, entire mountain areas are left uncovered, creating significant data gaps which make reliable modelling and forecasting nearly impossible. In response to these problems, Ev-K2-CNR has developed the project SHARE (Stations at High Altitude for Research on the Environment) with the support of the Italian government and in collaboration with UNEP. This integrated environmental monitoring and research project aims to improve knowledge on the local, regional and global consequences of climate change in mountain regions and on the influence of high elevations on climate, atmospheric circulation and hydrology. SHARE today boasts a network of 13 permanent monitoring stations between 2,165 m and 8,000 m. Affiliated researchers have produced over 150 scientific publications in atmospheric sciences, meteorology and climate, glaciology, limnology and paleolimnology and geophysics. SHARE network data is also contributed to international programs (UNEP-ABC, WMO-GAW, WCRP-GEWEX-CEOP, NASA-AERONET, ILTER, EU-EUSAAR, EU-ACCENT). Within this context, the CEOP-High Elevations (CEOP

  12. Cerebrovascular responses to hypoxia and hypocapnia in high-altitude dwellers.

    Science.gov (United States)

    Norcliffe, L J; Rivera-Ch, M; Claydon, V E; Moore, J P; Leon-Velarde, F; Appenzeller, O; Hainsworth, R

    2005-07-01

    Cerebral blood flow is known to increase in response to hypoxia and to decrease with hypocapnia. It is not known, however, whether these responses are altered in high-altitude dwellers who are not only chronically hypoxic and hypocapnic, but also polycythaemic. Here we examined cerebral blood flow responses to hypoxia and hypocapnia, separately and together, in Andean high-altitude dwellers, including some with chronic mountain sickness (CMS), which is characterized by excessive polycythaemia. Studies were carried out at high altitude (Cerro de Pasco (CP), Peru; barometric pressure (P(B)) 450 mmHg) and repeated, following relief of the hypoxia, on the day following arrival at sea level (Lima, Peru; P(B) 755 mmHg). We compared these results with those from eight sea-level residents studied at sea level. In nine high-altitude normal subjects (HA) and nine CMS patients, we recorded middle cerebral artery mean blood flow velocity (MCAVm) using transcranial Doppler ultrasonography, and expressed responses as changes from baseline. MCAVm responses to hypoxia were determined by changing end-tidal partial pressure of oxygen (P(ET,O2)) from 100 to 50 mmHg, with end-tidal partial pressure of carbon dioxide clamped. MCAVm responses to hypocapnia were studied by voluntary hyperventilation with (P(ET,O2)) clamped at 100 and 50 mmHg. There were no significant differences between the cerebrovascular responses of the two groups to any of the interventions at either location. In both groups, the MCAVm responses to hypoxia were significantly greater at Lima than at CP (HA, 12.1 +/- 1.3 and 6.1 +/- 1.0%; CMS, 12.5 +/- 0.8 and 5.6 +/- 1.2%; P < 0.01 both groups). The responses at Lima were similar to those in the sea-level subjects (13.6 +/- 2.3%). The responses to normoxic hypocapnia in the altitude subjects were also similar at both locations and greater than those in sea-level residents. During hypoxia, both high-altitude groups showed responses to hypocapnia that were

  13. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  14. The balloon-borne electron telescope with scintillating fibers (BETS)

    CERN Document Server

    Torii, S; Tateyama, N; Yoshida, K; Ouchi, Y; Yamagami, T; Saitô, Y; Murakami, H; Kobayashi, T; Komori, Y; Kasahara, K; Yuda, T; Nishimura, J

    2000-01-01

    we describe a new detector system developed for high-altitude balloon flights to observe the cosmic-ray electrons above 10 GeV. The balloon borne electron telescope with Scintillating (BETS) fibers instrument is an imaging calorimeter which is capable of selecting electrons against the large background of protons. The calorimeter is composed of a sandwich of scintillating optical-fiber belts and lead plates with a combination of three plastic scintillators for the shower trigger. The total thickness of lead is 40 mm (~7.1 r.l.) and the number of fiber belts is nine. In each belt, alternating layers are oriented in orthogonal (x and y) directions. Two sets of an intensified CCD camera are adopted for read-out of the scintillating fibers in the x and y direction, respectively. The accelerator beam tests were carried out to study the performance of detector for electrons in 1996 and for protons in 1997 at CERN-SPS. The instrument was successfully flown aboard high-altitude balloon in 1997 and 1998. It is demonst...

  15. 高海拔型风电机组近况调研%A Survey on Current Development of High Altitude Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    赵靓

    2013-01-01

      随着风电整机市场发展渐趋成熟,通过利用优良风资源发电的风电机组和项目市场渐趋饱和,与之相反的是,诸如运用于海上、低风速、高海拔等细分风电市场的机组需求有所增加,其中,不少厂家推出了适应于高海拔地区的风电机组产品。%As the market of wind power equipment is getting mature, wind turbines which take advantages of good wind resources and projects are near capacity. In contrast, the demand of wind turbines used on offshore, high altitude and low wind speed areas is increasing.Terefore, a number of manufacturers launched adaptation to high altitude wind turbines products.

  16. 基于TOPSIS的战区高层反导威胁评估%Threat Assessment of the High Altitude Area Ballistic Missile Defense Based on TOPSIS

    Institute of Scientific and Technical Information of China (English)

    范学渊; 邢清华; 黄沛; 王小光

    2012-01-01

    Firstly, the characteristics of the high altitude area ballistic missile defense' s threat assessment are analyzed. Then the threat assessment's model index system is set up and quantitated, such as launch position of tactical ballistic missile (TBM) , forecasting impact point, range and so on. Finally, the theory of technique for order preference by similarity to idea solution (TOPSIS) based on weight of entropy is used to compute the model. The result shows that the threat assessment' s model and the algorithm is effective and useful for developing the battle manage of the high altitude area ballistic missile defense ' s.%在分析战区高层反导威胁评估特点的基础上,建立了以来袭TBM发射点、预测落点、射程等为核心的战区高层反导威胁评估模型指标体系并进行了相应的量化,然后利用基于熵值权重确定的TOPSIS理论对模型进行求解.通过实例证明所提出的战区高层反导威胁评估模型和算法的有效性,对研究美军的战区高层反导武器系统具有一定的借鉴意义.

  17. Reflections on the VI World Congress of Mountain Medicine and High-Altitude Physiology in Xining and Lhasa, August 2004

    Institute of Scientific and Technical Information of China (English)

    John B. West

    2005-01-01

    @@ The VI World Congress of Mountain Medicine and High-Altitude Physiology in Xining and Lhasa which was held in August 2004 was a landmark event in the burgeoning area of high-altitude life studies. These congresses have taken place every two years, often in exotic venues, and always related to geographical areas of interest in high-altitude medicine. The first five high congresses were held in La Paz, Bolivia; Cusco, Peru; Matsumoto, Japan; Arica, Chile; and Barcelona, Spain. As can be seen from these venues, the previous congresses were located near the South American Andes, the Japanese Alps, and the European Pyrenees and Alps.

  18. Protective effects of Astragalus-Lilygranules on intestinal mucosal barrier of mice in high altitude hypoxia

    Directory of Open Access Journals (Sweden)

    Ling LI

    2016-10-01

    Full Text Available Objective  To investigate the protective effect of Astragalus-Lily Granules on intestinal mucosa and intestinal flora homeostasis in mice under high altitude hypoxia condition. Methods  We put mice into high altitude hypoxia cabin to establish high altitude hypoxia model mice. Sixty Kunming mice were randomly divided into control group, model group, Astragalus-Lily particles (ALP low, medium and high dose groups [1.75, 3.5, 7g/(kg•d] respectively. After three days of routine feeding, the ALP mice received drug by intragastric administration, once a day for continuous 17 days,control group and model group were given double distilled water in same volume. From the 15th day, all the mice but control group were exposed to simulated high altitude hypoxia condition for 3 days in a high altitude hypoxia cabin after they were gavaged for half an hour daily. By the 18th day, the fresh mouse feces were collected and smeared to observe the changes of microflora. The pathological changes of intestinal tissues were observed by HE staining and the expression of HIF-1αprotein in intestines was detected by immunohistochemistry. Results  The enterococci and gram negative bacteria showed a higher proportion (65.2%±2.4% and 56.7%±3.3%, respectively in the model group compared with the control group (24.7%±1.2%, 23.2%±1.5%, respectively, P<0.05. The pathological score of intestinal mucosal necrosis and edema (3.10±0.99, 3.30±0.67 respectively and inflammatory cell count (15.93±3.30, 16.40±3.97/ HP respectively was higher compared with the model group (0.70±0.67, 0.80±0.78; 4.07±2.12, 4.28±2.16/HP respectively; P<0.05. HIF-1αexpression increased significantly compared with the model group (P<0.05. The enterococci (46.7%±2.0%, 32.0%±2.6% respectively and gram negative bacteria rate (34.2%±1.6%, 38.0%±2.8% respectively in the ALP medium and high dose groups were lower compared with the model group (24.7%±1.2%, 23.2%±1.5% respectively, P<0

  19. Characteristics and drivers of high-altitude ladybird flight: insights from vertical-looking entomological radar.

    Directory of Open Access Journals (Sweden)

    Daniel L Jeffries

    Full Text Available Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends and drivers (aphid abundance, air temperature, wind speed and rainfall of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis. These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a "typical" high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude

  20. Exercise at simulated high altitude facilitates the increase in capillarity in skeletal muscle of rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the changes in capillarity of skeletal muscle during acclimation to high altitude, and explore the effects of a certain extent physical activity under hypoxia on capillary formation and the role of vascular endothelial growth factor (VEGF) in this process. METHODS: 48 Wistar rats were divided into 3 groups: Ⅰ normoxic control; Ⅱ hypoxia and Ⅲ hypoxia+exercise. Rats of Ⅱ and Ⅲ groups were subjected to hypobaric hypoxia for 5 weeks (23 h/d). They were first brought to simulated 4 000 m altitude, where rats of the Ⅲgroup were forced to swim for 1 h/d (6 d/week). Then the animals were ascent to 5 000 m. Biomicrosphere method was used to determine blood flow of skeletal muscle. The mean fiber cross-sectional area (FCSA), capillary density (CD) and capillary/fiber ratio (C/F) of red portion of the lateral head of the gastrocneminus were assayed by myofibrillar ATPase histochemistry. VEGF and its receptor KDR were assayed with immunohistochemistry method.RESULTS: By comparison with the normoxic control, 5-week hypoxic exposure resulted in a decrease in cross-sectional area of skeletal muscle fiber and an increase in CD, but the C/F remained unchanged. The blood supply to the gastrocnemius was not changed. After 5-week-exercise at high altitude, the muscle fibers did not undergo atrophy. CD, C/F, and the blood flow at rest increased significantly. VEGF protein was found primarily in the matrix between muscle fibers; KDR were shown mainly in endothelial cells of capillary. VEGF was more strongly stained in the skeletal muscle of hypoxia-exercise rats.CONCLUSION: Hypoxia itself can not induce neovascularization. While exercise during hypoxic exposure can lead to capillary formation. VEGF and KDR may play roles in it. New capillary formation benefits the blood supply, oxygen delivery and working performance at high altitude.

  1. Cerebral autoregulation in subjects adapted and not adapted to high altitude.

    Science.gov (United States)

    Jansen, G F; Krins, A; Basnyat, B; Bosch, A; Odoom, J A

    2000-10-01

    Impaired cerebral autoregulation (CA) from high-altitude hypoxia may cause high-altitude cerebral edema in newcomers to a higher altitude. Furthermore, it is assumed that high-altitude natives have preserved CA. However, cerebral autoregulation has not been studied at altitude. We studied CA in 10 subjects at sea level and in 9 Sherpas and 10 newcomers at an altitude of 4243 m by evaluating the effect of an increase of mean arterial blood pressure (MABP) with phenylephrine infusion on the blood flow velocity in the middle cerebral artery (Vmca), using transcranial Doppler. Theoretically, no change of Vmca in response to an increase in MABP would imply perfect autoregulation. Complete loss of autoregulation is present if Vmca changes proportionally with changes of MABP. In the sea-level group, at a relative MABP increase of 23+/-4% during phenylephrine infusion, relative Vmca did not change essentially from baseline Vmca (2+/-7%, P=0.36), which indicated intact autoregulation. In the Sherpa group, at a relative MABP increase of 29+/-7%, there was a uniform and significant increase of Vmca of 24+/-9% (P<0.0001) from baseline Vmca, which indicated loss of autoregulation. The newcomers showed large variations of Vmca in response to a relative MABP increase of 21+/-6%. Five subjects showed increases of Vmca of 22% to 35%, and 2 subjects showed decreases of Vmca of 21% and 23%. All Sherpas and the majority of the newcomers showed impaired CA. It indicates that an intact autoregulatory response to changes in blood pressure is probably not a hallmark of the normal human cerebral vasculature at altitude and that impaired CA does not play a major role in the occurrence of cerebral edema in newcomers to the altitude.

  2. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  3. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?

    Science.gov (United States)

    Storz, Jay F

    2016-10-15

    In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates. © 2016. Published by The Company of Biologists Ltd.

  4. High altitude airship configuration and power technology and method for operation of same

    Science.gov (United States)

    Choi, Sang H. (Inventor); Elliott, Jr., James R. (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Chu, Sang-Hyon (Inventor)

    2011-01-01

    A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.

  5. Ozone Exposure System Designed and Used to High-Altitude Airship Materials

    Science.gov (United States)

    Miller, Sharon K.

    2005-01-01

    High-altitude airships can receive high doses of ozone over short mission durations. For example, in 1 year at an altitude of 70,000 ft, the ozone fluence (number arriving per unit area) can be as high as 1.2 1024 molecules/sq cm. Ozone exposure at these levels can embrittle materials or change the performance of solar cells. It is important to expose components and materials to the expected ozone dosage to determine if the ozone exposure could cause any mission-critical failures.

  6. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude

    Directory of Open Access Journals (Sweden)

    Stacie L. Wing-Gaia

    2014-02-01

    Full Text Available Exposure to extreme altitude presents many physiological challenges. In addition to impaired physical and cognitive function, energy imbalance invariably occurs resulting in weight loss and body composition changes. Weight loss, and in particular, loss of fat free mass, combined with the inherent risks associated with extreme environments presents potential performance, safety, and health risks for those working, recreating, or conducting military operations at extreme altitude. In this review, contributors to muscle wasting at altitude are highlighted with special emphasis on protein turnover. The article will conclude with nutritional strategies that may potentially attenuate loss of fat free mass during high altitude exposure.

  7. Gravity waves and high-altitude CO$_2$ ice cloud formation in the Martian atmosphere

    CERN Document Server

    Yiğit, Erdal; Hartogh, Paul

    2015-01-01

    We present the first general circulation model simulations that quantify and reproduce patches of extremely cold air required for CO$_2$ condensation and cloud formation in the Martian mesosphere. They are created by subgrid-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral parameterization. Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good agreement with observations of high-altitude CO$_2$ ice clouds. Our study confirms the key role of GWs in facilitating CO$_2$ cloud formation, discusses their tidal modulation, and predicts clouds at altitudes higher than have been observed to date.

  8. Effect of surface catalycity on high-altitude aerothermodynamics of reentry vehicles

    Science.gov (United States)

    Molchanova, A. N.; Kashkovsky, A. V.; Bondar, Ye. A.

    2016-10-01

    This work is aimed at the development of surface chemistry models for the Direct Simulation Monte Carlo (DSMC) method applicable to non-equilibrium high-temperature flows about reentry vehicles. Probabilities of the surface processes dependent on individual properties of each particular molecule are determined from the macroscopic reaction rate data. Two different macroscopic finite rate sets are used for construction of DSMC surface recombination models. The models are implemented in the SMILE++ software system for DSMC computations. A comparison with available experimental data is performed. Effects of surface recombination on the aerothermodynamics of a blunt body at high-altitude reentry conditions are numerically studied with the DSMC method.

  9. Measuring TeV cosmic rays at the High Altitude Water Cherenkov Observatory

    OpenAIRE

    BenZvi Segev

    2015-01-01

    The High-Altitude Water Cherenkov Observatory, or HAWC, is an air shower array designed to observe cosmic rays and gamma rays between 100 GeV and 100 TeV. HAWC, located between the peaks Sierra Negra and Pico de Orizaba in central Mexico, will be completed in the spring of 2015. However, the observatory has been collecting data in a partial configuration since mid-2013. With only part of the final array in data acquisition, HAWC has already accumulated a data set of nearly 100 billion air sho...

  10. NUCLEOTIDE COMPARISON OF GDF9 GENE IN INDIAN YAK AND GADDI GOAT: HIGH ALTITUDE LIVESTOCK ANIMALS

    Directory of Open Access Journals (Sweden)

    Lakshya Veer Singh

    2013-06-01

    Full Text Available The present study was undertaken to characterize exon 1 and exon 2 sequence of one of fecundity genes: GDF9 (Growth differentiation factor 9, in high altitude livestock animal (Yak and Gaddi goat. Six nucleotide differences were identified between sheep (AF078545 and goats (EF446168 in exon 1 and exon 2. Sequencing revealed nine novel single nucleotide mutations in exon 1 and exon 2 of Indian yak that compared with Bos taurus (GQ922451. These results preliminarily showed that the GDF9 gene might be a major gene that influences prolificacy of Gaddi goats and Indian yak.

  11. Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland

    Science.gov (United States)

    Okumiya, Kiyohito; Sakamoto, Ryota; Ishimoto, Yasuko; Kimura, Yumi; Fukutomi, Eriko; Ishikawa, Motonao; Suwa, Kuniaki; Imai, Hissei; Chen, Wenling; Kato, Emiko; Nakatsuka, Masahiro; Kasahara, Yoriko; Fujisawa, Michiko; Wada, Taizo; Wang, Hongxin; Dai, Qingxiang; Xu, Huining; Qiao, Haisheng; Ge, Ri-Li; Norboo, Tsering; Tsering, Norboo; Kosaka, Yasuyuki; Nose, Mitsuhiro; Yamaguchi, Takayoshi; Tsukihara, Toshihiro; Ando, Kazuo; Inamura, Tetsuya; Takeda, Shinya; Ishine, Masayuki; Otsuka, Kuniaki; Matsubayashi, Kozo

    2016-01-01

    Objectives To clarify the association between glucose intolerance and high altitudes (2900–4800 m) in a hypoxic environment in Tibetan highlanders and to verify the hypothesis that high altitude dwelling increases vulnerability to diabetes mellitus (DM) accelerated by lifestyle change or ageing. Design Cross-sectional epidemiological study on Tibetan highlanders. Participants We enrolled 1258 participants aged 40–87 years. The rural population comprised farmers in Domkhar (altitude 2900–3800 m) and nomads in Haiyan (3000–3100 m), Ryuho (4400 m) and Changthang (4300–4800 m). Urban area participants were from Leh (3300 m) and Jiegu (3700 m). Main outcome measure Participants were classified into six glucose tolerance-based groups: DM, intermediate hyperglycaemia (IHG), normoglycaemia (NG), fasting DM, fasting IHG and fasting NG. Prevalence of glucose intolerance was compared in farmers, nomads and urban dwellers. Effects of dwelling at high altitude or hypoxia on glucose intolerance were analysed with the confounding factors of age, sex, obesity, lipids, haemoglobin, hypertension and lifestyle, using multiple logistic regression. Results The prevalence of DM (fasting DM)/IHG (fasting IHG) was 8.9% (6.5%)/25.1% (12.7%), respectively, in all participants. This prevalence was higher in urban dwellers (9.5% (7.1%)/28.5% (11.7%)) and in farmers (8.5% (6.1%)/28.5% (18.3%)) compared with nomads (8.2% (5.7%)/15.7% (9.7%)) (p=0.0140/0.0001). Dwelling at high altitude was significantly associated with fasting IHG+fasting DM/fasting DM (ORs for >4500 and 3500–4499 m were 3.59/4.36 and 2.07/1.76 vs 3500 m play a major role in the high prevalence of glucose intolerance in highlanders. Tibetan highlanders may be vulnerable to glucose intolerance, with polycythaemia as a sign of poor hypoxic adaptation, accelerated by lifestyle change and ageing. PMID:26908520

  12. Incidence and possible causes of dental pain during simulated high altitude flights.

    Science.gov (United States)

    Kollmann, W

    1993-03-01

    Of 11,617 personnel participating in simulated high altitude flights up to 43,000 feet, only 30 (0.26%) complained of toothache (barodontalgia). The cause of the barodontalgia in 28 episodes of pain in 25 of these subjects was investigated. Chronic pulpitis was suspected as the cause in 22 cases and maxillary sinusitis in 2. No pathosis was detected in the other four. In 10 cases in which the pulpitis was treated by root filling or replacing a deep filling, subsequent exposure to low pressure caused no pain.

  13. The molecular basis of convergence in hemoglobin function in high-altitude Andean birds

    DEFF Research Database (Denmark)

    Storz, Jay; Natarajan, Chandrasekhar; Witt, Christopher C.

    2016-01-01

    was correct that adaptive modifications of Hb function are typically attributable to a small number of substitutions at key positions, then the clear prediction is that the same mutations will be preferentially fixed in different species that have independently evolved Hbs with similar functional properties....... For example, in high-altitude ertebrates that have convergently evolved elevated Hb-O2 affinities, Perutz’s hypothesis predicts that parallel amino acid substitutions should be pervasive. We investigated the predictability of genetic adaptation by examining the molecular basis of convergence in hemoglobin (Hb...

  14. Analysis of High-altitude Syndrome and the Underlying Gene Polymorphisms Associated with Acute Mountain Sickness after a Rapid Ascent to High-altitude

    Science.gov (United States)

    Yu, Jie; Zeng, Ying; Chen, Guozhu; Bian, Shizhu; Qiu, Youzhu; Liu, Xi; Xu, Baida; Song, Pan; Zhang, Jihang; Qin, Jun; Huang, Lan

    2016-12-01

    To investigated the objective indicators and potential genotypes for acute mountain sickness (AMS). 176 male subjects were evaluated for symptoms scores and physiological parameters at 3700 m. EPAS1 gene polymorphisms were explored and verified effects of potential genotypes on pulmonary function by inhaled budesonide. The incidence of AMS was 53.98% (95/176). The individuals who suffered from headache with anxiety and greater changes in heart rate (HR), the forced vital capacity (FVC), and mean flow velocity of basilar artery (Vm-BA), all of which were likely to develop AMS. The rs4953348 polymorphism of EPAS1 gene had a significant correlation with the SaO2 level and AMS, and a significant difference in the AG and GG genotype distribution between the AMS and non-AMS groups. The spirometric parameters were significantly lower, but HR (P = 0.036) and Vm-BA (P = 0.042) significantly higher in the AMS subjects with the G allele than those with the A allele. In summary, changes in HR (≥82 beats/min), FVC (≤4.2 Lt) and Vm-BA (≥43 cm/s) levels may serve as predictors for diagnosing AMS accompanied by high-altitude syndrome. The A allele of rs4953348 is a protective factor for AMS through HR and Vm-BA compensation, while the G allele may contribute to hypoxic pulmonary hypertension in AMS.

  15. Balloon-borne observations of mid-latitude hydrofluoric acid

    Science.gov (United States)

    Sen, B.; Toon, G. C.; Blavier, J.-F.; Szeto, J. T.; Fleming, E. L.; Jackman, C. H.

    1995-01-01

    Measurements of stratospheric hydrofluoric acid (HF) have been made by the JPL MkIV interferometer during high-altitude balloon flights. Infrared solar absorption spectra were acquired near 35 deg N at altitudes between local tropopause and 38 km. Volume mixing ratio profiles of HF derived from 4 flights (1990-93), in conjunction with simultaneously observed N2O profiles, indicate an average rate of HF increase of (5.5 +/- 0.3)% per year, in agreement with time-dependent, two-dimensional model simulations (6% per year) and ATMOS measurements.

  16. Response to Comments on “High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition”

    Directory of Open Access Journals (Sweden)

    Whitlow, K. Scott

    2015-10-01

    Full Text Available We appreciate the letter to the editor and are pleased to respond regarding our recent case study regarding high altitude pulmonary edema in an experienced mountaineer. The letter raises some valid questions regarding our treatment decisions.

  17. Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians.

    Science.gov (United States)

    Yang, Xinwang; Wang, Ying; Zhang, Yue; Lee, Wen-Hui; Zhang, Yun

    2016-01-27

    Elucidating the mechanisms of high-altitude adaptation is an important research area in modern biology. To date, however, knowledge has been limited to the genetic mechanisms of adaptation to the lower oxygen and temperature levels prevalent at high altitudes, with adaptation to UV radiation largely neglected. Furthermore, few proteomic or peptidomic analyses of these factors have been performed. In this study, the molecular adaptation of high-altitude Odorrana andersonii and cavernicolous O. wuchuanensis to elevated UV radiation was investigated. Compared with O. wuchuanensis, O. andersonii exhibited greater diversity and free radical scavenging potentiality of skin antioxidant peptides to cope with UV radiation. This implied that O. andersonii evolved a much more complicated and powerful skin antioxidant peptide system to survive high-altitude UV levels. Our results provided valuable peptidomic clues for understanding the novel molecular basis for adaptation to high elevation habitats.

  18. The ICESat-2 Inland Water Height Data Product: Evaluation of Water Profiles Using High Altitude Photon Counting Lidar

    Science.gov (United States)

    Jasinski, M. F.; Stoll, J.; Cook, W. B.; Arp, C. D.; Birkett, C. M.; Brunt, K. M.; Harding, D. J.; Jones, B. M.; Markus, T.; Neumann, T.

    2015-12-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2), scheduled to launch in 2017, is a low energy, high repetition rate, short pulse width, 532 nm lidar. Although primarily designed for icecap and sea ice monitoring, ATLAS also will record dense observations over Pan-Arctic inland water bodies throughout its designed three year life span. These measurements will offer improved understanding of the linkages between climate variability and Arctic hydrology including closure of the Pan-Arctic water balance. An ICESat-2 Inland Water Body Height Data Product is being developed consisting of along-track water surface height, slope, and roughness for each ATLAS strong beam, and also aspect and slope between adjacent beams. The data product will be computed for all global inland water bodies that are traversed by ICESat-2 during clear to moderately clear atmospheric conditions. While the domain of the ATL13 data product is global, the focus is on high-latitude terrestrial regions where the convergence of the ICESat-2 orbits will provide spatially dense observations. Water bodies will be identified primarily through the use of an "Inland Water Body Shape Mask". In preparation for the mission, the Multiple Beam Altimeter Lidar Experimental Lidar (MABEL), was built and flown during numerous high altitude experiments, observing a wide range of water targets. The current analysis examines several MABEL inland and near coastal coastal targets during 2012 to 2015, focusing on along track surface water height, light penetration into water under a range of atmospheric and water conditions. Sites include several Alaska lakes, the Chesapeake Bay, and the near shore Atlantic coast. Results indicate very good capability for retrieving along track surface water height and standard deviation and penetration depth. Overall, the MABEL data and subsequent analyses have demonstrated the feasibility of the ATL13 algorithm for

  19. Quantification of optic disc edema during exposure to high altitude shows no correlation to acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    Gabriel Willmann

    Full Text Available BACKGROUND: The study aimed to quantify changes of the optic nerve head (ONH during exposure to high altitude and to assess a correlation with acute mountain sickness (AMS. This work is related to the Tuebingen High Altitude Ophthalmology (THAO study. METHODOLOGY/PRINCIPAL FINDINGS: A confocal scanning laser ophthalmoscope (cSLO, Heidelberg Retina Tomograph, HRT3® was used to quantify changes at the ONH in 18 healthy participants before, during and after rapid ascent to high altitude (4559 m. Slitlamp biomicroscopy was used for clinical optic disc evaluation; AMS was assessed with Lake Louise (LL and AMS-cerebral (AMS-c scores; oxygen saturation (SpO₂ and heart rate (HR were monitored. These parameters were used to correlate with changes at the ONH. After the first night spent at high altitude, incidence of AMS was 55% and presence of clinical optic disc edema (ODE 79%. Key stereometric parameters of the HRT3® used to describe ODE (mean retinal nerve fiber layer [RNFL] thickness, RNFL cross sectional area, optic disc rim volume and maximum contour elevation changed significantly at high altitude compared to baseline (p<0.05 and were consistent with clinically described ODE. All changes were reversible in all participants after descent. There was no significant correlation between parameters of ODE and AMS, SpO₂ or HR. CONCLUSIONS/SIGNIFICANCE: Exposure to high altitude leads to reversible ODE in the majority of healthy subjects. However, these changes did not correlate with AMS or basic physiologic parameters such as SpO₂ and HR. For the first time, a quantitative approach has been used to assess these changes during acute, non-acclimatized high altitude exposure. In conclusion, ODE presents a reaction of the body to high altitude exposure unrelated to AMS.

  20. Quantification of Optic Disc Edema during Exposure to High Altitude Shows No Correlation to Acute Mountain Sickness

    Science.gov (United States)

    Willmann, Gabriel; Fischer, M. Dominik; Schatz, Andreas; Schommer, Kai; Messias, Andre; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian

    2011-01-01

    Background The study aimed to quantify changes of the optic nerve head (ONH) during exposure to high altitude and to assess a correlation with acute mountain sickness (AMS). This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings A confocal scanning laser ophthalmoscope (cSLO, Heidelberg Retina Tomograph, HRT3®) was used to quantify changes at the ONH in 18 healthy participants before, during and after rapid ascent to high altitude (4559 m). Slitlamp biomicroscopy was used for clinical optic disc evaluation; AMS was assessed with Lake Louise (LL) and AMS-cerebral (AMS-c) scores; oxygen saturation (SpO2) and heart rate (HR) were monitored. These parameters were used to correlate with changes at the ONH. After the first night spent at high altitude, incidence of AMS was 55% and presence of clinical optic disc edema (ODE) 79%. Key stereometric parameters of the HRT3® used to describe ODE (mean retinal nerve fiber layer [RNFL] thickness, RNFL cross sectional area, optic disc rim volume and maximum contour elevation) changed significantly at high altitude compared to baseline (p<0.05) and were consistent with clinically described ODE. All changes were reversible in all participants after descent. There was no significant correlation between parameters of ODE and AMS, SpO2 or HR. Conclusions/Significance Exposure to high altitude leads to reversible ODE in the majority of healthy subjects. However, these changes did not correlate with AMS or basic physiologic parameters such as SpO2 and HR. For the first time, a quantitative approach has been used to assess these changes during acute, non-acclimatized high altitude exposure. In conclusion, ODE presents a reaction of the body to high altitude exposure unrelated to AMS. PMID:22069483

  1. Anatomical and hemodynamic evaluations of the heart and pulmonary arterial pressure in healthy children residing at high altitude in China

    Directory of Open Access Journals (Sweden)

    Hai-Ying Qi

    2015-06-01

    Conclusions: Children living at high altitude in China have significantly higher mPAP, dilated right heart and slower regression of right ventricular hypertrophy in the first 14 years of life. Systolic and diastolic functions of both ventricles were reduced with a paradoxically higher CI. There was no significant difference in these features between the Hans and the Tibetans. These values provide references for the care of healthy children and the sick ones with cardiopulmonary diseases at high altitude.

  2. Reduced oxygen due to high-altitude exposure relates to atrophy in motor-function brain areas.

    Science.gov (United States)

    Di Paola, M; Paola, M D; Bozzali, M; Fadda, L; Musicco, M; Sabatini, U; Caltagirone, C

    2008-10-01

    At high altitudes barometric pressure is reduced and, thus, less oxygen is inhaled. Reduced oxygen concentration in brain tissue can lead to cerebral damage and neurological and cognitive deficits. The present study was designed to explore the effects of high-altitude exposure using a quantitative MRI technique, voxel-based morphometry. We studied nine world-class mountain climbers before (baseline) and after (follow-up) an extremely high-altitude ascent of Everest and K2. We investigated the effects of repeated extremely high-altitude exposures by comparing mountain climbers' scans at baseline with scans of 19 controls. In addition, we measured the effects of a single extremely high-altitude expedition by comparing mountain climbers' scans at baseline and follow-up. A region of reduced white matter density/volume was found in the left pyramidal tract near the primary (BA 4) and supplementary (BA 6) motor cortex when mountain climbers at baseline were compared with controls. Further, when mountain climbers' scans before and after the expedition were compared, a region of reduced grey matter density/volume was found in the left angular gyrus (BA 39). These findings suggest that extremely high-altitude exposures may cause subtle white and grey matter changes that mainly affect brain regions involved in motor activity.

  3. The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHANG; Xingzhi HAN; Robert H S KRAUS; Le YANG; Liqing FAN; Yinzi YE; Yi TAO

    2016-01-01

    For species that have a broad geographic distribution, adaptive variation may be attributable to gene expression plasticity. Nanorana parkeri is an anuran endemic to the southern Tibetan Plateau where it has an extensive altitudinal range (2850 to 5100 m asl). Low oxygen concentration is one of the main environmental characteristics of the Tibetan Plateau. Hypoxia-inducible factor α subunits (HIF-1α and HIF-2α, encoded by Endothelial PAS domain protein 1 (EPAS1)) and associated genes (e.g., vascular endothelial growth factor (VEGF) and Erythropoietin (EPO)) play crucial roles in maintaining oxygen homeostasis. In this study, we compared the expression of HIF-1A, VEGF, EPAS1 and EPO mRNA between two populations of N. parkeri: one population inhabiting the native high altitudes, and the second living in, and being acclimated to, the lower plains (70 m asl). The expression of HIF-1A, VEGF and EPAS1 mRNA in the high altitude population were significantly higher than in the acclimated population, whereas there was no significant difference for EPO between two groups. Our results indicated that gene expression plasticity may make significant contributions to local adaptation of species that have broad altitudinal distributions. In addition, we deepen our understanding of the adaptive potential of this species by evaluating the experiments in the scope of its evolutionary history.

  4. Water level changes of high altitude lakes in Himalaya–Karakoram from ICESat altimetry

    Indian Academy of Sciences (India)

    Priyeshu Srivastava; Rakesh Bhambri; Prashant Kawishwar; D P Dobhal

    2013-12-01

    Himalaya–Karakoram (H–K) region hosts large number of high altitude lakes but are poorly gauged by in-situ water level monitoring method due to tough terrain conditions and poor accessibility. After the campaigns of ICESat during 2003–2009, now it is possible to achieve lake levels at decimetre accuracy. Therefore, in present study, high altitude lake levels were observed using ICESat/GLAS altimetry in H–K between 2003 and 2009 to generate baseline information. The study reveals that out of 13 lakes, 10 lakes show increasing trend of water levels at different rate (mean rate 0.173 m/y) whereas three lakes unveiled decreasing trend (mean rate −0.056 m/y). Out of five freshwater lakes, four lakes show an increasing trend of their level (mean rate 0.084 m/y) whereas comparatively six salt lakes (out of seven salt lakes) exhibited ∼3 times higher mean rate of lake level increase (0.233 m/y). These observed lake level rise can be attributed to the increased melt runoffs (i.e., seasonal snow and glacier melts) owing to the enhanced mean annual and seasonal air temperature during past decade in north-western (NW) Himalaya. Further, varied behaviours of lake level rises in inter- and intra-basins suggest that the local climatic fluctuations play prominent role along with regional and global climate in complex geographical system of NW Himalaya.

  5. Cooperative Scheduling of Imaging Observation Tasks for High-Altitude Airships Based on Propagation Algorithm

    Directory of Open Access Journals (Sweden)

    He Chuan

    2012-01-01

    Full Text Available The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA. Then, a novel swarm intelligence algorithm named propagation algorithm (PA is combined with the key node search algorithm (KNSA to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.

  6. Cooperative scheduling of imaging observation tasks for high-altitude airships based on propagation algorithm.

    Science.gov (United States)

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.

  7. Prehistoric Human Dispersal to the Tibetan Plateau and Adaptation to the High Altitude Environment

    Science.gov (United States)

    Zhang, Dongju; Dong, Guanghui; Chen, Fahu

    2016-04-01

    Human history of the Tibetan Plateau and human adaptation to the high altitude environment is hotly debated in the past decade among archaeological, anthropological, genetic, and even past climate change studies. Based on previous studies on the Tibetan Plateau and our own archaeological studies in northeastern Tibetan Plateau (NETP), we propose that human migrated to the Tibetan Plateau from the last Deglacial period to late Holocene mainly from North China via Yellow River valley and its tributary valleys in NETP. This migration is constituted of four stages (Upper Paleolithic, Epi-Paleolithic, Neolithic and Bronze Age) when human adapted to the high altitude environment and climate change with different strategies and techniques. Particularly, the prevail of microlithic technology in North China provoked hunter-gatherers' first visit to the NETP in relatively ameliorated last Deglacial period, and the quick development of millet farming and subsequent mixed barley-wheat farming and sheep herding facilitated farmers and herders permanently settled in NETP, even above 3000 masl, during mid- and late Holocene.

  8. The role of oxygen-increased respirator in humans ascending to high altitude

    Directory of Open Access Journals (Sweden)

    Shen Guanghao

    2012-08-01

    Full Text Available Abstract Background Acute mountain sickness (AMS is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. Methods Oxygen-increased respirator (OIR has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m; Group 3,4,5: 4000 m, 4700 m, 5380 m with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2, malondialdehyde (MDA, superoxide dismutase (SOD, blood lactate (BLA and PWC (physical work capacity -170. Results The results showed that higher SpO2, lower heart rate (except during exercise and better recovery of heart rate were observed from all the subjects ’with OIR’ compared with ’without OIR’ (P Conclusions We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.

  9. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawa, John Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  10. Association between Serum Interleukin-17A Level and High-Altitude Deacclimatization Syndrome

    Directory of Open Access Journals (Sweden)

    Binfeng He

    2016-01-01

    Full Text Available High-altitude deacclimatization syndrome (HADAS is emerging as a severe public health issue that threatens the quality of life of individuals who return to lower altitude from high altitude. In this study, we measured serum levels of SOD, MDA, IL-17A, IL-10, TNF-α, and HADAS score in HADAS subjects at baseline and 50th and 100th days and to evaluate the relationship between interleukins, including IL-17A, and HADAS. Our data showed that and the serum IL-17A levels and HADAS score decreased over time in the HADAS group, and serum IL-17A levels were significantly higher in the HADAS group at baseline and 50th day compared with controls (p<0.05. Furthermore, baseline serum levels of MDA and TNF-α were significantly higher, while SOD and IL-10 levels were lower in HADAS subjects compared with controls (p<0.05. It is interesting that serum levels of IL-17A were clearly interrelated with HADAS incidence and severity (p<0.05. ROC curve analysis showed that combined serum IL-17A and IL-10 levels were a better predictor of HADAS incidence than serum levels of IL-17A or IL-10 alone. These data suggest that serum levels of IL-17A are a novel predictive index of HADAS.

  11. A numerical optimization of high altitude testing facility for wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Bruce Ralphin Rose J

    2015-06-01

    Full Text Available High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A∗, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.

  12. MRI evidence: acute mountain sickness is not associated with cerebral edema formation during simulated high altitude.

    Science.gov (United States)

    Mairer, Klemens; Göbel, Markus; Defrancesco, Michaela; Wille, Maria; Messner, Hubert; Loizides, Alexander; Schocke, Michael; Burtscher, Martin

    2012-01-01

    Acute mountain sickness (AMS) is a common condition among non-acclimatized individuals ascending to high altitude. However, the underlying mechanisms causing the symptoms of AMS are still unknown. It has been suggested that AMS is a mild form of high-altitude cerebral edema both sharing a common pathophysiological mechanism. We hypothesized that brain swelling and consequently AMS development is more pronounced when subjects exercise in hypoxia compared to resting conditions. Twenty males were studied before and after an eight hour passive (PHE) and active (plus exercise) hypoxic exposure (AHE) (F(i)O(2) = 11.0%, P(i)O(2)∼80 mmHg). Cerebral edema formation was investigated with a 1.5 Tesla magnetic resonance scanner and analyzed by voxel based morphometry (VBM), AMS was assessed using the Lake Louise Score. During PHE and AHE AMS was diagnosed in 50% and 70% of participants, respectively (p>0.05). While PHE slightly increased gray and white matter volume and the apparent diffusion coefficient, these changes were clearly more pronounced during AHE but were unrelated to AMS. In conclusion, our findings indicate that rest and especially exercise in normobaric hypoxia are associated with accumulation of water in the extracellular space, however independent of AMS development. Thus, it is suggested that AMS and HACE do not share a common pathophysiological mechanism.

  13. Protective effect of ginkgolide B on high altitude cerebral edema of rats.

    Science.gov (United States)

    Botao, Yu; Ma, Jie; Xiao, Wenjing; Xiang, Qingyu; Fan, Kaihua; Hou, Jun; Wu, Juan; Jing, Weihua

    2013-03-01

    Ginkgolide B (GB) is one of the ginkgolides isolated from leaves of the Ginkgo biloba tree. The aim of this study was to investigate whether GB has a protective effect on high altitude cerebral edema (HACE) of rats. HACE was induced by hypobaric hypoxia exposure for 24 hours in an animal decompression chamber with the chamber pressure of 267 mmHg to simulate an altitude of 8000 m. Before the exposure, three doses (3, 6, and 12 mg·kg(-1)) of GB were given intraperitoneally (ip) daily for 3 days. Effects of GB on brain water content (BWC), activity of superoxide dismutase (SOD), concentration of glutathione (GSH) and malondialdehyde (MDA), expression of active caspase-3 and poly(ADP-ribose) polymerase (PARP) were measured. In GB pretreatment groups (6 and 12 mg·kg(-1), but not 3 mg·kg(-1)), BWC, the concentration of MDA, the expression of active caspase-3 and PARP were reduced significantly, while the activity of SOD and concentration of GSH were significantly increased. In conclusion, these results indicate that GB has a protective effect on cerebral edema caused by high altitude in rats. The protective effect of GB might be attributed to its antioxidant properties and suppression of the caspase-dependent apoptosis pathway.

  14. Ground-high altitude joint detection of ozone and nitrogen oxides in urban areas of Beijing

    Institute of Scientific and Technical Information of China (English)

    Pengfei Chen; Qiang Zhang; Jiannong Quan; Yang Gao; Delong Zhao; Junwang Meng

    2013-01-01

    Based on observational data of ozone (O3) and nitrogen oxide (NOx) mixing ratios on the ground and at high altitude in urban areas of Beijing during a period of six days in November 2011,the temporal and spatial characteristics of mixing ratios were analyzed.The major findings include:urban O3 mixing ratios are low and NOx mixing ratios are always high near the road in November.Vertical variations of the gases are significantly different in and above the planetary boundary layer.The mixing ratio of O3 is negatively correlated with that of NOx and they are positively correlated with air temperature,which is the main factor directly causing vertical variation of O3 and NOx mixing ratios at 600-2100 m altitude.The NOx mixing ratios elevated during the heating period,while the O3 mixing ratios decreased:these phenomena are more significant at high altitudes compared to lower altitudes.During November,air masses in the urban areas of Beijing are brought bynorthwesterly winds,which transport O3 and NOx at low mixing ratios.Due to Beijing's natural geographical location,northwest air currents are beneficial to the dilution and dispersion of pollutants,which can result in lower O3 and NOx background values in the Beijing urban area.

  15. A Possible High Altitude High Energy Gamma Ray Observatory in India

    CERN Document Server

    Cowsik, R; Chitnis, V R; Acharya, B S; Vishwanath, P R

    2001-01-01

    Recently an Indian Astronomical Observatory has been set up at Hanle (32$^\\circ$ 46$^\\prime$ 46$^{\\prime\\prime}$ N, 78$^\\circ$ 57$^\\prime$ 51$^{\\prime\\prime}$ E, 4515m amsl) situated in the high altitude cold desert in the Himalayas. The Observatory has 2-m aperture optical-infrared telescope, recently built by the Indian Institute of Astrophysics. We have carried out systematic simulations for this observation level to study the nature of \\v{C}erenkov light pool generated by gamma ray and proton primaries incident vertically at the top of the atmosphere. The differences in the shape of the lateral distributions of \\v{C}erenkov light with respect to that at lower altitudes is striking. This arises primarily due to the proximity of the shower maximum to the observation site. The limited lateral spread of the \\v{C}erenkov light pool and near 90% atmospheric transmission at this high altitude location makes it an ideal site for a gamma ray observatory. This results in a decrease in the gamma ray energy threshold...

  16. The structure of high altitude O+ energization and outflow: a case study

    Directory of Open Access Journals (Sweden)

    C. W. Carlson

    2004-07-01

    Full Text Available Multi-spacecraft observations from the CIS ion spectrometers on board the Cluster spacecraft have been used to study the structure of high-altitude oxygen ion energization and outflow. A case study taken from 12 April 2004 is discussed in more detail. In this case the spacecraft crossed the polar cap, mantle and high-altitude cusp region at altitudes between 4RE and 8RE and 2 of the spacecraft provided data. The oxygen ions were seen as a beam with narrow energy distribution, and increasing field-aligned velocity and temperature at higher altitude further in the upstream flow direction. The peak O+ energy was typically just above the highest energy of observed protons. The observed energies reached the upper limit of the CIS ion spectrometer, i.e. 38keV. Moment data from the spacecraft have been cross-correlated to determine cross-correlation coefficients, as well as the phase delay between the spacecraft. Structures in ion density, temperature and field-aligned flow appear to drift with the observed field-perpendicular drift. This, together with a velocity dispersion analysis, indicates that much of the structure can be explained by transverse heating well below the spacecraft. However, temperature isotropy and the particle flux as a function of field-aligned velocity are inconsistent with a single altitude Maxwellian source. Heating over extended altitude intervals, possibly all the way up to the observation point, seem consistent with the observations.

  17. O+ heating associated with strong wave activity in the high altitude cusp and mantle

    Directory of Open Access Journals (Sweden)

    G. Stenberg

    2011-05-01

    Full Text Available We use the Cluster spacecraft to study three events with intense waves and energetic oxygen ions (O+ in the high altitude cusp and mantle. The ion energies considered are of the order 1000 eV and higher, observed above an altitude of 8 earth radii together with high wave power at the O+ gyrofrequency. We show that heating by waves can explain the observed high perpendicular energy of O+ ions, using a simple gyroresonance model and 25–45% of the observed wave spectral density at the gyrofrequency. This is in contrast to a recently published study where the wave intensity was too low to explain the observed high altitude ion energies. Long lasting cases (>10 min of high perpendicular-to-parallel temperature ratios are sometimes associated with low wave activity, suggesting that high perpendicular-to-parallel temperature ratio is not a good indicator of local heating. Using multiple spacecraft, we show that the regions of enhanced wave activity are at least one order of magnitude larger than the gyroradius of the heated ions.

  18. Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis.

    Science.gov (United States)

    León-Velarde, F; Monge, C C; Vidal, A; Carcagno, M; Criscuolo, M; Bozzini, C E

    1991-05-01

    We report the estimation of blood hemoglobin (Hb), arterial blood oxygen saturation (SaO2), and serum immunoreactive erythropoietin (siEPO) in a group of Peruvian workers residing in Cerro de Pasco at 4300 m showing "excessive erythrocytosis" (EE, Monge's disease, chronic mountain sickness). These estimates were compared with those of humans residing either in Cerro de Pasco and showing "normal erythrocytosis" (NE) or in Lima (sea level, SL) to determine whether Hb and SaO2 are related to siEPO in high altitude (HA) natives with NE or EE. The three parameters showed statistically significant differences between HA and SL groups--the values in SL being lower. Significant differences were also found between NE and EE groups in Hb and SaO2. There was no statistical difference in siEPo between the two groups. The results indicate, therefore, that HA residents who develop EE are not distinguishable from residents who develop NE on the basis of estimates of siEPO. As a result, siEPO and Hb do not show a dose-response relationship in HA residents, and variation in EPO does not explain the striking variation in Hb at high altitudes.

  19. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    Science.gov (United States)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  20. High Altitude Pulmonary Edema Without Appropriate Action Progresses to Right Ventricular Strain: A Case Study.

    Science.gov (United States)

    Mills, Logan; Harper, Chris; Rozwadowski, Sophie; Imray, Chris

    2016-09-01

    Mills, Logan, Chris Harper, Sophie Rozwadowski, and Chris Imray. High altitude pulmonary edema without appropriate action progresses to right ventricular strain: A case study. High Alt Med Biol. 17:228-232, 2016.-A 24-year-old male developed high altitude pulmonary edema (HAPE) after three ascents to 4061 m over 3 days, sleeping each night at 2735 m. He complained of exertional dyspnea, dry cough, chest pain, fever, nausea, vertigo, and a severe frontal headache. Inappropriate continuation of ascent despite symptoms led to functional impairment and forced a return to the valley, but dyspnea persisted in addition to new orthopnea. Hospital admission showed hypoxemia, resting tachycardia, and systemic hypertension. ECG revealed right ventricular strain and a chest X-ray revealed right lower zone infiltrates. This case demonstrates that HAPE can develop in previously unaffected individuals given certain precipitating factors, and that in the presence of HAPE, prolonged exposure to altitude with exercise (or exertion) does not confer acclimatization with protective adaptations and that rest and descent are the appropriate actions. The case additionally demonstrates well-characterized right ventricular involvement.

  1. Ontogenic development of spermatids during spermiogenesis in the high altitude bunchgrass lizard (Sceloporus bicanthalis).

    Science.gov (United States)

    Rheubert, Justin; Touzinsky, Katherine; Hernández-Gallegos, Oswaldo; Granados-González, Gisela; Gribbins, Kevin

    2012-04-01

    The body of ultrastructural data on spermatid characters during spermiogenesis continues to grow in reptiles, but is still relatively limited within the squamates. This study focuses on the ontogenic events of spermiogenesis within a viviparous and continually spermatogenic lizard, from high altitude in Mexico. Between the months of June and August, testicular tissues were collected from eight spermatogenically active bunchgrass lizards (Sceloporus bicanthalis) from Nevado de Toluca, México. The testicular tissues were processed for transmission electron microscopy and analyzed to access the ultrastructural differences between spermatid generations during spermiogenesis. Interestingly, few differences exist between S. bicanthalis spermiogenesis when compared with what has been described for other saurian squamates. Degrading and coiling membrane structures similar to myelin figures were visible within the developing acrosome that are likely remnants from Golgi body vesicles. During spermiogenesis, an electron lucent area between the subacrosomal space and the acrosomal medulla was observed, which has been observed in other squamates but not accurately described. Thus, we elect to term this region the acrosomal lucent ridge. This study furthers the existing knowledge of spermatid development in squamates, which could be useful in future work on the reproductive systems in high altitude viviparous lizard species.

  2. Development and demonstration of a high-altitude atmospheric backscatter Lidar system

    Science.gov (United States)

    Dolash, Thomas M.; Garvey, John; Leonelli, Joseph; Bradford, Mark; Rose, Lynn

    1994-06-01

    Battelle has designed and fabricated an upward-looking atmospheric backscatter lidar for high-altitude airborne applications. The compact, rugged system was assembled and integrated into a cupola on top of a Lear 36 aircraft to provide particle backscatter data and aerosol profile distributions of cirrus clouds occurring between 50,000 and 100,000 ft ASL. The high altitude airborne lidar system consists of a laser transmitter operating at 532 and 1064 nm simultaneously with output energy of 75 mJ at both wavelengths and a collecting telescope aperture of 10 inches in diameter. Laser backscatter energy is collected and directed via a dichroic beamsplitter to two avalanche photodetectors (APD) through narrow bandpass optical filters at 532 and 1064 nm. The outputs of the APDs are digitized by a 10-bit, 100-MHz transient digitizer before being recorded to a 1.2-Gbyte hard disk with IRIG timing for data analysis. This paper describes the lidar system design, predicted performance, and some of the operational challenges.

  3. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics.

    Directory of Open Access Journals (Sweden)

    Grzegorz Bilo

    Full Text Available Slow deep breathing improves blood oxygenation (Sp(O2 and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39 or at 5400 m for 12-16 days (Study B; N = 28. Study variables, including Sp(O2 and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2 (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001 and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.

  4. Genotyping the High Altitude Mestizo Ecuadorian Population Affected with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Andrés López-Cortés

    2017-01-01

    Full Text Available Prostate cancer (PC is the second most commonly diagnosed type of cancer in males with 1,114,072 new cases in 2015. The MTHFR enzyme acts in the folate metabolism, which is essential in methylation and synthesis of nucleic acids. MTHFR C677T alters homocysteine levels and folate assimilation associated with DNA damage. Androgens play essential roles in prostate growth. The SRD5A2 enzyme metabolizes testosterone and the V89L polymorphism reduces in vivo SRD5A2 activity. The androgen receptor gene codes for a three-domain protein that contains two polymorphic trinucleotide repeats (CAG, GGC. Therefore, it is essential to know how PC risk is associated with clinical features and polymorphisms in high altitude Ecuadorian mestizo populations. We analyzed 480 healthy and 326 affected men from our three retrospective case-control studies. We found significant association between MTHFR C/T (odds ratio [OR] = 2.2; P=0.009, MTHFR C/T+T/T (OR = 2.22; P=0.009, and PC. The SRD5A2 A49T substitution was associated with higher pTNM stage (OR = 2.88; P=0.039 and elevated Gleason grade (OR = 3.15; P=0.004. Additionally, patients with ≤21 CAG repeats have an increased risk of developing PC (OR = 2.99; P<0.001. In conclusion, genotype polymorphism studies are important to characterize genetic variations in high altitude mestizo populations.

  5. Balloon flight test of a Compton telescope based on scintillators with silicon photomultiplier readouts

    Energy Technology Data Exchange (ETDEWEB)

    Bloser, P.F., E-mail: Peter.Bloser@unh.edu; Legere, J.S.; Bancroft, C.M.; Ryan, J.M.; McConnell, M.L.

    2016-03-11

    We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energy astronomy and solar physics for new medium-energy gamma-ray (~0.4–10 MeV) detectors capable of making sensitive observations of both line and continuum sources over a wide dynamic range. A fast scintillator-based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits both the rejection of background via time-of-flight (ToF) discrimination and the ability to operate at high count rates. The Solar Compton Telescope (SolCompT) prototype presented here was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr{sub 3}:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2×2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of ~240 nCi of {sup 60}Co embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent ~3.75 h at a float altitude of ~123,000 ft. The instrument performed well throughout the flight. After correcting for small (~10%) residual gain variations, we measured an in-flight ToF resolution of ~760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show

  6. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  7. GHOST balloons around Antarctica

    Science.gov (United States)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  8. Cane pruning on Chardonnay grapevine in the high-altitude regions of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Filho José Luiz Marcon

    2016-01-01

    Full Text Available High-altitude regions of southern Brazil, located above 900 m above sea level, the cordon training with spur pruning is widely used because of easier application. In these regions, Chardonnay wine grape shows potential to produce quality wines, however, in commercial vineyards, the training system used has not provided productivities that makes economically viable the cultivation of this variety. Given this, the present study aimed to evaluate the effect of different cane-pruning systems on the vegetative, productive and enological potential of Chardonnay grapevines grown in the high-altitude region of Southern Brazil. The experiment was conducted in a commercial Chardonnay vineyard, located in São Joaquim – Santa Catarina State (28o17 ′39”S and 49∘ 55′56” W, to 1230 m a.s.l during 2015 and 2016 vintages. Chardonnay vines (grafted on 1103 Paulsen were planted in 2010, with a 3.0 m (row × 1.0 m (vine spacing. The treatments consisted of different cane-pruning systems: Cordon spur-pruning (control; Sylvoz; Cazenave; Capovolto; single Guyot and double Guyot. Pruning was performed in August of each year when the buds were in the green tip developmental stage. Data was analyzed by Scott Knott test (p < 0.05 following a randomized block design with four replicates, each consisting of 12 vines per plot. We observed higher yield in the Cazenave and double Guyot training system with three and two more tons of grapes than spur-pruning respectively. The bud fertility was higher in plants trained in double Guyot. Vines spur-pruned showed higher relation of leaf area: production, with values above 100 cm2 g−1 grape at 2016 vintage. Commercial maturity of grapes (soluble solids, acidity and polyphenols did not differ among training systems studied. The results suggest that cane-pruning systems could be an alternative to increase production efficiency of Chardonnay in high-altitude region of southern Brazil.

  9. Carbon accumulation in high-altitude peatlands of the Central Andes of Peru

    Science.gov (United States)

    Llanos, Romina; Moreira-Turcq, Patricia; Huaman, Yizet; Espinoza, Raul; Apaestegui, James; Turcq, Bruno; Willems, Bram

    2017-04-01

    Despite covering only 6 - 8% of the world's land surface, peatlands contain around one third of the global organic soil carbon (C) and are an important component of the global C cycle. Most studies of peatland C dynamics have been carried out on boreal and subarctic peatlands, but less is known about peatlands at lower latitudes, yet there are significant peatland C stocks in these regions that may be more vulnerable to future climate change because they are closer to the climatic limit of peatland distribution. In South America, peatlands in high altitudes called "bofedales" represent one of the most important water resources and also provide key environmental services that support both Andean mountain biodiversity and the wellbeing of human populations. Nowdays, the need for conservation and wise use of these ecosystems is increasingly being recognized. So, a useable assessment of peatlands in the global C cycle requires accurate estimates of carbon pools and fluxes. In order to understand the impact of different altitudes on the growth, production and carbon accumulation, several short (about 30 cm) peatlands cores were collected in the headwater of the Cachi river basin, in the Central Andes of Peru. Two Distichia muscoides cushion plant-dominated "bofedales" which elevations exceed 4000 m were studied. The sedimentation rates, based on radiocarbon dating of peat samples from the two sites studied, were very variable. Cores from the bofedal located at 4200 m present an age of approximately 55 years, while the site at the highest altitude site has an age of approximately about 450 years. Our results point out very different rates of sedimentation in the two peatlands that may be related to the climatic changes observed during the recent past, with a direct consequence on the carbon accumulation rates. In the determination of the annual growth, we observed that this one presented smaller values in the first centimeters of the peatland with lower elevation, while

  10. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

    Science.gov (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.

    2017-06-01

    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  11. HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2

    Science.gov (United States)

    Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin

    2011-01-01

    The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at

  12. Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600

    Directory of Open Access Journals (Sweden)

    Martin Buchheit

    2015-03-01

    Full Text Available To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS and 6 high-altitude (a Bolivian U18 team, BOL native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1 was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h-1 (D>14.4 km·h-1 and >80% of vYo-YoIR1 (D>80%vYo-YoIR1 were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen’s d +1.0, 90%CL ± 0.8 and D>14.4 km·h-1 (+0.5 ± 0.8 in AUS. D>14.4 km.h-1 was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8. Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h-1 increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7; conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2. In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in ‘fitness’ do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity.

  13. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  14. Meteorological Support of the Helios World Record High Altitude Flight to 96,863 Feet

    Science.gov (United States)

    Teets, Edward H., Jr.; Donohue, Casey J.; Wright, Patrick T.; DelFrate, John (Technical Monitor)

    2002-01-01

    In characterizing and understanding atmospheric behavior when conducting high altitude solar powered flight research flight planning engineers and meteorologists are able to maximize the use of available airspace and coordinate aircraft maneuvers with pilots to make the best use of changing sun elevation angles. The result of this cooperative research produced a new world record for absolute altitude of a non-rocket powered aircraft of 96,863 ft (29,531.4 m). The Helios prototype solar powered aircraft, with a wingspan of 247 ft (75.0m), reached this altitude on August 13, 2001, off the coast of Kauai, Hawaii. The analyses of the weather characterization, the planning efforts, and the weather-of-the-day summary that led to at record flight are described in this paper.

  15. Deviations from uniform power-law scaling due to exposure to high altitude

    Science.gov (United States)

    Posiewnik, A.

    2002-12-01

    A major challenge in biological physics is the analysis of time series that are typically highly nonstationary. Viswanathan et al. (Phys. Rev. E 55 (1) (1997) 845-899) using techniques based on the Fano factor and the Allan factor functions, as well as on detrended fluctuation analysis showed that the scaling properties of the dynamics of healthy physiological systems in normal conditions are more stable than those of pathological systems-there is underlying loss of uniform power-law scaling in disease. Here we test, using the same techniques as Viswanathan et al. (1997), the hypothesis that deviations from uniform power-law scaling, similar to those seen in heart failure and deep apnea syndrome occur also for healthy subjects under pathological conditions (hypoxaemic stress during exposure to high altitude, over 6000 m).

  16. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives

    DEFF Research Database (Denmark)

    Lundby, Carsten; Sander, Mikael; van Hall, Gerrit

    2006-01-01

    values obtained at sea level, the former values were almost completely restored to sea level values. This would suggest that the major determinant V(o2max)for not to increase with acclimatization is the observed reduction in maximal leg blood flow and O(2) conductance.......The tight relation between arterial oxygen content and maximum oxygen uptake (Vv(o2max)within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O(2) extraction capacity with chronic hypoxia...... O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia...

  17. The Channel Estimation and Modeling in High Altitude Platform Station Wireless Communication Dynamic Network

    Directory of Open Access Journals (Sweden)

    Xiaoyang Liu

    2017-01-01

    Full Text Available In order to analyze the channel estimation performance of near space high altitude platform station (HAPS in wireless communication system, the structure and formation of HAPS are studied in this paper. The traditional Least Squares (LS channel estimation method and Singular Value Decomposition-Linear Minimum Mean-Squared (SVD-LMMS channel estimation method are compared and investigated. A novel channel estimation method and model are proposed. The channel estimation performance of HAPS is studied deeply. The simulation and theoretical analysis results show that the performance of the proposed method is better than the traditional methods. The lower Bit Error Rate (BER and higher Signal Noise Ratio (SNR can be obtained by the proposed method compared with the LS and SVD-LMMS methods.

  18. Time evolution of high-altitude plasma bubbles imaged at geomagnetic conjugate points

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2004-09-01

    Full Text Available Temporal and spatial evolution of two high-altitude plasma bubbles (evening and midnight was observed on 4 April 2002, at geomagnetic conjugate points at Sata, Japan (magnetic latitude 24° N, and Darwin, Australia (magnetic latitude 22° S, using two 630-nm airglow imagers. The apex height of the bubbles reached ~1500km. The upward velocity of the evolution was faster in the evening (~170m/s at 20:00-21:00 LT than around midnight (~28m/s at 23:00-00:00 LT. Bifurcating features of the bubbles into a smaller scale size of ~50km were clearly seen for both the evening and midnight bubbles, showing fairly good conjugacy between the Northern and Southern Hemispheres.

  19. Higher and colder: The success and failure of boundaries in high altitude and Antarctic research stations.

    Science.gov (United States)

    Heggie, Vanessa

    2016-12-01

    This article offers a series of case studies of field stations and field laboratories based at high altitudes in the Alps, Himalayas and Antarctica, which have been used by Western scientists (largely physiologists and physicists) from circa 1820 to present. It rejects the common frame for work on such spaces that polarizes a set of generalizations about practices undertaken in 'the field' versus 'the laboratory'. Field sites are revealed as places that can be used to highlight common and crucial features of modern experimental science that are exposed by, but not uniquely the properties of, fieldwork. This includes heterogeneity of population and practice, diverse afterlives, the manner in which spaces of science construct individual and group expertise, and the extensive support and funding structures needed for modern scientific work.

  20. Preliminary C3 Loading Analysis for Future High-Altitude Unmanned Aircraft in the NAS

    Science.gov (United States)

    Ho, Yan-Shek; Gheorghisor, Izabela; Box, Frank

    2006-01-01

    This document provides a preliminary assessment and summary of the command, control, and communications (C(sup 3)) loading requirements of a generic future high-altitude, long-endurance unmanned aircraft (UA) operating at in the National Airspace System. Two principal types of C(sup 3) traffic are considered in our analysis: communications links providing air traffic services (ATS) to the UA and its human pilot, and the command and control data links enabling the pilot to operate the UA remotely. we have quantified the loading requirements of both types of traffic for two different assumed levels of UA autonomy. Our results indicate that the potential use of UA-borne relays for the ATS links, and the degree of autonomy exercised by the UA during the departure and arrival phases of its flight, will be among the key drivers of C(sup 3) loading and bandwidth requirements.

  1. Molecular mechanisms regulating oxygen transport and consumption in high altitude and hibernating mammals

    DEFF Research Database (Denmark)

    Revsbech, Inge Grønvall

    2016-01-01

    The aim of this thesis is to broaden the knowledge of molecular mechanisms of adjustment in oxygen (O2) uptake, conduction, delivery and consumption in mammals adapted to extreme conditions. For this end, I have worked with animals living at high altitude as an example of environmental hypoxia......, and hibernating mammals, as an example of closely balanced internal low O2. Studies have had two main focus points. Firstly, I have investigated variations in hemolysate and hemoglobin (Hb) O2 affinity, working to pinpoint whether and how functional changes in intrinsic affinity or cofactor sensitivity of the Hb...... molecule compares to amino acid substitutions in the molecule, i.e., can be characterized as evolved genetic adaptation. Phenotypic acclimatization in Hb- O2 affinity responses involves changes in cofactor to Hb tetramer ratio. Secondly, I have worked with (in a cardiovascular perspective) fine...

  2. The High Altitude Water Čerenkov (HAWC) TeV Gamma Ray Observatory

    Science.gov (United States)

    de la Fuente, Eduardo; Oceguera-Becerra, Tomas; García-Torales, Guillermo; García-Luna, José Luis

    The High Altitude Water Čerenkov observatory is a second generation ground based very high-energy γ-ray detector under construction in Sierra Negra, Puebla, México at an altitude of 4,100m. Higher altitude, improved design and a larger physical size used to reject cosmic ray background, make HAWC 10-20 times more sensitive than its predecessor Milagro. HAWC's large field of view (˜2sr) and over 90% duty cycle make it ideal to search for several types of TeV astronomical γ-ray sources, diffuse emission, cosmic anisotropy, and transients. Details and status of HAWC at date, and a galactic star formation application are here presented.

  3. Discovery of C4 species at high altitude in Qinghai-Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    WANG Luo; L(U) Houyuan; WU Naiqin; CHU Duo; HAN Jiamao; WU Yuhu; WU Haibin; GU Zhaoyan

    2004-01-01

    Plant specimens are collected from the areas between latitude 27°42'N and 40°57'N, and longitude 88°93'E and 103°24'E, with an altitudinal range from 2210 to 5050 m above the sea level in Qinghai-Tibetan Plateau. The stable carbon isotope analysis indicates that two of Chenopodiaceae and six of Poaceae in the samples are C4 plants. Four of the C4 plants are found in 11 spots with altitudes above 3800 m,and Pennisetum centrasiaticum, Arundinella yunnanensis and Orinus thoroldii are present in six spots above 4000 m, even up to 4520 m. At low CO2 partial pressure, that sufficient energy of high light improving C4 plant's tolerance of low temperature and precipitations concentrating in growing season probably are favorable for C4 plants growing at high altitude in Qinghai-Tibetan Plateau.

  4. High-Altitude Aircraft-Based Electric-Field Measurements Above Thunderstorms

    Science.gov (United States)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX-3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements are shown: typical flight altitude is 20km. Our new mills have an internal 16-bit A/D, with a resolution of 0.25V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  5. A necklace of pearl in high altitude medicine and hypoxic physiology in Yushu Earthquake

    Institute of Scientific and Technical Information of China (English)

    Fan Ming

    2013-01-01

    During Yushu Earthquake,a large number of rescuers flocked to the mountainous quake areas.Under such a very specific circumstance,a high incidence of acute altitude illness was observed in rescuers who rapidly traveled from near sea level to an altitude of 4 000 m.It is evident that acute altitude illness leads to a significant human and economic toll,and also seriously influences the mountain rescue operation.So what does this teach us about mountain rescue in Yushu? Professor Wu Tianyi and many other authors collected shining points of the experiences and drew the lessons from the Yushu Earthquake into this special issue in Engineering Sciences which is like to thread pearl beads for a necklace.What readers learn from this special issue will have implications for the health and well-being of all high altitude populations all over the world.

  6. Identification of Abiotic Stress Responsive Genes from Indian High Altitude Lepidium latifolium L. (Short Communication

    Directory of Open Access Journals (Sweden)

    Sanjay Mohan Gupta

    2012-09-01

    Full Text Available Abiotic stresses are major environmental factors that periodically account for significant loss in crop productivity. In order to improve the abiotic stress tolerance in vegetable crops through transgenic approaches, authors isolated and cloned six up-regulated, LlaDREB1b (JN214345, LlaGPAT (JN398166, LlaNAC (FJ423495, LlaCIPK (FJ423496, LlaPR5 (GQ853409 and LlaIPK (FJ487575 and two down-regulated LlaRan (JN214347 and LlaDRT (JN214346 abiotic stress responsive genes from Indian high altitude Lepidium latifolium L. plant that that may be used for abiotic stress-tolerance engineering upon functional validation.Defence Science Journal, 2012, 62(5, pp.315-318, DOI:http://dx.doi.org/10.14429/dsj.62.1495

  7. Innovative Large Scale Wireless Sensor Network Architecture Using Satellites and High-Altitude Platforms

    Directory of Open Access Journals (Sweden)

    Yasser Albagory

    2014-03-01

    Full Text Available Wireless sensor network has many applications and very active research area. The coverage span of this network is very important parameter where wide coverage area is a challenge. This paper proposes an architecture for large-scale wireless sensor network (LSWSN based on satellites and the High-Altitude Platforms (HAP where the sensor nodes are located on the ground and a wide coverage sink station may be in the form of a satellite or a network of HAPs. A scenario is described for multilayer LSWSN and a study for the system requirements has been established showing the number of Satellites, HAPs and coverage per each sink according to the elevation angle requirements. The Satellite-HAP-Sensor multilayer LSWSN architecture has the feasibility for effective energy and earth coverage and is optimum for covering largely sparse regions.

  8. Noninvasive health condition monitoring device for workers at high altitudes conditions.

    Science.gov (United States)

    Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J

    2016-08-01

    This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.

  9. First light at the HAWC high altitude TeV gamma ray detector in Mexico

    Science.gov (United States)

    Fiorino, Daniel

    2012-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory -- currently under construction at 4100m altitude at Pico de Orizaba in Mexico -- is a high duty cycle, large field of view detector for gamma rays at TeV energies. The HAWC Observatory will locate and provide spectra for extended and point sources of TeV gamma rays, probe the cosmic ray anisotropy, search for gamma ray bursts, and set limits on extragalactic background light. Data taking at our smaller test array (VAMOS) is currently under way. I will present results of a first study of several months of VAMOS data, including a first skymap, performance tests, and a search for the shadow of the moon in cosmic rays.

  10. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  11. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  12. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  13. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Providing Emergency Telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Juan D. Deaton

    2008-05-01

    Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  14. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Emergency Telecommunications

    Directory of Open Access Journals (Sweden)

    Juan D. Deaton

    2008-09-01

    Full Text Available Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  15. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Emergency Telecommunications

    Directory of Open Access Journals (Sweden)

    Deaton JuanD

    2008-01-01

    Full Text Available Abstract Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  16. Results of the first EUSO-Balloon flight

    Science.gov (United States)

    Miyamoto, H.; Bertaina, M.; JEM-EUSO Collaboration

    2016-05-01

    EUSO-Balloon, a balloon-borne diffractive fluorescence telescope, was launched by the French Space Agency ONES from the Timmins base in Ontario (Canada) on August 25th in 2014. After reaching the floating altitude of about 38 km, EUSO-Balloon imaged the UV background for more than 5 hours before descending to ground using the key technologies of JEM-EUSO. A detailed and precise measurement of the UV background in different atmospheric and ground conditions was achieved. The instrument proved the capability of detecting Extensive Air Showers (EAS) by observing laser tracks with similar characteristics. This contribution will summarise the first results obtained concerning all the topics described above.

  17. Balloon observations of spatial coherence in the Global Circuit

    Science.gov (United States)

    Holzworth, R. H.; Polar Patrol Balloon Team

    The first campaign of the Polar Patrol Balloon (PPB) experiment (1st-PPB) was carried out at Syowa Station in Antarctica during 1990-1991 and 1992-1993. Based on the results of the 1st-PPB experiment, the next campaign (2nd-PPB) was carried out in the austral summer of 2002-2003. This paper will present the global circuit results from the 2nd-PPB experiment. In that experiment, three balloons were launched for the purpose of upper atmosphere physics observation (3 balloons). Payloads of these 3 flights were identical with each other, and were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. Such a "Balloon Cluster" is suitable to observe temporal evolution and spatial distribution of phenomena in the ionospheric regions and boundaries that the balloons traversed during their circumpolar trajectory. More than 20 days of simultaneous fair weather 3-axis electric field and stratospheric conductivity data were obtained at geomagnetic latitudes ranging from sub-auroral to the polar cap. Balloon separation varied from ˜ 60 to ˜ 500 km. This paper will present the global circuit observations with emphasis on the times of apparent spatial variation in the vertical fair weather field.

  18. Nocturnal periodic breathing and the development of acute high altitude illness.

    Science.gov (United States)

    Eichenberger, U; Weiss, E; Riemann, D; Oelz, O; Bärtsch, P

    1996-12-01

    We tested the hypothesis that periodic breathing (PB) at high altitude is more frequent and arterial oxygen desaturation more severe during sleep in subjects developing high altitude pulmonary edema (HAPE) or acute mountain sickness (AMS) compared with subjects remaining healthy. We registered thoraco-abdominal movement, electro-encephalogram and oxygen saturation by pulse oximeter (pSao2) in 21 subjects during the first night spent at the altitude of 4,559 m. During the subsequent stay at 4,559 m, eight subjects remained well (controls), five subjects developed AMS and eight subjects developed HAPE. PB was found in all sleep stages and the percentage PB in any sleep stage was not significantly different between groups. There was a trend towards more PB in the HAPE vs. AMS and control group lasting 80 +/- 5 (mean +/- SE), 58 +/- 7, 57 +/- 9% of analyzable time, respectively (p = 0.09). The mean nocturnal decrease of pSao2 for these groups was 8.7 +/- 1.9, 5.4 +/- 2.1, 4.8 +/- 1.2%; (p = 0.36) and the median nocturnal pSao2 was 49 +/- 3, 63 +/- 3, and 63 +/- 4% (p = 0.02). Arterial blood gas analysis before and after sleep recordings indicate that the significantly lower Sao2 in the HAPE group is secondary to gas exchange rather than ventilation. The nocturnal decrease of pSao2 did not correlate with the time of PB nor the number of desaturation events > or = 4%. These findings suggest that more frequent PB in the HAPE group is a consequence of lower Sao2 due to impairment of gas exchange.

  19. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    Science.gov (United States)

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area

  20. Establishment of extracorporeal circulation of artificial liver support system in high altitude region

    Directory of Open Access Journals (Sweden)

    Ming-sen ZHANG

    2011-01-01

    Full Text Available Objective To establish extracorporeal circulation in big animal suitable for the research on artificial liver support system in high altitude region.Methods Under the anesthesia of ketamine hydrochloride/diazepam IV,cannulation of common carotid artery/external jugular vein(n=3 and inferior vena cava via the left external jugular vein/right external jugular vein(n=3,was respectively performed on six healthy Chang-Bai piglets adapted to native environment(altitude 3700m.One day after that,the extracorporeal circulation was performed at a progressively elevated blood current velocity,and the general condition of the animals,blood pressure,HR,bleeding tendoncy of the experimental pigs and coagulation in the cannulae were observed.Results On the premise that the hemodynamics was not influenced,the highest blood current velocity was 133.33±28.87ml/min,the lowest heparin maintaining speed amounted to 138.67±12.22mg/h,and the bleeding tendency and blood coagulation in the cannula was significant in the group of common carotid artery/external jugular vein intubation.While the highest blood current velocity was 400ml/min,the lowest heparin maintaining speed was 26.67±9.24mg/h,no bleeding tendency or obvious cannular blood coagulation were observed in the group of cannulation of inferior vena cava via the left external jugular vein/right external jugular vein.These untoward results were significantly less or slight than that of the former group(P < 0.01.Conclusion It is suitable to perform research of artificial liver support system on piglets in high altitude region by establishing extracorporeal circulation by the way of inferior vena cava with cannulation passing through the left external jugular vein/right external jugular vein with the blood current velocity of 400ml/min.

  1. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  2. Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study

    Directory of Open Access Journals (Sweden)

    Zhang Jiaxing

    2011-09-01

    Full Text Available Abstract Background The impact of long term residence on high altitude (HA on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA residents as compared to native sea level (SL residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD functional Magnetic Resonance Imaging (fMRI data were acquired from them. Results Compared to SL controls, the HA group showed generally decreased cerebrovascular reactivity and longer delay in hemodynamic response. Clusters showing significant differences in the former aspect were located at the bilateral primary motor cortex, the right somatosensory association cortex, the right thalamus and the right caudate, the bilateral precuneus, the right cingulate gyrus and the right posterior cingulate cortex, as well as the left fusiform gyrus and the right lingual cortex; clusters showing significant differences in the latter aspect were located at the precuneus, the insula, the superior frontal and temporal gyrus, the somatosensory cortex (the postcentral gyrus and the cerebellar tonsil. Inspiratory reserve volume (IRV, which is an important aspect of pulmonary function, demonstrated significant correlation with the amount of BOLD signal change in multiple brain regions, particularly at the bilateral insula among the HA group. Conclusions Native-born HA residents generally showed reduced cerebrovascular reactivity as demonstrated in the hemodynamic response during a visual cue guided maximum inspiration task conducted with BOLD-fMRI. This effect was particularly manifested among brain regions that are typically involved in cerebral modulation of respiration.

  3. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  4. Attributes of Seabuckthorn (Hippophae rhamnoides L. to Meet Nutritional Requirements in High Altitude.

    Directory of Open Access Journals (Sweden)

    Tsering Stobdan

    2010-03-01

    Full Text Available The diet of humans living in different geographical and climatic regions of the earth varies greatly in both quantity and composition of foods. Evidence is accumulating that indicates that there is a high risk of malnutrition at high altitude because of the usual lack of fresh food and environmental factors. Lack of nutritious diet in the difficult terrain is a potential stressor that elicits oxidative stress. The excretion of minerals from the body is higher in high altitude condition. The altered nutritional requirement can be met to a large extend by regular consumption of locally grown fruits and vegetables. Results of analysis of Seabuckthorn growing in Leh valley of Trans-Himalaya showed the presence of high content of multivitamins including vitamin C (275 mg/100g, vitamin A (432.4 IU/100g, vitamin E (3.54 mg/100g, Riboflavin (1.45 mg/100g, Niacin (68.4 mg/100g, Pantothenic acid (0.85 mcg/100g, vitamin B-6 (1.12 mg/100g, and vitamin B-2 (5.4 mcg/100g. Similarly, mineral elements composition revealed high amount of minerals including potassium (647.2 mg/l, calcium (176.6 mg/l, iron (30.9 mg/l, magnesium (22.5 mg/l, phosphorous (84.2 mg/l, sodium (414.2 mg/l, zinc (1.4 mg/l, copper (0.7 mg/l, manganese (1.06 mg/l and selenium (0.53 mg/l.Defence Science Journal, 2010, 60(2, pp.226-230, DOI:http://dx.doi.org/10.14429/dsj.60.344

  5. Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain Sickness.

    Science.gov (United States)

    Villafuerte, Francisco C; Macarlupú, José Luis; Anza-Ramírez, Cecilia; Corrales-Melgar, Daniela; Vizcardo-Galindo, Gustavo; Corante, Noemí; León-Velarde, Fabiola

    2014-12-01

    Excessive erythrocytosis (EE) is the hallmark of chronic mountain sickness (CMS), a prevalent syndrome in high-altitude Andean populations. Although hypoxemia represents its underlying stimulus, why some individuals develop EE despite having altitude-normal blood erythropoietin (Epo) concentration is still unclear. A soluble form of the Epo receptor (sEpoR) has been identified in human blood and competes directly for Epo with its membrane counterpart (mEpoR). Thus, reduced levels of circulating sEpoR could lead to higher Epo availability and ultimately to EE. We characterized the relationship between Epo and sEpoR, with hematocrit and hemoglobin concentration in healthy highlanders and CMS patients at 4,340 m in Cerro de Pasco, Peru. Our results show that EE patients show decreased plasma sEpoR levels and can be subdivided into two subgroups of normal and high plasma Epo concentration for the altitude of residence, with hemoglobin concentration rising exponentially with an increasing Epo-to-sEpoR ratio (Epo/sEpoR). Also, we showed that the latter varies as an inverse exponential function of arterial pulse O2 saturation. Our findings suggests that EE is strongly associated with higher Epo/sEpoR values, leading to elevated plasma Epo availability to bind mEpoR, and thereby a stronger stimulus for augmented erythropoiesis. Differences in the altitude normal and high Epo CMS patients with a progressively higher Epo/sEpoR supports the hypothesis of the existence of two genetically different subgroups suffering from EE and possibly different degrees of adaptation to chronic high-altitude hypoxia.

  6. PHYTOCHEMICAL AND PROTEOMIC ANALYSIS OF A HIGH ALTITUDE MEDICINAL MUSHROOM CORDYCEPS SINENSIS

    Directory of Open Access Journals (Sweden)

    Rakhee

    2016-09-01

    Full Text Available Cordyceps sinensis (C. sinensis is well established as a traditional Chinese medicine (TCM that has been valued as a health food for centuries. It is an entomopathogenic fungus in Ascomycetes that naturally occurs at high altitude in Himalayan region and has received considerable attention due to the abundance of various biologically active compounds. Despite having reported health benefits and economic importance, qualitative phytochemical analysis, proximate composition and proteome study of Indian isolates of C. sinensis grown at high altitude remains untapped. In the present study, qualitative phytochemical analysis was carried on powdered whole body of C. sinensis (CSWb and its aqueous extract (CSAq prepared by accelerated solvent extraction technique which indicated the presence of several bioactive constituents such as alkaloids, amino acids and proteins, carbohydrates, flavonoids and phenols, gums, mucilages and saponins. We evaluated chemical composition of the Indian Himalayan medicinal mushroom C. sinensis in terms of its carbohydrate (55.68% content, crude fiber (6.40%, fat (1.80%, moisture (7.18%, protein (21.46% and total ash (7.48%. Furthermore, soluble protein identification of both CSWb and CSAq by SDS-PAGE followed by MALDI-TOF-TOF analysis revealed the presence of various types of most abundant proteins such as P-type II A ATPase, TE1b [Blumeriagraminis f. sp. hordei], Chitin synthase Chs [Penicilliummarneffei ATCC 18224], Serine/threonine-protein kinase CLA4, DEHA2C06820p [Debaryomyceshansenii CBS767], YALI0E29887p [Yarrowialipolytica] etc. In conclusion, the present study provides a comprehensive qualitative phytochemical analysis, proximate composition and proteome study on Indian isolate of C. sinensis which could endorse its use as a functional food.

  7. Manipulating API and AOD data to distinguish transportation of aerosol at high altitude in Penang, Malaysia

    Science.gov (United States)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Matjafri, M. Z.; Holben, B.

    2014-02-01

    Air pollution index (API) is an index commonly used in Malaysia to determine the air quality level. It is a ground truth data measurement which is unable to unambiguously quantify air quality level at higher atmosphere. On the other hand, aerosol optical depth (AOD) from AERONET data obtained using sun photometer provides reading of the air quality for a column of atmosphere from ground surface. We first determine the quantitative correlation between the API and AOD data collected in Penang, Malaysia, between January - September, 2012, using two independent methods, one based on regression analysis and the other interpolation. Our purpose is to establish a systematic numerical procedure to determine whether aerosol transported in high altitude from other location has occurred. Two independent methods for establishing the quantitative relationship between the API and AOD data were used as a way to facilitate the verification of our approach. In our method, data from southwest monsoon period (August to September) were used as "calibration dataset" to establish the quantitative correlation between the AOD and API data. The established calibrated coefficients is then used to predict the AOD of other months, which are then compared against the data actually measured. Discrepancy between the predicted and measured AOD data can then be interpreted as an indication of whether the atmosphere at high altitude is polluted by aerosol transported from other location. If the predicted AOD is much larger than that measured, back trajectory analysis was applied to identify the aerosol transported source. This procedure is very helpful to investigate the aerosol transportation and distribution patterns during monsoon and non monsoon periods.

  8. Risk prediction score for severe high altitude illness: a cohort study.

    Directory of Open Access Journals (Sweden)

    Florence Canouï-Poitrine

    Full Text Available Risk prediction of acute mountain sickness, high altitude (HA pulmonary or cerebral edema is currently based on clinical assessment. Our objective was to develop a risk prediction score of Severe High Altitude Illness (SHAI combining clinical and physiological factors. Study population was 1017 sea-level subjects who performed a hypoxia exercise test before a stay at HA. The outcome was the occurrence of SHAI during HA exposure. Two scores were built, according to the presence (PRE, n = 537 or absence (ABS, n = 480 of previous experience at HA, using multivariate logistic regression. Calibration was evaluated by Hosmer-Lemeshow chisquare test and discrimination by Area Under ROC Curve (AUC and Net Reclassification Index (NRI.The score was a linear combination of history of SHAI, ventilatory and cardiac response to hypoxia at exercise, speed of ascent, desaturation during hypoxic exercise, history of migraine, geographical location, female sex, age under 46 and regular physical activity. In the PRE/ABS groups, the score ranged from 0 to 12/10, a cut-off of 5/5.5 gave a sensitivity of 87%/87% and a specificity of 82%/73%. Adding physiological variables via the hypoxic exercise test improved the discrimination ability of the models: AUC increased by 7% to 0.91 (95%CI: 0.87-0.93 and 17% to 0.89 (95%CI: 0.85-0.91, NRI was 30% and 54% in the PRE and ABS groups respectively. A score computed with ten clinical, environmental and physiological factors accurately predicted the risk of SHAI in a large cohort of sea-level residents visiting HA regions.

  9. First Cluster results of the magnetic field structure of the mid- and high-altitude cusps

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available Magnetic field measurements from the four Cluster spacecraft from the mid- and high-altitude cusp are presented. Cluster underwent two encounters with the mid-altitude cusp during its commissioning phase (24 August 2000. Evidence for field-aligned currents (FACs was seen in the data from all three operating spacecraft from northern and southern cusps. The extent of the FACs was of the order of 1 RE in the X-direction, and at least 300 km in the Y-direction. However, fine-scale field structures with scales of the order of the spacecraft separation (300 km were observed within the FACs. In the northern crossing, two of the spacecraft appeared to lie along the same magnetic field line, and observed very well matched signals. However, the third spacecraft showed evidence for structuring transverse to the field on scales of a few hundred km. A crossing of the high-altitude cusp from 13 February 2001 is presented. It is revealed to be a highly dynamic structure with the boundaries moving with velocities ranging from a few km/s to tens of km/s, and having structure on timescales ranging from less than one minute up to several minutes. The cusp proper is associated with the presence of a very disordered magnetic field, which is entirely different from the magnetosheath turbulence.

    Key words. Magnetospheric physics (current systems; magnetopause, cusp, and boundary layers – Space plasma physics (discontinuities

  10. A novel candidate region for genetic adaptation to high altitude in Andean populations.

    Directory of Open Access Journals (Sweden)

    Guido Valverde

    Full Text Available Humans living at high altitude (≥ 2,500 meters above sea level have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most elevated regions of the world have undergone extensive physiological and/or genetic changes, particularly in the regulation of respiration and circulation, when compared to lowland populations. Genome scans have identified candidate genes involved in altitude adaption in the Tibetan Plateau and the Ethiopian highlands, in contrast to populations from the Andes, which have not been as intensively investigated. In the present study, we focused on three indigenous populations from Bolivia: two groups of Andean natives, Aymara and Quechua, and the low-altitude control group of Guarani from the Gran Chaco lowlands. Using pooled samples, we identified a number of SNPs exhibiting large allele frequency differences over 900,000 genotyped SNPs. A region in chromosome 10 (within the cytogenetic bands q22.3 and q23.1 was significantly differentiated between highland and lowland groups. We resequenced ~1.5 Mb surrounding the candidate region and identified strong signals of positive selection in the highland populations. A composite of multiple signals like test localized the signal to FAM213A and a related enhancer; the product of this gene acts as an antioxidant to lower oxidative stress and may help to maintain bone mass. The results suggest that positive selection on the enhancer might increase the expression of this antioxidant, and thereby prevent oxidative damage. In addition, the most significant signal in a relative extended haplotype homozygosity analysis was localized to the SFTPD gene, which encodes a surfactant pulmonary-associated protein involved in normal respiration and innate host defense. Our study thus identifies two novel candidate genes and

  11. High serum zinc and serum testosterone levels were associated with excessive erythrocytosis in men at high altitudes.

    Science.gov (United States)

    Gonzales, Gustavo F; Tapia, Vilma; Gasco, Manuel; Rubio, Julio; Gonzales-Castañeda, Cynthia

    2011-12-01

    Chronic mountain sickness (CMS), a lack of adaptation to altitude characterized by excessive erythrocytosis (EE), is a health problem associated with life at high altitude. The erythropoietic process is regulated by both erythropoietin and testosterone. Zinc (Zn) is known to be related with testosterone and hemoglobin levels; meanwhile, nitric oxide was also associated with adaptation to high altitude. The aim of this study was to determine the relationship of hemoglobin and CMS score with serum levels of zinc, total testosterone (TT), calculated free testosterone (cFT), bioavailable testosterone (BAT), hemoglobin, and nitric oxide in men at high altitude with or without EE. Men residing in Lima (150 m) and Cerro de Pasco (4,340 m), Peru, were divided into three groups: (1) low altitude, (2) high altitude without EE (hemoglobin < 21 g/dl), and (3) high altitude with EE (hemoglobin ≥ 21 g/dl). Adjusted multivariable regression models showed that serum testosterone (total or free) and Zn levels were independently correlated with increased hemoglobin levels. Similarly, hemoglobin was positively related with signs/symptoms of CMS; however, both increased the serum Zn and the nitric oxide levels correlated with reduced risk for signs/symptoms of CMS. In conclusion, higher serum testosterone levels and Zn levels were associated with EE, and low scores of signs/symptoms of CMS were associated with higher Zn and nitric oxide levels.

  12. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    Directory of Open Access Journals (Sweden)

    P. B. Voss

    2010-08-01

    Full Text Available One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006 campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18–19 March: (a high-altitude advection of the top of the MCMA mixed layer, (b mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models

  13. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  14. Imaging Findings of a Survivor of Avalanche without Any Life Support at Very High Altitude and Extreme Low Temperatures

    Directory of Open Access Journals (Sweden)

    Abhishek Dwivedi

    2016-10-01

    Full Text Available Survival at high altitude is very challenging and in spite of adequate training and acclimatization, injuries are frequent. The fate of mountaineers and soldiers at such areas largely depends on the mercy of the climate. An avalanche causes physical trauma, cold injury and asphyxia to the victim. The patient in our report had diffuse cerebral edema, bilateral pulmonary consolidation and pneumothorax. In spite of the best efforts the victim succumbed to the injuries. There are many incidents of high altitude accidents in India. This case report is of a soldier deployed at the high altitude, is a lone ever reported survivor above 5000 meters, under 35 feet snow and below - 45°C for greater than 5 days of exposure to an avalanche

  15. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    Science.gov (United States)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  16. The effect of high altitude on the glycolytic activity of erythrocytes in natives of the Andean Altiplano.

    Science.gov (United States)

    Arnaud, J; Gutiérrez, N; Vergnes, H

    1983-01-01

    Glucose consumption by anaerobic glycolysis and the pentose pathway were studied in two Aymara populations living at different altitudes (3 600 m and 450 m). The measurements were made both with and without methylene blue. We observed a Pasteur effect for both pathways which may explain the increase in 2-3 DPG and ATP levels found in blood samples from people living at high altitudes. The results in the presence of methylene blue showed a reduced activity of the methaemoglobin reductase system in the high altitude group which may be partly responsible for their increased levels of methaemoglobin.

  17. Effect of Air Pollution, Contamination and High Altitude on Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Nesriene El margoushy*, Mohamad El Nashar**, Hatem Khairy*, Nihad El Nashar*, Hala Mohamad

    2013-01-01

    , associated with a high rate of rhinitis symptoms and hay fever. In addition to bronchial asthma, prevalence of allergic diseases in a sample of Taif citizens assessed by an original Arabic questionnaire (phase I evidenced a high prevalence of allergic diseases as Urticaria, allergic rhinitis with or without other co-morbidities, and atopic dermatitis. Effect of high altitude on bronchial asthma is controversial; at high altitudes, the concentrations of the allergens are reduced due to the reduced amounts of vegetation, animal populations and human influences, high UV light exposure and low humidity could be contributing factors to the benefits of high altitude other than allergen avoidance. On the contrary, Lower altitudes have significant beneficial effects for bronchial asthma patients but lessen with increasing altitudes; the mountain climate can modify respiratory function and bronchial responsiveness of asthmatic subjects. Hypoxia, hyperventilation of cold and dry air and physical exertion may worsen asthma or enhance bronchial hyper-responsiveness while a reduction in pollen and pollution may play an important role in reducing bronchial inflammation. Increasing attention has to be paid to the potential of urban air toxics to exacerbate asthma. Continued emphasis on the identification of strategies for reducing levels of urban air pollutants is warranted to reduce respiratory diseases and other diseases related to pollution. Efforts for reducing the asthma burden must focus on primary prevention to reduce the level of exposure of individuals and populations to common risk factors, particularly tobacco smoke, frequent lower respiratory infections during childhood, and environmental air pollution (indoor, outdoor, and occupational.

  18. The ISON international campaigns for monitoring of faint high altitude objects

    Science.gov (United States)

    Molotov, Igor; Agapov, Vladimir; Rumyantsev, Vasiliy; Biryukov, Vadim; Schildknecht, Thomas; Bakhtigaraev, Nail; Ibrahimov, Mansur; Papushev, Pavel; Minikulov, Nasredin; Andrievsky, Sergei

    The research of the space debris fragments at high orbits is one of the main directions of the International Scientific Optical Network (ISON) activities. Therefore the dedicated ISON subsystem for high altitude faint space debris observations is arranged with the aim of detection and continuous tracking of as large number of unknown high altitude faint objects as possible. The subsystem includes the number of large telescopes that are able to detect the objects down to 20m-21m and the middle-size telescopes for the observations of the space objects of 15m-18m. The 1-m ZIMLAT in Zimmerwald, Switzerland, 1.5-m AZT-33IK in Mondy, Siberia, 64-cm AT- 64 in Nauchniy, Crimea, 60-cm RK-600 in Mayaki near Odessa, Ukraine, 60-cm Zeiss-600 in Maidanak, Uzbekistan, 70-cm AZT-8 in Gissar, Tajikistan are regularly participating in ISON observing campaigns in collaboration with 1-m Zeiss-1000 ESA space debris telescope in Teide, Canaries islands. 2.6-m ZTSh in Nauchniy, Crimea, 2-m Zeiss-2000 in Terskol, North Caucasus, 1-m Zeiss-1000 in Simeiz, Crimea, 1-m Zeiss-1000 in Arkhyz, North Caucasus are joining during few nights per month. The 60-cm Zeiss-600 in Arkhyz, 70-cm AZT-8 in Evpatoria, Crimea, 60-cm Zeiss-600 in Tarija, Bolivia, 80-cm RK-800 in Mayaki, 80-cm K-800 in Terskol, 50-cm in Ussuriysk, Far East will be added to the subsystem during 2008. The observing campaigns are coordinates by the Center on space debris data collection, processing and analysis of the KIAM RAS in cooperation with the AIUB space debris team. 353 faint objects are discovered in GEO region surveys during the last 3 years (about 100000 measurements were collected for this time), including objects with high AMR. Results are publishing monthly by KIAM in High Geocentric Orbit Space Debris Circular. We will discuss the most interesting of obtained results. Many of discovered fragments are associated with space debris clouds appeared as a result of known or suspected fragmentations occurred in GEO region

  19. Elevation of circulating miR-210-3p in high-altitude hypoxic environment

    Directory of Open Access Journals (Sweden)

    Yan eYan

    2016-03-01

    Full Text Available Background: The induction of miR-210-3p, a master hypoxamir, is a consistent feature of the hypoxic response in both normal and malignant cells. However, whether miR-210-3p acts as a circulating factor in response to a hypoxic environment remains unknown. The current study aimed to examine the effect of a high-altitude hypoxic environment on circulating miR-210-3p.Methods: We examined and compared the levels of miR-210-3p using TaqMan-based qRT-PCR in both peripheral blood cells and plasma from 84 ethnic Chinese Tibetans residing at 3560 m, 46 newly arrived migrant Han Chinese (Tibet Han and 82 Han Chinese residing at 8.9 m (Nanjing Han. Furthermore, we analyzed the correlations of miR-210-3p with hematological indices. Results: The relative concentrations of miR-210-3p to internal reference U6 in blood cells were significantly higher in the Tibet Han group (1.01±0.11, P<0.001 and in the Tibetan group (1.17±0.09, P<0.001 than in the Nanjing Han group (0.51±0.04. The absolute concentrations of plasma miR-210-3p were also markedly elevated in the Tibet Han group (503.54±42.95 fmol/L, P=0.004 and in the Tibetan group (557.78±39.84 fmol/L, P<0.001 compared to the Nanjing Han group (358.39±16.16 fmol/L. However, in both blood cells and plasma, miR-210-3p levels were not significantly different between the Tibet Han group and the Tibetan group (P=0.280, P=0.620, respectively. Plasma miR-210-3p concentrations were positively correlated with miR-210-3p levels in blood cells (r=0.192, P=0.005. Furthermore, miR-210-3p levels in both blood cells and plasma showed strong positive correlations with red blood cell counts and hemoglobin and hematocrit values. Conclusion: These data demonstrated, for the first time, that miR-210-3p might act as a circulating factor in response to hypoxic environments and could be associated with human adaptation to life at high altitudes.

  20. Dark Adaptation at High Altitude: An Unexpected Pupillary Response to Chronic Hypoxia in Andean Highlanders.

    Science.gov (United States)

    Healy, Katherine; Labrique, Alain B; Miranda, J Jaime; Gilman, Robert H; Danz, David; Davila-Roman, Victor G; Huicho, Luis; León-Velarde, Fabiola; Checkley, William

    2016-09-01

    Healy, Katherine, Alain B. Labrique, J. Jaime Miranda, Robert H. Gilman, David Danz, Victor G. Davila-Roman, Luis Huicho, Fabiola León-Velarde, and William Checkley. Dark adaptation at high altitude: an unexpected pupillary response to chronic hypoxia in Andean highlanders. High Alt Med Biol. 17:208-213, 2016.-Chronic mountain sickness is a maladaptive response to high altitude (>2500 m above sea level) and is characterized by excessive erythrocytosis and hypoxemia resulting from long-term hypobaric hypoxia. There is no known early predictor of chronic mountain sickness and the diagnosis is based on the presence of excessive erythrocytosis and clinical features. Impaired dark adaptation, or an inability to visually adjust from high- to low-light settings, occurs in response to mild hypoxia and may serve as an early predictor of hypoxemia and chronic mountain sickness. We aimed to evaluate the association between pupillary response assessed by dark adaptometry and daytime hypoxemia in resident Andean highlanders aged ≥35 years living in Puno, Peru. Oxyhemoglobin saturation (SpO2) was recorded using a handheld pulse oximeter. Dark adaptation was quantitatively assessed as the magnitude of pupillary contraction to light stimuli of varying intensities (-2.9 to 0.1 log-cd/m(2)) using a portable dark adaptometer. Individual- and stimulus-specific multilevel analyses were conducted using mixed-effect models to elicit the relationship between SpO2 and pupillary responsiveness. Among 93 participants, mean age was 54.9 ± 11.0 years, 48% were male, 44% were night blind, and mean SpO2 was 89.3% ± 3.4%. The magnitude of pupillary contraction was greater with lower SpO2 (p dark-adapted conditions was exaggerated with hypoxemia and may serve as an early predictor of chronic mountain sickness. This unexpected association is potentially explained as an excessive and unregulated sympathetic response to hypoxemia at altitude.

  1. Managing High-Altitude Pulmonary Edema with Oxygen Alone: Results of a Randomized Controlled Trial.

    Science.gov (United States)

    Yanamandra, Uday; Nair, Velu; Singh, Surinderpal; Gupta, Amul; Mulajkar, Deepak; Yanamandra, Sushma; Norgais, Konchok; Mukherjee, Ruchira; Singh, Vikrant; Bhattachar, Srinivasa A; Patyal, Sagarika; Grewal, Rajan; Chopra, Bhushan

    2016-12-01

    Yanamandra, Uday, Velu Nair, Surinderpal Singh, Amul Gupta, Deepak Mulajkar, Sushma Yanamandra, Konchok Norgais, Ruchira Mukherjee, Vikrant Singh, Srinivasa A. Bhattachar, Sagarika Patyal, and Rajan Grewal. High-altitude pulmonary edema management: Is anything other than oxygen required? Results of a randomized controlled trial. High Alt Med Biol. 17:294-299, 2016.-Treatment strategies for management of high-altitude pulmonary edema (HAPE) are mainly based on the observational studies with only two randomized controlled trials, thus the practice is very heterogeneous and individualized as per the choice of treating physician. To compare the response to different modalities of therapy in patients with HAPE in a randomized controlled manner. We conducted an open-label, randomized noninferiority trial to compare three modalities of therapy (Therapy 1: supplemental O2 with oral dexamethasone 8 mg q8 hours [n = 42], Therapy 2: supplemental O2 with sustained release oral nifedipine 20 mg q8 hours [n = 41], and Therapy 3: only supplemental O2 [n = 50]). Bed rest was mandated in all patients. The study was conducted in a cohort of previously healthy young lowlander males at an altitude of 3500 m. Baseline characteristics of the patients were comparable in the study arms. Complete response was defined as clinical and radiological resolution of features of HAPE, no oxygen dependency, a normal 6-minute walk test (6MWT) on 2 consecutive days, and normal two-dimensional echocardiography. Results were compared by analysis of variance using SPSS version 16.0. There was no statistical difference in duration of therapy to complete response between the three groups (Therapy 1: 8.1 ± 4.0 days, Therapy 2: 6.7 ± 3.9 days, Therapy 3: 6.8 ± 3.2 days; p = 0.15). There were no deaths in any of the groups. We conclude that oxygen and bed rest alone are adequate therapy for HAPE and that adjuvant pharmacotherapy with either dexamethasone or nifedipine

  2. Niche segregation in high-altitude Himalayan chats (Aves, Turdidae): does morphology match ecology?

    Science.gov (United States)

    Landmann, Armin; Winding, Norbert

    1993-10-01

    We investigated patterns of habitat segregation and morphological differentiation in syntopic, closely related turdid birds of the alpine zone of the Central Himalayas. Discriminant function analysis of 19 habitat structure parameters and comparisons of additional habitat features revealed that the species were distributed along gradients of vegetation height and vegetation density. In addition, non-vegetational structural habitat features, like microrelief variability or the presence of rocks and boulders, had strong discriminating power. In terms of habitat preferences the species of the guild investigated formed three subsets: shrubbery species (Erithacus pectoralis, E. chrysaeus and Hodgsonius phoenicuroides), species preferring open areas with higher surface roughness (Phoenicurus frontalis, Chaimarrornis leucocephalus) and the high-altitude species Grandala coelicolor. Using discriminant function analysis of 20 characters, morphology was analysed in relation to microhabitat utilization and foraging behaviour. Species inhabiting patches of shrubby thickets and foraging mainly by pedal movements (E. pectoralis, E. chrysaeus and H. phoenicuroides) have in common short rounded wings with high wing loading and strong legs and feet. Species preferably foraging by aerial hawking or "perch and pounce" techniques in more open areas (P. frontalis, C. chaimarrornis, and to some extent E. cyanurus) have longer wings, shorter tarsi and long rictal bristles. Grandala proved to be well adpated for long-distance flights at high altitudes (long, pointed wings) and for pedal foraging. Overall our results fit the basic assumption of ecomorphological theory that morphological distance reflects ecological distance. The ordination of each species in morphological space closely matched its distribution in ecological space (microhabitat, foraging strategies). Striking associations of morphology with ecology were not only evident for single traits but were also found in

  3. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Qian [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou (China); Shao, Yuan; Wang, Ying Zhen [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Jing, Yu Hong [Institute of Anatomy, School of Basic Medicine, Lanzhou University, Lanzhou (China); Zhang, You Cheng, E-mail: zhangychmd@126.com [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China)

    2014-04-04

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  4. Measurement of polar stratospheric NO2 from the 23rd and 24th Japanese Antarctic Research Expedition (JARE) balloon experiments

    Science.gov (United States)

    Shibasaki, K.; Iwagami, N.; Ogawa, T.

    1985-01-01

    As a part of the Japanese activities of MAP in the Antarctica, balloon-borne measurements of the stratospheric NO2 profile were planned and carried out by the JARE 23rd and 24th wintering parties. Few results have been reported so far as the stratospheric NO2 profile at high latitude. There were no reported balloon measurements carried out in the Southern Hemisphere. Profiles are presented for the first balloon-borne measurement of the stratospheric NO2 in the Antarctica. Three balloons named JA21, JA25 and JA26 were launched from Syowa Station (69 deg S, 35.6 deg E) using 5000 cu. cm plastic balloons. JA21 balloon was launched on November 24, 1982, and JA25 and JA26 balloons on November 12 and 20, 1983, respectively.

  5. High altitude dives from 7000 to 14,200 feet in the Himalayas.

    Science.gov (United States)

    Sahni, T K; John, M J; Dhall, A; Chatterjee, A K

    1991-07-01

    Indian Navy divers carried out no-decompression dives at altitudes of 7000 to 14,200 ft (2134-4328 m) in the Nilgiris and Himalayas from May to July 1988. Seventy-eight dives on air and 22 dives on oxygen were carried out at various altitudes. The final dives were at Lake Pangong Tso (4328 m) in Ladakh, Himalayas, to a maximum of 140 feet of sea water (fsw) [42.6 meters of sea water (msw)] equivalent ocean depth in minimum water temperature of 2 degrees C. Oxygen diving at 14,200 ft (4328 m) was not successful. Aspects considered were altitude adaptation, diminished air pressure diving, hypothermia, and remote area survival. Depths at altitude were converted to depths at sea level and were applied to the Royal Navy air tables. Altitude-related manifestations, hypoxia, hypothermia, suspected oxygen toxicity, and equipment failure were observed. It is concluded that stress is due to effects of altitude and cold on man and equipment, as well as changes in diving procedures when diving at high altitudes. Equivalent air depths when applied to Royal Navy tables could be considered a safe method for diving at altitudes.

  6. Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India.

    Science.gov (United States)

    Singh, Y; Khattar, Jis; Singh, D P; Rahi, P; Gulati, A

    2014-09-01

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ultra-oligotrophic. Based on morphology and 16S rRNA gene sequence, a total of 20 cyanobacterial species belonging to 11 genera were identified. Canonical correspondence analysis distinguished three groups of species with respect to their occurrence and nutrient/physical environment demand. The first group, which included Nostoc linckia, N. punctiforme, Nodularia sphaerocarpa, Geitlerinema acutissimum, Limnothrix redekii, Planktothrix agardhii and Plank. clathrata, was characteristic of water with high nutrient content and high temperature. The second group, including Gloeocapsopsis pleurocapsoides, Leptolyngbya antarctica, L. frigida, Pseudanabaena frigida and N. spongiaeforme, occurred in oligotrophic water with high pH and low temperature. The distribution of third group of Cyanobium parvum, Synechocystis pevalekii, L. benthonica, L. foveolarum, L. lurida, L. valderiana, Phormidium autumnale and P. chalybeum could not be associated with a particular environmental condition because of their presence in all sampling sites.

  7. Dementia in a tribal landlocked elderly population at high altitude: What explains the lower prevalence?

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Raina

    2016-01-01

    Full Text Available Introduction: Studies across the populations have suggested that dementia is differentially distributed with a lower prevalence in developing regions than the developed ones. A comparison in the prevalence of dementia across populations may provide an insight into its risk factors. Earlier, we reported on the prevalence of dementia in elderly population in migrant, urban, rural, and tribal populations. The present study was conducted with a view to estimating the prevalence of dementia in Tribal Landlocked Elderly Population at high altitude and therefore to draw some conclusions on the differential distribution of dementia across populations. Methods: A cross-sectional comprehensive two-phase survey of all residents aged 60 years and older was conducted. Phase 1 involved screening of all individuals aged 60 and above with the help of a cognitive screen specifically developed for the tribal population. Phase 2 involved clinical examination of individuals who were suspected of dementia as per the developed cognitive screening test. Results: The results revealed that six individuals out of a total of 481 studied above 60 years of age in the studied population scored between 17 and 23, thus qualifying as suffering from mild cognitive impairment. Importantly, none of the individuals above 60 years of age scored <17. Discussion: The current study is in conformity with our previous study conducted on urban, rural, and migrant areas of the state of Himachal Pradesh again emphasizing on dementia being rare in tribal populations and thereby pointing to the presence of some protective factors among tribal people.

  8. Hydrological processes in glacierized high-altitude basins of the western Himalayas

    Science.gov (United States)

    Jeelani, Ghulam; Shah, Rouf A.; Fryar, Alan E.; Deshpande, Rajendrakumar D.; Mukherjee, Abhijit; Perrin, Jerome

    2017-09-01

    Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input-output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

  9. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    Directory of Open Access Journals (Sweden)

    Tania dos Reis Mendonça

    2016-03-01

    Full Text Available ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of altitude in Divinolândia, São Paulo State, Brazil. The Chardonnay vines (clone 96, grafted onto 1103 Paulsen rootstock and trained in a vertical shoot positioning trellis system, were assessed. Vegetative vigor, bud fruitfulness, production and physicochemical composition of grapes were evaluated during 2014 and 2015 growing seasons. The Royat pruning induced higher vegetative vigor and increased the bud fruitfulness, the cluster number and the productivity of Chardonnay vine when compared to Guyot pruning. Even though the increase on yield was observed, there was no effect of pruning type on grape final quality. Therefore, the choice of pruning method in function of variety genetic characteristics and their interaction with environment can optimize the vineyard profitability. In the Brazilian southeast, the Royat system is the most suitable one to grow Chardonnay for sparkling wines production.

  10. Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P < 0.05) on 16S rRNA gene diversity revealed significant differences (P < 0.05) between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.

  11. Shared and unique signals of high-altitude adaptation in geographically distinct Tibetan populations.

    Directory of Open Access Journals (Sweden)

    Tana Wuren

    Full Text Available Recent studies have used a variety of analytical methods to identify genes targeted by selection in high-altitude populations located throughout the Tibetan Plateau. Despite differences in analytic strategies and sample location, hypoxia-related genes, including EPAS1 and EGLN1, were identified in multiple studies. By applying the same analytic methods to genome-wide SNP information used in our previous study of a Tibetan population (n = 31 from the township of Maduo, located in the northeastern corner of the Qinghai-Tibetan Plateau (4200 m, we have identified common targets of natural selection in a second geographically and linguistically distinct Tibetan population (n = 46 in the Tuo Tuo River township (4500 m. Our analyses provide evidence for natural selection based on iHS and XP-EHH signals in both populations at the p<0.02 significance level for EPAS1, EGLN1, HMOX2, and CYP17A1 and for PKLR, HFE, and HBB and HBG2, which have also been reported in other studies. We highlight differences (i.e., stratification and admixture in the two distinct Tibetan groups examined here and report selection candidate genes common to both groups. These findings should be considered in the prioritization of selection candidate genes in future genetic studies in Tibet.

  12. The impact of high altitude aircraft on the ozone layer in the stratosphere

    Science.gov (United States)

    Tie, Xue XI; Brasseur, Guy; Lin, Xing; Friedlingstein, P.; Granier, Claire; Rasch, Philip

    1994-01-01

    The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10-20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NOx from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.

  13. Variability of sunspot cycle QBO and total ozone over high altitude western Himalayan regions

    Science.gov (United States)

    Ningombam, Shantikumar Singh

    2011-10-01

    Long-term trend of total column ozone at high altitude region in Ladakh is studied, using a total ozone mapping spectrometer and an ozone monitoring instrument during 1979-2008. In the region, total ozone exhibits seasonality with maximum in spring and minimum in autumn. The decreasing trend of total ozone was found as -2.51±0.45% per decade with 95% confidence level in the region. Ozone deficiency in the Ladakh region is strongest (-33.9 DU at Hanle) in May and weakest (-11.5 DU at Hanle) in January-February. In the study, the solar maximum in 1990 is in phase with ozone maximum, while ozone variation lags in phase with the 1980 and 2000 solar maxima. However, a significant correlation between total ozone and sunspot number is achieved in the westerly phase of quasi-biennial oscillation during spring season. Decreasing trend of ozone in the region is correlating well with the cooling rate in the lower stratosphere.

  14. Spatial sensitivities of human health risk to intercontinental and high-altitude pollution

    Science.gov (United States)

    Koo, Jamin; Wang, Qiqi; Henze, Daven K.; Waitz, Ian A.; Barrett, Steven R. H.

    2013-06-01

    We perform the first long-term (>1 year) continuous adjoint simulations with a global atmospheric chemistry-transport model focusing on population exposure to fine particulate matter (PM2.5) and associated risk of early death. Sensitivities relevant to intercontinental and high-altitude PM pollution are calculated with particular application to aircraft emissions. Specifically, the sensitivities of premature mortality risk in different regions to NOx, SOx, CO, VOC and primary PM2.5 emissions as a function of location are computed. We apply the resultant sensitivity matrices to aircraft emissions, finding that NOx emissions are responsible for 93% of population exposure to aircraft-attributable PM2.5. Aircraft NOx accounts for all of aircraft-attributable nitrate exposure (as expected) and 53% of aircraft-attributable sulfate exposure due to the strong "oxidative coupling" between aircraft NOx emissions and non-aviation SO2 emissions in terms of sulfate formation. Of the health risk-weighted human PM2.5 exposure attributable to aviation, 73% occurs in Asia, followed by 18% in Europe. 95% of the air quality impacts of aircraft emissions in the US are incurred outside the US. We also assess the impact of uncertainty or changes in (non-aviation) ammonia emissions on aviation-attributable PM2.5 exposure by calculating second-order sensitivities. We note the potential application of the sensitivity matrices as a rapid policy analysis tool in aviation environmental policy contexts.

  15. Tropical Cyclone Precipitation Types and Electrical Field Information Observed by High Altitude Aircraft Instrumentation

    Science.gov (United States)

    Hood, Robbie E.; Blakeslee, Richard; Cecil, Daniel; LaFontaine, Frank J.; Heymsfield, Gerald; Marks, Frank

    2004-01-01

    During the 1998 and 200 1 hurricane seasons of the Atlantic Ocean Basin, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture Experiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. A rainfall screening technique has been developed using AMPR passive microwave observations of these tropical cyclones (TC) collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz and verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scam collected by the National Oceanic and Atmospheric Administration (NOM) P-3 radar. Matching the rainfall classification results with coincident electrical field information collected by the LIP readily identifl convective rain regions within the TC precipitation fields. Strengths and weaknesses of the rainfall classification procedure will be discussed as well as its potential as a real-time analysis tool for monitoring vertical updrafl strength and convective intensity from a remotely operated or uninhabited aerial vehicle.

  16. Origin of the turbulent spectra in the high-altitude cusp: Cluster spacecraft observations

    Directory of Open Access Journals (Sweden)

    K. Nykyri

    2006-05-01

    Full Text Available High-resolution magnetic field data from Cluster Flux Gate Magnetometer (FGM and the Spatio-Temporal Analysis of Field Fluctuations (STAFF instruments are used to study turbulent magnetic field fluctuations during the high-altitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence whose power correlates with the field-aligned ion plasma flux. The magnetic field wave spectra shows power law behavior with both double and single slopes with break in the spectra usually occurring in the vicinity of the local ion cyclotron frequency. Strong peaks in the wave power close to local ion cyclotron frequency were sometimes observed, with secondary peaks at higher harmonics indicative of resonant processes between protons and the waves. We show that the observed spectral break point may be caused partly by damping of obliquely propagating kinetic Alfvén (KAW waves and partly by cyclotron damping of ion cyclotron waves.

  17. Cluster observations of magnetic field fluctuations in the high-altitude cusp

    Directory of Open Access Journals (Sweden)

    K. Nykyri

    2004-07-01

    Full Text Available High-resolution (22 vector/s magnetic field data from Cluster FGM instrument are presented for the high-altitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence for much of the crossing. Large-scale fluctuations show some correlation between spacecraft but the higher frequency fluctuations show no correlation, indicating that the length scales of these waves are smaller than the spacecraft separation (500km. In many intervals, there are clear peaks in the wave power around the ion cyclotron frequency (~1Hz, and there is some evidence for waves at the first harmonic of this frequency. Both left- and right-hand polarised waves are found, with angles of propagation with respect to the ambient magnetic field that range from parallel to perpendicular. The regions of enhanced magnetic field fluctuations appear to be associated with plasma flows possibly originating from a lobe reconnection site. The most coherent, long lasting wave trains with frequencies close to local ion cyclotron frequency occur at a boundary between a sheared flow and a stagnant plasma.

  18. Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India

    Indian Academy of Sciences (India)

    Y Singh; J I S Khattar; D P Singh; P Rahi; A Gulati

    2014-09-01

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ultra-oligotrophic. Based on morphology and 16S rRNA gene sequence, a total of 20 cyanobacterial species belonging to 11 genera were identified. Canonical correspondence analysis distinguished three groups of species with respect to their occurrence and nutrient/physical environment demand. The first group, which included Nostoc linckia, N. punctiforme, Nodularia sphaerocarpa, Geitlerinema acutissimum, Limnothrix redekii, Planktothrix agardhii and Plank. clathrata, was characteristic of water with high nutrient content and high temperature. The second group, including Gloeocapsopsis pleurocapsoides, Leptolyngbya antarctica, L. frigida, Pseudanabaena frigida and N. spongiaeforme, occurred in oligotrophic water with high pH and low temperature. The distribution of third group of Cyanobium parvum, Synechocystis pevalekii, L. benthonica, L. foveolarum, L. lurida, L. valderiana, Phormidium autumnale and P. chalybeum could not be associated with a particular environmental condition because of their presence in all sampling sites.

  19. Dirrofilariasis in Shepherd Dogs of High Altitudes Areas in West Azerbaijan-Iran

    Directory of Open Access Journals (Sweden)

    Mojtaba Hadian

    2011-03-01

    Full Text Available Although the biology and ecology of the arthropod vectors are different, some factors, such as global warming, the increasing abundance of mosquitoes, the movement of domestic hosts, and the abundance of wild reservoirs, can act as favourable factors for the distribution of infections. The aim of this study was to determine the prevalence of Dirofilaria immitis infection in shepherd dogs living in the high altitude of mountainous area (i.e.1200 meters above the sea level. The study group was comprised of 160 shepherd dogs living in 4 mountainous regions (Targavar, Margavar, Kolshin and Hovarchin of west Azerbaijan where continuous movement of sheep and goat flocks resulted to have a little information about shepherd dogs in these regions. Additionally, arduous pathways have made impossible any access by car to some territories of these areas. The dogs were mostly mixed raced with different ages (from 1 to 10 years and sexes (male = 136, female = 24. Blood samples were collected from cephalic vein. Direct thin and thick blood smears and modified knott’s technique were used for detecting D.immitis microfilariae and other blood parasites. The results indicated that 40 (25 % of dogs were infected with D. immitis microfilariae. In examination of the dogs, no severe life threatening feature of the disease was diagnosed. There were no significant differences (P > 0.05 of Dirrofilaria infection among gender, age groups and geographical areas. High prevalence of asymptomatic Dirrofilariasis in shepherd dogs in this area highlights the need of controlling and preventive programs.

  20. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    Science.gov (United States)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  1. Classification of Tropical Oceanic Precipitation using High-Altitude Aircraft Microwave and Electric Field Measurements.

    Science.gov (United States)

    Hood, Robbie E.; Cecil, Daniel J.; Lafontaine, Frank J.; Blakeslee, Richard J.; Mach, Douglas M.; Heymsfield, Gerald M.; Marks, Frank D., Jr.; Zipser, Edward J.; Goodman, Michael

    2006-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the NASA ER-2 high-altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35, 37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower-altitude horizontal reflectivity scans collected by the NOAA WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  2. HAVOC: High Altitude Venus Operational Concept - An Exploration Strategy for Venus

    Science.gov (United States)

    Arney, Dale; Jones, Chris

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A lighter-than-air vehicle can carry either a host of instruments and probes, or a habitat and ascent vehicle for a crew of two astronauts to explore Venus for up to a month. The mission requires less time to complete than a crewed Mars mission, and the environment at 50 km is relatively benign, with similar pressure, density, gravity, and radiation protection to the surface of Earth. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30 day crewed mission into Venus's atmosphere. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. With advances in technology and further refinement of the concept, missions to the Venusian atmosphere can expand humanity's future in space.

  3. High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development

    Science.gov (United States)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.

    2007-01-01

    An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.

  4. Wave particle interactions in the high-altitude polar cusp: a Cluster case study

    Directory of Open Access Journals (Sweden)

    B. Grison

    2005-12-01

    Full Text Available On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation the high-altitude (10 RE cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame. Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected.

  5. Plasma proteomic study in patients with high altitude pulmonary edema (HAPE

    Directory of Open Access Journals (Sweden)

    Yong-jun LUO

    2012-01-01

    Full Text Available Objective  To investigate the differential expressions of protein in the plasma proteome in patients suffering from high altitude pulmonary edema (HAPE and their implications. Methods  The plasmas of six HAPE patients and six healthy controls were studied. The high-abundant proteins in the plasma were removed. The low-abundant proteins in the plasma/serum were segregated by 2-DE. MALDI-TOF/MS was adopted to measure the peptide fingerprints after the differential protein spots were digested by enzymes. Comparison and analysis were made in the GenBank. Results  The immunoglobulin K1 light chain, serum transferrin protein precursor, and α-trypsin inhibitor heavy chain-related protein expressions were upregulated in HAPE patients compared with the control group. However the human fibrin glue coagulation protein 3 was down-regulated. Conclusion  The differential expression of the above four proteins in the plasma of HAPE patients may be related to the occurrence of HAPE and can be used as the target point for the prediction of HAPE.

  6. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  7. Butterflies of the high-altitude Atacama Desert: habitat use and conservation

    Science.gov (United States)

    Despland, Emma

    2014-01-01

    The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 5000 m asl (prepuna, puna and Andean steppe habitats) as well as in high and low-altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life history strategies and relationships with host plants. PMID:25309583

  8. Characterization of municipal solid waste in high-altitude sub-tropical regions.

    Science.gov (United States)

    Kumar, Sunil; Dhar, Hiya; Nair, Vijay V; Bhattacharyya, J K; Vaidya, A N; Akolkar, A B

    2016-10-01

    Solid waste management (SWM) is one of the most challenging issues owing to lack of authentic data on different elements of SWM, namely, storage, collection, transportation, separation, processing and disposal. This study presents an assessment of existing status of SWM in conjunction with municipal solid waste (MSW) generation rates, physical and chemical characterization of MSW in high-altitude sub-tropical regions. Weighing of empty and fully loaded trucks per trip revealed total quantity of MSW collected. The average efficiency of MSW collection was 70%. From the baseline data, it is inferred that the population and MSW generation rates are not co-related. The collected MSW included biodegradables (organic wastes), paper, plastic, glass, ceramics, metals, inert materials, ash and debris. The data analysis indicated that the biodegradable components dominate the characterization at 54.83% followed by inert, ash and debris at 21.06%, paper at 8.77%, plastic at 8.18%, glass and ceramics at 4.45% and metals at 2.71%. Statistical measures were also applied and 90% confidence interval (CI) was generated for the characterization data measuring its statistical significance.

  9. Tropical Cyclone Precipitation Types and Electrical Field Information Observed by High Altitude Aircraft Instrumentation

    Science.gov (United States)

    Hood, Robbie E.; Blakeslee, Richard; Cecil, Daniel; LaFontaine, Frank J.; Heymsfield, Gerald; Marks, Frank

    2004-01-01

    During the 1998 and 200 1 hurricane seasons of the Atlantic Ocean Basin, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture Experiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. A rainfall screening technique has been developed using AMPR passive microwave observations of these tropical cyclones (TC) collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz and verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scam collected by the National Oceanic and Atmospheric Administration (NOM) P-3 radar. Matching the rainfall classification results with coincident electrical field information collected by the LIP readily identifl convective rain regions within the TC precipitation fields. Strengths and weaknesses of the rainfall classification procedure will be discussed as well as its potential as a real-time analysis tool for monitoring vertical updrafl strength and convective intensity from a remotely operated or uninhabited aerial vehicle.

  10. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    Science.gov (United States)

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals.

  11. Chemical Analysis of Pottery Demonstrates Prehistoric Origin for High-Altitude Alpine Dairying.

    Science.gov (United States)

    Carrer, Francesco; Colonese, André Carlo; Lucquin, Alexandre; Petersen Guedes, Eduardo; Thompson, Anu; Walsh, Kevin; Reitmaier, Thomas; Craig, Oliver E

    2016-01-01

    The European high Alps are internationally renowned for their dairy produce, which are of huge cultural and economic significance to the region. Although the recent history of alpine dairying has been well studied, virtually nothing is known regarding the origins of this practice. This is due to poor preservation of high altitude archaeological sites and the ephemeral nature of transhumance economic practices. Archaeologists have suggested that stone structures that appear around 3,000 years ago are associated with more intense seasonal occupation of the high Alps and perhaps the establishment of new economic strategies. Here, we report on organic residue analysis of small fragments of pottery sherds that are occasionally preserved both at these sites and earlier prehistoric rock-shelters. Based mainly on isotopic criteria, dairy lipids could only be identified on ceramics from the stone structures, which date to the Iron Age (ca. 3,000-2,500 BP), providing the earliest evidence of this practice in the high Alps. Dairy production in such a marginal environment implies a high degree of risk even by today's standards. We postulate that this practice was driven by population increase and climate deterioration that put pressure on lowland agropastoral systems and the establishment of more extensive trade networks, leading to greater demand for highly nutritious and transportable dairy products.

  12. HAMP – the microwave package on the High Altitude and LOng range research aircraft (HALO

    Directory of Open Access Journals (Sweden)

    M. Mech

    2014-12-01

    Full Text Available An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO. The HALO Microwave Package, HAMP, consists of two nadir-looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential, synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud-resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a root-mean-square error reduced by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km, which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining a better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  13. Oxygen ion energization by waves in the high altitude cusp and mantle

    Directory of Open Access Journals (Sweden)

    M. Waara

    2012-09-01

    Full Text Available We present a comparative study of low frequency electric field spectral densities and temperatures observed by the Cluster spacecraft in the high altitude cusp/mantle region. We compare the relation between the O+ temperature and wave intensity at the oxygen gyrofrequency at each measurement point and find a clear correlation. The trend of the correlation agrees with the predictions by both an asymptotic mean-particle theory and a test-particle approach. The perpendicular to parallel temperature ratio is also consistent with the predictions of the asymptotic mean-particle theory. At times the perpendicular temperature is significantly higher than predicted by the models. A simple study of the evolution of the particle distributions (conics at these altitudes indicates that enhanced perpendicular temperatures would be observed over many RE after heating ceases. Therefore, sporadic intense heating is the likely explanation for cases with high temperature and comparably low wave activity. We observe waves of sufficient amplitude to explain the highest observed temperatures, while the theory in general overestimates the temperature associated with the highest observed wave activity, indicating that such high wave activity is very sporadic.

  14. Dual wavelength lidar observation of tropical high-altitude cirrus clouds during the ALBATROSS 1996 Campaign

    Science.gov (United States)

    Beyerle, G.; Schäfer, H.-J.; Neuber, R.; Schrems, O.; McDermid, I. S.

    Dual wavelength aerosol lidar observations of tropical high-altitude cirrus clouds were performed during the ALBATROSS 1996 campaign aboard the research vessel “POLARSTERN” on the Atlantic ocean in October-November 1996. On the basis of 57 hours of night-time observations between 23.5°N and 23.5°S we find in 72% of the altitude profiles indications of the presence of cirrus cloud layers. This percentage drops to 32% at subtropical latitudes (23.5°-30°) based on 15 hours of data. About one-half of the subtropical and tropical cirrus layers are subvisual with an optical depth of less than 0.03 at a wavelength of 532 nm. In general the clouds exhibit high spatial and temporal variability on scales of a few tens of meters vertically and a few hundred meters horizontally. No clouds are observed above the tropopause. An abrupt change in the relation between the color ratios of the parallel and perpendicular backscatter coefficients at about 240 K is interpreted in terms of changes of particle shape and/or size distribution. At temperatures between 195 and 255 K only a small fraction of the observations are consistent with the presence of small particles with dimensions of less than 0.1 µm.

  15. An Examination of Corrections for High Altitude, High Speed Airborne Gravimetry

    Science.gov (United States)

    Preaux, S. A.; Diehl, T. M.; Childers, V. A.

    2009-12-01

    Standard corrections for airborne gravimetry are optimized for low altitude, low speed surveys. They are shown to have multi-mgal errors at the high altitude and high speed of the surveys for the GRAV-D project. Higher order methods for computing the Eötvös, free air and off-level corrections are investigated. The first and second order approximations for the Eötvös correction from Harlan (1968) have differences up to 6 mgal, depending on latitude, and include assumptions about Earth shape that are undesirable in a geodetic application. Similarly, first and second order approximations for the free air correction (Hackney and Featherstone 2003) differ by up to 20 mgal and contain assumptions about Earth shape. Including more sophisticated downward continuation when incorporating data into a geoid model may be preferable to applying a free air correction. Finally, an exact analytical method of correcting for aircraft motion and orientation is proposed which takes advantage of the GPS reference system to avoid Earth shape assumptions, eliminate approximations and yield vector gravity.

  16. HAMP – the microwave package on the High Altitude and LOng range research aircraft HALO

    Directory of Open Access Journals (Sweden)

    M. Mech

    2014-05-01

    Full Text Available An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO. The HALO Microwave Package, HAMP, consists of two nadir looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a reduced root mean square error by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  17. Tsunami deposits at high altitudes on the flanks of volcanic islands

    Science.gov (United States)

    Paris, Raphael

    2016-04-01

    It is actually difficult to infer the mechanisms and dynamics of giant mass failures of oceanic shield volcanoes and to evaluate related tsunami hazards. Marine conglomerates and gravels found at unusually high elevations in Hawaii, Cape Verde, Mauritius and Canary Islands are often interpreted as being the result of tsunami waves generated by such massive flank failures. In the first part of this contribution, we document tsunami deposits (marine gravels with pumices) attached to the northwestern slopes of Tenerife, Canary Islands, at altitudes up to 132 m asl. Stratigraphy of the deposits and composition of the pumices allows identifying sources of the successive tsunamis and proposing a new scenario for the Icod flank failure and El Abrigo caldera-forming eruption ca. 170 ka. Then we propose a litterature review of tsunami deposits at high altitudes on the flanks of volcanic islands, and especially oceanic shield volcanoes. These deposits are discussed in terms of texture, structure, composition and particularly the juvenile volcanic material, and implications for better understanding the mechanisms controlling massive flank failures.

  18. Measuring TeV cosmic rays at the High Altitude Water Cherenkov Observatory

    Directory of Open Access Journals (Sweden)

    BenZvi Segev

    2015-01-01

    Full Text Available The High-Altitude Water Cherenkov Observatory, or HAWC, is an air shower array designed to observe cosmic rays and gamma rays between 100 GeV and 100 TeV. HAWC, located between the peaks Sierra Negra and Pico de Orizaba in central Mexico, will be completed in the spring of 2015. However, the observatory has been collecting data in a partial configuration since mid-2013. With only part of the final array in data acquisition, HAWC has already accumulated a data set of nearly 100 billion air showers. These events are used to calibrate the detector angular reconstruction using the shadow of the Moon, and to measure the anisotropy in the arrival directions of cosmic rays above 1 TeV. Using data recorded between June 2013 and July 2014, we have observed a significant 10−4 anisotropy consisting of three statistically significant “hotspots” in the cosmic ray flux. We will discuss these first results from HAWC and compare them to previous measurements of anisotropy in the northern and southern sky.

  19. Measuring TeV cosmic rays at the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    BenZvi, Segev

    2015-12-01

    The High-Altitude Water Cherenkov Observatory, or HAWC, is an air shower array designed to observe cosmic rays and gamma rays between 100 GeV and 100 TeV. HAWC, located between the peaks Sierra Negra and Pico de Orizaba in central Mexico, will be completed in the spring of 2015. However, the observatory has been collecting data in a partial configuration since mid-2013. With only part of the final array in data acquisition, HAWC has already accumulated a data set of nearly 100 billion air showers. These events are used to calibrate the detector angular reconstruction using the shadow of the Moon, and to measure the anisotropy in the arrival directions of cosmic rays above 1 TeV. Using data recorded between June 2013 and July 2014, we have observed a significant 10-4 anisotropy consisting of three statistically significant "hotspots" in the cosmic ray flux. We will discuss these first results from HAWC and compare them to previous measurements of anisotropy in the northern and southern sky.

  20. Effects of High Altitude on Sleep and Respiratory System and Theirs Adaptations

    Directory of Open Access Journals (Sweden)

    Turhan San

    2013-01-01

    Full Text Available High-altitude (HA environments have adverse effects on the normal functioning body of people accustomed to living at low altitudes because of the change in barometric pressure which causes decrease in the amount of oxygen leading to hypobaric hypoxia. Sustained exposure to hypoxia has adverse effects on body weight, muscle structure and exercise capacity, mental functioning, and sleep quality. The most important step of acclimatization is the hyperventilation which is achieved by hypoxic ventilatory response of the peripheral chemoreceptors. Hyperventilation results in increase in arterial carbondioxide concentration. Altitude also affects sleep and cardiac output, which is the other determinant of oxygen delivery. Upon initial exposure to HA, the resting pulse rate increases rapidly, but with acclimatization, heart rate and cardiac output tend to fall. Another important component that leads to decrease in cardiac output is the reduction in the stroke volume with acclimatization. During sleep at HA, the levels of CO2 in the blood can drop very low and this can switch off the drive to breathe. Only after the body senses a further drop in O2 levels breathing is started again. Periodic breathing is thought to result from instability in the control system through the hypoxic drive or the response to CO2.

  1. UV-B impairs growth and gas exchange in grapevines grown in high altitude.

    Science.gov (United States)

    Berli, Federico J; Alonso, Rodrigo; Bressan-Smith, Ricardo; Bottini, Rubén

    2013-09-01

    We previously demonstrated that solar ultraviolet-B (UV-B) radiation levels in high altitude vineyards improve berry quality in Vitis vinifera cv. Malbec, but also reduce berry size and yield, possibly as a consequence of increased oxidative damage and growth reductions (lower photosynthesis). The defense mechanisms toward UV-B signal and/or evoked damage promote production of antioxidant secondary metabolites instead of primary metabolites. Purportedly, the UV-B effects will depend on tissues developmental stage and interplay with other environmental conditions, especially stressful situations. In this work, grapevines were exposed to high solar UV-B (+UV-B) and reduced (by filtering) UV-B (-UV-B) treatments during three consecutive seasons, and the effects of UV-B, developmental stages and seasons on the physiology were studied, i.e. growth, tissues morphology, photosynthesis, photoprotective pigments, proline content and antioxidant capacity of leaves. The +UV-B reduced photosynthesis and stomatal conductance, mainly through limitation in gas exchange, reducing plant's leaf area, net carbon fixation and growth. The +UV-B augmented leaf thickness, and also the amounts of photoprotective pigments and proline, thereby increasing the antioxidant capacity of leaves. The defense mechanisms triggered by + UV-B reduced lipid peroxidation, but they were insufficient to protect the photosynthetic pigments per leaf dry weight basis. The +UV-B effects depend on tissues developmental stage and interplay with other environmental conditions such as total radiation and air temperatures.

  2. [Sperm count and seminal biochemistry of high altitude inhabitants and patients with chronic altitude sickness].

    Science.gov (United States)

    García-Hjarles, M A

    1989-04-01

    Semen analysis has been studied in 9 healthy adult males from sea level (150 m), age 19-32 years old and 15 healthy males from high altitude (NA), 9 from Cerro de Pasco (4,300 m) and 6 from Morococha (4,540 m), ages 19-45 years old. Five patients with chronic mountain sickness (MMC), whose ages ranged from 23 to 52 years old were also studied. The volume and motility were similar in NA and MMC, however both were below than in sea level subjects, but still in the normal range; the number of spermatozoa per 1 ml was lower at sea level than in NA and MMC, although the total number was higher at sea level due to the higher semen volume. Fructose at sea level was 356 +/- 53 mg/100 ml (mean +/- S.E.) which is similar to NA 237 +/- 45 whereas a MMC was significantly lower, 142 +/- 60. Citric acid was lower at sea level than in NA and MMC. Na, K and Cl, were similar among the three groups. The lower concentration of fructose in MMC parallels the decreased testicular function already found in these groups. However it is worthy to point out that the fertility is preserved in all the groups. The normal reproductive function in MMC is against the concept that this process occurs as a consequence of environmental disadaptation.

  3. COOPERATIVE DIRECTIONAL INTER-CELL HANDOVER SCHEME IN HIGH ALTITUDE PLATFORM COMMUNICATIONS SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Li Shufeng; Wang Lijie; David Grace; Ma Dongtang

    2011-01-01

    A novel Cooperative Directional inter-cell Handover Scheme (CDHS) for High Altitude Platform (HAP) communications systems is proposed,in which the handover target cell and the two cells adjacent to this handover target cell work cooperatively to exploit the traffic fluctuation to improve handover performance.Users in the overlap area of the overloaded handover target cell will be forced to handover directionally before their optimal handover boundary in order to free up resources for the handover calls which would otherwise be dropped due to the shortage of resources and queue time out.Simulation results show that the handover call dropping probability is greatly reduced (at least 60%) compared with the general queue handover scheme,with little performancereduction to the call blocking probability,and the Not in the Best Cell (NBC) average time is only increased moderately.Moreover,an optimal cell radius can be achieved for a specific platform speed by minimizing the unified system performance,which is the linear combination of the handover call dropping probability and the NBC average time.

  4. Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment

    Directory of Open Access Journals (Sweden)

    Sonia Ciccazzo

    2014-01-01

    Full Text Available The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P<0.05 on 16S rRNA gene diversity revealed significant differences (P<0.05 between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.

  5. On the Origin of High-Altitude Open Clusters in the Milky Way

    CERN Document Server

    Martinez-Medina, L A; Moreno, E; Peimbert, A; Velazquez, H

    2016-01-01

    We present a dynamical study of the effect of the bar and spiral arms on the simulated orbits of open clusters in the Galaxy. Specifically, this work is devoted to the puzzling presence of high-altitude open clusters in the Galaxy. For this purpose we employ a very detailed observationally motivated potential model for the Milky Way and a careful set of initial conditions representing the newly born open clusters in the thin disk. We find that the spiral arms are able to raise an important percentage of open clusters (about one-sixth of the total employed in our simulations, depending on the structural parameters of the arms) above the Galactic plane to heights beyond 200 pc, producing a bulge-shaped structure toward the center of the Galaxy. Contrary to what was expected, the spiral arms produce a much greater vertical effect on the clusters than the bar, both in quantity and height; this is due to the sharper concentration of the mass on the spiral arms, when compared to the bar. When a bar and spiral arms ...

  6. Vitamin D, Iron Metabolism, and Diet in Alpinists During a 2-Week High-Altitude Climb.

    Science.gov (United States)

    Kasprzak, Zbigniew; Śliwicka, Ewa; Hennig, Karol; Pilaczyńska-Szcześniak, Łucja; Huta-Osiecka, Anna; Nowak, Alicja

    2015-09-01

    A defensive mechanism against hypobaric hypoxia at high altitude is erythropoesis. Some authors point to the contribution of vitamin D to the regulation of this process. The aim of the present study was to assess the 25-hydroxycholecalciferol (25(OH)D) level and its associations with iron metabolic and inflammatory indices in participants of a 2-week mountaineering expedition. The study sample included 9 alpinists practicing recreational mountain climbing. Every 2 or 3 days they set up a different base between 3200 and 3616 m with the intention of climbing 4000 m peaks in the Mont Blanc massif. Before their departure for the mountains and 2 days after returning to the sea level anthropometric parameters, hematological parameters, serum levels of 25(OH)D and iron metabolic indices were measured in all the participants. The composition of the participants' diet was also evaluated. The comparative analysis showed a significant decrease in body mass, BMI values, total iron, and 25(OH)D concentrations (pclimbing expedition contributed to the reduction of 25(OH)D levels and these changes were associated with modulation of immune processes. Moreover, the climbers' diet requires some serious modifications.

  7. Classification of Tropical Oceanic Precipitation using High-Altitude Aircraft Microwave and Electric Field Measurements

    Science.gov (United States)

    Hood, Robbie E.; Cecil, Daniel J.; LaFontaine, Frank J.; Blakeslee, Richard J.; Mach, Douglas m.; Heymsfield, Gerald M.; Marks, Frank D., Jr.; Zipser, Edward J.

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the NASA ER-2 high-altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35, 37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower-altitude horizontal reflectivity scans collected by the NOAA WP3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  8. Classification of Tropical Oceanic Precipitation using High Altitude Aircraft: Microwave and Electric Field Measurements

    Science.gov (United States)

    Hood, Robbie E.; Cecil, Daniel; LaFontaine, Frank J.; Blakeslee, Richard; Mach, Douglas; Heymsfield, Gerald; Marks, Frank, Jr.; Zipser, Edward

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration ER-2 high altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scans collected by the National Oceanic and Atmospheric Administration WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  9. Cosmic Ray Astrophysics using The High Altitude Water Cherenkov (HAWC Observatory in México

    Directory of Open Access Journals (Sweden)

    de la Fuente Eduardo

    2017-01-01

    Full Text Available The High-Altitude Water Cherenkov (HAWC TeV gamma–ray Observatory in México is ready to search and study gamma-ray emission regions, extremely high-energy cosmic-ray sources, and to identify transient phenomena. With a better Gamma/Hadron rejection method than other similar experiments, it will play a key role in triggering multi–wavelength and multi–messenger studies of active galaxies (AGN, gamma-ray bursts (GRB, supernova remnants (SNR, pulsar wind nebulae (PWN, Galactic Plane Sources, and Cosmic Ray Anisotropies. It has an instantaneous field-of-view of ∼2 str, equivalent to 15% of the whole sky and continuous operation (24 hours per day. The results obtained by HAWC–111 (111 detectors in operation were presented on the proceedings of the International Cosmic Ray Conference 2015 and in [1]. The results obtained by HAWC–300 (full operation are now under analysis and will be published in forthcoming papers starting in 2017 (see preliminary results on http://www.hawc-observatory.org/news/. Here we present the HAWC contributions on cosmic ray astrophysics via anisotropies studies, summarizing the HAWC detector and its upgrading by the installation of “outriggers”.

  10. Aerosol Characteristics at a High Altitude Location in Central Himalayas: Optical Properties and Radiative Forcing

    CERN Document Server

    Pant, P; Dumka, U C; Sagar, R; Satheesh, S K; Moorthy, K K; Sagar, Ram

    2006-01-01

    Collocated measurements of the mass concentrations of aerosol black carbon (BC) and composite aerosols near the surface were carried out along with spectral aerosol optical depths (AODs) from a high altitude station, Manora Peak in Central Himalayas, during a comprehensive aerosol field campaign in December 2004. Despite being a pristine location in the Shivalik Ranges of Central Himalayas, and having a monthly mean AOD (at 500 nm) of 0.059 $\\pm$ 0.033 (typical to this site), total suspended particulate (TSP) concentration was in the range 15 - 40 micro g m^(-3) (mean value 27.1 $\\pm$ 8.3 micro g m^(-3)). Interestingly, aerosol BC had a mean concentration of 1.36 $\\pm$ 0.99 micro g m^(-3), contributed to ~5.0 $\\pm$ 1.3 % to the composite aerosol mass. This large abundance of BC is found to have linkages to the human activities in the adjoining valley and to the boundary layer dynamics. Consequently, the inferred single scattering albedo lies in the range of 0.87 to 0.94 (mean value 0.90 $\\pm$ 0.03), indicatin...

  11. Interpreting H2O isotope variations in high-altitude ice cores using a cyclone model

    Science.gov (United States)

    Holdsworth, Gerald

    2008-04-01

    Vertical profiles of isotope (δ18O or δD) values versus altitude (z) from sea level to high altitude provide a link to cyclones, which impact most ice core sites. Cyclonic structure variations cause anomalous variations in ice core δ time series which may obscure the basic temperature signal. Only one site (Mount Logan, Yukon) provides a complete δ versus z profile generated solely from data. At other sites, such a profile has to be constructed by supplementing field data. This requires using the so-called isotopic or δ thermometer which relates δ to a reference temperature (T). The construction of gapped sections of δ versus z curves requires assuming a typical atmospheric lapse rate (dT/dz), where T is air temperature, and using the slope (dδ/dT) of a site-derived δ thermometer to calculate dδ/dz. Using a three-layer model of a cyclone, examples are given to show geometrically how changes in the thickness of the middle, mixed layer leads to the appearance of anomalous δ values in time series (producing decalibration of the δ thermometer there). The results indicate that restrictions apply to the use of the δ thermometer in ice core paleothermometry, according to site altitude, regional meteorology, and climate state.

  12. Angiotensin II receptor 1 gene variants are associated with high-altitude pulmonary edema risk.

    Science.gov (United States)

    Jin, Tianbo; Ren, Yongchao; Zhu, Xikai; Li, Xun; Ouyang, Yongri; He, Xue; Zhang, Zhiying; Zhang, Yuan; Kang, Longli; Yuan, Dongya

    2016-11-22

    Previous studies demonstrated that Angiotensin II Receptor 1 (AGTR1) may play an important role in the development of high-altitude pulmonary edema. We envisaged a role for AGTR1 gene variants in the pathogenesis of HAPE and investigated their potential associations with HAPE in a Han Chinese population. We genotyped seven AGTR1 polymorphisms in 267 patients with diagnosed HAPE and 304 controls and evaluated their association with risk of HAPE. Statistically significant associations were found for the single nucleotide polymorphisms (SNPs) rs275651 (p = 0.017; odds ratio [OR] = 0.65) and rs275652 (p = 0.016; OR = 0.64). Another SNP rs10941679 showed a marginally significant association after adjusting for age and sex in the additive genetic model (adjusted OR = 1.44, 95% CI = 1.01-2.04, p = 0.040). Haplotype analysis confirmed that the haplotype "AG" was associated with a 35% reduction in the risk of developing HAPE, while the haplotype "AA" increased the risk of developing HAPE by 44%. These results provide the first evidence linking genetic variations in AGTR1 with HAPE risk in Han Chinese individuals.

  13. The Large Aperture Gamma Ray Observatory as an Observational Alternative at High Altitude

    Science.gov (United States)

    Rosales, M.

    2011-10-01

    Although satellite observations have revealed some mysteries about the origin and location of cosmic rays at low energies, questions remain to be resolved in higher energy ranges (>1 GeV). However, the flow of particles at high energies is very low, large sensitive areas are necessary, so that the detection of secondary particles from observatories on the surface of the earth is a technically viable solution. While the Pierre Auger Observatory has such capacity given its 16000 m^2 of detectors, low height above sea level greatly reduces its detection capability. The Large Aperture Gamma Ray Observatory (LAGO) is an observational alternative that attempts to overcome this limitation. This project was started in 2005, placing water Cherenkov Detectors at high altitude. Observation sites have been selected with some basic requirements: altitude, academic and technical infrastructure, existence of a research group responsible for assembly and maintenance of the detectors and the analysis, visualization, divulgation and data storage. This paper presents the general status of the observatories of Sierra Negra-México, Chacaltaya-Bolívia, Marcapomacocha-Perú, Mérida-Venezuela and Bucaramanga-Colombia.

  14. Aerosol black carbon characteristics over a high-altitude Western Ghats location in Southern India

    Science.gov (United States)

    Udayasoorian, C.; Jayabalakrishnan, R. M.; Suguna, A. R.; Gogoi, Mukunda M.; Babu, S. Suresh

    2014-10-01

    Aerosol black carbon (BC) mass concentrations were continuously monitored over a period of 2 years (April 2010 to May 2012) from a high-altitude location Ooty in the Nilgiris Mountain range in southern India to characterize the distinct nature of absorbing aerosols and their seasonality. Despite being remote and sparsely inhabited, BC concentrations showed significant seasonality with higher values (~ 0.96 ± 0.35 μg m-3) in summer (March to May), attributed to increased vertical transport of effluents in the upwind valley regions, which might have been confined to the surrounding valley regions within the very shallow winter boundary layer. The local atmospheric boundary layer (ABL) influence in summer was further modulated by the long-range transported aerosols from the eastern locations of Ooty. During monsoon (June-August), the concentrations were far reduced (~ 0.23 ± 0.06 μg m-3) due to intense precipitation. Diurnal variations were found conspicuous mainly during summer season associated with local ABL. The spectral absorption coefficients (αabs) depicted, in general, flatter distribution (mostly < 1.0 for more than 85% of daily mean values), suggesting the relative dominance of fossil fuel combustion, though showed marginal seasonal change with higher values of αabs in summer.

  15. Four point measurements of electrons using PEACE in the high-altitude cusp

    Directory of Open Access Journals (Sweden)

    M. G. G. T. Taylor

    Full Text Available We present examples of electron measurements from the PEACE instruments on the Cluster spacecraft in the high-latitude, high-altitude region of the Earth’s magnetosphere. Using electron density and energy spectra measurements, we examine two cases where the orbit of the Cluster tetrahedron is outbound over the northern hemisphere, in the afternoon sector approaching the magnetopause. Data from the magnetometer is also used to pinpoint the position of the spacecraft with respect to magnetospheric boundaries. This preliminary work specifically highlights the benefit of the multipoint measurement capability of the Cluster mission. In the first case, we observe a small-scale spatial structure within the magnetopause boundary layer. The Cluster spacecraft initially straddle a boundary, characterised by a discontinuous change in the plasma population, with a pair of spacecraft on either side. This is followed by a complete crossing of the boundary by all four spacecraft. In the second case, Cluster encounters an isolated region of higher energy electrons within the cusp. The characteristics of this region are consistent with a trapped boundary layer plasma sheet population on closed magnetospheric field lines. However, a boundary motion study indicates that this region convects past Cluster, a characteristic more consistent with open field lines. An interpretation of this event in terms of the motion of the cusp boundary region is presented.

    Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions

  16. ON THE ORIGIN OF HIGH-ALTITUDE OPEN CLUSTERS IN THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, L. A.; Pichardo, B.; Moreno, E.; Peimbert, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., México (Mexico); Velazquez, H., E-mail: lamartinez@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, 22860 Ensenada, B.C., México (Mexico)

    2016-01-20

    We present a dynamical study of the effect of the bar and spiral arms on the simulated orbits of open clusters in the Galaxy. Specifically, this work is devoted to the puzzling presence of high-altitude open clusters in the Galaxy. For this purpose we employ a very detailed observationally motivated potential model for the Milky Way and a careful set of initial conditions representing the newly born open clusters in the thin disk. We find that the spiral arms are able to raise an important percentage of open clusters (about one-sixth of the total employed in our simulations, depending on the structural parameters of the arms) above the Galactic plane to heights beyond 200 pc, producing a bulge-shaped structure toward the center of the Galaxy. Contrary to what was expected, the spiral arms produce a much greater vertical effect on the clusters than the bar, both in quantity and height; this is due to the sharper concentration of the mass on the spiral arms, when compared to the bar. When a bar and spiral arms are included, spiral arms are still capable of raising an important percentage of the simulated open clusters through chaotic diffusion (as tested from classification analysis of the resultant high-z orbits), but the bar seems to restrain them, diminishing the elevation above the plane by a factor of about two.

  17. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    Science.gov (United States)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  18. THE RIGHT PLACE AT THE RIGHT TIME - An Analysis of High Altitude Airdrop and the Joint Precision Airdrop System

    Science.gov (United States)

    2004-06-01

    people trying to get to the food were killed ( Neuffer , Boston Globe, 2002). C-17 aircraft also performed nearly 70 high altitude CDS airdrops...Headquarters Military Airlift Command, May 1991. Neuffer , E. A., “Afghan food drops found to do little good.” Boston Globe. 26 March 2002. [On line

  19. Impact of suboptimal temperature on growth, photosynthesis, leaf pigments and carbohydrates of domestic and high-altitude wild Lycopersicon species

    NARCIS (Netherlands)

    Venema, J.H.; Posthumus, F.S; van Hasselt, P.R

    1999-01-01

    The impact of near-optimal (25/20 degrees C) and suboptimal (16/14 degrees C) day/night temperatures on growth, photosynthesis, pigment composition and carbohydrate content was compared between domestic and high-altitude wild Lycopersicon species. When related to the relative shoot growth rate

  20. Assessment of roughness length schemes implemented within the Noah land surface model for high-altitude regions

    NARCIS (Netherlands)

    Zheng, D.; Velde, van der R.; Su, Z.; Booij, M.J.; Hoekstra, A.Y.; Wen, J.

    2014-01-01

    Current land surface models still have difficulties with producing reliable surface heat fluxes and skin temperature (Tsfc) estimates for high-altitude regions, which may be addressed via adequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. In this study, th