WorldWideScience

Sample records for high-altitude atmospheric haze

  1. Hubble Space Telescope Transmission Spectroscopy of the Exoplanet HD 189733b: High-altitude atmospheric haze in the optical and near-UV with STIS

    CERN Document Server

    Sing, D K; Aigrain, S; Charbonneau, D; Desert, J -M; Gibson, N; Gilliland, R; Hayek, W; Henry, G; Knutson, H; Etangs, A Lecavelier des; Mazeh, T; Tal-Or, L

    2011-01-01

    We present Hubble Space Telescope optical and near-ultraviolet transmission spectra of the transiting hot-Jupiter HD189733b, taken with the repaired Space Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover the range 2900-5700 Ang and reach per-exposure signal-to-noise levels greater than 11,000 within a 500 Ang bandwidth. We used time series spectra obtained during two transit events to determine the wavelength dependance of the planetary radius and measure the exoplanet's atmospheric transmission spectrum for the first time over this wavelength range. Our measurements, in conjunction with existing HST spectra, now provides a broadband transmission spectrum covering the full optical regime. We find a planetary transmission spectrum in good agreement with that of Rayleigh scattering from a high-altitude atmospheric haze as previously found from HST ACS camera. The STIS data also shows unambiguous evidence of a large occulted stellar spot during one of our transit events, which we use...

  2. Haze in Pluto's atmosphere

    Science.gov (United States)

    Cheng, A. F.; Summers, M. E.; Gladstone, G. R.; Strobel, D. F.; Young, L. A.; Lavvas, P.; Kammer, J. A.; Lisse, C. M.; Parker, A. H.; Young, E. F.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.

    2017-07-01

    Haze in Pluto's atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Pluto's surface at solar phase angles from ∼20° to ∼169°. The haze is structured with about ∼20 layers, and the extinction due to haze is greater in the northern hemisphere than at equatorial or southern latitudes. However, more haze layers are discerned at equatorial latitudes. A search for temporal variations found no evidence for motions of haze layers (temporal changes in layer altitudes) on time scales of 2 to 5 hours, but did find evidence of changes in haze scale height above 100 km altitude. An ultraviolet extinction attributable to the atmospheric haze was also detected by the ALICE ultraviolet spectrograph on New Horizons. The haze particles are strongly forward-scattering in the visible, and a microphysical model of haze is presented which reproduces the visible phase function just above the surface with 0.5 μm spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and account for UV extinction. A model of haze layer generation by orographic excitation of gravity waves is presented. This model accounts for the observed layer thickness and distribution with altitude. Haze particles settle out of the atmosphere and onto Pluto's surface, at a rate sufficient to alter surface optical properties on seasonal time scales. Pluto's regional scale albedo contrasts may be preserved in the face of the haze deposition by atmospheric collapse.

  3. Photochemical hazes in planetary atmospheres: solar system bodies and beyond

    Science.gov (United States)

    Imanaka, Hiroshi; Cruikshank, Dale P.; McKay, Christopher P.

    2015-11-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. An understanding of haze formation rates and plausible optical properties in a wide diversity of planetary atmospheres is required to interpret the current and future observations.Here, we focus on how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. We have conducted a series of cold plasma experiments to constrain the haze mass production rates from gas mixtures of various CH4/CO ratios diluted either in H2 or N2 atmosphere. The mass production rates in the N2-CH4-CO system are much greater than those in the H2-CH4-CO system. They are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed both in H2-CO and N2-CO systems without CH4 in the initial gas mixtures. The complex refractive indices were derived for haze samples from N2-CH4, H2-CH4, and H2-CO gas mixtures. These are the model atmospheres for Titan, Saturn, and exoplanets, respectively. The imaginary part of the complex refractive indices in the UV-Vis region are distinct among these samples, which can be utilized for modeling these planetary atmospheres.

  4. 3D modeling of organic haze in Pluto's atmosphere

    Science.gov (United States)

    Bertrand, Tanguy; Forget, François

    2017-05-01

    The New Horizons spacecraft, which flew by Pluto on July 14, 2015, revealed the presence of haze in Pluto's atmosphere that were formed by CH4/N2 photochemistry at high altitudes in Pluto's atmosphere, as on Titan and Triton. In order to help the analysis of the observations and further investigate the formation of organic haze and its evolution at global scales, we have implemented a simple parameterization of the formation of organic haze in our Pluto General Circulation Model. The production of haze in our model is based on the different steps of aerosol formation as understood on Titan and Triton: photolysis of CH4 in the upper atmosphere by Lyman-α UV radiation, production of various gaseous species, and conversion into solid particles through accumulation and aggregation processes. The simulations use properties of aerosols similar to those observed in the detached haze layer on Titan. We compared two reference simulations ran with a particle radius of 50 nm: with, and without South Pole N2 condensation. We discuss the impact of the particle radius and the lifetime of the precursors on the haze distribution. We simulate CH4 photolysis and the haze formation up to 600 km above the surface. Results show that CH4 photolysis in Pluto's atmosphere in 2015 occurred mostly in the sunlit summer hemisphere with a peak at an altitude of 250 km, though the interplanetary source of Lyman-α flux can induce some photolysis even in the Winter hemisphere. We obtained an extensive haze up to altitudes comparable with the observations, and with non-negligible densities up to 500 km altitude. In both reference simulations, the haze density is not strongly impacted by the meridional circulation. With No South Pole N2 condensation, the maximum nadir opacity and haze extent is obtained at the North Pole. With South Pole N2 condensation, the descending parcel of air above the South Pole leads to a latitudinally more homogeneous haze density with a slight density peak at the South

  5. Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra

    Science.gov (United States)

    Gao, Peter; Marley, Mark S.; Zahnle, Kevin; Robinson, Tyler D.; Lewis, Nikole K.

    2017-03-01

    Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets, due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet’s geometric albedo spectrum and how it may affect the direct imaging results of the Wide Field Infrared Survey Telescope (WFIRST), a planned NASA space telescope. For temperate (250 K produced by Rayleigh scattering in a clear atmosphere. As a result, the color of the planet shifts from blue to orange. The existence of a sulfur haze masks the molecular signatures of methane and water, thereby complicating the characterization of atmospheric composition. Detection of such a haze by WFIRST is possible, though discriminating between a sulfur haze and any other highly reflective, high-altitude scatterer will require observations shortward of 0.4 μm, which is currently beyond WFIRST’s design.

  6. Atmospheric sub-3 nm particles at high altitudes

    Directory of Open Access Journals (Sweden)

    S. Mirme

    2010-01-01

    Full Text Available Formation of new atmospheric aerosol particles is known to occur almost all over the world and the importance of these particles to climate and air quality has been recognized. Recently, it was found that atmospheric aerosol particle formation begins at the diameter of around 1.5–2.0 nm and a pool of sub-3 nm atmospheric particles – consisting of both charged and uncharged ones – was observed at the ground level. Here, we report on the first airborne observations of the pool of sub-3 nm neutral atmospheric particles. Between 2 and 3 nm, their concentration is roughly two orders of magnitude larger than that of the ion clusters, depending slightly on the altitude. Our findings indicate that new particle formation takes place throughout the tropospheric column up to the tropopause. Particles were found to be formed via neutral pathways in the boundary layer, and there was no sign of an increasing role by ion-induced nucleation toward the upper troposphere. Clouds, while acting as a source of sub-10 nm ions, did not perturb the overall budget of atmospheric clusters or particles.

  7. Atmospheric sub-3 nm particles at high altitudes

    Directory of Open Access Journals (Sweden)

    S. Mirme

    2009-09-01

    Full Text Available Formation of new atmospheric aerosol particles is known to occur almost all over the world and the importance of these particles to climate and air quality has been recognized. Recently, it was found that atmospheric aerosol formation begins at particle diameter of around 1.5–2.0 nm and a pool of sub-3 nm atmospheric particles – consisting of both charged and uncharged ones – was observed at the ground level. Here, we report on the first airborne observations of the pool of sub-3 nm neutral atmospheric particles. Between 2 and 3 nm, their concentration is roughly two orders of magnitude larger than that of the ion clusters, depending slightly on the altitude. Our findings indicate that new particle formation takes place actively throughout the tropospheric column up to the tropopause. Particles were found to be formed via neutral pathways in the boundary layer, and there was no sign of an increasing role by ion-induced nucleation toward the upper troposphere. Clouds, while acting as a source of sub-10 nm ions, did not perturb the overall budget of atmospheric clusters or particles.

  8. HST ROTATIONAL SPECTRAL MAPPING OF TWO L-TYPE BROWN DWARFS: VARIABILITY IN AND OUT OF WATER BANDS INDICATES HIGH-ALTITUDE HAZE LAYERS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Saumon, Didier [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Morley, Caroline V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Buenzli, Esther [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Metchev, Stanimir [Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, ON N6A 3K7 (Canada); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Mohanty, Subhanjoy [Imperial College London, 1010 Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Showman, Adam P.; Flateau, Davin [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Heinze, Aren N., E-mail: haoyang@email.arizona.edu [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States)

    2015-01-01

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.

  9. Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations

    Science.gov (United States)

    Puspitarini, L.; Määttänen, A.; Fouchet, T.; Kleinboehl, A.; Kass, D. M.; Schofield, J. T.

    2016-11-01

    High altitude clouds have been observed in the Martian atmosphere. However, their properties still remain to be characterized. Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO) is an instrument that measures radiances in the thermal infrared, both in limb and nadir views. It allows us to retrieve vertical profiles of radiance, temperature and aerosols. Using the MCS data and radiative transfer model coupled with an automated inversion routine, we can investigate the chemical composition of the high altitude clouds. We will present the first results on the properties of the clouds. CO2 ice is the best candidate to be the main component of some high altitude clouds due to the most similar spectral variation compared to water ice or dust, in agreement with previous studies. Using cloud composition of contaminated CO2 ice (dust core surrounded by CO2 ice) might improve the fitting result, but further study is needed.

  10. Clouds and Hazes in Exoplanet Atmospheres

    CERN Document Server

    Marley, Mark S; Cuzzi, Jeffrey N; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud p...

  11. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  12. Development and demonstration of a high-altitude atmospheric backscatter Lidar system

    Science.gov (United States)

    Dolash, Thomas M.; Garvey, John; Leonelli, Joseph; Bradford, Mark; Rose, Lynn

    1994-06-01

    Battelle has designed and fabricated an upward-looking atmospheric backscatter lidar for high-altitude airborne applications. The compact, rugged system was assembled and integrated into a cupola on top of a Lear 36 aircraft to provide particle backscatter data and aerosol profile distributions of cirrus clouds occurring between 50,000 and 100,000 ft ASL. The high altitude airborne lidar system consists of a laser transmitter operating at 532 and 1064 nm simultaneously with output energy of 75 mJ at both wavelengths and a collecting telescope aperture of 10 inches in diameter. Laser backscatter energy is collected and directed via a dichroic beamsplitter to two avalanche photodetectors (APD) through narrow bandpass optical filters at 532 and 1064 nm. The outputs of the APDs are digitized by a 10-bit, 100-MHz transient digitizer before being recorded to a 1.2-Gbyte hard disk with IRIG timing for data analysis. This paper describes the lidar system design, predicted performance, and some of the operational challenges.

  13. Speciated atmospheric mercury on haze and non-haze days in an inland city in China

    Science.gov (United States)

    Hong, Qianqian; Xie, Zhouqing; Liu, Cheng; Wang, Feiyue; Xie, Pinhua; Kang, Hui; Xu, Jin; Wang, Jiancheng; Wu, Fengcheng; He, Pengzhen; Mou, Fusheng; Fan, Shidong; Dong, Yunsheng; Zhan, Haicong; Yu, Xiawei; Chi, Xiyuan; Liu, Jianguo

    2016-11-01

    Long-term continuous measurements of speciated atmospheric mercury were conducted from July 2013 to June 2014 in Hefei, a midlatitude inland city in eastern central China that experiences frequent haze pollution. The mean concentrations (±standard deviation) of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) were 3.95 ± 1.93 ng m-3, 2.49 ± 2.41 and 23.3 ± 90.8 pg m-3, respectively, on non-haze days, and 4.74 ± 1.62 ng m-3, 4.32 ± 8.36 and 60.2 ± 131.4 pg m-3, respectively, on haze days. Potential source contribution function (PSCF) analysis suggested that atmospheric mercury pollution on haze days was caused primarily by local emissions, instead of via long-range transport. The poorer mixing conditions on haze days also favored the accumulation of atmospheric mercury. Compared to GEM and GOM, PBM was especially sensitive to haze pollution. The mean PBM concentration on haze days was 2.5 times that on non-haze days due to elevated concentrations of particulate matter. PBM also showed a clear seasonal trend; its concentration was the highest in fall and winter, decreased rapidly in spring and was the lowest in summer, following the same order in the frequency of haze days in different seasons. On both non-haze and haze days, GOM concentrations remained low at night, but increased rapidly just before sunrise, which could be due to diurnal variation in air exchange between the boundary layer and free troposphere. However, non-haze and haze days showed different trends in daytime GEM and GOM concentrations. On non-haze days, GEM and GOM declined synchronously through the afternoon, probably due to the retreat of the free tropospheric air as the height of the atmospheric boundary layer increases. In contrast, on haze days, GOM and GEM showed opposite trends with the highest GOM and lowest GEM observed in the afternoon, suggesting the occurrence of photochemical oxidation. This is supported by simple box

  14. Contributions of high-altitude winds and atmospheric moment of inertia to the atmospheric angular momentum-earth rotation relationship

    Science.gov (United States)

    Taylor, H. A., Jr.; Mayr, H. G.; Kramer, L.

    1985-01-01

    For many years it has been recognized that recurrent modulations occur in the time series of the earth's rotation rate or, alternatively, the change in the length of the day (Delta-LOD). Studies relating Delta-LOD to global patterns of zonal winds have confirmed that the variability of atmospheric angular momentum (M) is of sufficient magnitude to account for a large portion of the gross periodicities observed in the earth rotation. The present investigation is concerned with the importance of the contributions of the moment of inertia and high-altitude winds to the angular momentum budget. On the basis of an analysis of the various factors, it is found that within the available data, contributions of high-altitude winds and atmospheric moment of inertia reach levels detectable in the atmospheric angular momentum budget. Nevertheless, for the period December 1978 to December 1979 these contributions are not sufficient to resolve the apparent short-term discrepancies which are evident between Delta-LOD and M.

  15. Haze in Pluto's Atmosphere: Implications for Processes and Evolution

    Science.gov (United States)

    Cheng, A. F.; Summers, M. E.; Gladstone, R.; Strobel, D. F.; Young, L. A.; Lavvas, P.; Kammer, J.; Lisse, C. M.; Parker, A. H.; Young, E. F.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2016-12-01

    Haze in Pluto's atmosphere was detected by New Horizons imaging to altitudes above 200 km at solar phase angles from 20° to 169°, and it was detected by the UV solar occultation up to 300 km altitude. The haze is strongly forward scattering in the visible, and a microphysical model of haze reproduces the visible phase function just above the surface with 0.5 µm spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and to account for UV extinction. The visible phase function at the bottom of the atmosphere has a back scatter lobe which is absent from the phase function measured 45 km above the surface, making the latter phase function similar to that for haze in Titan's upper atmosphere. Pluto's haze may form by similar processes to those responsible for the detached haze layer in the upper atmosphere of Titan. It is suggested that haze particles form fractal aggregates which grow larger and more spherical as they settle downwards through the bottom 15 km of the atmosphere. Haze particles settle onto Pluto's surface, at a rate sufficient to alter surface optical properties on seasonal (hundred-year) time scales. However, if this picture applies to Pluto's atmosphere throughout the Pluto year, then haze particles would rapidly accumulate to an optically thick surface layer within thousands of years. These particles would not be processed into tholins except by cosmic rays, and the striking albedo contrasts on Pluto, with very bright and dark regions, would be difficult to understand. Pluto's regional scale albedo contrasts may be preserved by atmospheric collapse.

  16. An investigation of Haze Heating and Cooling in Pluto's Atmosphere

    Science.gov (United States)

    Zhang, X.; Strobel, D. F.; Imanaka, H.

    2016-12-01

    During the Pluto flyby, an ultraviolet imaging spectrometer ALICE onboard New Horizon spacecraft revealed an unexpected cold atmosphere on Pluto (Gladstone et al., 2016, Science, 351.6279). The missing cooling agent is still a mystery. The required abundance of hydrogen cyanide (HCN) to explain the thermal profile are not consistent with the recent ALMA observations (Lellouch et al. 2016, Arxiv:1606.03293v1). Here we investigate another possible candidate: haze particles. Haze particles are likely formed via hydrocarbon and nitrile chemistry in Pluto's atmosphere. Numerous global haze layers have been discovered in the New Horizons images (Gladstone et al. 2016, Science, 351.6279). Based on the LOng Range Reconnaissance Imager (LORRI) observations, Gladstone et al. (2016) gave the line-of-sight optical depth of the haze particles of 0.16 at wavelength of 0.6 microns for 0.2 micron particles with scale height of 50 km. The FUV solar occultation by ALICE reveals that the line-of-sight haze opacity reaches unity at 75 km above surface (Gao et al. 2016, submitted; Young et al. 2016, in prep). Pluto's hazes might radiatively heat and cool the atmosphere and alter the temperature profile, as previously suggested on Jupiter's middle atmosphere (Zhang et al. 2015, Nature Communications, 6, doi: 10.1038/ncomms10231). Based on the vertical profile of haze opacity derived from ALICE observations (Gao et al. 2016, submitted; Young et al. 2016, in prep), we calculate the UV and visible heating and infrared cooling rates on Pluto. We tested different refractive indices of haze particles based on Titan- and Saturn-like hazes and a recent laboratory study in Pluto-like environment (Imanaka et al. 2015, AAS/DPS Meeting). We found that the haze heating and cooling effects could be potentially large compared with the heating from methane and cooling from CO, HCN and C2 hydrocarbons. Possible non-thermodynamic equilibrium between gas and particles is also discussed.

  17. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  18. Role of atmospheric circulations in haze pollution in December 2016

    Directory of Open Access Journals (Sweden)

    Z. Yin

    2017-09-01

    Full Text Available In the east of China, recent haze pollution has been severe and damaging. In addition to anthropogenic emissions, atmospheric circulations and local meteorological conditions were conducive factors. The number of December haze days over North China and the Huanghuai area has increased sharply since 2010 and was greatest in 2016. During 2016, the most aggressive control measures for anthropogenic emissions were implemented from 16 to 21 December, but the most severe haze pollution still occurred, covering approximately 25 % of the land area of China and lasting for 6 days. The atmospheric circulations must play critical roles in the sub-seasonal haze events. Actually, the positive phase of the East Atlantic–West Russia pattern in the middle troposphere strengthened the anomalous anti-cyclone over the NH area that confined vertical motion below. The associated southerly anomalies made the cold air and surface wind speed weaker, but enhanced the humid flow. Thus, the horizontal and vertical dispersion of atmospheric particulates was suppressed and the pollutants gathered within a narrow space. In December 2016, these key indices were strongly beneficial for haze occurrence and combined to result in the severest haze pollution. The influences of the preceding autumn sea surface temperature near the Gulf of Alaska and the subtropical eastern Pacific, October–November snow cover in western Siberia, and associated physical processes on haze pollution are also discussed.

  19. Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland)

    Science.gov (United States)

    Frege, Carla; Bianchi, Federico; Molteni, Ugo; Tröstl, Jasmin; Junninen, Heikki; Henne, Stephan; Sipilä, Mikko; Herrmann, Erik; Rossi, Michel J.; Kulmala, Markku; Hoyle, Christopher R.; Baltensperger, Urs; Dommen, Josef

    2017-02-01

    The ion composition at high altitude (3454 m a.s.l.) was measured with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF) during a period of 9 months, from August 2013 to April 2014. The negative mass spectra were dominated by the ions of sulfuric, nitric, malonic, and methanesulfonic acid (MSA) as well as SO5-. The most prominent positive ion peaks were from amines. The other cations were mainly organic compounds clustered with a nitrogen-containing ion, which could be either NH4+ or an aminium. Occasionally the positive spectra were characterized by groups of compounds each differing by a methylene group. In the negative spectrum, sulfuric acid was always observed during clear sky conditions following the diurnal cycle of solar irradiation. On many occasions we also saw a high signal of sulfuric acid during nighttime when clusters up to the tetramer were observed. A plausible reason for these events could be evaporation from particles at low relative humidity. A remarkably strong correlation between the signals of SO5- and CH3SO3- was observed for the full measurement period. The presence of these two ions during both the day and the night suggests a non-photochemical channel of formation which is possibly linked to halogen chemistry. Halogenated species, especially Br- and IO3-, were frequently observed in air masses that originated mainly from the Atlantic Ocean and occasionally from continental areas based on back trajectory analyses. We found I2O5 clustered with an ion, a species that was proposed from laboratory and modeling studies. All halogenated ions exhibited an unexpected diurnal behavior with low values during daytime. New particle formation (NPF) events were observed and characterized by (1) highly oxygenated molecules (HOMs) and low sulfuric acid or (2) ammonia-sulfuric acid clusters. We present characteristic spectra for each of these two event types based on 26 nucleation episodes. The mass spectrum of the ammonia

  20. Gravity waves and high-altitude CO$_2$ ice cloud formation in the Martian atmosphere

    CERN Document Server

    Yiğit, Erdal; Hartogh, Paul

    2015-01-01

    We present the first general circulation model simulations that quantify and reproduce patches of extremely cold air required for CO$_2$ condensation and cloud formation in the Martian mesosphere. They are created by subgrid-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral parameterization. Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good agreement with observations of high-altitude CO$_2$ ice clouds. Our study confirms the key role of GWs in facilitating CO$_2$ cloud formation, discusses their tidal modulation, and predicts clouds at altitudes higher than have been observed to date.

  1. Haze compensation and atmospheric correction for Sentinel-2 data

    Science.gov (United States)

    Makarau, Aliaksei; Richter, Rudolf; Zekoll, Viktoria; Reinartz, Peter

    2016-04-01

    Sentinel-2 data offer the opportunity to analyse landcover at a high spatial accuracy together with a wide swath. Nevertheless, the high data volume requires a per granule analysis. This may lead to border effects (difference in the radiance/reflectance values) between the neighbouring granules during atmospheric correction. Especially in case of high variations of the aerosol optical thickness (AOT) across the granules, especially in case of haze, the atmospherically corrected mosaicked products often show granule border effects. To overcome these artefacts a dehazing prior to the atmospheric correction is performed. The dehazing compensates only for the haze thickness keeping the AOT fraction for further estimation and compensation in the atmospheric correction chain. This approach results in a smoother AOT map estimate and a corresponding bottom of atmosphere (BOA) reflectance with low or no border artefacts. Using digital elevation models (DEMs) allows a better labelling of haze and a higher accuracy of the dehazing. The DEM analysis rejects high elevation areas where bright surfaces might erroneously be classified as haze, thus reducing the probability of misclassification. The dehazing and atmospheric correction are implemented in the DLR's ATCOR software. An example of a numeric evaluation of atmospheric correction products (AOT and BOA reflectance) is given. It demonstrates a smooth transition between the granules in the AOT map leading to a proper estimate of the BOA reflectance data.

  2. [Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].

    Science.gov (United States)

    Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

    2014-08-01

    Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.

  3. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  4. Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Teruya, E-mail: makiteru@t.kanazawa-u.ac.jp [College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 (Japan); Susuki, Shinzi; Kobayashi, Fumihisa [College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 (Japan); Kakikawa, Makiko [Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 (Japan); Tobo, Yutaka [Frontier Science Organization, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 (Japan); Yamada, Maromu [Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502 (Japan); Higashi, Tomomi [Hygiene, Kanazawa University School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640 (Japan); Matsuki, Atsushi; Hong, Chunsang [Frontier Science Organization, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 (Japan); Hasegawa, Hiroshi [College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 (Japan); Iwasaka, Yasunobu [Frontier Science Organization, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 (Japan)

    2010-09-15

    The microbial communities transported by Asian desert dust (KOSA) events have attracted much attention as bioaerosols because the transported microorganisms are thought to influence the downwind ecosystems in Korea and Japan. However, the atmospheric microbial community has not been investigated at high altitude in the KOSA arrival area. In this study, to estimate the viability and diversity of atmospheric halotolerant bacteria, which are expected to resist to various environmental stresses as well as high salinities, bioaerosol samples were collected at 10 and 600 m above the ground within the KOSA arrival area, Suzu City, Japan, during KOSA events. During the sampling period, the particle numbers at 600 m were higher than those at 10 m, suggesting that large particles of aerosol fall from the high altitude of 600 m to the ground surface. The microorganisms in bioaerosol samples grew in media containing up to 15% NaCl concentrations demonstrating the viability of the halotolerant bacteria in bioaerosol samples. The PCR-DGGE analysis using 16S rDNA revealed that the bacterial species in NaCl-amended cultures were similar to the bacteria detected from the genomic DNA directly extracted from the bioaerosol samples. The 16S rDNA sequences of bacterial communities in bioaerosol samples were classified into 4 phylotypes belonging to the Bacilluscereus or Bacillussubtilis group. The bioaerosol samples collected at 600 m included 2 phylotypes belonging to B. subtilis, and one phylotype among all 4 phylotypes was identical between the samples at 10 and 600 m. In the atmosphere at 600 m, the halotolerant bacterial community was expected to remain viable, and the species composition was expected to include a few species of the genus Bacillus. During this investigation period, these atmospheric bacteria may have been vertically transported to the ground surface, where the long-range KOSA particle transport from China is frequently observed.

  5. A new Differential Optical Absorption Spectroscopy instrument to study atmospheric chemistry from a high-altitude unmanned aircraft

    Science.gov (United States)

    Stutz, Jochen; Werner, Bodo; Spolaor, Max; Scalone, Lisa; Festa, James; Tsai, Catalina; Cheung, Ross; Colosimo, Santo F.; Tricoli, Ugo; Raecke, Rasmus; Hossaini, Ryan; Chipperfield, Martyn P.; Feng, Wuhu; Gao, Ru-Shan; Hintsa, Eric J.; Elkins, James W.; Moore, Fred L.; Daube, Bruce; Pittman, Jasna; Wofsy, Steven; Pfeilsticker, Klaus

    2017-03-01

    Observations of atmospheric trace gases in the tropical upper troposphere (UT), tropical tropopause layer (TTL), and lower stratosphere (LS) require dedicated measurement platforms and instrumentation. Here we present a new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument developed for NASA's Global Hawk (GH) unmanned aerial system and deployed during the Airborne Tropical TRopopause EXperiment (ATTREX). The mini-DOAS system is designed for automatic operation under unpressurized and unheated conditions at 14-18 km altitude, collecting scattered sunlight in three wavelength windows: UV (301-387 nm), visible (410-525 nm), and near infrared (900-1700 nm). A telescope scanning unit allows selection of a viewing angle around the limb, as well as real-time correction of the aircraft pitch. Due to the high altitude, solar reference spectra are measured using diffusors and direct sunlight. The DOAS approach allows retrieval of slant column densities (SCDs) of O3, O4, NO2, and BrO with relative errors similar to other aircraft DOAS systems. Radiative transfer considerations show that the retrieval of trace gas mixing ratios from the observed SCD based on O4 observations, the most common approach for DOAS measurements, is inadequate for high-altitude observations. This is due to the frequent presence of low-altitude clouds, which shift the sensitivity of the O4 SCD into the lower atmosphere and make it highly dependent on cloud coverage. A newly developed technique that constrains the radiative transfer by comparing in situ and DOAS O3 observations overcomes this issue. Extensive sensitivity calculations show that the novel O3-scaling technique allows the retrieval of BrO and NO2 mixing ratios at high accuracies of 0.5 and 15 ppt, respectively. The BrO and NO2 mixing ratios and vertical profiles observed during ATTREX thus provide new insights into ozone and halogen chemistry in the UT, TTL, and LS.

  6. Ancient versus modern mineral dust transported to high-altitude alpine glaciers evidences saharan sources and atmospheric circulation changes

    Directory of Open Access Journals (Sweden)

    F. Thevenon

    2011-01-01

    Full Text Available Mineral dust aerosols collected during the years 2008/09 at the high-altitude research station Jungfraujoch (46°33' N, 7°59' E; 3580 m a.s.l. were compared to windblown mineral dust deposited at the Colle Gnifetti glacier (45°55' N, 7°52' E, 4455 m a.s.l. over the last millennium. Insoluble dust has been characterized in terms of mineralogy, Sr and Nd isotopic ratios, and trace element composition. Results demonstrate that the Saharan origin of the airborne dust did not change significantly throughout the past. Backward trajectories analysis of modern analogs furthermore confirms that major dust sources are situated in the north-central to north-western part of the Saharan desert. By contrast, less radiogenic Sr isotopic compositions are associated with lower abundances of crustal elements during low rates of dust deposition, suggesting intercontinental transport of background dust rather than activation of a secondary source. Saharan dust mobilization and meridional advection of air masses were relatively reduced during the second part of the Little Ice Age (ca. 1690–1870, except within the greatest Saharan dust event deposited around 1780–1790. Higher dust deposition with larger mean grain size and Saharan fingerprint began ca. 20 years after the industrial revolution of 1850, suggesting that increased mineral dust transport over the Alps during the last century was primarily due to drier winters in North Africa and stronger spring/summer North Atlantic southwesterlies, rather than to direct anthropogenic sources. Meanwhile, increasing carbonaceous particle emissions from fossil fuels combustion combined to higher lead enrichment factor during the last century, point to concomitant anthropogenic sources of particulate pollutants reaching high-altitude European glaciers.

  7. An 800-year record of atmospheric As, Mo, Sn, and Sb in central Asia in high-altitude ice cores from Mt. Qomolangma (Everest), Himalayas.

    Science.gov (United States)

    Hong, Sungmin; Lee, Khanghyun; Hou, Shugui; Hur, Soon Do; Ren, Jiawen; Burn, Laurie J; Rosman, Kevin J R; Barbante, Carlo; Boutron, Claude F

    2009-11-01

    As, Mo, Sn, and Sb have been determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in 143 depth intervals of high-altitude ice cores from Mt. Everest, covering an 800-year time period from 1205 to 2002 AD. The results clearly demonstrate the long-term historical record of atmospheric transport and deposition of As, Mo, Sn, and Sb that has prevailed at high altitudes in the central Himalayas. Natural contributions, mainly from mineral dust, have dominated the atmospheric cycles of As, Mo, Sn, and to some extent Sb during the 700 years prior to the 20th century. Compared to those of the pre-1900 period, pronounced increases of both concentrations and crustal enrichment factors are observed since the 1970s, with the highest increase factor for Sn and the lowest for As. Such increases are attributed to anthropogenic emissions of these elements, largely from stationary fossil fuel combustion and nonferrous metals production, particularly in India. Our central Himalayan ice core record provides an explicit recognition of rising atmospheric As, Mo, Sn, and Sb pollution in response to rapid economic growth in central Asia.

  8. Adaptation to High Altitude

    OpenAIRE

    1984-01-01

    Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude native...

  9. High Altitude Cerebral Edema

    Science.gov (United States)

    1986-03-01

    such enzyme inhibition would favor the creation of a metabolic acidosis to offset the hypoxic respiratory alkalosis of high altitude hyperventilation...that some of their symptoms might be due to the early respiratory alkalosis seen upon arrival at high altitude. Unfortunately 23 out of the 30 subjects...i I Hamilton-16 was negative in all cases and normal respiratory excursions were seen. CSF chemistries and cell counts were normal. Houston and

  10. Adaptation to High Altitude

    Directory of Open Access Journals (Sweden)

    H. S. Nayar

    1984-10-01

    Full Text Available Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude natives is well documented. RBC count, haemoglobin and haematocrit increase whereas arterial oxyhaemoglobin saturation percentage decreases at high altitude. Diuretics (Furosemide have no role in adaptation to high altitude and adequate body hydration must be maintained.The ultimate adaptive mechanisms occur at tissue level which facilitate the diffusion of oxygen from blood to tissue and its utilization. The work capacity decreases at high altitude and a relationship between load carried and speed of marching has been determined at various altitudes. Although altitude has an adverse effect on process of cold acclimatization, yet it is possible to induce cold acclimatization by exposing subjects to a temperature of 0° to -5°C for a period of three hours daily for three weeks. The caloric requirements increase at high altitudes and are 4,286 K Cal and 4,380 K Cal at 13000 feet (3950 m and 17000 feet (5170 m, respectively.

  11. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  12. Long and short-term atmospheric radiation analyses based on coupled measurements at high altitude remote stations and extensive air shower modeling

    Science.gov (United States)

    Hubert, G.; Federico, C. A.; Pazianotto, M. T.; Gonzales, O. L.

    2016-02-01

    In this paper are described the ACROPOL and OPD high-altitude stations devoted to characterize the atmospheric radiation fields. The ACROPOL platform, located at the summit of the Pic du Midi in the French Pyrenees at 2885 m above sea level, exploits since May 2011 some scientific equipment, including a BSS neutron spectrometer, detectors based on semiconductor and scintillators. In the framework of a IEAv and ONERA collaboration, a second neutron spectrometer was simultaneously exploited since February 2015 at the summit of the Pico dos Dias in Brazil at 1864 m above the sea level. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation of cosmic-ray- induced neutron and effects of local and seasonal changes, but also the short term dynamics during solar flare events. This paper presents long and short-term analyses, including measurement and modeling investigations considering the both high altitude stations data. The modeling approach, based on ATMORAD computational platform, was used to link the both station measurements.

  13. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  14. HATS (High Altitude Thermal Sounder): a passive sensor solution to 3D high-resolution mapping of upper atmosphere dynamics (Conference Presentation)

    Science.gov (United States)

    Gordley, Larry; Marshall, Benjamin T.; Lachance, Richard L.

    2016-10-01

    This presentation introduces a High Altitude Thermal Sensor (HATS) that has the potential to resolve the thermal structure of the upper atmosphere (cloud top to 100km) with both horizontal and vertical resolution of 5-7 km or better. This would allow the complete characterization of the wave structures that carry weather signature from the underlying atmosphere. Using a novel gas correlation technique, an extremely high-resolution spectral scan is accomplished by measuring a Doppler modulated signal as the atmospheric thermal scene passes through the HATS 2D FOV. This high spectral resolution, difficult to impossible to achieve with any other passive technique, enables the separation of radiation emanating at high altitudes from that emanating at low altitudes. A principal component analysis of these modulation signals then exposes the complete thermal structure of the upper atmosphere. We show that nadir sounding from low earth orbit, using various branches of CO2 emission in the 17 to 15 micron region, with sufficient spectral resolution and spectral measurement range, can distinguish thermal energy that peaks at various altitudes. By observing the up-welling atmospheric emission through a low pressure (Doppler broadened) gas cell, as the scene passes through our FOV, a modulation signal is created as the atmospheric emission lines are shifted through the spectral position of the gas cell absorption lines. The modulation signal is shown to be highly correlated to the emission coming from the spectral location of the gas cell lines relative to the atmospheric emission lines. This effectively produces a scan of the atmospheric emission with a Doppler line resolution. Similar to thermal sounding of the troposphere, a principal component analysis of the modulation signal can be used to produce an altitude resolved profile, given a reasonable a priori temperature profile. It is then shown that with the addition of a limb observation with one CO2 broadband channel

  15. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai

    Science.gov (United States)

    Chen, Xiaojia; Balasubramanian, Rajasekhar; Zhu, Qiongyu; Behera, Sailesh N.; Bo, Dandan; Huang, Xian; Xie, Haiyun; Cheng, Jinping

    2016-04-01

    Atmospheric particulate mercury (PHg) is recognized as a global pollutant that requires regulation because of its significant impacts on both human health and wildlife. The haze episodes that occur frequently in China could influence the transport and fate of PHg. To examine the characteristics of PHg during haze and non-haze days, size-fractioned particles were collected using thirteen-stage Nano-MOUDI samplers (10 nm-18 μm) during a severe haze episode (from December 2013 to January 2014) in Shanghai. The PHg concentration on haze days (4.11 ± 0.53 ng m-3) was three times higher than on non-haze days (1.34 ± 0.15 ng m-3). The ratio of the PHg concentration to total gaseous mercury (TGM) ranged from 0.42 during haze days to 0.21 during non-haze days, which was possibly due to the elevated concentration of particles for gaseous elemental mercury (GEM) adsorption, elevated sulfate and nitrate contributing to GEM oxidation, and the catalytic effect of elevated water-soluble inorganic metal ions. PHg/PM10 during haze days (0.019 ± 0.004 ng/μg) was lower than during non-haze days (0.024 ± 0.002 ng/μg), and PHg/PM10 was significantly reduced with an increasing concentration of PM10, which implied a relatively lower growth velocity of mercury than other compositions on particles during haze days, especially in the diameter range of 0.018-0.032 μm. During haze days, each size-fractioned PHg concentration was higher than the corresponding fraction on non-haze days, and the dominant particle size was in the accumulation mode, with constant accumulation to a particle size of 0.56-1.0 μm. The mass size distribution of PHg was bimodal with peaks at 0.32-0.56 μm and 3.1-6.2 μm on non-haze days, and 0.56-1.0 μm and 3.1-6.2 μm on haze days. There was a clear trend that the dominant size for PHg in the fine modes shifted from 0.32-0.56 μm during non-haze days to 0.56-1.0 μm on haze days, which revealed the higher growth velocity of PHg on haze days due to the

  16. Clearance capacity of the atmosphere: the reason that the number of haze days reaches a ceiling.

    Science.gov (United States)

    Liu, Qian; Cao, Ziqi; Xu, Hua

    2016-04-01

    China has experienced rapid development in the past 30 years but, alongside and associated with this growth, increased levels of pollution too. However, despite the continued increase in emissions of haze-forming aerosols in the twenty-first century, the annual number of haze days in some megacities has not risen in tandem. Various mechanisms have been proposed for "city dimming", but the cause of the hiatus remains unclear. We found that the number of haze days in Taiyuan experienced a sharp increase during 1980-1998, with a growth rate 51.6 days/10a, and then exhibited fluctuating variation around a stable high level from 1998 to 2014, while at the same time the average visibility during haze days started to decrease. We present a novel method to explain the long-term variation in the number of haze days via a temporal-piecewise function of human activities and atmospheric cleaning processes: the number of haze days increases with the level of human activity before reaching the upper limit and then remains at a high level due to the restriction of a relatively stable number of strong cleaning days.

  17. Atmospheric Effects of the Total Solar Eclipse of 4 December 2002 Simulated with a High-Altitude Global Model

    Science.gov (United States)

    2007-07-25

    temperature decreases and associated meridional wind changes in the lower mesosphere during eclipses [Ballard et al., 1969; Quiroz and Henry, 1973...atmosphere have reported temperature decreases in the 5–12 K range at 50–60 km altitude during eclipse passages [Ballard et al., 1969; Quiroz and...Henry, 1973; Randhawa, 1974; Schmidlin and Olsen, 1984]. Quiroz and Henry [1973] and Schmidlin and Olsen [1984] also reported substantial increases in

  18. Photolytic Hazes in the Atmosphere of 51 Eri b

    CERN Document Server

    Zahnle, Kevin J; Morley, Caroline V; Moses, Julianne I

    2016-01-01

    We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter, 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H$_2$S into elemental sulfur, here treated as S$_8$. In the cooler models, S$_8$ is predicted to condense in optically thick clouds of solid sulfur particles, whilst in the warmer models S$_8$ remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperat...

  19. Cloud and Haze in the Atmospheres of Wide-Separation Exoplanets

    Science.gov (United States)

    Hu, Renyu

    2017-01-01

    Imaging and characterizing wide-separation exoplanets with spaceborne coronagraph will write a new chapter of exoplanet science. Most of the exoplanets to be observed by coronagraph will be located further away from their parent stars than is Earth from the Sun. These “cold” exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds by condensation. Above the condensation clouds, photochemical processes driven by UV irradiation can lead to formation of haze particles. Understanding the cloud and haze in the atmosphere of wide-separation exoplanets is essential, because they determine the planets’ spectral signal and how well we can measure the planets’ atmospheric abundances. Using atmospheric chemistry and radiative transfer models, I find that the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, if a strong band and a weak band of methane are measured at moderate spectral resolutions. This determination can however be biased by a haze layer above the cloud. To constrain the uncertainty, atmospheric photochemistry models are used to estimate the amount of haze particles.

  20. Cloud and Haze in the Atmospheres of Wide-Separation Exoplanets

    Science.gov (United States)

    Hu, Renyu

    2016-10-01

    Imaging and characterizing wide-separation exoplanets with spaceborne coronagraph will write a new chapter of exoplanet science. Most of the exoplanets to be observed by coronagraph will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds by condensation. Above the condensation clouds, photochemical processes driven by UV irradiation can lead to formation of haze particles. Understanding the cloud and haze in the atmosphere of wide-separation exoplanets is essential, because they determine the planets' spectral signal and how well we can measure the planets' atmospheric abundances. Using atmospheric chemistry and radiative transfer models, I find that the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, if a strong band and a weak band of methane are measured at moderate spectral resolutions. This determination can however be biased by a haze layer above the cloud. To constrain the uncertainty, atmospheric photochemistry models are used to estimate the amount of haze particles.

  1. Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra

    OpenAIRE

    2017-01-01

    Recent work has shown that sulfur hazes may arise in the atmospheres of giant exoplanets due to the photolysis of H$_{2}$S. We investigate the impact such a haze would have on an exoplanet's geometric albedo spectrum using a suite of established radiative-convective, cloud, and albedo models, and how it may affect the direct imaging results of WFIRST, a planned NASA mission. For Jupiter-mass planets, photochemical destruction of H$_{2}$S results in the production of ~1 ppmv of S$_{8}$ between...

  2. Photolytic Hazes in the Atmosphere of 51 Eri b

    Science.gov (United States)

    Zahnle, K.; Marley, M. S.; Morley, C. V.; Moses, J. I.

    2016-01-01

    We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If they form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the regions where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically thick clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we have discussed is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

  3. Effect of a cold, dry air incursion on atmospheric boundary layer processes over a high-altitude lake in the Tibetan Plateau

    Science.gov (United States)

    Li, Zhaoguo; Lyu, Shihua; Wen, Lijuan; Zhao, Lin; Ao, Yinhuan; Wang, Shaoying

    2017-03-01

    High-altitude lakes are frequently exposed to extreme meteorological conditions, but the surface and atmospheric boundary layer (ABL) processes have received little attention under specific weather conditions. This study used the multi-source field data, re-analysis and remote sensing data to investigate the varying patterns and driving forces of the convective boundary layer (CBL) height over Ngoring Lake in the Tibetan Plateau (TP) before and after the cold air incursion. Daily cumulative surface heat flux and buoyancy flux over the land were markedly larger than those over the lake on a clear summer day, but an opposite pattern was observed accompanied by the cold air incursion. CBLs determined by the potential temperature thinned (depth < 100 m) over the lake in the daytime and thickened (400-600 m) at night on a clear day. Along with the arrival of the cold air, CBL rapidly thickened to 2280 m over the lake, exceeded than the maximum value at adjacent Madoi station. Cold air dramatically cooled the middle-upper atmosphere but the temperature of the lower atmosphere cooled down slowly, partly due to a sharp increase of sensible heat flux over the lake, both of which linked up to weaken the potential temperature gradient. Moreover, increasing wind speed and vertical wind shear further facilitated the buoyancy flux to exert higher heat convection efficiency. All of these factors acted together to cause the rapid growth of CBL over the lake. This investigation provided a more in-depth knowledge of boundary layer dynamics in the lake-rich region of the TP.

  4. Physical and optical characteristics of atmospheric aerosols during ICARB at Manora Peak, Nainital: A sparsely inhabited, high-altitude location in the Himalayas

    Indian Academy of Sciences (India)

    U C Dumka; K Krishna Moorthy; P Pant; P Hegde; Ram Sagar; K Pandey

    2008-07-01

    Collocated measurements of the optical and physical properties of columnar and near-surface aerosols were carried out from Manora Peak, Nainital (a sparsely inhabited, high altitude location, ∼2km above mean sea level, in the Himalayas), during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP). Under this, observational data of spectral aerosol optical depths (AOD), mass concentration of aerosol black carbon (B), mass concentration () and number concentration () of composite (total) aerosols near the surface and meteorological parameters were collected during the period February 15 to April 30, 2006. Though very low (> 0.1 at 500 nm) AODs were observed during clear days, as much as a fourfold increase was seen on hazy days. The Ångström exponent (), deduced from the spectral AODs, revealed high values during clear days, while on hazy days was low; with an overall mean value of 0.69 ± 0.06 for the campaign period. BC mass concentration varied between 0.36 and 2.87 g m−3 and contributed in the range 0.7 to 1.8% to the total aerosol mass. Total aerosol number concentration and BC mass concentration showed diurnal variation with a midnight and early morning minimum and a late afternoon maximum; a pattern quite opposite to that seen in low altitude stations. These are attributed to the dynamics of the atmospheric boundary layer.

  5. Ear - blocked at high altitudes

    Science.gov (United States)

    High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... eustachian tube is a connection between the middle ear (the space deep to the eardrum) and the ...

  6. Selected organochlorine pesticides and polychlorinated biphenyls in atmosphere at Ruoergai high altitude prairie in eastern edge of Qinghai-Tibet Plateau and their source identifications

    Science.gov (United States)

    Gai, Nan; Pan, Jing; Tang, Hua; Tan, Ke-Yan; Chen, Da-Zhou; Zhu, Xiao-Hua; Lu, Guo-Hui; Chen, Shu; Huang, Yi; Yang, Yong-Liang

    2014-10-01

    Compared to the low-altitude areas, high-altitude regions have low air temperature and relatively high snow precipitation. These climatological characteristics will affect the environmental behavior of persistent organic pollutants (POPs) in such a special geographical environment, leading to cold-trapping of certain POPs in these areas. Ruoergai highland prairie in the eastern edge of the Qinghai-Tibetan Plateau was selected to study the distribution characteristics of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in aerosols and gas phase samples collected in two seasons of 2011 and measured by isotope dilution-HRGC/HRMS method. OCPs and PCBs in the Ruoergai air were at low levels compared with the adjacent populated areas such as Lanzhou and Chengdu. Higher concentrations of POPs in aerosol and gas phase were observed in winter than in summer, showing the impact of monsoon on the transport of POPs to this region. Northwesterly winds in winter may transport OCPs and PCBs from industrial and agricultural areas in the northwestern China. HCB, α-HCH, and PCB 28 were the predominant compounds found in the air. Soil to air fugacity ratios show that Ruoergai soils behave as a secondary source of the relatively volatile compounds (HCHs, α-endosulfan, PCB 28 and 52) to the atmosphere during summer and behave as a sink of atmospheric DDTs due to the OC-rich soils as well as lower temperatures. Similar 206Pb/207Pb and 208Pb/207Pb ratios in Ruoergai aerosols to those of aerosols of Lanzhou and ores in Qinghai, Xinjiang, Kazakhstan, and Russia may indicate that the aerosol sources were mainly related to air mass passing over the neighboring regions and countries.

  7. The Influence of Sandstorms and Long-Range Transport on Polycyclic Aromatic Hydrocarbons (PAHs in PM2.5 in the High-Altitude Atmosphere of Southern China

    Directory of Open Access Journals (Sweden)

    Minmin Yang

    2015-10-01

    Full Text Available PM2.5 (Particulate Matter 2.5 samples were collected at Mount Heng and analyzed for polycyclic aromatic hydrocarbons (PAHs. During sampling, a sandstorm from northern China struck Mount Heng and resulted in a mean PM2.5 concentration of 150.61 μg/m3, which greatly exceeded the concentration measured under normal conditions (no sandstorm: 58.50 μg/m3. The average mass of PAHs in PM2.5 was 30.70 μg/g, which was much lower than in the non-sandstorm samples (80.80 μg/g. Therefore, the sandstorm increased particle levels but decreased PAH concentrations due to dilution and turbulence. During the sandstorm, the concentrations of 4- and 5-ring PAHs were below their detection limits, and 6-ring PAHs were the most abundant. Under normal conditions, the concentrations of 2-, 3- and 6-ring PAHs were higher, and 4- and 5-ring PAHs were lower relative to the other sampling sites. In general, the PAH contamination was low to medium at Mount Heng. Higher LMW (low molecular weight concentrations were primarily linked to meteorological conditions, and higher HMW (high molecular weight concentrations primarily resulted from long-range transport. Analysis of diagnostic ratios indicated that PM2.5 PAHs had been emitted during the combustion of coal, wood or petroleum. The transport characteristics and origins of the PAHs were investigated using backwards Lagrangian particle dispersion modeling. Under normal conditions, the “footprint” retroplumes and potential source contributions of PAHs for the highest and lowest concentrations indicated that local sources had little effect. In contrast, long-range transport played a vital role in the levels of PM2.5 and PAHs in the high-altitude atmosphere.

  8. Energy at high altitude.

    Science.gov (United States)

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  9. High Altitude Dermatology

    Science.gov (United States)

    Singh, Lt. Col. G K

    2017-01-01

    Approximately, 140 million people worldwide live permanently at high altitudes (HAs) and approximately another 40 million people travel to HA area (HAA) every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV) light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc.), cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc.) nail changes (koilonychias), airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma) are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place. PMID:28216727

  10. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  11. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  12. Cardiovascular physiology at high altitude.

    Science.gov (United States)

    Hooper, T; Mellor, A

    2011-03-01

    The role of the cardiovascular system is to deliver oxygenated blood to the tissues and remove metabolic effluent. It is clear that this complex system will have to adapt to maintain oxygen deliver in the profound hypoxia of high altitude. The literature on the adaptation of both the systemic and pulmonary circulations to high altitude is reviewed.

  13. The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere

    Science.gov (United States)

    Hu, Qingqing; Fu, Hongbo; Wang, Zhenzhen; Kong, Lingdong; Chen, Mindong; Chen, Jianmin

    2016-11-01

    The severe long-lasting haze episode in December 2013 provided a unique opportunity to track the variation of aerosol particles in Shanghai, China. Concentrations and sources of the pollutants varied greatly in severe haze-fog episode (P1), moderate haze episode (P2), and clear episode (P3). Both low wind speed and high relative humidity (RH) during P1 resulted in the high level pollutants of PM2.5 (240.3 ± 167.9 μg m- 3), SO2 (37.9 ± 20.7 μg m- 3), NO2 (111.5 ± 50.2 μg m- 3) and total water-soluble ions (58.73 ± 28.87 μg m- 3), indicating a strong accumulation of local pollutants and secondary species formation. During P2, air masses from the north decreased the concentration level of particles (116.1 ± 65.5 μg m- 3) and increased the visibility, resulting in a moderate degree of pollution. Most of the pollutants dropped to the lowest concentration levels due to the rainfall in P3, and the haze episode ended at 13 December. Single particle analysis showed that C-rich particles exhibited the highest number percentages (30%) in the samples of P1, S/N-rich species (35%) dominated the particles in the samples of P2, and Al/Si-rich particles (23%) were most abundant in the samples of P3. The TEM-EDS analysis confirmed that particles contained more internally mixed components during P1 and P2 than those during P3, suggesting that the particles during P1 and P2 underwent more intense aging in the atmosphere. The single particle analysis indicated that trace metals may promote the heterogeneous transformation of SO2 and NO2 on the surface of the particles during P1, which was in agreement with the highest sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) observed in the haze-fog episode. Such information will deepen our understanding on the evolution of haze and fog pollutions in China, which will help the government to establish efficient control strategy for air pollution prevention.

  14. Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?

    Science.gov (United States)

    Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.

    2015-01-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  15. Occultation Evidence for Haze in Pluto's Atmosphere in 2015 at the New Horizons Encounter

    Science.gov (United States)

    Bosh, A. S.; Person, M. J.; Zuluaga, C.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; Röser, H. P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-12-01

    On UT 29 June 2015, the occultation by Pluto of a bright star (r'=11.9) was observed from the Stratospheric Observatory for Infrared Astronomy (SOFIA) as well as several ground-based stations in New Zealand and Australia. Pre-event astrometry allowed for an in-flight update to the SOFIA team with the result that SOFIA was deep within the central flash zone. Combined analysis of the data sets leads to the result that Pluto's middle atmosphere is essentially unchanged from 2011 and 2013 (Person et al. 2013; Bosh et al. 2015); there has been no significant expansion or contraction of the atmosphere. Additionally, we find that a haze component in the atmosphere is required to reproduce the light curves obtained. This haze scenario has implications for understanding the photochemistry of Pluto's atmosphere. This work was supported by NASA grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams), and by the National Research Foundation of South Africa. Co-authors were visiting observers on SOFIA, at the Keck Observatory, the Magellan Observatory, the SARA-CT Observatory, the Mt. John University Observatory, and the Auckland Observatory.

  16. Lucifer's Planet: Photolytic Hazes in the Atmosphere of 51 Eri b

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    We use a 1D model to address photochemistry and possible haze formation in the irradiated atmosphere of 51 Eri b (2016arXiv160407388Z). The intended focus was to have been on carbon and organic hazes, but sulfur photochemistry turns out to be interesting and possibly more important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form abundantly, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically significant clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we discuss is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

  17. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude.

  18. On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi-analytical temperature-pressure profiles

    CERN Document Server

    Heng, Kevin; Pont, Frédéric; Sing, David K

    2011-01-01

    Motivated by the work of Guillot (2010), we present a semi-analytical formalism for calculating the temperature-pressure profiles in hot Jovian atmospheres which includes the effects of clouds/hazes and collision-induced absorption. Using the dual-band approximation, we assume that stellar irradiation and thermal emission from the hot Jupiter occur at distinct wavelengths ("shortwave" versus "longwave"). For a purely absorbing cloud/haze, we demonstrate its dual effect of cooling and warming the upper and lower atmosphere, respectively, which modifies, in a non-trivial manner, the condition for whether a temperature inversion is present in the upper atmosphere. The warming effect becomes more pronounced as the cloud/haze deck resides at greater depths. If it sits below the shortwave photosphere, the warming effect becomes either more subdued or ceases altogether. If shortwave scattering is present, its dual effect is to warm and cool the upper and lower atmosphere, respectively, thus counteracting the effects...

  19. An Observational Diagnostic for Distinguishing between Clouds and Haze in Hot Exoplanet Atmospheres

    Science.gov (United States)

    Kempton, Eliza M.-R.; Bean, Jacob L.; Parmentier, Vivien

    2017-08-01

    The nature of aerosols in hot exoplanet atmospheres is one of the primary vexing questions facing the exoplanet field. The complex chemistry, multiple formation pathways, and lack of easily identifiable spectral features associated with aerosols make it especially challenging to constrain their key properties. We propose a transmission spectroscopy technique to identify the primary aerosol formation mechanism for the most highly irradiated hot Jupiters (HIHJs). The technique is based on the expectation that the two key types of aerosols—photochemically generated hazes and equilibrium condensate clouds—are expected to form and persist in different regions of a highly irradiated planet’s atmosphere. Haze can only be produced on the permanent daysides of tidally locked hot Jupiters, and will be carried downwind by atmospheric dynamics to the evening terminator (seen as the trailing limb during transit). Clouds can only form in cooler regions on the nightside and morning terminator of HIHJs (seen as the leading limb during transit). Because opposite limbs are expected to be impacted by different types of aerosols, ingress and egress spectra, which primarily probe opposing sides of the planet, will reveal the dominant aerosol formation mechanism. We show that the benchmark HIHJ, WASP-121b, has a transmission spectrum consistent with partial aerosol coverage and that ingress-egress spectroscopy would constrain the location and formation mechanism of those aerosols. In general, using this diagnostic we find that observations with the James Webb Space Telescope and potentially with the Hubble Space Telescope should be able to distinguish between clouds and haze for currently known HIHJs.

  20. Simulating Atmospheric Free-Space Optical Propagation; Part II: Haze, Fog, and Low Clouds Attenuations

    Science.gov (United States)

    Achour, Maha

    2002-12-01

    One of the biggest challenges facing Free-Space Optics deployment is proper understanding of optical signal propagation in different atmospheric conditions. In an earlier study by the author (30), attenuation by rain was analyzed and successfully modeled for infrared signal transmission. In this paper, we focus on attenuation due to scattering by haze, fog and low clouds droplets using the original Mie Scattering theory. Relying on published experimental results on infrared propagation, electromagnetic waves scattering by spherical droplet, atmospheric physics and thermodynamics, UlmTech developed a computer-based platform, Simulight, which simulates infrared signal (750 nm-12 μm) propagation in haze, fog, low clouds, rain and clear weather. Optical signals are scattered by fog droplets during transmission in the forward direction preventing the receiver from detecting the minimum required power. Weather databases describe foggy conditions by measuring the visibility parameter, which is, in general, defined as the maximum distance that the visible 550 nm signal can travel while distinguishing between the target object and its background at 2% contrast. Extrapolating optical signal attenuations beyond 550 nm using only visibility is not as straightforward as stated by the Kruse equation which is unfortunately widely used. We conclude that it is essential to understand atmospheric droplet sizes and their distributions based on measured attenuations to effectively estimate infrared attenuation. We focus on three types of popular fogs: Evolving, Stable and Selective.

  1. On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi-analytical temperature-pressure profiles

    Science.gov (United States)

    Heng, Kevin; Hayek, Wolfgang; Pont, Frédéric; Sing, David K.

    2012-02-01

    Motivated by the work of Guillot, we present a semi-analytical formalism for calculating the temperature-pressure profiles in hot Jovian atmospheres which includes the effects of clouds/hazes and collision-induced absorption. Using the dual-band approximation, we assume that stellar irradiation and thermal emission from the hot Jupiter occur at distinct wavelengths ('shortwave' versus 'longwave'). For a purely absorbing cloud/haze, we demonstrate its dual effect of cooling and warming the upper and lower atmosphere, respectively, which modifies, in a non-trivial manner, the condition for whether a temperature inversion is present in the upper atmosphere. The warming effect becomes more pronounced as the cloud/haze deck resides at greater depths. If it sits below the shortwave photosphere, the warming effect becomes either more subdued or ceases altogether. If shortwave scattering is present, its dual effect is to warm and cool the upper and lower atmospheres, respectively, thus counteracting the effects of enhanced longwave absorption by the cloud/haze. We make a tentative comparison of a four-parameter model to the temperature-pressure data points inferred from the observations of HD 189733b and estimate that its Bond albedo is approximately 10 per cent. Besides their utility in developing physical intuition, our semi-analytical models are a guide for the parameter space exploration of hot Jovian atmospheres via three-dimensional simulations of atmospheric circulation.

  2. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  3. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  4. Lucifer's Planet: Photolytic Hazes in the Atmosphere of 51 Eri b

    Science.gov (United States)

    Zahnle, Kevin; Marley, Mark; Morley, Caroline; Moses, Julianne I.

    2016-10-01

    The star 51 Eridani is a pre-main-sequence F dwarf that is only 20 million years old. Direct-imaging observations with GPI (Gemini Planet Imager) reveal that the star is orbited by a self-radiant young Jupiter, designated 51 Eri b, that emits with an effective temperature on the order of 700 K (Macintosh et al (2015) Science 350, 64). Thermal evolution models predict that the planet has Jupiter's radius and twice its mass.We use a 1D model to address photochemistry and possible haze formation in the irradiated atmosphere of 51 Eri b (2016arXiv160407388Z). The intended focus was to have been on carbon and organic hazes, but sulfur photochemistry turns out to be interesting and possibly more important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form abundantly, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically significant clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we discuss is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

  5. The Titan Haze Simulation experiment on COSmIC: Probing Titan's atmospheric chemistry at low temperature

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Ricketts, Claire L.; Salama, Farid

    2014-11-01

    The aim of the Titan Haze Simulation (THS) experiment is to contribute to a better understanding of aerosol formation in Titan's atmosphere through the study of the chemical formation pathways that link the simpler gas phase molecules resulting from the first steps of the N2-CH4 chemistry, to the more complex gas phase precursors of aerosols; and more specifically, to investigate the role of polycyclic aromatic hydrocarbons (PAHs) and nitrogenated polycyclic aromatic hydrocarbons (PANHs), among other hydrocarbons, in this process. In the THS experiment developed at the NASA Ames Cosmic simulation facility (COSmIC), Titan's atmospheric chemistry is simulated by a pulsed plasma jet expansion at temperature conditions (∼150 K) close to those found in Titan's atmosphere in regions where aerosols are formed. In addition, because of the very short residence time of the gas in the plasma discharge, only the initial steps of the chemistry occur, making the COSmIC/THS a unique tool to study the first and intermediate (when adding heavier precursors to the initial N2-CH4 mixture) steps of Titan's atmospheric chemistry at low temperature as shown in the study presented here. We further illustrate the potential of COSmIC/THS for the simulation of Titan's atmospheric chemistry by presenting very promising results from a preliminary comparison of the laboratory data to data from the Cassini Plasma Spectrometer-Ion Beam Spectrometer (CAPS-IBS) instrument.

  6. Investigating Titan's Atmospheric Chemistry at Low Temperature with the Titan Haze Simulation Experiment

    Science.gov (United States)

    Sciamma-O'Brien, E. M.; Salama, F.

    2012-12-01

    Titan, Saturn's largest satellite, possesses a dense atmosphere (1.5 bar at the surface) composed mainly of N2 and CH4. The solar radiation and electron bombardment from Saturn's magnetosphere induces a complex organic chemistry between these two constituents leading to the production of more complex molecules and subsequently to solid aerosols. These aerosols in suspension in the atmosphere form the haze layers giving Titan its characteristic orange color. Since 2004, the instruments onboard the Cassini orbiter have produced large amounts of observational data, unraveling a chemistry much more complex than what was first expected, particularly in Titan's upper atmosphere. Neutral, positively and negatively charged heavy molecules have been detected in the ionosphere of Titan, including benzene (C6H6) and toluene (C6H5CH3). The presence of these critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds suggests that PAHs might play a role in the production of Titan's aerosols. The aim of the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC facility, is to study the chemical pathways that link the simple molecules resulting from the first steps of the N2-CH4 chemistry to benzene, and to PAHs and nitrogen-containing PAHs (PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan's atmospheric chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma discharge. Due to the short residence time of the gas in the plasma discharge, the THS experiment can be used to probe the first and intermediate steps of Titan's chemistry by injecting different gas mixtures in the plasma. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy and Time-Of-Flight Mass Spectrometry. Thin tholin deposits are also produced

  7. Effect of Atmospheric Haze on the Deterioration of Visibility over the Pearl River Delta

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The studies on the effect of atmospheric aerosol on climate and environment are hot issues in the current circle of international science and technology. In recent years the pollution of aerosol is getting worse and worse over the Pearl River Delta. The clouds of aerosol occur all year round, with heavy pollution area located at the western side at the mouth of Pearl River. The haze weather mainly occurs from October to April next year, resulting in visibility deterioration. From the beginning of 1980s, visibility dramatically deteriorated, obviously increasing haze weather, in which there are three big fluctuations, showing the periods of pollutions of dust, sulphate and dust, fine particle from photochemical process and sulphate and dust accompanying with the development of economy respectively. The long-term tendency of visibility caused by fog and light fog does not show a tendency due to human activities or economic development, which mainly shows the interannual and interdecadal variation of climate. The deterioration of visibility has close relation to the fine particles over Pearl River Delta, with half of PM10 overpass the limited value set by national second graded standard (150μg m-3), meanwhile, all values of PM2.5 overpass the day-mean limited value of American national standard (65μg m-3), especially from October to January next year, monthly mean values of PM2.5 almost reach two times of standard value, indicating the fine particle concentration is very high. The ratio of PM2.5 to PM10 is also very high, reaching 58%-77%, higher especially in dry season than in rainy season. Thus it is the fine particle pollution in aerosol pollution over the Pearl River Delta.Compared with the data of 15 years ago, the ratio of fine particle to aerosol has obviously increased.

  8. High altitude balloon experiments at IIA

    Science.gov (United States)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  9. Cold Stress at High Altitudes

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  10. Atmospheric total gaseous mercury (TGM concentrations and wet and dry deposition of mercury at a high-altitude mountain peak in south China

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2009-11-01

    Full Text Available China is regarded as the largest contributor of mercury (Hg to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric total gaseous mercury (TGM were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Wet and dry deposition fluxes of Hg were also calculated following collection of precipitation, throughfall and litterfall. Atmospheric TGM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China, indicating great emissions of Hg in central, south and southwest China. Seasonal and diurnal variations of TGM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Wet deposition of Hg was quite low, while its dry deposition of Hg (litterfall + throughfall-direct wet deposition constituted a major portion of total deposition (~88% for total mercury (THg and 84% for methyl mercury (MeHg. This highlights the importance of vegetation to Hg atmospheric cycling. In a remote forest ecosystem of China, dry deposition of TGM, especially gaseous elemental mercury (GEM, was very important for the depletion of atmospheric Hg. Elevated TGM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated Hg dry deposition fluxes observed in Mt. Leigong.

  11. Possible influence of atmospheric circulations on winter haze pollution in the Beijing-Tianjin-Hebei region, northern China

    Science.gov (United States)

    Zhang, Z.; Zhang, X.; Gong, D.; Kim, S.-J.; Mao, R.; Zhao, X.

    2016-01-01

    Using the daily records derived from the synoptic weather stations and the NCEP/NCAR and ERA-Interim reanalysis data, the variability of the winter haze pollution (indicated by the mean visibility and number of hazy days) in the Beijing-Tianjin-Hebei (BTH) region during the period 1981 to 2015 and its relationship with the atmospheric circulations at middle-high latitude were analyzed in this study. The winter haze pollution in BTH had distinct inter-annual and inter-decadal variabilities without a significant long-term trend. According to the spatial distribution of correlation coefficients, six atmospheric circulation indices (I1 to I6) were defined from the key areas in sea level pressure (SLP), zonal and meridional winds at 850 hPa (U850, V850), geopotential height field at 500 hPa (H500), zonal wind at 200 hPa (U200), and air temperature at 200 hPa (T200), respectively. All of the six indices have significant and stable correlations with the winter visibility and number of hazy days in BTH. In the raw (unfiltered) correlations, the correlation coefficients between the six indices and the winter visibility (number of hazy days) varied from 0.57 (0.47) to 0.76 (0.6) with an average of 0.65 (0.54); in the high-frequency ( pollution in BTH winter, and vice versa. The high level of the prediction statistics and the reasonable mechanism suggested that the winter haze pollution in BTH can be forecasted or estimated credibly based on the optimized atmospheric circulation indices. Thus it is helpful for government decision-making departments to take action in advance in dealing with probably severe haze pollution in BTH indicated by the atmospheric circulation conditions.

  12. Laboratory Simulations of Titan's Surface Composition and its Relation to Atmospheric Haze Layers

    Science.gov (United States)

    Sebree, Joshua A.; Schmitt, Angela M.; Trainer, Melissa G.; Li, Xiang; Pinnick, Veronica T.; Getty, Stephanie A.; Loeffler, Mark; Anderson, Carrie M.; Brinckerhoff, William B.

    2014-06-01

    The arrival of the Cassini spacecraft in orbit around Saturn has led to the discovery of benzene at ppm levels, as well as large positive ions evocative of polycyclic aromatic hydrocarbons (PAHs) in Titan's atmosphere. Recently, the assignment of the band at 3.28 μm as observed by the Visual-Infrared Mapping Spectrometer (VIMS) to gas-phase PAHs provides further evidence that these molecules are prevalent on Titan. These observations suggest that aromatic reaction pathways play an important role in the photochemistry of Titan's atmosphere, in particular in the formation of large organic species. These aerosols eventually settle out of the atmosphere onto the surface of Titan giving rise to the different surface albedos that are observed by the VIMS instrument onboard Cassini. We will present results from a laboratory study of the UV irradiation of ppm-level aromatic precursors to understand their influence on the observable characteristics of Titan's surface. Spectroscopic measurements of our analog aerosols compare favorably to observations of Titan's haze by VIMS and by the Composite Infrared Spectrometer (CIRS) in the far-infrared. In addition, the broad aerosol emission feature centered at approximately 145 wn is of particular interest. From the broadness of this feature, we speculate that the emission is a blended composite of low-energy vibrations of large molecules such as polycyclic aromatic hydrocarbons (PAHs) and their nitrogen containing counterparts, polycyclic aromatic nitrogen heterocycles (PANHs). A further comparison of our aerosol spectra to the surface observations carried out by Cassini also shows a strong correlation between the aerosol makeup and the surface albedo of Titan. Using laser desorption mass spectrometry (LDMS) and collision-induced dissociation (CID) MS/MS techniques we confirm the presence of large (5+ rings) PAHs/PANHs in our aerosols and discuss possible formation pathways.

  13. High Altitude Cooking and Food Safety

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... 286) Actions ${title} Loading... High Altitude Cooking and Food Safety What is considered a high altitude? How is ...

  14. The Link between Knowledge, Attitudes and Practices in Relation to Atmospheric Haze Pollution in Peninsular Malaysia

    OpenAIRE

    Laura De Pretto; Stephen Acreman; Matthew J Ashfold; Mohankumar, Suresh K.; Ahimsa Campos-Arceiz

    2015-01-01

    Transboundary haze episodes caused by seasonal forest fires have become a recurrent phenomenon in Southeast Asia, with serious environmental, economic, and public health implications. Here we present a cross-sectional survey conducted among people in Kuala Lumpur and surrounds to assess the links between knowledge, attitudes, and practices in relation to the transboundary haze episodes. Of 305 respondents, 125 were amateur athletes participating in a duathlon event and the remainder were surv...

  15. Radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer and its feedback on the haze formation

    Science.gov (United States)

    Wei, Chao; Su, Hang; Cheng, Yafang

    2016-04-01

    Planetary boundary layer (PBL) plays a key role in air pollution dispersion and influences day-to-day air quality. Some studies suggest that high aerosol loadings during severe haze events may modify PBL dynamics by radiative effects and hence enhance the development of haze. This study mainly investigates the radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer by conducting simulations with Weather Research and Forecasting single-column model (WRF-SCM). We find that high aerosol loading in PBL depressed boundary layer height (PBLH). But the magnitude of the changes of PBLH after adding aerosol loadings in our simulations are small and can't explain extreme high aerosol concentrations observed. We also investigate the impacts of the initial temperature and moisture profiles on the evolution of PBL. Our studies show that the impact of the vertical profile of moisture is comparable with aerosol effects.

  16. The Titan Haze Simulation experiment: laboratory simulation of Titan's atmospheric chemistry at low temperature

    Science.gov (United States)

    Sciamma-O'Brien, E.; Contreras, C. S.; Ricketts, C. L.; Salama, F.

    2012-04-01

    In Titan’s atmosphere, a complex organic chemistry between its two main constituents, N2 and CH4, leads to the production of heavy molecules and subsequently to solid organic aerosols. Several instruments onboard Cassini have detected neutral, positively and negatively charged particles and heavy molecules in the ionosphere of Titan[1,2]. In particular, the presence of benzene (C6H6) and toluene (C6H5CH3)[3], which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, suggests that PAHs might play a role in the production of Titan’s aerosols. The Titan Haze Simulation (THS) experiment has been developed at NASA Ames’ Cosmic Simulation facility (COSmIC) to study the chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN…) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan’s atmospheric chemistry is simulated by plasma in the stream of a supersonic jet expansion. With this unique design, the gas mixture is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma discharge. Different gas mixtures containing the first products of Titan’s N2-CH4 chemistry but also much heavier molecules like PAHs or PANHs can be injected to study specific chemical reactions. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy[4] and Time-Of-Flight Mass Spectrometry[5]. Thin tholin deposits are also produced in the THS experiment and can be analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM). We will present the results of ongoing mass spectrometry studies on the THS experiment using different gas mixtures: N2-CH4, N2-C2H2, N2-C2H4, N2-C2H6, N2-C6H6, and similar mixtures with an N2-CH4 (90:10) mixture instead of pure N2, to study specific pathways

  17. Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds

    Directory of Open Access Journals (Sweden)

    S. Metzger

    2007-06-01

    Full Text Available Modeling atmospheric aerosol and cloud microphysics is rather complex, even if chemical and thermodynamical equilibrium is assumed. We show, however, that the thermodynamics can be considerably simplified by reformulating equilibrium to consistently include water, and transform laboratory-based concepts to atmospheric conditions. We generalize the thermodynamic principles that explain hydration and osmosis – merely based on solute solubilities – to explicitly account for the water mass consumed by hydration. As a result, in chemical and thermodynamical equilibrium the relative humidity (RH suffices to determine the saturation molality, including solute and solvent activities (and activity coefficients, since the water content is fixed by RH for a given aerosol concentration and type. As a consequence, gas/liquid/solid aerosol equilibrium partitioning can be solved analytically and non-iteratively. Our new concept enables an efficient and accurate calculation of the aerosol water mass and directly links the aerosol hygroscopic growth to fog, haze and cloud formation.

    We apply our new concept in the 3rd Equilibrium Simplified Aerosol Model (EQSAM3 for use in regional and global chemistry-transport and climate models. Its input is limited to the species' solubilities from which a newly introduced stoichiometric coefficient for water is derived. Analogously, we introduce effective stoichiometric coefficients for the solutes to account for complete or incomplete dissociation. We show that these coefficients can be assumed constant over the entire activity range and calculated for various inorganic, organic and non-electrolyte compounds, including alcohols, sugars and dissolved gases. EQSAM3 calculates the aerosol composition and gas/liquid/solid partitioning of mixed inorganic/organic multicomponent solutions and the associated water uptake for almost 100 major compounds. It explicitly accounts for particle hygroscopic growth by

  18. Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into haze and clouds

    Directory of Open Access Journals (Sweden)

    S. Metzger

    2007-01-01

    Full Text Available Modeling atmospheric aerosol and cloud microphysics is rather complex, even if chemical and thermodynamical equilibrium is assumed. We show, however, that the thermodynamics can be considerably simplified by reformulating equilibrium to include water, and transform laboratory-based concepts to atmospheric conditions. We generalize the thermodynamic principles that explain hydration and osmosis – merely based on solute solubilities. In chemical and thermodynamical equilibrium the relative humidity (RH determines the saturation molality, including solute and solvent activities (and activity coefficients, since the water content is fixed by RH for a given aerosol concentration and type. As a consequence, gas/liquid/solid aerosol equilibrium partitioning can be solved analytically and non-iteratively. Our new concept enables an efficient and accurate calculation of the aerosol water mass and to directly link the aerosol hygroscopic growth to haze and cloud formation.

    We apply our new concept in the 3rd Equilibrium Simplified Aerosol Model (EQSAM3. Its input is limited to the species' solubilities from which a newly introduced stoichiometric coefficient for water is derived. Analogously, we introduce effective stochiometric coefficients for the solutes to account for complete or incomplete dissociation. We show that these coefficients can be assumed constant over the entire activity range and calculated for various inorganic, organic and non-electrolyte compounds, including alcohols, sugars and dissolved gases. EQSAM3 calculates the aerosol composition and gas/liquid/solid partitioning of mixed inorganic/organic multicomponent solutions and the associated water uptake for almost 100 major compounds. It explicitly accounts for particle hygroscopic growth by computing aerosol properties such as single solute molalities, molal based activities, including activity coefficients for volatile compounds, and deliquescence relative humidities

  19. Atmospheric Diffusion Loss of Radiation Belt Trapped Electrons Injected by High Altitude Nuclear Detonation%高空核爆炸注入辐射带电子的大气扩散损失

    Institute of Scientific and Technical Information of China (English)

    牛胜利; 罗旭东; 王建国; 乔登江

    2011-01-01

    With Fokerer-Plank equation of pitch-angle diffusion, a numerical method for atmospheric diffusion loss of radiation belt trapped electrons is shown. Flux and energy spectrum are calculated as atmospheric scattering of fission β spectrum electrons injected in radiation belt by high altitude nuclear detonation. Diffusion due to atmospheric scattering is remarkable as L < 1. 3. Low energy electrons are removed more rapidly than those with high energy. Electron flux decays rapidly at an initial phase and then decays gradually aa an exponential function of time.%利用辐射带电子大气倾角扩散的福克-普朗克方程,通过推导与拟合处理扩散系数表征式,构造二阶精度有限差分格式,给出辐射带捕获电子大气扩散损失的数值计算方法.计算高空核爆炸裂变β谱电子注入辐射带后在不同L壳上的通量损失和能谱变化,结果表明,当L<1.3时,大气作用引起的扩散损失效应明显,低能电子比高能电子消失要快,电子通量初始阶段衰减很快,随后逐渐近似成时间指数函数形式衰减.

  20. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    Science.gov (United States)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  1. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...

  2. 1962 Satellite High Altitude Radiation Belt Database

    Science.gov (United States)

    2014-03-01

    TR-14-18 1962 Satellite High Altitude Radiation Belt Database Approved for public release; distribution is unlimited. March...the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database”, AFRL-VS-PS-TR- 2006-1079, Air Force Research Laboratory...Roth, B., “Blue Ribbon Panel and Support Work Assessing the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database

  3. Economy of Adaptation to High Altitude

    Institute of Scientific and Technical Information of China (English)

    Jean-Paul Richalet

    2004-01-01

    @@ The international meeting that will be held in Xining and Lhasa in August 2004 will be a wonderful occasion to share facts and concepts dealing with adaptation to high altitude. Life at high altitude is a challenge for thousands of animal species and millions of humans residing or visiting high altitude regions of the world. To try to understand the physiological mechanisms involved in the adaptation processes to high altitude hypoxia, it is convenient to start by defining what is "extreme" from a biological point of view.

  4. Aspirated Compressors for High Altitude Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  5. A Review of Atmospheric Chemistry Research in China: Photochemical Smog, Haze Pollution, and Gas-Aerosol Interactions

    Institute of Scientific and Technical Information of China (English)

    MA Jianzhong; XU Xiaobin; ZHAO Chunsheng; YAN Peng

    2012-01-01

    In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010,focusing on tropospheric ozone,aerosol chemistry,and the interactions between trace gases and aerosols in the polluted areas of China.Over the past decade,China has suffered severe photochemical smog and haze pollution,especially in North China,the Yangtze River Delta,and the Pearl River Delta.Much scientific work on atmospheric chemistry and physics has been done to address this large-scale,complex environmental problem.Intensive field experiments,satellite data analyses,and model simulations have shown that air pollution is significantly changing the chemical and physical characters of the natural atmosphere over these parts of China.In addition to strong emissions of primary pollutants,photochemical and heterogeneous reactions play key roles in the formation of complex pollution.More in-depth research is recommended to reveal the formation mechanism of photochemical smog and haze pollution and their climatic effects at the urban,regional,and global scales.

  6. Shilajit: A panacea for high-altitude problems.

    Science.gov (United States)

    Meena, Harsahay; Pandey, H K; Arya, M C; Ahmed, Zakwan

    2010-01-01

    High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a "health rejuvenator" and help to overcome high-altitude related problems.

  7. Solar electric energy supply at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Knaupp, W.; Mundschau, E. [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung (ZSW), Ulm (Germany)

    2004-04-01

    Solar-hydrogen systems were analyzed regarding their usability as energy supply system for high altitude platforms. In a first step for an assessment of solar and photovoltaic resources near-ground spectral transmittances of atmosphere were extended with simplified height correction functions to achieve spectral irradiance descriptions versus atmospheric height up to 25 km. The influence of atmospheric height to different solar cell technologies regarding electrical performance was quantified at some examples for the aspect of spectral distribution with the help of the introduced spectral height factor. The main attention during analysis of the whole solar-hydrogen energy system was directed to characteristics of current or near term available technology. Specific power weight of photovoltaic system, electrolyzer, fuel cell and gas tanks and their dependence on operation mode and power range were assessed. A pre-design of a solar-hydrogen energy system was carried out for an airship (volume 580,000 m3) withstanding continuous wind speeds up to {approx} 130 km/h. The calculated coverage ratio of photovoltaic and load share of energy system mark the frame of usability. Depending on the airship size, shape and other external boundary conditions the total electrical energy demand could be covered by a solar-hydrogen energy system of current or near term technology for full year operation. However further investigations are necessary regarding e.g. further mass reductions. (author)

  8. The Link between Knowledge, Attitudes and Practices in Relation to Atmospheric Haze Pollution in Peninsular Malaysia.

    Science.gov (United States)

    De Pretto, Laura; Acreman, Stephen; Ashfold, Matthew J; Mohankumar, Suresh K; Campos-Arceiz, Ahimsa

    2015-01-01

    Transboundary haze episodes caused by seasonal forest fires have become a recurrent phenomenon in Southeast Asia, with serious environmental, economic, and public health implications. Here we present a cross-sectional survey conducted among people in Kuala Lumpur and surrounds to assess the links between knowledge, attitudes, and practices in relation to the transboundary haze episodes. Of 305 respondents, 125 were amateur athletes participating in a duathlon event and the remainder were surveyed in an inner-city shopping mall. Across the whole sample, people who possessed more factual information about the haze phenomenon showed significantly higher levels of concern. Duathletes were more knowledgeable than non-duathletes and also more concerned about the negative effects of haze, especially on health. For all people who regularly practice outdoor sports (including people interviewed at the shopping mall), higher levels of knowledge and concerned attitudes translated into a greater likelihood of engaging in protective practices, such as cancelling their outdoor training sessions, while those with greater knowledge were more likely to check the relevant air pollution index on a daily basis. Our results indicate that the provision of accurate and timely information about air quality to residents will translate into beneficial practices, at least among particularly exposed individuals, such as amateur athletes who regularly practice outdoor sports.

  9. The Link between Knowledge, Attitudes and Practices in Relation to Atmospheric Haze Pollution in Peninsular Malaysia.

    Directory of Open Access Journals (Sweden)

    Laura De Pretto

    Full Text Available Transboundary haze episodes caused by seasonal forest fires have become a recurrent phenomenon in Southeast Asia, with serious environmental, economic, and public health implications. Here we present a cross-sectional survey conducted among people in Kuala Lumpur and surrounds to assess the links between knowledge, attitudes, and practices in relation to the transboundary haze episodes. Of 305 respondents, 125 were amateur athletes participating in a duathlon event and the remainder were surveyed in an inner-city shopping mall. Across the whole sample, people who possessed more factual information about the haze phenomenon showed significantly higher levels of concern. Duathletes were more knowledgeable than non-duathletes and also more concerned about the negative effects of haze, especially on health. For all people who regularly practice outdoor sports (including people interviewed at the shopping mall, higher levels of knowledge and concerned attitudes translated into a greater likelihood of engaging in protective practices, such as cancelling their outdoor training sessions, while those with greater knowledge were more likely to check the relevant air pollution index on a daily basis. Our results indicate that the provision of accurate and timely information about air quality to residents will translate into beneficial practices, at least among particularly exposed individuals, such as amateur athletes who regularly practice outdoor sports.

  10. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  11. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  12. Pupillary light reaction during high altitude exposure.

    Directory of Open Access Journals (Sweden)

    Maximilian Schultheiss

    Full Text Available PURPOSE: This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS. This work is related to the Tübingen High Altitude Ophthalmology (THAO study. METHODS: Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity were quantified in 14 healthy volunteers at baseline (341 m and high altitude (4559 m over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline and the 95% confidence interval for each time point. RESULTS: During high altitude exposure the initial diameter size was significantly reduced (p<0.05. In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05 on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. CONCLUSIONS: Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS.

  13. Pupillary Light Reaction during High Altitude Exposure

    Science.gov (United States)

    Schatz, Andreas; Wilhelm, Barbara; Peters, Tobias; Fischer, M. Dominik; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian; Willmann, Gabriel

    2014-01-01

    Purpose This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP) and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. Methods Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity) were quantified in 14 healthy volunteers at baseline (341 m) and high altitude (4559 m) over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline) and the 95% confidence interval for each time point. Results During high altitude exposure the initial diameter size was significantly reduced (p<0.05). In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05) on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. Conclusions Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS. PMID:24503770

  14. Developmental functional adaptation to high altitude: review.

    Science.gov (United States)

    Frisancho, A Roberto

    2013-01-01

    Various approaches have been used to understand the origins of the functional traits that characterize the Andean high-altitude native. Based on the conceptual framework of developmental functional adaptation which postulates that environmental influences during the period of growth and development have long lasting effects that may be expressed during adulthood, we initiated a series of studies addressed at determining the pattern of physical growth and the contribution of growth and development to the attainment of full functional adaptation to high-altitude of low and high altitude natives living under rural and urban conditions. Current research indicate that: (a) the pattern of growth at high altitude due to limited nutritional resources, physical growth in body size is delayed but growth in lung volumes is accelerated because of hypoxic stress); (b) low-altitude male and female urban natives can attain a full functional adaptation to high altitude by exposure to high-altitude hypoxia during the period of growth and development; (c) both experimental studies on animals and comparative human studies indicate that exposure to high altitude during the period of growth and development results in the attainment of a large residual lung volume; (d) this developmentally acquired enlarged residual lung volume and its associated increase in alveolar area when combined with the increased tissue capillarization and moderate increase in red blood cells and hemoglobin concentration contributes to the successful functional adaptation of the Andean high-altitude native to hypoxia; and (e) any specific genetic traits that are related to the successful functional adaptation of Andean high-altitude natives have yet to be identified.

  15. The detection of benzene in Saturn's upper atmosphere

    Science.gov (United States)

    Koskinen, T. T.; Moses, J. I.; West, R. A.; Guerlet, S.; Jouchoux, A.

    2016-08-01

    The stratosphere of Saturn contains a photochemical haze that appears thicker at the poles and may originate from chemistry driven by the aurora. Models suggest that the formation of hydrocarbon haze is initiated at high altitudes by the production of benzene, which is followed by the formation of heavier ring polycyclic aromatic hydrocarbons. Until now there have been no observations of hydrocarbons or photochemical haze in the production region to constrain these models. We report the first vertical profiles of benzene and constraints on haze opacity in the upper atmosphere of Saturn retrieved from Cassini Ultraviolet Imaging Spectrograph stellar occultations. We detect benzene at several different latitudes and find that the observed abundances of benzene can be produced by solar-driven ion chemistry that is enhanced at high latitudes in the northern hemisphere during spring. We also detect evidence for condensation and haze at high southern latitudes in the polar night.

  16. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  17. Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation

    Science.gov (United States)

    Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S. E.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Nelson, P.; Ngan, H.; Pfüller, E.; Natusch, T.; Röser, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    We observed the 29 June 2015 occultation by Pluto from SOFIA and several ground-based sites in New Zealand. Pre-event astrometry (described in Zuluaga et al., this conference) allowed us to navigate SOFIA into Pluto's central flash (Person et al., this conference). Fortuitously, the central flash also fell over the Mt. John University Observatory (Pasachoff et al., this conference). We combine all of our airborne and ground-based data to produce a geometric solution for the occultation and to investigate the state of Pluto's atmosphere just two weeks before the New Horizons spacecraft's close encounter with Pluto. We find that the atmosphere parameters at half-light are unchanged from our observations in 2011 (Person et al. 2013) and 2013 (Bosh et al. 2015). By combining our light-curve inversion with recent radius measurements from New Horizons, we find strong evidence for an extended haze layer in Pluto's atmosphere. See also Sickafoose et al. (this conference) for an evaluation of the particle sizes and properties.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by NASA SSO grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams College), and by the National Research Foundation of South Africa.

  18. Pulmonary Embolism Masquerading as High Altitude Pulmonary Edema at High Altitude.

    Science.gov (United States)

    Pandey, Prativa; Lohani, Benu; Murphy, Holly

    2016-12-01

    Pandey, Prativa, Benu Lohani, and Holly Murphy. Pulmonary embolism masquerading as high altitude pulmonary edema at high altitude. High Alt Med Biol. 17:353-358, 2016.-Pulmonary embolism (PE) at high altitude is a rare entity that can masquerade as or occur in conjunction with high altitude pulmonary edema (HAPE) and can complicate the diagnosis and management. When HAPE cases do not improve rapidly with descent, other diagnoses, including PE, ought to be considered. From 2013 to 2015, we identified eight cases of PE among 303 patients with initial diagnosis of HAPE. Upon further evaluation, five had deep vein thrombosis (DVT). One woman had a contraceptive ring and seven patients had no known thrombotic risks. PE can coexist with or mimic HAPE and should be considered in patients presenting with shortness of breath from high altitude regardless of thrombotic risk.

  19. The University of Alberta High Altitude Balloon Program

    Science.gov (United States)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  20. Sleep of Andean high altitude natives.

    Science.gov (United States)

    Coote, J H; Stone, B M; Tsang, G

    1992-01-01

    The structure of sleep in lowland visitors to altitudes greater than 4000 m is grossly disturbed. There are no data on sleep in long-term residents of high altitudes. This paper describes an electroencephalographic study of sleep in high altitude dwellers who were born in and are permanent residents of Cerro de Pasco in the Peruvian Andes, situated at 4330 m. Eight healthy male volunteers aged between 18 and 69 years were studied. Sleep was measured on three consecutive nights for each subject. Electroencephalographs, submental electromyographs and electro-oculograms were recorded. Only data from the third night were used in the analysis. The sleep patterns of these subjects resembled the normal sleep patterns described by others in lowlanders at sea level. There were significant amounts of slow wave sleep in the younger subjects and rapid eye movement sleep seemed unimpaired.

  1. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  2. Can High Altitude Influence Cytokines and Sleep?

    Science.gov (United States)

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  3. High-altitude physiology: lessons from Tibet

    Science.gov (United States)

    Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili

    2013-05-01

    Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (Pcardiac output and muscle O2 diffusional conductance, but neither ventilation nor the alveolar-arterial PO2 difference (AaPO2) varied with [Hb]. In contrast, Andean high altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].

  4. Breathing and sleep at high altitude.

    Science.gov (United States)

    Ainslie, Philip N; Lucas, Samuel J E; Burgess, Keith R

    2013-09-15

    We provide an updated review on the current understanding of breathing and sleep at high altitude in humans. We conclude that: (1) progressive changes in pH initiated by the respiratory alkalosis do not underlie early (48 h), complex cellular and neurochemical re-organization occurs both in the peripheral chemoreceptors as well as within the central nervous system. The latter is likely influenced by central acid-base changes secondary to the extent of the initial respiratory responses to initial exposure to high altitude; (3) sleep at high altitude is disturbed by various factors, but principally by periodic breathing; (4) the extent of periodic breathing during sleep at altitude intensifies with duration and severity of exposure; (5) complex interactions between hypoxic-induced enhancement in peripheral and central chemoreflexes and cerebral blood flow--leading to higher loop gain and breathing instability--underpin this development of periodic breathing during sleep; (6) because periodic breathing may elevate rather than reduce mean SaO2 during sleep, this may represent an adaptive rather than maladaptive response; (7) although oral acetazolamide is an effective means to reduce periodic breathing by 50-80%, recent studies using positive airway pressure devices to increase dead space, hyponotics and theophylline are emerging but appear less practical and effective compared to acetazolamide. Finally, we suggest avenues for future research, and discuss implications for understanding sleep pathology.

  5. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  6. Is High Altitude Pulmonary Edema Relevant to Hawai‘i?

    Science.gov (United States)

    2014-01-01

    High altitude clinical syndromes have been described in the medical literature but may be under recognized in the state of Hawai‘i. As tourism increases, high altitude injuries may follow given the easy access to high altitude attractions. Visitors and clinicians should be aware of the dangers associated with the rapid ascent to high altitudes in the perceived comfort of a vehicle. This paper will review the basic pathophysiology, prevention, and treatment of the most serious of the high altitude clinical syndromes, high altitude pulmonary edema. PMID:25478294

  7. HST hot-Jupiter transmission spectral survey: Haze in the atmosphere of WASP-6b

    CERN Document Server

    Nikolov, N; Burrows, A S; Fortney, J J; Henry, G W; Pont, F; Ballester, G E; Aigrain, S; Wilson, P A; Huitson, C M; Gibson, N P; Desert, J -M; Etangs, A Lecavelier des; Showman, A P; Vidal-Madjar, A; Wakeford, H R; Zahnle, K

    2014-01-01

    We report Hubble Space Telescope (HST) optical to near-infrared transmission spectroscopy of the hot Jupiter WASP-6b, measured with the Space Telescope Imaging Spectrograph (STIS) and Spitzer's InfraRed Array Camera (IRAC). The resulting spectrum covers the range $0.29-4.5\\,\\mu$m. We find evidence for modest stellar activity of WASP-6b and take it into account in the transmission spectrum. The overall main characteristic of the spectrum is an increasing radius as a function of decreasing wavelength corresponding to a change of $\\Delta (R_p/R_{\\ast})=0.0071$ from 0.33 to $4.5\\,\\mu$m. The spectrum suggests an effective extinction cross-section with a power law of index consistent with Rayleigh scattering, with temperatures of $973\\pm144$ K at the planetary terminator. We compare the transmission spectrum with hot-Jupiter atmospheric models including condensate-free and aerosol-dominated models incorporating Mie theory. While none of the clear-atmosphere models is found to be in good agreement with the data, we ...

  8. Sleep at high altitude: guesses and facts.

    Science.gov (United States)

    Bloch, Konrad E; Buenzli, Jana C; Latshang, Tsogyal D; Ulrich, Silvia

    2015-12-15

    Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8-4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiorespiratory disease.

  9. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    Science.gov (United States)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  10. Oxygen ion energization observed at high altitudes

    Directory of Open Access Journals (Sweden)

    M. Waara

    2010-04-01

    Full Text Available We present a case study of significant heating (up to 8 keV perpendicular to the geomagnetic field of outflowing oxygen ions at high altitude (12 RE above the polar cap. The shape of the distribution functions indicates that most of the heating occurs locally (within 0.2–0.4 RE in altitude. This is a clear example of local ion energization at much higher altitude than usually reported. In contrast to many events at lower altitudes, it is not likely that the locally observed wave fields can cause the observed ion energization. Also, it is not likely that the ions have drifted from some nearby energization region to the point of observation. This suggests that additional fundamentally different ion energization mechanisms are present at high altitudes. One possibility is that the magnetic moment of the ions is not conserved, resulting in slower outflow velocities and longer time for ion energization.

  11. The High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  12. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols

    Directory of Open Access Journals (Sweden)

    X. Y. Zhang

    2012-01-01

    Full Text Available From 2006 to 2007, the daily concentrations of major inorganic water-soluble constituents, mineral aerosol, organic carbon (OC and elemental carbon (EC in ambient PM10 samples were investigated from 16 urban, rural and remote sites in various regions of China, and were compared with global aerosol measurements. A large difference between urban and rural chemical species was found, normally with 1.5 to 2.5 factors higher in urban than in rural sites. Optically-scattering aerosols, such as sulfate (~16%, OC (~15%, nitrate (~7%, ammonium (~5% and mineral aerosol (~35% in most circumstance, are majorities of the total aerosols, indicating a dominant scattering feature of aerosols in China. Of the total OC, ~55%–60% can be attributed to the formation of the secondary organic carbon (SOC. The absorbing aerosol EC only accounts for ~3.5% of the total PM10. Seasonally, maximum concentrations of most aerosol species were found in winter while mineral aerosol peaks in spring. In addition to the regular seasonal maximum, secondary peaks were found for sulfate and ammonium in summer and for OC and EC in May and June. This can be considered as a typical seasonal pattern in various aerosol components in China. Aerosol acidity was normally neutral in most of urban areas, but becomes some acidic in rural areas. Based on the surface visibility observations from 681 meteorological stations in China between 1957 and 2005, four major haze areas are identified with similar visibility changes, namely, (1 Hua Bei Plain in N. China, and the Guanzhong Plain; (2 E. China with the main body in the Yangtze River Delta area; (3 S. China with most areas of Guangdong and the Pearl River Delta area; (4 The Si Chuan Basin in S.W. China. The degradation of visibility in these areas is linked with the emission changes and high PM concentrations. Such quantitative chemical characterization of aerosols is essential in assessing their role in atmospheric

  13. Haze insights and mitigation in China: an overview.

    Science.gov (United States)

    Zhuang, Xuliang; Wang, Yuesi; He, Hong; Liu, Jianguo; Wang, Xinming; Zhu, Tingyu; Ge, Maofa; Zhou, Ju; Tang, Guiqian; Ma, Jinzhu

    2014-01-01

    The present article provides an overview of the chemical and physical features of haze in China, focusing on the relationship between haze and atmospheric fine particles, and the formation mechanism of haze. It also summarizes several of control technologies and strategies to mitigate the occurrence of haze. The development of instruments and the analysis of measurements of ambient particles and precursor concentrations have provided important information about haze formation. Indeed, the use of new instruments has greatly facilitated current haze research in China. Examples of insightful results include the relationship between fine particles and haze, the chemical compositions and sources of particles, the impacts of the aging process on haze formation, and the application of technologies that control the formation of haze. Based on these results, two relevant issues need to be addressed: understanding the relationship between haze and fine particles and understanding how to control PM2.5.

  14. the APL Balloonborne High Altitude Research Platform (HARP)

    Science.gov (United States)

    Adams, D.; Arnold, S.; Bernasconi, P.

    2015-09-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed and demonstrated a multi-purpose stratospheric balloonborne gondola known as the High Altitude Research Platform (HARP). HARP provides the power, mechanical supports, thermal control, and data transmission for multiple forms of high-altitude scientific research equipment. The platform has been used for astronomy, cosmology and heliophysics experiments but can also be applied to atmospheric studies, space weather and other forms of high altitude research. HARP has executed five missions. The first was Flare Genesis from Antarctica in 1993 and the most recent was the Balloon Observation Platform for Planetary Science (BOPPS) from New Mexico in 2014. HARP will next be used to perform again the Stratospheric Terahertz Observatory mission, a mission that it first performed in 2009. The structure, composed of an aluminum framework is designed for easy transport and field assembly while providing ready access to the payload and supporting avionics. A light-weighted structure, capable of supporting Ultra-Long Duration Balloon (ULDB) flights that can last more than 100 days is available. Scientific research payloads as heavy as 600 kg (1322 pounds) and requiring up to 800 Watts electrical power can be supported. The platform comprises all subsystems required to support and operate the science payload, including both line-of-sight (LOS) and over-the-horizon (0TH) telecommunications, the latter provided by Iridium Pilot. Electrical power is produced by solar panels for multi-day missions and batteries for single-day missions. The avionics design is primarily single-string; however, use of ruggedized industrial components provides high reliability. The avionics features a Command and Control (C&C) computer and a Pointing Control System (PCS) computer housed within a common unpressurized unit. The avionics operates from ground pressure to 2 Torr and over a temperature range from —30 C to +85 C

  15. HAWC - The High Altitude Water Cherenkov Detector

    Science.gov (United States)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  16. Sleep apneas and high altitude newcomers.

    Science.gov (United States)

    Goldenberg, F; Richalet, J P; Onnen, I; Antezana, A M

    1992-10-01

    Sleep and respiration data from two French medical high altitude expeditions (Annapurna 4,800 m and Mt Sajama 6,542 m) are presented. Difficulties in maintaining sleep and a SWS decrease were found with periodic breathing (PB) during both non-REM and REM sleep. Extent of PB varied considerably among subjects and was not correlated to the number of arousals but to the intercurrent wakefulness duration. There was a positive correlation between the time spent in PB and the individual hypoxic ventilatory drive. The relation between PB, nocturnal desaturation, and mountain sickness intensity are discussed. Acclimatization decreased the latency toward PB and improved sleep. Hypnotic benzodiazepine intake (loprazolam 1 mg) did not worsen either SWS depression or apneas and allowed normal sleep reappearance after acclimatization.

  17. Photochemical aerosols in warm exoplanetary atmospheres

    Science.gov (United States)

    Imanaka, Hiroshi; Smith, Mark A.; McKay, Christopher P.; Cruikshank, Dale P.; Marley, Mark S.

    2016-10-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. We have conducted a series of laboratory simulations to investigate how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. The mass production rates in the H2-CH4-CO gas mixtures are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed in a H2-CO gas mixture even without CH4. The complex refractive indices of the aerosol analogue from the H2-CO gas mixture show strong absorption at the visible/near-IR wavelengths. These experimental facts imply that substantial carbonaceous aerosols may be generated in warm H2-CO-CH4 exoplanetary atmospheres, and that it might be responsible for the observed dark albedos at the visible wavelengths.

  18. Transmission spectroscopy of HAT-P-32b with the LBT: confirmation of clouds/hazes in the planetary atmosphere

    Science.gov (United States)

    Mallonn, M.; Strassmeier, K. G.

    2016-05-01

    Aims: Spectroscopic observations of a transit event of an extrasolar planet offer the opportunity to study the composition of the planetary atmosphere. This can be done with comparably little telescope time using a low-resolution multi-object spectrograph at a large aperture telescope. We observed a transit of the inflated hot Jupiter HAT-P-32b with the Multi-Object Double Spectrograph at the Large Binocular Telescope to characterize its atmosphere from 3300 to 10 000 Å. Methods: A time series of target and reference star spectra was binned in two broad-band wavelength channels, from which differential transit light curves were constructed. These broad-band light curves were used to confirm previous transit parameter determinations. To derive the planetary transmission spectrum with a resolution of R ~ 60, we created a chromatic set of 62 narrow-band light curves. The spectrum was corrected for the third light of a nearby M star. Additionally, we undertook a photometric monitoring campaign of the host star to correct for the influence of starspots. Results: The transmission spectrum of HAT-P-32b shows no pressure-broadened absorption features from Na and K, which is interpreted by the presence of clouds or hazes in the planetary atmosphere. This result is in agreement with previous studies on the same planet. The presence of TiO in gas phase could be ruled out. We find a 2.8σ indication of increased absorption in the line core of potassium (K I 7699 Å). No narrow absorption features of Na and Hα were detected. Furthermore, tentative indications were found for a slope of increasing opacity toward blue wavelengths from the near-IR to the near-UV with an amplitude of two scale heights. If confirmed by follow-up observations, it can be explained by aerosols either causing Mie scattering or causing Rayleigh scattering with an aerosol - gas scale height ratio below unity. The host star was found to be photometrically stable within the measurement precision. Based on

  19. Radiation Physics for Space and High Altitude Air Travel

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  20. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-02

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  1. High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    Science.gov (United States)

    Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  2. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen; Liu, Zirui; Wang, Lili; Wang, Pucai; Xia, Xiangao; Tao, Minghui; Zhu, Lingyun

    2016-04-01

    The feedback between aerosol and meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) is analyzed by conducting numerical experiments with and without the aerosol direct and indirect effects via a coupled meteorology and aerosol/chemistry model(WRF-Chem). The numerical experiments are performed for the period of 2-26 January 2013, during which a severe fog-haze event (10-15 January 2013) occurred, with the simulated maximum hourly surface PM2.5 concentration of ~600 μg m-3, minimum atmospheric visibility of ~0.3 km, and 10-100 hours of simulated hourly surface PM2.5 concentration above 300 μg m-3 over NCP. A comparison of model results with aerosol feedback against observations indicates that the model can reproduce the spatial and temporal characteristics of temperature, relative humidity (RH), wind, surface PM2.5 concentration, atmospheric visibility, and aerosol optical depth reasonably well. Analysis of model results with and without aerosol feedback shows that during the fog-haze event aerosols lead to a significant negative radiative forcing of ~20 to ~140 W m-2 at the surface and a large positive radiative forcing of 20-120 W m-2 in the atmosphere and induce significant changes in meteorological variables with maximum changes during 09:00-18:00 local time (LT) over urban Beijing and Tianjin and south Hebei: the temperature decreases by 0.8-2.8 °C at the surface and increases by 0.1-0.5 °C at around 925 hPa, while RH increases by about 4-12% at the surface and decreases by 1-6% at around 925 hPa. As a result, the aerosol-induced equivalent potential temperature profile change shows that the atmosphere is much more stable and thus the surface wind speed decreases by up to 0.3 m s-1 (10 %) and the atmosphere boundary layer height decreases by 40-200 m (5-30 %) during the daytime of this severe fog-haze event. Owing to this more stable atmosphere during 09:00-18:00, 10-15 January, compared to the surface PM2

  3. THE HIGH ALTITUDE GAMMA RAY OBSERVATORY, HAWC

    Directory of Open Access Journals (Sweden)

    M. M. González

    2011-01-01

    Full Text Available El volcán Sierra Negra en Puebla, México fue seleccionado para albergar a HAWC (High Altitude Water Cherenkov, un observatorio de gran apertura (2Pi sr, único en el mundo, capaz de observar contínuamente el cielo a energías de 0.1 a 100 TeV. HAWC consiste en un arreglo a una altitud de 4100 m sobre el nivel del mar de 300 contenedores de 7.3 m de diámetro y 5 m de altura llenos de agua pura y sensores de luz que observan partículas sumamente energ´eticas provenientes de los eventos más violentos del universo y será 15 veces más sensible que su antecesor Milagro. Las aportaciones científicas de Milagro han demostrado las capacidades únicas de este tipo de observatorios. En este trabajo se presentará HAWC y se discutirá brevemente su caso científico y capacidades.

  4. The High-Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  5. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  6. The High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  7. Development of the High Altitude Student Platform

    Science.gov (United States)

    Guzik, T. G.; Besse, S.; Calongne, A.; Dominique, A.; Ellison, S. B.; Gould, R.; Granger, D.; Olano, D.; Smith, D.; Stewart, M.; Wefel, J. P.

    2008-11-01

    The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15 20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.

  8. The High Altitude Water Cherenkov Observatory

    CERN Document Server

    ,

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV gamma-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV gamma-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from gamma-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first thirty WCDs (forming an array approximately the size of Milagro) were deployed in Summer...

  9. Pulmonary embolism in young natives of high altitude

    Directory of Open Access Journals (Sweden)

    Sanjay Singhal

    2016-01-01

    Full Text Available Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude.

  10. High altitude pulmonary oedema (HAPE) in an Indian pilgrim.

    Science.gov (United States)

    Panthi, Sagar; Basnyat, Buddha

    2013-11-01

    Increasing number of Hindu pilgrims visit the Himalayas where some of them suffer from high altitude illness including the life threatening forms, high altitude pulmonary oedema (HAPE) and high altitude cerebral oedema. Compared to tourists and trekkers, pilgrims are usually ignorant about altitude illness. This is a case of a pilgrim who suffered from HAPE on his trip to Kailash-Mansarovar and is brought to a tertiary level hospital in Kathmandu. This report emphasises on how to treat a patient with HAPE, a disease which is increasingly being seen in the high altitude pilgrim population.

  11. HCN ice in Titan's high-altitude southern polar cloud

    CERN Document Server

    de Kok, Remco J; Maltagliati, Luca; Irwin, Patrick G J; Vinatier, Sandrine

    2014-01-01

    Titan's middle atmosphere is currently experiencing a rapid change of season after northern spring arrived in 2009. A large cloud was observed for the first time above Titan's southern pole in May 2012, at an altitude of 300 km. This altitude previously showed a temperature maximum and condensation was not expected for any of Titan's atmospheric gases. Here we show that this cloud is composed of micron-sized hydrogen cyanide (HCN) ice particles. The presence of HCN particles at this altitude, together with new temperature determinations from mid-infrared observations, indicate a very dramatic cooling of Titan's atmosphere inside the winter polar vortex in early 2012. Such a cooling is completely contrary to previously measured high-altitude warming in the polar vortex, and temperatures are a hundred degrees colder than predicted by circulation models. Besides elucidating the nature of Titan's mysterious polar cloud, these results thus show that post-equinox cooling at the winter pole is much more efficient th...

  12. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  13. Identification of chemical compositions and sources of atmospheric aerosols in Xi'an, inland China during two types of haze events.

    Science.gov (United States)

    Li, Jianjun; Wang, Gehui; Ren, Yanqin; Wang, Jiayuan; Wu, Can; Han, Yanni; Zhang, Lu; Cheng, Chunlei; Meng, Jingjing

    2016-10-01

    High time resolution (1h) of TSP filter samples was collected in Xi'an in inland China from December 5 to 13, 2012, during which a 9-day long of haze episode occurred. The hazy days were classified as two types, i.e., Light-haze period with moderate degradation in visibility (5-10km) and relatively dry conditions (RH: 53±19%) and Severe-haze period with a daily visibility less than 5km and humid conditions (RH: 73±14%). TSP in the two periods (415±205 and 530±180μgm(-3) in Light-haze and Severe-haze periods, respectively) was comparable, but crustal Fe and Ca elements presented higher concentrations and strong correlation (R(2)=0.72) with TSP in Light-haze period. SO4(2-), NO3(-) and NH4(+) in Light-haze period were 16±5.9, 12±6.7 and 4.1±2.8μgm(-3), respectively, and increased dramatically to 51±15, 44±9.7 and 23±5.6μgm(-3) in Severe-haze period. Contributions of Fe and Ca to TSP decreased from 9.2% in Light-haze period to 5.3% in Severe-haze period, but those of SO4(2-), NO3(-) and NH4(+) increased from 3.8%, 2.9% and 1.0% in Light-haze period to 9.6%, 8.3% and 4.4% in Severe-haze period, respectively. These results suggest that dust-derived particles were more significant in Light-haze period while secondary aerosols were more important in Severe-haze period. Hopanes (33±24 and 38±29ngm(-3) in Light-haze and Severe-haze periods, respectively) during the two types of haze periods are comparable, indicating that differences in contribution of primary organic aerosols from fossil fuel combustions to TSP were insignificant. In contrast, the ratio of secondary organic aerosols (e.g., o-phthalic acid) to EC was much higher in Severe-haze period (5.8±2.7ngμg(-1)) than in Light-haze period (3.4±2.1ngμg(-1)), probably indicating that the humid conditions in Severe-haze period are favorable for secondary organic aerosol formation.

  14. Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation.

    Science.gov (United States)

    Luo, Yongjun; Yang, Xiaohong; Gao, Yuqi

    2013-08-01

    Mitochondria are the energy metabolism centers of the cell. More than 95% of cellular energy is produced by mitochondrial oxidative phosphorylation. Hypoxia affects a wide range of energy generation and consumption processes in animals. The most important mechanisms limiting ATP consumption increase the efficiency of ATP production and accommodate the reduced production of ATP by the body. All of these mechanisms relate to changes in mitochondrial function. Mitochondrial function can be affected by variations in mitochondrial DNA, including polymorphisms, content changes, and deletions. These variations play an important role in acclimatization or adaptation to hypoxia. In this paper, the association between mitochondrial genome sequences and high-altitude adaptation is reviewed.

  15. Introductory address: lessons to be learned from high altitude.

    Science.gov (United States)

    Houston, C S

    1979-07-01

    A historical account of the important landmarks in man's experience with the high altitude environment is followed by comments on the important stages in the understanding of its physiological effects. The work of The Mount Logan High Altitude Physiology Study on acute mountain sickness is reviewed from its inception in 1967 until the present.

  16. Soldier at High Altitude: Problem & Preventive Measures

    Directory of Open Access Journals (Sweden)

    S.S Purkayastha

    2000-04-01

    Full Text Available Due to military and j trategic reasons, a large body of troops is being regularly dcployed in the snowbound areas through ut the Himalayan regions to guard Ihe Ironliers. Thc mountain environment at high 'allitude (HA consisls of several faclors alien lo plain dwellers, which evoke a series of physiological responses in human system. Some of the sea' level residents on induction to HA suffer from several unloward symploms of HA" ailmenls varying from mild-lo-severe degrees. Suddenexposure to HA is detrimental to physical and mental  performance of the low landers and  certain cases, may even lead to dreaded condition like high altitude pulmonary oedema (HAPO. These may make a man Jisturbed physically and mentally. So, there is a need lo prevent such hazards v(hich ispossible if the individual is aware of the problems and prevenlive measures ofHA ailments in advance, before going to HA for a safe and happy living there. Hence, a noble effort has been made to provide guidelines to create awareness about physical and physiological problems of life at HA and themethods of protection against its ill-effects for the soldiers, mountaineers and sojourners conducting scientific trials it HA. In th.:s revieJ, an attempt has been made to describe vital aspects of HA in a popular way, st~ing with its concept and various environmental factors which exert considerableettects on human body functions, heallh and performance on exposure to such environment, on the b¥is of a series of studies coitlucted at Ithe Defence Institute of Physiology & Allied Sciences, Delhi, oVer the years. The most important featurelof HA (3,000 m and above is hypoxia or deficiency ofoxygej1 in the body. Olher cnvironmental tactors are: scverc cold, high velocity wind, low rclalivc humidily, high solar radiatior, increased ultraviolet radialion and difficult terrain. These faclors are responsible for various HA cWtdc old syndromes, viz., acute mountain sickness, HAPO, dehydration,4

  17. Trends in atmospheric haze induced by peat fires in Sumatra Island, Indonesia and El Niño phenomenon from 1973 to 2003

    Science.gov (United States)

    Wang, Yonghe; Field, Robert D.; Roswintiarti, Orbita

    2004-02-01

    Visibility was used as a long-term indicator of atmospheric haze caused by peat fires on the peat land area of the island of Sumatra, Indonesia. Visibility and the anomalies of sea surface temperature in the Niño 3.4 region from 1973 to 2003 were analyzed. A significant linear relationship existed between the visibility and time, and the two signals shared two periodic components of 45 months (3.7 yr) and 61 months (5.1 yr), corresponding with the El Niño-Southern Oscillation (ENSO) variability. Visibility decrease occurred about 3 months earlier than peak ENSO, suggesting fires initiated during the ENSO onset stage. The study demonstrated the connection of inter-annual climate variability, biomass burning, and air quality in the region. The study could facilitate the prediction of change in fire occurrence and air quality from ENSO monitoring data.

  18. Interplanetary dust particles, not wind blown dust, control high altitude ice clouds on Mars

    Science.gov (United States)

    Hartwick, Victoria; Toon, Owen B.

    2016-10-01

    Water ice clouds on Mars are commonly observed at high altitudes. However, current generation Mars three-dimensional general circulation models (GCM) struggle to reproduce clouds above approximately 20-30 km. On Mars, as on Earth, ice cloud formation likely initiates by heterogeneous nucleation, which requires a population of suspended ice nuclei contiguous with supersaturated atmospheric water vapor. Although supersaturation is observed at high altitudes and has been reproduced in models, models predict very few ice nuclei. The small number of ice nuclei in the upper atmosphere is due to the assumption in Mars GCMs that the only source of ice nuclei is dust from the Martian surface. However, terrestrial mesospheric noctilucent clouds have been shown to form by ice nucleation on particles originating from ablated micrometeroids. Therefore, it is reasonable to assume that a population of micrometeoric ablation biproducts on Mars exists and can act as a site for cloud nucleation at high altitudes. We present simulations using the Community Atmosphere Model for Mars (MarsCAM) based on the National Center for Atmospheric Research (NCAR) Community Atmosphere Model for Earth,coupled with a physically based, state-of-the-art cloud and dust physics model, the Community Aerosol and Radiation Model for Atmospheres (CARMA) to show that ablating micrometeoroids can yield abundant ice nuclei throughout the upper atmosphere of Mars. We find that simulations including a constant annual micrometeoroid flux allows us to reproduce the observed properties of high altitude water ice clouds including vertical distribution and particle size. In general, effective radius decreases with increasing altitude. We have additionally explored the impact of variable ablation rates. Preliminary results suggest that relatively high ablation rates, near or greater than 50%, are required to reproduce observed cloud features.

  19. Aging, High Altitude, and Blood Pressure: A Complex Relationship.

    Science.gov (United States)

    Parati, Gianfranco; Ochoa, Juan Eugenio; Torlasco, Camilla; Salvi, Paolo; Lombardi, Carolina; Bilo, Grzegorz

    2015-06-01

    Parati, Gianfranco, Juan Eugenio Ochoa, Camilla Torlasco, Paolo Salvi, Carolina Lombardi, and Grzegorz Bilo. Aging, high altitude, and blood pressure: A complex relationship. High Alt Biol Med 16:97-109, 2015.--Both aging and high altitude exposure may induce important changes in BP regulation, leading to significant increases in BP levels. By inducing atherosclerotic changes, stiffening of large arteries, renal dysfunction, and arterial baroreflex impairment, advancing age may induce progressive increases in systolic BP levels, promoting development and progression of arterial hypertension. It is also known, although mainly from studies in young or middle-aged subjects, that exposure to high altitude may influence different mechanisms involved in BP regulation (i.e., neural central and reflex control of sympathetic activity), leading to important increases in BP levels. The evidence is less clear, however, on whether and to what extent advancing age may influence the BP response to acute or chronic high altitude exposure. This is a question not only of scientific interest but also of practical relevance given the consistent number of elderly individuals who are exposed for short time periods (either for leisure or work) or live permanently at high altitude, in whom arterial hypertension is frequently observed. This article will review the evidence available on the relationship between aging and blood pressure levels at high altitude, the pathophysiological mechanisms behind this complex association, as well as some questions of practical interest regarding antihypertensive treatment in elderly subjects, and the effects of antihypertensive drugs on blood pressure response during high altitude exposure.

  20. Kajian Teknologi High Altitude Platform (HAP [Study of High Altitude Platform (HAP Technology

    Directory of Open Access Journals (Sweden)

    Amry Daulat Gultom

    2016-07-01

    Full Text Available High Altitude Platform (HAP merupakan solusi alternatif untuk mengatasi keterbatasan infrastruktur terestrial maupun satelit. HAP merupakan pesawat ataupun balon udara yang ditempatkan pada ketinggian 20-50 km di atas permukaan bumi. Kelebihan yang utama dari HAP adalah kemudahan dalam penempatan, fleksibilitas, biaya operasionalnya rendah, delay  propagasi rendah, sudut elevasi lebar, cakupan yang luas. Penelitian ini dilakukan untuk mengetahui potensi HAP untuk komunikasi pita lebar dan perkembangannya di Indonesia. Analisis dilakukan secara deskriptif dengan mengolah data literatur yang didapat. Hasil penelitian menunjukkan bahwa di Indonesia terdapat potensi teknologi HAP untuk komunikasi pita lebar dengan lebar pita 2x300 MHz di band 27,9-28,2 GHz dan 31-31,3 GHz. Namun, belum ada peraturan yang mengatur alokasi frekuensi untuk HAP secara khusus di Indonesia.*****High Altitude Platform (HAP has been developed as an alternative solution in order to overcome limitation of terrestrial and satellite communication system. HAP is an aircraft or balloon situated on 20-50 km above the earth. Main advantages of HAP are flexibility in deployment, low propagation delay, wide elevation angle and broad coverage. The research is conducted to gather HAP potential for broadband communication and its development in Indonesia. Analysis is conducted by descriptive analysis from literature study gather. The research result shows that in Indonesia, there is potential of HAP technology for broadband communication with 2x300 MHz bandwidth within 27,9-28,2 GHz and 31-31,3 GHz. Yet, there are no specific regulations managing frequency allocation for HAP in Indonesia.

  1. Lidar observations of high-altitude aerosol layers (cirrus clouds)

    Science.gov (United States)

    Deleva, Atanaska D.; Grigorov, Ivan V.

    2013-03-01

    Aerosols, clouds and aerosol-cloud interactions are recognized as the key factors influencing the climate. Clouds are the primary modulators of the Earth's radiative budget. This paper focuses on the detection of high-altitude aerosol layers in the troposphere over mid-latitude lidar station in Sofia, Bulgaria. They are situated in the height-region 6 km÷16 km, with thickness in the range 0.2 km÷5 km and have varying optical characteristics. On the basis of the general utilized classification of the Cirrus clouds, high values of the calculated atmospheric backscatter coefficient and Angströmexponent estimation results we conclude that the registered strongly scattered aerosol layers are Cirrus clouds. Lidar measurements are performed with an aerosol lidar, equipped with Nd:YAG laser at wavelengths 532 nm and 1064 nm. Mainly, lidar data are presented in terms of vertical atmospheric backscatter coefficient profiles. We also include 2Dcolormap in height-time coordinates build on the basis of so called range corrected signals. It shows in general changes of the aerosol stratification over the lidar station during the measurement period. We employed HYSPLIT backward trajectories and DREAM forecasts to analyze the lidar profile outlines and characterize the events during which Cirrus cloud samples were observed. So was remarked that most of the results were obtained during Saharan dust long-way transport over the city of Sofia. Reported experimental examples are extracted from regular lidar investigations of the atmosphere within the frame of European project EARLINET.

  2. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  3. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  4. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  5. Travelling to new heights: practical high altitude medicine.

    Science.gov (United States)

    Plant, Tracie; Aref-Adib, Golnar

    2008-06-01

    Over 40 million people travel to high altitude for both work and pleasure each year, and all of them are at risk of the acute effects of hypoxia. This article reviews the prevention, diagnostic features and treatments of these illnesses.

  6. Oxygen enrichment and its application to life support systems for workers in high-altitude areas.

    Science.gov (United States)

    Li, Yongling; Liu, Yingshu

    2014-01-01

    Workers coming from lowland regions are at risk of developing acute mountain sickness (AMS) when working in low oxygen high-altitude areas. The aim of this study was to improve the conditions that lead to hypoxia and ensure the safety of the high-altitude workers. We analyzed the influence of low atmospheric pressure on the oxygen enrichment process in high-altitude areas using an engineering method called low-pressure swing adsorption (LPSA). Fourteen male subjects were screened and divided into three groups by type of oxygen supply system used: (1) oxygen cylinder group; (2) LPSA oxygen dispersal group; and (3) control group. These tests included arterial oxygen saturation (SaO2), pulse rate (PR), breaths per minute (BPM), and blood pressure (BP). The results showed that after supplying oxygen using the LPSA method at the tunnel face, the SaO2 of workers increased; the incidence of acute mountain sickness, PR, and BPM significantly decreased. The LPSA life support system was found to be a simple, convenient, efficient, reliable, and applicable approach to ensure proper working conditions at construction sites in high-altitude areas.

  7. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  8. Increased oxidative stress following acute and chronic high altitude exposure.

    Science.gov (United States)

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  9. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions, design scheme, the main performances and parameters of the test facilities, as well as...

  10. Pioneer Venus polarimetry and haze optical thickness

    Science.gov (United States)

    Knibbe, W. J. J.; Wauben, W. M. F.; Travis, L. D.; Hovenier, J. W.

    1992-01-01

    The Pioneer Venus mission provided us with high-resolution measurements at four wavelengths of the linear polarization of sunlight reflected by the Venus atmosphere. These measurements span the complete phase angle range and cover a period of more than a decade. A first analysis of these data by Kawabata et al. confirmed earlier suggestions of a haze layer above and partially mixed with the cloud layer. They found that the haze exhibits large spatial and temporal variations. The haze optical thickness at a wavelength of 365 nm was about 0.06 at low latitudes, but approximately 0.8 at latitudes from 55 deg poleward. Differences between morning and evening terminator have also been reported by the same authors. Using an existing cloud/haze model of Venus, we study the relationship between the haze optical thickness and the degree of linear polarization. Variations over the visible disk and phase angle dependence are investigated. For that purpose, exact multiple scattering computations are compared with Pioneer Venus measurements. To get an impression of the variations over the visible disk, we have first studied scans of the polarization parallel to the intensity equator. After investigating a small subset of the available data we have the following results. Adopting the haze particle characteristics given by Kawabata et al., we find a thickening of the haze at increasing latitudes. Further, we see a difference in haze optical thickness between the northern and southern hemispheres that is of the same order of magnitude as the longitudinal variation of haze thickness along a scan line. These effects are most pronounced at a wavelength of 935 nm. We must emphasize the tentative nature of the results, because there is still an enormous amount of data to be analyzed. We intend to combine further polarimetric research of Venus with constraints on the haze parameters imposed by physical and chemical processes in the atmosphere.

  11. Operating Water Cherenkov Detectors in high altitude sites for the Large Aperture GRB Observatory

    CERN Document Server

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01

    Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.

  12. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  13. The effect of high altitude on nasal nitric oxide levels.

    Science.gov (United States)

    Altundag, Aytug; Salihoglu, Murat; Cayonu, Melih; Cingi, Cemal; Tekeli, Hakan; Hummel, Thomas

    2014-09-01

    The aim of the present study was to investigate whether nasal nitric oxide (nNO) levels change in relation to high altitude in a natural setting where the weather conditions were favorable. The present study included 41 healthy volunteers without a history of acute rhinosinusitis within 3 weeks and nasal polyposis. The study group consisted of 31 males (76 %) and 10 females (24 %) and the mean age of the study population was 38 ± 10 years. The volunteers encamped for 2 days in a mountain village at an altitude of 1,500 m above sea level (masl) and proceeded to highlands at an altitude of 2,200 masl throughout the day. The measurements of nNO were done randomly, either first at the mountain village or at sea level. Each participant had nNO values both at sea level and at high altitude at the end of the study. The nNO values of sea level and high altitude were compared to investigate the effect of high altitude on nNO levels. The mean of average nNO measurements at the high altitude was 74.2 ± 41 parts-per-billion (ppb) and the mean of the measurements at sea level was 93.4 ± 45 ppb. The change in nNO depending on the altitude level was statistically significant (p high altitude even if the weather conditions were favorable, such as temperature, humidity, and wind.

  14. Probing the haze in the atmosphere of HD 189733b with HST/WFC3 transmission spectroscopy

    CERN Document Server

    Gibson, N P; Pont, F; Sing, D; Désert, J -M; Evans, T M; Henry, G; Husnoo, N; Knutson, H

    2012-01-01

    We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting exoplanet HD 189733b, using Wide Field Camera 3. This consists of time-series spectra of two transits, used to measure the wavelength dependence of the planetary radius. These observations aim to test whether the Rayleigh scattering haze detected at optical wavelengths extends into the near-infrared, or if it becomes transparent leaving molecular features to dominate the transmission spectrum. Due to saturation and non-linearity affecting the brightest (central) pixels of the spectrum, light curves were extracted from the blue and red ends of the spectra only, corresponding to wavelength ranges of 1.099-1.168 um and 1.521-1.693 um, respectively, for the first visit, and 1.082-1.128 um and 1.514-1.671 um for the second. The light curves were fitted using a Gaussian process model to account for instrumental systematics whilst simultaneously fitting for the transit parameters. This gives values of the planet-to-star radiu...

  15. Travel to High Altitude Following Solid Organ Transplantation.

    Science.gov (United States)

    Luks, Andrew M

    2016-09-01

    Luks, Andrew M. Clinician's corner: travel to high altitude following solid organ transplantation. High Alt Med Biol. 17:147-156, 2016.-As they regain active lifestyles following successful organ transplantation, transplant recipients may travel to high altitude for a variety of activities, including skiing, climbing, and trekking. This review is intended to provide information for medical providers who may encounter transplant patients seeking advice before planned high altitude travel or care for medical issues that develop during the actual sojourn. There is currently limited information in the literature about outcomes during high-altitude travel following solid organ transplantation, but the available evidence suggests that the physiologic responses to hypobaric hypoxia are comparable to those seen in nontransplanted individuals and well-selected transplant recipients with no evidence of organ rejection can tolerate ascents as high as 6200 m. All transplant recipients planning high-altitude travel should undergo pretravel assessment and counseling with an emphasis on the recognition, prevention, and treatment of altitude illness, as well as the importance of preventing infection and limiting sun exposure. Transplant recipients can use the standard medications for altitude illness prophylaxis and treatment, but the choice and dose of medication should take into account the patient's preexisting medication regimen and current renal function. With careful attention to these and other details, the healthy transplant recipient can safely experience the rewards of traveling in the mountains.

  16. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  17. Children's exercise capacity at high altitude in Tibet.

    Science.gov (United States)

    Bianba; Andersen, Lars Bo; Stigum, Hein; Ouzhuluobu; Bjertness, Espen

    2014-11-01

    Maximal oxygen uptake (exercise capacity) is a vital parameter in the evaluation of adaptation to high altitude, providing an index of the integrated function of the oxygen transport system. Previous studies of maximal oxygen uptake in population at high altitude have mainly focused on adults and adolescents, though data on children are uncommon. Maximal oxygen uptake can be measured directly, using an oxygen analyser, or indirectly through the development of equations for estimation from the maximal power output (W(max)). Such estimations and studies of the physiological aspects of children's capacity to work and live at different altitudes in Tibet ancestry were not reported previously, although differences similar to those seen in adults may be expected to occur. The present paper summarized the findings of studies on exercise capacity among children living at high altitude in Tibet.

  18. Microcomputer-controlled high-altitude data aquisition system

    Science.gov (United States)

    1985-05-01

    A new microcomputer controlled high altitude data acquisition system was developed. The system provides a new technique for data acquisition from China's astronomical, meteorological and other high altitude experiments and opens up new territory in microcomputer applications. This microcomputer controlled high altitude data acquisition system is made up of a Z80 single board computer, 10 K memory expansion board, and keyboard and display board which can collect 16 analog signals simultaneously, and through analog/digital conversion can convert external analog signals into digital signals then encode them in a certain form through program modulation and store them on audio cassette. The data is immediately retrieved from the tape and sent to the surface microcomputer system for data processing and analysis.

  19. The yak genome and adaptation to life at high altitude.

    Science.gov (United States)

    Qiu, Qiang; Zhang, Guojie; Ma, Tao; Qian, Wubin; Wang, Junyi; Ye, Zhiqiang; Cao, Changchang; Hu, Quanjun; Kim, Jaebum; Larkin, Denis M; Auvil, Loretta; Capitanu, Boris; Ma, Jian; Lewin, Harris A; Qian, Xiaoju; Lang, Yongshan; Zhou, Ran; Wang, Lizhong; Wang, Kun; Xia, Jinquan; Liao, Shengguang; Pan, Shengkai; Lu, Xu; Hou, Haolong; Wang, Yan; Zang, Xuetao; Yin, Ye; Ma, Hui; Zhang, Jian; Wang, Zhaofeng; Zhang, Yingmei; Zhang, Dawei; Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang; Liu, Wenbin; Zhang, Yan; Huang, Zhiyong; Zhang, Shengxiang; Long, Ruijun; Yang, Huanming; Wang, Jian; Lenstra, Johannes A; Cooper, David N; Wu, Yi; Wang, Jun; Shi, Peng; Wang, Jian; Liu, Jianquan

    2012-07-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.

  20. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  1. Neurophysiological Problems in Snow Bound High Altitude Areas

    Directory of Open Access Journals (Sweden)

    W. Selvamurthy

    1984-10-01

    Full Text Available A series of studies have been conducted to evaluate the neurophysiological responses in young healthy soldiers during acclimatization at 3,500m altitude in Western Himalayas. The responses of autonomic nervous system, electroencephalogram hypothalamic thermoregulatory efficiency, orthostatic tolerance, sleep profile and effects of sleep deprivation have been studied in fresh inductees during three to five weeks of acclimatization at high altitude and compared with those of one year acclimatized lowlanders and high altitude natives. Physiological significance of these neurophysiological responses in the process of altitude adaptation is discussed in the light of current knowledge in the field.

  2. Effects of Ascent to High Altitude on Human Antimycobacterial Immunity

    Science.gov (United States)

    Aldridge, Robert W.; Siedner, Mark J.; Necochea, Alejandro; Leybell, Inna; Valencia, Teresa; Herrera, Beatriz; Wiles, Siouxsie; Friedland, Jon S.; Gilman, Robert H.; Evans, Carlton A.

    2013-01-01

    Background Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. Methods Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants’ whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG) mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants’ whole blood versus positive-control culture broth and versus negative-control plasma. Results Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p≤0.002) of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p≤0.01) of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents. Conclusions An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or

  3. The effect of pollutional haze on pulmonary function.

    Science.gov (United States)

    Liu, Shao-Kun; Cai, Shan; Chen, Yan; Xiao, Bing; Chen, Ping; Xiang, Xu-Dong

    2016-01-01

    Detrimental health effects of atmospheric exposure to ambient particulate matter (PM) have been investigated in numerous studies. Exposure to pollutional haze, the carrier of air pollutants such as PM and nitrogen dioxide (NO2) has been linked to lung and cardiovascular disease, resulting increases in both hospital admissions and mortality. This review focuses on the constituents of pollutional haze and its effects on pulmonary function. The article presents the available information and seeks to correlate pollutional haze and pulmonary function.

  4. High altitude environmental monitoring: the SHARE project and CEOP-HE

    Science.gov (United States)

    Tartari, G.

    2009-04-01

    Mountain areas above 2,500 m a.s.l. constitute about 25% of the Earth's surface and play a fundamental role in the global water balance, while influencing global climate and atmospheric circulation systems. Several millions, including lowlanders, are directly affected by the impacts of climate change on glaciers and water resource distribution. Mountains and high altitude plateaus are subject to the highest rate of temperature increase (e.g., Tibetan Plateau) and are recognized as particularly vulnerable to the effects of climate change. In spite of this, the number of permanent monitoring sites in the major environmental networks decreases with altitude. On a sample of two hundred high altitude automatic weather stations located above 2,500 m a.s.l., less than 20% are over 4,000 m, while there are only 24 stations in the world that could be considered "complete" high altitude observatories. Furthermore, entire mountain areas are left uncovered, creating significant data gaps which make reliable modelling and forecasting nearly impossible. In response to these problems, Ev-K2-CNR has developed the project SHARE (Stations at High Altitude for Research on the Environment) with the support of the Italian government and in collaboration with UNEP. This integrated environmental monitoring and research project aims to improve knowledge on the local, regional and global consequences of climate change in mountain regions and on the influence of high elevations on climate, atmospheric circulation and hydrology. SHARE today boasts a network of 13 permanent monitoring stations between 2,165 m and 8,000 m. Affiliated researchers have produced over 150 scientific publications in atmospheric sciences, meteorology and climate, glaciology, limnology and paleolimnology and geophysics. SHARE network data is also contributed to international programs (UNEP-ABC, WMO-GAW, WCRP-GEWEX-CEOP, NASA-AERONET, ILTER, EU-EUSAAR, EU-ACCENT). Within this context, the CEOP-High Elevations (CEOP

  5. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior st

  6. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  7. Pathophysiology of acute mountain sickness and high altitude pulmonary oedema

    DEFF Research Database (Denmark)

    Sutton, J R; Lassen, N

    1979-01-01

    We review the evidence that acute mountain sickness (AMS) and high altitude pulmonary oedema (HAPO) occur together more often than is realized. We hypothesize that AMS and HAPO have a common pathophysiological basis: both are due to increased pressure and flow in the microcirculation, causing...

  8. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a f

  9. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects imme

  10. Reduced autonomic activity during stepwise exposure to high altitude

    NARCIS (Netherlands)

    Sevre, K; Bendz, B; Hanko, E; Nakstad, AR; Hauge, A; Kasin, JI; Lefrandt, JD; Smit, AJ; Eide, [No Value; Rostrup, M

    2001-01-01

    Several studies have shown increased sympathetic activity during acute exposure to hypobaric hypoxia. In a recent field study we found reduced plasma catecholamines during the first days after a stepwise ascent to high altitude. In the present study 14 subjects were exposed to a simulated ascent in

  11. Abnormal blood flow in the sublingual microcirculation at high altitude

    NARCIS (Netherlands)

    Martin, D.S.; Ince, C.; Goedhart, P.; Levett, D.Z.H.; Grocott, M.P.W.

    2009-01-01

    We report the first direct observations of deranged microcirculatory blood flow at high altitude, using sidestream dark-field imaging. Images of the sublingual microcirculation were obtained from a group of 12 volunteers during a climbing expedition to Cho Oyu (8,201 m) in the Himalayas.

  12. Acute occlusive mesenteric ischemia in high altitude of ...

    African Journals Online (AJOL)

    in our region. Keywords: Acute mesenteric ischemia, high altitude, Saudi Arabia. Résumé .... Saudi Arabia for many diseases such as stroke,[13] deep venous .... intestinal vascular failure: a collective review of 43 cases in Taiwan. Br J Clin ...

  13. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects imme

  14. Application of DARLAM to Regional Haze Modeling

    Science.gov (United States)

    Koe, L. C. C.; Arellano, A. F., Jr.; McGregor, J. L.

    - The CSIRO Division of Atmospheric Research limited area model (DARLAM) is applied to atmospheric transport modeling of haze in southeast Asia. The 1998 haze episode is simulated using an emission inventory derived from hotspot information and adopting removal processes based on SO2.Results show that the model is able to simulate the transport of haze in the region. The model images closely resemble the plumes of NASA Total Ozone Mapping Spectrometer and Meteorological Service Singapore haze maps. Despite the limitation of input data, particularly for haze emissions, the three-month average pattern correlation obtained for the whole episode is 0.61. The model has also been able to reproduce the general features of transboundary air pollution over a long period of time. Predicted total particulate matter concentration also agrees reasonably well with observation.The difference in the model results from the satellite images may be attributed to the large uncertainties of emission, simplification of haze deposition and transformation mechanisms and the relatively coarse horizontal and vertical resolution adopted for this particular simulation.

  15. Preparation for football competition at moderate to high altitude.

    Science.gov (United States)

    Gore, C J; McSharry, P E; Hewitt, A J; Saunders, P U

    2008-08-01

    Analysis of approximately 100 years of home-and-away South American World Cup matches illustrate that football competition at moderate/high altitude (>2000 m) favors the home team, although this is more than compensated by the likelihood of sea-level teams winning at home against the same opponents who have descended from altitude. Nevertheless, the home team advantage at altitudes above approximately 2000 m may reflect that traditionally, teams from sea level or low altitude have not spent 1-2 weeks acclimatizing at altitude. Despite large differences between individuals, in the first few days at high altitude (e.g. La Paz, 3600 m) some players experience symptoms of acute mountain sickness (AMS) such as headache and disrupted sleep, and their maximum aerobic power (VO2max) is approximately 25% reduced while their ventilation, heart rate and blood lactate during submaximal exercise are elevated. Simulated altitude for a few weeks before competition at altitude can be used to attain partial ventilatory acclimation and ameliorated symptoms of AMS. The variety of simulated altitude exposures usually created with enriched nitrogen mixtures of air include resting or exercising for a few hours per day or sleeping approximately 8 h/night in hypoxia. Preparation for competition at moderate/high altitude by training at altitude is probably superior to simulated exposure; however, the optimal duration at moderate/high altitude is unclear. Preparing for 1-2 weeks at moderate/high altitude is a reasonable compromise between the benefits associated with overcoming AMS and partial restoration of VO2max vs the likelihood of detraining.

  16. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  17. Transmission spectroscopy of HAT-P-32b with the LBT: confirmation of clouds/hazes in the planetary atmosphere

    CERN Document Server

    Mallonn, Matthias

    2016-01-01

    Spectroscopic observations of a transit event of an extrasolar planet offer the opportunity to study the composition of the planetary atmosphere. We observed a transit of the inflated Hot Jupiter HAT-P-32b with MODS at the LBT to characterize its atmosphere from 3300 to 10000 AA. A time series of target and reference star spectra was binned in two broad-band wavelength channels, from which differential transit light curves were constructed. These broad-band light curves were used to confirm previous transit parameter determinations. To derive the planetary transmission spectrum with a resolution of R ~ 60, we created a chromatic set of 62 narrow-band light curves with an average wavelength width of about 100 AA. The spectrum was corrected for the third-light of a near-by M star, whose spectrum was resolved in the individual exposures. Additionally, we undertook a photometric monitoring campaign of the host star to correct for the influence of starspots. The transmission spectrum of HAT-P-32b shows no pressure...

  18. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    Science.gov (United States)

    Brutsaert, Tom

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  19. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  20. High-Altitude Ballooning Program at the Indian Institute of Astrophysics

    CERN Document Server

    Nayak, A; Safonova, M; Murthy, Jayant

    2013-01-01

    We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bangalore. Recent advances in balloons as well as in electronics have made possible scientific payloads at costs accessible to university departments. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but to also explore phenomena occurring in the upper atmosphere, including sprites and meteorite impacts, using balloon-borne payloads. This paper discusses the results of three tethered balloon experiments carried out at the CREST campus of IIA, Hosakote and our plans for the future. We also describe the stages of payload development for these experiments.

  1. Initial Feasibility Assessment of a High Altitude Long Endurance Airship

    Science.gov (United States)

    Colozza, Anthony; Dolce, James (Technical Monitor)

    2003-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines the feasibility of this concept. Factors such as time of year, latitude, wind speeds and payload are considered in establishing the capabilities of a given size airship. East and West coast operation were evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. A modular system design was chosen with four independent power/propulsion units utilized by the airship. Results on payload capacity and flight envelope (latitude and time of year) were produced for a range of airship sizes.

  2. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  3. Body Structure and Respiratory Efficiency among High Altitude Himalayan Populations

    OpenAIRE

    2005-01-01

    To understand the morphological and physiological variations among the temporary and permanent residents of high altitude, this study was undertaken at Leh, Ladakh. It is situated at 3500 m (11500 feet) above sea level, the mean barometric pressure was 500 tors and air temperature varied from 2 °C to 20 °C. The highland Tibetans showed broadest chest and most developed musculature closely followed by Ladakhi Bods. These high altude natives also displayed significantly higher value of vital ca...

  4. Lens autofluorescence is not increased at high altitude

    DEFF Research Database (Denmark)

    Kessel, Line; Kofoed, Peter Kristian; Zubieta-Calleja, Gustavo

    2010-01-01

    PURPOSE: To study the relation between ambient environmental ultraviolet radiation exposure and lens fluorescence. METHODS: Non-invasive lens fluorometry measurements were compared in healthy Bolivian and Danish subjects. Background ultraviolet radiation was 4.5 times higher in Bolivia than...... in Denmark. RESULTS: No significant differences in lens fluorescence or transmittance were found between Bolivian and Danish volunteers. CONCLUSION: Age-corrected lens fluorescence and transmittance were comparable for healthy participants living at high altitude near the equator and healthy volunteers...

  5. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  6. Blood-Brain Barrier Changes in High Altitude.

    Science.gov (United States)

    Lafuente, José V; Bermudez, Garazi; Camargo-Arce, Lorena; Bulnes, Susana

    2016-01-01

    Cerebral syndromes related to high-altitude exposure are becoming more frequent as the number of trips to high altitudes has increased in the last decade. The commonest symptom is headache, followed by acute mountain sickness (AMS) and high-altitude cerebral edema (HACE), which can be fatal. The pathophysiology of these syndromes is not fully understood. The classical "tight-fit hypothesis" posits that there are some anatomical variations that would obstruct the sinovenous outflow and worsen vasogenic edema and intracranial hypertension reactive to hypoxia. This could explain microhemorrhages seen in autopsies. However, recent magnetic resonance imaging studies have demonstrated some components of cytotoxic edema in HACE absent in AMS, suggesting a dysfunction in water balance at the cellular level. Currently, the "red-ox theory" supports trigemino-vascular system activation by free radicals formed after hypoxia and the consequent oxidative stress cascades. Apart from trigemino-vascular system activation, free radicals can also provoke membrane destabilisation mediated by lipid peroxidation, inflammation, and local hypoxia inducible factor-1α and vascular endothelial growth factor activation, resulting in gross blood-brain barrier (BBB) dysfunction. Besides alterations in endothelial cells such as increased pinocytotic vesicles and disassembly of interendothelial tight junction proteins, capillary permeability may also increase with subsequent swelling of astrocyte end-feet. In conclusion, although the pathophysiology of AMS and HACE is not completely understood, recent evidence proposes a multifactorial entity, with brain swelling and compromise of the BBB considered to play an important role. A fuller comprehension of these processes is crucial to reduce and prevent BBB alterations during high-altitude exposure.

  7. Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia.

    Science.gov (United States)

    Jefferson, J Ashley; Escudero, Elizabeth; Hurtado, Maria-Elena; Kelly, Jackeline Pando; Swenson, Erik R; Wener, Mark H; Burnier, Michel; Maillard, Marc; Schreiner, George F; Schoene, Robert B; Hurtado, Abdias; Johnson, Richard J

    2002-06-01

    Chronic exposure to high altitude is associated with the development of erythrocytosis, proteinuria, and, in some cases, hyperuricemia. We examined the relationship between high-altitude polycythemia and proteinuria and hyperuricemia in Cerro de Pasco, Peru (altitude, 4,300 m). We studied 25 adult men with hematocrits less than 65% and 27 subjects with excessive erythrocytosis (EE; hematocrit > 65%) living in Cerro de Pasco, Peru and compared them with 28 control subjects living in Lima, Peru (at sea level) and after 48 hours of exposure to high altitude. Serum urate levels were significantly elevated in patients with EE at altitude, and gout occurred in 4 of 27 of these subjects. Urate level strongly correlated with hematocrit (r = 0.71; P < 0.0001). Urate production (24-hour urine urate excretion and urine urate-creatinine ratio) was increased in this group compared with those at sea level. Fractional urate excretion was not increased, and fractional lithium excretion was reduced, in keeping with increased proximal reabsorption of filtrate. Significantly higher blood pressures and decreased renin levels in the EE group were in keeping with increased proximal sodium reabsorption. Serum urate levels correlated with mean blood pressure (r = 0.50; P < 0.0001). Significant proteinuria was more prevalent in the EE group despite normal renal function. Hyperuricemia is common in subjects living at high altitude and associated with EE, hypertension, and proteinuria. The increase in uric acid levels appears to be caused by increased urate generation secondary to systemic hypoxia, although a relative impairment in renal excretion also may contribute.

  8. Effectiveness of Preacclimatization Strategies for High-Altitude Exposure

    Science.gov (United States)

    2013-01-01

    hypobaric conditions. IAE 15, 15 d of intermittent altitude exposure; IAE 7, 7 d of intermittent altitude expo- sure; NH (Sleep), Ambient normobaric hypoxia ...than those using norm(!)baric hypoxia (breathing, ង.9% ox-ygen). Key Words: hypobaric hypoxia , normobaric hypoxia , staging, acute mountain sickness...large decrements in endurance exercise performance occur when unacclimatized individuals rapidly ascend to high altitudes. Six altitude and hypoxia

  9. The genetic architecture of adaptations to high altitude in Ethiopia.

    Science.gov (United States)

    Alkorta-Aranburu, Gorka; Beall, Cynthia M; Witonsky, David B; Gebremedhin, Amha; Pritchard, Jonathan K; Di Rienzo, Anna

    2012-01-01

    Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  10. Joseph Barcroft's studies of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2013-10-15

    Joseph Barcroft (1872-1947) was an eminent British physiologist who made contributions to many areas. Some of his studies at high altitude and related topics are reviewed here. In a remarkable experiment he spent 6 days in a small sealed room while the oxygen concentration of the air gradually fell, simulating an ascent to an altitude of nearly 5,500 m. The study was prompted by earlier reports by J. S. Haldane that the lung secreted oxygen at high altitude. Barcroft tested this by having blood removed from an exposed radial artery during both rest and exercise. No evidence for oxygen secretion was found, and the combination of 6 days incarceration and the loss of an artery was heroic. To obtain more data, Barcroft organized an expedition to Cerro de Pasco, Peru, altitude 4,300 m, that included investigators from both Cambridge, UK and Harvard. Again oxygen secretion was ruled out. The protocol included neuropsychometric measurements, and Barcroft famously concluded that all dwellers at high altitude are persons of impaired physical and mental powers, an assertion that has been hotly debated. Another colorful experiment in a low-pressure chamber involved reducing the pressure below that at the summit of Mt. Everest but giving the subjects 100% oxygen to breathe while exercising as a climber would on Everest. The conclusion was that it would be possible to reach the summit while breathing 100% oxygen. Barcroft was exceptional for his self-experimentation under hazardous conditions.

  11. Haze detection by using modified normalized difference haze index in Beijing, Tianjin, and Hebei province

    Science.gov (United States)

    Han, Xinlei; Yao, Fengmei; Zhang, Jiahua; Waqar, Mirza Muhammad; Zha, Yong; He, Junliang

    2016-04-01

    This paper presents the development of index to detect haze from moderate resolution imaging spectroradiometer remote sensing data. Detection of haze over a large area has always been a problem. This study focuses on Beijing, Tianjin, and Shijiazhuang cities in China. These cities have suffered the worst hazy weather in recent years. The spectral influence of haze on surface features was determined through analysis of the spectral variations of surface covers between hazy and haze-free days. A spectral index known as modified normalized difference haze index (m-NDHI) is developed that can be used to monitor haze distribution and intensity. Correlation analysis of the derived m-NDHI and previously developed NDHI with in situ PM2.5 (particulate matter with diameter <2.5 μm) data reveals that m-NDHI over water bodies has a coefficient of 0.7096, 0.5864, and 0.4857 and NDHI has coefficient of 0.5625, 0.5321, and 0.4618 with PM2.5 for Beijing, Tianjin, and Shijiazhuang, respectively, in winter. Moreover, the correlation of m-NDHI with PM2.5 is 0.4097, 0.8092, and 0.5546 during the spring, summer, and autumn, respectively, in Beijing. This developed index can be a much easier and more effective method to detect haze in large scales from remotely sensing data and characterize the situation of urban atmospheric pollution.

  12. Characteristics of atmospheric single particles during haze periods in a typical urban area of Beijing: A case study in October, 2014.

    Science.gov (United States)

    Liu, Lang; Wang, Yanli; Du, Shiyong; Zhang, Wenjie; Hou, Lujian; Vedal, Sverre; Han, Bin; Yang, Wen; Chen, Mindong; Bai, Zhipeng

    2016-02-01

    To investigate the composition and possible sources of particles, especially during heavy haze pollution, a single particle aerosol mass spectrometer (SPAMS) was deployed to measure the changes of single particle species and sizes during October of 2014, in Beijing. A total of 2,871,431 particles with both positive and negative spectra were collected and characterized in combination with the adaptive resonance theory neural network algorithm (ART-2a). Eight types of particles were classified: dust particles (dust, 8.1%), elemental carbon (EC, 29.0%), organic carbon (OC, 18.0%), EC and OC combined particles (ECOC, 9.5%), Na-K containing particles (NaK, 7.9%), K-containing particles (K, 21.8%), organic nitrogen and potassium containing particles (KCN, 2.3%), and metal-containing particles (metal, 3.6%). Three haze pollution events (P1, P2, P3) and one clean period (clean) were analyzed, based on the mass and number concentration of PM2.5 and the back trajectory results from the hybrid single particle Lagrangian integrated trajectory model (Hysplit-4 model). Results showed that EC, OC and K were the major components of single particles during the three haze pollution periods, which showed clearly increased ratios compared with those in the clean period. Results from the mixing state of secondary species of different types of particles showed that sulfate and nitrate were more readily mixed with carbon-containing particles during haze pollution episodes than in clean periods.

  13. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  14. New observational constraints on hydrocarbon chemistry in Saturn's upper atmosphere

    Science.gov (United States)

    Koskinen, Tommi; Moses, Julianne I.; West, Robert; Guerlet, Sandrine; Jouchoux, Alain

    2016-10-01

    Until now there have been only a few observations of hydrocarbons and photochemical haze in the region where they are produced in Saturn's upper atmosphere. We present new results on hydrocarbon abundances and atmospheric structure based on more than 40 stellar occultations observed by the Cassini/UVIS instrument that we have combined with results from Cassini/CIRS to generate full atmosphere structure models. In addition to detecting CH4, C2H2, C2H4 and C2H6, we detect benzene (C6H6) in UVIS occultations that probe different latitudes and present the first vertical abundance profiles for this species in its production region. Benzene is the simplest ring polyaromatic hydrocarbon (PAH) and a stepping stone to the formation of more complex molecules that are believed to form stratospheric haze. Our calculations show that the observed abundances of benzene can be explained by solar-driven ion chemistry that is enhanced by high-latitude auroral production at least in the northern spring hemisphere. Condensation of benzene and heavier hydrocarbons is possible in the cold polar night of the southern winter where we detect evidence for high altitude haze. We also report on substantial variability in the CH4 profiles that arise from dynamics and affects the minor hydrocarbon abundances. Our results demonstrate the importance of hydrocarbon ion chemistry and coupled models of chemistry and dynamics for future studies of Saturn's upper atmosphere.

  15. Constraints on the Microphysics of Pluto's Photochemical Haze from New Horizons Observations

    CERN Document Server

    Gao, Peter; Wong, Michael L; Liang, Mao-Chang; Shia, Run-Lie; Kammer, Joshua A; Yung, Yuk L; Summers, Michael E; Gladstone, G Randall; Young, Leslie A; Olkin, Catherine B; Ennico, Kimberly; Weaver, Harold A; Stern, S Alan

    2016-01-01

    The New Horizons flyby of Pluto confirmed the existence of hazes in its atmosphere. Observations of a large high- to low- phase brightness ratio, combined with the blue color of the haze, suggest that the haze particles are fractal aggregates, analogous to the photochemical hazes on Titan. Therefore, studying the Pluto hazes can shed light on the similarities and differences between the Pluto and Titan atmospheres. We model the haze distribution using the Community Aerosol and Radiation Model for Atmospheres assuming that the distribution is shaped by sedimentation and coagulation of particles originating from photochemistry. Hazes composed of both purely spherical and purely fractal aggregate particles are considered. Agreement between model results and occultation observations is obtained with aggregate particles when the downward flux of photochemical products is equal to the column-integrated methane destruction rate ~1.2 $\\times$ 10$^{-14}$ g cm$^{-2}$ s$^{-1}$, while for spherical particles the mass flu...

  16. A Possible High Altitude High Energy Gamma Ray Observatory in India

    CERN Document Server

    Cowsik, R; Chitnis, V R; Acharya, B S; Vishwanath, P R

    2001-01-01

    Recently an Indian Astronomical Observatory has been set up at Hanle (32$^\\circ$ 46$^\\prime$ 46$^{\\prime\\prime}$ N, 78$^\\circ$ 57$^\\prime$ 51$^{\\prime\\prime}$ E, 4515m amsl) situated in the high altitude cold desert in the Himalayas. The Observatory has 2-m aperture optical-infrared telescope, recently built by the Indian Institute of Astrophysics. We have carried out systematic simulations for this observation level to study the nature of \\v{C}erenkov light pool generated by gamma ray and proton primaries incident vertically at the top of the atmosphere. The differences in the shape of the lateral distributions of \\v{C}erenkov light with respect to that at lower altitudes is striking. This arises primarily due to the proximity of the shower maximum to the observation site. The limited lateral spread of the \\v{C}erenkov light pool and near 90% atmospheric transmission at this high altitude location makes it an ideal site for a gamma ray observatory. This results in a decrease in the gamma ray energy threshold...

  17. SPARCL: a high-altitude tethered balloon-based optical space-to-ground communication system

    Science.gov (United States)

    Badesha, Surjit S.

    2002-12-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has conducted a feasibility study to determine if a high altitude (20 km) tethered balloon-based space-to-ground optical communication system is a feasible concept. To support this effort, a detailed concept definition was developed and associated issues were identified and analyzed systematically. Of all the adverse atmospheric phenomena, cloud coverage was identified as the most prohibitive obstacle for a space-to-ground optical communication link. However, by placing a receiver on a balloon at a 20 km altitude, the proposed high altitude system avoids virtually all atmospheric effects. A practical notional scenario was developed (i.e. surveillance and/or reconnaissance of a regional conflict) involving end-to-end optical communication architecture to identify system elements, system level requirements, and to quantify realistic data rate requirements. Analysis of the proposed space-to-ground communication elements indicates that while significant development is required, the system is technically feasible and is a very cost effective 24/7solution.

  18. 'Ome' on the range: update on high-altitude acclimatization/adaptation and disease.

    Science.gov (United States)

    Luo, Yongjun; Wang, Yuxiao; Lu, Hongxiang; Gao, Yuqi

    2014-11-01

    The main physiological challenge in high-altitude plateau environments is hypoxia. When people living in a plain environment migrate to the plateau, they face the threat of hypoxia. Most people can acclimatize to high altitudes; the acclimatization process mainly consists of short-term hyperventilation and long-term compensation by increased oxygen uptake, transport, and use due to increased red blood cell mass, myoglobin, and mitochondria. If individuals cannot acclimatize to high altitude, they may suffer from a high-altitude disease, such as acute mountain disease (AMS), high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE) or chronic mountain sickness (CMS). Because some individuals are more susceptible to high altitude diseases than others, the incidence of these high-altitude diseases is variable and cannot be predicted. Studying "omes" using genomics, proteomics, metabolomics, transcriptomics, lipidomics, immunomics, glycomics and RNomics can help us understand the factors that mediate susceptibility to high altitude illnesses. Moreover, analysis of the "omes" using a systems biology approach may provide a greater understanding of high-altitude illness pathogenesis and improve the efficiency of the diagnosis and treatment of high-altitude illnesses in the future. Below, we summarize the current literature regarding the role of "omes" in high-altitude acclimatization/adaptation and disease and discuss key research gaps to better understand the contribution of "omes" to high-altitude illness susceptibility.

  19. The genetic architecture of adaptations to high altitude in Ethiopia.

    Directory of Open Access Journals (Sweden)

    Gorka Alkorta-Aranburu

    Full Text Available Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  20. Ergogenic properties of metformin in simulated high altitude.

    Science.gov (United States)

    Scalzo, Rebecca L; Paris, Hunter L; Binns, Scott E; Davis, Janelle L; Beals, Joseph W; Melby, Christopher L; Luckasen, Gary J; Hickey, Matthew S; Miller, Benjamin F; Hamilton, Karyn L; Bell, Christopher

    2017-07-01

    Metformin augments glucose/glycogen regulation and may acutely promote fatigue resistance during high-intensity exercise. In hypobaric environments, such as high altitude, the important contribution of carbohydrates to physiological function is accentuated as glucose/glycogen dependence is increased. Because hypoxia/hypobaria decreases insulin sensitivity, replenishing skeletal muscle glycogen in high altitude becomes challenging and subsequent physical performance may be compromised. We hypothesized that in conditions where glycogen repletion was critical to physical outcomes, metformin would attenuate hypoxia-mediated decrements in exercise performance. On three separate randomly ordered occasions, 13 healthy men performed glycogen-depleting exercise and ingested a low-carbohydrate dinner (1200 kcals, metformin (500 mg BID) was consumed 3 days prior to each hypoxia visit. Subjects completed a 12.5 km cycle ergometer time trial 3.5 hours following breakfast. Hypoxia decreased resting and exercise oxyhemoglobin saturation (Pmetformin affected the glucose response to breakfast (P=.977), however, compared with placebo, metformin lowered insulin concentration in hypoxia 45 minutes after breakfast (64.1±6.6 μU/mL vs 48.5±7.8 μU/mL; mean±SE; Pmetformin (+81%; P=.006), but not in hypoxia with placebo (+27%; P=.167). Hypoxia decreased time trial performance compared with normoxia (Pmetformin (+1.6±0.3 minutes). These results indicate that metformin promotes glycogen synthesis but not endurance exercise performance in healthy men exposed to simulated high altitude. © 2017 John Wiley & Sons Australia, Ltd.

  1. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build < 4 kg payloads. The high-altitude balloon program provides an engaging laboratory, gives challenging field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along

  2. First scientific contributions from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    León Vargas, H.; HAWC Collaboration

    2015-09-01

    The High Altitude Water Cherenkov Observatory (HAWC), located at the slopes of the volcanoes Sierra Negra and Pico de Orizaba in Mexico, was inaugurated on March 20, 2015. However, data taking started in August 2013 with a partially deployed observatory and since then the instrument has collected data as it got closer to its final configuration. HAWC is a ground based TeV gamma-ray observatory with a large field of view that will be used to study the Northern sky with high sensitivity. In this contribution we present some of the results obtained with the partially built instrument and the expected capabilities to detect different phenomena with the complete observatory.

  3. Edema pulmonar de gran altura HIGH ALTITUDE PULMONARY EDEMA

    Directory of Open Access Journals (Sweden)

    FELIPE UNDURRAGA M

    2003-04-01

    Full Text Available Las enfermedades de altura son de causa cerebral y pulmonar. Las primeras se refieren fundamentalmente al mal agudo de montaña y al edema cerebral de altura y las segundas al edema pulmonar agudo de montaña. Actuales evidencias señalan que el edema cerebral sería un fenómeno universal de los que ascienden a altura y que tres de cada cuatro individuos sanos que se expongan a altura desarrollarán un edema pulmonar agudo de montaña subclínico. La hipoxia de altura es la responsable de estos cuadros y los sujetos susceptibles serían aquellos que genéticamente tienen una respuesta ventilatoria reducida a la hipoxia y una exagerada respuesta vasopresora pulmonar al ejercicio.Se presenta un caso de edema pulmonar agudo de montaña en un deportista previamente sano que participó en una expedición al cerro El Plomo (5.280 msnm en la Cordillera de los Andes central. Posteriormente, se comenta la fisiopatología y tratamiento de esta condiciónHigh altitude diseases are originated from brain and lung. The first are Acute Mountain Sickness and Brain edema and the second is High Altitude Pulmonary Edema (HAPE. Current evidence shows that brain edema is an universal event of the people who are exposed to high altitude. By other hand 3 out of 4 healthy subjects exposed to high altitude will present a subclinical HAPE. Hypoxia of altitude is the responsable for this condition. The susceptible subjects would be those who genetically have a low ventilatory response to hypoxia and an exaggerated increase of vascular pulmonary pressure during exercise. A clinical case of acute pulmonary edema in a young sportman who participated in an expedition to Cerro El Plomo (5.280 m in Chilean Central Andes Mountains is presented. Pathophysiology and treatment of these conditions are discussed

  4. Magnetic Monopole Search at high altitude with the SLIM experiment

    CERN Document Server

    Balestra, S; Cozzi, M; Errico, M; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Mandrioli, G; Marcellini, S; Margiotta, A; Medinaceli, E; Patrizii, L; Pinfold, J L; Popa, V; Qureshi, I E; Saavedra, O; Sahnoun, Z; Sirri, G; Spurio, M; Togo, V; Velarde, A; Zanini, A

    2008-01-01

    The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to Intermediate Mass Magnetic Monopoles, with masses 10^5 < M <10^{12} GeV. From the analysis of the full detector exposed for more than 4 years a flux upper limit of 1.3 x 10^{-15} cm^{-2} s^{-1} sr^{-1} for downgoing fast Intermediate Mass Monopoles was established at the 90% C.L.

  5. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2008-06-01

    Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  6. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-altitude balloon flights are an inexpensive method used to lift payloads to high altitudes. Federal Aviation Administration (FAA) regulations permit payloads...

  7. Scattering and extinction: interpreting hazes in stellar occultation data

    Science.gov (United States)

    Bosh, Amanda S.; Levine, Stephen; Sickafoose, Amanda A.; Person, Michael J.

    2016-10-01

    There has been debate concerning interpretation of stellar occultation data and whether those data contain evidence for hazes within Pluto's atmosphere. Multiple layers of haze have been imaged in at Pluto with the New Horizons spacecraft; color-dependent differences in minimum flux from stellar occultations also suggests haze. We look at a purely geometric approach, to evaluate whether it is valid to sidestep details of atmospheric temperature structure and, in an approximate manner, conduct an analysis of the 2015 stellar occultation data that is consistent with the New Horizons imaging results. Support for this work was provided by NASA SSO grant NNX15AJ82G to Lowell Observatory.

  8. Reticle haze: an industrial approach

    Science.gov (United States)

    Gough, Stuart; Gérard, Xavier; Bichebois, Pascal; Roche, Agnès; Sundermann, Frank; Guyader, Véronique; Bièron, Yann; Galvier, Jean; Nicoleau, Serge

    2007-02-01

    Molecular Contamination) in wafer fab and equipment environment is a key factor for crystal growth. The type of filtration installed to reduce AMC and method of atmospheric monitoring for critical areas will be explained. Choice of reticle storage conditions and materials used for transport during the life of the reticle will be included. Improvements in maskshop cleaning processes, reticle materials and environmental control have lead to extended mask lifetime in the wafer fab of more than 20 times. The fundamental differences and relative monitoring will be described and gain from implemented actions will be presented Once crystals have started growing, the only method to regain mask quality is to clean the mask at the manufacturers site. This brings with it several undesirable situations, not only is the mask unavailable for production but the cleaning of a mask leads to a potential risk of damaging the mask especially for sub resolution patterns such as scatter bars and phase and transmission changes for eaPSM (Embedded Attenuated Phase Shift Mask) masks. This paper will discuss the initial haze issues seen in a 300mm wafer fab and actions put in place to address the problem. An explanation of results gained from haze reduction actions implemented in a wafer fab will be given. Haze seen by reticle inspection and surface analysis tools can be characterised by typical contamination patterns. These signatures appear after a certain number of wafers exposed depending on several reticle variables such as transmission, Binary, eaPSM, Pellicle. Details will be given of how reticles are managed to ensure minimum impact to a production environment with an appropriate reticle control plan. AMC (Airborne Molecular Contamination) in wafer fab and equipment environment is a key factor for crystal growth. The type of filtration installed to reduce AMC and method of atmospheric monitoring for critical areas will be explained. Choice of reticle storage conditions and materials used for

  9. Contemporary sediment production and transfer in high-altitude glaciers

    Science.gov (United States)

    Owen, Lewis A.; Derbyshire, Edward; Scott, Christine H.

    2003-01-01

    The nature of fine-grained sediment production and transfer in high-altitude debris-covered glaciers was studied by examining the Rakhiot and Chungphar glaciers in the Nanga Parbat Himalaya, Northern Pakistan. Transport pathways, from the source areas to the glacier snout, were mapped and samples collected for particle size analysis and scanning electron microscopy. Positive down-glacier trends in sediment fining and increased weathering showed that debris transport in the supraglacial zone of these Himalayan glaciers is an important contributor to contemporary glacial sediment production, resulting in intense comminution that yields large volumes of fine sediment. These findings cast doubt on the traditional view that the basal traction zone of glaciers is the only major source of fine sediment production in glaciated environments, although that view may hold true for classic alpine glaciers that are at lower altitudes and, as a consequence, generally have less supraglacial debris cover. To test this hypothesis, the Glacier de Cheilon, in the Swiss Alps was also studied. This glacier did not exhibit such striking down-glacier trends in the particle size characteristics measured. It is thus suggested that a thick debris-cover may be an important source of fine-grained sediments on glaciers that occur in high-altitude environments.

  10. Semianalytic Integration of High-Altitude Orbits under Lunisolar Effects

    Directory of Open Access Journals (Sweden)

    Martin Lara

    2012-01-01

    Full Text Available The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double averaging procedure that removes both the mean anomaly of the satellite and that of the moon. Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation of the expansion of the third-body disturbing function up to the second degree. Using canonical perturbation theory, the averaging is carried out up to the order where second-order terms in the Earth oblateness coefficient are apparent. This truncation order forces to take into account up to the fifth degree in the expansion of the lunar disturbing function. The small values of the moon’s orbital eccentricity and inclination with respect to the ecliptic allow for some simplification. Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity, it is not restricted to low-eccentricity orbits.

  11. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2011-01-01

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in indi

  12. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    Mol, P. De; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2011-01-01

    OBJECTIVE: Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in ind

  13. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    Mol, P. De; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2011-01-01

    OBJECTIVE: Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  14. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  15. Upper limits of possible photochemical hazes on Pluto

    Energy Technology Data Exchange (ETDEWEB)

    Stansberry, J.A.; Lunine, J.I.; Tomasko, M.G. (Univ. of Arizona, Tucson (USA))

    1989-11-01

    Elliot et al. (1989) invoked a haze layer near the surface of Pluto to explain certain features of a stellar occultation by that planet in June, 1988. The primary requirements for this haze layer were that it achieve unity tangential optical depth at a radius of 1174 km and be essentially transparent above 1189 km. The authors explore here the possibility that aerosols generated through methane photolysis could be responsible for such a haze layer. A comprehensive model of aerosol production, particle growth, sedimentation and condensation is applied to the atmosphere of Pluto using pressures, temperatures and composition derived from the stellar occultation and other data. They test two atmosphere models proposed in the literature, one from Elliot et al. (1989), and one from Hubbard et al. (1989), as well as a range of optical properties for the particles. In order to produce a haze with unity tangential optical depth at 1174 km, they had to use an aerosol mass production rate equal to twice the total methane dissociation rate due to solar UV expected for Pluto and assume that the particles produced were 10 times more absorbing than those in other hazes in the outer solar system. The possibility of condensation in the atmosphere was considered but did not result in distinctly different haze optical depths. If a photochemical haze on Pluto was responsible for the occultation lightcurve measured by Elliot et al., operation of a photochemical system different from those on Titan, Uranus or Neptune is indicated.

  16. The role of oxygen-increased respirator in humans ascending to high altitude

    Directory of Open Access Journals (Sweden)

    Shen Guanghao

    2012-08-01

    Full Text Available Abstract Background Acute mountain sickness (AMS is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. Methods Oxygen-increased respirator (OIR has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m; Group 3,4,5: 4000 m, 4700 m, 5380 m with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2, malondialdehyde (MDA, superoxide dismutase (SOD, blood lactate (BLA and PWC (physical work capacity -170. Results The results showed that higher SpO2, lower heart rate (except during exercise and better recovery of heart rate were observed from all the subjects ’with OIR’ compared with ’without OIR’ (P Conclusions We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.

  17. Vertical distribution of ambient aerosol extinctive properties during haze and haze-free periods based on the Micro-Pulse Lidar observation in Shanghai.

    Science.gov (United States)

    Liu, Qiong; He, Qianshan; Fang, Sihua; Guang, Ying; Ma, Chengyu; Chen, Yonghang; Kang, Yanming; Pan, Hu; Zhang, Hua; Yao, Yifeng

    2017-01-01

    Ambient aerosols make a significant contribution to the environment and climate through their optical properties. In this study, the aerosol extinction coefficient and Aerosol optical depth (AOD) retrieved using the Fernald Method from the ground-based Micro-Pulse Lidar (MPL) were used to investigate the characteristics of aerosols during haze and haze-free periods in Shanghai. There were 216 haze days including 145 dry haze days, 39 damp haze days and 32days of both dry and damp haze in Shanghai from March 2009 to February 2010. During the haze periods, aerosols were concentrated mainly below 600m resulting in the most severe pollution layer in Shanghai. In contrast to the aerosol optical properties during haze-free periods, aerosol extinction coefficients and AOD were larger in the lower altitude (below 1km) during haze periods. The lowest 1km contributed 53-72% of the Aerosol optical depth (AOD) below 6km for the haze periods and <41% of that for the haze-free periods except summer. According to the analysis of influencing factors, although atmospheric convection was strong in summer which led to reduce the extinction, the highest occurrence of haze with relatively low aerosol extinction most of time was in summer, which resulted from the factors such as higher relative humidity, temperature and more solar radiation causing hygroscopic growth of particles and formation of secondary aerosols; in spring and autumn, there was less haze occurrences because the boundary layer was relatively higher, which allowed pollutants to diffuse more easily, but spring was the second most frequency season of haze due to frequent dust transport from the north; in winter high concentrations of particles and low boundary layer height were not beneficial to the diffusion of pollutants near the surface and caused haze occurrence rather high with high aerosol extinction.

  18. Manipulating API and AOD data to distinguish transportation of aerosol at high altitude in Penang, Malaysia

    Science.gov (United States)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Matjafri, M. Z.; Holben, B.

    2014-02-01

    Air pollution index (API) is an index commonly used in Malaysia to determine the air quality level. It is a ground truth data measurement which is unable to unambiguously quantify air quality level at higher atmosphere. On the other hand, aerosol optical depth (AOD) from AERONET data obtained using sun photometer provides reading of the air quality for a column of atmosphere from ground surface. We first determine the quantitative correlation between the API and AOD data collected in Penang, Malaysia, between January - September, 2012, using two independent methods, one based on regression analysis and the other interpolation. Our purpose is to establish a systematic numerical procedure to determine whether aerosol transported in high altitude from other location has occurred. Two independent methods for establishing the quantitative relationship between the API and AOD data were used as a way to facilitate the verification of our approach. In our method, data from southwest monsoon period (August to September) were used as "calibration dataset" to establish the quantitative correlation between the AOD and API data. The established calibrated coefficients is then used to predict the AOD of other months, which are then compared against the data actually measured. Discrepancy between the predicted and measured AOD data can then be interpreted as an indication of whether the atmosphere at high altitude is polluted by aerosol transported from other location. If the predicted AOD is much larger than that measured, back trajectory analysis was applied to identify the aerosol transported source. This procedure is very helpful to investigate the aerosol transportation and distribution patterns during monsoon and non monsoon periods.

  19. High-Altitude Platforms - Present Situation and Technology Trends

    Directory of Open Access Journals (Sweden)

    Flavio Araripe D'Oliveira

    2016-07-01

    Full Text Available High-altitude platforms (HAPs are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or satellite, bringing back attention to the development of HAP. This article aims to survey the history of HAPs, the current state-of-the-art (April 2016, technology trends and challenges. The main focus of this review will be on technologies directly related to the aerial platform, inserted in the aeronautical engineering field of knowledge, not detailing aspects of the telecommunications area.

  20. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  1. Status of the large high altitude air shower observatory project

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Min, E-mail: zham@ihep.ac.cn [Key Laboratory of Astroparticle and Cosmic Ray, Institute of High Energy Physics, YuQuan Road 19 B, 100049 Beijing (China)

    2012-11-11

    The Large High Altitude Air Shower Observatory (LHAASO) project is a multipurpose project. The main scientific tasks can be summarized as follows: (1) searching for galactic cosmic ray origins through gamma ray source detection above 30 TeV; (2) wide field of view survey for gamma ray sources at energies higher than 100 GeV; (3) energy spectrum measurements for individual cosmic ray species from 30 TeV to 10 PeV. To target above tasks, a complex detector array is designed. This paper describes the progress on the research and development of all kind of detectors. Construction and operation of a prototype detector array at Tibet site with 4300 m a.s.l. are also presented.

  2. STEERABLE ANTENNAS MOVEMENT COMPENSATION FOR HIGH ALTITUDE PLATFORM

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenyong; Liu Xiaowei; Li Zhuoshi

    2011-01-01

    High Altitude Platform (HAP) must compensate for relative motion with respect to the ground because of the stratosphere complexity,which is important to guarantee Quality of Service(QoS) in intended coverage area.With analysis on HAP movement models for predicting the geographical coverage in the cases of shift horizontally and vertically,yaw,roll and pitch,the mechanisms of steerable antennas movement compensation are investigated.The mechanism is applied to a scenario of 127 cell architecture,with a cell cluster size of four.By the simulation results of Carrier to Interference Ratio (CIR),the steerable antenna movement compensation mechanism decrease influence of HAP movement and guarantee effective coverage of the service area.

  3. First year results of the High Altitude Water Cherenkov observatory

    CERN Document Server

    Carramiñana, Alberto

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (>95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volc\\'an Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC gamma-ray observatory.

  4. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew

    2017-08-23

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  5. High-altitude wind resources in the Middle East.

    Science.gov (United States)

    Yip, Chak Man Andrew; Gunturu, Udaya Bhaskar; Stenchikov, Georgiy L

    2017-08-29

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  6. First year results of the High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Carramiñana, Alberto

    2016-10-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory.

  7. The High-Altitude Water Cherenkov Observatory: First Light

    Science.gov (United States)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  8. Wet precipitation chemistry at a high-altitude site (3,326 m a.s.l.) in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Liu, Bin; Kang, Shichang; Sun, Jimin; Zhang, Yulan; Xu, Ri; Wang, Yongjie; Liu, Yongwen; Cong, Zhiyuan

    2013-07-01

    This paper presents the results of wet precipitation chemistry from September 2009 to August 2010 at a high-altitude forest site in the southeastern Tibetan Plateau (TP). The alkaline wet precipitation, with pH ranging from 6.25 to 9.27, was attributed to the neutralization of dust in the atmosphere. Wet deposition levels of major ions and trace elements were generally comparable with other alpine and remote sites around the world. However, the apparently greater contents/fluxes of trace elements (V, Co, Ni, Cu, Zn, and Cd), compared to those in central and southern TP and pristine sites of the world, reflected potential anthropogenic disturbances. The almost equal mole concentrations and perfect linear relationships of Na(+) and Cl(-) suggested significant sea-salts sources, and was confirmed by calculating diverse sources. Crust mineral dust was responsible for a minor fraction of the chemical components (less than 15%) except Al and Fe, while most species (without Na(+), Cl(-), Mg(2+), Al, and Fe) arose mainly from anthropogenic activities. High values of as-K(+) (anthropogenic sources potassium), as-SO4(2-), and as-NO3(-) observed in winter and spring demonstrated the great effects of biomass burning and fossil fuel combustion in these seasons, which coincided with haze layer outburst in South Asia. Atmospheric circulation exerted significant influences on the chemical components in wet deposition. Marine air masses mainly originating from the Bay of Bengal provided a large number of sea salts to the chemical composition, while trace elements during summer monsoon seasons were greatly affected by industrial emissions from South Asia. The flux of wet deposition was 1.12 kg N ha(-1) year(-1) for NH4(+)-N and 0.29 kg N ha(-1) year(-1) for NO3(-)-N. The total atmospheric deposition of N was estimated to be 6.41 kg N ha(-1) year(-1), implying potential impacts on the alpine ecosystem in this region.

  9. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  10. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  11. Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing.

    Science.gov (United States)

    Gao, Min; Qiu, Tianlei; Jia, Ruizhi; Han, Meilin; Song, Yuan; Wang, Xuming

    2015-03-01

    Accumulation of airborne particulate matter (PM) has profoundly affected the atmospheric environment of Beijing, China. Although studies on health risks have increased, characterization of specific factors that contribute to increased health risks remains an area of needed exploration. Chemical composition studies on PM can readily be found in the literature but researches on biological composition are still limited. In this study, the concentration and size distribution of viable airborne bacteria and fungi were determined in the atmosphere from May to July 2013 in Beijing, China. Samples were collected during non-haze days and haze days based on the value of air quality index (AQI) PM2.5. Multiple linear regression results indicated that concentrations of viable bioaerosol exhibited a negative correlation with PM2.5 (AQI) ranging from 14 to 452. There was a little difference in size distribution of bioaerosol between non-haze and haze days that all airborne bacteria showed skewed trends toward larger sizes and airborne fungi followed a Gaussian distribution. Spearman's correlation analysis showed that a fraction of bioaerosol with fine and coarse particles had negative and positive relations with PM2.5 (AQI), respectively. Moreover, the temporal variation of d g (aerodynamic diameter) of bioaerosol with PM2.5 (AQI) fluctuated from 9:00 to 21:00, which suggested that their deposition pattern would vary during a day. The primary research in this study implied that aerodynamic size variation should be considered in assessing the bioaerosol exposure during haze weather.

  12. Meteorological Support of the Helios World Record High Altitude Flight to 96,863 Feet

    Science.gov (United States)

    Teets, Edward H., Jr.; Donohue, Casey J.; Wright, Patrick T.; DelFrate, John (Technical Monitor)

    2002-01-01

    In characterizing and understanding atmospheric behavior when conducting high altitude solar powered flight research flight planning engineers and meteorologists are able to maximize the use of available airspace and coordinate aircraft maneuvers with pilots to make the best use of changing sun elevation angles. The result of this cooperative research produced a new world record for absolute altitude of a non-rocket powered aircraft of 96,863 ft (29,531.4 m). The Helios prototype solar powered aircraft, with a wingspan of 247 ft (75.0m), reached this altitude on August 13, 2001, off the coast of Kauai, Hawaii. The analyses of the weather characterization, the planning efforts, and the weather-of-the-day summary that led to at record flight are described in this paper.

  13. Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms

    Science.gov (United States)

    Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah

    2016-01-01

    High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.

  14. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    Science.gov (United States)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-01

    Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell's equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  15. Application of Single-Mode Fiber-Coupled Receivers in Optical Satellite to High-Altitude Platform Communications

    Directory of Open Access Journals (Sweden)

    Oswald Wallner

    2008-05-01

    Full Text Available In a free-space optical communication system employing fiber-optic components, the phasefront distortions induced by atmospheric turbulence limit the efficiency with which the laser beam is coupled into a single-mode fiber. We analyze different link scenarios including a geostationary (GEO satellite, a high-altitude platform (HAP, and an optical ground station (OGS. Single-mode coupled optically preamplified receivers allow for efficient suppression of background noise and highly sensitive detection. While GEO-to-OGS communication suffers from atmospheric turbulence, we demonstrate that GEO-to-HAP communication allows for close to diffraction-limited performance when applying tip-tilt correction.

  16. Application of Single-Mode Fiber-Coupled Receivers in Optical Satellite to High-Altitude Platform Communications

    Directory of Open Access Journals (Sweden)

    Fidler Franz

    2008-01-01

    Full Text Available Abstract In a free-space optical communication system employing fiber-optic components, the phasefront distortions induced by atmospheric turbulence limit the efficiency with which the laser beam is coupled into a single-mode fiber. We analyze different link scenarios including a geostationary (GEO satellite, a high-altitude platform (HAP, and an optical ground station (OGS. Single-mode coupled optically preamplified receivers allow for efficient suppression of background noise and highly sensitive detection. While GEO-to-OGS communication suffers from atmospheric turbulence, we demonstrate that GEO-to-HAP communication allows for close to diffraction-limited performance when applying tip-tilt correction.

  17. Ataxia, acute mountain sickness, and high altitude cerebral edema

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Ma Siqing; Bian Huiping; Zhang Minming

    2013-01-01

    Previous investigations suggest that ataxia is common and often one of the most reliable warning signs of high altitude cerebral edema(HACE).The aim of this study was to investigate the diagnostic role of ataxia in acute mountain sickness (AMS) and HACE among mountain rescuers on the quake areas,and in approaching the relation between AMS and HACE.After the earthquake on April 14,2010,approximately 24080 lowland rescuers were rapidly transported from sea level or lowlands to the mountainous rescue sites at 3750 ~ 4568 m,and extremely hardly worked for an emergency treatment after arrival.Assessments of acute altitude illness on the quake areas were using the Lake Louise Scoring System.73 % of the rescuers were found to be developed AMS.The incidence of high altitude pulmonary edema(HAPE) and HACE was 0.73 % and 0.26 %,respectively,on the second to third day at altitude.Ataxia sign was measured by simple tests of coordination including a modified Romberg test.The clinical features of 62 patients with HACE were analyzed.It was found that the most frequent,serious neurological symptoms and signs were altered mental status(50/62,80.6 %)and truncal ataxia (47/62,75.8 %).Mental status change was rated slightly higher than ataxia,but ataxia occurred earlier than mental status change and other symptoms.The earliest sign of ataxia was a vague unsteadiness of gait,which may be present alone in association with or without AMS.Advanced ataxia was correlated with the AMS scores,but mild ataxia did not correlate with AMS scores at altitudes of 3750~4568 m.Of them,14 patients were further examined by computerized tomographic scanning of the brain and cerebral magnetic resonance imagines were examined in another 15 cases.These imaging studies indicated that the presence of the cerebral edema was in 97 % of cases who were clinically diagnosed as HACE (28/29).Ataxia seems to be a reliable sign of advanced AMS or HACE,so does altered mental status.

  18. HAVOC: High Altitude Venus Operational Concept - An Exploration Strategy for Venus

    Science.gov (United States)

    Arney, Dale; Jones, Chris

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A lighter-than-air vehicle can carry either a host of instruments and probes, or a habitat and ascent vehicle for a crew of two astronauts to explore Venus for up to a month. The mission requires less time to complete than a crewed Mars mission, and the environment at 50 km is relatively benign, with similar pressure, density, gravity, and radiation protection to the surface of Earth. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30 day crewed mission into Venus's atmosphere. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. With advances in technology and further refinement of the concept, missions to the Venusian atmosphere can expand humanity's future in space.

  19. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds.

    Science.gov (United States)

    Zhou, Taicheng; Shen, Xuejuan; Irwin, David M; Shen, Yongyi; Zhang, Yaping

    2014-09-01

    Galliform birds inhabit very diverse habitats, including plateaus that are above 3000 m in altitude. At high altitude, lower temperature and hypoxia are two important factors influencing survival. Mitochondria, as the ultimate oxygen transductor, play an important role in aerobic respiration through oxidative phosphorylation (OXPHOS). We analyzed the mitochondrial genomes of six high-altitude phasianidae birds and sixteen low-altitude relatives in an attempt to determine the role of mitochondrial genes in high-altitude adaptation. We reconstructed the phylogenetic relationships of these phasianidae birds and relatives and found at least four lineages that independently occupied this high-altitude habitat. Selective analyses revealed significant evidence for positive selection in the genes ND2, ND4, and ATP6 in three of the high-altitude lineages. This result strongly suggests that adaptive evolution of mitochondrial genes played a critical role during the independent acclimatization to high altitude by galliform birds.

  20. Medical continuing education: reform of teaching methods about high altitude disease in China.

    Science.gov (United States)

    Luo, Yongjun; Zhou, Qiquan; Huang, Jianjun; Luo, Rong; Yang, Xiaohong; Gao, Yuqi

    2013-06-01

    The purpose of high altitude continuing medical education is to adapt knowledge and skills for practical application on the plateau. Most trainees have experience with academic education and grassroots work experience on the plateau, so they want knowledge about new advances in the pathogenesis, diagnosis, and treatment of high altitude disease. As such, traditional classroom teaching methods are not useful to them. Training objects, content, and methods should attempt to conduct a variety of teaching practices. Through continuing medical education on high altitude disease, the authors seek to change the traditional teaching model away from a single classroom and traditional written examinations to expand trainees' abilities. These innovative methods of training can improve both the quality of teaching and students' abilities to prevent and treat acute mountain sickness, high altitude pulmonary edema, high altitude cerebral edema, and chronic mountain sickness to increase the quality of high altitude medical care.

  1. Latest news from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  2. An automatic parachute release for high altitude scientific balloons

    Science.gov (United States)

    Field, Chris

    NASA's Columbia Scientific Balloon Facility launches high altitude scientific research balloons at many locations around the world. Locations like Antarctica are flat for hundreds of miles and have nothing to snag a parachute consequently causing it to be more important to separate the parachute from the payload than in an area with vegetation and fences. Scientists are now building one of a kind payloads costing millions of dollars, taking five years or more to build, and are requesting multiple flights. In addition to that, the data gathering rate of many science payloads far exceeds the data downlink rate on over-the-horizon flights therefore making a recovery of at least the data hard drives a "minimum success requirement". The older mentality in ballooning; separating the parachute and payload from the balloon and getting it on the ground is more important than separating the parachute after the payload is on the ground has changed. It is now equally as important to separate the parachute from the gondola to prevent damage from dragging. Until now, commands had to be sent to separate the parachute from the gondola at approximately 60K ft, 30K ft, and 10K ft to use the Semi Automatic Parachute Release (SAPR), which is after the sometimes violent parachute opening shock. By using the Gondola controlled Automatic Parachute Release (GAPR) all commanding is done prior to termination, making the parachute release fully autonomous.

  3. 21st Century Lightning Protection for High Altitude Observatories

    Science.gov (United States)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  4. Increased choroidal thickness in patient with high-altitude retinopathy

    Directory of Open Access Journals (Sweden)

    Kyoko Hirukawa-Nakayama

    2014-01-01

    Full Text Available We report a case of high-altitude retinopathy with increased choroidal thickness detected by spectral-domain optical coherence tomography (SD-OCT. A 36-year-old Japanese man developed an acute vision decrease in his left eye after he had trekked at an altitude of 4600 m in Tibet for 1 week. His visual acuity was 20/20 OD and 20/200 OS with refractive errors of − 0.25 diopters (D OD and − 0.50 D OS 3 weeks after the onset of the visual decrease. Funduscopic examinations revealed multiple intraretinal hemorrhages bilaterally and a macular hemorrhage in the left eye. SD-OCT showed that the thickness of choroidal layer at the fovea was 530 μm OD and 490 μm OS which is thicker than that in normal subjects of approximately 300 μm. We suggest that the increase in the retinal blood flow under hypoxic conditions may be associated with an increase in the choroidal blood flow resulting in an increase in choroidal thickness.

  5. Scientific verification of High Altitude Water Cherenkov observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Antonio, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); Sparks, Kathryne [Department of Physics, Pennsylvania State University, University Park, PA (United States); Alfaro, Ruben [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); González, María Magdalena; Patricelli, Barbara; Fraija, Nissim [Instituto de Astronomia, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico)

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ∼200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m{sup 2}, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  6. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  7. High altitude headache occurs frequently among construction workers in Yushu

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Li Shuzhi; Jin Xinhui; Zhang Jianqing

    2013-01-01

    The aim was to measure the incidence of high altitude headache (HAH) and to determine clinical features,as well as the relation between acute mountain sickness (AMS) and HAH through a prospective study.We conducted a questionnaire-based study among construction workers in Yushu after a serious earthquake; they were under reconstruction using a structured questionnaire incorporating International Headache Society (IHS) and AMS Lake Louise Scoring System.A total of 608 workers were enrolled after their first ascent to altitudes of 3 750~4528 m.The results showed that 96 % reported at least 1 HAH(median 3.8,range from 1 to 10) in workers at a mean altitude of 4250 m.The magnitude of headache was divided as mild (38 %),moderate (44 %) and severe (18 %).This study indicates that HAH is the most common symptom of acute altitude exposure and closely correlated with altitude (r=0.165,p<0.001).However,52 % of headache was one of the main symptoms of AMS,while the other 48 % was the sole symptom of HAH.On the contrary we found that 2 % of AMS without headache,thus the "painless AMS" actually existed.The clinical features of HAH are presented,and the relationship between AMS and HAH is discussed.

  8. Naturally enhanced ion-acoustic lines at high altitudes

    Directory of Open Access Journals (Sweden)

    Y. Ogawa

    2006-12-01

    Full Text Available Naturally enhanced ion-acoustic lines (NEIALs between 1200 and 1900 km altitude are investigated. The NEIALs were found in the background gates of data from the European Incoherent Scatter (EISCAT Svalbard radar (ESR at 78° N looking field-aligned. Only strongly enhanced lines are detected at such high altitudes. The estimated enhancement above incoherent scattering integrated over the antenna beam and preintegration time of 10 s reaches about 10 000. Both lines are always enhanced above 1000 km altitude, and the downshifted line, corresponding to upward propagating ion-acoustic waves, is always stronger than the upshifted line, for downgoing waves. The ratio of the downshifted and upshifted peaks is often remarkably constant along a profile. Using the line positions as indicators of the ion-acoustic speeds and the bulk drift velocity, we find that the bulk drift does not exceed the ion-acoustic (sound speed, but extrapolation of the profiles suggests that the sound barrier is reached around 2000 km in one event. The highest ion-acoustic speed is seen near 600 km, above the density peak, indicating that electrons are heated not only by ionizing precipitation but significantly also by upgoing waves. Upflow continues to speed up above the estimated temperature maximum. A certain qualitative similarity to the solar corona seems to be the case.

  9. Highlights from the High Altitude Water Cherenkov Observatory

    CERN Document Server

    Pretz, John

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 TeV gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a numb...

  10. High altitude hypoxia and blood pressure dysregulation in adult chickens.

    Science.gov (United States)

    Herrera, E A; Salinas, C E; Blanco, C E; Villena, M; Giussani, D A

    2013-02-01

    Although it is accepted that impaired placental perfusion in complicated pregnancy can slow fetal growth and programme an increased risk of cardiovascular dysfunction at adulthood, the relative contribution of reductions in fetal nutrition and in fetal oxygenation as the triggering stimulus remains unclear. By combining high altitude (HA) with the chick embryo model, we have previously isolated the direct effects of HA hypoxia on embryonic growth and cardiovascular development before hatching. This study isolated the effects of developmental hypoxia on cardiovascular function measured in vivo in conscious adult male and female chickens. Chick embryos were incubated, hatched and raised at sea level (SL, nine males and nine females) or incubated, hatched and raised at HA (seven males and seven females). At 6 months of age, vascular catheters were inserted under general anaesthesia. Five days later, basal blood gas status, basal cardiovascular function and cardiac baroreflex responses were investigated. HA chickens had significantly lower basal arterial PO2 and haemoglobin saturation, and significantly higher haematocrit than SL chickens, independent of the sex of the animal. HA chickens had significantly lower arterial blood pressure than SL chickens, independent of the sex of the animal. Although the gain of the arterial baroreflex was decreased in HA relative to SL male chickens, it was increased in HA relative to SL female chickens. We show that development at HA lowers basal arterial blood pressure and alters baroreflex sensitivity in a sex-dependent manner at adulthood.

  11. Scientific verification of High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  12. Titan-Like Exoplanets: Variations in Geometric Albedo and Effective Transit Height with Haze Production Rate

    Science.gov (United States)

    Checlair, Jade; McKay, Christopher P.; Imanaka, Hiroshi

    2016-01-01

    Extensive studies characterizing Titan present an opportunity to study the atmospheric properties of Titan-like exoplanets. Using an existing model of Titan's atmospheric haze, we computed geometric albedo spectra and effective transit height spectra for six values of the haze production rate (zero haze to twice present) over a wide range of wavelengths (0.2-2 microns). In the geometric albedo spectra, the slope in the UV-visible changes from blue to red when varying the haze production rate values from zero to twice the current Titan value. This spectral feature is the most effective way to characterize the haze production rates. Methane absorption bands in the visible-NIR compete with the absorbing haze, being more prominent for smaller haze production rates. The effective transit heights probe a region of the atmosphere where the haze and gas are optically thin and that is thus not effectively probed by the geometric albedo. The effective transit height decreases smoothly with increasing wavelength, from 376 km to 123 km at 0.2 and 2 microns, respectively. When decreasing the haze production rate, the methane absorption bands become more prominent, and the effective transit height decreases with a steeper slope with increasing wavelength. The slope of the geometric albedo in the UV-visible increases smoothly with increasing haze production rate, while the slope of the effective transit height spectra is not sensitive to the haze production rate other than showing a sharp rise when the haze production rate increases from zero. We conclude that geometric albedo spectra provide the most sensitive indicator of the haze production rate and the background Rayleigh gas. Our results suggest that important and complementary information can be obtained from the geometric albedo and motivates improvements in the technology for direct imaging of nearby exoplanets.

  13. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Directory of Open Access Journals (Sweden)

    Pandey P

    2015-11-01

    Full Text Available Priyanka Pandey,1,2 Ghulam Mohammad,1,3 Yogendra Singh,1,2 MA Qadar Pasha1,2 1Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, Maharashtra, 3Department of Medicine, SNM Hospital, Leh, Ladakh, Jammu and Kashmir, IndiaObjective: To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early, and morbid disorder, high altitude pulmonary edema (HAPE. This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation.Methods: For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225, HAPE controls (n=210, and highlanders (n=259 by Sequenom MS (TOF-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups.Results: A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728 with HAPE (P=0.03 and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336 with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively. ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009. MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006 and lower association with adaptation (P=1E–06, whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001 and higher association with adaptation (P=1E–06. Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working

  14. Feasibility of Haze Governance Based on Carbon Sink Mode

    Institute of Scientific and Technical Information of China (English)

    Jie; HE; Quanquan; WANG

    2015-01-01

    In recent years,there are research findings of haze formation in various fields of academic circle. It has proved that causes of haze take on diverse characteristics. Thus,from both the natural and human perspective,haze governance should be diverse. Research conclusions on causes of haze formation mainly focus on special geographical structure,and meteorological factors such as relatively stable atmosphere,high rate of calm wind,high relative humidity and temperature of air,and human factors such as industrial pollution,automotive exhaust emissions,aerosol pollution,eutrophication of soil water,and change of city underlying surface. Carbon sink mode is a new channel for haze governance.In carbon sink mode,it is feasible to regulate relative humidity and temperature in air,enhance global wind,and reduce fine particles and microorganisms of air pollution,so as to reduce haze pollution. Besides,China’s special potential of carbon sink market makes it possible to govern haze on the base of carbon sink.

  15. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  16. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  17. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  18. Effect of simulated high-altitude hypoxia on Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Jing-jing HUANG

    2012-04-01

    Full Text Available Objective To investigate the effects of simulated high-altitude hypoxia on the detection rate and endotoxin level of Porphyromonas gingivalis (Pg of subgingival bacterial plagues in rabbit periodontitis models. Methods Forty male rabbits were randomly divided into four groups, namely, normoxia control group (group A1, normoxia experimental group (group A2, hypoxia control group (group B1, and hypoxia experimental group (group B2. Each group included 10 rabbits. Periodontitis models was established in groups A2 and B2 combined by ligating both lower central incisors with steel ligature and feeding periodontitis diets, and then the animals were housed in a hypoxia chamber (simulating 5000m altitude, 23h per day. Groups A1 and A2 were raised normal diet in normoxia environment. After eight weeks, the rabbit periodontitis model was evaluated by observing radiographic features of the X-ray films and histopathologic changes under a light microscope. Subgingival plague sample from periodontal pockets on both lower central incisors were collected for isolation, culture and identification of Pg, and for detection of the endotoxin level. Results The histopathologic observation and X-ray examination results showed that the periodontitis of rabbits in group B2 was significantly more severe than that in group A2. The detection rates of Pg in group A1, A2, B1 and B2 was 0%, 50%, 55% and 95% (P < 0.05. Pg detection rate and endotoxin level were higher in group B2 (95%, 0.46±0.04EU/ml than in group A2 (50%, 0.38±0.02EU/ml, P < 0.05. Conclusions The process speed and damage degree of periodontitis in hypoxic environment is higher than that in normoxic environment. Moreover, the hypoxic environment is more suitable in the colonization of Pg with higher endotoxin level in subgingival plague.

  19. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    Science.gov (United States)

    Arney, Giada N.; Meadows, Victoria S.; Domagal-Goldman, Shawn D.; Deming, Drake; Robinson, Tyler D.; Tovar, Guadalupe; Wolf, Eric T.; Schwieterman, Edward

    2017-02-01

    Hazes are common in known planetary atmospheres, and geochemical evidence suggests that early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zones of several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), ɛ Eridani (K2V), and σ Boötis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze because of the formation of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs, whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope, haze makes gaseous absorption features at wavelengths free planet, and methane and carbon dioxide are detectable at >5σ. A haze absorption feature can be detected at 5σ near 6.3 μm, but a higher signal-to-noise ratio is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 pc using a coronagraphic 10 m class ultraviolet–visible–near-infrared telescope, a UV–blue haze absorption feature would be strongly detectable at >12σ in 200 hr.

  20. Biomass-burning emissions and associated haze layers over Amazonia

    Science.gov (United States)

    Andreae, M. O.; Browell, E. V.; Gregory, G. L.; Harriss, R. C.; Hill, G. F.; Sachse, G. W.; Talbot, R. W.; Garstang, M.; Jacob, D. J.; Torres, A. L.

    1988-01-01

    The characteristics of haze layers, which were visually observed over the central Amazon Basin during many of the Amazon Boundary Layer Experiment 2A flights in July/August 1985, were investigated by remote and in situ measurements, using the broad range of instrumentation and sampling equipment on board the Electra aircraft. It was found that these layers strongly influenced the chemical and optical characteristics of the atmosphere over the eastern Amazon Basin. Relative to the regional background, the concentrations of CO, CO2, O3, and NO were significantly elevated in the plumes and haze layers, with the NO/CO ratio in fresh plumes much higher than in the aged haze layers. The haze aerosol was composed predominantly of organic material, NH4, K(+), NO3(-), SO4(2-), and organic anions (formate, acetate, and oxalate).

  1. Schistosomiasis transmission at high altitude crater lakes in Western Uganda

    Directory of Open Access Journals (Sweden)

    Philbert Clouds

    2008-08-01

    Full Text Available Abstract Background Contrary to previous reports which indicated no transmission of schistosomiasis at altitude >1,400 m above sea level in Uganda, in this study it has been established that schistosomiasis transmission can take place at an altitude range of 1487–1682 m above sea level in western Uganda. Methods An epidemiological survey of intestinal schistosomiasis was carried out in school children staying around 13 high altitude crater lakes in Western Uganda. Stool samples were collected and then processed with the Kato-Katz technique using 42 mg templates. Thereafter schistosome eggs were counted under a microscope and eggs per gram (epg of stool calculated. A semi-structured questionnaire was used to obtain demographic data and information on risk factors. Results 36.7% of the pupils studied used crater lakes as the main source of domestic water and the crater lakes studied were at altitude ranging from 1487–1682 m above sea level. 84.6% of the crater lakes studied were infective with over 50% of the users infected. The overall prevalence of Schistosoma mansoni infection was 27.8% (103/370 with stool egg load ranging from 24–6048 per gram of stool. 84.3%( 312 had light infections (400 egg/gm of stool. Prevalence was highest in the age group 12–14 years (49.5% and geometric mean intensity was highest in the age group 9–11 years (238 epg. The prevalence and geometric mean intensity of infection among girls was lower (26%; 290 epg compared to that of boys (29.6%; 463 epg (t = 4.383, p Conclusion and recommendations The altitudinal threshold for S. mansoni transmission in Uganda has changed and use of crater water at an altitude higher than 1,400 m above sea level poses a risk of acquiring S. mansoni infection in western Uganda. However, further research is required to establish whether the observed altitudinal threshold change is as a result of climate change or other factors. It is also necessary to establish the impact this could

  2. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology.

    Science.gov (United States)

    Scherrer, Urs; Allemann, Yves; Jayet, Pierre-Yves; Rexhaj, Emrush; Sartori, Claudio

    2010-01-01

    High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.

  3. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    Science.gov (United States)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  4. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Science.gov (United States)

    Pandey, Priyanka; Mohammad, Ghulam; Singh, Yogendra; Qadar Pasha, MA

    2015-01-01

    Objective To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early), and morbid disorder, high altitude pulmonary edema (HAPE). This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation. Methods For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225), HAPE controls (n=210), and highlanders (n=259) by Sequenom MS (TOF)-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups. Results A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728) with HAPE (P=0.03) and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336) with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively). ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009). MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006) and lower association with adaptation (P=1E–06), whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001) and higher association with adaptation (P=1E–06). Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working of ROCK2 and MYLK. Conclusion The data suggest the association of ROCK2 with HAPE and MYLK with HAPE and adaptation in Indian population. The outcome has provided new insights into the physiology of HAPE and adaptation. PMID:26586960

  5. Centurion solar-powered high-altitude aircraft in flight

    Science.gov (United States)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  6. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    Science.gov (United States)

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-05-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347-356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205-214), and isoform 1 of fibrinogen α chain precursor (FGA 588-624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  7. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  8. Outdoor Activity and High Altitude Exposure During Pregnancy: A Survey of 459 Pregnancies.

    Science.gov (United States)

    Keyes, Linda E; Hackett, Peter H; Luks, Andrew M

    2016-06-01

    To evaluate whether women engage in outdoor activities and high altitude travel during pregnancy; the health care advice received regarding high altitude during pregnancy; and the association between high altitude exposure and self-reported pregnancy complications. An online survey of women with at least 1 pregnancy distributed on websites and e-mail lists targeting mothers and/or mountain activities. Outcome measures were outdoor activities during pregnancy, high altitude (>2440 m) exposure during pregnancy, and pregnancy and perinatal complications. Hiking, running, and swimming were the most common activities performed during pregnancy. Women traveled to high altitude in over half of the pregnancies (244/459), and most did not receive counseling regarding altitude (355, 77%), although a small proportion (14, 3%) were told not to go above 2440 m. Rates of miscarriage and most other complications were similar between pregnancies with and without travel above 2440 m. Pregnancies with high altitude exposure were more likely to have preterm labor (odds ratio [OR] 2.3; 95% CI 0.97-5.4; P = .05). Babies born to women who went to high altitude during pregnancy were more likely to need oxygen at birth (OR 2.34; 95% CI 1.04-5.26; P < .05) but had similar rates of neonatal intensive care unit admission (P = not significant). Our results suggest pregnant women who are active in outdoor sports and travel to high altitude have a low rate of complications. Given the limitations of our data, further research is necessary on the risks associated with high altitude travel and physical activity and how these apply to the general population. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. The High Altitude Pollution Program (1976-1982).

    Science.gov (United States)

    1984-01-01

    Andreas , and Dieter Kley, " A Resonance-Fluorescence Instrument forin-Situ Measurement of Atmospheric Carbon Monoxide," (in preparation). B-31 NATIONAL...80307 Launceston, Cornwall England Prof. Dr. Paul Crutzen Max-Planck-Institut fur Chemie Dr. Jerry D. Mahlman Air Chemistry Department National

  10. Missing correlation of retinal vessel diameter with high-altitude headache

    Science.gov (United States)

    Willmann, Gabriel; Fischer, M Dominik; Schommer, Kai; Bärtsch, Peter; Gekeler, Florian; Schatz, Andreas

    2014-01-01

    The most common altitude-related symptom, high-altitude headache (HAH), has recently been suggested to originate from restricted cerebral venous drainage in the presence of increased inflow caused by hypoxia. In support of this novel hypothesis, retinal venous distension was shown to correlate with the degree of HAH. We quantified for the first time retinal vessel diameter changes at 4559 m using infrared fundus images obtained from a state of the art Spectralis™ HRA+OCT with a semiautomatic VesselMap 1® software. High-altitude exposure resulted in altered arterial and venous diameter changes at high altitude, however, independent of headache burden. PMID:25356382

  11. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    ) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite......Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen...

  12. High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition

    Directory of Open Access Journals (Sweden)

    Kenneth S. Whitlow,

    2014-11-01

    Full Text Available High altitude pulmonary edema (HAPE is a form of high altitude illness characterized by cough, dyspnea upon exertion progressing to dyspnea at rest and eventual death, seen in patients who ascend over 2,500 meters, particularly if that ascent is rapid. This case describes a patient with no prior history of HAPE and extensive experience hiking above 2,500 meters who developed progressive dyspnea and cough while ascending to 3,200 meters. His risk factors included rapid ascent, high altitude, male sex, and a possible genetic predisposition for HAPE. [West J Emerg Med. 2014;15(7:–0.

  13. High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition

    Science.gov (United States)

    Whitlow, Kenneth S.; Davis, Babette W.

    2014-01-01

    High altitude pulmonary edema (HAPE) is a form of high altitude illness characterized by cough, dyspnea upon exertion progressing to dyspnea at rest and eventual death, seen in patients who ascend over 2,500 meters, particularly if that ascent is rapid. This case describes a patient with no prior history of HAPE and extensive experience hiking above 2,500 meters who developed progressive dyspnea and cough while ascending to 3,200 meters. His risk factors included rapid ascent, high altitude, male sex, and a possible genetic predisposition for HAPE. PMID:25493133

  14. Aerosol chemistry over a high altitude station at northeastern Himalayas, India.

    Directory of Open Access Journals (Sweden)

    Abhijit Chatterjee

    Full Text Available BACKGROUND: There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. METHODOLOGY/PRINCIPAL FINDINGS: An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl, latitude 27 degrees 01'N and longitude 88 degrees 15'E, a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3 and 19.6+/-11.1 microg m(-3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4NO(3 in fine mode aerosol during winter and as NaNO(3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4(2- in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. CONCLUSIONS/SIGNIFICANCE: The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over

  15. Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration

    NARCIS (Netherlands)

    Shen, F.; Verhoef, W.

    2010-01-01

    Atmospheric correction over turbid waters can be problematic if atmospheric haze is spatially variable. In this case the retrieval of water quality is hampered by the fact that haze variations could be partly mistaken for variations in suspended sediment concentration (SSC). In this study we propose

  16. Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China

    Science.gov (United States)

    Wang, Jiao; Zhang, Jin-sheng; Liu, Ze-jun; Wu, Jian-hui; Zhang, Yu-fen; Han, Su-qin; Zheng, Xian-jue; Zhou, Lai-dong; Feng, Yin-chang; Zhu, Tan

    2017-05-01

    To investigate the characterization of chemical compositions in size-segregated particles during severe haze pollution episodes in different regions of China, a campaign was conducted in Tianjin, Hangzhou and Chengdu. Size-segregated particles were collected with eight-stage Anderson cascade impactor in these cities in winter respectively. Ten major compositions of particles including (Na+, NH4+, K+, Mg2 +, Ca2 +, Cl-, NO3-, SO42 -, OC and EC) were analyzed. A similar bimodal distribution of particles was found between northern and southern cities peaked at 0.7-2.1 and 9.0-10.0 μm. OC, EC, SO42 -, NO3-, Cl- and NH4+ were the major chemical compositions of fine-mode particles, whereas OC, EC, SO42 -, NO3- and Ca2 + were the major compositions of coarse-mode particles. In the three cities, Cl-, SO42 -, NO3-, NH4+ and K+ of all compositions were unimodal distributions peaked at 0.7-2.1 μm. Different sources to particles in the three cities were inferred based on the size distribution characteristics of chemical compositions. For Tianjin, the influence of sea salt was greater to Hangzhou and Chengdu based on the concentrations and distributions of Na+ and the Cl-. Fine-mode Cl- and SO42 - were highest in Tianjin, meaning the greater contribution of coal burning to particles during severe pollution. For Hangzhou, the NO3- concentration was higher than Tianjin and Chengdu. Contribution of nitrate to PM was higher than that of sulfate. For Chengdu, carbonaceous species contributed mostly to fine particles. However, sulfate and nitrate contributed mostly to fine particles in Tianjin and Hangzhou. The contributions of EC and Ca2 + to coarse-mode particles was much higher than that in other cities, implying the greater influence of soil particles, construction dust or falling dust to PM in Chengdu. In addition, there were greater emission source of NH4+ in Chengdu. Northwest, west and southeast were the major transport pathways of air masses for Tianjin, Hangzhou and

  17. Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations

    Science.gov (United States)

    Gao, Peter; Fan, Siteng; Wong, Michael L.; Liang, Mao-Chang; Shia, Run-Lie; Kammer, Joshua A.; Yung, Yuk L.; Summers, Michael E.; Gladstone, G. Randall; Young, Leslie A.; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; Stern, S. Alan

    2017-05-01

    The New Horizons flyby of Pluto confirmed the existence of hazes in its atmosphere. Observations of a large high- to low- phase brightness ratio, combined with the blue color of the haze (indicative of Rayleigh scattering), suggest that the haze particles are fractal aggregates, perhaps analogous to the photochemical hazes on Titan. Therefore, studying the Pluto hazes can shed light on the similarities and differences between the Pluto and Titan atmospheres. We model the haze distribution using the Community Aerosol and Radiation Model for Atmospheres assuming that the distribution is shaped by downward transport and coagulation of particles originating from photochemistry. Hazes composed of both purely spherical and purely fractal aggregate particles are considered. General agreement between model results and solar occultation observations is obtained with aggregate particles when the downward mass flux of photochemical products is equal to the column-integrated methane destruction rate ∼1.2 × 10-14 g cm-2 s-1, while for spherical particles the mass flux must be 2-3 times greater. This flux is nearly identical to the haze production flux of Titan previously obtained by comparing microphysical model results to Cassini observations. The aggregate particle radius is sensitive to particle charging effects, and a particle charge to radius ratio of 30 e-/μm is necessary to produce ∼0.1-0.2 μm aggregates near Pluto's surface, in accordance with forward scattering measurements. Such a particle charge to radius ratio is 2-4 times higher than those previously obtained for Titan. Hazes composed of spheres with the same particle charge to radius ratio have particles that are 4 times smaller at Pluto's surface. These results further suggest that the haze particles are fractal aggregates. We also consider the effect of condensation of HCN, C2H2, C2H4, and C2H6 on the haze particles, which may play an important role in shaping their altitude and size distributions.

  18. Spatial sensitivities of human health risk to intercontinental and high-altitude pollution

    Science.gov (United States)

    Koo, Jamin; Wang, Qiqi; Henze, Daven K.; Waitz, Ian A.; Barrett, Steven R. H.

    2013-06-01

    We perform the first long-term (>1 year) continuous adjoint simulations with a global atmospheric chemistry-transport model focusing on population exposure to fine particulate matter (PM2.5) and associated risk of early death. Sensitivities relevant to intercontinental and high-altitude PM pollution are calculated with particular application to aircraft emissions. Specifically, the sensitivities of premature mortality risk in different regions to NOx, SOx, CO, VOC and primary PM2.5 emissions as a function of location are computed. We apply the resultant sensitivity matrices to aircraft emissions, finding that NOx emissions are responsible for 93% of population exposure to aircraft-attributable PM2.5. Aircraft NOx accounts for all of aircraft-attributable nitrate exposure (as expected) and 53% of aircraft-attributable sulfate exposure due to the strong "oxidative coupling" between aircraft NOx emissions and non-aviation SO2 emissions in terms of sulfate formation. Of the health risk-weighted human PM2.5 exposure attributable to aviation, 73% occurs in Asia, followed by 18% in Europe. 95% of the air quality impacts of aircraft emissions in the US are incurred outside the US. We also assess the impact of uncertainty or changes in (non-aviation) ammonia emissions on aviation-attributable PM2.5 exposure by calculating second-order sensitivities. We note the potential application of the sensitivity matrices as a rapid policy analysis tool in aviation environmental policy contexts.

  19. Tropical Cyclone Precipitation Types and Electrical Field Information Observed by High Altitude Aircraft Instrumentation

    Science.gov (United States)

    Hood, Robbie E.; Blakeslee, Richard; Cecil, Daniel; LaFontaine, Frank J.; Heymsfield, Gerald; Marks, Frank

    2004-01-01

    During the 1998 and 200 1 hurricane seasons of the Atlantic Ocean Basin, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture Experiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. A rainfall screening technique has been developed using AMPR passive microwave observations of these tropical cyclones (TC) collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz and verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scam collected by the National Oceanic and Atmospheric Administration (NOM) P-3 radar. Matching the rainfall classification results with coincident electrical field information collected by the LIP readily identifl convective rain regions within the TC precipitation fields. Strengths and weaknesses of the rainfall classification procedure will be discussed as well as its potential as a real-time analysis tool for monitoring vertical updrafl strength and convective intensity from a remotely operated or uninhabited aerial vehicle.

  20. An Overview of High-Altitude Balloon Experiments at the Indian Institute of Astrophysics

    CERN Document Server

    Safonova, Margarita; Sreejith, A G; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, S; Nirmal, K; Talnikar, Sameer; Hadigal, Shripathy; Prakash, Ajin; Murthy, Jayant

    2016-01-01

    The High-Altitude Ballooning programme began at Indian Institute of Astrophysics, Bangalore, in the year 2011 with the primary purpose of developing and flying low-cost scientific payloads on a balloon-borne platform. Some of the science goals are studies of the phenomena occurring in the upper atmosphere, of airglow and zodiacal light, and observations of extended astronomical objects such as, for example, comets, from near space (20 to 30 km). A brief summary and results of the tethered flights carried out at CREST campus are given in Ref.~1. Here we present a complete overview of the 9 free-flying balloon experiments conducted from March 2013 to November 2014. We describe the launch procedures, payloads, methods of tracking and recovery of the payloads. Since we fall in the light/medium balloon category, the weight of the payload is limited to less than 5 kg --- we use a 3-D printer to fabricate lightweight boxes and structures for our experiments. We are also developing in-house lightweight sensors and co...

  1. Tropical Cyclone Precipitation Types and Electrical Field Information Observed by High Altitude Aircraft Instrumentation

    Science.gov (United States)

    Hood, Robbie E.; Blakeslee, Richard; Cecil, Daniel; LaFontaine, Frank J.; Heymsfield, Gerald; Marks, Frank

    2004-01-01

    During the 1998 and 200 1 hurricane seasons of the Atlantic Ocean Basin, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture Experiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. A rainfall screening technique has been developed using AMPR passive microwave observations of these tropical cyclones (TC) collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz and verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scam collected by the National Oceanic and Atmospheric Administration (NOM) P-3 radar. Matching the rainfall classification results with coincident electrical field information collected by the LIP readily identifl convective rain regions within the TC precipitation fields. Strengths and weaknesses of the rainfall classification procedure will be discussed as well as its potential as a real-time analysis tool for monitoring vertical updrafl strength and convective intensity from a remotely operated or uninhabited aerial vehicle.

  2. HAMP – the microwave package on the High Altitude and LOng range research aircraft (HALO

    Directory of Open Access Journals (Sweden)

    M. Mech

    2014-12-01

    Full Text Available An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO. The HALO Microwave Package, HAMP, consists of two nadir-looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential, synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud-resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a root-mean-square error reduced by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km, which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining a better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  3. HAMP – the microwave package on the High Altitude and LOng range research aircraft HALO

    Directory of Open Access Journals (Sweden)

    M. Mech

    2014-05-01

    Full Text Available An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO. The HALO Microwave Package, HAMP, consists of two nadir looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a reduced root mean square error by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  4. Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas

    Science.gov (United States)

    Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.

    2010-12-01

    For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.

  5. Classification of Tropical Oceanic Precipitation using High Altitude Aircraft: Microwave and Electric Field Measurements

    Science.gov (United States)

    Hood, Robbie E.; Cecil, Daniel; LaFontaine, Frank J.; Blakeslee, Richard; Mach, Douglas; Heymsfield, Gerald; Marks, Frank, Jr.; Zipser, Edward

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration ER-2 high altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scans collected by the National Oceanic and Atmospheric Administration WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  6. Interpreting H2O isotope variations in high-altitude ice cores using a cyclone model

    Science.gov (United States)

    Holdsworth, Gerald

    2008-04-01

    Vertical profiles of isotope (δ18O or δD) values versus altitude (z) from sea level to high altitude provide a link to cyclones, which impact most ice core sites. Cyclonic structure variations cause anomalous variations in ice core δ time series which may obscure the basic temperature signal. Only one site (Mount Logan, Yukon) provides a complete δ versus z profile generated solely from data. At other sites, such a profile has to be constructed by supplementing field data. This requires using the so-called isotopic or δ thermometer which relates δ to a reference temperature (T). The construction of gapped sections of δ versus z curves requires assuming a typical atmospheric lapse rate (dT/dz), where T is air temperature, and using the slope (dδ/dT) of a site-derived δ thermometer to calculate dδ/dz. Using a three-layer model of a cyclone, examples are given to show geometrically how changes in the thickness of the middle, mixed layer leads to the appearance of anomalous δ values in time series (producing decalibration of the δ thermometer there). The results indicate that restrictions apply to the use of the δ thermometer in ice core paleothermometry, according to site altitude, regional meteorology, and climate state.

  7. Aerosol black carbon characteristics over a high-altitude Western Ghats location in Southern India

    Science.gov (United States)

    Udayasoorian, C.; Jayabalakrishnan, R. M.; Suguna, A. R.; Gogoi, Mukunda M.; Babu, S. Suresh

    2014-10-01

    Aerosol black carbon (BC) mass concentrations were continuously monitored over a period of 2 years (April 2010 to May 2012) from a high-altitude location Ooty in the Nilgiris Mountain range in southern India to characterize the distinct nature of absorbing aerosols and their seasonality. Despite being remote and sparsely inhabited, BC concentrations showed significant seasonality with higher values (~ 0.96 ± 0.35 μg m-3) in summer (March to May), attributed to increased vertical transport of effluents in the upwind valley regions, which might have been confined to the surrounding valley regions within the very shallow winter boundary layer. The local atmospheric boundary layer (ABL) influence in summer was further modulated by the long-range transported aerosols from the eastern locations of Ooty. During monsoon (June-August), the concentrations were far reduced (~ 0.23 ± 0.06 μg m-3) due to intense precipitation. Diurnal variations were found conspicuous mainly during summer season associated with local ABL. The spectral absorption coefficients (αabs) depicted, in general, flatter distribution (mostly < 1.0 for more than 85% of daily mean values), suggesting the relative dominance of fossil fuel combustion, though showed marginal seasonal change with higher values of αabs in summer.

  8. Pluto's Haze from 2002 - 2015: Correlation with the Solar Cycle

    Science.gov (United States)

    Young, Eliot; Klein, Viliam; Hartig, Kara; Resnick, Aaron; Mackie, Jason; Carriazo, Carolina; Watson, Charles; Skrutskie, Michael; Verbiscer, Anne; Nelson, Matthew; Howell, Robert; Wasserman, Lawrence; Hudson, Gordon; Gault, David; Barry, Tony; Sicardy, Bruno; Cole, Andrew; Giles, Barry; Hill, Kym

    2017-04-01

    Occultations by Pluto were observed 2002, 2007, 2011 and 2015, with each event observed simultaneously in two or more wavelengths. Separate wavelengths allow us to discriminate between haze opacity and refractive effects due to an atmosphere's thermal profile - these two effects are notoriously hard to separate if only single-wavelength lightcurves are available. Of those four occultations, the amount of haze in Pluto's atmosphere was highest in 2002 (Elliot et al. 2003 report an optical depth of 0.11 at 0.73 µm in the zenith direction), but undetectable in the 2007 and 2011 events (we find optical depth upper limits of 0.012 and 0.010 at 0.6 µm). Cheng et al. (2016) report a zenith optical depth of 0.018 at 0.6 µm from the haze profiles seen in New Horizons images. These four data points are correlated with the solar cycle. The 2002 haze detection occurred just after the peak of solar cycle 23, the 2007 and 2011 non-detections occurred during the solar minimum between peaks 23 and 24, and the New Horizons flyby took place just after the peak of solar cycle 24. This suggests that haze production on Pluto (a) is driven by solar UV photons or charged particles, (b) that sources and sinks on Pluto have timescales shorter than a few Earth years, and (c) the haze precursors on Pluto are not produced by Lyman-alpha radiation, because Lyman-alpha output only decreased by about one third in between the cycle 23 and 24 peaks, much less than the observed change in Pluto's haze abundances. References: Elliot, J.L. et al. (2003) Nature, Volume 424, Issue 6945, pp. 165-168.

  9. Superpressure Tow Balloon for Extending Durations and Modifying Trajectories of High Altitude Balloon Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation involves the concept of using a Superpressure Tow Balloon (STB) with existing NASA high altitude balloon designs to form a tandem balloon...

  10. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  11. Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space...

  12. Is Pulse Oximetry Useful for Screening Neonates for Critical Congenital Heart Disease at High Altitudes?

    Science.gov (United States)

    Hoffman, Julien I E

    2016-06-01

    Now that pulse oximetry is used widely to screen for critical congenital heart disease, it is time to consider whether this screening method is applicable to those who live at high altitudes. Consideration of basic physical principles and reports from the literature indicate that not only is the 95 % cutoff point for arterial oxygen saturation incorrect at high altitudes, but the lower saturations are accompanied by greater variability and therefore there is the possibility of a greater percentage of false-positive screening tests at high altitudes. Because of ethnic differences in response to high altitudes, normative data will have to be collected separately in different countries and perhaps for different ethnic groups.

  13. QT interval changes in term pregnant women living at moderately high altitude.

    Science.gov (United States)

    Batmaz, G; Aksoy, A N; Aydın, S; Ay, N K; Dane, B

    2016-01-01

    This study aimed to compare the QT interval changes in women with term pregnancy living at moderately high altitude (1890 m in Erzurum, Turkey) with those of women living at sea level (31 m in İstanbul, Turkey). One-hundred ten women (n = 55, for each group) with full-term and single child pregnancies. Two different locations in that state were selected: İstanbul, Turkey, which is at 31 m above sea level (Group 1) and Erzurum, Turkey, at 1890 m above sea level (Group 2). Physicians from the two locations participated in the study. We estimated QTc, QTc Max, QTc Min, QT, and QTcd intervals. Moderately high altitude group had significantly longer QT parameters (QTc, QTc Max, QTc Min, QT, and QTcd intervals) compared with sea level group (P anges occur in term pregnant women living moderately high altitude. These changes may be associated with pregnancy-related cardiovascular complications in moderately high altitude.

  14. Subclinical high altitude pulmonary edema:A clinical observation of 12 cases in Yushu

    Institute of Scientific and Technical Information of China (English)

    Li Shuzhi; Zheng Bihai; Wu Tianyi; Chen Huixing; Zhang Ming

    2013-01-01

    During the Yushu Earthquake on April 14,2010,a high incidence of acute high altitude illness was observed in the mountain rescuers,and 0.73 % of these patients suffered from high altitude pulmonary edema,of which 12 patients developed subclinical pulmonary edema and concomitantly contracted acute mountain sickness.Symptoms and signs were atypically high heart rate with high respiratory rate,striking cyanosis,and significantly low oxygen saturation,whereas no moist rates were heard on auscultation,and Chest X-ray showed peripheral with a patchy distribution of mottled infiltrations in one or both lung fields.We believe that subclinical high altitude pulmonary edema is an earliest stage of pulmonary edema at high altitude.The possible pathogenesis and the diagnosis were discussed.

  15. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  16. Detection of haze and/or cloud

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Mukai, Makiko; Kokhanovsky, Alexander

    2015-04-01

    It is highly likely that large-scale air pollution will continue to occur because air pollution becomes severe due to both the increasing emissions of the anthropogenic aerosols and the complicated behavior of natural aerosols, especially in Asia. It is natural to consider that incident solar light multiply interacts with the atmospheric aerosols due to dense radiation field in such a heavy haze. Accordingly efficient and practical algorithms for radiation simulation are indispensable to retrieve aerosol characteristics in a hazy atmosphere. It has been shown that aerosol retrieval in the hazy atmosphere is achieved based on MSOS (method of successive order of scattering) [1]. The satellite polarimetric sensor POLDER-1, 2, 3 has shown that the spectro-photopolarimetry of the terrestrial atmosphere is very useful for the observation of the Earth, especially for atmospheric particles. JAXA has been developing the new Earth observing system, GCOM satellite. GCOM-C will board the polarimetric sensor SGLI (second-generation global imager) in 2017. The SGLI has two polarization channels at near-infrared wavelengths of 670 and 870 nm. Furthermore, EUMETSAT plans to collect polarization measurements with a POLDER follow on 3MI/EPS-SG in 2021. Then the efficient algorithms for radiation simulation in the optically thick atmosphere by using polarization information denoted by Stokes parameters are shown in this work. It is of interest to mention that multi-spectral data are available for detection and/or distinction of hazy aerosol and/or cloud. In this work our MSOS is expected to be available for atmospheric particle retrieval in a mixture case of cloud and haze. The MSOS is available for the radiation simulation reflected from the optically semi-infinite atmosphere.[1]. Here we intend to improve MSOS-scalar into more efficient and practical form, and further into MSOS-vector form. We show here that a dense aerosol episode can be well simulated by a semi-infinite radiation

  17. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    Science.gov (United States)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Deming, Drake; Robinson, Tyler D.; Tovar, Guadalupe; Wolf, Eric; Schwieterman, Edward

    2016-10-01

    Hazes are common in planetary atmospheres, and geochemical evidence suggests early Earth occasionally supported an organic haze. The formation of organic hazes is initiated by methane photochemistry sensitive to the host star UV spectrum. Because methane can be produced by a variety of biological and geological processes, organic-rich terrestrial planets with hazes may be common in the galaxy. We use a 1D photochemical-climate model to examine the production of fractal organic haze on Archean Earthlike planets orbiting several different stars: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), a modeled quiescent M dwarf (M3.5V), ɛ Eridani (K2V), and σ Boötis (F2V). For the planetary atmospheric compositions used, planets orbiting stars with the highest or lowest UV fluxes do not form haze. Low UV-stars are unable to drive the photochemistry needed for haze formation. High UV stars generate photochemical oxygen radicals that halt haze production. Organic hazes can impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized for hazy M dwarf planets whose incident stellar radiation arrives at wavelengths where organic hazes are largely transparent. We generate synthetic planetary spectra to test the detectability of haze. For 10 transits of an Archean-analog planet orbiting GJ 876 observed by the James Webb Space Telescope, gaseous absorption features at wavelengths 5σ assuming photon-limited noise levels. An absorption feature from the haze can be detected at the 5σ level near 6.3μm, but higher signal-to-noise would be needed to uniquely distinguish haze from other absorbers in this spectral region. For direct imaging of a planet at 10 parsecs using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a UV-blue haze absorption feature would be strongly detectable at >12σ in 200 hours. Although haze is often considered a feature that conceals planetary features, organic haze can indicate a

  18. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial.......059) to limit mass-specific maximal oxidative phosphorylation capacity. These data suggest that 9-11 days of exposure to high altitude do not markedly modify integrated measures of mitochondrial functional capacity in skeletal muscle despite significant decrements in the concentrations of enzymes involved...

  19. Analysis of mitochondrial DNA in Tibetan gastric cancer patients at high altitude

    OpenAIRE

    Jiang, Jun; Zhao, Jun-Hui; Wang, Xue-Lian; DI, JI; Liu, Zhi-Bo; Li, Guo-Yuan; WANG, MIAO-ZHOU; Li, Yan; Chen, Rong; Ge, Ri-Li

    2015-01-01

    The highest risk areas of gastric cancer are currently Japan, Korea and China; Qinghai, a high-altitude area, has one of the highest gastric cancer rates in China. The incidence of gastric cancer is higher in the Tibetan ethnic group compared to that in the Han ethnic group in Qinghai. This study was conducted to determine the clinical characteristics of mitochondrial DNA (mtDNA) mutations and copy numbers among Tibetans with gastric cancer residing at high altitudes and investigate the assoc...

  20. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  1. ROCK2 and MYLK variants and high-altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2016-08-01

    Full Text Available Gaurav Sikri, Srinivasa Bhattachar Department of Physiology, Armed Forces Medical College, Pune, Maharashtra, IndiaWe have read the article titled “ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation” by Pandey et al1 with profound interest. View the original paper by Pandey and colleagues.

  2. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  3. Radiation Safety Issues in High Altitude Commercial Aircraft

    Science.gov (United States)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  4. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  5. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein

    Science.gov (United States)

    Hu, Sheng Li; Xiong, Wei; Dai, Zhi Qiang; Zhao, Heng Li; Feng, Hua

    2016-01-01

    Hypersensitive C-reaction protein (hsCRP) may be a risk factor for cognitive impairment resulting from Alzheimer’s disease (AD), stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200) detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6), and homocysteine was estimated at 500m altitude, 3650m altitude, 3day, 1, and 3 month post arriving at the base camp (4400m), and 1 month after coming back to the 500m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400m). P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction. PMID:26731740

  6. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  7. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    Science.gov (United States)

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered.

  8. Effect of high altitude exposure on spermatogenesis and epididymal sperm count in male rats.

    Science.gov (United States)

    Gasco, M; Rubio, J; Chung, A; Villegas, L; Gonzales, G F

    2003-12-01

    The present study was designed to determine the effect of exposure to high altitude on spermatogenesis using transillumination technique and sperm count in male rats. In addition, the effect of oral intubation for intragastric administration of vehicle on testicular parameters in adult male rats in a schedule of 42 days was assessed. Male rats were exposed to Cerro de Pasco (Peru) at 4340 m for 3, 7, 14, 21, 28, 35 and 42 days resulting in a modification of the pattern of the seminiferous tubule stages. At day 3, stages I, IV-V, VI, VII and IX-XI were relatively shorter at high altitude than at sea level. At day 7, stages VIII, IX-XI, XII and XIII-XIV were reduced. At day 14, stages VII, VIII and IX-XI were reduced. At day 21 and 28, stages VIII, XII and XIII-XIV were significantly increased at high altitude. At day 35 an increase in stage XIII-XIV was observed. At day 42, stages II-III, IX-XI and XII were significantly increased at high altitude. Epididymal sperm count was significantly reduced at day 7 of exposure to high altitude and maintained low levels with respect to sea level up to 42 days. In conclusion, high altitude exposure affects spermatogenesis, particularly onset of mitosis and spermiation. This in turn affects epididymal sperm count.

  9. A high-altitude balloon platform for determining exchange of carbon dioxide over agricultural landscapes

    Science.gov (United States)

    Bouche, Angie; Beck-Winchatz, Bernhard; Potosnak, Mark J.

    2016-11-01

    The exchange of carbon dioxide between the terrestrial biosphere and the atmosphere is a key process in the global carbon cycle. Given emissions from fossil fuel combustion and the appropriation of net primary productivity by human activities, understanding the carbon dioxide exchange of cropland agroecosystems is critical for evaluating future trajectories of climate change. In addition, human manipulation of agroecosystems has been proposed as a technique of removing carbon dioxide from the atmosphere via practices such as no-tillage and cover crops. We propose a novel method of measuring the exchange of carbon dioxide over croplands using a high-altitude balloon (HAB) platform. The HAB methodology measures two sequential vertical profiles of carbon dioxide mixing ratio, and the surface exchange is calculated using a fixed-mass column approach. This methodology is relatively inexpensive, does not rely on any assumptions besides spatial homogeneity (no horizontal advection) and provides data over a spatial scale between stationary flux towers and satellite-based inversion calculations. The HAB methodology was employed during the 2014 and 2015 growing seasons in central Illinois, and the results are compared to satellite-based NDVI values and a flux tower located relatively near the launch site in Bondville, Illinois. These initial favorable results demonstrate the utility of the methodology for providing carbon dioxide exchange data over a large (10-100 km) spatial area. One drawback is its relatively limited temporal coverage. While recruiting citizen scientists to perform the launches could provide a more extensive dataset, the HAB methodology is not appropriate for providing estimates of net annual carbon dioxide exchange. Instead, a HAB dataset could provide an important check for upscaling flux tower results and verifying satellite-derived exchange estimates.

  10. High-altitude electrical discharges associated with thunderstorms and lightning

    Science.gov (United States)

    Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.

    2015-12-01

    The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.

  11. ER-2 High Altitude Solar Cell Calibration Flights

    Science.gov (United States)

    Myers, Matthew G.; Piszczor, Michael F.

    2015-01-01

    The first flights of the ER-2 solar cell calibration demonstration were conducted during September-October of 2014. Three flights were performed that not only tested out the equipment and operational procedures, but also demonstrated the capability of this unique facility by conducting the first short-circuit measurements on a variety of test solar cells. Very preliminary results of these first flights were presented at the 2014 Space Photovoltaic Research and Technology (SPRAT) Conference in Cleveland, OH shortly following these first flights. At the 2015 Space Power Workshop, a more detailed description of these first ER-2 flights will be presented, along with the final flight data from some of the test cells that were flown and has now been reduced and corrected for ER-2 atmospheric flight conditions. Plans for ER-2 flights during the summer of 2015 will also be discussed.

  12. High Altitude Infrasound Measurements using Balloon-Borne Arrays

    Science.gov (United States)

    Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.

    2015-12-01

    For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.

  13. High-Altitude Balloon Launches and Hands-On Sensors for Effective Student Learning in Astronomy and STEM

    Science.gov (United States)

    Voss, H. D.; Dailey, J.; Snyder, S. J.

    2011-09-01

    Students creating and flying experiments into near-space using a low-cost balloon High-Altitude Research Platform (HARP) greatly advance understanding in introductory astronomy and advanced classes across several disciplines. Remote sensing above 98% of the atmosphere using cameras, image intensifiers, IR, and UV sensors provides access to the heavens and large regions of the earth below. In situ and limb atmospheric gas measurements, near-space stratosphere measurements, and cosmic rays engage students in areas from planetary atmospheres to supernova acceleration. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build less than 4 kg payloads. The HARP program provides an engaging laboratory, gives challenging science, technology, engineering, and mathematics (STEM) field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Over a seven-year period, Taylor University, an undergraduate liberal arts school, has successfully launched over 230 HARP systems to altitudes over 30 km (100% retrieval success with rapid recovery) with flight times between two and six hours. The HARP payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergraduate). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded, leading to representatives from more than 52

  14. CFD Evaluation on the Temperature Field and Thermal Comfort of Coach in Low Atmospheric Pressure Passenger Trains with Oxygenation at High Altitudes%高原低气压增氧旅客列车车厢温度场及热舒适的CFD评价

    Institute of Scientific and Technical Information of China (English)

    陈宁; 廖胜明; 饶政华

    2012-01-01

    根据青藏铁路格尔木—拉萨段客车增氧低压的环境特点,对人体热舒适评价指标进行修正.基于RNGκ—ε模型,采用计算流体动力学软件(CFD),建立25T型客车的简化CFD模型,利用求解该模型获取的数据对乘客热舒适性进行评价.结果表明:靠近车厢内部中央的温度低,靠近四周壁面的高;除车窗附近2个温度测点在大气压强为1.01.3 kPa时的温度线与大气压强为70.7 kPa时的有较大差异外,其余4个测点的温度线在这2个大气压强时重合或非常接近;大气压强为101.3和70.7kPa时,6个测点的温度比大气压强为55.6kPa时高0~2℃:在车厢外气温和辐射强度相同的条件下,大气压强下降至55.6 kPa时才对车厢内温度产生明显的影响;当大气压强为55.6 kPa时,受气流影响,坐在靠近走廊座位且面对来流方向乘客的热舒适性比在大气压强为101.3和70.7 kPa时更接近中性,而坐在靠阴而侧壁座位且背对来流方向乘客的热舒适性比在大气压强为70.7 kPa时更接近中性;坐在靠近阳面侧壁座位乘客的热舒适性指标为0.1~0.4,介于中性和稍热之间;而坐在其他座位乘客的热舒适性指标为-1.0~-0.6,介于中性和稍冷之间.由此可推断:大气压强和座位在车厢内的位置是影响车厢内乘客热舒适的主要因素.%Evaluation index of thermal comfort of occupants was corrected according to the environment characteristics of the low atmospheric pressure with oxygenation in the passenger train coach of Qinghai-Tibet Railway from Golmud to Lhasa sectioa Passengers' thermal comfort was evaluated by building the simplified 25 T passenger train model with CFD software on the basis of RNG k—ε turbulent model. Results show that, the air temperature near the interior center is lower than that near the surrounding wall surface. There is an obvious temperature difference on the two measuring lines near the window between the

  15. High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle

    Science.gov (United States)

    Brown, Shannon T.; Lim, Boon H.; Tanner, Alan B.; Tanabe, Jordan M.; Kangaslahti, Pekka P.; Gaier, Todd C.; Soria, Mary M.; Lambrigtsen, Bjorn H.; Denning, Richard F.; Stachnik, Robert A.

    2012-01-01

    Microwave imaging radiometers operating in the 50-183 GHz range for retrieving atmospheric temperature and water vapor profiles from airborne platforms have been limited in the spatial scales of atmospheric structures that are resolved not because of antenna aperture size, but because of high receiver noise masking the small variations that occur on small spatial scales. Atmospheric variability on short spatial and temporal scales (second/ km scale) is completely unresolved by existing microwave profilers. The solution was to integrate JPL-designed, high-frequency, low-noise-amplifier (LNA) technology into the High-Altitude MMIC Sounding Radiometer (HAMSR), which is an airborne microwave sounding radiometer, to lower the system noise by an order of magnitude to enable the instrument to resolve atmospheric variability on small spatial and temporal scales. HAMSR has eight sounding channels near the 60-GHz oxygen line complex, ten channels near the 118.75-GHz oxygen line, and seven channels near the 183.31-GHz water vapor line. The HAMSR receiver system consists of three heterodyne spectrometers covering the three bands. The antenna system consists of two back-to-back reflectors that rotate together at a programmable scan rate via a stepper motor. A single full rotation includes the swath below the aircraft followed by observations of ambient (roughly 0 C in flight) and heated (70 C) blackbody calibration targets located at the top of the rotation. A field-programmable gate array (FPGA) is used to read the digitized radiometer counts and receive the reflector position from the scan motor encoder, which are then sent to a microprocessor and packed into data files. The microprocessor additionally reads telemetry data from 40 onboard housekeeping channels (containing instrument temperatures), and receives packets from an onboard navigation unit, which provides GPS time and position as well as independent attitude information (e.g., heading, roll, pitch, and yaw). The raw

  16. GuMNet - A high altitude monitoring network in the Sierra de Guadarrama (Madrid, Spain)

    Science.gov (United States)

    Santolaria-Canales, Edmundo

    2016-04-01

    The Guadarrama Monitoring Network (GuMNet) is an observational infrastructure focused on monitoring the state of the atmosphere and the ground in the Sierra de Guadarrama, 50 km NW of the city of Madrid. The network is composed of10 stations ranging from low altitude (900 m a.s.l.) to high mountain climate (2400 m a.s.l.). The atmospheric instrumentation includes sensors for air temperature, air humidity, 4-component net radiation, precipitation, snow height and wind speed and direction. The surface and subsurface infrastructure includes temperature and humidity sensors distributed in 9 trenches up to a maximum of 1 m depth and additionally temperature sensors in 15 PVC cased boreholes down to 20 m and 2 m with a higher vertical resolution close to the surface. All stations are located in exposed open areas except for one site that is in a forested area for measuring air-ground fluxes under forest conditions. High altitude sites are focused on periglacial areas and lower altitude sites have emphasis on pastures. One of the low altitude sites is equipped with a 10 m high tower with 3D sonic anemometers and a CO2/H2O analyzer that will allow the sampling of wind profiles and H2O and CO2 eddy covariance fluxes, important for estimation of CO2 and energy exchanges over complex vegetated surfaces. The network is connected via general packet radio service to the central lab in the Campus of Excellence of Moncloa and management software has been developed to handle the operation of the infrastructure. The data provided by GuMNet will help to improve the characterization of atmospheric variability from turbulent scales to meteorology and climate at high mountain areas, as well as land-atmosphere interactions. The network information aims at meeting the needs of accuracy to be used for biological, agricultural, hydrological, meteorological and climatic investigations in this area with relevance for ecosystem oriented studies. This setup will complement the broader network

  17. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension.

    Science.gov (United States)

    Berger, Marc M; Dehnert, Christoph; Bailey, Damian M; Luks, Andrew M; Menold, Elmar; Castell, Christian; Schendler, Guido; Faoro, Vitalie; Mairbäurl, Heimo; Bärtsch, Peter; Swenson, Erik R

    2009-01-01

    Berger, Marc M., Christoph Dehnert, Damian M. Bailey, Andrew M. Luks, Elmar Menold, Christian Castell, Guido Schendler, Vitalie Faoro, Heimo Mairbäurl, Peter Bärtsch, and Eric R. Swenson. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension. High Alt. Med. Biol. 10:17-24, 2009.- Thirty-four mountaineers were studied at low (110 m) and high altitude (4559 m) to evaluate if increased pulmonary artery systolic pressure (PASP) at high altitude is associated with increased pulmonary endothelin-1 (ET-1) availability and alterations in nitrite metabolism across the lung. Blood samples were obtained using central venous and radial artery catheters for plasma ET-1 and nitrite. Pulmonary blood flow was measured by inert gas rebreathing to calculate transpulmonary exchange of plasma ET-1 and nitrite, and PASP was assessed by transthoracic Doppler echocardiography. After ascent to high altitude, PASP increased from 23 +/- 4 to 39 +/- 10 mmHg. Arterial and central venous plasma ET-1 increased, while plasma nitrite did not change significantly. At low altitude there was a transpulmonary loss of plasma ET-1, but a transpulmonary gain at high altitude. In contrast was a transpulmonary gain of plasma nitrite at low altitude and a transpulmonary loss at high altitude. PASP positively correlated with a transpulmonary gain of plasma ET-1 and negatively correlated with a transpulmonary loss of plasma nitrite. These results suggest that a transpulmonary gain of plasma ET- 1 is associated with higher PASP at high altitude. Transpulmonary loss of plasma nitrite indicates either less pulmonary nitric oxide (NO) production, which contributes to higher PASP, or increased NO bioavailability arising from nitrite reduction, which may oppose ET-1-mediated vasoconstriction.

  18. Difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite

    Directory of Open Access Journals (Sweden)

    Ming-ke JIAO

    2017-02-01

    Full Text Available Objective To determine the difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite during the wound healing. Methods Twenty four male rats were randomly divided into control group (n=8, normal frostbite group (n=8, and high-altitude group (n=8. The normal frostbite group rats were frozen to produce mid-degree frostbite models by controlling the freezing time with liquid nitrogen penetration equipment. The high-altitude frostbite group rats were acclimated to a hypoxic and low-pressure environment for 1 week, and then the high-altitude frostbite models were constructed by the same way with liquid nitrogen penetration apparatus. On days 3, 7, 11, 15, 19, and 23 after modeling, the recovery situation of blood circulation of each group was observed with contrast ultrasonography by injecting SonoVue micro-bubble into rats' tail. Finally, the micro-bubble concentration (MC was calculated to confirm the blood circulation recovery with software Image Pro. Results At different time points, the wound area of the high-altitude frostbite group was bigger than that of the normal frostbite group, and the MC of control group was always about (27±0.2×109/ml. On day 3, 7, 11, 15, 19, and 23, the MC was significantly lower in the high-altitude frostbite group than in the control group and normal frostbite group (P<0.05. The MC of normal frostbite group was significantly lower than that of the control group on day 3, 7, 11, 15 and 19 (P<0.05. In addition, no obvious difference in MC was found between normal group and control group on the 23th day (P<0.05. Conclusion The blood microcirculation recovery after high-altitude frostbite is significantly slower than the normal frostbite. DOI: 10.11855/j.issn.0577-7402.2017.01.13

  19. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.

  20. Did the widespread haze pollution over China increase during the last decade? A satellite view from space

    Science.gov (United States)

    Tao, Minghui; Chen, Liangfu; Wang, Zifeng; Wang, Jun; Tao, Jinhua; Wang, Xinhui

    2016-05-01

    Widespread haze layers usually cover China like low clouds, exerting marked influence on air quality and regional climate. With recent Collection 6 MODIS Deep Blue aerosol data in 2000-2015, we analyzed the trends of regional haze pollution and the corresponding influence of atmospheric circulation in China. Satellite observations show that regional haze pollution is mainly concentrated in northern and central China. The annual frequency of regional haze in northern China nearly doubles between 2000 and 2006, increasing from 30-50 to 80-90 days. Though there is a marked decrease in annual frequency during 2007-2009 due to both reduction of anthropogenic emissions and changes of meteorological conditions, regional pollution increases slowly but steadily after 2009, and maintains at a high level of 70-90 days except for the sudden decrease in 2015. Generally, there is a large increase in the number of regional-scale haze events during the last decade. Seasonal frequency of regional haze exhibits distinct spatial and temporal variations. The increasing winter haze events reach a peak in 2014, but decrease strongly in 2015 due partly to synoptic conditions that are favorable for dispersion. Trends of summer regional haze pollution are more sensitive to changes of atmospheric circulation. Our results indicate that the frequency of regional haze events is associated not only with the strength of atmospheric circulation, but also with its direction and position, as well as variations in anthropogenic emissions.

  1. Comparison of physical and chemical properties of ambient aerosols during the 2009 haze and non-haze periods in Southeast Asia.

    Science.gov (United States)

    Xu, Jingsha; Tai, Xuhong; Betha, Raghu; He, Jun; Balasubramanian, Rajasekhar

    2015-10-01

    Recurrent smoke-haze episodes that occur in Southeast Asia (SEA) are of much concern because of their environmental and health impacts. These haze episodes are mainly caused by uncontrolled biomass and peat burning in Indonesia. Airborne particulate matter (PM) samples were collected in the southwest coast of Singapore from 16 August to 9 November in 2009 to assess the impact of smoke-haze episodes on the air quality due to the long-range transport of biomass and peat burning emissions. The physical and chemical characteristics of PM were investigated during pre-haze, smoke-haze, and post-haze periods. Days with PM2.5 mass concentrations of ≥35 μg m(-3) were considered as smoke-haze events. Using this criterion, out of the total 82 sampling days, nine smoke-haze events were identified. The origin of air masses during smoke-haze episodes was studied on the basis of HYSPLIT backward air trajectory analysis for 4 days. In terms of the physical properties of PM, higher particle surface area concentrations and particle gravimetric mass concentrations were observed during the smoke-haze period, but there was no consistent pattern for particle number concentrations during the haze period as compared to the non-haze period except that there was a significant increase at about 08:00, which could be attributed to the entrainment of PM from aloft after the breakdown of the nocturnal inversion layer. As for the chemical characteristics of PM, among the six key inorganic water-soluble ions (Cl(-), NO3(-), nss-SO4(2-), Na(+), NH4(+), and nss-K(+)) measured in this study, NO3(-), nss-SO4(2-), and NH4(+) showed a significant increase in their concentrations during the smoke-haze period together with nss-K(+). These observations suggest that the increased atmospheric loading of PM with higher surface area and increased concentrations of optically active secondary inorganic aerosols [(NH4)2SO4 or NH4HSO4 and NH4NO3] resulted in the atmospheric visibility reduction in SEA due to

  2. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    Science.gov (United States)

    Immerzeel, Walter; Wanders, Niko; Lutz, Arthur; Shea, Joseph; Bierkens, Marc

    2016-04-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  3. Chronic intermittent high altitude exposure, occupation, and body mass index in workers of mining industry.

    Science.gov (United States)

    Esenamanova, Marina K; Kochkorova, Firuza A; Tsivinskaya, Tatyana A; Vinnikov, Denis; Aikimbaev, Kairgeldy

    2014-09-01

    The obesity and overweight rates in population exposed to chronic intermittent exposure to high altitudes are not well studied. The aim of the retrospective study was to evaluate whether there are differences in body mass index in different occupation groups working in intermittent shifts at mining industry at high altitude: 3800-4500 meters above sea level. Our study demonstrated that obesity and overweight are common in workers of high altitude mining industry exposed to chronic intermittent hypoxia. The obesity rate was lowest among miners as compared to blue- and white-collar employees (9.5% vs. 15.6% and 14.7%, p=0.013). Obesity and overweight were associated with older age, higher rates of increased blood pressure (8.79% and 5.72% vs. 1.92%), cholesterol (45.8% and 45.6% vs. 32.8%) and glucose (4.3% and 1.26% vs. 0.57%) levels as compared to normal body mass index category (pmining industry exposed to intermittent high-altitude hypoxia. Therefore, assessment and monitoring of body mass index seems to be essential in those who live and work at high altitudes to supply the correct nutrition, modify risk factors, and prevent related disorders.

  4. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  5. The Effect of CO on Planetary Haze Formation

    CERN Document Server

    Hörst, Sarah M

    2014-01-01

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N$_{2}$/CH$_{4}$ to a variety of energy sources. However, many N$_{2}$/CH$_{4}$ atmospheres in both our solar system and extrasolar planetary systems also contain CO. We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  6. Impact of Sulfur Hazes on the Reflected Light Spectra of Giant Exoplanets

    Science.gov (United States)

    Gao, Peter; Marley, Mark S.; Zahnle, Kevin; Robinson, Tyler D.; Lewis, Nikole K.

    2017-01-01

    Recent work has shown that photochemical hazes composed of elemental sulfur and its allotropes may arise in the atmospheres of warm and temperate giant exoplanets due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet's geometric albedo spectrum using a suite of established radiative-convective, cloud, and albedo models, and how this may impact future direct imaging missions, such as WFIRST. For Jupiter-massed planets, photochemical destruction of H2S results in the production of ~1 ppmv of S8 between 100 and 0.1 mbar. The S8 mixing ratio is largely independent of the stellar UV flux, vertical mixing rates, and atmospheric temperature for expected ranges of those values, such that the S8 haze mass is dependent only on the S8 supersaturation, controlled by the local temperature. Nominal haze masses are found to drastically alter a planet's geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μm due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ~0.7 due to its purely scattering nature. Strong absorption by the haze shortward of 0.4 μm results in albedos discriminating between a sulfur haze and any other reflective material, such as water ice, will require observations shortward of 0.4 μm, which is currently beyond WFIRST's grasp.

  7. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  8. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    Science.gov (United States)

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  9. Circulatory adaptation to long-term high altitude exposure in Aymaras and Caucasians.

    Science.gov (United States)

    Stuber, Thomas; Scherrer, Urs

    2010-01-01

    About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.

  10. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane

    CERN Document Server

    Goldhagen, P E; Kniss, T; Reginatto, M; Singleterry, R C; Van Steveninck, W; Wilson, J W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (t...

  11. Aerosol Characteristics at a high-altitude station Nainital during the ISRO-GBP Land Campaign-II

    CERN Document Server

    Saha, A; Dumka, U C; Hegde, P; Srivastava, M K; Sagar, R; Saha, Auromeet; Srivastava, Manoj K.; Sagar, Ram

    2006-01-01

    During the second land campaign (LC-II) organised by ISRO-GBP, extensive ground-based measurements of aerosol characteristics were carried out over Manora Peak (29.4oN; 79.5oE; 1951 metres above mean sea level), Nainital (a high altitude station located in the Shivalik ranges of Central Himalayas) during the dry, winter season (December) of 2004. These measurements included the spectral aerosol optical depths (AOD), columnar water vapour content (W), Total Columnar Ozone (TCO), total number concentration (NT) of near surface aerosols, mass concentration of black carbon (MB), aerosol mass loading (MT), and Global Solar Radiation. Based on these measured parameters, we present the results on the near-surface and columnar properties of atmospheric aerosols at Nainital.

  12. Constraints on Pluto's Hazes from 2-Color Occultation Lightcurves

    Science.gov (United States)

    Hartig, Kara; Barry, T.; Carriazo, C. Y.; Cole, A.; Gault, D.; Giles, B.; Giles, D.; Hill, K. M.; Howell, R. R.; Hudson, G.; Loader, B.; Mackie, J. A.; Olkin, C. B.; Rannou, P.; Regester, J.; Resnick, A.; Rodgers, T.; Sicardy, B.; Skrutskie, M. F.; Verbiscer, A. J.; Wasserman, L. H.; Watson, C. R.; Young, E. F.; Young, L. A.; Buie, M. W.; Nelson, M.

    2015-11-01

    The controversial question of aerosols in Pluto's atmosphere first arose in 1988, when features in a Pluto occultation lightcurve were alternately attributed to haze opacity (Elliot et al. 1989) or a thermal inversion (Eshleman 1989). A stellar occultation by Pluto in 2002 was observed from several telescopes on Mauna Kea in wavelengths ranging from R- to K-bands (Elliot et al. 2003). This event provided compelling evidence for haze on Pluto, since the mid-event baseline levels were systematically higher at longer wavelengths (as expected if there were an opacity source that scattered more effectively at shorter wavelengths). However, subsequent occultations in 2007 and 2011 showed no significant differences between visible and IR lightcurves (Young et al. 2011).The question of haze on Pluto was definitively answered by direct imaging of forward-scattering aerosols by the New Horizons spacecraft on 14-JUL-2015. We report on results of a bright stellar occultation which we observed on 29-JUN-2015 in B- and H-bands from both grazing and central sites. As in 2007 and 2011, we see no evidence for wavelength-dependent extinction. We will present an analysis of haze parameters (particle sizes, number density profiles, and fractal aggregations), constraining models of haze distribution to those consistent with and to those ruled out by the occultation lightcurves and the New Horizons imaging.References:Elliot, J.L., et al., "Pluto's Atmosphere." Icarus 77, 148-170 (1989)Eshleman, V.R., "Pluto's Atmosphere: Models based on refraction, inversion, and vapor pressure equilibrium." Icarus 80 439-443 (1989)Elliot, J.L., et al., "The recent expansion of Pluto's atmosphere." Nature 424 165-168 (2003)Young, E.F., et al., "Search for Pluto's aerosols: simultaneous IR and visible stellar occultation observations." EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France (2011)

  13. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Science.gov (United States)

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  14. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.

    Science.gov (United States)

    Goldhagen, P; Reginatto, M; Kniss, T; Wilson, J W; Singleterry, R C; Jones, I W; Van Steveninck, W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was eight times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56-201 g cm-2 atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  15. High altitude and hemoglobin function in the vultures Gyps rueppelli and Aegypius monachus

    DEFF Research Database (Denmark)

    Weber, Roy E.; Hiebl, Inge; Braunitzer, Gerhard

    1988-01-01

    structures of the constituent polypeptide chains to trace molecular adaptations to high-altitude respiration, and to physiological factors (pulmonary hypoxia and hypocapnia, body temperature shifts, and lung and nasal gas and heat exchange) to discern their possible survival value at altitudes of 11300 m.......Functional characteristics of the stripped composite hemoglobins (Hbs) of lhevultures Gyps rueppellii and Aegypills monachus that can fly at extremely high altitudes, and of component Hbs of G. rueppellii are reported, in relation to influences of pH, temperalure and inositol hexaphosphate. G...

  16. Out of air: Is going to high altitude safe for your patient?

    Science.gov (United States)

    Mendenhall, Ann M; Forest, Christopher P

    2017-08-01

    As more people travel to high altitudes for recreation or work, more travelers with underlying medical conditions will need advice before traveling or treatment for altitude illness. This article focuses on the two main issues for travelers: whether travel to a high altitude will have a negative effect on their underlying medical condition and whether the medical condition increases the patient's risk of developing altitude illness. Although patients with severe pulmonary or cardiac conditions are most at risk in the hypoxic environment, other conditions such as diabetes and pregnancy warrant attention as well.

  17. HAMP - the microwave package on the upcoming High Altitude and LOng range aircraft HALO

    Science.gov (United States)

    Mech, M.; Crewell, S.; Peters, G.; Hirsch, L.

    2009-04-01

    New cloud observation techniques are needed to improve our understanding of the impact of clouds on the earth's water cycle and radiation budget, which represents still one of the largest uncertainties in global and regional climate modeling. An airborne platform for such observation techniques will be provided by the new German research aircraft HALO (High Altitude Long Range) that will be commissioned in 2009. HALO will open a new dimension for climate and atmospheric research. By HALO it will be possible to survey the atmosphere on continental scales but with much finer resolution and with more powerful instrumentation than feasible on space borne platforms. An advanced set of microwave remote cloud sensing instruments (HAMP - HALO Microwave Package) will be operated on board of HALO. It consists of a cloud radar and a suite of passive radiometers in different frequency bands. The radar MIRA-36 operates at 36.5 GHz. Although this is an unusual low frequency, it benefits from the wider range of applications due to less signal attenuation in deep clouds and rain, compared to the 94 GHz radar operated on CloudSat. The frequencies for the passive microwave radiometers were selected in allusion to the AMSU-A and -B sounder. Thereby the 150 GHz channel of AMSU-B has been replaced by frequencies in the 118 GHz oxygen band. In combination with the 60 GHz oxygen complex channels, this frequencies can be used for precipitation retrieval after Bauer and Mugnai (2003). Furthermore by including channels in the water vapor lines at 22.235 GHz and 183.31 GHz and higher microwave channels sensitive to scattering in the ice phase, various precipitation retrieval algorithms can be compared by measurements with HAMP. This presentation introduces the microwave package on HALO. It further shows the potential of the observations by presenting results of a simulation study for the selected microwave frequencies and the cloud radar. The potential of the selected frequencies for

  18. Haze in the Grand Canyon: An evaluation of the Winter Haze Intensive Tracer Experiment

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Grand Canyon is one of the most spectacular natural sights on earth. Approximately 4 million visitors travel to Grand Canyon National Park (GCNP) each year to enjoy its majestic geological formations and intensely colored views. However, visibility in GCNP can be impaired by small increases in concentrations of fine suspended particles that scatter and absorb light; the resulting visibility degradation is perceived as haze. Sulfate particles are a major factor in visibility impairment at Grand Canyon in summer and winter. Many wintertime hazes at GCNP are believed to result from the accumulation of emissions from local sources during conditions of air stagnation, which occur more frequently in winter than in summer. In January and February 1987, the National Park Service (NPS) carried out a large-scale experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX) to investigate the causes of wintertime haze in the region of GCNP and Canyonlands National Park. The overall objective of WHITEX was to assess the feasibility of attributing visibility impairment in specific geographic regions to emissions from a single point source. The experiment called for the injection of a tracer, deuterated methane (CD{sub 4}), into one of the stacks of the Navajo Generating Station (NGS), a major coal-fired power plant located 25 km from the GCNP boundary and 110 km northeast of Grand Canyon Village. A network of field stations was established in the vicinity -- mostly to the northeast of GCNP and NGS -- to measure CD{sub 4} concentrations, atmospheric aerosol and optical properties, and other chemical and physical attributes. 19 refs., 3 figs.

  19. Polarization imaging enhancement for target vision through haze

    Science.gov (United States)

    Wu, Hai-Ying; Zhang, San-Xi; Li, Jie; LI, Bin; Tang, Zi-li; Liu, Biao; Jia, Wen-Wu

    2016-10-01

    Haze, fog, and smoke are turbid medium in the atmosphere which usually degrade viewing condition of outdoor scenes. The resulted images lose contrast and color fidelity with serious degradation. Due to loss of large detailed information of measured scene, it will usually lead to invalid detection and measurement. The suspended particles in the atmosphere and the scene being measured give rise to polarization changes by their reflection. In the process of reflection, absorption and scattering, the object itself can be determined by its own polarization characteristics. Based on this point, we proposed an approach for target vision through haze. This approach is based on the polarization differences between the scene being measured and the scattering background to move the haze effects. It can realize a great visibility enhancement and enable the scene rendering even if imaged under restricted viewing conditions with low polarization. In this work, the detailed theoretical operation principle is presented. A validating imaging system is established and the corresponding experiment is carried out. We present the experimental results of haze-free image of scene with recovered high contrast. This method also can be used to effectively enhance the imaging performance of any other optical system.

  20. Parameterization of Middle Atmospheric Water Vapor Photochemistry for High-Altitude NWP and Data Assimilation

    Science.gov (United States)

    2008-01-01

    develop fast, accurate parameterizations of strato - spheric ozone photochemistry (McCormack et al., 2004, 2006). MacKenzie and Harwood (2004...effect of the CHEM2D-H2O and ECMWF photochemistry parameterizations on strato - spheric water vapor, where the relevant photochemical time scales are much...conditions that lead to the formation of polar mesospheric clouds. The role of addi- tional physical processes such as molecular diffusion, which is not

  1. Atmospheric corrosivity in Bogota as a very high-altitude metropolis questions international standards

    Directory of Open Access Journals (Sweden)

    John Fredy Ríos-Rojas

    2015-01-01

    Full Text Available Se presentan resultados del primer estudio sistemático sobre la corrosividad atmosférica de Bogotá, donde se tienen características especiales como una población superior a ocho millones de personas y 2600 m sobre el nivel del mar. Se midieron humedad relativa, temperatura, concentración de dióxido de azufre (SO2 y velocidad de corrosión de acero al carbono AISI/SAE 1006. La corrosividad encontrada se ubica entre los niveles bajo y medio, C2–C3, según la norma ISO 9223. No obstante, los valores estimados a partir de los parámetros meteorológicos dan resultados menores y, de acuerdo a la concentración del SO2, las corrosividades en los sitios con mayor humedad relativa son mayores que las medidas en platinas de acero. El principal problema de contaminación es material particulado, pero las mayores tasas de corrosión estuvieron asociadas con los niveles de SO2. Diferencias entre los valores medidos y estimados son evidentes, proponiendo algunas explicaciones acerca de ello.

  2. Measurement of atmospheric turbulence strength at high altitude with balloon-borne temperature sensors

    Science.gov (United States)

    Bufton, J. L.

    1974-01-01

    A technique to measure a vertical profile of the optical strength of turbulence employs the measurement of a root mean square temperature difference between two microthermal probes carried aloft as part of a balloon payload. Microthermal fluctuations provide a measure for the density fluctuations of turbulence. Examination of recorded profiles of refractive-index structure coefficients reveals a turbulence structure which is organized into multiple, thin groupings of strong turbulence separated by relatively quiescent intervals of variable length.

  3. Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland

    Directory of Open Access Journals (Sweden)

    C. Frege

    2017-02-01

    period of time of 24–48 h after air masses have had contact with the boundary layer. This time frame appears to be crucial to reach an optimal oxidation state and concentration of organic molecules necessary to facilitate nucleation.

  4. Incidence of high altitude pulmonary edema in low-landers during re-exposure to high altitude after a sojourn in the plains

    Science.gov (United States)

    Apte, C.V.; Tomar, R.K.S.; Sharma, D.

    2015-01-01

    Background There is uncertainty whether acclimatized low-landers who return to high altitude after a sojourn at low altitude have a higher incidence of pulmonary edema than during the first exposure to high altitude. Methods This was a prospective cohort study consisting of men ascending to 3400 m by road (N = 1003) or by air (N = 4178). The study compared the incidence of high altitude pulmonary edema during first exposure vs the incidence during re-exposure in each of these cohorts. Results Pulmonary edema occurred in 13 of the 4178 entries by air (Incidence: 0.31%, 95% CI: 0.18%–0.53%). The incidence during first exposure was 0.18% (0.05%–0.66%) and 0.36% (0.2%–0.64%) during re-exposure (Fisher Exact Test for differences in the incidence (two-tailed) p = 0.534). The relative risk for the re-exposure cohort was 1.95 (95% CI, 0.43%–8.80%). Pulmonary edema occurred in 3 of the 1003 road entrants (Incidence: 0.30%, 95% CI: 0.08%–0.95%). All three cases occurred in the re-exposure cohort. Conclusion The large overlap of confidence intervals between incidence during first exposure and re-exposure; the nature of the confidence interval of the relative risk; and the result of the Fisher exact test, all suggest that this difference in incidence could have occurred purely by chance. We did not find evidence for a significantly higher incidence of HAPE during re-entry to HA after a sojourn in the plains. PMID:26288488

  5. The NASA Langley High Altitude Lidar Observatory (HALO) - Advancements in Airborne DIAL Measurements of CH4 and H2O

    Science.gov (United States)

    Nehrir, A. R.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Notari, A.; Collins, J. E., Jr.; Hare, R. J.; Harper, D. B.; Antill, C.; Cook, A. L.; Young, J.; Chuang, T.; Welch, W.

    2016-12-01

    Atmospheric methane (CH4) has the second largest radiative forcing of the long-lived greenhouse gasses (GHG) after carbon dioxide. However, methane's much shorter atmospheric lifetime and much stronger warming potential make its radiative forcing equivalent to that for CO2 over a 20-year time horizon which makes CH4 a particularly attractive target for mitigation strategies. Similar to CH4, water vapor (H2O) is the most dominant of the short-lived GHG in the atmosphere and plays a key role in many atmospheric processes. Atmospheric H2O concentrations span over four orders of magnitude from the planetary boundary layer where high impact weather initiates to lower levels in the upper troposphere and lower stratosphere where water vapor has significant and long term impacts on the Earth's radiation budget. Active remote sensing employing the differential absorption lidar (DIAL) technique enables scientific assessments of both natural and anthropogenic sources and sinks of CH4 with high accuracy and precision as well as and its impacts on the climate. The DIAL technique also allows for profiling of tropospheric water vapor for weather and climate applications with unprecedented spatial and temporal resolution. NASA Langley is developing the High Altitude Lidar Observatory (HALO) lidar system to address the observational needs of NASA's weather, climate, carbon cycle, and atmospheric composition focus areas. HALO is a multi-function airborne lidar being developed to measure atmospheric H2O and CH4 mixing ratios and aerosol and cloud optical properties using the DIAL and High Spectral Resolution Lidar (HSRL) techniques, respectively. HALO is designed as an airborne simulator for future space based DIAL missions and will serve as test bed for risk reduction of key technologies required of future space based GHG DIAL missions. A system level overview and up-to-date progress of the HALO lidar will be presented. Simulations on the expected accuracy and precision of HALO CH4

  6. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    Science.gov (United States)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  7. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  8. Study of high-altitude radar altimeter model accuracy and SITAN performance using HAAFT data

    Energy Technology Data Exchange (ETDEWEB)

    Shieves, T.C.; Callahan, M.W.

    1979-07-01

    Radar altimetry data, inertial navigation data, and scoring data were collected under the HAAFT program by Martin Marietta Corporation for the United States Air Force over several areas in the western United States at altitudes ranging from 3 to 20 km. The study reported here uses the HAAFT data in conjunction with Defense Mapping Agency (DMA) topographic data to evaluate the accuracy of a high-altitude pulsed-radar altimeter model and the resulting performance of the terrain-aided guidance concept SITAN. Previous SITAN flight tests at low altitudes (less than 1500 m AGL) have demonstrated 6-20 m CEP. The high-altitude flight test data analyzed herein show a SITAN CEP of 120 m. The radar altimeter model was required to achieve this performance includes the effects of the internal track loop, AGC loop, antenna beamwidth, and the terrain radar cross section and provided a factor of 6 improvement over simple nadir ground clearance for rough terrain. It is postulated that high-altitude CEP could be reduced to 50 m or less if an altimeter were designed specifically for high-altitude terrain sensing.

  9. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  10. Update on high altitude cerebral edema including recent work on the eye.

    Science.gov (United States)

    Willmann, Gabriel; Gekeler, Florian; Schommer, Kai; Bärtsch, Peter

    2014-06-01

    This review summarizes recent research on high altitude cerebral edema (HACE) and on the eye with focus on the retina and optic nerve as visible brain tissue at high altitude. Hemosiderin deposits in the corpus callosum have been characterized as rather specific long-lasting footprints of HACE, indicating a leak of the blood-brain barrier (BBB) and resulting in microhemorrhages. These are compatible with the concept of increased capillary pressure due to venous outflow limitation as suggested by Wilson et al. There are no human data on the role of vascular permeability in HACE, while animal models of uncertain relevance for human HACE suggest that an impaired integrity of the BBB through VEGF and ROS is more important than hemodynamic changes. Examinations by ultrasound show an inconsistent increase of the optic nerve sheath diameter, whereas unequivocal optic disc swelling (ODS), increased retinal vessel diameter, as well as retinal vessel leakage occur at high altitude. However, whether these morphological changes correlate with symptoms of AMS as a possible precursor of HACE or high altitude headache supporting the concept of venous outflow limitation remains questionable and is discussed in detail in this article.

  11. A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya

    NARCIS (Netherlands)

    Shea, J. M.; Wagnon, P.; Immerzeel, W. W.; Biron, R.; Brun, F.; Pellicciotti, F.

    2015-01-01

    Meteorological studies in high-mountain environments form the basis of our understanding of catchment hydrology and glacier accumulation and melt processes, yet high-altitude (>4000 m above sea level, asl) observatories are rare. This research presents meteorological data recorded between December 2

  12. Prevalence of Hypertension in a Tribal Land Locked Population at High Altitude

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Raina

    2016-01-01

    Full Text Available Introduction. Extensive pubmed search reveals paucity of data on prevalence of hypertension in tribal population at high altitude. The data is all the more scarce from our part of India. Studies among tribal populations at high altitudes provide an interesting epidemiological window to study human evolution and adaptation to hypobaric hypoxia. Material and Methods. 401 participants above the age of 20 years were evaluated for blood pressure using a stratified simple random technique among villages located at high altitude. Results. Out of a total of 401 individuals studied 43 (males: 35; females: 8 were identified as hypertensive yielding a crude prevalence of 10.7%. The prevalence was higher in males (35/270; 12.9% as compared to females (8/131; 6%. Prevalence was the highest in the age group of 30–39 among males (16/35; 45.7% while it was the highest in the age group of 40–49 among females (7/8; 87%. Conclusions. Prevalence of 10.5% is noteworthy when interpreted in light of prevalence of hypertension in general population especially if hypobaric hypoxia is considered to have a protective effect on blood pressure in high altitude native populations.

  13. Prevalence of Hypertension in a Tribal Land Locked Population at High Altitude

    Science.gov (United States)

    Raina, Sunil Kumar; Chander, Vishav; Prasher, Chaman Lal; Raina, Sujeet

    2016-01-01

    Introduction. Extensive pubmed search reveals paucity of data on prevalence of hypertension in tribal population at high altitude. The data is all the more scarce from our part of India. Studies among tribal populations at high altitudes provide an interesting epidemiological window to study human evolution and adaptation to hypobaric hypoxia. Material and Methods. 401 participants above the age of 20 years were evaluated for blood pressure using a stratified simple random technique among villages located at high altitude. Results. Out of a total of 401 individuals studied 43 (males: 35; females: 8) were identified as hypertensive yielding a crude prevalence of 10.7%. The prevalence was higher in males (35/270; 12.9%) as compared to females (8/131; 6%). Prevalence was the highest in the age group of 30–39 among males (16/35; 45.7%) while it was the highest in the age group of 40–49 among females (7/8; 87%). Conclusions. Prevalence of 10.5% is noteworthy when interpreted in light of prevalence of hypertension in general population especially if hypobaric hypoxia is considered to have a protective effect on blood pressure in high altitude native populations. PMID:26989560

  14. Pregnancy at high altitude in the Andes leads to increased total vessel density in healthy newborns

    NARCIS (Netherlands)

    Gassmann, N.N. (Norina N.); H.A. van Elteren (Hugo); T.G. Goos (Tom); Morales, C.R. (Claudia R.); Rivera-Ch, M. (Maria); D.S. Martin; Peralta, P.C. (Patricia Cabala); Del Carpio, A.P. (Agustin Passano); MacHaca, S.A. (Saul Aranibar); Huicho, L. (Luis); I.K.M. Reiss (Irwin); Gassmann, M. (Max); R.C.J. de Jonge (Rogier)

    2016-01-01

    markdownabstractThe developing human fetus is able to cope with the physiological reduction in oxygen supply occurring in utero. However, it is not known if microvascularization of the fetus is augmented when pregnancy occurs at high altitude. Fifty-three healthy term newborns in Puno, Peru (3,840

  15. On the High Altitude Platform (HAP W-CDMA System Capacity

    Directory of Open Access Journals (Sweden)

    L. de Haro-Ariet

    2004-06-01

    Full Text Available The performance of a downlink power control model, based on a n-thpower distance law, is evaluated for high altitude platform station(HAPS W-CDMA systems. The downlink capacity using this model iscompared with the uplink capacity. It is shown that the uplink capacityis higher than the downlink capacity.

  16. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    . At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...

  17. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    Science.gov (United States)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  18. Metabolic Effects of High Altitude Trekking in Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; Fokkert, Marion J.; de Vries, Suzanna T.; de Koning, Eelco J. P.; Dikkeschei, Bert D.; Gans, Rijnold O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2012-01-01

    OBJECTIVE-Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Thirteen individuals with type 2 diabetes took part, in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  19. Metabolic effects of high altitude trekking in patients with type 2 diabetes

    NARCIS (Netherlands)

    Mol, P. de; Fokkert, M.J.; Vries, S.T. de; Koning, E.J. de; Dikkeschei, B.D.; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2012-01-01

    OBJECTIVE Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirteen individuals with type 2 diabetes took part in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco, a

  20. Elevated Suicide Rates at High Altitude: Sociodemographic and Health Issues May Be to Blame

    Science.gov (United States)

    Betz, Marian E.; Valley, Morgan A.; Lowenstein, Steven R.; Hedegaard, Holly; Thomas, Deborah; Stallones, Lorann; Honigman, Benjamin

    2011-01-01

    Suicide rates are higher at high altitudes; some hypothesize that hypoxia is the cause. We examined 8,871 suicides recorded in 2006 in 15 states by the National Violent Death Reporting System, with the victim's home county altitude determined from the National Elevation Dataset through FIPS code matching. We grouped cases by altitude (low less…

  1. Comments on “High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition”

    Directory of Open Access Journals (Sweden)

    Gaurav Sikri

    2015-10-01

    Full Text Available We appreciate the letter to the editor and are pleased to respond regarding our recent case study regarding high altitude pulmonary edema in an experienced mountaineer. The letter raises some valid questions regarding our treatment decisions. With this, as with most emergency department (ED patients, it must be understood that the initial treatment reflected the breadth of our differential diagnosis.

  2. Hazing in the Military: A Pilot Study

    Science.gov (United States)

    2013-05-14

    different. It is important not to assume they are the same in policy or treatment. A policy covering hazing may enable workplace bullying to go unnoticed...while an education program to reduce workplace bullying will not likely transfer to decrease hazing. HAZING IN THE MILITARY: A PILOT STUDY 3...however, it is also found in the adult workplace . Bullying behaviors, like hazing, may be psychological or physical in nature, vary in severity, and

  3. The body weight loss during acute exposure to high-altitude hypoxia in sea level residents.

    Science.gov (United States)

    Ge, Ri-Li; Wood, Helen; Yang, Hui-Huang; Liu, Yi-Ning; Wang, Xiu-Juan; Babb, Tony

    2010-12-25

    Weight loss is frequently observed after acute exposure to high altitude. However, the magnitude and rate of weight loss during acute exposure to high altitude has not been clarified in a controlled prospective study. The present study was performed to evaluate weight loss at high altitude. A group of 120 male subjects [aged (32±6) years] who worked on the construction of the Golmud-Lhasa Railway at Kunlun Mountain (altitude of 4 678 m) served as volunteer subjects for this study. Eighty-five workers normally resided at sea level (sea level group) and 35 normally resided at an altitude of 2 200 m (moderate altitude group). Body weight, body mass index (BMI), and waist circumference were measured in all subjects after a 7-day stay at Golmud (altitude of 2 800 m, baseline measurements). Measurements were repeated after 33-day working on Kunlun Mountain. In order to examine the daily rate of weight loss at high altitude, body weight was measured in 20 subjects from the sea level group (sea level subset group) each morning before breakfast for 33 d at Kunlun Mountain. According to guidelines established by the Lake Louise acute mountain sickness (AMS) consensus report, each subject completed an AMS self-report questionnaire two days after arriving at Kunlun Mountain. After 33-day stay at an altitude of 4 678 m, the average weight loss for the sea level group was 10.4% (range 6.5% to 29%), while the average for the moderate altitude group was 2.2% (-2% to 9.1%). The degree of weight loss (Δ weight loss) after a 33-day stay at an altitude of 4 678 m was significantly correlated with baseline body weight in the sea level group (r=0.677, P0.05). In the sea level subset group, a significant weight loss was observed within 20 d, but the weight remained stable thereafter. AMS-score at high altitude was significantly higher in the sea level group (4.69±2.48) than that in the moderate altitude group (2.97±1.38), and was significantly correlated with baseline body weight

  4. High altitude syndromes at intermediate altitudes: a pilot study in the Australian Alps.

    Science.gov (United States)

    Slaney, Graham; Cook, Angus; Weinstein, Philip

    2013-10-01

    Our hypothesis is that symptoms of high altitude syndromes are detectable even at intermediate altitudes, as commonly encountered under Australian conditions (flatus expulsion (HAFE). Symptoms of high altitude syndromes are of growing concern because of the global trend toward increasing numbers of tourists and workers exposed to both rapid ascent and sustained physical activity at high altitude. However, in Australia, high altitude medicine has almost no profile because of our relatively low altitudes by international standards. Three factors lead us to believe that altitude sickness in Australia deserves more serious consideration: Australia is subject to rapid growth in alpine recreational industries; altitude sickness is highly variable between individuals, and some people do experience symptoms already at 1500 m; and there is potential for an occupational health and safety issue amongst workers. To test this hypothesis we examined the relationship between any high altitude symptoms and a rapid ascent to an intermediate altitude (1800 m) by undertaking an intervention study in a cohort of eight medical clinic staff, conducted during July of the 2012 (Southern Hemisphere) ski season, using self-reporting questionnaires, at Mansfield (316 m above sea level) and at the Ski Resort of Mt Buller (1800 m), Victoria, Australia. The intervention consisted of ascent by car from Mansfield to Mt Buller (approx. 40 min drive). Participants completed a self-reporting questionnaire including demographic data and information on frequency of normal homeostatic processes (fluid intake and output, food intake and output, symptoms including thirst and headaches, and frequency of passing wind or urine). Data were recorded in hourly periods extending over 18 h before and 18 h after ascent. We found that the frequency of flatus production more than doubled following ascent, with a post-ascent frequency of approximately 14 expulsions per person over the 18 h recording period (Rate

  5. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α.

    Science.gov (United States)

    van Patot, Martha C Tissot; Gassmann, Max

    2011-01-01

    Living at high altitude is demanding and thus drives adaptational mechanisms. The Tibetan population has had a longer evolutionary period to adapt to high altitude than other mountain populations such as Andeans. As a result, some Tibetans living at high altitudes do not show markedly elevated red blood cell production as compared to South American high altitude natives such as Quechuas or Aymaras, thereby avoiding high blood viscosity creating cardiovascular risk. Unexpectedly, the responsible mutation(s) reducing red blood cell production do not involve either the gene encoding the blood hormone erythropoietin (Epo), or the corresponding regulatory sequences flanking the Epo gene. Similarly, functional mutations in the hypoxia-inducible transcription factor 1α (HIF-1α) gene that represents the oxygen-dependent subunit of the HIF-1 heterodimer, the latter being the main regulator of over 100 hypoxia-inducible genes, have not been described so far. It was not until very recently that three independent groups showed that the gene encoding HIF-2α, EPAS-1 (Wenger et al. 1997), represents a key gene mutated in Tibetan populations adapted to living at high altitudes (Beall et al. 2010 , Yi et al. 2010 , Simonson et al. 2010). Hypoxia-inducible transcription factors were first identified by the description of HIF-1 (Semenza et al. 1991 , 1992), which was subsequently found to enhance transcription of multiple genes that encode proteins necessary for rescuing from hypoxic exposure, including erythropoietic, angiogenic and glycolytic proteins. Then HIF-2 was identified (Ema et al. 1997 ; Flamme et al. 1997 ; Hogenesch et al. 1997 ; and Tian et al. 1997) and although it is highly similar to HIF-1 and has the potential to bind (Camenisch et al. 2001) and mediate (Mole et al. 2009) many of the same genes as HIF-1, its biological actions in response to hypoxia are distinct from those of HIF-1 (reviewed by Loboda et al. 2010). By now, several of these HIF-2 mediated

  6. Role of the altitude level on cerebral autoregulation in residents at high altitude.

    Science.gov (United States)

    Jansen, Gerard F A; Krins, Anne; Basnyat, Buddha; Odoom, Joseph A; Ince, Can

    2007-08-01

    Cerebral autoregulation is impaired in Himalayan high-altitude residents who live above 4,200 m. This study was undertaken to determine the altitude at which this impairment of autoregulation occurs. A second aim of the study was to test the hypothesis that administration of oxygen can reverse this impairment in autoregulation at high altitudes. In four groups of 10 Himalayan high-altitude dwellers residing at 1,330, 2,650, 3,440, and 4,243 m, arterial oxygen saturation (Sa(O(2))), blood pressure, and middle cerebral artery blood velocity were monitored during infusion of phenylephrine to determine static cerebral autoregulation. On the basis of these measurements, the cerebral autoregulation index (AI) was calculated. Normally, AI is between zero and 1. AI of 0 implies absent autoregulation, and AI of 1 implies intact autoregulation. At 1,330 m (Sa(O(2)) = 97%), 2,650 m (Sa(O(2)) = 96%), and 3,440 m (Sa(O(2)) = 93%), AI values (mean +/- SD) were, respectively, 0.63 +/- 0.27, 0.57 +/- 0.22, and 0.57 +/- 0.15. At 4,243 m (Sa(O(2)) = 88%), AI was 0.22 +/- 0.18 (P < 0.0005, compared with AI at the lower altitudes) and increased to 0.49 +/- 0.23 (P = 0.008, paired t-test) when oxygen was administered (Sa(O(2)) = 98%). In conclusion, high-altitude residents living at 4,243 m have almost total loss of cerebral autoregulation, which improved during oxygen administration. Those people living at 3,440 m and lower have still functioning cerebral autoregulation. This study showed that the altitude region between 3,440 and 4,243 m, marked by Sa(O(2)) in the high-altitude dwellers of 93% and 88%, is a transitional zone, above which cerebral autoregulation becomes critically impaired.

  7. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.

    Science.gov (United States)

    Zhao, Xiaoling; Wu, Nan; Zhu, Qing; Gaur, Uma; Gu, Ting; Li, Diyan

    2016-09-01

    The problem of hypoxia adaptation in high altitudes is an unsolved brainteaser in the field of life sciences. As one of the best chicken breeds with adaptability to highland environment, the Tibetan chicken, is genetically different from lowland chicken breeds. In order to gain a better understanding of the mechanism of hypoxic adaptability in high altitude, in the present study, we focused on the MT-COI together with ATP-6 gene to explore the regulatory mechanisms for hypoxia adaptability in Tibet chicken. Here, we sequenced MT-COI of 29 Tibetan chickens and 30 Chinese domestic chickens and ATP-6 gene of 28 Tibetan chickens and 29 Chinese domestic chickens. In MT-COI gene, 9 single nucleotide polymorphisms (SNPs) were detected though none of these was a missense mutation, confirming the fact that MT-COI gene is a largely conservative sequence. In ATP-6 gene, 6 single nucleotide polymorphisms (SNPs) were detected and we found a missense mutation (m.9441G > A) in the ATP-6 gene of Tibetan chicken resulting in an amino acid substitution. Due to the critical role of ATP-6 gene in the proton translocation and energy metabolism, we speculated the possibility of this mutation playing an important role in easier energy conversion and metabolism in Tibetan chickens than Chinese domestic chickens so as to better adapt to the harsh environment of the high-altitude areas. The Median-joining profile also suggested that haplotype Ha2 has the ancestral position to the other haplotypes and has significant relationship with high-altitude adaptation in ATP-6 gene. Therefore, we considered that the polymorphism (m.9441G > A) in the ATP-6 gene may affect the specific functions of ATP-6 enzyme relating to high-altitude adaptation of Tibetan chicken and MT-COI gene is a largely conservative sequence.

  8. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations

    Directory of Open Access Journals (Sweden)

    Bigham Abigail W

    2009-12-01

    Full Text Available Abstract High-altitude environments (>2,500 m provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor (HIF pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF-targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude.

  9. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    Science.gov (United States)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2016-02-01

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2-2.5 °C observed over the peak altitudes (5000 m). Using a high-resolution ocean-atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At the Tibetan Plateau altitudes, the increase in atmospheric CO2 concentration exerted a warming of 1.7 °C, BC 1.3 °C where as cooling aerosols cause about 0.7 °C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.

  10. The distribution and trends of fog and haze in the North China Plain over the past 30 years

    Directory of Open Access Journals (Sweden)

    G. Q. Fu

    2014-06-01

    Full Text Available Frequent low visibility, haze and fog events were found in the North China Plain (NCP. Data throughout the NCP during the past 30 years were examined to determine the horizontal distribution and decadal trends of low visibility, haze and fog events. The impact of meteorological factors such as wind and RH on those events was investigated. Results reveal distinct distributions of haze and fog days, due to their different formation mechanisms. Low visibility, haze and fog days all display increasing trends of before 1995, a steady stage during 1995–2003 and a drastically drop thereafter. All three events occurred most frequently during the heating season. Benefiting from emission control measures, haze and fog both show decreasing trends in winter during the past 3 decades, while summertime haze displays continuous increasing trends. The distribution of wind speed and wind direction as well as the topography within the NCP has determinative impacts on the distribution of haze and fog. Weakened south-easterly winds in the southern part of the NCP has resulted in high pollutant concentrations and frequent haze events along the foot of the Taihang Mountains. The orographic wind convergence zone in the central band area of the southern NCP is responsible for the frequent fog events in this region. Wind speed has been decreasing throughout the entire southern NCP, resulting in more stable atmospheric conditions and weaker dispersion abilities, calling for harder efforts to control emissions to prevent haze events. Haze events are strongly influenced by the ambient RH. RH values associated with haze days are evidently increasing, suggesting that an increasing fraction of haze events are caused by the hygroscopic growth of aerosols, rather than simply by high aerosol loadings.

  11. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude

  12. Structural and functional changes of the human macula during acute exposure to high altitude.

    Directory of Open Access Journals (Sweden)

    M Dominik Fischer

    Full Text Available BACKGROUND: This study aimed to quantify structural and functional changes at the macula during acute exposure to high altitude and to assess their structure/function relationship. This work is related to the Tuebingen High Altitude Ophthalmology (THAO study. METHODOLOGY/PRINCIPAL FINDINGS: Spectral domain optical coherence tomography and microperimetry were used to quantify changes of central retinal structure and function in 14 healthy subjects during acute exposure to high altitude (4559 m. High-resolution volume scans and fundus-controlled microperimetry of the posterior pole were performed in addition to best-corrected visual acuity (BCVA measurements and assessment of acute mountain sickness. Analysis of measurements at altitude vs. baseline revealed increased total retinal thickness (TRT in all four outer ETDRS grid subfields during acute altitude exposure (TRT(outer = 2.80 ± 1.00 μm; mean change ± 95%CI. This change was inverted towards the inner four subfields (TRT(inner = -1.89 ± 0.97 μm with significant reduction of TRT in the fovea (TRT(foveal = -6.62 ± 0.90 μm at altitude. BCVA revealed no significant difference compared to baseline (0.06 ± 0.08 logMAR. Microperimetry showed stable mean sensitivity in all but the foveal subfield (MS(foveal = -1.12 ± 0.68 dB. At baseline recordings before and >2 weeks after high altitude exposure, all subjects showed equal levels with no sign of persisting structural or functional sequels. CONCLUSIONS/SIGNIFICANCE: During acute exposure to high altitude central retinal thickness is subject to minor, yet statistically significant changes. These alterations describe a function of eccentricity with an increase in regions with relatively higher retinal nerve fiber content and vascular arcades. However, these changes did not correlate with measures of central retinal function or acute mountain sickness. For the first time a quantitative approach has been used to assess these changes during acute

  13. Structural and Functional Changes of the Human Macula during Acute Exposure to High Altitude

    Science.gov (United States)

    Fischer, M. Dominik; Willmann, Gabriel; Schatz, Andreas; Schommer, Kai; Zhour, Ahmad; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian

    2012-01-01

    Background This study aimed to quantify structural and functional changes at the macula during acute exposure to high altitude and to assess their structure/function relationship. This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings Spectral domain optical coherence tomography and microperimetry were used to quantify changes of central retinal structure and function in 14 healthy subjects during acute exposure to high altitude (4559 m). High-resolution volume scans and fundus-controlled microperimetry of the posterior pole were performed in addition to best-corrected visual acuity (BCVA) measurements and assessment of acute mountain sickness. Analysis of measurements at altitude vs. baseline revealed increased total retinal thickness (TRT) in all four outer ETDRS grid subfields during acute altitude exposure (TRTouter = 2.80±1.00 μm; mean change±95%CI). This change was inverted towards the inner four subfields (TRTinner = −1.89±0.97 μm) with significant reduction of TRT in the fovea (TRTfoveal = −6.62±0.90 μm) at altitude. BCVA revealed no significant difference compared to baseline (0.06±0.08 logMAR). Microperimetry showed stable mean sensitivity in all but the foveal subfield (MSfoveal = −1.12±0.68 dB). At baseline recordings before and >2 weeks after high altitude exposure, all subjects showed equal levels with no sign of persisting structural or functional sequels. Conclusions/Significance During acute exposure to high altitude central retinal thickness is subject to minor, yet statistically significant changes. These alterations describe a function of eccentricity with an increase in regions with relatively higher retinal nerve fiber content and vascular arcades. However, these changes did not correlate with measures of central retinal function or acute mountain sickness. For the first time a quantitative approach has been used to assess these changes during acute, non

  14. The disappearance and reappearance of Titan's detached haze layer

    Science.gov (United States)

    West, Robert; Rannou, Pascal; Lavvas, Panayotis; Seignovert, Benoit; Turtle, Elizabeth P.; Perry, Jason; Ovanessian, Aida; Roy, Mou

    2016-10-01

    Titan's extended haze is a prominent and long-lived feature of the atmosphere that encompasses a rich variety of chemical, dynamical and microphysical processes operating over a wide range of temporal and spatial scales. The so-called 'detached' haze layer is easily seen in high-resolution short-wave (near-UV and blue wavelengths) images and is a consequence of a nearly global (outside of the winter polar hood region) layer depleted in aerosol content. It was first seen near 350 Km altitude in Voyager images (Rages and Pollack, 1983) and later observed by the Cassini ISS cameras (Porco et al., 2005; West et al., 2010) and UV stellar occultation profiles (Koskinen et al. 2011). A series of Cassini images from 2009 to 2010 revealed what appears to be a seasonally related altitude variation with remarkable regularity (comparing the Voyager and Cassini images). The drop in altitude is most rapid at equinox. Here we report on images of the upper haze layer over the period 2012 to early 2016. In the early part of this period the detached haze continued to drop in altitude and disappeared. There was no evidence for it beginning late in 2012 and extending to early 2016 when it was again detected with very low contrast at an altitude near 500 Km. We document this behavior and examine the evolution of the haze as functions of both latitude and time. These new details put additional constraints on models that attempt to account for the existence of the detached layer. Part of this work was done by the Jet Propulsion Laboratory, California Institute of Technology. References: Rages, K., and J. B. Pollack (1983), Vertical distribution of scattering hazes in Titan's upper atmosphere, Icarus, 55, 50-62, doi:10.1016/0019-1035 (83)90049-0; Porco, C. C. et al., Imaging Titan from the Cassini Spacecraft, Nature 434, 159-168 (2005); West, R. A. et al., The evolution of Titans detached haze layer near equinox in 2009", Geophys. Res. Lett. 38, L06204, doi:10.1029/2011GL046843, 2011

  15. Understanding the Southeast Asian haze

    Science.gov (United States)

    G, Karthik K. R.; Baikie, T.; T, Mohan Dass E.; Huang, Y. Z.; Guet, C.

    2017-08-01

    The Southeast Asian region had been subjected to a drastic reduction in air quality from the biomass burnings that occurred in 2013 and 2015. The smoke from the biomass burnings covered the entire region including Brunei, Indonesia, Malaysia, Singapore and Thailand, with haze particulate matter (PM) reducing the air quality to hazardous levels. Here we report a comprehensive size-composition-morphology characterization of the PM collected from an urban site in Singapore during the two haze events. The two haze events were a result of biomass burning and occurred in two different geographical source regions. We show the similarities and variations of particle size distribution during hazy and clear days during the two haze events. Sub-micron particles (carbon (˜51%) and other elements pertaining to the earth’s crust. The complexity of the mixing state of the PM is highlighted and the role of the capture mode is addressed. We also present the morphological characterization of all the classified PM. The box counting method is used to determine the fractal dimensions of the PM, and the dimensionality varied for every classification from 1.79 to 1.88. We also report the complexities of particles and inconsistencies in the existing approaches to understand them.

  16. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carni

  17. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carni

  18. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12

  19. Effect of reduced pressure, vibration and orientation to simulate high altitude testing of liquid pharmaceutical glass and plastic bottles

    NARCIS (Netherlands)

    Singh, S. Paul; Burgess, Gary; Kremer, Matt; Lockhart, Hugh

    2007-01-01

    This paper discusses the impact of high-altitude shipments of glass and plastic bottles on package integrity. High altitudes are encountered when trucks travel over mountain passes and when cargo and feeder aircraft transport packages in non-pressurized or partially pressurized cargo holds. This is

  20. Wintertime Haze Formation in Beijing

    Science.gov (United States)

    Levy Zamora, M. E.

    2015-12-01

    Recent severe haze events in China have attracted significant public attention due to the severely reduced visibility and unprecedentedly high pollutant concentrations. Particular attention has been given to the high concentrations of particulate matter with a diameter less than 2.5 microns (PM2.5), which can exceed several hundred micrograms per cubic meter over several days. During January and February of 2015, a suite of aerosol instruments was deployed in Beijing to directly measure a comprehensive set of aerosol properties, including the particle size distribution, effective density, and chemical composition. In this presentation, we will discuss the particulate matter formation mechanisms, the evolution of aerosol properties throughout the event, and how the winter formation mechanisms compare with the warmer seasons. We show that the periodic cycles of severe haze episodes in Beijing are largely driven by meteorological conditions. During haze events, stagnation typically develops as a result of a low planetary boundary layer and weak southerly wind from polluted industrial source regions. Stronger northerly winds were frequently observed during the clean period, which carry unpolluted air masses from the less populated northern mountainous areas. Nucleation consistently occurs on clean days, producing a high number concentration of nano particles. The particle mass concentration exceeding several hundred micrograms per cubic meter is attributed to the continuous size growth from the nucleation-mode particles (diameter less than 10 nm) over multiple days to produce a high concentration of larger particles (diameter greater than 100 nm). The particle chemical composition in Beijing is similar to those commonly measured in other urban centers, which is indicative of chemical constituents dominated by secondary aerosol formation. Our results reveal that the severe haze formation in Beijing during the wintertime is similar to the mechanism of haze formation

  1. Association between Serum Interleukin-17A Level and High-Altitude Deacclimatization Syndrome.

    Science.gov (United States)

    He, Binfeng; Li, Hongli; Hu, Mingdong; Dong, Weijie; Wei, Zhenghua; Li, Jin; Yao, Wei; Guo, Xiaolan

    2016-01-01

    High-altitude deacclimatization syndrome (HADAS) is emerging as a severe public health issue that threatens the quality of life of individuals who return to lower altitude from high altitude. In this study, we measured serum levels of SOD, MDA, IL-17A, IL-10, TNF-α, and HADAS score in HADAS subjects at baseline and 50th and 100th days and to evaluate the relationship between interleukins, including IL-17A, and HADAS. Our data showed that and the serum IL-17A levels and HADAS score decreased over time in the HADAS group, and serum IL-17A levels were significantly higher in the HADAS group at baseline and 50th day compared with controls (p HADAS subjects compared with controls (p HADAS incidence and severity (p HADAS incidence than serum levels of IL-17A or IL-10 alone. These data suggest that serum levels of IL-17A are a novel predictive index of HADAS.

  2. A strategy for reducing neonatal mortality at high altitude using oxygen conditioning.

    Science.gov (United States)

    West, J B

    2015-11-01

    Neonatal mortality increases with altitude. For example, in Peru the incidence of neonatal mortality in the highlands has been shown to be about double that at lower altitudes. An important factor is the low inspired PO2 of newborn babies. Typically, expectant mothers at high altitude will travel to low altitude to have their babies if possible, but often this is not feasible because of economic factors. The procedure described here raises the oxygen concentration in the air of rooms where neonates are being housed and, in effect, this means that both the mother and baby are at a much lower altitude. Oxygen conditioning is similar to air conditioning except that the oxygen concentration of the air is increased rather than the temperature being reduced. The procedure is now used at high altitude in many hotels, dormitories and telescope facilities, and has been shown to be feasible and effective.

  3. Current Status of a NASA High-Altitude Balloon-Based Observatory for Planetary Science

    Science.gov (United States)

    Varga, Denise M.; Dischner, Zach

    2015-01-01

    Recent studies have shown that progress can be made on over 20% of the key questions called out in the current Planetary Science Decadal Survey by a high-altitude balloon-borne observatory. Therefore, NASA has been assessing concepts for a gondola-based observatory that would achieve the greatest possible science return in a low-risk and cost-effective manner. This paper addresses results from the 2014 Balloon Observation Platform for Planetary Science (BOPPS) mission, namely successes in the design and performance of the Fine Pointing System. The paper also addresses technical challenges facing the new Gondola for High Altitude Planetary Science (GHAPS) reusable platform, including thermal control for the Optical Telescope Assembly, power generation and management, and weight-saving considerations that the team will be assessing in 2015 and beyond.

  4. [High frequency of dyslipidemia and impaired fasting glycemia in a high altitude Peruvian population].

    Science.gov (United States)

    Málaga, Germán; Zevallos-Palacios, Claudia; Lazo, María de los Ángeles; Huayanay, Carlos

    2010-01-01

    We performed a cross sectional study in Lari (3600 m), a highland rural community from Arequipa, Peru. We evaluated a body mass index (BMI), glycemia and lipid profile in 74 over 18 year persons. The mean age was 51.7 ± 18.0 years, 62.2% were women, mean of BMI was 25.6 ± 3.7. Prevalence of hypercholesterolemia was 40.6%, "low HDL" in 77% of the population (93.5% in women vs 50% in men, p <0.001) and elevated level of LDL was 71.7%. The prevalence of impaired fasting glycemia was 27%. In conclusion, we found high prevalence of impaired fasting glycemia, hypercholesterolemia and especially "low HDL" in high altitude rural natives. These findings must be considered to realize interventions in high altitude populations to avoid future cardiovascular complications.

  5. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    Science.gov (United States)

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  6. A gloss of Chronic Hypoxia in normal and diseased individuals at high altitude

    Institute of Scientific and Technical Information of China (English)

    Zubieta-Castillo,G.; Zubieta-Calleja,G.R.; Zubieta-Calleja L.

    2004-01-01

    @@ Introduction Millenary populations that live at high altitude in different continents like Asia (1) and South America (8), have endured biological adaptation in very adverse environmental conditions, of which to our understanding, paradoxically, chronic hypoxia is the most tolerable. Patients with pulmonary diseases at high altitude tolerate tissue hypoxia with an arterial tension (PaO2) even as low as 30 mmHg. Current scientific knowledge has made progress in many areas, clarifying many doubts, however due to preconception and lack of broad social studies chronic hypoxia is still not fully understood. Beings that inhabit different areas of the planet earth have lived under a variety of different hostile conditions: intense cold in the polar regions,intense heat in Africa and in the Middle East desserts,great pressure in the depth of the oceans, intense darkness of the caves and naturally the hypoxia of extreme altitudes.

  7. Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m).

    Science.gov (United States)

    Denzler, Basil; Bogdal, Christian; Henne, Stephan; Obrist, Daniel; Steinbacher, Martin; Hungerbühler, Konrad

    2017-03-07

    The reduction of emissions of mercury is a declared aim of the Minamata Convention, a UN treaty designed to protect human health and the environment from adverse effects of mercury. To assess the effectiveness of the convention in the future, better constraints about the current mercury emissions is a premise. In our study, we applied a top-down approach to quantify mercury emissions on the basis of atmospheric mercury measurements conducted at the remote high altitude monitoring station Jungfraujoch, Switzerland. We established the source-receptor relationships and by the means of atmospheric inversion we were able to quantify spatially resolved European emissions of 89 ± 14 t/a for elemental mercury. Our European emission estimate is 17% higher than the bottom-up emission inventory, which is within stated uncertainties. However, some regions with unexpectedly high emissions were identified. Stationary combustion, in particular in coal-fired power plants, is found to be the main responsible sector for increased emission estimates. Our top-down approach, based on measurements, provides an independent constraint on mercury emissions, helps to improve and refine reported emission inventories, and can serve for continued assessment of future changes in emissions independent from bottom-up inventories.

  8. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A.S.H.; Dommen, J.; Furger, M.; Graber, W.K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  9. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    OpenAIRE

    2016-01-01

    ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot) on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of a...

  10. Feasibility of Laser Power Transmission to a High-Altitude Unmanned Aerial Vehicle

    Science.gov (United States)

    2011-01-01

    possible to imagine the laser beam arriving at the UAV from above, perhaps bounced down from a satel- lite or airship , but this seems like an excessive...thus lending themselves to applica- tion on the aerodynamic surfaces of a UAV. InGaAs cells can also be used to convert laser light at longer wavelengths...Design and Predictions for a High-Altitude (Low- Reynolds-Number) Aerodynamic Flight Experiment, Edwards Air Force Base, Calif.: NASA Dryden Flight

  11. America’s Achilles Heel: Defense Against High-altitude Electromagnetic Pulse-policy vs. Practice

    Science.gov (United States)

    2014-12-12

    Energy Regulatory Commission FM Field Manual GRID Act Grid Reliability and Infrastructure Defense Act HEMP High-Altitude Electromagnetic Pulse JP...product to the end user.41 Across the U.S., there are upwards of 40,000 miles of gathering lines from the oil wells, both on and offshore , that feed into...particles are emitted at nearly the speed of light. The emissions can cause disturbances in the solar wind that disrupt satellites and create powerful

  12. Fasciola hepatica and lymnaeid snails occurring at very high altitude in South America.

    Science.gov (United States)

    Mas-Coma, S; Funatsu, I R; Bargues, M D

    2001-01-01

    Fascioliasis due to the digenean species Fasciola hepatica has recently proved to be an important public health problem, with human cases reported in countries of the five continents, including severe symptoms and pathology, with singular epidemiological characteristics, and presenting human endemic areas ranging from hypo- to hyperendemic. One of the singular epidemiological characteristics of human fascioliasis is the link of the hyperendemic areas to very high altitude regions, at least in South America. The Northern Bolivian Altiplano, located at very high altitude (3800-4100 m), presents the highest prevalences and intensities of human fascioliasis known. Sequences of the internal transcribed spacers ITS-1 and ITS-2 of the nuclear ribosomal DNA of Altiplanic Fasciola hepatica and the intermediate snail host Lymnaea truncatula suggest that both were recently introduced from Europe. Studies were undertaken to understand how the liver fluke and its lymnaeid snail host adapted to the extreme environmental conditions of the high altitude and succeeded in giving rise to high infection rates. In experimental infections of Altiplanic lymnaeids carried out with liver fluke isolates from Altiplanic sheep and cattle, the following aspects were studied: miracidium development inside the egg, infectivity of miracidia, prepatent period, shedding period, chronobiology of cercarial emergence, number of cercariae shed by individual snails, survival of molluscs at the beginning of the shedding process, survival of infected snails after the end of the shedding period and longevity of shedding and non-shedding snails. When comparing the development characteristics of European F. hepatica and L. truncatula, a longer cercarial shedding period and a higher cercarial production were observed, both aspects related to a greater survival capacity of the infected lymnaeid snails from the Altiplano. These differences would appear to favour transmission and may be interpreted as strategies

  13. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas.

    Directory of Open Access Journals (Sweden)

    Masayuki Hanaoka

    Full Text Available Sherpas comprise a population of Tibetan ancestry in the Himalayan region that is renowned for its mountaineering prowess. The very small amount of available genetic information for Sherpas is insufficient to explain their physiological ability to adapt to high-altitude hypoxia. Recent genetic evidence has indicated that natural selection on the endothelial PAS domain protein 1 (EPAS1 gene was occurred in the Tibetan population during their occupation in the Tibetan Plateau for millennia. Tibetan-specific variations in EPAS1 may regulate the physiological responses to high-altitude hypoxia via a hypoxia-inducible transcription factor pathway. We examined three significant tag single-nucleotide polymorphisms (SNPs, rs13419896, rs4953354, and rs4953388 in the EPAS1 gene in Sherpas, and compared these variants with Tibetan highlanders on the Tibetan Plateau as well as with non-Sherpa lowlanders. We found that Sherpas and Tibetans on the Tibetan Plateau exhibit similar patterns in three EPAS1 significant tag SNPs, but these patterns are the reverse of those in non-Sherpa lowlanders. The three SNPs were in strong linkage in Sherpas, but in weak linkage in non-Sherpas. Importantly, the haplotype structured by the Sherpa-dominant alleles was present in Sherpas but rarely present in non-Sherpas. Surprisingly, the average level of serum erythropoietin in Sherpas at 3440 m was equal to that in non-Sherpas at 1300 m, indicating a resistant response of erythropoietin to high-altitude hypoxia in Sherpas. These observations strongly suggest that EPAS1 is under selection for adaptation to the high-altitude life of Tibetan populations, including Sherpas. Understanding of the mechanism of hypoxia tolerance in Tibetans is expected to provide lights to the therapeutic solutions of some hypoxia-related human diseases, such as cardiovascular disease and cancer.

  14. Influence of acute exposure to high altitude on basal and postprandial plasma levels of gastroenteropancreatic peptides.

    Directory of Open Access Journals (Sweden)

    Rudolf L Riepl

    Full Text Available Acute mountain sickness (AMS is characterized by headache often accompanied by gastrointestinal complaints that vary from anorexia through nausea to vomiting. The aim of this study was to investigate the influence of high altitude on plasma levels of gastroenteropancreatic (GEP peptides and their association to AMS symptoms. Plasma levels of 6 GEP peptides were measured by radioimmunoassay in 11 subjects at 490 m (Munich, Germany and, after rapid passive ascent to 3454 m (Jungfraujoch, Switzerland, over the course of three days. In a second study (n = 5, the same peptides and ghrelin were measured in subjects who consumed standardized liquid meals at these two elevations. AMS symptoms and oxygen saturation were monitored. In the first study, both fasting (morning 8 a.m. and stimulated (evening 8 p.m. plasma levels of pancreatic polypeptide (PP and cholecystokinin (CCK were significantly lower at high altitude as compared to baseline, whereas gastrin and motilin concentrations were significantly increased. Fasting plasma neurotensin was significantly enhanced whereas stimulated levels were reduced. Both fasting and stimulated plasma motilin levels correlated with gastrointestinal symptom severity (r = 0.294, p = 0.05, and r = 0.41, p = 0.006, respectively. Mean O(2-saturation dropped from 96% to 88% at high altitude. In the second study, meal-stimulated integrated (= area under curve plasma CCK, PP, and neurotensin values were significantly suppressed at high altitude, whereas integrated levels of gastrin were increased and integrated VIP and ghrelin levels were unchanged. In summary, our data show that acute exposure to a hypobaric hypoxic environment causes significant changes in fasting and stimulated plasma levels of GEP peptides over consecutive days and after a standardized meal. The changes of peptide levels were not uniform. Based on the inhibition of PP and neurotensin release a reduction of the cholinergic tone can be postulated.

  15. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  16. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    OpenAIRE

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured mig...

  17. Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain Sickness

    OpenAIRE

    Villafuerte, Francisco C.; Macarlupú, José Luis; Anza-Ramírez, Cecilia; Corrales-Melgar, Daniela; Vizcardo-Galindo, Gustavo; Corante, Noemí; León-Velarde, Fabiola

    2014-01-01

    Excessive erythrocytosis (EE) is the hallmark of chronic mountain sickness (CMS), a prevalent syndrome in high-altitude Andean populations. Although hypoxemia represents its underlying stimulus, why some individuals develop EE despite having altitude-normal blood erythropoietin (Epo) concentration is still unclear. A soluble form of the Epo receptor (sEpoR) has been identified in human blood and competes directly for Epo with its membrane counterpart (mEpoR). Thus, reduced levels of circulati...

  18. On the HEMP (high-altitude electromagnetic pulse) environment for protective relays

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.E.; Wiggins, C.M.; Salas, T.M. (BDM International, Inc., Albuquerque, NM (USA)); Barnes, P.R. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    An assessment of the transient environment for protective relays produced by high-altitude electromagnetic pulse (HEMP) events is presented in this paper. Several mechanisms for coupling of HEMP to relay terminals are used to develop estimates of possible HEMP threats to relays. These predicted relay responses to HEMP events are compared to measured data on a solid state based relay's impulse strength. 12 refs., 13 figs., 3 tabs.

  19. Placental villus morphology in relation to maternal hypoxia at high altitude.

    Science.gov (United States)

    Espinoza, J; Sebire, N J; McAuliffe, F; Krampl, E; Nicolaides, K H

    2001-07-01

    Pregnancy at high altitude is associated with maternal hypoxaemic hypoxia with resultant intervillus blood hypoxia. Maternal haemoglobin concentration and blood gases were measured in pregnant women in two cities in Peru; Lima at sea level (n=18) and Cerro de Pasco at 4300 metres above sea level (n=12). Following delivery, placental sections from both groups were examined histomorphometrically using an image analysis system. Villus diameter, villus cross-sectional area, capillary diameter, capillary cross-sectional area and the percentage of villus cross-sectional area occupied by villus capillaries were calculated and parameters were compared between the two altitude groups. Maternal haemoglobin concentration and maternal blood pH were significantly higher, and maternal pO(2), pCO(2)and O(2)saturation were significantly lower in the high altitude group compared to those at sea level. The villus vessel area as a percentage of villus cross-sectional area and capillary diameter were significantly greater in the cases from the high altitude group and villus vessel area as a percentage of the villus cross-sectional area was significantly related to maternal pO(2)(r=-0.7, P=0.01), and maternal pCO(2)(r=0.7, P=0.02), but multiple regression analysis demonstrated that only pO(2)remained significantly independently associated with these villus histological findings (P=0.03). Placental terminal villi from term pregnancies at high altitude show different morphological features from pregnancies at sea level, and these changes are primarily related to maternal pO(2). The predominant morphological alteration is an increase in villus capillary diameter and therefore of the proportion of villus cross-sectional area occupied by capillary lumens.

  20. Aerosols optical properties in Titan's Detached Haze Layer

    Science.gov (United States)

    Seignovert, Benoit; Rannou, Pascal; Lavvas, Panayotis; West, Robert

    2016-10-01

    Titan's Detached Haze Layer (DHL) was first observed in 1983 by Rages and Pollack during the Voyager 2 is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 (West et al. 2011). Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere (Rannou et al. 2000, Lavvas et al. 2009, Cours et al. 2011).In this talk we will present the UV photometric analyses based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer radius and local density) performed on ISS observations taken from 2005 to 2007.References:- Rages and Pollach, Icarus 55 (1983)- West, et al., Icarus 38 (2011)- Rannou, et al., Icarus 147 (2000)- Lavvas, et al., Icarus 201 (2009)- Cours, et al., ApJ Lett. 741 (2015)

  1. Emission characteristics of a heavy-duty diesel engine at simulated high altitudes.

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Liu, Zhihua; Wang, Chu; Yu, Linxiao; Ding, Yan

    2011-08-01

    In order to evaluate the effects of altitude on the pollutant emissions of a diesel engine, an experimental research was carried out using an engine test bench with an altitude simulation system. The emissions of HC, CO, NOx, smoke, and particle number of a heavy-duty diesel engine were measured under steady state operating conditions at sea level and simulated altitudes of 1000 and 2000 m. The experimental results indicate that the high altitude increases the emissions of HC, CO and smoke of the diesel engine, the average increasing rates of which are 30%, 35% and 34% with addition of altitude of 1000 m, respectively. The effect of high altitudes on the NOx emission varies with the engine types and working conditions. At 1000 m the particles number emissions are 1.6 to 4.2 times the levels at the low altitude. The pattern of the particle size distributions at 1000 m is similar with that at sea-level, which is the mono-modal lognormal distribution with geometric mean diameter around 0.1 μm. However, the peak number concentrations of particles are bigger and the exhausted particles are smaller at the high altitude.

  2. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  3. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.

    Science.gov (United States)

    Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2016-02-23

    Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems.

  4. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption.

    Science.gov (United States)

    Hu, Quanjun; Ma, Tao; Wang, Kun; Xu, Ting; Liu, Jianquan; Qiu, Qiang

    2012-11-07

    The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  5. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    Science.gov (United States)

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. Copyright © 2015 the American Physiological Society.

  6. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Directory of Open Access Journals (Sweden)

    Jinchuan Xing

    Full Text Available Deedu (DU Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR, neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1, as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG. Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1 shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  7. Changes in body fluid compartments on re-induction to high altitude and effect of diuretics

    Science.gov (United States)

    Singh, M. V.; Rawal, S. B.; Tyagi, A. K.; Bhagat, Maj J. K.; Parshad, R.; Divekar, H. M.

    1988-03-01

    Studies were carried out in 29 healthy young adults in the Indian Army stationed in the plains and posted at an elevation of 3500 m for more than 6 months. After exposure to a low elevation in Delhi (260 m) for 3 weeks they were reinduced to a height of 3500 m. The subjects were divided into three groups, each of which was treated with either placebo or acetazolamide or spironolactone. The drug treatment was started immediately after their landing at high altitude and continued for 2 days only. Total body water, extracellular fluid, intracellular fluid, plasma volume, blood pH, PaO2, PaCO2 and blood viscosity were determined on exposure at Delhi and on re-induction to high altitude. Plasma volume was increased after the descent from high altitude and remained high for up to 21 day's study. This increased plasma volume may have some significance in the pathogenesis of pulmonary oedema. Total body water and intracellular fluid content were increased at 260 m elevation, while extracellular fluid decreased. On re-induction there was a decrease in total body water with no change in the extracellular fluid content.

  8. Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

    Science.gov (United States)

    Lee, Jaewon; Park, Inchun; Kim, Junsik; Lee, Jaejin; Hwang, Junga; Kim, Young-chul

    2014-03-01

    This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a highaltitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of 15.27 mSv) of aircrew at the high-altitude are an order of magnitude larger than those (an average of 0.30 mSv) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC- 800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.

  9. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption

    Directory of Open Access Journals (Sweden)

    Hu Quanjun

    2012-11-01

    Full Text Available Abstract Background The yak (Bos grunniens is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  10. On the Survival of High-Altitude Open Clusters within the Milky Way Galaxy Tides

    CERN Document Server

    Martinez-Medina, L A; Peimbert, A; Moreno, E

    2016-01-01

    It is a common assumption that high-altitude open clusters live longer compared with clusters moving close to the Galactic plane. This is because at high altitudes, open clusters are far from the disruptive effects of in-plane substructures, such as spiral arms, molecular clouds and the bar. However, an important aspect to consider in this scenario is that orbits of high-altitude open clusters will eventually cross the Galactic plane, where the vertical tidal field of the disk is strong. In this work we simulate the interaction of open clusters with the tidal field of a detailed Milky Way Galactic model at different average altitudes and galactocentric radii. We find that the life expectancy of clusters decreases as the maximum orbital altitude increases and reaches a minimum at altitudes of approximately 600 pc. Clusters near the Galactic plane live longer because they do not experience strong vertical tidal shocks from the Galactic disk; then, for orbital altitudes higher than 600 pc, clusters start again t...

  11. The Kilimanjaro score for assessing fitness to fly paragliders at high altitude.

    Science.gov (United States)

    Wilkes, Matt; Simpson, Alistair; Knox, Matt; Summers, Luke

    2013-09-01

    Extreme sports such as paragliding are increasing in popularity, providing continued challenges for the development of safe practice techniques. In January and February 2013, the Wings of Kilimanjaro expedition aimed to launch 95 paragliders from the summit of Mount Kilimanjaro, 5790 m above sea level. A safe launch was paramount but risked being impaired by adverse environmental conditions, in particular the pathophysiological effects of high altitude. There are no existing scores to assess fitness for high-altitude paraglider launches present in the literature. A novel scoring system, the Kilimanjaro Score, was therefore developed to rapidly assess pilots pre-flight. The Kilimanjaro Score aimed to assess cognition, memory, and visual-spatial skill within the context of standard pre-flight checks. Further testing, including the Lake Louise Score, was to be performed if the pilot's Kilimanjaro Score was deemed unsatisfactory. We present the Kilimanjaro Score here for comment and refinement, and we invite other parties to consider its use in the field for high altitude paragliding activities.

  12. A GIS-aided response model of high-altitude permafrost to global change

    Institute of Scientific and Technical Information of China (English)

    李新; 程国栋

    1999-01-01

    Two models are used to simulate the high-altitude permafrost distribution on the Qinghai-Xizang Plateau. The two models are the "altitude model", a Gaussian distribution function used to describe the latitudinal zonation of permafrost based on the three-dimensional rules of high-altitude permafrost, and the "frost number model", a dimensionless ratio defined by manipulation of freezing and thawing degree-day sums. The results show that the "altitude model" can simulate the high-altitude permafrost distribution under present climate conditions accurately. Given the essential hypotheses and using the GCM scenarios from HADCM2, the "altitude model" is used for predicting the permafrost distribution change on the Qinghai-Xizang Plateau. The results show that the permafrost on the plateau will not change significantly during 20—50 a, the percentage of the total disappeared area will not be over 19%. However, by the year 2099, if the air temperature increases by an average of 2.91℃ on the plateau, the decre

  13. Effect of high altitude on sensitivity to the taste of phenylthiocarbamide

    Science.gov (United States)

    Singh, S. B.; Chatterjee, A.; Panjwani, U.; Yadav, D. K.; Selvamurthy, W.; Sharma, K. N.

    Sensitivity to the taste of phenylthiocarbamide (PTC) was studied using the Harris-Kalmus method in healthy human volunteers at sea level and then subsequently at an altitude of 3500 m over a period of 3 weeks, after which they were brought back to sea level. Blood sugar, insulin and blood cortisol levels were estimated weekly. The results indicated that, out of 51 subjects studied, 26 (55%) were PTC tasters at sea level. Eight of those unable to taste PTC at sea level tested as tasters at high altitude, and 2 of them reverted to being non-tasters on return to sea level. In the blood, an increase in cortisol and blood insulin levels was seen without any significant change in sugar levels. All the changes recorded at high altitude tended to return to basal values after re-induction to sea level. The study suggests that high-altitude hypoxia in some way, possibly involving changes in hormonal profile among other factors, causes an alteration in sensitivity to the taste of PTC, resulting in some of the individuals shifting to lower PTC sensitivity.

  14. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing.

    Science.gov (United States)

    Wei, Kai; Zou, Zhuanglei; Zheng, Yunhao; Li, Jing; Shen, Fangxia; Wu, Chang-Yu; Wu, Yusheng; Hu, Min; Yao, Maosheng

    2016-04-15

    The chemical characteristics of airborne particulate matter (PM) have been extensively studied; however, little information exists for its biological components (bioaerosol) especially during a haze event in mega cities. Herein, we studied the bioaerosol (fluorescent particle) dynamics on both haze and sunny days in Beijing from Dec. 2013 to March 2014 by employing a widely used real-time bioaerosol sensor-ultraviolet aerodynamic particle spectrometer (UV-APS). Firstly, we studied the fluorescent particle (BioPM) concentration and size distributions during three independent haze and three independent sunny days. Secondly, we investigated BioPM dynamics over a two-week long monitoring period which included consecutive haze days and alternated sunny days. In addition, we analyzed bacterial community structures and endotoxin levels in the air samples using pyrosequencing and Limulus amebocyte lysate (LAL) method, respectively. More than 6-fold higher fluorescent particle concentrations up to 5×10(5)/m(3) with peaks at night or early dawn were detected at the time of haze occurrences than those observed on sunny days. When the haze episode progressed for 3-5days, the BioPM concentrations were observed to decrease to the levels that were typically observed on sunny days. In general, ozone levels were found to be elevated at noon, while BioPM, NOx and relative humidity were reduced. Gene sequence analysis revealed no significant difference in abundances and community structures for top 13 bacterial genera between haze and sunny days, yet about twice higher endotoxin levels (12.4EU/m(3)) were detected on haze days than on sunny days. The results here facilitate a better understanding of atmospheric fluorescent particle dynamics including those under haze events.

  15. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior.

    Science.gov (United States)

    Zhu, Qingsong; Mai, Jiaming; Shao, Ling

    2015-11-01

    Single image haze removal has been a challenging problem due to its ill-posed nature. In this paper, we propose a simple but powerful color attenuation prior for haze removal from a single input hazy image. By creating a linear model for modeling the scene depth of the hazy image under this novel prior and learning the parameters of the model with a supervised learning method, the depth information can be well recovered. With the depth map of the hazy image, we can easily estimate the transmission and restore the scene radiance via the atmospheric scattering model, and thus effectively remove the haze from a single image. Experimental results show that the proposed approach outperforms state-of-the-art haze removal algorithms in terms of both efficiency and the dehazing effect.

  16. Vertical structure of Arctic haze observed by lidar

    Science.gov (United States)

    Hoff, R. M.

    1986-01-01

    In the study of the Arctic Haze phenomenon, understanding the vertical structure of the haze aerosol is crucial in defining mechanisms of haze transport. Questions have also arisen concerning the representativeness of surface observations of Arctic Haze. Due to the strongly stratified nature of the Arctic troposphere, the mechanisms which transport aerosol to the surface from the transport altitudes of the lower troposphere are not obvious. In order to examine these questions, a Mie scattering lidar was installed at Alert, NWT, Canada. Lidar observes atmospheric aerosols and hydrymeteors as they appear in nature, unmodified by sampling effects. As such the results obtained are more realistic of the light scattering characteristics of the in situ aerosol than are those obtained by integrating nephelometers, for example, which heat the aerosol and dry it before measurement. With this lidar, a pulse was transmitted vetically through an evacuated tube in the roof of a building at Alert. The receiver consisted of a 20cm diameter Fresnel telescope, neutral density and polarizing filters, and RCA C31000A PMT, Analog Modules LA-90-P logarithmic amplifier and a Lecroy TR8827 32 MHz digitizer. The lidar equation was solved for the backscattering coefficient of the aerosol assuming no two way transmission losses in the signal. The lidar results have shown that intercomparison between lidar obtained visibilities and observer visibilities are in much better agreement than for other optical or aerosol monitors. Three new effects were identified in the lidar profiles which contribute to the vertical transport of haze. These effects are briefly discussed.

  17. Cerebrovascular responses to hypoxia and hypocapnia in high-altitude dwellers.

    Science.gov (United States)

    Norcliffe, L J; Rivera-Ch, M; Claydon, V E; Moore, J P; Leon-Velarde, F; Appenzeller, O; Hainsworth, R

    2005-07-01

    Cerebral blood flow is known to increase in response to hypoxia and to decrease with hypocapnia. It is not known, however, whether these responses are altered in high-altitude dwellers who are not only chronically hypoxic and hypocapnic, but also polycythaemic. Here we examined cerebral blood flow responses to hypoxia and hypocapnia, separately and together, in Andean high-altitude dwellers, including some with chronic mountain sickness (CMS), which is characterized by excessive polycythaemia. Studies were carried out at high altitude (Cerro de Pasco (CP), Peru; barometric pressure (P(B)) 450 mmHg) and repeated, following relief of the hypoxia, on the day following arrival at sea level (Lima, Peru; P(B) 755 mmHg). We compared these results with those from eight sea-level residents studied at sea level. In nine high-altitude normal subjects (HA) and nine CMS patients, we recorded middle cerebral artery mean blood flow velocity (MCAVm) using transcranial Doppler ultrasonography, and expressed responses as changes from baseline. MCAVm responses to hypoxia were determined by changing end-tidal partial pressure of oxygen (P(ET,O2)) from 100 to 50 mmHg, with end-tidal partial pressure of carbon dioxide clamped. MCAVm responses to hypocapnia were studied by voluntary hyperventilation with (P(ET,O2)) clamped at 100 and 50 mmHg. There were no significant differences between the cerebrovascular responses of the two groups to any of the interventions at either location. In both groups, the MCAVm responses to hypoxia were significantly greater at Lima than at CP (HA, 12.1 +/- 1.3 and 6.1 +/- 1.0%; CMS, 12.5 +/- 0.8 and 5.6 +/- 1.2%; P < 0.01 both groups). The responses at Lima were similar to those in the sea-level subjects (13.6 +/- 2.3%). The responses to normoxic hypocapnia in the altitude subjects were also similar at both locations and greater than those in sea-level residents. During hypoxia, both high-altitude groups showed responses to hypocapnia that were

  18. SEASONAL DISAPPEARANCE OF FAR-INFRARED HAZE IN TITAN'S STRATOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Donald E.; Anderson, C. M.; Flasar, F. M.; Cottini, V. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Samuelson, R. E.; Nixon, C. A.; Kunde, V. G.; Achterberg, R. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); De Kok, R. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Coustenis, A.; Vinatier, S. [LESIA, Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Calcutt, S. B., E-mail: donald.e.jennings@nasa.gov [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2012-07-20

    A far-infrared emission band attributed to volatile or refractory haze in Titan's stratosphere has been decreasing in intensity since Cassini's arrival in 2004. The 220 cm{sup -1} feature, first seen by the Voyager Infrared Interferometer Spectrometer, has only been found in Titan's winter polar region. The emission peaks at about 140 km altitude near the winter stratospheric temperature minimum. Observations recorded over the period 2004-2012 by the Composite Infrared Spectrometer on Cassini show a decrease in the intensity of this feature by about a factor of four. Possible seasonal causes of this decline are an increase in photolytic destruction of source chemicals at high altitude, a lessening of condensation as solar heating increased, or a weakening of downwelling of vapors. As of early 2012, the 220 cm{sup -1} haze has not yet been detected in the south. The haze composition is unknown, but its decrease is similar to that of HC{sub 3}N gas in Titan's polar stratosphere, pointing to a nitrile origin.

  19. Latitudinal variations in Titan's methane and haze from Cassini VIMS observations

    Science.gov (United States)

    Penteado, P.F.; Griffith, C.A.; Tomasko, M.G.; Engel, S.; See, C.; Doose, L.; Baines, K.H.; Brown, R.H.; Buratti, B.J.; Clark, R.; Nicholson, P.; Sotin, Christophe

    2010-01-01

    We analyze observations taken with Cassini's Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60??S and 40??N. The methane variation was measured primarily from its absorption band at 0.61 ??m, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan's 0.4-1.6 ??m spectra, which sample Titan's atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20??S and 10??S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60??S and 40??N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27??S and 19??N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan's visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane

  20. Characterisation of Fluorescent Biological Aerosol Particles during South-West Monsoon from a High Altitude Site in South India

    Science.gov (United States)

    Valsan, A. E.; R, R.; V, B. C.; Huffman, J. A.; Poeschl, U.; Gunthe, S. S.

    2015-12-01

    Biological aerosols (Bioaerosols) constitute a wide range of dead and alive biological materials that are suspended in the atmosphere. Though ubiquitous in earth's atmosphere, bioaerosols are poorly characterized in terms of their atmospheric abundance, sources and physical properties. Here we discuss the number concentration and size distribution of coarse mode (>1µm) biological aerosols measured at a relatively clean high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) located in the Western Ghats mountain ranges of Southern Tropical India. The fluorescent biological aerosol particles (FBAP) were continuously measured using Ultra Violet Aerodynamic Particle Sizer (UVAPS) from 01 June to 21 August 2014 (South-West Monsoon Period) which showed some interesting patterns. The mean number and mass concentration of coarse FBAP during the campaign was observed to be 1.7 x 10-2cm-3 and 0.24µg m-3 respectively, which corresponds to 2% and 9% of coarse total aerosol particles (TAP) number and mass concentration. FBAP concentration decreased significantly during periods of heavy and continuous rain with constant South-West winds. This may be due to the clean marine influx coming from the ocean and continuous washout. The Relative Humidity (RH) and temperature remained consistent during this period without any strong diurnal pattern. When the wind fluctuated in North-West directions, the FBAP concentration increased to even an order of magnitude higher than the periods of South-West winds which can be attributed to the transported bioaerosols from the nearby vegetated area. In spite of variability in the number concentrations, the size distribution of FBAP exhibited a prominent peak at ~3 μm throughout the campaign, which should be fungal spores. They also exhibited a strong diurnal pattern with high concentrations occuring during the night time which peaks in the early morning hours.Biological aerosols (Bioaerosols) constitute a wide range of dead and

  1. Reflections on the VI World Congress of Mountain Medicine and High-Altitude Physiology in Xining and Lhasa, August 2004

    Institute of Scientific and Technical Information of China (English)

    John B. West

    2005-01-01

    @@ The VI World Congress of Mountain Medicine and High-Altitude Physiology in Xining and Lhasa which was held in August 2004 was a landmark event in the burgeoning area of high-altitude life studies. These congresses have taken place every two years, often in exotic venues, and always related to geographical areas of interest in high-altitude medicine. The first five high congresses were held in La Paz, Bolivia; Cusco, Peru; Matsumoto, Japan; Arica, Chile; and Barcelona, Spain. As can be seen from these venues, the previous congresses were located near the South American Andes, the Japanese Alps, and the European Pyrenees and Alps.

  2. Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin,China

    Institute of Scientific and Technical Information of China (English)

    Likun Huang; Chung-Shin Yuan; Guangzhi Wang; Kun Wang

    2011-01-01

    This study investigates the correlation between PM10 and meteorological factors such as wind speed,atmospheric visibility,dew point,relative humidity,and ambient temperature during a brown haze episode. In order to identify the potential sources of PM10 during brown haze episode,respirable particulate matter (PM10) was collected during both non-haze days and haze days and further analyzed for metallic elements,ionic species,and carbonaceous contents. Among them,ionic species contributed 45-64% to PM10,while metallic elements contributed 7-21% to PM10 which was smaller than the other chemical constituents. The average OC/EC ratio (42) in haze days was about three times of the average OC/EC ratio (14) in non-haze days. By using chemical mass balance (CMB) receptor model,the major sources were apportioned,including traffics,incinerators,coal combustion,steel industry,petrochemical industry,and secondary aerosols,etc. The contribution to PM10 concentration of each source was calculated for all the samples collected. The results showed that coal combustion was the major source of PM10 in non-haze days and secondary aerosols were the major source in haze days,followed by petrochemical industry,incinerators,and traffics,while other sources had negligible effect.

  3. Protective effects of Astragalus-Lilygranules on intestinal mucosal barrier of mice in high altitude hypoxia

    Directory of Open Access Journals (Sweden)

    Ling LI

    2016-10-01

    Full Text Available Objective  To investigate the protective effect of Astragalus-Lily Granules on intestinal mucosa and intestinal flora homeostasis in mice under high altitude hypoxia condition. Methods  We put mice into high altitude hypoxia cabin to establish high altitude hypoxia model mice. Sixty Kunming mice were randomly divided into control group, model group, Astragalus-Lily particles (ALP low, medium and high dose groups [1.75, 3.5, 7g/(kg•d] respectively. After three days of routine feeding, the ALP mice received drug by intragastric administration, once a day for continuous 17 days,control group and model group were given double distilled water in same volume. From the 15th day, all the mice but control group were exposed to simulated high altitude hypoxia condition for 3 days in a high altitude hypoxia cabin after they were gavaged for half an hour daily. By the 18th day, the fresh mouse feces were collected and smeared to observe the changes of microflora. The pathological changes of intestinal tissues were observed by HE staining and the expression of HIF-1αprotein in intestines was detected by immunohistochemistry. Results  The enterococci and gram negative bacteria showed a higher proportion (65.2%±2.4% and 56.7%±3.3%, respectively in the model group compared with the control group (24.7%±1.2%, 23.2%±1.5%, respectively, P<0.05. The pathological score of intestinal mucosal necrosis and edema (3.10±0.99, 3.30±0.67 respectively and inflammatory cell count (15.93±3.30, 16.40±3.97/ HP respectively was higher compared with the model group (0.70±0.67, 0.80±0.78; 4.07±2.12, 4.28±2.16/HP respectively; P<0.05. HIF-1αexpression increased significantly compared with the model group (P<0.05. The enterococci (46.7%±2.0%, 32.0%±2.6% respectively and gram negative bacteria rate (34.2%±1.6%, 38.0%±2.8% respectively in the ALP medium and high dose groups were lower compared with the model group (24.7%±1.2%, 23.2%±1.5% respectively, P<0

  4. Sensitivity of the High Altitude Water Cherenkov Detector to Sources of Multi-TeV Gamma Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Diaz-Velez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garcia-Luna, J L; Garcia-Torales, G; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-Garc\\'\\ia, R; Marinelli, A; Martinez, O; Mart\\'\\inez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is an array of large water Cherenkov detectors sensitive to gamma rays and hadronic cosmic rays in the energy band between 100 GeV and 100 TeV. The observatory will be used to measure high-energy protons and cosmic rays via detection of the energetic secondary particles reaching the ground when one of these particles interacts in the atmosphere above the detector. HAWC is under construction at a site 4100 meters above sea level on the northern slope of the volcano Sierra Negra, which is located in central Mexico at 19 degrees N latitude. It is scheduled for completion in 2014. In this paper we estimate the sensitivity of the HAWC instrument to point-like and extended sources of gamma rays. The source fluxes are modeled using both unbroken power laws and power laws with exponential cutoffs. HAWC, in one year, is sensitive to point sources with integral power-law spectra as low as 5x10^-13 cm^-2 sec^-1 above 2 TeV (approximately 50 mCrab) over 5 sr of the sky...

  5. Characteristics and drivers of high-altitude ladybird flight: insights from vertical-looking entomological radar.

    Directory of Open Access Journals (Sweden)

    Daniel L Jeffries

    Full Text Available Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends and drivers (aphid abundance, air temperature, wind speed and rainfall of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis. These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a "typical" high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude

  6. Exercise at simulated high altitude facilitates the increase in capillarity in skeletal muscle of rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the changes in capillarity of skeletal muscle during acclimation to high altitude, and explore the effects of a certain extent physical activity under hypoxia on capillary formation and the role of vascular endothelial growth factor (VEGF) in this process. METHODS: 48 Wistar rats were divided into 3 groups: Ⅰ normoxic control; Ⅱ hypoxia and Ⅲ hypoxia+exercise. Rats of Ⅱ and Ⅲ groups were subjected to hypobaric hypoxia for 5 weeks (23 h/d). They were first brought to simulated 4 000 m altitude, where rats of the Ⅲgroup were forced to swim for 1 h/d (6 d/week). Then the animals were ascent to 5 000 m. Biomicrosphere method was used to determine blood flow of skeletal muscle. The mean fiber cross-sectional area (FCSA), capillary density (CD) and capillary/fiber ratio (C/F) of red portion of the lateral head of the gastrocneminus were assayed by myofibrillar ATPase histochemistry. VEGF and its receptor KDR were assayed with immunohistochemistry method.RESULTS: By comparison with the normoxic control, 5-week hypoxic exposure resulted in a decrease in cross-sectional area of skeletal muscle fiber and an increase in CD, but the C/F remained unchanged. The blood supply to the gastrocnemius was not changed. After 5-week-exercise at high altitude, the muscle fibers did not undergo atrophy. CD, C/F, and the blood flow at rest increased significantly. VEGF protein was found primarily in the matrix between muscle fibers; KDR were shown mainly in endothelial cells of capillary. VEGF was more strongly stained in the skeletal muscle of hypoxia-exercise rats.CONCLUSION: Hypoxia itself can not induce neovascularization. While exercise during hypoxic exposure can lead to capillary formation. VEGF and KDR may play roles in it. New capillary formation benefits the blood supply, oxygen delivery and working performance at high altitude.

  7. Cerebral autoregulation in subjects adapted and not adapted to high altitude.

    Science.gov (United States)

    Jansen, G F; Krins, A; Basnyat, B; Bosch, A; Odoom, J A

    2000-10-01

    Impaired cerebral autoregulation (CA) from high-altitude hypoxia may cause high-altitude cerebral edema in newcomers to a higher altitude. Furthermore, it is assumed that high-altitude natives have preserved CA. However, cerebral autoregulation has not been studied at altitude. We studied CA in 10 subjects at sea level and in 9 Sherpas and 10 newcomers at an altitude of 4243 m by evaluating the effect of an increase of mean arterial blood pressure (MABP) with phenylephrine infusion on the blood flow velocity in the middle cerebral artery (Vmca), using transcranial Doppler. Theoretically, no change of Vmca in response to an increase in MABP would imply perfect autoregulation. Complete loss of autoregulation is present if Vmca changes proportionally with changes of MABP. In the sea-level group, at a relative MABP increase of 23+/-4% during phenylephrine infusion, relative Vmca did not change essentially from baseline Vmca (2+/-7%, P=0.36), which indicated intact autoregulation. In the Sherpa group, at a relative MABP increase of 29+/-7%, there was a uniform and significant increase of Vmca of 24+/-9% (P<0.0001) from baseline Vmca, which indicated loss of autoregulation. The newcomers showed large variations of Vmca in response to a relative MABP increase of 21+/-6%. Five subjects showed increases of Vmca of 22% to 35%, and 2 subjects showed decreases of Vmca of 21% and 23%. All Sherpas and the majority of the newcomers showed impaired CA. It indicates that an intact autoregulatory response to changes in blood pressure is probably not a hallmark of the normal human cerebral vasculature at altitude and that impaired CA does not play a major role in the occurrence of cerebral edema in newcomers to the altitude.

  8. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  9. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?

    Science.gov (United States)

    Storz, Jay F

    2016-10-15

    In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates. © 2016. Published by The Company of Biologists Ltd.

  10. Insights into a historic severe haze weather in Shanghai: synoptic situation, boundary layer and pollutants

    Science.gov (United States)

    Leng, C.; Duan, J.; Xu, C.; Zhang, H.; Zhang, Q.; Wang, Y.; Li, X.; Kong, L.; Tao, J.; Cheng, T.; Zhang, R.; Chen, J.

    2015-11-01

    A historic winter haze weather, characterized by long duration, large scale and strong pollution intensity, occurred in the Yangtze River Delta (YRD) region of China during the time frame of 1 to 10 December 2013. This severe haze event constituted of several hazy episodes and significantly influenced air quality throughout the region, especially in urban areas. Aerosol physical, chemical and optical properties were measured in Shanghai, where the instantaneous particulate mass burden per volume (e.g. PM2.5) exceeded 600 μg m-3 in some time, breaking the existing historical observation records, and examined to give insights into severe haze weathers. Inorganic water-soluble ions in particles, trace gases and aerosol scattering/absorption coefficients had the same tendency to increase evidently from clear episodes to hazy episodes. A combination of various factors contributed to the formation and evolution of the severe haze, among which meteorological conditions, local anthropogenic emissions and aerosol properties played the major roles. During the haze weather, the YRD region was under the control of a high-pressure system with extremely small surface pressure gradients. The calm surface wind and subsidence airflow were responsible for decreasing planetary boundary layer (PBL) height and constructive to the build-up of air pollutants wandering inside the region, and ultimately induced the haze occurrence. Nonlinear regression analyses indicated that single water-soluble ion did not correlated with the atmospheric visibility degradation so strong, while high ambient relative humidity (RH) indeed exerted a great impact with a correlation coefficient (R2) of 0.41. Moreover, the close relationship was derived between atmospheric visibility and aerosols in size of 600-1400 nm with R2 of 0.70, which further improved to 0.73 when combined aerosol hygroscopicity. This study may provide supports for the public and authorities to recognize severe haze weathers in urban

  11. High altitude airship configuration and power technology and method for operation of same

    Science.gov (United States)

    Choi, Sang H. (Inventor); Elliott, Jr., James R. (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Chu, Sang-Hyon (Inventor)

    2011-01-01

    A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.

  12. Ozone Exposure System Designed and Used to High-Altitude Airship Materials

    Science.gov (United States)

    Miller, Sharon K.

    2005-01-01

    High-altitude airships can receive high doses of ozone over short mission durations. For example, in 1 year at an altitude of 70,000 ft, the ozone fluence (number arriving per unit area) can be as high as 1.2 1024 molecules/sq cm. Ozone exposure at these levels can embrittle materials or change the performance of solar cells. It is important to expose components and materials to the expected ozone dosage to determine if the ozone exposure could cause any mission-critical failures.

  13. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude

    Directory of Open Access Journals (Sweden)

    Stacie L. Wing-Gaia

    2014-02-01

    Full Text Available Exposure to extreme altitude presents many physiological challenges. In addition to impaired physical and cognitive function, energy imbalance invariably occurs resulting in weight loss and body composition changes. Weight loss, and in particular, loss of fat free mass, combined with the inherent risks associated with extreme environments presents potential performance, safety, and health risks for those working, recreating, or conducting military operations at extreme altitude. In this review, contributors to muscle wasting at altitude are highlighted with special emphasis on protein turnover. The article will conclude with nutritional strategies that may potentially attenuate loss of fat free mass during high altitude exposure.

  14. Effect of surface catalycity on high-altitude aerothermodynamics of reentry vehicles

    Science.gov (United States)

    Molchanova, A. N.; Kashkovsky, A. V.; Bondar, Ye. A.

    2016-10-01

    This work is aimed at the development of surface chemistry models for the Direct Simulation Monte Carlo (DSMC) method applicable to non-equilibrium high-temperature flows about reentry vehicles. Probabilities of the surface processes dependent on individual properties of each particular molecule are determined from the macroscopic reaction rate data. Two different macroscopic finite rate sets are used for construction of DSMC surface recombination models. The models are implemented in the SMILE++ software system for DSMC computations. A comparison with available experimental data is performed. Effects of surface recombination on the aerothermodynamics of a blunt body at high-altitude reentry conditions are numerically studied with the DSMC method.

  15. Measuring TeV cosmic rays at the High Altitude Water Cherenkov Observatory

    OpenAIRE

    BenZvi Segev

    2015-01-01

    The High-Altitude Water Cherenkov Observatory, or HAWC, is an air shower array designed to observe cosmic rays and gamma rays between 100 GeV and 100 TeV. HAWC, located between the peaks Sierra Negra and Pico de Orizaba in central Mexico, will be completed in the spring of 2015. However, the observatory has been collecting data in a partial configuration since mid-2013. With only part of the final array in data acquisition, HAWC has already accumulated a data set of nearly 100 billion air sho...

  16. NUCLEOTIDE COMPARISON OF GDF9 GENE IN INDIAN YAK AND GADDI GOAT: HIGH ALTITUDE LIVESTOCK ANIMALS

    Directory of Open Access Journals (Sweden)

    Lakshya Veer Singh

    2013-06-01

    Full Text Available The present study was undertaken to characterize exon 1 and exon 2 sequence of one of fecundity genes: GDF9 (Growth differentiation factor 9, in high altitude livestock animal (Yak and Gaddi goat. Six nucleotide differences were identified between sheep (AF078545 and goats (EF446168 in exon 1 and exon 2. Sequencing revealed nine novel single nucleotide mutations in exon 1 and exon 2 of Indian yak that compared with Bos taurus (GQ922451. These results preliminarily showed that the GDF9 gene might be a major gene that influences prolificacy of Gaddi goats and Indian yak.

  17. Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland

    Science.gov (United States)

    Okumiya, Kiyohito; Sakamoto, Ryota; Ishimoto, Yasuko; Kimura, Yumi; Fukutomi, Eriko; Ishikawa, Motonao; Suwa, Kuniaki; Imai, Hissei; Chen, Wenling; Kato, Emiko; Nakatsuka, Masahiro; Kasahara, Yoriko; Fujisawa, Michiko; Wada, Taizo; Wang, Hongxin; Dai, Qingxiang; Xu, Huining; Qiao, Haisheng; Ge, Ri-Li; Norboo, Tsering; Tsering, Norboo; Kosaka, Yasuyuki; Nose, Mitsuhiro; Yamaguchi, Takayoshi; Tsukihara, Toshihiro; Ando, Kazuo; Inamura, Tetsuya; Takeda, Shinya; Ishine, Masayuki; Otsuka, Kuniaki; Matsubayashi, Kozo

    2016-01-01

    Objectives To clarify the association between glucose intolerance and high altitudes (2900–4800 m) in a hypoxic environment in Tibetan highlanders and to verify the hypothesis that high altitude dwelling increases vulnerability to diabetes mellitus (DM) accelerated by lifestyle change or ageing. Design Cross-sectional epidemiological study on Tibetan highlanders. Participants We enrolled 1258 participants aged 40–87 years. The rural population comprised farmers in Domkhar (altitude 2900–3800 m) and nomads in Haiyan (3000–3100 m), Ryuho (4400 m) and Changthang (4300–4800 m). Urban area participants were from Leh (3300 m) and Jiegu (3700 m). Main outcome measure Participants were classified into six glucose tolerance-based groups: DM, intermediate hyperglycaemia (IHG), normoglycaemia (NG), fasting DM, fasting IHG and fasting NG. Prevalence of glucose intolerance was compared in farmers, nomads and urban dwellers. Effects of dwelling at high altitude or hypoxia on glucose intolerance were analysed with the confounding factors of age, sex, obesity, lipids, haemoglobin, hypertension and lifestyle, using multiple logistic regression. Results The prevalence of DM (fasting DM)/IHG (fasting IHG) was 8.9% (6.5%)/25.1% (12.7%), respectively, in all participants. This prevalence was higher in urban dwellers (9.5% (7.1%)/28.5% (11.7%)) and in farmers (8.5% (6.1%)/28.5% (18.3%)) compared with nomads (8.2% (5.7%)/15.7% (9.7%)) (p=0.0140/0.0001). Dwelling at high altitude was significantly associated with fasting IHG+fasting DM/fasting DM (ORs for >4500 and 3500–4499 m were 3.59/4.36 and 2.07/1.76 vs 3500 m play a major role in the high prevalence of glucose intolerance in highlanders. Tibetan highlanders may be vulnerable to glucose intolerance, with polycythaemia as a sign of poor hypoxic adaptation, accelerated by lifestyle change and ageing. PMID:26908520

  18. Incidence and possible causes of dental pain during simulated high altitude flights.

    Science.gov (United States)

    Kollmann, W

    1993-03-01

    Of 11,617 personnel participating in simulated high altitude flights up to 43,000 feet, only 30 (0.26%) complained of toothache (barodontalgia). The cause of the barodontalgia in 28 episodes of pain in 25 of these subjects was investigated. Chronic pulpitis was suspected as the cause in 22 cases and maxillary sinusitis in 2. No pathosis was detected in the other four. In 10 cases in which the pulpitis was treated by root filling or replacing a deep filling, subsequent exposure to low pressure caused no pain.

  19. The molecular basis of convergence in hemoglobin function in high-altitude Andean birds

    DEFF Research Database (Denmark)

    Storz, Jay; Natarajan, Chandrasekhar; Witt, Christopher C.

    2016-01-01

    was correct that adaptive modifications of Hb function are typically attributable to a small number of substitutions at key positions, then the clear prediction is that the same mutations will be preferentially fixed in different species that have independently evolved Hbs with similar functional properties....... For example, in high-altitude ertebrates that have convergently evolved elevated Hb-O2 affinities, Perutz’s hypothesis predicts that parallel amino acid substitutions should be pervasive. We investigated the predictability of genetic adaptation by examining the molecular basis of convergence in hemoglobin (Hb...

  20. Analysis of High-altitude Syndrome and the Underlying Gene Polymorphisms Associated with Acute Mountain Sickness after a Rapid Ascent to High-altitude

    Science.gov (United States)

    Yu, Jie; Zeng, Ying; Chen, Guozhu; Bian, Shizhu; Qiu, Youzhu; Liu, Xi; Xu, Baida; Song, Pan; Zhang, Jihang; Qin, Jun; Huang, Lan

    2016-12-01

    To investigated the objective indicators and potential genotypes for acute mountain sickness (AMS). 176 male subjects were evaluated for symptoms scores and physiological parameters at 3700 m. EPAS1 gene polymorphisms were explored and verified effects of potential genotypes on pulmonary function by inhaled budesonide. The incidence of AMS was 53.98% (95/176). The individuals who suffered from headache with anxiety and greater changes in heart rate (HR), the forced vital capacity (FVC), and mean flow velocity of basilar artery (Vm-BA), all of which were likely to develop AMS. The rs4953348 polymorphism of EPAS1 gene had a significant correlation with the SaO2 level and AMS, and a significant difference in the AG and GG genotype distribution between the AMS and non-AMS groups. The spirometric parameters were significantly lower, but HR (P = 0.036) and Vm-BA (P = 0.042) significantly higher in the AMS subjects with the G allele than those with the A allele. In summary, changes in HR (≥82 beats/min), FVC (≤4.2 Lt) and Vm-BA (≥43 cm/s) levels may serve as predictors for diagnosing AMS accompanied by high-altitude syndrome. The A allele of rs4953348 is a protective factor for AMS through HR and Vm-BA compensation, while the G allele may contribute to hypoxic pulmonary hypertension in AMS.

  1. HST Rotational Spectral Mapping of Two L-Type Brown Dwarfs: Variability In and Out of Water Bands Indicates High-Altitude Haze Layers

    CERN Document Server

    Yang, Hao; Marley, Mark S; Saumon, Didier; Morley, Caroline V; Buenzli, Esther; Artigau, Etienne; Radigan, Jacqueline; Metchev, Stanimir; Burgasser, Adam J; Mohanty, Subhanjoy; Lowrance, Patrick L; Showman, Adam P; Karalidi, Theodora; Flateau, Davin; Heinze, Aren N

    2014-01-01

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 $\\mu$m and 1.7 $\\mu$m. We find that the water absorption bands of the two L5 dwarfs at 1.15 $\\mu$m and 1.4 $\\mu$m vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 $\\mu$m displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altit...

  2. Response to Comments on “High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition”

    Directory of Open Access Journals (Sweden)

    Whitlow, K. Scott

    2015-10-01

    Full Text Available We appreciate the letter to the editor and are pleased to respond regarding our recent case study regarding high altitude pulmonary edema in an experienced mountaineer. The letter raises some valid questions regarding our treatment decisions.

  3. Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians.

    Science.gov (United States)

    Yang, Xinwang; Wang, Ying; Zhang, Yue; Lee, Wen-Hui; Zhang, Yun

    2016-01-27

    Elucidating the mechanisms of high-altitude adaptation is an important research area in modern biology. To date, however, knowledge has been limited to the genetic mechanisms of adaptation to the lower oxygen and temperature levels prevalent at high altitudes, with adaptation to UV radiation largely neglected. Furthermore, few proteomic or peptidomic analyses of these factors have been performed. In this study, the molecular adaptation of high-altitude Odorrana andersonii and cavernicolous O. wuchuanensis to elevated UV radiation was investigated. Compared with O. wuchuanensis, O. andersonii exhibited greater diversity and free radical scavenging potentiality of skin antioxidant peptides to cope with UV radiation. This implied that O. andersonii evolved a much more complicated and powerful skin antioxidant peptide system to survive high-altitude UV levels. Our results provided valuable peptidomic clues for understanding the novel molecular basis for adaptation to high elevation habitats.

  4. Analysis of China’s Haze Days in the Winter Half-Year and the Climatic Background during 1961-2012

    Institute of Scientific and Technical Information of China (English)

    SONG Lian-Chun; GAO Rong; LI Ying; WANG Guo-Fu

    2014-01-01

    The characteristics of haze days and the climatic background are analyzed by using daily observations of haze, precipitation, mean and maximum wind speed of 664 meteorological stations for the period of 1961-2012. The results show that haze days occur significantly more often in eastern China than in western China. The annual number of haze days is 5-30 d in most parts of central-eastern China, with some areas experiencing more than 30 d, while less than 5 d are averagely occurring in western China. Haze days are mainly concentrated in the winter half-year, with most in winter, followed by autumn, spring, and then summer. Nearly 20% of annual haze days are experienced in December. The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961-2012. There were great increases in haze days in the 1960s, 1970s and the beginning of the 21st century. There was also significant abrupt changes of haze days in the early 1970s and 2000s. From 1961 to 2012, haze days in the winter half-year increased in South China, the middle-lower reaches of the Yangtze River, and North China, but decreased in Northeast China, eastern Northwest China and eastern Southwest China. The number of persistent haze is rising. The Longer the haze, the greater the proportion to the number persistent haze. Certain climatic conditions exacerbated the occurrence of haze. The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China. The precipitation days show a decreasing trend in most parts of China, with a rate of around -4.0 d per decade in central-eastern China, which reduces the sedimentation capacity of atmospheric pollutants. During the period of 1961-2012, the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China, while there exists positive correlation between haze days and

  5. Titan's Oxygen Chemistry and its Impact on Haze Formation

    Science.gov (United States)

    Vuitton, Veronique; Carrasco, Nathalie; Flandinet, Laurene; Horst, Sarah; Klippenstein, Stephen; Lavvas, Panayotis; Orthous-Daunay, Francois-Regis; Quirico, Eric; Thissen, Roland; Yelle, Roger V.

    2016-10-01

    Though Titan's atmosphere is reducing with its 98% N2, 2% CH4 and 0.1% H2, CO is the fourth most abundant molecule with a uniform mixing ratio of ~50 ppm. Two other oxygen bearing molecules have also been observed in Titan's atmosphere: CO2 and H2O, with a mixing ratio of ~15 and ~1 ppb, respectively. The physical and chemical processes that determine the abundances of these species on Titan have been at the centre of a long-standing debate as they place constraints on the origin and evolution of its atmosphere [1]. Moreover, laboratory experiments have shown that oxygen can be incorporated into complex molecules, some of which are building blocks of life [2]. Finally, the presence of CO modifies the production rate and size of tholins [3, 4], which transposed to Titan's haze may have some strong repercussions on the temperature structure and dynamics of the atmosphere.We present here our current understanding of Titan's oxygen chemistry and of its impact on the chemical composition of the haze. We base our discussion on a photochemical model that describes the first steps of the chemistry and on state-of-the-art laboratory experiments for the synthesis and chemical analysis of aerosol analogues. We used a very-high resolution mass spectrometer (LTQ-Orbitrap XL instrument) to characterize the soluble part of tholin samples generated from N2/CH4/CO mixtures at different mixing ratios and with two different laboratory set-ups. These composition measurements provide some understanding of the chemical mechanisms by which CO affects particle formation and growth. Our final objective is to obtain a global picture of the fate and impact of oxygen on Titan, from its origin to prebiotic molecules to haze particles to material deposited on the surface.[1] S.M. Hörst et al., The origin of oxygen species in Titan's atmosphere, J. Geophys. Res., 113, E10006 (2008).[2] S.M. Hörst et al., Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment

  6. Modeling High Altitude EMP using a Non-Equilibrium Electron Swarm Model to Monitor Conduction Electron Evolution (LA-UR-15-26151)

    Science.gov (United States)

    Pusateri, E. N.; Morris, H. E.; Nelson, E.; Ji, W.

    2015-12-01

    Electromagnetic pulse (EMP) events in the atmosphere are important physical phenomena that occur through both man-made and natural processes, such as lightning, and can be disruptive to surrounding electrical systems. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. In EMP, low-energy conduction electrons are produced from Compton electron or photoelectron ionizations with air. These conduction electrons continue to interact with the surrounding air and alter the EMP waveform. Many EMP simulation codes use an equilibrium ohmic model for computing the conduction current. The equilibrium model works well when the equilibration time is short compared to the rise time or duration of the EMP. However, at high altitude, the conduction electron equilibration time can be comparable to or longer than the rise time or duration of the EMP. This matters, for example, when calculating the EMP propagating upward toward a satellite. In these scenarios, the equilibrium ionization rate becomes very large for even a modest electric field. The ohmic model produces an unphysically large number of conduction electrons that prematurely and abruptly short the EMP in the simulation code. An electron swarm model, which simulates the time evolution of conduction electrons, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model in an environment characterized by electric field and pressure previously in Pusateri et al. (2015). This swarm model has been integrated into CHAP-LA, a state-of-the-art EMP code developed by researchers at Los Alamos National Laboratory, which previously calculated conduction current using an ohmic model. We demonstrate the EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high altitude EMP modeling obtained by employing the swarm model.

  7. Quantification of optic disc edema during exposure to high altitude shows no correlation to acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    Gabriel Willmann

    Full Text Available BACKGROUND: The study aimed to quantify changes of the optic nerve head (ONH during exposure to high altitude and to assess a correlation with acute mountain sickness (AMS. This work is related to the Tuebingen High Altitude Ophthalmology (THAO study. METHODOLOGY/PRINCIPAL FINDINGS: A confocal scanning laser ophthalmoscope (cSLO, Heidelberg Retina Tomograph, HRT3® was used to quantify changes at the ONH in 18 healthy participants before, during and after rapid ascent to high altitude (4559 m. Slitlamp biomicroscopy was used for clinical optic disc evaluation; AMS was assessed with Lake Louise (LL and AMS-cerebral (AMS-c scores; oxygen saturation (SpO₂ and heart rate (HR were monitored. These parameters were used to correlate with changes at the ONH. After the first night spent at high altitude, incidence of AMS was 55% and presence of clinical optic disc edema (ODE 79%. Key stereometric parameters of the HRT3® used to describe ODE (mean retinal nerve fiber layer [RNFL] thickness, RNFL cross sectional area, optic disc rim volume and maximum contour elevation changed significantly at high altitude compared to baseline (p<0.05 and were consistent with clinically described ODE. All changes were reversible in all participants after descent. There was no significant correlation between parameters of ODE and AMS, SpO₂ or HR. CONCLUSIONS/SIGNIFICANCE: Exposure to high altitude leads to reversible ODE in the majority of healthy subjects. However, these changes did not correlate with AMS or basic physiologic parameters such as SpO₂ and HR. For the first time, a quantitative approach has been used to assess these changes during acute, non-acclimatized high altitude exposure. In conclusion, ODE presents a reaction of the body to high altitude exposure unrelated to AMS.

  8. Quantification of Optic Disc Edema during Exposure to High Altitude Shows No Correlation to Acute Mountain Sickness

    Science.gov (United States)

    Willmann, Gabriel; Fischer, M. Dominik; Schatz, Andreas; Schommer, Kai; Messias, Andre; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian

    2011-01-01

    Background The study aimed to quantify changes of the optic nerve head (ONH) during exposure to high altitude and to assess a correlation with acute mountain sickness (AMS). This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings A confocal scanning laser ophthalmoscope (cSLO, Heidelberg Retina Tomograph, HRT3®) was used to quantify changes at the ONH in 18 healthy participants before, during and after rapid ascent to high altitude (4559 m). Slitlamp biomicroscopy was used for clinical optic disc evaluation; AMS was assessed with Lake Louise (LL) and AMS-cerebral (AMS-c) scores; oxygen saturation (SpO2) and heart rate (HR) were monitored. These parameters were used to correlate with changes at the ONH. After the first night spent at high altitude, incidence of AMS was 55% and presence of clinical optic disc edema (ODE) 79%. Key stereometric parameters of the HRT3® used to describe ODE (mean retinal nerve fiber layer [RNFL] thickness, RNFL cross sectional area, optic disc rim volume and maximum contour elevation) changed significantly at high altitude compared to baseline (p<0.05) and were consistent with clinically described ODE. All changes were reversible in all participants after descent. There was no significant correlation between parameters of ODE and AMS, SpO2 or HR. Conclusions/Significance Exposure to high altitude leads to reversible ODE in the majority of healthy subjects. However, these changes did not correlate with AMS or basic physiologic parameters such as SpO2 and HR. For the first time, a quantitative approach has been used to assess these changes during acute, non-acclimatized high altitude exposure. In conclusion, ODE presents a reaction of the body to high altitude exposure unrelated to AMS. PMID:22069483

  9. Anatomical and hemodynamic evaluations of the heart and pulmonary arterial pressure in healthy children residing at high altitude in China

    Directory of Open Access Journals (Sweden)

    Hai-Ying Qi

    2015-06-01

    Conclusions: Children living at high altitude in China have significantly higher mPAP, dilated right heart and slower regression of right ventricular hypertrophy in the first 14 years of life. Systolic and diastolic functions of both ventricles were reduced with a paradoxically higher CI. There was no significant difference in these features between the Hans and the Tibetans. These values provide references for the care of healthy children and the sick ones with cardiopulmonary diseases at high altitude.

  10. Seeing through the haze

    Science.gov (United States)

    Bowman, D.; Lambert, A.; Fraser, D.; Swierkowski, L.

    2008-11-01

    Methods to correct for atmospheric degradation of imagery and improve the "seeing" of a telescope are well known in astronomy but, to date, have rarely been applied to more earthly matters such as surveillance. The intrinsically more complicated visual fields, the dominance of low-altitude distortion effects, the requirement to process large volumes of data in near real-time, the inability to pre-select ideal sites and the desirability of ruggedness and portability all combine to pose a significant challenge. Field Programmable Gate Array (FPGA) technology has advanced to the point where modern devices contain hundreds of thousands of logic gates, multiple "hard" processors and multi-gigabit serial communication links. Such devices present an ideal platform to tackle the demands of surveillance image processing. We report a rugged, lightweight system which allows multiple FPGA "modules" to be added together in order to quickly and easily reallocate computing resources. The devices communicate via 2.5Gbps serial links and process image data in a streaming fashion, reducing as much data as possible on-the-fly in order to present a minimised load to storage and/or communication devices. To maximise the benefit of such a system we have devised an open protocol for FPGA-based image processing called "OpenStream". This allows image processing cores to be quickly and easily added into or removed from the data stream and harnesses the benefits of code-reuse and standardisation. It further allows image processing tasks to be easily partitioned across multiple, heterogeneous FPGA domains and permits a designer the flexibility to allocate cores to the most appropriate FPGA. OpenStream is the infrastructure to facilitate rapid, graphical, development of FPGA based image processing algorithms especially when they must be partitioned across multiple FPGAs. Ultimately it will provide a means to automatically allocate and connect resources across FPGA domains in a manner analogous

  11. Reduced oxygen due to high-altitude exposure relates to atrophy in motor-function brain areas.

    Science.gov (United States)

    Di Paola, M; Paola, M D; Bozzali, M; Fadda, L; Musicco, M; Sabatini, U; Caltagirone, C

    2008-10-01

    At high altitudes barometric pressure is reduced and, thus, less oxygen is inhaled. Reduced oxygen concentration in brain tissue can lead to cerebral damage and neurological and cognitive deficits. The present study was designed to explore the effects of high-altitude exposure using a quantitative MRI technique, voxel-based morphometry. We studied nine world-class mountain climbers before (baseline) and after (follow-up) an extremely high-altitude ascent of Everest and K2. We investigated the effects of repeated extremely high-altitude exposures by comparing mountain climbers' scans at baseline with scans of 19 controls. In addition, we measured the effects of a single extremely high-altitude expedition by comparing mountain climbers' scans at baseline and follow-up. A region of reduced white matter density/volume was found in the left pyramidal tract near the primary (BA 4) and supplementary (BA 6) motor cortex when mountain climbers at baseline were compared with controls. Further, when mountain climbers' scans before and after the expedition were compared, a region of reduced grey matter density/volume was found in the left angular gyrus (BA 39). These findings suggest that extremely high-altitude exposures may cause subtle white and grey matter changes that mainly affect brain regions involved in motor activity.

  12. The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHANG; Xingzhi HAN; Robert H S KRAUS; Le YANG; Liqing FAN; Yinzi YE; Yi TAO

    2016-01-01

    For species that have a broad geographic distribution, adaptive variation may be attributable to gene expression plasticity. Nanorana parkeri is an anuran endemic to the southern Tibetan Plateau where it has an extensive altitudinal range (2850 to 5100 m asl). Low oxygen concentration is one of the main environmental characteristics of the Tibetan Plateau. Hypoxia-inducible factor α subunits (HIF-1α and HIF-2α, encoded by Endothelial PAS domain protein 1 (EPAS1)) and associated genes (e.g., vascular endothelial growth factor (VEGF) and Erythropoietin (EPO)) play crucial roles in maintaining oxygen homeostasis. In this study, we compared the expression of HIF-1A, VEGF, EPAS1 and EPO mRNA between two populations of N. parkeri: one population inhabiting the native high altitudes, and the second living in, and being acclimated to, the lower plains (70 m asl). The expression of HIF-1A, VEGF and EPAS1 mRNA in the high altitude population were significantly higher than in the acclimated population, whereas there was no significant difference for EPO between two groups. Our results indicated that gene expression plasticity may make significant contributions to local adaptation of species that have broad altitudinal distributions. In addition, we deepen our understanding of the adaptive potential of this species by evaluating the experiments in the scope of its evolutionary history.

  13. Water level changes of high altitude lakes in Himalaya–Karakoram from ICESat altimetry

    Indian Academy of Sciences (India)

    Priyeshu Srivastava; Rakesh Bhambri; Prashant Kawishwar; D P Dobhal

    2013-12-01

    Himalaya–Karakoram (H–K) region hosts large number of high altitude lakes but are poorly gauged by in-situ water level monitoring method due to tough terrain conditions and poor accessibility. After the campaigns of ICESat during 2003–2009, now it is possible to achieve lake levels at decimetre accuracy. Therefore, in present study, high altitude lake levels were observed using ICESat/GLAS altimetry in H–K between 2003 and 2009 to generate baseline information. The study reveals that out of 13 lakes, 10 lakes show increasing trend of water levels at different rate (mean rate 0.173 m/y) whereas three lakes unveiled decreasing trend (mean rate −0.056 m/y). Out of five freshwater lakes, four lakes show an increasing trend of their level (mean rate 0.084 m/y) whereas comparatively six salt lakes (out of seven salt lakes) exhibited ∼3 times higher mean rate of lake level increase (0.233 m/y). These observed lake level rise can be attributed to the increased melt runoffs (i.e., seasonal snow and glacier melts) owing to the enhanced mean annual and seasonal air temperature during past decade in north-western (NW) Himalaya. Further, varied behaviours of lake level rises in inter- and intra-basins suggest that the local climatic fluctuations play prominent role along with regional and global climate in complex geographical system of NW Himalaya.

  14. Cooperative Scheduling of Imaging Observation Tasks for High-Altitude Airships Based on Propagation Algorithm

    Directory of Open Access Journals (Sweden)

    He Chuan

    2012-01-01

    Full Text Available The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA. Then, a novel swarm intelligence algorithm named propagation algorithm (PA is combined with the key node search algorithm (KNSA to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.

  15. Cooperative scheduling of imaging observation tasks for high-altitude airships based on propagation algorithm.

    Science.gov (United States)

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.

  16. Prehistoric Human Dispersal to the Tibetan Plateau and Adaptation to the High Altitude Environment

    Science.gov (United States)

    Zhang, Dongju; Dong, Guanghui; Chen, Fahu

    2016-04-01

    Human history of the Tibetan Plateau and human adaptation to the high altitude environment is hotly debated in the past decade among archaeological, anthropological, genetic, and even past climate change studies. Based on previous studies on the Tibetan Plateau and our own archaeological studies in northeastern Tibetan Plateau (NETP), we propose that human migrated to the Tibetan Plateau from the last Deglacial period to late Holocene mainly from North China via Yellow River valley and its tributary valleys in NETP. This migration is constituted of four stages (Upper Paleolithic, Epi-Paleolithic, Neolithic and Bronze Age) when human adapted to the high altitude environment and climate change with different strategies and techniques. Particularly, the prevail of microlithic technology in North China provoked hunter-gatherers' first visit to the NETP in relatively ameliorated last Deglacial period, and the quick development of millet farming and subsequent mixed barley-wheat farming and sheep herding facilitated farmers and herders permanently settled in NETP, even above 3000 masl, during mid- and late Holocene.

  17. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawa, John Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  18. Association between Serum Interleukin-17A Level and High-Altitude Deacclimatization Syndrome

    Directory of Open Access Journals (Sweden)

    Binfeng He

    2016-01-01

    Full Text Available High-altitude deacclimatization syndrome (HADAS is emerging as a severe public health issue that threatens the quality of life of individuals who return to lower altitude from high altitude. In this study, we measured serum levels of SOD, MDA, IL-17A, IL-10, TNF-α, and HADAS score in HADAS subjects at baseline and 50th and 100th days and to evaluate the relationship between interleukins, including IL-17A, and HADAS. Our data showed that and the serum IL-17A levels and HADAS score decreased over time in the HADAS group, and serum IL-17A levels were significantly higher in the HADAS group at baseline and 50th day compared with controls (p<0.05. Furthermore, baseline serum levels of MDA and TNF-α were significantly higher, while SOD and IL-10 levels were lower in HADAS subjects compared with controls (p<0.05. It is interesting that serum levels of IL-17A were clearly interrelated with HADAS incidence and severity (p<0.05. ROC curve analysis showed that combined serum IL-17A and IL-10 levels were a better predictor of HADAS incidence than serum levels of IL-17A or IL-10 alone. These data suggest that serum levels of IL-17A are a novel predictive index of HADAS.

  19. A numerical optimization of high altitude testing facility for wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Bruce Ralphin Rose J

    2015-06-01

    Full Text Available High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A∗, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.

  20. MRI evidence: acute mountain sickness is not associated with cerebral edema formation during simulated high altitude.

    Science.gov (United States)

    Mairer, Klemens; Göbel, Markus; Defrancesco, Michaela; Wille, Maria; Messner, Hubert; Loizides, Alexander; Schocke, Michael; Burtscher, Martin

    2012-01-01

    Acute mountain sickness (AMS) is a common condition among non-acclimatized individuals ascending to high altitude. However, the underlying mechanisms causing the symptoms of AMS are still unknown. It has been suggested that AMS is a mild form of high-altitude cerebral edema both sharing a common pathophysiological mechanism. We hypothesized that brain swelling and consequently AMS development is more pronounced when subjects exercise in hypoxia compared to resting conditions. Twenty males were studied before and after an eight hour passive (PHE) and active (plus exercise) hypoxic exposure (AHE) (F(i)O(2) = 11.0%, P(i)O(2)∼80 mmHg). Cerebral edema formation was investigated with a 1.5 Tesla magnetic resonance scanner and analyzed by voxel based morphometry (VBM), AMS was assessed using the Lake Louise Score. During PHE and AHE AMS was diagnosed in 50% and 70% of participants, respectively (p>0.05). While PHE slightly increased gray and white matter volume and the apparent diffusion coefficient, these changes were clearly more pronounced during AHE but were unrelated to AMS. In conclusion, our findings indicate that rest and especially exercise in normobaric hypoxia are associated with accumulation of water in the extracellular space, however independent of AMS development. Thus, it is suggested that AMS and HACE do not share a common pathophysiological mechanism.

  1. Protective effect of ginkgolide B on high altitude cerebral edema of rats.

    Science.gov (United States)

    Botao, Yu; Ma, Jie; Xiao, Wenjing; Xiang, Qingyu; Fan, Kaihua; Hou, Jun; Wu, Juan; Jing, Weihua

    2013-03-01

    Ginkgolide B (GB) is one of the ginkgolides isolated from leaves of the Ginkgo biloba tree. The aim of this study was to investigate whether GB has a protective effect on high altitude cerebral edema (HACE) of rats. HACE was induced by hypobaric hypoxia exposure for 24 hours in an animal decompression chamber with the chamber pressure of 267 mmHg to simulate an altitude of 8000 m. Before the exposure, three doses (3, 6, and 12 mg·kg(-1)) of GB were given intraperitoneally (ip) daily for 3 days. Effects of GB on brain water content (BWC), activity of superoxide dismutase (SOD), concentration of glutathione (GSH) and malondialdehyde (MDA), expression of active caspase-3 and poly(ADP-ribose) polymerase (PARP) were measured. In GB pretreatment groups (6 and 12 mg·kg(-1), but not 3 mg·kg(-1)), BWC, the concentration of MDA, the expression of active caspase-3 and PARP were reduced significantly, while the activity of SOD and concentration of GSH were significantly increased. In conclusion, these results indicate that GB has a protective effect on cerebral edema caused by high altitude in rats. The protective effect of GB might be attributed to its antioxidant properties and suppression of the caspase-dependent apoptosis pathway.

  2. Ground-high altitude joint detection of ozone and nitrogen oxides in urban areas of Beijing

    Institute of Scientific and Technical Information of China (English)

    Pengfei Chen; Qiang Zhang; Jiannong Quan; Yang Gao; Delong Zhao; Junwang Meng

    2013-01-01

    Based on observational data of ozone (O3) and nitrogen oxide (NOx) mixing ratios on the ground and at high altitude in urban areas of Beijing during a period of six days in November 2011,the temporal and spatial characteristics of mixing ratios were analyzed.The major findings include:urban O3 mixing ratios are low and NOx mixing ratios are always high near the road in November.Vertical variations of the gases are significantly different in and above the planetary boundary layer.The mixing ratio of O3 is negatively correlated with that of NOx and they are positively correlated with air temperature,which is the main factor directly causing vertical variation of O3 and NOx mixing ratios at 600-2100 m altitude.The NOx mixing ratios elevated during the heating period,while the O3 mixing ratios decreased:these phenomena are more significant at high altitudes compared to lower altitudes.During November,air masses in the urban areas of Beijing are brought bynorthwesterly winds,which transport O3 and NOx at low mixing ratios.Due to Beijing's natural geographical location,northwest air currents are beneficial to the dilution and dispersion of pollutants,which can result in lower O3 and NOx background values in the Beijing urban area.

  3. The structure of high altitude O+ energization and outflow: a case study

    Directory of Open Access Journals (Sweden)

    C. W. Carlson

    2004-07-01

    Full Text Available Multi-spacecraft observations from the CIS ion spectrometers on board the Cluster spacecraft have been used to study the structure of high-altitude oxygen ion energization and outflow. A case study taken from 12 April 2004 is discussed in more detail. In this case the spacecraft crossed the polar cap, mantle and high-altitude cusp region at altitudes between 4RE and 8RE and 2 of the spacecraft provided data. The oxygen ions were seen as a beam with narrow energy distribution, and increasing field-aligned velocity and temperature at higher altitude further in the upstream flow direction. The peak O+ energy was typically just above the highest energy of observed protons. The observed energies reached the upper limit of the CIS ion spectrometer, i.e. 38keV. Moment data from the spacecraft have been cross-correlated to determine cross-correlation coefficients, as well as the phase delay between the spacecraft. Structures in ion density, temperature and field-aligned flow appear to drift with the observed field-perpendicular drift. This, together with a velocity dispersion analysis, indicates that much of the structure can be explained by transverse heating well below the spacecraft. However, temperature isotropy and the particle flux as a function of field-aligned velocity are inconsistent with a single altitude Maxwellian source. Heating over extended altitude intervals, possibly all the way up to the observation point, seem consistent with the observations.

  4. O+ heating associated with strong wave activity in the high altitude cusp and mantle

    Directory of Open Access Journals (Sweden)

    G. Stenberg

    2011-05-01

    Full Text Available We use the Cluster spacecraft to study three events with intense waves and energetic oxygen ions (O+ in the high altitude cusp and mantle. The ion energies considered are of the order 1000 eV and higher, observed above an altitude of 8 earth radii together with high wave power at the O+ gyrofrequency. We show that heating by waves can explain the observed high perpendicular energy of O+ ions, using a simple gyroresonance model and 25–45% of the observed wave spectral density at the gyrofrequency. This is in contrast to a recently published study where the wave intensity was too low to explain the observed high altitude ion energies. Long lasting cases (>10 min of high perpendicular-to-parallel temperature ratios are sometimes associated with low wave activity, suggesting that high perpendicular-to-parallel temperature ratio is not a good indicator of local heating. Using multiple spacecraft, we show that the regions of enhanced wave activity are at least one order of magnitude larger than the gyroradius of the heated ions.

  5. Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis.

    Science.gov (United States)

    León-Velarde, F; Monge, C C; Vidal, A; Carcagno, M; Criscuolo, M; Bozzini, C E

    1991-05-01

    We report the estimation of blood hemoglobin (Hb), arterial blood oxygen saturation (SaO2), and serum immunoreactive erythropoietin (siEPO) in a group of Peruvian workers residing in Cerro de Pasco at 4300 m showing "excessive erythrocytosis" (EE, Monge's disease, chronic mountain sickness). These estimates were compared with those of humans residing either in Cerro de Pasco and showing "normal erythrocytosis" (NE) or in Lima (sea level, SL) to determine whether Hb and SaO2 are related to siEPO in high altitude (HA) natives with NE or EE. The three parameters showed statistically significant differences between HA and SL groups--the values in SL being lower. Significant differences were also found between NE and EE groups in Hb and SaO2. There was no statistical difference in siEPo between the two groups. The results indicate, therefore, that HA residents who develop EE are not distinguishable from residents who develop NE on the basis of estimates of siEPO. As a result, siEPO and Hb do not show a dose-response relationship in HA residents, and variation in EPO does not explain the striking variation in Hb at high altitudes.

  6. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    Science.gov (United States)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  7. High Altitude Pulmonary Edema Without Appropriate Action Progresses to Right Ventricular Strain: A Case Study.

    Science.gov (United States)

    Mills, Logan; Harper, Chris; Rozwadowski, Sophie; Imray, Chris

    2016-09-01

    Mills, Logan, Chris Harper, Sophie Rozwadowski, and Chris Imray. High altitude pulmonary edema without appropriate action progresses to right ventricular strain: A case study. High Alt Med Biol. 17:228-232, 2016.-A 24-year-old male developed high altitude pulmonary edema (HAPE) after three ascents to 4061 m over 3 days, sleeping each night at 2735 m. He complained of exertional dyspnea, dry cough, chest pain, fever, nausea, vertigo, and a severe frontal headache. Inappropriate continuation of ascent despite symptoms led to functional impairment and forced a return to the valley, but dyspnea persisted in addition to new orthopnea. Hospital admission showed hypoxemia, resting tachycardia, and systemic hypertension. ECG revealed right ventricular strain and a chest X-ray revealed right lower zone infiltrates. This case demonstrates that HAPE can develop in previously unaffected individuals given certain precipitating factors, and that in the presence of HAPE, prolonged exposure to altitude with exercise (or exertion) does not confer acclimatization with protective adaptations and that rest and descent are the appropriate actions. The case additionally demonstrates well-characterized right ventricular involvement.

  8. Ontogenic development of spermatids during spermiogenesis in the high altitude bunchgrass lizard (Sceloporus bicanthalis).

    Science.gov (United States)

    Rheubert, Justin; Touzinsky, Katherine; Hernández-Gallegos, Oswaldo; Granados-González, Gisela; Gribbins, Kevin

    2012-04-01

    The body of ultrastructural data on spermatid characters during spermiogenesis continues to grow in reptiles, but is still relatively limited within the squamates. This study focuses on the ontogenic events of spermiogenesis within a viviparous and continually spermatogenic lizard, from high altitude in Mexico. Between the months of June and August, testicular tissues were collected from eight spermatogenically active bunchgrass lizards (Sceloporus bicanthalis) from Nevado de Toluca, México. The testicular tissues were processed for transmission electron microscopy and analyzed to access the ultrastructural differences between spermatid generations during spermiogenesis. Interestingly, few differences exist between S. bicanthalis spermiogenesis when compared with what has been described for other saurian squamates. Degrading and coiling membrane structures similar to myelin figures were visible within the developing acrosome that are likely remnants from Golgi body vesicles. During spermiogenesis, an electron lucent area between the subacrosomal space and the acrosomal medulla was observed, which has been observed in other squamates but not accurately described. Thus, we elect to term this region the acrosomal lucent ridge. This study furthers the existing knowledge of spermatid development in squamates, which could be useful in future work on the reproductive systems in high altitude viviparous lizard species.

  9. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics.

    Directory of Open Access Journals (Sweden)

    Grzegorz Bilo

    Full Text Available Slow deep breathing improves blood oxygenation (Sp(O2 and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39 or at 5400 m for 12-16 days (Study B; N = 28. Study variables, including Sp(O2 and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2 (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001 and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.

  10. Genotyping the High Altitude Mestizo Ecuadorian Population Affected with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Andrés López-Cortés

    2017-01-01

    Full Text Available Prostate cancer (PC is the second most commonly diagnosed type of cancer in males with 1,114,072 new cases in 2015. The MTHFR enzyme acts in the folate metabolism, which is essential in methylation and synthesis of nucleic acids. MTHFR C677T alters homocysteine levels and folate assimilation associated with DNA damage. Androgens play essential roles in prostate growth. The SRD5A2 enzyme metabolizes testosterone and the V89L polymorphism reduces in vivo SRD5A2 activity. The androgen receptor gene codes for a three-domain protein that contains two polymorphic trinucleotide repeats (CAG, GGC. Therefore, it is essential to know how PC risk is associated with clinical features and polymorphisms in high altitude Ecuadorian mestizo populations. We analyzed 480 healthy and 326 affected men from our three retrospective case-control studies. We found significant association between MTHFR C/T (odds ratio [OR] = 2.2; P=0.009, MTHFR C/T+T/T (OR = 2.22; P=0.009, and PC. The SRD5A2 A49T substitution was associated with higher pTNM stage (OR = 2.88; P=0.039 and elevated Gleason grade (OR = 3.15; P=0.004. Additionally, patients with ≤21 CAG repeats have an increased risk of developing PC (OR = 2.99; P<0.001. In conclusion, genotype polymorphism studies are important to characterize genetic variations in high altitude mestizo populations.

  11. Combining Undergraduate Student Curriculum, Research, and Outreach: High-altitude Balloon and Rockets

    Science.gov (United States)

    Davis, E. J.; Nielsen, K.

    2015-12-01

    The Society of Physics Students chapter at Utah Valley University (UVU) recently established a high altitude balloon project to provide students with research opportunities. This highly successful program involves students not only from physics but also from other STEM fields and non-STEM subjects, and as such acts as a unique outreach program for the department of physics. Examples of experiments performed with the balloon project are: 3D-acceleration measurements, altitude/pressure/temperature measurements, ozone monitoring, bio-aerosol collection, and solar panel performance output. All these experiment are designed and build by groups of students either as part of research projects or through class participation as the projects link with the curriculum in several courses. Most recently, a group of UVU students have initiated the implementation of small rockets capable of carrying payloads to this high-altitude program. Both balloon and rocket platforms are fundamental in-situ measuring techniques for numerous geoscience subjects, and are arguably best illustrated by the NASA balloon and sounding rocket programs. In this presentation, we give an overview of the program and how it is 1) being implemented into the curriculum, 2) provide unique research opportunities for students, and 3) specific outreach activities.

  12. The 2009 Space Science Component of UNH Project SMART and High School Students Building a High-Altitude Balloon Payload

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Chen, L.; Farrugia, C. J.; Frederick-Frost, K.; Goelzer, S.; Kucharek, H.; Messeder, R.; Moebius, E.; Puhl-Quinn, P. A.; Torbert, R. B.

    2009-12-01

    For the past 19 years the University of New Hampshire has offered a unique research and education opportunity to motivated high-school students called Project SMART (Science and Mathematics Achievement through Research Training). The Space Science module is strongly research based. Students work in teams of two on real research projects carved from the research programs of the faculty. The projects are carefully chosen to match the abilities of the students. The students receive classes in basic physics as well as lectures in space science to help them with their work. This year the research included the analysis of magnetic reconnection observations and Crater FTE observation, both by the CLUSTER spacecraft, the building of Faraday cups for thermal ion measurements in our thermal vacuum facility, and analysis of the IBEX star sensor. In addition to this, the students work on one combined project and for the past several years this project has been the building of a payload for a high-altitude balloon. The students learn to integrate telemetry and GPS location hardware while they build several small experiments that they then fly to the upper reaches of the Earth's atmosphere. This year the payload included a small video camera and the payload flew to 96,000 feet, capturing images of weather patterns as well as the curvature of the Earth, thickness of the atmosphere, and black space. In addition to still photos, we will be showing 2- and 7-minute versions of the 90-minute flight video that include footage from peak altitude, the bursting of the balloon, and initial descent.

  13. Modeling the impact of black carbon on snowpack properties at an high altitude site in the Himalayas

    Science.gov (United States)

    Jacobi, Hans-Werner; Ménégoz, Martin; Gallée, Hubert; Lim, Saehee; Zanatta, Marco; Jaffrezo, Jean-Luc; Cozic, Julie; Laj, Paolo; Bonasoni, Paolo; Cristofanelli, Paolo; Stocchi, Paolo; Marinoni, Angela; Verza, Gianpietro; Vuillermoz, Elisa

    2013-04-01

    Light absorbing aerosols in the snow can modify the snow albedo. As a result, the seasonal snowpack can melt earlier compared to the unaffected snow leading to a warming effect on the atmosphere. Several global model studies have indicated that the long-range transport of light absorbing aerosols into the Himalayas and the subsequent deposition to the snow have contributed to a temperature rise in these regions. Due to its strong light absorbing properties, black carbon (BC) may play an important role in this process. To evaluate the possible impact of BC on snow albedo we determined BC concentrations in a range of fresh and older snow samples collected between 2009 and 2012 in the vicinity of the Pyramid station, Nepal at an altitude of more than 5000 m. BC concentrations in the snow were obtained after nebulizing the melted samples using a single particle soot photometer. The observed seasonal cycle in BC concentrations in the snow corresponds to observed seasonal cycles in atmospheric BC detected at the Pyramid station. Older snow showed somewhat higher concentrations compared to fresh snow samples indicating the influence of dry deposition of BC. In order to study in detail the impact of black carbon on snow properties, we upgraded the existing one-dimensional physical snowpack model CROCUS to account for the influence of black carbon on the absorption of radiation by the snow. A radiative transfer scheme was implemented into the snowpack model taking into account the solar zenith angle, the snow water equivalent and grain size, the soil albedo, and the concentration of black carbon in the snow. The upgraded model was applied to a high altitude site in the Himalayas using observed BC concentrations and meteorological data recorded at Pyramid station. First results of the simulations will be presented.

  14. The ICESat-2 Inland Water Height Data Product: Evaluation of Water Profiles Using High Altitude Photon Counting Lidar

    Science.gov (United States)

    Jasinski, M. F.; Stoll, J.; Cook, W. B.; Arp, C. D.; Birkett, C. M.; Brunt, K. M.; Harding, D. J.; Jones, B. M.; Markus, T.; Neumann, T.

    2015-12-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2), scheduled to launch in 2017, is a low energy, high repetition rate, short pulse width, 532 nm lidar. Although primarily designed for icecap and sea ice monitoring, ATLAS also will record dense observations over Pan-Arctic inland water bodies throughout its designed three year life span. These measurements will offer improved understanding of the linkages between climate variability and Arctic hydrology including closure of the Pan-Arctic water balance. An ICESat-2 Inland Water Body Height Data Product is being developed consisting of along-track water surface height, slope, and roughness for each ATLAS strong beam, and also aspect and slope between adjacent beams. The data product will be computed for all global inland water bodies that are traversed by ICESat-2 during clear to moderately clear atmospheric conditions. While the domain of the ATL13 data product is global, the focus is on high-latitude terrestrial regions where the convergence of the ICESat-2 orbits will provide spatially dense observations. Water bodies will be identified primarily through the use of an "Inland Water Body Shape Mask". In preparation for the mission, the Multiple Beam Altimeter Lidar Experimental Lidar (MABEL), was built and flown during numerous high altitude experiments, observing a wide range of water targets. The current analysis examines several MABEL inland and near coastal coastal targets during 2012 to 2015, focusing on along track surface water height, light penetration into water under a range of atmospheric and water conditions. Sites include several Alaska lakes, the Chesapeake Bay, and the near shore Atlantic coast. Results indicate very good capability for retrieving along track surface water height and standard deviation and penetration depth. Overall, the MABEL data and subsequent analyses have demonstrated the feasibility of the ATL13 algorithm for

  15. A possible pathway for rapid growth of sulfate during haze days in China

    Science.gov (United States)

    Li, Guohui; Bei, Naifang; Cao, Junji; Huang, Rujin; Wu, Jiarui; Feng, Tian; Wang, Yichen; Liu, Suixin; Zhang, Qiang; Tie, Xuexi; Molina, Luisa T.

    2017-03-01

    Rapid industrialization and urbanization have caused frequent occurrence of haze in China during wintertime in recent years. The sulfate aerosol is one of the most important components of fine particles (PM2. 5) in the atmosphere, contributing significantly to the haze formation. However, the heterogeneous formation mechanism of sulfate remains poorly characterized. The relationships of the observed sulfate with PM2. 5, iron, and relative humidity in Xi'an, China have been employed to evaluate the mechanism and to develop a parameterization of the sulfate heterogeneous formation involving aerosol water for incorporation into atmospheric chemical transport models. Model simulations with the proposed parameterization can successfully reproduce the observed sulfate rapid growth and diurnal variations in Xi'an and Beijing, China. Reasonable representation of sulfate heterogeneous formation in chemical transport models considerably improves the PM2. 5 simulations, providing the underlying basis for better understanding the haze formation and supporting the design and implementation of emission control strategies.

  16. Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China

    Science.gov (United States)

    Liu, X.; Li, J.; Qu, Y.; Han, T.; Hou, L.; Gu, J.; Chen, C.; Yang, Y.; Liu, X.; Yang, T.; Zhang, Y.; Tian, H.; Hu, M.

    2012-07-01

    The main objective of this study is to investigate the formation and evolution mechanism of the regional haze in megacity Beijing by analyzing the process of a severe haze that occurred 20-27 September 2011. Mass concentration and size distribution of aerosol particles as well as aerosol optical properties were concurrently measured at the Beijing urban atmospheric environment monitoring station. Gaseous pollutants (SO2, NO-NO2-NOx, O3, CO) and meteorological parameters (wind speed, wind direction, and relative humidity (RH)) were simultaneously monitored. Meanwhile, aerosol spatial distribution and the height of planetary boundary layer (PBL) were retrieved from the signal of satellite and LIDAR (light detection and ranging). Results showed that high intensity of local pollutants from Beijing urban source is the fundamental cause that led to the regional haze. Meteorological factors such as higher RH, weak surface wind speed, and decreasing height of PBL played an important role on the deterioration of air quality. New particle formation was considered to be the most important factor contributing the formation of haze. In order to improve the atmospheric visibility and reduce the occurrence of the haze, the mass concentration of PM2.5 at dry condition should be less than 60 µg m-3 in Beijing according to the empirical relationship of visibility, PM2.5 mass concentration and RH. This case study may provide valuable information for the public to recognize the formation mechanism of the regional haze event over the megacity, which is also useful for the government to adopt scientific approach to forecast and eliminate the occurrence of regional haze in China.

  17. Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-07-01

    Full Text Available The main objective of this study is to investigate the formation and evolution mechanism of the regional haze in megacity Beijing by analyzing the process of a severe haze that occurred 20–27 September 2011. Mass concentration and size distribution of aerosol particles as well as aerosol optical properties were concurrently measured at the Beijing urban atmospheric environment monitoring station. Gaseous pollutants (SO2, NO-NO2-NOx, O3, CO and meteorological parameters (wind speed, wind direction, and relative humidity (RH were simultaneously monitored. Meanwhile, aerosol spatial distribution and the height of planetary boundary layer (PBL were retrieved from the signal of satellite and LIDAR (light detection and ranging. Results showed that high intensity of local pollutants from Beijing urban source is the fundamental cause that led to the regional haze. Meteorological factors such as higher RH, weak surface wind speed, and decreasing height of PBL played an important role on the deterioration of air quality. New particle formation was considered to be the most important factor contributing the formation of haze. In order to improve the atmospheric visibility and reduce the occurrence of the haze, the mass concentration of PM2.5 at dry condition should be less than 60 µg m−3 in Beijing according to the empirical relationship of visibility, PM2.5 mass concentration and RH. This case study may provide valuable information for the public to recognize the formation mechanism of the regional haze event over the megacity, which is also useful for the government to adopt scientific approach to forecast and eliminate the occurrence of regional haze in China.

  18. Single Image Haze Removal Method for Inland River

    Directory of Open Access Journals (Sweden)

    Qiu Liu

    2013-01-01

    Full Text Available Due to environmental pollution, the climate is worsening. The fog days up to 60% of the year in inland certain segments, which it has seriously affected the marine electronic cruise normal operation and navigation safety. According to the inland video image becomes gray and lack of visibility in foggy weather conditions, and in order to remove the haze to get a clear image color and contour, this paper presents a method based on Jones Extension Matrix and the Dark Channel Prior. First, we obtain the light intensity in the atmosphere and the estimated concentration of the haze by using Dark Channel Prior, and via using the Jones Extension Matrix and the parameters of Stokes' Law to eliminate part of the scattered light. At last, we have completed the function of image dehazing by brightness adjustment factor based on N pixels in the field of step brightness and improve the brightness based on Retinex Principle for the recovered image. Experimental results show this algorithm improves scenery visual effect in condition of haze. It is provided a clear video image for the marine electronic cruise in the foggy day.

  19. Condensation in Saturn's Stratospheric Haze Layers

    Science.gov (United States)

    Barth, Erika L.; Moses, Julianne I.

    2016-10-01

    Haze particles in Saturn's stratosphere can be seen in the visible limb images of Cassini's Imaging Science Subsystem (ISS). These hazes are likely a mix of particles, including solid organics formed as a result of methane photolysis and electron deposition, as well as the condensation of water and hydrocarbon ices. We have examined data from both Cassini and Voyager to study the detailed vertical structure of absorbing/scattering particulates in Saturn's stratosphere and developed a Saturn version of the Community Aerosol and Radiation Model for Atmospheres (CARMA), adding a large database of hydrocarbons that are observed or expected to be present in Saturn's atmosphere.Our modeling indicates that water ice condenses independently of the hydrocarbons to form a thin layer above the 0.1 mbar pressure level. Between about 5 and 50 mbar, the hydrocarbons reach their condensation levels (in order of increasing pressure level): C6H6, C5H12, C4H2, C4H10, and C2H2. Because of the proximity of their condensation levels and due to the gravitational settling of the particles, the hydrocarbons are likely condensing on one another and forming a thicker layer of mixed composition. Interestingly, butane (C4H10) has a triple point around 135 K which is much lower than most of the other condensing species we've explored. Given an approximate condensation level of 10 mbar and the observed temperature changes at this pressure level following the December 2010 northern-hemisphere storm (stratospheric temperatures were elevated by as much as 50-70 K in a region near 40° N latitude.), melting and further nucleation of droplets could be occurring.A number of factors including temperature profile, vapor pressure equation, volatile abundance, nucleation critical saturation, and coagulation efficiency will affect the altitudes of the individual ice layers. We will present a summary of results following the nucleation and growth of compounds in order to quantify the likely size and

  20. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models

    Directory of Open Access Journals (Sweden)

    J. P. McCormack

    2006-01-01

    Full Text Available The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP for high-altitude numerical weather prediction (NWP systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day and long-term (1-year stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.

  1. Vertical structure of foggy haze over the Beijing-Tianjin-Hebei area in January 2013

    Science.gov (United States)

    Han, Feng; Xu, Jun; He, Youjiang; Dang, Hongyan; Yang, Xuezhen; Meng, Fan

    2016-08-01

    In January 2013, frequent episodes of intense air pollution occurred in the Beijing-Tianjin-Hebei area (BTH), China. Besides the occurrence of region-wide dry haze pollution, foggy haze conditions also developed across the region on numerous days, lasting into the afternoon. Synergistic analysis, using multisatellite datasets, air sounding and surface meteorological observations, indicated that there was a vertical overlap of fog and aerosol layers during the foggy haze episodes in the region. Fog appeared at a low level of the atmosphere. The altitude of the upper boundary of the fog differed across the region, but it was always below 1 km. The aerosol layer that closely contacted with the top of the underlying fog was rather dense, having a high concentration comparable to that during severe pollution on the ground. Above the dense aerosol layer, aerosol with a concentration equivalent to that of moderate pollution stretched up to an altitude of 2 km. Beyond that, a tenuous aerosol layer extended 5 km into the atmosphere. This overlapping of fog and haze layers frequently occurred across the region in January 2013. The occurrence of a foggy haze over BTH could worsen the regional air quality, and its appearance across this region would have notable effects on the radiation balance.

  2. Cane pruning on Chardonnay grapevine in the high-altitude regions of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Filho José Luiz Marcon

    2016-01-01

    Full Text Available High-altitude regions of southern Brazil, located above 900 m above sea level, the cordon training with spur pruning is widely used because of easier application. In these regions, Chardonnay wine grape shows potential to produce quality wines, however, in commercial vineyards, the training system used has not provided productivities that makes economically viable the cultivation of this variety. Given this, the present study aimed to evaluate the effect of different cane-pruning systems on the vegetative, productive and enological potential of Chardonnay grapevines grown in the high-altitude region of Southern Brazil. The experiment was conducted in a commercial Chardonnay vineyard, located in São Joaquim – Santa Catarina State (28o17 ′39”S and 49∘ 55′56” W, to 1230 m a.s.l during 2015 and 2016 vintages. Chardonnay vines (grafted on 1103 Paulsen were planted in 2010, with a 3.0 m (row × 1.0 m (vine spacing. The treatments consisted of different cane-pruning systems: Cordon spur-pruning (control; Sylvoz; Cazenave; Capovolto; single Guyot and double Guyot. Pruning was performed in August of each year when the buds were in the green tip developmental stage. Data was analyzed by Scott Knott test (p < 0.05 following a randomized block design with four replicates, each consisting of 12 vines per plot. We observed higher yield in the Cazenave and double Guyot training system with three and two more tons of grapes than spur-pruning respectively. The bud fertility was higher in plants trained in double Guyot. Vines spur-pruned showed higher relation of leaf area: production, with values above 100 cm2 g−1 grape at 2016 vintage. Commercial maturity of grapes (soluble solids, acidity and polyphenols did not differ among training systems studied. The results suggest that cane-pruning systems could be an alternative to increase production efficiency of Chardonnay in high-altitude region of southern Brazil.

  3. Carbon accumulation in high-altitude peatlands of the Central Andes of Peru

    Science.gov (United States)

    Llanos, Romina; Moreira-Turcq, Patricia; Huaman, Yizet; Espinoza, Raul; Apaestegui, James; Turcq, Bruno; Willems, Bram

    2017-04-01

    Despite covering only 6 - 8% of the world's land surface, peatlands contain around one third of the global organic soil carbon (C) and are an important component of the global C cycle. Most studies of peatland C dynamics have been carried out on boreal and subarctic peatlands, but less is known about peatlands at lower latitudes, yet there are significant peatland C stocks in these regions that may be more vul