WorldWideScience

Sample records for high-affinity laminin receptor

  1. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor

    DEFF Research Database (Denmark)

    Rao, C N; Castronovo, V; Schmitt, M C;

    1989-01-01

    The high-affinity cellular receptor for the basement membrane component laminin is differentially expressed during tumor invasion and metastasis. A cDNA clone encoding the murine laminin receptor was isolated and identified on the basis of sequence homology to the human laminin receptor [Wewer et...... al. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 7137-7141]. Primer extension experiments demonstrated that the clone contained the complete 5' sequence of the murine laminin receptor mRNA. RNA blot data demonstrated a single-sized laminin receptor mRNA, approximately 1400 bases long, in human, mouse......, and rat. The nascent laminin receptor predicted from the cDNA sequence is 295 amino acids long, with a molecular weight of 33,000, and contains one intradisulfide bridge, a short putative transmembrane domain, and an extracellular carboxy-terminal region which has abundant glutamic acid residues...

  2. The Laminins and their Receptors

    OpenAIRE

    Ferletta, Maria

    2002-01-01

    Basement membranes are thin extracellular sheets that surround muscle, fat and peripheral nerve cells and underlay epithelial and endothelial cells. Laminins are one of the main protein families of these matrices. Integrins and dystroglycan are receptors for laminins, connecting cells to basement membranes. Each laminin consists of three different chains, (α, β, γ). Laminin-1 (α1β1γ1) was the first laminin to be found and is the most frequently studied. Despite this, it was unclear where its ...

  3. HIGH AFFINITY ACYLATING ANTAGONISTS FOR MUSCARINIC RECEPTORS

    Science.gov (United States)

    Baumgold, Jesse; Karton, Yishai; Malka, Naftali; Jacobson, Kenneth A.

    2012-01-01

    Summary The muscarinic antagonists pirenzepine and telenzepine were derivitized as alkylamino derivatives at a site on the molecules corresponding to a region of bulk tolerance in receptor binding. The distal primary amino groups were coupled to the cross-linking reagent meta-phenylene diisothiocyanate, resulting in two isothiocyanate derivatives that were found to inhibit muscarinic receptors irreversibly and in a dose-dependent fashion. Preincubation of rat forebrain membranes with an isothiocyanate derivative followed by radioligand binding using [3H]N-methylscopolamine diminished the Bmax value, but did not affect the Kd value. The receptor binding site was not restored upon repeated washing, indicating that irreversible inhibition had occurred. IC50 values for the irreversible inhibition at rat forebrain muscarinic receptors were 0.15 nM and 0.19 nM, for derivatives of pirenzepine and telenzepine, respectively. The isothiocyanate derivative of pirenzepine was non-selective as an irreversible muscarinic inhibitor, and the corresponding derivative prepared from telenzepine was 5-fold selective for forebrain (mainly m1) vs. heart (m2) muscarinic receptors. PMID:1625525

  4. High affinity ligands for 'diazepam-insensitive' benzodiazepine receptors.

    Science.gov (United States)

    Wong, G; Skolnick, P

    1992-01-14

    Structurally diverse compounds have been shown to possess high affinities for benzodiazepine receptors in their 'diazepam-sensitive' (DS) conformations. In contrast, only the imidazobenzodiazepinone Ro 15-4513 has been shown to exhibit a high affinity for the 'diazepam-insensitive' (DI) conformation of benzodiazepine receptors. We examined a series of 1,4-diazepines containing one or more annelated ring systems for their affinities at DI and DS benzodiazepine receptors, several 1,4-diazepinone carboxylates including Ro 19-4603, Ro 16-6028 and Ro 15-3505 were found to possess high affinities (Ki approximately 2.6-20 nM) for DI. Nonetheless, among the ligands examined, Ro 15-4513 was the only substance with a DI/DS potency ratio approximately 1; other substances had ratios ranging from 13 to greater than 1000. Ligands with high to moderate affinities at DI were previously classified as partial agonists, antagonists, or partial inverse agonists at DS benzodiazepine receptors, but behaved as 'GABA neutral' (antagonist) substances at DI. The identification of several additional high affinity ligands at DI benzodiazepine receptors may be helpful in elucidating the pharmacological and physiological importance of these sites.

  5. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    Science.gov (United States)

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  6. Melanoma cells produce multiple laminin isoforms and strongly migrate on α5 laminin(s) via several integrin receptors.

    Science.gov (United States)

    Oikawa, Yuko; Hansson, Johan; Sasaki, Takako; Rousselle, Patricia; Domogatskaya, Anna; Rodin, Sergey; Tryggvason, Karl; Patarroyo, Manuel

    2011-05-01

    Melanoma cells express and interact with laminins (LMs) and other basement membrane components during invasion and metastasis. In the present study we have investigated the production and migration-promoting activity of laminin isoforms in melanoma. Immunohistochemistry of melanoma specimens and immunoprecipitation/western blotting of melanoma cell lines indicated expression of laminin-111/121, laminin-211, laminin-411/421, and laminin-511/521. Laminin-332 was not detected. In functional assays, laminin-111, laminin-332, and laminin-511, but not laminin-211 and laminin-411, strongly promoted haptotactic cell migration either constitutively or following stimulation with insulin-like growth factors. Both placenta and recombinant laminin-511 preparations were highly active, and the isolated recombinant IVa domain of LMα5 also promoted cell migration. Function-blocking antibodies in cell migration assays revealed α6β1 integrin as the major receptor for laminin-111, and both α3β1 and α6β1 integrins for laminin-332 and laminin-511. In contrast, isolated LMα5 IVa domain-promoted melanoma cell migration was largely mediated via αVβ3 integrin and inhibited by RGD peptides. Given the ubiquitous expression of α5 laminins in melanoma cells and in melanoma-target tissues/anatomical structures, as well as the strong migration-promoting activity of these laminin isoforms, the α5 laminins emerge as putative primary extracellular matrix mediators of melanoma invasion and metastasis via α3β1 and other integrin receptors.

  7. The high-affinity immunoglobulin E receptor as pharmacological target.

    Science.gov (United States)

    Blank, Ulrich; Charles, Nicolas; Benhamou, Marc

    2016-05-05

    The high-affinity receptor for immunoglobulin E is expressed mainly on mast cells and basophils, but also on neutrophils, eosinophils, platelets, monocytes, Langerhans and dendritic cells, airway smooth muscle cells and some nerve cells. Its main function is, upon its engagement by IgE and specific antigen, to trigger a powerful defense against invading pathogens and a rapid neutralization of dangerous toxic substances introduced in the body. This powerful response could be wielded against tumors. But, when control over this receptor is lost, its unchecked activation can induce an array of diseases, some of which can lead to death. In this review we will summarize the pharmacological approaches and strategies that are currently used, or under study, to harness or wield activation of this receptor for therapeutic purposes.

  8. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E;

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986......). These antisera were used to study the potential role of laminin receptor in laminin-mediated attachment and haptotactic migration of human A2058 melanoma cells. The anti-laminin receptor antisera reacted with the surface of suspended, nonpermeabilized melanoma and carcinoma cells. The anti-laminin receptor...... antisera blocked the surface interaction of A2058 cells with endogenous laminin, resulting in the inhibition of laminin-mediated cell attachment. The A2058 melanoma cells migrated toward a gradient of solid phase laminin or fibronectin (haptotaxis). Anti-laminin antiserum abolished haptotaxis on laminin...

  9. Laminins.

    Science.gov (United States)

    Durbeej, Madeleine

    2010-01-01

    Laminins are cell adhesion molecules that comprise a family of glycoproteins found predominantly in basement membranes, which are the thin sheets of extracellular matrix that underlie epithelial and endothelial cells and surround muscle cells, Schwann cells, and fat cells. Many laminins self-assemble to form networks that remain in close association with cells through interactions with cell surface receptors. Laminins are vital for many physiological functions. They are essential for early embryonic development and organogenesis and have crucial functions in several tissues including muscle, nerve, skin, kidney, lung, and the vasculature. A great wealth of data on laminins is available, and an in-depth description is not attempted here. In this review, I will instead provide a snapshot of laminin structure, tissue distribution, and interactions with other matrix molecules and receptors and briefly describe laminin mutations in mice and humans. Several illuminating and timely reviews are cited that can be consulted for references to original articles and more detailed information concerning laminins.

  10. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  11. Neuroprotective effects of high affinity Σ1 receptor selective compounds.

    Science.gov (United States)

    Luedtke, Robert R; Perez, Evelyn; Yang, Shao-Hua; Liu, Ran; Vangveravong, Suwanna; Tu, Zhude; Mach, Robert H; Simpkins, James W

    2012-03-02

    We previously reported that the antipsychotic drug haloperidol, a multifunctional D2-like dopamine and sigma receptor subtype antagonist, has neuroprotective properties. In this study we further examined the association between neuroprotection and receptor antagonism by evaluating a panel of novel compounds with varying affinity at sigma and D2-like dopamine receptors. These compounds were evaluated using an in vitro cytotoxicity assay that utilizes a hippocampal-derived cell line, HT-22, in the presence or absence of varying concentrations (5 to 20 mM) of glutamate. While haloperidol was found to be a potent neuroprotective agent in this in vitro cell assay, the prototypic sigma 1 receptor agonist (+)-pentazocine was found not to be neuroprotective. Subsequently, the potency for the neuroprotection of HT-22 cells was evaluated for a) three SV series indoles which have nMolar affinity at D2-like receptors but varying affinity at sigma 1 receptor and b) two benzyl phenylacetamides sigma 1 receptor selective compounds which bind with low affinity at D2-like receptors but have nMolar affinity for the sigma 1 receptor. We observed that cytoprotection correlated with the affinity of the compounds for sigma 1 receptors. Based upon results from the HT-22 cell-based in vitro assay, two phenylacetamides, LS-127 and LS-137, were further evaluated in vivo using a transient middle cerebral artery occlusion (t-MCAO) model of stroke. At a dose of 100 μg/kg, both LS-127 and LS-137 attenuated infarct volume by approximately 50%. These studies provide further evidence that sigma 1 receptor selective compounds can provide neuroprotection in cytotoxic situations. These results also demonstrate that sigma 1 receptor selective benzyl phenylacetamides are candidate pharmacotherapeutic agents that could be used to minimize neuronal death after a stroke or head trauma.

  12. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    Science.gov (United States)

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  13. Laminins and their receptors in Schwann cells and hereditary neuropathies.

    Science.gov (United States)

    Feltri, Maria Laura; Wrabetz, Lawrence

    2005-06-01

    This review focuses on the influence of laminins, mediated through laminin receptors present on Schwann cells, on peripheral nerve development and pathology. Laminins influence multiple aspects of cell differentiation and tissue morphogenesis, including cell survival, proliferation, cytoskeletal rearrangements, and polarity. Peripheral nerves are no exception, as shown by the discovery that defective laminin signals contribute to the pathogenesis of diverse neuropathies such as merosin-deficient congenital muscular dystrophy and Charcot-Marie-Tooth 4F, neurofibromatosis, and leprosy. In the last 5 years, advanced molecular and cell biological techniques and conditional mutagenesis in mice began revealing the role of different laminins and receptors in developing nerves. In this way, we are starting to explain morphological and pathological observations beginning at the start of the last century. Here, we review these recent advances and show how the roles of laminins and their receptors are surprisingly varied in both time and place.

  14. Intestinal epithelial restitution. Involvement of specific laminin isoforms and integrin laminin receptors in wound closure of a transformed model epithelium

    DEFF Research Database (Denmark)

    Lotz, M M; Nusrat, A; Madara, J L;

    1997-01-01

    Disruptions in the mucosal lining of the gastrointestinal tract reseal by epithelial cell migration, a process termed restitution. We examined the involvement of laminin isoforms and their integrin receptors in restitution using the intestinal epithelial cell line T84. T84 cells express primarily...... laminins 5, 6, and 7 as indicated by immunostaining using laminin subunit-specific monoclonal antibodies (MAbs). A MAb (BM2) specific for the laminin alpha 3 subunit, a component of laminins 5, 6, and 7, completely inhibited the closure of mechanical wounds in T84 monolayers. Confocal microscopy using MAbs...... BM2 (laminin alpha 3 subunit) and 6F12 (laminin beta 3 subunit) revealed that laminin-5 is deposited in a basal matrix that extends into the wound. The MAbs 4E10 (laminin beta 1 subunit) and C4 (laminin beta 2 subunit) stained the lateral membranes between T84 cells. This staining was enhanced...

  15. High-affinity olfactory receptor for the death-associated odor cadaverine

    OpenAIRE

    2013-01-01

    Cadaverine and putrescine, two diamines emanating from decaying flesh, are strongly repulsive odors to humans but serve as innate attractive or social cues in other species. Here we show that zebrafish, a vertebrate model system, exhibit powerful and innate avoidance behavior to both diamines, and identify a high-affinity olfactory receptor for cadaverine.

  16. GHB receptor targets in the CNS: Focus on high-affinity binding sites

    DEFF Research Database (Denmark)

    Bay, Tina; Eghorn, Laura Friis; Klein, Anders Bue;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects...

  17. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective radiol

  18. N-Oxide analogs of WAY-100635 : new high affinity 5-HT1A receptor antagonists

    NARCIS (Netherlands)

    Marchais-Oberwinkler, S; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, HV

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective radiol

  19. Triazoloquinazolinediones as novel high affinity ligands for the benzodiazepine site of GABA(A) receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Gidlöf, Ritha; Nielsen, Elsebet Østergaard

    2011-01-01

    Based on a pharmacophore model of the benzodiazepine-binding site of GABA(A) receptors, a series of 2-aryl-2,6-dihydro[1,2,4]triazolo[4,3-c]quinazoline-3,5-diones (structure type I) were designed, synthesized, and identified as high-affinity ligands of the binding site. For several compounds, K...

  20. The Human Laminin Receptor is a Member of the Integrin Family of Cell Adhesion Receptors

    Science.gov (United States)

    Gehlsen, Kurt R.; Dillner, Lena; Engvall, Eva; Ruoslahti, Erkki

    1988-09-01

    A receptor for the adhesive basement membrane protein, laminin, was isolated from human glioblastoma cells by affinity chromatography on laminin. This receptor has a heterodimeric structure similar to that of receptors for other extracellular matrix proteins such as fibronectin and vitronectin. Incorporation of the laminin receptor into liposomal membranes makes it possible for liposomes to attach to surfaces coated with laminin. The receptor liposomes also attached to some extent to surfaces coated with fibronectin, but not with other matrix proteins. These properties identify the laminin receptor as a member of the integrin family of cell adhesion receptors.

  1. Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: Evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin.

    Science.gov (United States)

    Kawataki, Tomoyuki; Yamane, Tetsu; Naganuma, Hirofumi; Rousselle, Patricia; Andurén, Ingegerd; Tryggvason, Karl; Patarroyo, Manuel

    2007-11-01

    Glioma cell infiltration of brain tissue often occurs along the basement membrane (BM) of blood vessels. In the present study we have investigated the role of laminins, major structural components of BMs and strong promoters of cell migration. Immunohistochemical studies of glioma tumor tissue demonstrated expression of alpha2-, alpha3-, alpha4- and alpha5-, but not alpha1-, laminins by the tumor vasculature. In functional assays, alpha3 (Lm-332/laminin-5)- and alpha5 (Lm-511/laminin-10)-laminins strongly promoted migration of all glioma cell lines tested. alpha1-Laminin (Lm-111/laminin-1) displayed lower activity, whereas alpha2 (Lm-211/laminin-2)- and alpha4 (Lm-411/laminin-8)-laminins were practically inactive. Global integrin phenotyping identified alpha3beta1 as the most abundant integrin in all the glioma cell lines, and this laminin-binding integrin exclusively or largely mediate the cell migration. Moreover, pretreatment of U251 glioma cells with blocking antibodies to alpha3beta1 integrin followed by intracerebral injection into nude mice inhibited invasion of the tumor cells into the brain tissue. The cell lines secreted Lm-211, Lm-411 and Lm-511, at different ratios. The results indicate that glioma cells secrete alpha2-, alpha4- and alpha5-laminins and that alpha3- and alpha5-laminins, found in brain vasculature, selectively promote glioma cell migration. They identify alpha3beta1 as the predominant integrin and laminin receptor in glioma cells, and as a brain invasion-mediating integrin.

  2. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yliniemelae, A.; Gynther, J. (Univ. of Kuopio (Finland)); Konschin, H.; Tylli, H. (Univ. of Helsinki (Finland)); Rouvinen, J. (Univ. of Joensuu (Finland))

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  3. [3H]ATPA: a high affinity ligand for GluR5 kainate receptors.

    Science.gov (United States)

    Hoo, K; Legutko, B; Rizkalla, G; Deverill, M; Hawes, C R; Ellis, G J; Stensbol, T B; Krogsgaard-Larsen, P; Skolnick, P; Bleakman, D

    1999-12-01

    The pharmacological properties of [3H]ATPA ((RS)-2-amino-3(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid) are described. ATPA is a tert-butyl analogue of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) that has been shown to possess high affinity for the GluR5 subunit of kainate receptors. [3H]ATPA exhibits saturable, high affinity binding to membranes expressing human GluR5 (GluR5) kainate receptors (Kd approximately 13 nM). No specific binding was observed in membranes expressing GluR2 and GluR6 receptors. Several compounds known to interact with the GluR5 kainate receptor inhibited [3H]ATPA binding with potencies similar to those obtained for competition of [3H]kainate binding to GluR5. Saturable, high affinity [3H]ATPA binding (Kd approximately 4 nM) was also observed in DRG neuron (DRG) membranes isolated from neonatal rats. The rank order potency of compounds to inhibit [3H]ATPA binding in rat DRG and GluR5 membranes were in agreement. These finding demonstrate that [3H]ATPA can be used as a radioligand to examine the pharmacological properties of GluR5 containing kainate receptors.

  4. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI)

    OpenAIRE

    1992-01-01

    It has been suggested that epidermal Langerhans cells (LC) bearing immunoglobulin E (IgE) may be involved in the genesis of atopic disease. The identity of the IgE receptor(s) on LC remained unclear, although it represents a crucial point in understanding cellular events linked to the binding of allergens to LC via IgE. In this report, we demonstrate that epidermal LC express the high affinity receptor for the Fc fragment of IgE (Fc epsilon RI) which has, so far, only been described on mast c...

  5. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  6. Crystal Structure of the Human Laminin Receptor Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  7. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, C.L.; Eldefrawi, A.T.; Eldefrawi, M.E. (Univ. of Maryland, Baltimore (USA))

    1990-05-01

    The M2 subtype of muscarinic receptor is predominant in heart, and such receptors were reported to be located in muscles as well as in presynaptic cholinergic and adrenergic nerve terminals. Muscarinic receptors of rat heart were identified by the high affinity binding of the agonist (+)-(3H)cis-methyldioxolane ((3H)CD), which has been used to label a high affinity population of M2 receptors. A single population of sites was detected and (3H)CD binding was sensitive to the M2 antagonist himbacine but much less so to pirenzepine, the M1 antagonist. These cardiac receptors had different sensitivities to NiCl2 and N-ethylmaleimide from brain muscarinic receptors, that were also labeled with (3H)CD and considered to be of the M2 subtype. Up to 70% of the (3H)CD-labeled cardiac receptors had high affinities for several organophosphate (OP) anticholinesterases. (3H)CD binding was inhibited by the nerve agents soman, VX, sarin, and tabun, with K0.5 values of 0.8, 2, 20, and 50 nM, respectively. It was also inhibited by echothiophate and paraoxon with K0.5 values of 100 and 300 nM, respectively. The apparent competitive nature of inhibition of (3H)CD binding by both sarin and paraoxon suggests that the OPs bind to the acetylcholine binding site of the muscarinic receptor. Other OP insecticides had lower potencies, inhibiting less than 50% of 5 nM (3H)CD binding by 1 microM of EPN, coumaphos, dioxathion, dichlorvos, or chlorpyriphos. There was poor correlation between the potencies of the OPs in reversibly inhibiting (3H)CD binding, and their anticholinesterase activities and toxicities. Acetylcholinesterases are the primary targets for these OP compounds because of the irreversible nature of their inhibition, which results in building of acetylcholine concentrations that activate muscarinic and nicotinic receptors and desensitize them, thereby inhibiting respiration.

  8. Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants.

    Science.gov (United States)

    Reis, C R; van der Sloot, A M; Natoni, A; Szegezdi, E; Setroikromo, R; Meijer, M; Sjollema, K; Stricher, F; Cool, R H; Samali, A; Serrano, L; Quax, W J

    2010-10-21

    The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment.

  9. Glycation of the high affinity NGF-receptor and RAGE leads to reduced ligand affinity.

    Science.gov (United States)

    Bennmann, Dorit; Kannicht, Christoph; Fisseau, Claudine; Jacobs, Kathleen; Navarette-Santos, Alexander; Hofmann, Britt; Horstkorte, Rüdiger

    2015-09-01

    AGEs are posttranslational modifications generated by irreversible non-enzymatic crosslinking reactions between sugars and proteins - a reaction referred to as glycation. Glycation, a feature of ageing, can lead to non-degradable and less functional proteins and enzymes and can additionally induce inflammation and further pathophysiological processes such as neurodegeneration. In this study we investigated the influence of glycation on the high affinity NGF-receptor TrkA and the AGE-receptor RAGE. We quantified the binding affinity of the TrkA-receptor and RAGE to their ligands by surface plasmon resonance (SPR) and compared these to the binding affinity after glycation. At the same time, we established a glycation procedure using SPR. We found that glycation of TrkA reduced the affinity to NGF by a factor of three, which could be shown to lead to a reduction of NGF-dependent neurite outgrowth in PC12 cells. Glycation of RAGE reduced binding affinity of AGEs by 10-fold.

  10. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  11. [The high-affinity IgE receptor: lessons from structural analysis].

    Science.gov (United States)

    Blank, Ulrich; Jouvin, Marie-Hélène; Guérin-Marchand, Claudine; Kinet, Jean-Pierre

    2003-01-01

    The high affinity receptor for IgE, FcERI, is at the core of the allergic reaction. This receptor is expressed mainly on mast cells and basophils. Interaction of an allergen with its specific IgE bound to FcERI triggers cell activation, which induces the release of numerous mediators that are responsible for allergic manifestations. The recent increase in the prevalence of allergic diseases in developed countries has resulted in renewed efforts towards the development of new drugs. One of these is a humanised antibody directed against the IgE ligand. This antibody recognises specifically free but not FcERI-bound IgE thus preventing ligand binding and subsequent cell activation. This antibody has shown some efficacy in clinical trials involving patients with asthma and allergic rhinitis. The recent elucidation of the tridimensional structure of the complex between IgE and FcERI provides unexpected information regarding the mechanism of assembly of the complex, which now can be used to design small chemical compounds capable of specifically inhibiting this interaction.

  12. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen.

    Science.gov (United States)

    Konitsiotis, Antonios D; Raynal, Nicolas; Bihan, Dominique; Hohenester, Erhard; Farndale, Richard W; Leitinger, Birgit

    2008-03-14

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.

  13. A pharmacological profile of the high-affinity GluK5 kainate receptor.

    Science.gov (United States)

    Møllerud, Stine; Kastrup, Jette Sandholm; Pickering, Darryl S

    2016-10-05

    Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [(3)H]-kainate in receptor binding assays (Kd=6.9nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128kDa) and deglycosylated (111kDa) protein, which was identical to the band pattern of native rat brain GluK5. A pharmacological profile of the high-affinity kainate receptor GluK5 is described which is distinct from the profiles of other kainate receptors (GluK1-3). The 27 tested ligands generally show a preferential affinity to GluK1 over GluK5, the exceptions being: dihydrokainate, (S)-5-fluorowillardiine, (S)-glutamate and quisqualate, where the affinity is similar at GluK1 and GluK5. In contrast, quisqualate shows 40-fold higher affinity at GluK5 over GluK3 whereas (S)-1-(2'-amino-2'-caboxyethyl)thienol[3,4-d]pyrimidin-2,4-dione (NF1231), (RS)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2S,4R)-4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar disorder), selective GluK5 ligands could have therapeutic potential. The distinct pharmacological profile of GluK5 suggests that it would be possible to design ligands with selectivity towards GluK5.

  14. Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors.

    Directory of Open Access Journals (Sweden)

    Eleni eKonsolaki

    2016-04-01

    Full Text Available In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. Α deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-, which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioural signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviours, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm and extend the hypothesis that β2-/- animals exhibit age-related cognitive impairments, manifested in both spatial learning and recognition memory tasks. In addition, we reveal deficits in spontaneous behaviour and habituation processes earlier in life. To our knowledge, this is the first study to perform an extensive behavioural examination of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioural changes to global dementia due to the combined effect of the neuropathology and aging.

  15. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  16. Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Liotta, L A; Jaye, M

    1986-01-01

    of the receptor from different carcinoma sources and from normal placental tissue is in the range of 68-72 kDa. Isoelectric focusing and two-dimensional gel electrophoresis indicated that the receptor protein consists of one major polypeptide chain with a pI value of 6.4 +/- 0.2. Laminin receptor cDNA clones were...

  17. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj;

    2006-01-01

    Immunoglobulin (Ig)E-sensitized persons with positive skin prick test, but no allergy symptoms, are classified as being asymptomatic skin sensitized (AS). The allergic type 1 disease is dependant on IgE binding to the high affinity IgE-receptor (FcepsilonRI) expressed on basophils and mast cells...

  18. Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9.

    Science.gov (United States)

    Heikkilä, Outi; Susi, Petri; Stanway, Glyn; Hyypiä, Timo

    2009-01-01

    Coxsackievirus A9 (CAV9), a member of the genus Enterovirus in the family Picornaviridae, possesses an integrin-binding arginine-glycine-aspartic acid (RGD) motif in the C terminus of VP1 capsid protein. CAV9 has been shown to utilize integrins alphaVbeta3 and alphaVbeta6 as primary receptors for cell attachment. While CAV9 RGD-mutants (RGE and RGDdel) are capable of infecting rhabdomyosarcoma (RD) cell line, they grow very poorly in an epithelial lung carcinoma cell line (A549). In this study, the relationships between CAV9 infectivity in A549 and RD cells, receptor expression and integrin binding were analysed. A549 cells were shown to express both integrins alphaVbeta3 and alphaVbeta6, whereas alphaVbeta6 expression was not detected on the RD cells. Native CAV9 but not RGE and RGDdel mutants bound efficiently to immobilized alphaVbeta3 and alphaVbeta6. Adhesion of CAV9 but not RGE/RGDdel to A549 cells was also significantly higher than to RD cells. In contrast, no affinity or adhesion of bacterially produced VP1 proteins to the integrins or to the cells was detected. Function-blocking antibodies against alphaV-integrins blocked CAV9 but not CAV9-RGDdel infectivity, indicating that the viruses use different internalization routes; this may explain the differential infection kinetics of CAV9 and RGDdel. In an affinity assay, soluble alphaVbeta6, but not alphaVbeta3, bound to immobilized CAV9. Similarly, only soluble alphaVbeta6 blocked virus infectivity. These data suggest that CAV9 binding to alphaVbeta6 is a high-affinity interaction, which may indicate its importance in clinical infections; this remains to be determined.

  19. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity.

    Science.gov (United States)

    Sharma, P; Postel, S; Sundberg, E J; Kranz, D M

    2013-12-01

    Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.

  20. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors.

    Science.gov (United States)

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging.

  1. (TH)205-501, a non-catechol dopaminergic agonist, labels selectively and with high affinity dopamine D2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Closse, A.; Frick, W.; Markstein, R.; Maurer, R.; Nordmann, R.

    1985-01-01

    (TH)205-501, a non dopaminergic agonist, is presented as a ligand with high affinity (Ksub(D) approx= 1 nM) and high selectivity for dopamine receptors. pKsubi values of dopaminergic agonists derived from competition isotherms in the (TH)205-501 binding assay correlate very well with their potency in the acetylcholine release assay, which is controlled by dopamine D2 receptors. There is however no correlation with their potency stimulating aldenylate cyclase, a process controlled by dopamine D1 receptors. Thus (TH)205-501 is the first agonist ligand selective for dopamine D2 receptors. (Author).

  2. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

    Science.gov (United States)

    Smith, Kayla J; Murray, Iain A; Tanos, Rachel; Tellew, John; Boitano, Anthony E; Bisson, William H; Kolluri, Siva K; Cooke, Michael P; Perdew, Gary H

    2011-07-01

    The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, "pure" or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a

  3. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S.J.; Catterall, W.A.

    1982-11-01

    Specific binding of /sup 3/H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD . 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors.

  4. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate.

    Science.gov (United States)

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2016-09-01

    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  5. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype

    DEFF Research Database (Denmark)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte

    2002-01-01

    with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable......Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor...... Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding...

  6. α4βδ GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB).

    Science.gov (United States)

    Absalom, Nathan; Eghorn, Laura F; Villumsen, Inge S; Karim, Nasiara; Bay, Tina; Olsen, Jesper V; Knudsen, Gitte M; Bräuner-Osborne, Hans; Frølund, Bente; Clausen, Rasmus P; Chebib, Mary; Wellendorph, Petrine

    2012-08-14

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinity binding, we undertook photolinking studies combined with proteomic analyses and identified several GABA(A) receptor subunits as possible candidates. A subsequent functional screening of various recombinant GABA(A) receptors in Xenopus laevis oocytes using the two-electrode voltage clamp technique showed GHB to be a partial agonist at αβδ- but not αβγ-receptors, proving that the δ-subunit is essential for potency and efficacy. GHB showed preference for α4 over α(1,2,6)-subunits and preferably activated α4β1δ (EC(50) = 140 nM) over α4β(2/3)δ (EC(50) = 8.41/1.03 mM). Introduction of a mutation, α4F71L, in α4β1(δ)-receptors completely abolished GHB but not GABA function, indicating nonidentical binding sites. Radioligand binding studies using the specific GHB radioligand [(3)H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid showed a 39% reduction (P = 0.0056) in the number of binding sites in α4 KO brain tissue compared with WT controls, corroborating the direct involvement of the α4-subunit in high-affinity GHB binding. Our data link specific GHB forebrain binding sites with α4-containing GABA(A) receptors and postulate a role for extrasynaptic α4δ-containing GABA(A) receptors in GHB pharmacology and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism.

  7. (/sup 3/H)pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Watson, M.; Roeske, W.R.; Yamamura, H.I.

    1982-11-01

    The specific binding of (/sup 3/H)pirenzepine was investigated in homogenates of rat cerebral cortex, cerebellar cortex, and heart. Specific binding of (/sup 3/H)pirenzepine in the cerebral cortex as defined by displacement with atropine sulfate (1..mu..M) was of high affinity (K/sub d/ = 4-10 nM, receptor density = 1.06 pmoles/mg protein), stereoselective, and competitive with drugs specific for the muscarinic receptor. In contrast, few (/sup 3/H)pirenzepine binding sites were demonstrated in cerebellar and heart homogenates.

  8. cDNA heterogeneity suggests structural variants related to the high-affinity IgE receptor.

    OpenAIRE

    Liu, F T; Albrandt, K; Robertson, M W

    1988-01-01

    The high-affinity IgE receptor present on mast cells and basophils is responsible for the IgE-mediated activation of these cells. The current model for this receptor depicts a four-subunit structure, alpha beta gamma 2. A cDNA for the alpha subunit was recently cloned and predicts a structure consisting of two homologous extracellular domains, a transmembrane segment, and a cytoplasmic tail. Using a synthetic oligonucleotide corresponding to the amino-terminal sequence of the alpha subunit, w...

  9. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens.

    Science.gov (United States)

    Sharma, Preeti; Wang, Ningyan; Kranz, David M

    2014-01-28

    Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs), so-called because they stimulate a large fraction of an individual's T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR) on a T cell and a class II product of the major histocompatibility complex (MHC) on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V) of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1) or S. pyogenes (SpeA and SpeC) have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  10. Soluble T Cell Receptor Vβ Domains Engineered for High-Affinity Binding to Staphylococcal or Streptococcal Superantigens

    Directory of Open Access Journals (Sweden)

    Preeti Sharma

    2014-01-01

    Full Text Available Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs, so-called because they stimulate a large fraction of an individual’s T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR on a T cell and a class II product of the major histocompatibility complex (MHC on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1 or S. pyogenes (SpeA and SpeC have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  11. cDNA heterogeneity suggests structural variants related to the high-affinity IgE receptor.

    Science.gov (United States)

    Liu, F T; Albrandt, K; Robertson, M W

    1988-08-01

    The high-affinity IgE receptor present on mast cells and basophils is responsible for the IgE-mediated activation of these cells. The current model for this receptor depicts a four-subunit structure, alpha beta gamma 2. A cDNA for the alpha subunit was recently cloned and predicts a structure consisting of two homologous extracellular domains, a transmembrane segment, and a cytoplasmic tail. Using a synthetic oligonucleotide corresponding to the amino-terminal sequence of the alpha subunit, we identified a number of cDNA clones from a rat basophilic leukemia cell cDNA library. Nucleotide sequencing established four different forms of cDNA: one is nearly identical to the published cDNA; the second differs from the first in the 5' untranslated sequence; the other two forms use either one or the other of the 5'-end sequences as above and lack 163 base pairs in the region coding for the second extracellular domain. RNase protection analysis with radioactive RNA probes established the heterogeneity of rat basophilic leukemia cell mRNA with regard to both the 5' and the internal sequences. Our results suggest the existence of at least four different protein forms related to the alpha subunit of the high-affinity IgE receptor.

  12. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann

    2014-01-01

    conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed......γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate...... whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...

  13. High affinity melatonin receptors in the vertebrate brain: implications for the control of the endogenous oscillatory systems.

    Science.gov (United States)

    Fraschini, F; Stankov, B

    1994-01-01

    Currently, the melatonin receptor is depicted as a membrane-associated protein, linked to a guanine nucleotide-binding protein (G-protein), and thus the melatonin receptor represents a member of a receptor superfamily, acting through G-proteins in the first step of their signal-transduction pathways. Although on a number of occasions specific binding of radioactive melatonin has been demonstrated in a wide variety of tissues and organs, to date, high affinity G-protein-regulated melatonin binding sites, suggestive for a functional melatonin receptor, have been convincingly confirmed in the brain only. There is a significant species variation in the distribution of the melatonin receptor in the vertebrate brain. The limited number of studies prevents any definitive conclusion in terms of phylogeny, though generally speaking, the lower vertebrates' brains tend to express melatonin receptors with wider distribution. Two sites have been consistently found to express high density of melatonin receptors: the pars tuberalis of the adenohypophysis and the hypothalamic suprachiasmatic nuclei (SCN). It must be pointed out, however, that there are some exceptions. Binding in the human pars tuberalis has not been reported, and apparently, the sheep and the mustelids' suprachiasmatic nuclei do not express detectable binding. The function of melatonin in pars tuberalis is unclear, and the control of the synthesis (and release) of paracrine factors that act at site(s) distant from the melatonin target cells, have been suggested.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. High-affinity olfactory receptor for the death-associated odor cadaverine.

    Science.gov (United States)

    Hussain, Ashiq; Saraiva, Luis R; Ferrero, David M; Ahuja, Gaurav; Krishna, Venkatesh S; Liberles, Stephen D; Korsching, Sigrun I

    2013-11-26

    Carrion smell is strongly repugnant to humans and triggers distinct innate behaviors in many other species. This smell is mainly carried by two small aliphatic diamines, putrescine and cadaverine, which are generated by bacterial decarboxylation of the basic amino acids ornithine and lysine. Depending on the species, these diamines may also serve as feeding attractants, oviposition attractants, or social cues. Behavioral responses to diamines have not been investigated in zebrafish, a powerful model system for studying vertebrate olfaction. Furthermore, olfactory receptors that detect cadaverine and putrescine have not been identified in any species so far. Here, we show robust olfactory-mediated avoidance behavior of zebrafish to cadaverine and related diamines, and concomitant activation of sparse olfactory sensory neurons by these diamines. The large majority of neurons activated by low concentrations of cadaverine expresses a particular olfactory receptor, trace amine-associated receptor 13c (TAAR13c). Structure-activity analysis indicates TAAR13c to be a general diamine sensor, with pronounced selectivity for odd chains of medium length. This receptor can also be activated by decaying fish extracts, a physiologically relevant source of diamines. The identification of a sensitive zebrafish olfactory receptor for these diamines provides a molecular basis for studying neural circuits connecting sensation, perception, and innate behavior.

  15. A pharmacological profile of the high-affinity GluK5 kainate receptor

    DEFF Research Database (Denmark)

    Møllerud, Stine; Kastrup, Jette Sandholm Jensen; Pickering, Darryl S

    2016-01-01

    Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [3H]-kainate in receptor binding assays (Kd = 6.9 nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128 kDa) and deglycosylated (111 kDa) protein, which was identical to the band...

  16. A soluble form of the high affinity IgE receptor, Fc-epsilon-RI, circulates in human serum.

    Directory of Open Access Journals (Sweden)

    Eleonora Dehlink

    Full Text Available Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI, the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ∼40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum.

  17. Bodilisant-a novel fluorescent, highly affine histamine h3 receptor ligand.

    Science.gov (United States)

    Tomasch, Miriam; Schwed, J Stephan; Paulke, Alexander; Stark, Holger

    2013-02-14

    A piperidine-based lead structure for the human histamine H3 receptor (hH3R) was coupled with the BODIPY fluorophore and resulted in a strong green fluorescent (quantum yield, 0.92) hH3R ligand with affinity in the nanomolar concentration range (K i hH3R = 6.51 ± 3.31 nM), named Bodilisant. Screening for affinities at histamine and dopamine receptor subtypes showed high hH3R preference. Bodilisant was used for visualization of hH3R in hH3R overexpressing HEK-293 cells with fluorescence confocal laser scanning microscopy. In addition, in native human brain tissues, Bodilisant showed clear and displaceable images of labeled hH3R.

  18. The interaction of laminin and its membrane receptor on mouse macrophage membrane studied by STM and FRAP

    Institute of Scientific and Technical Information of China (English)

    WEIXINHUA; YONGZHAO; XIAOMINGDONG; YAXIANSU; ZILIMA; CHANGXINZHU; SHIJINPANG

    1993-01-01

    The variation of membrane surface and lateral diffusion of membrane protein was studied after the interaction of laminin with its membrane receptor in mouse macrophages. A pattern of membrane surface which showed smaller and bigger peaks was obtained by scanning tunneling microscope(STM), looking like the domains of lipid groups and proteins in the model of fluid mosaic biomembraoe. Some even more higher and wider peaks projected out from the membrane surface in STM im-age after the interacting of laminin with membrane receptor were probably, tile complexes of laminin and membraue receptor. Furthermore. the deeceasad lateral diffusion coofficeent value(D_) was obtained by Huorescence recovery after photobleaching (FRAP) after the laminin was reacted with membrane receptor. This phenomenon provides an evidence that the complexes of laminin and its membrane receptor were located on the membrane of macrophages. So we could consider that the laminin is combined with membrane receptor leading to the variation in the properties of membrane surface.

  19. Identification of 9-fluoro substituted (-)-cytisine derivatives as ligands with high affinity for nicotinic receptors.

    Science.gov (United States)

    Houllier, Nicolas; Gopisetti, JaganMohan; Lestage, Pierre; Lasne, Marie-Claire; Rouden, Jacques

    2010-11-15

    (-)-9-Fluorocytisine, (-)-9-methylcytisine and (-)-9-trifluoromethylcytisine were synthesized from the natural product (-)-cytisine. 9-Methyl and 9-trifluoromethyl cytisines display a remarkable affinity at the α(4)β(2) nicotinic receptor subtype (0.2 nM) with a high selectivity versus the α(7) nAChR subtype. Comparison of the affinity values suggests that the size of the substituent at the 9 position of (-)-cytisine seems more important than electronic factors for efficient binding and selectivity at α(4)β(2) nAChRs.

  20. A dual laminin/collagen receptor acts in peripheral nerve regeneration.

    OpenAIRE

    Toyota, B; Carbonetto, S; David, S.

    1990-01-01

    A regeneration chamber was created in vivo by suturing a synthetic tube sealed at its distal end onto the proximal stump of a severed rat sciatic nerve. Nerves regenerated into tubes coated with laminin at a rate of 0.33 mm/day after a lag of about 2 days. At 25 days, regenerating nerves had extended 23% farther into laminin-coated tubes as compared with uncoated ones. Monoclonal antibody 3A3, which functionally interferes with a dual laminin/collagen receptor, inhibited nerve regeneration in...

  1. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K

    2005-01-01

    in delivering iron to cells during formation of the tubular epithelial cells of the primordial kidney. No cellular receptor for NGAL has been described. We show here that megalin, a member of the low-density lipoprotein receptor family expressed in polarized epithelia, binds NGAL with high affinity, as shown...

  2. Cubilin, a High Affinity Receptor for Fibroblast Growth Factor 8, Is Required for Cell Survival in the Developing Vertebrate Head*

    Science.gov (United States)

    Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P.; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E.; Kozyraki, Renata

    2013-01-01

    Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity. PMID:23592779

  3. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head.

    Science.gov (United States)

    Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E; Kozyraki, Renata

    2013-06-07

    Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.

  4. ZK91587: a novel synthetic antimineralocorticoid displays high affinity for corticosterone (type I) receptors in the rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto, W.; de Kloet, E.R.

    1988-01-01

    In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15..beta.., 16..beta..b-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of (/sup 3/H) ZK91587 to the total hippocampal coritcosteroid receptor sites with high affinity, and low capacity. When 100-fold excess RU28362 was included simultaneously with (/sup 3/H) ZK91587, the labelled steroid binds with the same affinity and capacity. Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) > cortisol (F); Type II: B > F >>> ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat. The steroid dissociates following a one slope pattern, indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like receptor.

  5. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  6. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    Science.gov (United States)

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-05

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  7. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle.

    Science.gov (United States)

    Redhu, Naresh Singh; Gounni, Abdelilah S

    2013-02-01

    The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.

  8. Effect of repeated nicotine exposure on high-affinity nicotinic acetylcholine receptor density in spontaneously hypertensive rats.

    Science.gov (United States)

    Hohnadel, Elizabeth J; Hernandez, Caterina M; Gearhart, Debra A; Terry, Alvin V

    Spontaneously hypertensive rats (SHRs) are often used as a model of attention deficit hyperactivity disorder (ADHD) and to investigate the effects of hypertension on cognitive function. Further, they appear to have reduced numbers of central nicotinic acetylcholine receptors (nAChRs) and, therefore, may be useful to model certain aspects of Alzheimer's disease (AD) and other forms of dementia given that a decrease in nAChRs is thought to contribute to cognitive decline in these disorders. In the present study, based on reports that chronic nicotine exposure increases nAChRs in several mammalian models, we tested the hypothesis that repeated exposures to a relatively low dose of the alkaloid would ameliorate the receptor deficits in SHR. Thus, young-adult SHRs and age-matched Wistar-Kyoto (WKY) control rats were treated with either saline or nicotine twice a day for 14 days (total daily dose = 0.7 mg/kg nicotine base) and then sacrificed. Quantitative receptor autoradiography with [125I]-IPH, an epibatidine analog, revealed: (1) that high-affinity nAChRs were higher in saline-treated WKY (control) rats compared to saline-treated SHRs in 18 of the 19 brain region measured, although statistically different only in the mediodorsal thalamic nuclei, (2) that nicotine significantly increased nAChR binding in WKY rats in six brain areas including cortical regions and the anterior thalamic nucleus, (3) that there were no cases where nicotine significantly increased nAChR binding in SHRs. These results indicate that subjects deficient in nAChRs may be less sensitive to nAChR upregulation with nicotine than normal subjects and require higher doses or longer periods of exposure.

  9. The High Affinity IgE Receptor (FcεRI as a Target for Anti-allergic Agents

    Directory of Open Access Journals (Sweden)

    Kyoko Takahashi

    2005-01-01

    Full Text Available Prevention of the effector cell activation via high affinity IgE receptor (FcεRI is thought to be a straightforward strategy for suppressing the allergic reaction. Among the numerous methods to prevent the activation through FcεRI, three versions are described in this article. The first and second ideas involve inhibition of binding between FcεRI and IgE with a soluble form of the FceRI α chain and a humanized antibody directed against the a chain, respectively. Both of these paths involve suppression the histamine release from human peripheral blood basophils in vitro. They also inhibited the allergic reaction in vivo. The soluble α inhibited the anaphylactic reaction in rodents and the Fab fragments of the humanized anti-FcεRI α chain antibody suppressed the dermal response in rhesus monkeys. The third idea involves repression of FcεRI expression by suppressing the transcription of the genes encoding the subunits of FceRI. Although no plausible candidate molecule for actualizing this idea can be identified at present, further analyses of the transcriptional regulatory mechanisms in the human FcεRI α and β chain genes will lead to the discovery of novel targets for developing anti-allergic agents.

  10. N- and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor

    DEFF Research Database (Denmark)

    Hansen, L S; Sparre-Ulrich, A H; Christensen, M.

    2016-01-01

    BACKGROUND AND PURPOSE: Glucose-dependent insulinotropic polypeptide (GIP) impacts lipid, bone, and glucose homeostasis. The GIP receptor belongs to G protein-coupled receptor family B1 and signals through GαS. High affinity ligands for in vivo use are needed to elucidate GIP's physiological...... functions and pharmacological potential. GIP(1-30)NH2 is a naturally occurring truncation of GIP(1-42). Here we characterize eight N-terminal trrncations of human GIP(1-30)NH2 : GIP(2- to 9-30)NH2 . EXPERIMENTAL APPROACH: COS-7 cells were transiently transfected with the human GIP receptor and assessed......, but superior antagonist GIP(3-30)NH2 , that together with GIP(5-30)NH2 were high-affinity competitive antagonist and thus may be suitable tool compounds for basic GIP research and future pharmacological interventions....

  11. Human Eosinophils Express the High Affinity IgE Receptor, FcεRI, in Bullous Pemphigoid

    Science.gov (United States)

    Messingham, Kelly N.; Holahan, Heather M.; Frydman, Alexandra S.; Fullenkamp, Colleen; Srikantha, Rupasree; Fairley, Janet A.

    2014-01-01

    Bullous pemphigoid (BP) is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen). Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1) To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2) To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16) with total IgE≥400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ) of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils. PMID:25255430

  12. Human eosinophils express the high affinity IgE receptor, FcεRI, in bullous pemphigoid.

    Directory of Open Access Journals (Sweden)

    Kelly N Messingham

    Full Text Available Bullous pemphigoid (BP is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen. Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1 To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2 To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16 with total IgE ≥ 400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils.

  13. VARIATION IN MEMBRANE PROPERTIES FROM THE ACTION OF LAMININ ON MEMBRANE RECEPTORS

    Institute of Scientific and Technical Information of China (English)

    苏雅娴; 薛燕玲; 肖军军

    1995-01-01

    Biophysical studies were conducted on the action of laminin through membrane receptors of cancer cells. The results showed that variations occurred in the thermodynamic properties of membrane proteins, the mobility of hydrocarbon chains of membrane lipids, and the permeshility and transportation pathways of the membrane.

  14. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  15. The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein.

    Science.gov (United States)

    Kozyraki, R; Fyfe, J; Kristiansen, M; Gerdes, C; Jacobsen, C; Cui, S; Christensen, E I; Aminoff, M; de la Chapelle, A; Krahe, R; Verroust, P J; Moestrup, S K

    1999-06-01

    Cubilin is the intestinal receptor for the endocytosis of intrinsic factor-vitamin B12. However, several lines of evidence, including a high expression in kidney and yolk sac, indicate it may have additional functions. We isolated apolipoprotein A-I (apoA-I), the main protein of high-density lipoprotein (HDL), using cubilin affinity chromatography. Surface plasmon resonance analysis demonstrated a high-affinity binding of apoA-I and HDL to cubilin, and cubilin-expressing yolk sac cells showed efficient 125I-HDL endocytosis that could be inhibited by IgG antibodies against apoA-I and cubilin. The physiological relevance of the cubilin-apoA-I interaction was further emphasized by urinary apoA-I loss in some known cases of functional cubilin deficiency. Therefore, cubilin is a receptor in epithelial apoA-I/HDL metabolism.

  16. α4βδ GABA receptors are high-affinity targets for γ-hydroxybutyric acid (GHB)

    DEFF Research Database (Denmark)

    Absalom, N.; Karim, N.; Eghorn, L.F.;

    2012-01-01

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinit...... and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism....

  17. PED/PEA-15 interacts with the 67 kD laminin receptor and regulates cell adhesion, migration, proliferation and apoptosis

    Science.gov (United States)

    Formisano, Pietro; Ragno, Pia; Pesapane, Ada; Alfano, Daniela; Alberobello, Anna Teresa; Rea, Vincenza Elena Anna; Giusto, Raffaella; Rossi, Francesca W; Beguinot, Francesco; Rossi, Guido; Montuori, Nunzia

    2012-01-01

    Abstract Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization. PMID:21895963

  18. PED/PEA-15 interacts with the 67 kD laminin receptor and regulates cell adhesion, migration, proliferation and apoptosis.

    Science.gov (United States)

    Formisano, Pietro; Ragno, Pia; Pesapane, Ada; Alfano, Daniela; Alberobello, Anna Teresa; Rea, Vincenza Elena Anna; Giusto, Raffaella; Rossi, Francesca W; Beguinot, Francesco; Rossi, Guido; Montuori, Nunzia

    2012-07-01

    Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization.

  19. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor.

    Directory of Open Access Journals (Sweden)

    Bryan L Roth

    Full Text Available In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS-2-(ethylamino-2-(3-methoxyphenylcyclohexanone and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenylcyclohexanamine and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenylcyclohexyl]piperidine and 1-[1-(4-methoxyphenylcyclohexyl]piperidine, were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

  20. Reconstitution of high-affinity binding of a beta-scorpion toxin to neurotoxin receptor site 4 on purified sodium channels.

    Science.gov (United States)

    Thomsen, W; Martin-Eauclaire, M F; Rochat, H; Catterall, W A

    1995-09-01

    Reconstitution of purified sodium channels into phospholipid vesicles restores many aspects of sodium channel function including high-affinity neurotoxin binding and action at neurotoxin receptor sites 1-3 and 5, but neurotoxin binding and action at receptor site 4 has not previously been demonstrated in purified and reconstituted preparations. Toxin IV from the venom of the American scorpion Centruroides suffusus suffusus (Css IV), a beta-scorpion toxin, shifts the voltage dependence of sodium channel activation by binding with high affinity to neurotoxin receptor site 4. Sodium channels were purified from rat brain and reconstituted into phospholipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine (65:35). 125I-Css IV, purified by reversed-phase HPLC, bound rapidly and specifically to reconstituted sodium channels. Dissociation of the bound toxin was biphasic with half-times of 0.22 min-1 and 0.015 min-1. At equilibrium, the toxin bound to two classes of specific high-affinity sites, a variable minor class with KD of approximately 0.1 nM and a major class with a KD of approximately 5 nM. Approximately 0.8 mol 125I-Css IV was bound per mole of reconstituted, right-side-out sodium channels, as assessed from comparison of binding of saxitoxin and Css IV. Binding of Css IV was unaffected by membrane potential or by neurotoxins that bind at sites 1-3 or 5, consistent with the characteristics of binding of beta-scorpion toxins to sodium channels in cells and membrane preparations.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. beta-Arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high-affinity conformations

    DEFF Research Database (Denmark)

    Sanni, S J; Hansen, J T; Bonde, M M;

    2010-01-01

    The angiotensin II type 1 (AT(1)) receptor belongs to family A of 7 transmembrane (7TM) receptors. The receptor has important roles in the cardiovascular system and is commonly used as a drug target in cardiovascular diseases. Interaction of 7TM receptors with G proteins or beta-arrestins often...

  2. Michael Acceptor Approach to the Design of New Salvinorin A-based High Affinity Ligands for the Kappa-Opioid Receptor

    Science.gov (United States)

    Polepally, Prabhakar R.; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D.; Roth, Bryan L.; Zjawiony, Jordan K.

    2014-01-01

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand–receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure–activity relationships, and previous salvinorin A–KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR. PMID:25193297

  3. Michael acceptor approach to the design of new salvinorin A-based high affinity ligands for the kappa-opioid receptor.

    Science.gov (United States)

    Polepally, Prabhakar R; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D; Roth, Bryan L; Zjawiony, Jordan K

    2014-10-06

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand-receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure-activity relationships, and previous salvinorin A-KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR.

  4. Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia.

    Science.gov (United States)

    Lee, Tsong-Hai; Yang, Jen-Tsung; Ko, Yu-Shien; Kato, Hiroyuki; Itoyama, Yasuto; Kogure, Kyuya

    2008-01-02

    Preconditioning of gerbil brain with a sublethal forebrain ischemia is known to protect hippocampal CA1 neurons following a subsequent lethal ischemia (the second ischemia) which usually damages neurons (ischemic tolerance). Present report using a confocal laser scanning microscope demonstrated that the hippocampal cells of sham operation gerbils contained immunofluorescent NGF and BDNF and their high-affinity receptors (TrkA and TrkB). A 2-min ischemia caused little change of these proteins (ANOVA test, PBDNF but not NGF and their high-affinity receptors showed a transient reduction at 4 h (ANOVA test, PBDNF and TrkB decreased transiently from 4 h to 1 day (ANOVA test, PCA3 and dentate gyrus areas, only BDNF decreased significantly at 7 days in the CA3 area without ischemic preconditioning (ANOVA test, PCA3 and dentate gyrus areas with and without ischemic preconditioning. Western blot study showed that in the hippocampal formation with ischemic preconditioning, preconditioning prevented the decline of these protein levels from 1 day to 7 days after the second lethal ischemia (ANOVA test, P>0.05). Results of this study demonstrate that ischemic preconditioning recovers the initial decline in NGF and BDNF and their corresponding receptors in the vulnerable CA1 neurons after the second lethal ischemia, suggesting that growth factors might play a role in the protective mechanism of ischemic preconditioning.

  5. Design and Investigation of a [(18)F]-Labeled Benzamide Derivative as a High Affinity Dual Sigma Receptor Subtype Radioligand for Prostate Tumor Imaging.

    Science.gov (United States)

    Yang, Dongzhi; Comeau, Anthony; Bowen, Wayne D; Mach, Robert H; Ross, Brian D; Hong, Hao; Van Dort, Marcian E

    2017-03-06

    High overexpression of sigma (σ) receptors (σ1 and σ2 subtypes) in a variety of human solid tumors has prompted the development of σ receptor-targeting radioligands, as imaging agents for tumor detection. A majority of these radioligands to date target the σ2 receptor, a potential marker of tumor proliferative status. The identification of approximately equal proportions of both σ receptor subtypes in prostate tumors suggests that a high affinity, dual σ receptor-targeting radioligand could potentially provide enhanced tumor targeting efficacy in prostate cancer. To accomplish this goal, we designed a series of ligands which bind to both σ receptor subtypes with high affinity. Ligand 3a in this series, displaying optimal dual σ receptor subtype affinity (σ1, 6.3 nM; σ2, 10.2 nM) was radiolabeled with fluorine-18 ((18)F) to give [(18)F]3a and evaluated as a σ receptor-targeting radioligand in the mouse PC-3 prostate tumor model. Cellular assays with PC-3 cells demonstrated that a major proportion of [(18)F]3a was localized to cell surface σ receptors, while ∼10% of [(18)F]3a was internalized within cells after incubation for 3.5 h. Serial PET imaging in mice bearing PC-3 tumors revealed that uptake of [(18)F]3a was 1.6 ± 0.8, 4.4 ± 0.3, and 3.6 ± 0.6% ID/g (% injection dose per gram) in σ receptor-positive prostate tumors at 15 min, 1.5 h, and 3.5 h postinjection, respectively (n = 3) resulting in clear tumor visualization. Blocking studies conducted with haloperidol (a nonselective inhibitor for both σ receptor subtypes) confirmed that the uptake of [(18)F]3a was σ receptor-mediated. Histology analysis confirmed similar expression of σ1 and σ2 in PC-3 tumors which was significantly greater than its expression in normal organs/tissues such as liver, kidney, and muscle. Metabolite studies revealed that >50% of radioactivity in PC-3 tumors at 30 min postinjection represented intact [(18)F]3a. Prominent σ receptor-specific uptake of [(18)F]3a in

  6. High affinity binding of /sup 125/I-labeled mouse interferon to a specific cell surface receptor. II. Analysis of binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Aguet, M.; Blanchard, B.

    1981-12-01

    Direct ligand-binding studies with highly purified /sup 125/I-labeled virus-induced mouse interferon on mouse lymphoma L 1210 cells revealed a direct correlation of specific high-affinity binding with the biologic response to interferon. Neutralization of the antiviral effect by anti-interferon gamma globulin occurred at the same antibody concentration as the inhibition of specific binding. These results suggest that specific high-affinity binding of /sup 125/I-interferon occurred at a biologically functional interferon receptor. Competitive inhibition experiments using /sup 125/I- and /sup 127/I-labeled interferon provided strong evidence that the fraction of /sup 125/I-interferon inactivated upon labeling did not bind specifically. Scatchard analysis of the binding data yielded linear plots and thus suggested that interferon binds to homogeneous noncooperative receptor sites. In contrast to a characteristic property of several peptide hormone systems, binding of /sup 125/I-interferon to its specific receptor did not induce subsequent ligand degradation. At 37/sup o/ bound interferon was rapidly released in a biologically active form without evidence for molecular degradation. The expression of interferon receptors was not modified by treatment with interferon. Trypsin treatment of target cells and inhibition of protein synthesis abolished the specific binding of /sup 125/I-interferon. Three major molecular weight species of Newcastle disease virus-induced mouse C 243 cell interferon were isolated, separated, and identified as mouse ..cap alpha.. and ..beta.. interferons. These interferons were shown to inhibit competitively the specific binding of the highly purified labeled starting material thus providing evidence for a common receptor site for mouse interferon.

  7. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  8. Design and Synthesis of High-Affinity Dimeric Inhibitors Targeting the Interactions between Gephyrin and Inhibitory Neurotransmitter Receptors

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Kedström, Linda Maria Haugaard

    2015-01-01

    Gephyrin is the central scaffolding protein for inhibitory neurotransmitter receptors in the brain. Here we describe the development of dimeric peptides that inhibit the interaction between gephyrin and these receptors, a process which is fundamental to numerous synaptic functions and diseases...

  9. Humanized mAb H22 binds the human high affinity Fc receptor for IgG (FcgammaRI), blocks phagocytosis, and modulates receptor expression.

    Science.gov (United States)

    Wallace, P K; Keler, T; Coleman, K; Fisher, J; Vitale, L; Graziano, R F; Guyre, P M; Fanger, M W

    1997-10-01

    About 10-15% of patients with immune thrombocytopenic purpura (ITP) cannot be controlled by corticosteroid therapy and splenectomy. For these patients treatment with high-dose IVIgG induces partial or complete responses. The clinical benefits of IVIgG could be due to blockade of Fc receptors for IgG (FcgammaR), because several model systems clearly show that functional FcgammaR are essential for establishment of ITP and related diseases. However, the specific contributions of the three individual classes of FcgammaR remain to be more completely defined. Recently monoclonal antibody (mAb) H22, which recognizes an epitope on FcgammaRI (CD64) outside the ligand binding domain, was humanized by grafting its complementarity determining regions onto human IgG1 constant domains. Because FcgammaRI has a high affinity for human IgG1 antibodies, we predicted mAb H22 would also bind to FcgammaRI through its Fc domain and block FcgammaRI-mediated phagocytosis. These studies demonstrate that mAb H22 blocked phagocytosis of opsonized red blood cells 1000 times more effectively than an irrelevant IgG. Moreover, cross-linking FcgammaRI with mAb H22 rapidly down-modulated FcgammaRI expression on monocytes without affecting other surface antigens. We conclude that because mAb H22 is a humanized mAb that blocks the FcgammaRI ligand binding domain and down-modulates FcgammaRI expression, it is a particularly good candidate for evaluating the role of FcgammaRI in patients with ITP.

  10. Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Sheppard, P O; Jensen, L B

    2001-01-01

    and the loops connecting these. The findings offer valuable insight into the mechanism of ATD closure and family C receptor activation. Furthermore, the findings demonstrate that ATD regions other than those participating in agonist binding could be potential targets for new generations of ligands......The metabotropic glutamate receptors (mGluRs) belong to family C of the G-protein-coupled receptor (GPCR) superfamily. The receptors are characterized by having unusually long amino-terminal domains (ATDs), to which agonist binding has been shown to take place. Previously, we have constructed...... of a "closed" conformation, and thus stabilizing a more or less inactive "open" form of the ATD. This study presents the first metal ion site constructed in a family C GPCR. Furthermore, it is the first time a metal ion site has been created in a region outside of the seven transmembrane regions of a GPCR...

  11. High-affinity prorenin binding to cardiac man-6-P/IGF-II receptors precedes proteolytic activation to renin

    NARCIS (Netherlands)

    J.J. Saris (Jasper); F.H.M. Derkx (Frans); R.J.A. de Bruin (René); D.H. Dekkers (Dick); J.M.J. Lamers (Jos); P.R. Saxena (Pramod Ranjan); M.A.D.H. Schalekamp (Maarten); A.H.J. Danser (Jan)

    2001-01-01

    textabstractMannose-6-phosphate (man-6-P)/insulin-like growth factor-II (man-6-P/IgF-II) receptors are involved in the activation of recombinant human prorenin by cardiomyocytes. To investigate the kinetics of this process, the nature of activation, the existence of other prorenin

  12. LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor.

    Science.gov (United States)

    Fliegmann, Judith; Jauneau, Alain; Pichereaux, Carole; Rosenberg, Charles; Gasciolli, Virginie; Timmers, Antonius C J; Burlet-Schiltz, Odile; Cullimore, Julie; Bono, Jean-Jacques

    2016-05-01

    LYR3, LYK3, and NFP are lysin motif-containing receptor-like kinases (LysM-RLKs) from Medicago truncatula, involved in perception of symbiotic lipo-chitooligosaccharide (LCO) signals. Here, we show that LYR3, a high-affinity LCO-binding protein, physically interacts with LYK3, a key player regulating symbiotic interactions. In vitro, LYR3 is phosphorylated by the active kinase domain of LYK3. Fluorescence lifetime imaging/Förster resonance energy transfer (FLIM/FRET) experiments in tobacco protoplasts show that the interaction between LYR3 and LYK3 at the plasma membrane is disrupted or inhibited by addition of LCOs. Moreover, LYR3 attenuates the cell death response, provoked by coexpression of NFP and LYK3 in tobacco leaves.

  13. Impaired signaling via the high-affinity IgE receptor in Wiskott-Aldrich syndrome protein-deficient mast cells.

    Science.gov (United States)

    Pivniouk, Vadim I; Snapper, Scott B; Kettner, Alexander; Alenius, Harri; Laouini, Dhafer; Falet, Hervé; Hartwig, John; Alt, Frederick W; Geha, Raif S

    2003-12-01

    Wiskott-Aldrich syndrome protein (WASP) is the product of the gene deficient in boys with X-linked Wiskott-Aldrich syndrome. We assessed the role of WASP in signaling through the high-affinity IgE receptor (FcepsilonRI) using WASP-deficient mice. IgE-dependent degranulation and cytokine secretion were markedly diminished in bone marrow-derived mast cells from WASP-deficient mice. Upstream signaling events that include FcepsilonRI-triggered total protein tyrosine phosphorylation, and protein tyrosine phosphorylation of FcepsilonRIbeta and Syk were not affected by WASP deficiency. However, tyrosine phosphorylation of phospholipase Cgamma and Ca(2+) mobilization were diminished. IgE-dependent activation of c-Jun N-terminal kinase, cell spreading and redistribution of cellular F-actin in mast cells were reduced in the absence of WASP. We conclude that WASP regulates FcepsilonRI-mediated granule exocytosis, cytokine production and cytoskeletal changes in mast cells.

  14. Discovery of high affinity ligands for β2-adrenergic receptor through pharmacophore-based high-throughput virtual screening and docking.

    Science.gov (United States)

    Yakar, Ruya; Akten, Ebru Demet

    2014-09-01

    Novel high affinity compounds for human β2-adrenergic receptor (β2-AR) were searched among the clean drug-like subset of ZINC database consisting of 9,928,465 molecules that satisfy the Lipinski's rule of five. The screening protocol consisted of a high-throughput pharmacophore screening followed by an extensive amount of docking and rescoring. The pharmacophore model was composed of key features shared by all five inactive states of β2-AR in complex with inverse agonists and antagonists. To test the discriminatory power of the pharmacophore model, a small-scale screening was initially performed on a database consisting of 117 compounds of which 53 antagonists were taken as active inhibitors and 64 agonists as inactive inhibitors. Accordingly, 7.3% of the ZINC database subset (729,413 compounds) satisfied the pharmacophore requirements, along with 44 antagonists and 17 agonists. Afterwards, all these hit compounds were docked to the inactive apo form of the receptor using various docking and scoring protocols. Following each docking experiment, the best pose was further evaluated based on the existence of key residues for antagonist binding in its vicinity. After final evaluations based on the human intestinal absorption (HIA) and the blood brain barrier (BBB) penetration properties, 62 hit compounds have been clustered based on their structural similarity and as a result four scaffolds were revealed. Two of these scaffolds were also observed in three high affinity compounds with experimentally known Ki values. Moreover, novel chemical compounds with distinct structures have been determined as potential β2-AR drug candidates.

  15. Identification of high affinity bioactive Salbutamol conformer directed against mutated (Thr164Ile) beta 2 adrenergic receptor.

    Science.gov (United States)

    Bandaru, Srinivas; Tiwari, Geet; Akka, Jyothy; Marri, Vijaya Kumar; Alvala, Mallika; Gutlapalli, Venkata Ravi; Nayarisseri, Anuraj; Mundluru, Hema Prasad

    2015-01-01

    Salbutamol forms an important and widely administered β2 agonist prescribed in the symptomatic treatment of bronchial asthma. Unfortunately, a subset of patients show refractoriness to it owing to ADRB2 gene variant (rs 1800888). The variant substitutes Thr to Ile at the position 164 in the β2 adrenergic receptor leading to sub-optimal binding of agonists. The present study aims to associate the Salbutamol response with the variant and select the bioactive conformer of Sabutamol with optimal binding affinity against mutated receptor by in silico approaches. To assess bronchodilator response spirometry was performed before and 15 min after Salbutamol (200 mcg) inhalation. Responders to Salbutamol were categorized if percentage reversibility was greater than or equal to 12%, while those showing FEV₁ reversibility less than 12% were classified as non-responders. Among the 344 subjects screened, 238 were responders and 106 were non-responders. The frequency of mutant allele "T" was significantly higher in case of non-responders (p Salbutamol conformer ensembles supported by systematic search algorithm. 4369 conformers were generated of which only 1882 were considered bioactive conformers (threshold RMSD≤1 in reference to normalized structure of salbutamol). All the bioactive conformers were evaluated for the binding affinity against (Thr164 Ile) receptor through MolDock aided docking algorithm. One of the bioactive conformer (P.E. = -57.0038, RMSD = 0.6) demonstrated 1.54 folds greater affinity than the normal Salbutamol in the mutated receptor. The conformer identified in the present study may be put to pharmacodynamic and pharmacokinetic studies in future ahead.

  16. Green tea catechins potentiate the neuritogenic action of brain-derived neurotrophic factor: role of 67-kDa laminin receptor and hydrogen peroxide.

    Science.gov (United States)

    Gundimeda, Usha; McNeill, Thomas H; Fan, Tiffany K; Deng, Ronald; Rayudu, David; Chen, Zachary; Cadenas, Enrique; Gopalakrishna, Rayudu

    2014-02-28

    Delivery of optimal amounts of brain-derived neurotrophic factor (BDNF) to regions of the brain affected by neurodegenerative diseases is a daunting task. Using natural products with neuroprotective properties, such as green tea polyphenols, would be a highly useful complementary approach for inexpensive long-term treatment of these diseases. In this study, we used PC12(TrkB) cells which ectopically express TrkB, a high affinity receptor for BDNF. They differentiate and induce neurite outgrowth in response to BDNF. Using this model, we show for the first time that treatment with extremely low concentrations (BDNF. A synergistic interaction was observed between GTPP constituents, where epigallocatechin and epicatechin, both individually lacking this activity, promoted the action of EGCG. GTPP-induced potentiation of BDNF action required the cell-surface associated 67 kDa laminin receptor (67LR) to which EGCG binds with high affinity. A cell-permeable catalase abolished GTPP/EGCG-induced potentiation of BDNF action, suggesting the possible involvement of H2O2 in the potentiation. Consistently, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady-state generation (1 μM), potentiated BDNF action. Collectively, these results suggest that EGCG, dependent on 67 LR and H2O2, potentiates the neuritogenic action of BDNF. Intriguingly, this effect requires only submicromolar concentrations of EGCG. This is significant as extremely low concentrations of polyphenols are believed to reach the brain after drinking green tea.

  17. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair.

    Science.gov (United States)

    Xu, Qiang; Wang, Yanshu; Dabdoub, Alain; Smallwood, Philip M; Williams, John; Woods, Chad; Kelley, Matthew W; Jiang, Li; Tasman, William; Zhang, Kang; Nathans, Jeremy

    2004-03-19

    Incomplete retinal vascularization occurs in both Norrie disease and familial exudative vitreoretinopathy (FEVR). Norrin, the protein product of the Norrie disease gene, is a secreted protein of unknown biochemical function. One form of FEVR is caused by defects in Frizzled-4 (Fz4), a presumptive Wnt receptor. We show here that Norrin and Fz4 function as a ligand-receptor pair based on (1) the similarity in vascular phenotypes caused by Norrin and Fz4 mutations in humans and mice, (2) the specificity and high affinity of Norrin-Fz4 binding, (3) the high efficiency with which Norrin induces Fz4- and Lrp-dependent activation of the classical Wnt pathway, and (4) the signaling defects displayed by disease-associated variants of Norrin and Fz4. These data define a Norrin-Fz4 signaling system that plays a central role in vascular development in the eye and ear, and they indicate that ligands unrelated to Wnts can act through Fz receptors.

  18. New insights in the structure and biology of the high affinity receptor for IgE (Fc epsilon RI) on human epidermal Langerhans cells.

    Science.gov (United States)

    Bieber, T; Kraft, S; Jürgens, M; Strobel, I; Haberstok, J; Tomov, H; Regele, D; de la Salle, H; Wollenberg, A; Hanau, D

    1996-10-01

    The recent structural and functional analysis of the high affinity receptor for IgE (Fc epsilon RI) expressed on human epidermal Langerhans cells (LC) revealed new aspects of the biology of this structure. In contrast to basophils and mast cells where this receptor seems to be expressed constitutively at a constant level, the expression of Fc epsilon RI on LC varies on the donor and the inflammatory environment of the cells and lacks the classical beta-chain. This also implies functional differences most probably related to the expression level. Although the signalling pathway seems to be similar to that of basophils or mast cells, LC from individuals with atopic dermatitis are fully activated by receptor ligation while LC from normal individuals fail to exhibit calcium mobilization under the same conditions. Finally, LC from normal and atopic individuals use Fc epsilon RI to maximize antigen uptake via specific IgE and subsequent presentation to T cells. Thus, Fc epsilon RI expressed on LC differs in terms of structure and function from that expressed on effector cells of anaphylaxis.

  19. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors.

    Science.gov (United States)

    Ozoe, Yoshihisa; Kita, Tomo; Ozoe, Fumiyo; Nakao, Toshifumi; Sato, Kazuyuki; Hirase, Kangetsu

    2013-11-01

    γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides

  20. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    Science.gov (United States)

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date.

  1. High Affinity Dopamine D3 Receptor (D3R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D3R Knockout Mice.

    Science.gov (United States)

    Boateng, Comfort A; Bakare, Oluyomi M; Zhan, Jia; Banala, Ashwini K; Burzynski, Caitlin; Pommier, Elie; Keck, Thomas M; Donthamsetti, Prashant; Javitch, Jonathan A; Rais, Rana; Slusher, Barbara S; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-08-13

    The dopamine D3 receptor (D3R) is a promising target for the development of pharmacotherapeutics to treat substance use disorders. Several D3R-selective antagonists are effective in animal models of drug abuse, especially in models of relapse. Nevertheless, poor bioavailability, metabolic instability, and/or predicted toxicity have impeded success in translating these drug candidates to clinical use. Herein, we report a series of D3R-selective 4-phenylpiperazines with improved metabolic stability. A subset of these compounds was evaluated for D3R functional efficacy and off-target binding at selected 5-HT receptor subtypes, where significant overlap in SAR with D3R has been observed. Several high affinity D3R antagonists, including compounds 16 (Ki = 0.12 nM) and 32 (Ki = 0.35 nM), showed improved metabolic stability compared to the parent compound, PG648 (6). Notably, 16 and the classic D3R antagonist SB277011A (2) were effective in reducing self-administration of heroin in wild-type but not D3R knockout mice.

  2. Cloning and characterization of 37 kDa laminin receptor precursor in pearl oyster, Pinctada fucata

    Institute of Scientific and Technical Information of China (English)

    Yaopeng Fu; Liping Xie; Rongqing Zhang

    2008-01-01

    A 1063 bp cDNA clone encoding a putative 37 kDa laminin receptor precursor (37 kDa LRP) is isolated from the mantle tissue of pearl oyster, Pinctadafucata. The amino acid sequence predicted from the cDNA sequence is 301 residues long, with a calculated molecular mass of 33.5 kDa. RT-PCR analysis shows that 37 kDa LRP mRNA is especially highly expressed in the mantle while widely expressed in several tissues. In situ hybridization analysis reveals that 37 kDa LRP is expressed in the outer epithelial cells of the mantle edge, suggesting its involvement in cell proliferation and secretion in P. Fucata. The identification and characterization of 37 kDa LRP in the pearl oyster will help us to further understand the signal transduction in the processes of mantle epithelial cell proliferation and tissue formation.

  3. The matrix metalloproteinase stromelysin-3 cleaves laminin receptor at two distinct sites between the transmembrane domain and laminin binding sequence within the extracellular domain

    Institute of Scientific and Technical Information of China (English)

    Tosikazu AMANO; Olivia KWAK; Liezhen FU; Anastasia MARSHAK; Yun-Bo SHI

    2005-01-01

    The matrix metalloproteinase (MMP) stromelysin-3 (ST3) has long been implicated to play an important role in extracellular matrix (ECM) remodeling and cell fate determination during normal and pathological processes. However,like other MMPs, the molecular basis of ST3 function in vivo remains unclear due to the lack of information on its physiological substrates. Furthermore, ST3 has only weak activities toward all tested ECM proteins. Using thyroid hormone-dependent Xenopus laevis metamorphosis as a model, we demonstrated previously that ST3 is important for apoptosis and tissue morphogenesis during intestinal remodeling. Here, we used yeast two-hybrid screen with mRNAs from metamorphosing tadpoles to identify potential substrate of ST3 during development. We thus isolated the 37 kd laminin receptor precursor (LR). We showed that LR binds to ST3 in vitro and can be cleaved by ST3 at two sites,distinct from where other MMPs cleave. Through peptide sequencing, we determined that the two cleavage sites are in the extracellular domain between the transmembrane domain and laminin binding sequence. Furthermore, we demonstrated that these cleavage sites are conserved in human LR. These results together with high levels of human LR and ST3 expression in carcinomas suggest that LR is a likely in vivo substrate of ST3 and that its cleavage by ST3 may alter cell-extracellular matrix interaction, thus, playing a role in mediating the effects of ST3 on cell fate and behavior observed during development and pathogenesis.

  4. Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria

    Science.gov (United States)

    Porcherie, Adeline; Mathieu, Cedric; Peronet, Roger; Schneider, Elke; Claver, Julien; Commere, Pierre-Henri; Kiefer-Biasizzo, Hélène; Karasuyama, Hajime; Milon, Geneviève; Dy, Michel; Kinet, Jean-Pierre; Louis, Jacques; Blank, Ulrich

    2011-01-01

    The role of the IgE–FcεRI complex in malaria severity in Plasmodium falciparum–hosting patients is unknown. We demonstrate that mice genetically deficient for the high-affinity receptor for IgE (FcεRIα-KO) or for IgE (IgE-KO) are less susceptible to experimental cerebral malaria (ECM) after infection with Plasmodium berghei (PbANKA). Mast cells and basophils, which are the classical IgE-expressing effector cells, are not involved in disease as mast cell–deficient and basophil-depleted mice developed a disease similar to wild-type mice. However, we show the emergence of an FcεRI+ neutrophil population, which is not observed in mice hosting a non–ECM-inducing PbNK65 parasite strain. Depletion of this FcεRI+ neutrophil population prevents ECM, whereas transfer of this population into FcεRIα-KO mice restores ECM susceptibility. FcεRI+ neutrophils preferentially home to the brain and induce elevated levels of proinflammatory cytokines. These data define a new pathogenic mechanism of ECM and implicate an FcεRI-expressing neutrophil subpopulation in malaria disease severity. PMID:21967768

  5. Analysis of the conformation and thermal stability of the high-affinity IgE Fc receptor β chain polymorphic proteins.

    Science.gov (United States)

    Terada, Tomoyoshi; Takahashi, Teppei; Arikawa, Hajime; Era, Seiichi

    2016-07-01

    The high-affinity IgE Fc receptor (FcεRI) β chain acts as a signal amplifier through the immunoreceptor tyrosine-based activation motif in its C-terminal intracellular region. Polymorphisms in FcεRI β have been linked to atopy, asthma, and allergies. We investigated the secondary structure, conformation, and thermal stability of FcεRI β polymorphic (β-L172I, β-L174V, and β-E228G) proteins. Polymorphisms did not affect the secondary structure and conformation of FcεRI β. However, we calculated Gibbs free energy of unfolding (ΔGunf) and significant differences were observed in ΔGunf values between the wild-type FcεRI β (β-WT) and β-E228G. These results suggested that β-E228G affected the thermal stability of FcεRI β. The role of β-E228G in biological functions and its involvement in allergic reactions have not yet been elucidated in detail; therefore, differences in the thermal stability of β-E228G may affect the function of FcεRI β.

  6. The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca(2+) binding site.

    Science.gov (United States)

    Laver, Derek R; Hamada, Tomoyo; Fessenden, James D; Ikemoto, Noriaki

    2007-12-01

    In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.

  7. Proteolytic fragments of laminin promote excitotoxic neurodegeneration by up-regulation of the KA1 subunit of the kainate receptor.

    Science.gov (United States)

    Chen, Zu-Lin; Yu, Huaxu; Yu, Wei-Ming; Pawlak, Robert; Strickland, Sidney

    2008-12-29

    Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin gamma1 (lamgamma1) expression in the hippocampus. Lamgamma1 knockout (KO) and control mice had similar basal expression of kainate (KA) receptors, but the lamgamma1 KO mice were resistant to KA-induced neuronal death. After KA injection, KA1 subunit levels increased in control mice but were unchanged in lamgamma1 KO mice. KA1 levels in tissue plasminogen activator (tPA)-KO mice were also unchanged after KA, indicating that both tPA and laminin were necessary for KA1 up-regulation after KA injection. Infusion of plasmin-digested laminin-1 into the hippocampus of lamgamma1 or tPA KO mice restored KA1 up-regulation and KA-induced neuronal degeneration. Interfering with KA1 function with a specific anti-KA1 antibody protected against KA-induced neuronal death both in vitro and in vivo. These results demonstrate a novel pathway for neurodegeneration involving proteolysis of the ECM and KA1 KA receptor subunit up-regulation.

  8. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF.

    Science.gov (United States)

    Tavernier, J; Devos, R; Cornelis, S; Tuypens, T; Van der Heyden, J; Fiers, W; Plaetinck, G

    1991-09-20

    cDNA clones encoding two receptor proteins involved in the binding of human interleukin 5 (hIL5) have been isolated. A first class codes for an IL5-specific chain (hIL5R alpha). The major transcript of this receptor gene, as analyzed in both HL-60 eosinophilic cells and eosinophilic myelocytes grown from cord blood, encodes a secreted form of this receptor. This soluble hIL5R alpha has antagonistic properties. A second component of the hIL5R is found to be identical to the beta chain of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) high affinity receptor. The finding that IL5 and GM-CSF share a receptor subunit provides a molecular basis for the observation that these cytokines can partially interfere with each other's binding and have highly overlapping biological activities on eosinophils.

  9. Preliminary assessment of extrastriatal dopamine d-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, {sup 18}F-fallypride

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jogeshwar E-mail: jogeshwar-mukherjee@ketthealth.com; Yang, Z.-Y.; Brown, Terry; Lew, Robert; Wernick, Miles; Ouyang Xiaohu; Yasillo, Nicholas; Chen, C.-T.; Mintzer, Robert; Cooper, Malcolm

    1999-07-01

    We have identified the value of {sup 18}F-fallypride {l_brace}(S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3-dim= ethoxybenzamide{r_brace}, as a dopamine D-2 receptor radiotracer for the study of striatal and extrastriatal receptors. Fallypride exhibits high affinities for D-2 and D-3 subtypes and low affinity for D-4 ({sup 3}H-spiperone IC{sub 50}s: D-2=0.05 nM [rat striata], D-3=0.30 nM [SF9 cell lines, rat recombinant], and D-4=240 nM [CHO cell lines, human recombinant]). Biodistribution in the rat brain showed localization of {sup 18}F-fallypride in striata and extrastriatal regions such as the frontal cortex, parietal cortex, amygdala, hippocampus, thalamus, and hypothalamus. In vitro autoradiographic studies in sagittal slices of the rat brain showed localization of {sup 18}F-fallypride in striatal and several extrastriatal regions, including the medulla. Positron emission tomography (PET) experiments with {sup 18}F-fallypride in male rhesus monkeys were carried out in a PET VI scanner. In several PET experiments, apart from the specific binding seen in the striatum, specific binding of {sup 18}F-fallypride was also identified in extracellular regions (in a lower brain slice, possibly the thalamus). Specific binding in the extrastriata was, however, significantly lower compared with that observed in the striata of the monkeys (extrastriata/cerebellum = 2, striata/cerebellum = 10). Postmortem analysis of the monkey brain revealed significant {sup 18}F-fallypride binding in the striata, whereas binding was also observed in extrastriatal regions such as the thalamus, cortical areas, and brain stem.

  10. Fc-epsilon-RI, the high affinity IgE-receptor, is robustly expressed in the upper gastrointestinal tract and modulated by mucosal inflammation.

    Directory of Open Access Journals (Sweden)

    Christina Bannert

    Full Text Available BACKGROUND: The role of the high affinity IgE receptor, FcεRI, in IgE-mediated immune responses of the gastrointestinal (GI mucosa is poorly understood. Currently, a detailed characterization of FcεRI expression throughout the human gut is lacking. The aim of this study was to define the expression pattern of FcεRI in the GI tract. METHODS/PRINCIPAL FINDINGS: We compared FcεRI expression in children with gastritis/esophagitis (n = 10, celiac disease (n = 10, inflammatory bowel disease (IBD (n = 9, and normal mucosa (n = 5. The α-subunit of FcεRI (FcεRIα, detected by immunohistochemistry, was found on cells infiltrating the mucosa of the esophagus, the stomach, and the duodenum, but was rarely detected in more distal sections of the GI tract. Accordingly, quantitative RT-PCR analysis on esophagus, stomach, duodenum, colon, and rectum biopsies revealed that FcεRIα and -β expression levels decreased towards the distal intestine. mRNA transcripts of the common Fc-receptor-γ chain were present in the entire GI mucosa. Double-immunofluorescence staining of esophageal specimens confirmed that FcεRIα was expressed on intraepithelial mast cells and Langerhans cells. The mRNA expression levels of the α, β, and γ subunits of FcεRI did not correlate with total serum IgE but were associated with mucosal inflammation. CONCLUSION/SIGNIFICANCE: Our data define the upper GI tract as the main site for IgE-mediated immune activation via FcεRI. Tissue mRNA levels of FcεRIα are regulated by inflammatory conditions rather than serum IgE, indicating that FcεRI might also play a role in pathologies other than allergy.

  11. Betaglycan has two independent domains required for high affinity TGF-β binding: proteolytic cleavage separates the domains and inactivates the neutralizing activity of the soluble receptor

    Science.gov (United States)

    Mendoza, Valentín; Vilchis-Landeros, M. Magdalena; Mendoza-Hernández, Guillermo; Huang, Tao; Villarreal, Maria M.; Hinck, Andrew P.; López-Casillas, Fernando; Montiel, Jose-Luis

    2009-01-01

    Summary Betaglycan is a co-receptor for members of the TGF-β superfamily. Mutagenesis has identified two ligand binding regions, one at the membrane-distal and the other at the membrane-proximal half of the betaglycan ectodomain. Here we show that partial plasmin digestion of soluble betaglycan produces two proteolysis-resistant fragments of 45 and 55 kDa, consistent with the predicted secondary structure, which indicates an intervening non-structured linker region separating the highly structured N- and C-terminal domains. Amino terminal sequencing indicates that the 45 and 55 kDa fragments correspond, respectively, to the membrane-distal and -proximal regions. Plasmin treatment of membrane betaglycan results in the production of equivalent proteolysis-resistant fragments. The 45 and 55 kDa fragments, as well as their recombinant soluble counterparts, Sol Δ10 and Sol Δ11, bind TGF-β, nonetheless, compared to intact soluble betaglycan, have severely diminished ability to block TGF-β activity. Surface plasmon resonance (SPR) analysis indicates that soluble betaglycan has Kds in the low nanomolar range for the three TGF-β isoforms, while those for Sol Δ10 and Sol Δ11 are 1 – 2 orders of magnitude higher. SPR analysis further shows that the Kds of Sol Δ11 are not changed in the presence of Sol Δ10, indicating that the high affinity of soluble betaglycan is a consequence of tethering of the domains together. Overall, these results, suggest that betaglycan ectodomain exhibits a bi-lobular structure in which each lobule folds independently, binds TGF-β through distinct non-overlapping interfaces, and that linker modification may be an approach to improve soluble betaglycan’s TGF-β neutralizing activity. PMID:19842711

  12. Pharmacokinetics, pharmacodynamics and safety of CEP-26401, a high-affinity histamine-3 receptor antagonist, following single and multiple dosing in healthy subjects.

    Science.gov (United States)

    Spiegelstein, Ofer; Stevens, Jasper; Van Gerven, Joop; Nathan, Pradeep J; Maynard, James P; Mayleben, David W; Hellriegel, Edward; Yang, Ronghua

    2016-10-01

    CEP-26401 is a novel orally active, brain-penetrant, high-affinity histamine H3 receptor (H3R) antagonist, with potential therapeutic utility in cognition enhancement. Two randomized, double-blind, placebo-controlled dose escalation studies with single (0.02 to 5 mg) or multiple administration (0.02 to 0.5 mg once daily) of CEP-26401 were conducted in healthy subjects. Plasma and urine samples were collected to investigate CEP-26401 pharmacokinetics. Pharmacodynamic endpoints included a subset of tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and nocturnal polysomnography. Population pharmacokinetic-pharmacodynamic modeling was conducted on one CANTAB and one polysomnography parameter of interest. CEP-26401 was slowly absorbed (median tmax range 3-6 hours) and the mean terminal elimination half-life ranged from 24-60 hours. Steady-state plasma concentrations were achieved within six days of dosing. CEP-26401 exhibits dose- and time-independent pharmacokinetics, and renal excretion is a major elimination pathway. CEP-26401 had a dose-dependent negative effect on sleep, with some positive effects on certain CANTAB cognitive parameters seen at lower concentrations. The derived three compartment population pharmacokinetic model, with first-order absorption and elimination, accurately described the available pharmacokinetic data. CEP-26401 was generally well tolerated up to 0.5 mg/day with most common treatment related adverse events being headache and insomnia. Further clinical studies are required to establish the potential of low-dose CEP-26401 in cognition enhancement. © The Author(s) 2016.

  13. Polyphenols from green tea prevent antineuritogenic action of Nogo-A via 67-kDa laminin receptor and hydrogen peroxide.

    Science.gov (United States)

    Gundimeda, Usha; McNeill, Thomas H; Barseghian, Barsegh A; Tzeng, William S; Rayudu, David V; Cadenas, Enrique; Gopalakrishna, Rayudu

    2015-01-01

    Axonal regeneration after injury to the CNS is hampered by myelin-derived inhibitors, such as Nogo-A. Natural products, such as green tea, which are neuroprotective and safe for long-term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor-differentiated neuronal-like Neuroscreen-1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin-3-gallate (EGCG), prevent both the neurite outgrowth-inhibiting activity and growth cone-collapsing activity of Nogo-66 (C-terminal domain of Nogo-A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67-kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N-acetylcysteine and cell-permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2 O2 in this process. Accordingly, exogenous sublethal concentrations of H2 O2 , added as a bolus dose (5 μM) or more effectively through a steady-state generation (1-2 μM), mimicked GTPP in counteracting the action of Nogo-66. Exogenous H2 O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2 O2 , inhibit the antineuritogenic action of Nogo-A. Currently, several agents are being evaluated for overcoming axonal growth inhibitors to promote functional recovery after stroke and spinal cord injury. Epigallocatechin-3-gallate (EGCG), present in green tea polyphenol mixture (GTPP), prevents antineuritogenic activity of Nogo-A, a myelin-derived axonal growth inhibitor. The preventive action of EGCG involves the cell-surface-associated 67-kDa laminin receptor and H2 O2 . GTPP may complement ongoing efforts to treat neuronal injuries.>

  14. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    The urokinase plasminogen activator receptor (uPAR) is a membrane protein comprised of three extracellular domains. In order to study the importance of this domain organization in the ligand-binding process of the receptor we subjected a recombinant, soluble uPAR (suPAR) to specific proteolytic c...

  15. Two dimensional VOPBA reveals laminin receptor (LAMR1 interaction with dengue virus serotypes 1, 2 and 3

    Directory of Open Access Journals (Sweden)

    Cardosa Mary

    2005-03-01

    Full Text Available Abstract Background The search for the dengue virus receptor has generated many candidates often identified only by molecular mass. The wide host range of the viruses in vitro combined with multiple approaches to identifying the receptor(s has led to the notion that many receptors or attachment proteins may be involved and that the different dengue virus serotypes may utilize different receptors on the same cells as well as on different cell types. Results In this study we used sequential extraction of PS Clone D cell monolayers with the detergent β-octylglucopyranoside followed by sodium deoxycholate to prepare a cell membrane-rich fraction. We then used 2 dimensional (2D gel electrophoresis to separate the membrane proteins and applied a modified virus overlay protein binding assay (VOPBA to show that dengue virus serotypes 1, 2 and 3 all interact with the 37 kDa/67 kDa laminin receptor (LAMR1, a common non-integrin surface protein on many cell types. Conclusion At least 3 of the 4 dengue serotypes interact with the 37 kDa/67 kDa laminin receptor, LAMR1, which may be a common player in dengue virus-cell surface interaction.

  16. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    Science.gov (United States)

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

  17. Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle.

    Science.gov (United States)

    Sztal, Tamar E; Sonntag, Carmen; Hall, Thomas E; Currie, Peter D

    2012-11-01

    Laminins form essential components of the basement membrane and are integral to forming and maintaining muscle integrity. Mutations in the human Laminin-alpha2 (LAMA2) gene result in the most common form of congenital muscular dystrophy, MDC1A. We have previously identified a zebrafish model of MDC1A called candyfloss (caf), carrying a loss-of-function mutation in the zebrafish lama2 gene. In the skeletal muscle, laminins connect the muscle cell to the extracellular matrix (ECM) by binding either dystroglycan or integrins at the cell membrane. Through epistasis experiments, we have established that both adhesion systems individually contribute to the maintenance of fibre adhesions and exhibit muscle detachment phenotypes. However, larval zebrafish in which both adhesion systems are simultaneously genetically inactivated possess a catastrophic failure of muscle attachment that is far greater than a simple addition of individual phenotypes would predict. We provide evidence that this is due to other crucial laminins present in addition to Lama2, which aid muscle cell attachments and integrity. We have found that lama1 is important for maintaining attachments, whereas lama4 is localized and up-regulated in damaged fibres, which appears to contribute to fibre survival. Importantly, our results show that endogenous secretion of laminins from the surrounding tissues has the potential to reinforce fibre attachments and strengthen laminin-ECM attachments. Collectively these findings provide a better understanding of the cellular pathology of MDC1A and help in designing effective therapies.

  18. Functional diversity of laminins.

    Science.gov (United States)

    Domogatskaya, Anna; Rodin, Sergey; Tryggvason, Karl

    2012-01-01

    Laminins are a large family of conserved, multidomain trimeric basement membrane proteins that contribute to the structure of extracellular matrix and influence the behavior of associated cells, such as adhesion, differentiation, migration, phenotype stability, and resistance to anoikis. In lower organisms such as Hydra there is only one isoform of laminin, but higher organisms have at least 16 trimeric isoforms with varying degrees of cell/tissue specificity. In vitro protein and cell culture studies, gene manipulation in animals, and laminin gene mutations in human diseases have provided insight into the specific functions of some laminins, but the biological roles of many isoforms are still largely unexplored, mainly owing to difficulties in isolating them in pure form from tissues or cells. In this review, we elucidate the evolution of laminins, describe their molecular complexity, and explore the current knowledge of their diversity and functional aspects, including laminin-mediated signaling via membrane receptors, in vitro cell biology, and involvement in various tissues gained from animal model and human disease studies. The potential use of laminins in cell biology research and biotechnology is discussed.

  19. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    . The purified suPAR was cross-linked to the radiolabeled amino-terminal fragment (ATF) of urokinase, followed by cleavage with chymotrypsin. In accordance with the cleavage pattern found for the uncomplexed receptor, this treatment led to cleavage between D1 and D(2 + 3). Analysis of the radiolabeled fragments...... revealed the expected ligand labeling of D1 but a clear labeling of D(2 + 3) was also found, indicating that this part of the molecule is also situated in close contact with ATF in the receptor-ligand complex. The latter contact site may contribute to the role of molecular regions outside D1 in high...

  20. GABA-agonists induce the formation of low-affinity GABA-receptors on cultured cerebellar granule cells via preexisting high affinity GABA receptors

    DEFF Research Database (Denmark)

    Belhage, B; Meier, E; Schousboe, A

    1986-01-01

    The kinetics of specific GABA-binding to membranes isolated from cerebellar granule cells, cultured for 12 days from dissociated cerebella of 7-day-old rats was studied using [3H]GABA as the ligand. The granule cells were cultured in the presence of the specific GABA receptor agonist 4, 5, 6, 7-t...

  1. Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. Part 8. High affinity ligands for opioid receptors in the picomolar Ki range: oxygenated N-(2-[1,1'-biphenyl]-4-ylethyl) analogues of 8-CAC.

    Science.gov (United States)

    Wentland, Mark P; Jo, Sunjin; Gargano, Joseph M; VanAlstine, Melissa A; Cohen, Dana J; Bidlack, Jean M

    2012-12-15

    N-[2-(4'-methoxy[1,1'-biphenyl]-4-yl)ethyl]-8-CAC (1) is a high affinity (K(i)=0.084 nM) ligand for the μ opioid receptor and served as the lead compound for this study. Analogues of 1 were made in hopes of identifying an SAR within a series of oxygenated (distal) phenyl derivatives. A number of new analogues were made having single-digit pM affinity for the μ receptor. The most potent was the 3',4'-methylenedioxy analogue 18 (K(i)=1.6 pM).

  2. Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals.

    Science.gov (United States)

    Wang, Bo; Lee, Chang-Han; Johnson, Erik L; Kluwe, Christien A; Cunningham, Josephine C; Tanno, Hidetaka; Crooks, Richard M; Georgiou, George; Ellington, Andrew D

    2016-01-01

    Ricin is a toxin that could potentially be used as a bioweapon. We identified anti-ricin A chain antibodies by sequencing the antibody repertoire from immunized mice and by selecting high affinity antibodies using yeast surface display. These methods led to the isolation of multiple antibodies with high (sub-nanomolar) affinity. Interestingly, the antibodies identified by the 2 independent approaches are from the same clonal lineages, indicating for the first time that yeast surface display can identify native antibodies. The new antibodies represent well-characterized reagents for biodefense diagnostics and therapeutics development.

  3. Activation of the elastin-laminin receptor (S-Gal) induces preconditioning in isolated rat heart submitted to ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    ArnaudROBINET; GeorgesBELLON; WilliamHORNEBECK; HerveMILLART

    2004-01-01

    AIM: Elastin-laminin receptor (S-Gal), was described to belong to G-protein-coupled receptors (GPCRs). Using an isolated nonworking rat heart model, we investigated whether S-Gal stimulation was able to mimic ischemic preconditioning as observed with some other GPCRs. METHODS: Hearts, after 6-hydroxydopamine pretreatment and a 20-min stabilization period,

  4. Crystallization and preliminary X-ray structural studies of a high-affinity CD8αα co-receptor to pMHC

    Energy Technology Data Exchange (ETDEWEB)

    Cole, David K. [Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DU (United Kingdom); Rizkallah, Pierre J., E-mail: p.j.rizkallah@dl.ac.uk [CCLRC Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); Sami, Malkit; Lissin, Nikolai M.; Gao, Feng [Avidex Ltd, 57c Milton Park, Abingdon, Oxon OX14 4RX (United Kingdom); Bell, John I. [Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DU (United Kingdom); Boulter, Jonathan M. [Medical Biochemistry and Immunology, Henry Wellcome Building, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN,Wales (United Kingdom); Glick, Meir [Novartis Pharmaceuticals, One Health Plaza, East Hanover, NJ 07936 (United States); Vuidepot, Anne-Lise; Jakobsen, Bent K., E-mail: p.j.rizkallah@dl.ac.uk [Avidex Ltd, 57c Milton Park, Abingdon, Oxon OX14 4RX (United Kingdom); Gao, George F. [Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DU (United Kingdom)

    2005-03-01

    A high-affinity mutant CD8 (haCD8) has been developed with the aim of developing a therapeutic immunosuppressor. In order to fully understand the nature of the haCD8 interaction, this protein was crystallized using the sitting-drop vapour-diffusion method. The class I CD8 positive T-cell response is involved in a number of conditions in which artificial down-regulation and control would be therapeutically beneficial. Such conditions include a number of autoimmune diseases and graft rejection in transplant patients. Although the CD8 T-cell response is dominated by the TCR–pMHC interaction, activation of T cells is in most cases also dependent on a number of associated signalling molecules. Previous work has demonstrated the ability of one such molecule (CD8) to act as an antagonist to T-cell activation if added in soluble form. Therefore, a high-affinity mutant CD8 (haCD8) has been developed with the aim of developing a therapeutic immunosuppressor. In order to fully understand the nature of the haCD8 interaction, this protein was crystallized using the sitting-drop vapour-diffusion method. Single haCD8 crystals were cryocooled and used for data collection. These crystals belonged to space group P6{sub 4}22 (assumed by similarity to the wild type), with unit-cell parameters a = 101.08, c = 56.54 Å. V{sub M} calculations indicated one molecule per asymmetric unit. A 2 Å data set was collected and the structure is currently being determined using molecular replacement.

  5. El receptor de la hormona de crecimiento humana (hGH y la proteína de transporte de alta afinidad de la hGH Human Growth Hormone (GH Receptor and the High Affinity GH-Binding Protein

    Directory of Open Access Journals (Sweden)

    María Gabriela Ballerini

    2008-03-01

    Full Text Available La hormona de crecimiento humana (hGH circula parcialmente unida a su proteína de transporte de alta afinidad (GHBP la cual resulta del clivaje proteolítico del dominio extracelular del receptor de GH. Recientemente la enzima TACE se identificó como la metaloproteasa responsable del clivaje y liberación de GHBP a circulación. Aunque aún se desconoce la función específica de esta proteína de transporte, distintos trabajos en la literatura demuestran efectos que potencian y efectos inhibitorios sobre la acción de GH. Por otro lado, existen evidencias que demuestran una fuerte relación entre la GHBP y el nivel de receptor de GH en el hígado en situaciones fisiológicas y patológicas. Esto permitió proponer a la determinación de GHBP en suero como un marcador periférico de la abundancia del receptor de GH en los tejidos. La determinación de la concentración de GHBP sería de especial interés para evaluar pacientes con diagnóstico probable de insensibilidad a la acción de GH y orientar el posterior estudio de anormalidades en el gen del receptor de GH. En la presente revisión, también se abordan dificultades metodológicas relacionadas a la medición de GHBP sérica.Human circulating growth hormone (GH is partly bound to a high-affinity binding protein (GHBP which is derived from proteolytical cleavage of the extracellular domain of the GH receptor. Recently, the metalloproteinase TACE has been identified as an important enzyme responsive for inducing GHBP shedding. Although the specific function of GHBP is not fully known, both enhancing and inhibitory roles of this binding protein on GH action have been proposed. Many reports have demonstrated a close relationship between GHBP and the liver GH receptor status in physiological conditions and diseases. Moreover, serum GHBP measurement has been proposed as an useful peripheral index of the GH receptor abundance. Related to the latter, circulating GHBP concentration would be of

  6. 层粘连蛋白及其受体在涎腺腺样囊性癌表达的意义%Expression of laminin and laminin receptor in adenoid cystic carcinoma of salivary gland

    Institute of Scientific and Technical Information of China (English)

    李萍; 宋琦; 谢文扬; 陈志芳

    2005-01-01

    目的:研究涎腺腺样囊性癌中层粘连蛋白(laminin,LN)及其受体(laminin receptor,LN-R)表达特征及其与腺样囊性癌的某些临床病理指标的关系.方法:用超敏S-P免疫组化方法检测34 例涎腺腺样囊性癌LN和LN-R的表达.结果:LN-R的表达与涎腺腺样囊性癌组织分型、临床分期有关(P0.05).结论:LN及其受体LN-R的表达可作为涎腺腺样囊性癌恶性程度的一个指标.

  7. Seventeen copies of the human 37 kDa laminin receptor precursor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events

    DEFF Research Database (Denmark)

    Jackers, P; Clausse, N; Fernandez, M

    1996-01-01

    A cDNA coding for a 37 kDa polypeptide has been identified in several species as both the potential precursor of the 67 kDa laminin receptor (37LRP) and a putative ribosome-associated protein (p40). Interestingly, increased expression of this polypeptide (37LRP/p40) is consistently observed in in...

  8. N-(4-(4-(2,3-Dichloro- or 2-methoxyphenyl)piperazin-1-yl)-butyl)-heterobiarylcarboxamides with Functionalized Linking Chains as High Affinity and Enantioselective D3 Receptor Antagonistsγ

    Science.gov (United States)

    Newman, Amy Hauck; Grundt, Peter; Cyriac, George; Deschamps, Jeffrey R.; Taylor, Michelle; Kumar, Rakesh; Ho, David; Luedtke, Robert R.

    2009-01-01

    In the present report, the D3 receptor pharmacophore is modified in the 2,3-diCl-and 2-OCH3-phenyl piperazine class of compounds with the goal to improve D3 receptor affinity and selectivity. This extension of structure-activity relationships (SAR) has resulted in the identification of the first enantioselective D3 antagonists (R- and S-22) to be reported, wherein enantioselectivity is more pronounced at D3 than at D2, and that a binding region on the second extracellular loop (E2) may play a role in both enantioselectivity and D3 receptor selectivity. Moreover, we have discovered some of the most D3-selective compounds reported to date that show high affinity (Ki =1 nM) for D3 and ∼400-fold selectivity over the D2 receptor subtype. Several of these analogues showed exquisite selectivity for D3 receptors over >60 other receptors further underscoring their value as in vivo research tools. These lead compounds also have appropriate physical characteristics for in vivo exploration and therefore will be useful in determining how intrinsic activity at D3 receptors tested in vitro is related to behaviors in animal models of addiction and other neuropsychiatric disorders. PMID:19331412

  9. Receptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP.

    Science.gov (United States)

    Jensen, Jan K; Dolmer, Klavs; Schar, Christine; Gettins, Peter G W

    2009-06-26

    RAP (receptor-associated protein) is a three domain 38 kDa ER (endoplasmic reticulum)-resident protein that is a chaperone for the LRP (low-density lipoprotein receptor-related protein). Whereas RAP is known to compete for binding of all known LRP ligands, neither the location, the number of binding sites on LRP, nor the domains of RAP involved in binding is known with certainty. We have systematically examined the binding of each of the three RAP domains (D1, D2 and D3) to tandem and triple CRs (complement-like repeats) that span the principal ligand-binding region, cluster II, of LRP. We found that D3 binds with low nanomolar affinity to all (CR)2 species examined. Addition of a third CR domain increases the affinity for D3 slightly. A pH change from 7.4 to 5.5 gave only a 6-fold increase in Kd for D3 at 37 degrees C, whereas temperature change from 22 degrees C to 37 degrees C has a similar small effect on affinity, raising questions about the recently proposed D3-destabilization mechanism of RAP release from LRP. Surprisingly, and in contrast to literature suggestions, D1 and D2 also bind to most (CR)2 and (CR)3 constructs with nanomolar affinity. Although this suggested that there might be three high-affinity binding sites in RAP for LRP, studies with intact RAP showed that only two binding sites are available in the intact chaperone. These findings suggest a new model for RAP to function as a folding chaperone and also for the involvement of YWTD domains in RAP release from LRP in the Golgi.

  10. Effects of Midgut-Protein-Preparative and Ligand Binding Procedures on the Toxin Binding Characteristics of BT-R1, a Common High-Affinity Receptor in Manduca sexta for Cry1A Bacillus thuringiensis Toxins

    Science.gov (United States)

    Keeton, Timothy P.; Francis, Brian R.; Maaty, Walid S. A.; Bulla, Lee A.

    1998-01-01

    The identity of the physiologically important Cry1A receptor protein(s) in the lepidopteran Manduca sexta has been a matter of dispute due to the multiple proteins which bind the Cry1Ac toxin. Cry1Aa, Cry1Ab, and Cry1Ac exhibit essentially identical toxicities toward M. sexta larvae and show a high degree of sequence and presumed structural identities. These similarities make it likely that there is a common mechanism of toxicity in these lepidopteran-specific toxins in terms of both mode of action and the receptor proteins through which these toxins exert their lepidopteran-specific toxicity. Investigators in our laboratory previously demonstrated that the cloned 210-kDa glycoprotein BT-R1 binds all three Cry1A toxins (T. P. Keeton and L. A. Bulla, Jr., Appl. Environ. Microbiol. 63:3419–3425, 1997). This protein remains a common binding protein even after being subjected to various midgut membrane preparation and processing protocols. The method used to isolate proteins from the M. sexta larval midgut in no significant way affects the results of ligand binding and vacuum blotting experiments, and we have been unable to detect specific, high-affinity binding of any Cry1A toxin to Cry1Ac binding proteins other than BT-R1. Alterations in blot substrate and blocking, hybridization, and washing buffers support these conclusions. Collectively, these results indicate that in M. sexta the cadherin-like BT-R1 protein is a common high-affinity receptor protein for the Cry1A family of toxins. PMID:9603829

  11. Radiosynthesis and in vitro validation of 3H-NS14492 as a novel high affinity alpha7 nicotinic receptor radioligand

    DEFF Research Database (Denmark)

    Magnussen, Janus H.; Ettrup, Anders; Donat, Cornelius K.;

    2015-01-01

    The neuronal alpha 7 nicotinic acetylcholine receptor is a homo-pentameric ligand-gated ion channel that is a promising drug target for cognitive deficits in Alzheimer's disease and schizophrenia. We have previously described 11C-NS14492 as a suitable agonist radioligand for in vivo positron....../mg protein. This binding assay further revealed the Ki rank order for a number of alpha 7 nicotinic receptor agonists, and positive allosteric modulators (PAMs). Further, we saw increased binding of 3H-NS14492 to pig frontal cortex membranes when co-incubated with PNU-120596, a type II PAM. Taken together...

  12. Peptides derived from HIV-1, HIV-2, Ebola virus, SARS coronavirus and coronavirus 229E exhibit high affinity binding to the formyl peptide receptor

    Science.gov (United States)

    Mills, John S.

    2007-01-01

    Peptides derived from the membrane proximal region of fusion proteins of human immunodeficiency viruses 1 and 2, Coronavirus 229 E, severe acute respiratory syndrome coronavirus and Ebola virus were all potent antagonists of the formyl peptide receptor expressed in Chinese hamster ovary cells. Binding of viral peptides was affected by the naturally occurring polymorphisms at residues 190 and 192, which are located at second extracellular loop-transmembrane helix 5 interface. Substitution of R190 with W190 enhanced the affinity for a severe acute respiratory syndrome coronavirus peptide 6 fold but reduced the affinity for N-formyl-Nle–Leu-Phe by 2.5 fold. A 12 mer peptide derived from coronavirus 229E (ETYIKPWWVWL) was the most potent antagonist of the formyl peptide receptor W190 with a Ki of 230 nM. Fluorescently labeled ETYIKPWWVWL was effectively internalized by all three variants with EC50 of ~25 nM. An HKU-1 coronavirus peptide, MYVKWPWYVWL, was a potent antagonist but N-formyl-MYVKWPWYVWL was a potent agonist. ETYIKPWWVWL did not stimulate GTPγS binding but inhibited the stimulation by formyl-NleLeuPhe. It also blocked β arrestin translocation and receptor downregulation induced by formyl-Nle–Leu–Phe. This indicates that formyl peptide receptor may be important in viral infections and that variations in its sequence among individuals may affect their likelihood of viral and bacterial infections. PMID:16842982

  13. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: High affinity for progestagenic and estrogenic steroids

    NARCIS (Netherlands)

    J. Veldscholte (Jos); M.M. Voorhorst-Ogink (M.); J. Bolt-de Vries (Joan); H.C.J. van Rooij (Henri); J. Trapman (Jan); E. Mulder (Eppo)

    1990-01-01

    textabstractAbstract LNCaP tumor cells, derived from a metastatic lesion of a human prostatic carcinoma, are androgen-sensitive in cell culture. Although increase in growth rate is observed with low doses of progestagens or estradiol, these cells contain exclusively androgen receptors. In the presen

  14. Crystal Structure of Human Interferon-[lamda]1 in Complex with Its High-Affinity Receptor Interferon-[lamda]R1

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, Zachary; Magracheva, Eugenia; Li, Wei; Zdanov, Alexander; Kotenko, Sergei V.; Wlodawer, Alexander (NJMS); (NCI)

    2010-12-01

    Interferon (IFN)-{lambda}1 [also known as interleukin (IL)-29] belongs to the recently discovered group of type III IFNs. All type III IFNs initiate signaling processes through formation of specific heterodimeric receptor complexes consisting of IFN-{lambda}R1 and IL-10R2. We have determined the structure of human IFN-{lambda}1 complexed with human IFN-{lambda}R1, a receptor unique to type III IFNs. The overall structure of IFN-{lambda}1 is topologically similar to the structure of IL-10 and other members of the IL-10 family of cytokines. IFN-{lambda}R1 consists of two distinct domains having fibronectin type III topology. The ligand-receptor interface includes helix A, loop AB, and helix F on the IFN site, as well as loops primarily from the N-terminal domain and inter-domain hinge region of IFN-{lambda}R1. Composition and architecture of the interface that includes only a few direct hydrogen bonds support an idea that long-range ionic interactions between ligand and receptor govern the process of initial recognition of the molecules while hydrophobic interactions finalize it.

  15. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells.

    Science.gov (United States)

    Rogers, G N; Herrler, G; Paulson, J C; Klenk, H D

    1986-05-05

    Identification of the receptor-destroying enzyme of influenza C virus as a specific neuraminate O-acetylesterase has suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus (Herrler, G., Rott, R., Klenk, H.-D., Muller, H.-P., Shukla, A. K., and Schauer, R. (1985) EMBO (Eur. Mol. Biol. Organ.) J. 4, 1503-1506). In this report, three common sialic acids, N-acetylneuraminic acid (NeuAc), N-glycollylneuraminic acid (NeuGc), and 9-O-acetyl-N-acetylneuraminic acid (9-O-Ac-NeuAc) were compared for their ability to mediate attachment of influenza A, B, and C viruses to cells. Human asialoerythrocytes were resialylated to contain the three sialic acids in defined sequence on glycoprotein carbohydrate groups using purified sialyltransferases and corresponding CMP-sialic acid donor substrates. While influenza C virus failed to agglutinate native cells or resialylated cells containing NeuAc and NeuGc, resialylated cells containing 9-O-Ac-NeuAc in three different sialyloligosaccharide sequences were agglutinated in high titer. In contrast, most representative influenza A and B viruses examined preferentially agglutinated cells containing NeuAc and NeuGc and failed to agglutinate cells containing 9-O-Ac-NeuAc. Cells containing 9-O-Ac-NeuAc were sensitive to the action of influenza C virus neuraminate O-acetylesterase which converts 9-O-Ac-NeuAc to NeuAc. This treatment abolished agglutination by influenza C while making the cells agglutinable by several influenza A and B viruses. Finally, the ability of influenza C virus to agglutinate the erythrocytes of various species correlated with the presence of 9-O-Ac-NeuAc. The results provide direct evidence that influenza C virus utilizes 9-O-acetyl-N-acetylneuraminic acid as the primary receptor determinant for attachment to cell surface receptors.

  16. Synthesis, Modelling, and Anticonvulsant Studies of New Quinazolines Showing Three Highly Active Compounds with Low Toxicity and High Affinity to the GABA-A Receptor.

    Science.gov (United States)

    Zayed, Mohamed F; Ihmaid, Saleh K; Ahmed, Hany E A; El-Adl, Khaled; Asiri, Ahmed M; Omar, Abdelsattar M

    2017-01-24

    Some novel fluorinated quinazolines (5a-j) were designed and synthesized to be evaluated for their anticonvulsant activity and their neurotoxicity. Structures of all newly synthesized compounds were confirmed by their infrared (IR), mass spectrometry (MS) spectra, ¹H nuclear magnetic resonance (NMR), (13)C-NMR, and elemental analysis (CHN). The anticonvulsant activity was evaluated by a subcutaneous pentylenetetrazole (scPTZ) test and maximal electroshock (MES)-induced seizure test, while neurotoxicity was evaluated by a rotorod test. The molecular docking was performed for all newly-synthesized compounds to assess their binding affinities to the GABA-A receptor in order to rationalize their anticonvulsant activities in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticonvulsant activity for all newly-synthesized compounds. Compounds 5b, 5c, and 5d showed the highest binding affinities toward the GABA-A receptor, along with the highest anticonvulsant activities in experimental mice. These compounds also showed low neurotoxicity and low toxicity in the median lethal dose test compared to the reference drugs. A GABA enzymatic assay was performed for these highly active compounds to confirm the obtained results and explain the possible mechanism for anticonvulsant action. The most active compounds might be used as leads for future modification and optimization.

  17. Evaluation of (Z)-2-((1-benzyl-1H-indol-3-yl)methylene)-quinuclidin-3-one analogues as novel, high affinity ligands for CB1 and CB2 cannabinoid receptors.

    Science.gov (United States)

    Madadi, Nikhil Reddy; Penthala, Narsimha Reddy; Brents, Lisa K; Ford, Benjamin M; Prather, Paul L; Crooks, Peter A

    2013-04-01

    A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R=R(2)=H, R(1)=F) and 13 (R=COOCH3, R(1)=R(2)=H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.

  18. Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. Part 9: Synthesis, characterization and molecular modeling of pyridinyl isosteres of N-BPE-8-CAC (1), a high affinity ligand for opioid receptors.

    Science.gov (United States)

    VanAlstine, Melissa A; Wentland, Mark P; Alvarez, Juan; Cao, Qing; Cohen, Dana J; Knapp, Brian I; Bidlack, Jean M

    2013-04-01

    Derivatives of the lead compound N-BPE-8-CAC (1) where each CH of the biphenyl group was individually replaced by N were prepared in hopes of identifying high affinity ligands with improved aqueous solubility. Compared to 1, binding affinities of the five possible pyridinyl derivatives for the μ opioid receptor were between threefold lower to fivefold higher with the Ki of the most potent compound being 0.064 nM. Docking of 8-CAC (2) into the unliganded binding site of the mouse μ opioid receptor (pdb: 4DKL) revealed that 8-CAC and β-FNA (from 4DKL) make nearly identical interactions with the receptor. However, for 1 and the new pyridinyl derivatives 4-8, binding is not tolerated in the 8-CAC binding mode due to the steric constraints of the large N-substituents. Either an alternative binding mode or rearrangement of the protein to accommodate these modifications may account for their high binding affinity.

  19. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals.

    Science.gov (United States)

    Wild, Damian; Schmitt, Jörg S; Ginj, Mihaela; Mäcke, Helmut R; Bernard, Bert F; Krenning, Eric; De Jong, Marion; Wenger, Sandra; Reubi, Jean-Claude

    2003-10-01

    Earlier studies have shown that modification of the octapeptide octreotide in positions 3 and 8 may result in compounds with increased somatostatin receptor affinity that, if radiolabelled, display improved uptake in somatostatin receptor-positive tumours. The aim of a recent research study in our laboratory was to employ the parallel peptide synthesis approach by further exchanging the amino acid in position 3 of octreotide and coupling the macrocyclic chelator DOTA(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to these peptides for labelling with radiometals like gallium-67 or -68, indium-111, yttrium-90 and lutetium-177. The purpose was to find radiopeptides with an improved somatostatin receptor binding profile in order to extend the spectrum of targeted tumours. A first peptide, [111In,90Y-DOTA]-1-Nal3-octreotide (111In,90Y-DOTA-NOC), was isolated which showed an improved profile. InIII-DOTA-NOC exhibited the following IC50 values (nM) when studied in competition with [125I][Leu8, d-Trp22, Tyr25]somatostatin-28 (values for YIII-DOTA-NOC are shown in parentheses): sstr2, 2.9 +/- 0.1 (3.3 +/- 0.2); sstr3, 8 +/- 2 (26 +/- 1.9); sstr5, 11.2 +/- 3.5 (10.4 +/- 1.6). Affinity towards sstr1 and 4 was very low or absent. InIII-DOTA-NOC is superior to all somatostatin-based radiopeptides having this particular type of binding profile, including DOTA-lanreotide, and has three to four times higher binding affinity to sstr2 than InIII,YIII-DOTA-Tyr3-octreotide (InIII,YIII-DOTA-TOC). In addition, [111In]DOTA-NOC showed a specific and high rate of internalization into AR4-2J rat pancreatic tumour cells which, after 4 h, was about two times higher than that of [111In]DOTA-TOC and three times higher than that of [111In]DOTA-octreotide ([111In]DOTA-OC). The internalized radiopeptides were externalized intact upon 2 h of internalization followed by an acid wash. After 2-3 h of externalization a plateau is reached, indicating a steady-state situation explained by

  20. Discovery of 4-(phenyl)thio-1H-pyrazole derivatives as agonists of GPR109A, a high affinity niacin receptor.

    Science.gov (United States)

    Kim, Hyeon Young; Jadhav, Vithal B; Jeong, Dae Young; Park, Woo Kyu; Song, Jong-Hwan; Lee, Sunkyung; Cho, Heeyeong

    2015-06-01

    Even though nicotinic acid (niacin) appears to have beneficial effects on human lipid profiles, niacin-induced cutaneous vasodilatation called flushing limits its remedy to patient. GPR109A is activated by niacin and mediates the anti-lipolytic effects. Based on the hypothesis that β-arrestin signaling mediates niacin-induced flushing, but not its anti-lipolytic effect, we tried to find GPR109A agonists which selectively elicit Gi-protein-biased signaling devoid of β-arrestin internalization using a β-lactamase assay. We identified a 4-(phenyl)thio-1H-pyrazole as a novel scaffold for GPR109A agonist in a high throughput screen, which has no carboxylic acid moiety known to be important for binding. While 1-nicotinoyl derivatives (5a-g, 6a-e) induced β-arrestin recruitment, 1-(pyrazin-2-oyl) derivatives were found to play as G-protein-biased agonists without GPR109A receptor internalization. The activity of compound 5a (EC50 = 45 nM) was similar to niacin (EC50 = 52 nM) and MK-6892 (EC50 = 74 nM) on calcium mobilization assay, but its activity at 10 μM on β-arrestin recruitment were around two and five times weaker than niacin and MK-6892, respectively. The development of G-protein biased GPR109A ligands over β-arrestin pathway is attainable and might be important in differentiation of pharmacological efficacy.

  1. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice.

    Science.gov (United States)

    Mineur, Yann S; Somenzi, Oli; Picciotto, Marina R

    2007-04-01

    The nicotine in tobacco is thought to modulate neuronal systems regulating mood. Moreover, it appears possible that blockade rather than activation of beta2-containing (beta2*) nicotinic acetylcholine receptors (nAChRs) may lead to antidepressant-like effects. We used cytisine, a partial agonist of alpha4/beta2*nAChRs and a full agonist at alpha3/beta4*nAChRs, in several tests of antidepressant efficacy. Further, we used c-fos expression to identify potential neurobiological correlates of the antidepressant-like effects of cytisine. Cytisine had antidepressant-like effects in several animal models of antidepressant efficacy. In addition, immunohistochemical analyses indicated that cytisine could reduce c-fos immunoreactivity in the basolateral amygdala by approximately 50%. These data show that cytisine acts like classical antidepressants in rodent models of antidepressant efficacy. In addition, cytisine's ability to block alpha4/beta2*nAChRs may be responsible for its antidepressant-like properties, and these may be mediated through a reduction of neuronal activity in the basolateral amygdala. These studies also suggest that both antagonists and partial agonists of alpha4/beta2*nAChRs would be interesting targets for the development of novel antidepressant drugs.

  2. Cytisine, a partial agonist of high affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice

    Science.gov (United States)

    Mineur, Yann S.; Somenzi, Oli; Picciotto, Marina R.

    2007-01-01

    The nicotine in tobacco is thought to modulate neuronal systems regulating mood. Moreover, it appears possible that blockade rather than activation of β2-containing (β2*) nicotinic acetylcholine receptors (nAChRs) may lead to antidepressant-like effects. We used cytisine, a partial agonist of α4/β2* nAChRs and a full agonist at α3/β4* nAChRs, in several tests of antidepressant efficacy. Further, we used c-fos expression to identify potential neurobiological correlates of the antidepressant-like effects of cytisine. Cytisine had antidepressant-like effects in several animal models of antidepressant efficacy. In addition, immunohistochemical analyses indicated that cytisine could reduce c-fos immunoreactivity in the basolateral amygdala by ~ 50%. These data show that cytisine acts like classical antidepressants in rodent models of antidepressant efficacy. In addition, cytisine’s ability to block α4/β2* nAChRs may be responsible for its antidepressant-like properties, and these may be mediated through a reduction of neuronal activity in the basolateral amygdala. These studies also suggest that both antagonists and partial agonists of α4/β2* nAChRs would be interesting targets for the development of novel antidepressant drugs. PMID:17320916

  3. Design and synthesis of 2α-(tetrazolylethyl)-1α,25-dihydroxyvitamin D3 as a high affinity ligand for vitamin D receptor.

    Science.gov (United States)

    Matsuo, Miki; Hasegawa, Asami; Takano, Masashi; Saito, Hiroshi; Kakuda, Shinji; Takagi, Kenichiro; Ochiai, Eiji; Horie, Kyohei; Takimoto-Kamimura, Midori; Takenouchi, Kazuya; Sawada, Daisuke; Kittaka, Atsushi

    2014-10-01

    X-ray cocrystallographic studies of the human vitamin D receptor (hVDR)-[2α-(3-hydroxypropyl)-1α,25-dihydroxyvitamin D3 (O1C3)] complex showed that the terminal hydroxy group of the 2α-functional group of O1C3 formed a hydrogen bond with Arg274 in the ligand binding domain (LBD) of hVDR to stabilize the complex; therefore, O1C3 showed 3-times greater binding affinity for VDR than the natural hormone. Here, the effects of a heteroaromatic ring on binding to hVDR instead of the terminal OH group of O1C3 and also on preliminary biological activities were studied. We synthesized 2α-[2-(tetrazol-2-yl)ethyl]-1α,25(OH)2D3 (1a) and its regioisomer 2α-[2-(tetrazol-1-yl)ethyl]-1α,25(OH)2D3 (1b), in which 1a showed much higher hVDR binding affinity and greater osteocalcin promoter transactivation activity in human osteosarcoma (HOS) cells than those of 1b. X-ray cocrystallographic analysis of the hVDR-1a complex showed new hydrogen bond formation between one of the nitrogen atoms of the tetrazole ring and Arg274. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  4. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor.

    Science.gov (United States)

    Alsaleh, Nasser B; Persaud, Indushekhar; Brown, Jared M

    2016-01-01

    Engineered nanomaterial (ENM)-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs) are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1) in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC) isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line). Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.

  5. α-Elapitoxin-Aa2a, a long-chain snake α-neurotoxin with potent actions on muscle (α1)(2)βγδ nicotinic receptors, lacks the classical high affinity for neuronal α7 nicotinic receptors.

    Science.gov (United States)

    Blacklow, Benjamin; Kornhauser, Rachelle; Hains, Peter G; Loiacono, Richard; Escoubas, Pierre; Graudins, Andis; Nicholson, Graham M

    2011-01-15

    In contrast to all classical long-chain α-neurotoxins possessing the critical fifth disulfide bond, α-elapitoxin-Aa2a (α-EPTX-Aa2a), a novel long-chain α-neurotoxin from the common death adder Acanthophis antarcticus, lacks affinity for neuronal α7-type nicotinic acetylcholine receptors (nAChRs). α-EPTX-Aa2a (8850Da; 0.1-1μM) caused a concentration-dependent inhibition of indirect twitches, and blocked contractures to cholinergic agonists in the isolated chick biventer cervicis nerve-muscle preparation, consistent with a postsynaptic curaremimetic mode of action. α-EPTX-Aa2a (1-10nM) produced a potent pseudo-irreversible antagonism of chick muscle nAChRs, with an estimated pA(2) value of 8.311±0.031, which was not reversed by monovalent death adder antivenom. This is only 2.5-fold less potent than the prototypical long-chain α-neurotoxin, α-bungarotoxin. In contrast, α-EPTX-Aa2a produced complete, but weak, inhibition of (125)I-α-bungarotoxin binding to rat hippocampal α7 nAChRs (pK(I)=3.670), despite high sequence homology and similar mass to a wide range of long-chain α-neurotoxins. The mostly likely cause for the loss of α7 binding affinity is a leucine substitution, in loop II of α-EPTX-Aa2a, for the highly conserved Arg(33) in long-chain α-neurotoxins. Arg(33) has been shown to be critical for both neuronal and muscle activity. Despite this substitution, α-EPTX-Aa2a retains high affinity for muscle (α1)(2)βγδ nAChRs. This is probably as a result of an Arg(29) residue, previously shown to be critical for muscle (α1)(2)βγδ nAChR affinity, and highly conserved across all short-chain, but not long-chain, α-neurotoxins. α-EPTX-Aa2a therefore represents a novel atypical long-chain α-neurotoxin that includes a fifth disulfide but exhibits differential affinity for nAChR subtypes.

  6. Laminins in basement membrane assembly.

    Science.gov (United States)

    Hohenester, Erhard; Yurchenco, Peter D

    2013-01-01

    The heterotrimeric laminins are a defining component of all basement membranes and self-assemble into a cell-associated network. The three short arms of the cross-shaped laminin molecule form the network nodes, with a strict requirement for one α, one β and one γ arm. The globular domain at the end of the long arm binds to cellular receptors, including integrins, α-dystroglycan, heparan sulfates and sulfated glycolipids. Collateral anchorage of the laminin network is provided by the proteoglycans perlecan and agrin. A second network is then formed by type IV collagen, which interacts with the laminin network through the heparan sulfate chains of perlecan and agrin and additional linkage by nidogen. This maturation of basement membranes becomes essential at later stages of embryo development.

  7. INS-1 cell glucose-stimulated insulin secretion is reduced by the downregulation of the 67 kDa laminin receptor.

    Science.gov (United States)

    Sabra, Georges; Dubiel, Evan A; Kuehn, Carina; Khalfaoui, Taoufik; Beaulieu, Jean-François; Vermette, Patrick

    2015-12-01

    Understanding β cell-extracellular matrix (ECM) interactions can advance our knowledge of the mechanisms that control glucose homeostasis and improve culture methods used in islet transplantation for the treatment of diabetes. Laminin is the main constituent of the basement membrane and is involved in pancreatic β cell survival and function, even enhancing glucose-stimulated insulin secretion. Most of the studies on cell responses towards laminin have focused on integrin-mediated interactions, while much less attention has been paid on non-integrin receptors, such as the 67 kDa laminin receptor (67LR). The specificity of the receptor-ligand interaction through the adhesion of INS-1 cells (a rat insulinoma cell line) to CDPGYIGSR-, GRGDSPC- or CDPGYIGSR + GRGDSPC-covered surfaces was evaluated. Also, the effects of the 67LR knocking down over glucose-stimulated insulin secretion were investigated. Culture of the INS-1 cells on the bioactive surfaces was improved compared to the low-fouling carboxymethyl dextran (CMD) surfaces, while downregulation of the 67LR resulted in reduced cell adhesion to surfaces bearing the CDPGYIGSR peptide. Glucose-stimulated insulin secretion was hindered by downregulation of the 67LR, regardless of the biological motif available on the biomimetic surfaces on which the cells were cultured. This finding illustrates the importance of the 67LR in glucose-stimulated insulin secretion and points to a possible role of the 67LR in the mechanisms of insulin secretion.

  8. LOCALIZATION AND QUANTIFICATION OF LAMININ AND LAMININ RECEPTOR IN THE HUMAN PLACENTAL VILLI%人胎盘绒毛层粘连蛋白及其受体的定位与定量研究

    Institute of Scientific and Technical Information of China (English)

    崔彩莲; 李英

    1998-01-01

    目的:研究层粘连蛋白(laminin, LN)及其受体(laminin receptor,LN-R)在早、中、晚期人胎盘绒毛的定位及其相对含量变化.方法:取早期、中期和晚期胎盘绒毛,常规制作石蜡组织切片,采用免疫组织化学ABC法和图像分析技术进行LN及LN-R定位和定量测定.结果:LN阳性反应主要位于绒毛上皮基膜和绒毛血管内皮基膜;LN-R的阳性反应位于绒毛上皮合体滋养层表面及合体滋养层和细胞滋养层的细胞质内,细胞核呈阴性.LN及LN-R的含量以早期胎盘绒毛中最高,中期及晚期含量明显降低.结论:人胎盘绒毛含有LN及LN-R,随着胎盘周龄的增加,二者的含量均降低.

  9. (D-Pen2,4 prime -125I-Phe4,D-Pen5)enkephalin: A selective high affinity radioligand for delta opioid receptors with exceptional specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.J.; Sharma, S.D.; Toth, G.; Duong, M.T.; Fang, L.; Bogert, C.L.; Weber, S.J.; Hunt, M.; Davis, T.P.; Wamsley, J.K. (Department of Pharmacology, University of Arizona, College of Medicine, Tucson (United States))

    1991-09-01

    (D-Pen2,4{prime}-125I-Phe4,D-Pen5)enkephalin ((125I)DPDPE) is a highly selective radioligand for the delta opioid receptor with a specific activity (2200 Ci/mmol) that is over 50-fold greater than that of tritium-labeled DPDPE analogs. (125I)DPDPE binds to a single site in rat brain membranes with an equilibrium dissociation constant (Kd) value of 421 {plus minus} 67 pM and a receptor density (Bmax) value of 36.4 {plus minus} 2.7 fmol/mg protein. The high affinity of this site for delta opioid receptor ligands and its low affinity for mu or kappa receptor-selective ligands are consistent with its being a delta opioid receptor. The distribution of these sites in rat brain, observed by receptor autoradiography, is also consistent with that of delta opioid receptors. Association and dissociation binding kinetics of 1.0 nM (125I) DPDPE are monophasic at 25 degrees C. The association rate (k + 1 = 5.80 {plus minus} 0.88 {times} 10(7) M-1 min-1) is about 20- and 7-fold greater than that measured for 1.0 nM (3H) DPDPE and 0.8 nM (3H) (D-Pen2,4{prime}-Cl-Phe4, D-Pen5)enkephalin, respectively. The dissociation rate of (125I)DPDPE (0.917 {plus minus} 0.117 {times} 10(-2) min-1) measured at 1.0 nM is about 3-fold faster than is observed for either of the other DPDPE analogs. The rapid binding kinetics of (125I)DPDPE is advantageous because binding equilibrium is achieved with much shorter incubation times than are required for other cyclic enkephalin analogs. This, in addition to its much higher specific activity, makes (125I)DPDPE a valuable new radioligand for studies of delta opioid receptors.

  10. Molecular Basis of Laminin-Integrin Interactions.

    Science.gov (United States)

    Yamada, Masashi; Sekiguchi, Kiyotoshi

    2015-01-01

    Laminins are composed of three polypeptide chains, designated as α, β, and γ. The C-terminal region of laminin heterotrimers, containing coiled-coil regions, short tails, and laminin globular (LG) domains, is necessary and sufficient for binding to integrins, which are the major laminin receptor class. Laminin recognition by integrins critically requires the α chain LG domains and a glutamic acid residue of the γ chain at the third position from the C-terminus. Furthermore, the C-terminal region of the β chain contains a short amino acid sequence that modulates laminin affinity for integrins. Thus, all three of the laminin chains act cooperatively to facilitate integrin binding. Mammals possess 5 α (α1-5), 3 β (β1-3), and 3 γ (γ1-3) chains, combinations of which give rise to 16 distinct laminin isoforms. Each isoform is expressed in a tissue-specific and developmental stage-specific manner, exerting its functions through binding of integrins. In this review, we detail the current knowledge surrounding the molecular basis and physiological relevance of specific interactions between laminins and integrins, and describe the mechanisms underlying laminin action through integrins.

  11. Laminin Receptor-Avid Nanotherapeutic EGCg-AuNPs as a Potential Alternative Therapeutic Approach to Prevent Restenosis

    Directory of Open Access Journals (Sweden)

    Menka Khoobchandani

    2016-03-01

    Full Text Available In our efforts to develop new approaches to treat and prevent human vascular diseases, we report herein our results on the proliferation and migration of human smooth muscles cells (SMCs and endothelial cells (ECs using epigallocatechin-3-gallate conjugated gold nanoparticles (EGCg-AuNPs as possible alternatives to drug coated stents. Detailed in vitro stability studies of EGCg-AuNPs in various biological fluids, affinity and selectivity towards SMCs and ECs have been investigated. The EGCg-AuNPs showed selective inhibitory efficacy toward the migration of SMCs. However, the endothelial cells remained unaffected under similar experimental conditions. The cellular internalization studies have indicated that EGCg-AuNPs internalize into the SMCs and ECs within short periods of time through laminin receptor mediated endocytosis mode. Favorable toxicity profiles and selective affinity toward SMCs and ECs suggest that EGCg-AuNPs may provide attractive alternatives to drug coated stents and therefore offer new therapeutic approaches in treating cardiovascular diseases.

  12. In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor.

    Science.gov (United States)

    Ma, Lixin; Yu, Ping; Veerendra, Bhadrasetty; Rold, Tammy L; Retzloff, Lauren; Prasanphanich, Adam; Sieckman, Gary; Hoffman, Timothy J; Volkert, Wynn A; Smith, Charles J

    2007-01-01

    Gastrin-releasing peptide (GRP) receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN), a 14-amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H(2)N-glycylglycylglycine-BBN[7-14]NH(2) peptide with the following general sequence: H(2)N-G-G-G-Q-W-A-V-G-H-L-M-(NH(2)). This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H(2)N-G-G-G-BBN[7-14]NH(2) in dimethylformamide (DMF). In vitro competitive binding assays, using (125)I-Tyr(4)-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 +/- 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.

  13. In Vitro and In Vivo Evaluation of Alexa Fluor 680-Bombesin[7–14]NH2 Peptide Conjugate, a High-Affinity Fluorescent Probe with High Selectivity for the Gastrin-Releasing Peptide Receptor

    Directory of Open Access Journals (Sweden)

    Lixin Ma

    2007-05-01

    Full Text Available Gastrin-releasing peptide (GRP receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN, a 14–amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H2N-glycylglycylglycine-BBN[7–14]NH2 peptide with the following general sequence: H2N-G-G-G-Q-W-A-V-G-H-L-M-(NH2. This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7–14]NH2 conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H2N-G-G-G-BBN[7–14]NH2 in dimethylformamide (DMF. In vitro competitive binding assays, using 125I-Tyr4-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 ± 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7–14]NH2 in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.

  14. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues.

    Science.gov (United States)

    Gettins, Peter G W; Dolmer, Klavs

    2016-01-08

    Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13-800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.

  15. Characterization of the promoter of the human gene encoding the high-affinity IgG receptor: Transcriptional induction by. gamma. -interferon is mediated through common DNA response elements

    Energy Technology Data Exchange (ETDEWEB)

    Pearse, R.N.; Feinman, R.; Ravetch, J.V. (DeWitt Wallace Research Lab., New York, NY (United States))

    1991-12-15

    Expression of the high-affinity receptor for IgG (Fc{sub {gamma}}RI) is restricted to cells of myeloid lineage and is induced by {gamma}-interferon (IFN-{gamma}) but not by IFN-{alpha}/{beta}. The organization of the human Fc{sub {gamma}}RI gene has been determined and the DNA elements governing its cell type-restricted transcription and IFN-{gamma} induction are reported here. A 39-nucleotide sequence (IFN-{gamma} response region, or GRR) is defined that is both necessary and sufficient for IFN-{gamma} inducibility. Sequence analysis of the GRR reveals the presence of promoter elements initially defined for the major histocompatibility complex class 2 genes: i.e., X, H, and {gamma}-IRE sequences. Comparison of a number of genes whose expression is induced selectively by IFN-{gamma} indicated that the presence of these elements is a general feature of IFN-{gamma}-responsive genes. The studies suggest that the combination of X, H, and {gamma}-IRE elements is a common motif in the pathway of transcriptional induction by this lymphokine.

  16. Inhibition of human 67-kDa laminin receptor sensitizes multidrug resistance colon cancer cell line SW480 for apoptosis induction.

    Science.gov (United States)

    Lu, Chun-Lei; Xu, Jian; Yao, Hao-Jie; Luo, Kun-Lun; Li, Jie-Ming; Wu, Tao; Wu, Guo-Zhong

    2016-01-01

    The adhesion mediated drug resistance in cancer cells resulted from adhesion of the extracellular matrix is a major cause for multidrug resistance (MDR) and leads chemotherapeutic failure for colon cancer. In this study, we explored the role of 67-kDa laminin receptor (67LR) in chemotherapeutic drug resistance in colon cancer cells. SiRNA-mediated knockdown of 67LR decreased the cell adhesion when laminins were applied. Moreover, 67LR knockdown increased the expression of pro-apoptotic gene Bax but inhibited the expression of anti-apoptotic gene Bcl-2. Enhanced apoptosis was observed in 67LR siRNA-transfected SW480 cell when the cell was treated with doxorubicin for apoptosis induction. Furthermore, MTT assay revealed that the IC50 of chemotherapeutic toward SW480 cell adhesion to laminins was reduced after 67LR knockdown, indicating there was a significant increase of drug sensitivity in SW480 cell. In conclusion, our study demonstrated that 67LR plays a considerable role in the development of colon cancer MDR.

  17. YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells

    Science.gov (United States)

    Poitelon, Y; Lopez-Anido, C; Catignas, K; Berti, C; Palmisano, M; Williamson, C; Ameroso, D; Abiko, K; Hwang, Y; Gregorieff, A; Wrana, J; Asmani, M; Zhao, R; Sim, FJ; Wrabetz, L; Svaren, J; Feltri, ML

    2016-01-01

    Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons, using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice we show that Taz is required in Schwann cells for radial sorting and myelination, and that Yap is redundant with Taz. Yap/Taz are activated in Schwann cells by mechanical stimuli, and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for proper radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells. PMID:27273766

  18. EXPRESSION OF LAMININ AND LAMININ RECEPTOR IN MEDULLOBLASTOMA%层粘连蛋白LN及其受体LN-R在髓母细胞瘤中的表达

    Institute of Scientific and Technical Information of China (English)

    李元洋; 毛伯镛; 陈德勤; 颜世清; 董小红; 聂冬丽

    2005-01-01

    目的测定Laminin(LN)/Laminin Receptor(LN-R)在髓母细胞瘤中的表达情况,进一步探讨其与该肿瘤浸润、转移的关系.方法通过免疫组化方法测定LN和LN-R在70例髓母细胞瘤和10例正常小脑组织中的表达情况.结果LN-R在10例正常小脑组织及70例髓母细胞瘤中表达均为阴性,LN在髓母细胞瘤中低表达.结论LN及其受体在髓母细胞瘤中低表达,其中LN-R不表达可能为原发性中枢神经系统肿瘤不易发生颅外转移的原因之一.讨其与该肿瘤浸润、转移的关系.方法通过免疫组化方法测定LN和LN-R在70例髓母细胞瘤和10例正常小脑组织中的表达情况.结果LN-R在10例正常小脑组织及70例髓母细胞瘤中表达均为阴性,LN在髓母细胞瘤中低表达.结论LN及其受体在髓母细胞瘤中低表达,其中LN-R不表达可能为原发性中枢神经系统肿瘤不易发生颅外转移的原因之一.

  19. A simplified laminin nomenclature

    DEFF Research Database (Denmark)

    Aumailley, Monique; Bruckner-Tudermann, Leena; Carter, William G.

    2005-01-01

    is named laminin 4a (L4a), domain IVa of alpha chains is named L4b, domain IV of gamma chains is named L4, and domain IV of beta chains is named laminin four (LF). The two coiled-coil domains I and II are now considered one laminin coiled-coil domain (LCC). The interruption in the coiled-coil of beta...... chains is named laminin beta-knob (Lbeta) domain. The chain origin of a domain is specified by the chain nomenclature, such as alpha1L4a. The abbreviation LM is suggested for laminin. Otherwise, the nomenclature remains unaltered....... for a trimer using three Arabic numerals, based on the alpha, beta and gamma chain numbers. For example, the laminin with the chain composition alpha5beta1gamma1 is termed laminin-511, and not laminin-10. The current practice is also to mix two overlapping domain and module nomenclatures. Instead of the older...

  20. Domains of laminin

    DEFF Research Database (Denmark)

    Engvall, E; Wewer, U M

    1996-01-01

    Extracellular matrix molecules are often very large and made up of several independent domains, frequently with autonomous activities. Laminin is no exception. A number of globular and rod-like domains can be identified in laminin and its isoforms by sequence analysis as well as by electron...... microscopy. Here we present the structure-function relations in laminins by examination of their individual domains. This approach to viewing laminin is based on recent results from several laboratories. First, some mutations in laminin genes that cause disease have affected single laminin domains, and some...... laminin isoforms lack particular domains. These mutants and isoforms are informative with regard to the activities of the mutated and missing domains. These mutants and isoforms are informative with regard to the activities of the mutated and missing domains. Second, laminin-like domains have now been...

  1. Dyes with high affinity for polylactide

    Institute of Scientific and Technical Information of China (English)

    Liang He; Shu Fen Zhang; Bing Tao Tang; Li Li Wang; Jin Zong Yang

    2007-01-01

    Attempts were made to develop dyes with high affinity for polylactide as an alternative to the existent commercial disperse dyes.The dyes synthesized according to the affinity concept of dye to polylactide exhibited excellent dyeing properties on polylactide compared with the commercial disperse dyes.

  2. The laminin family.

    Science.gov (United States)

    Aumailley, Monique

    2013-01-01

    Laminins are large molecular weight glycoproteins constituted by the assembly of three disulfide-linked polypeptides, the α, β and γ chains. The human genome encodes 11 genetically distinct laminin chains. Structurally, laminin chains differ by the number, size and organization of a few constitutive domains, endowing the various members of the laminin family with common and unique important functions. In particular, laminins are indispensable building blocks for cellular networks physically bridging the intracellular and extracellular compartments and relaying signals critical for cellular behavior, and for extracellular polymers determining the architecture and the physiology of basement membranes.

  3. Autoimmunity against laminins.

    Science.gov (United States)

    Florea, Florina; Koch, Manuel; Hashimoto, Takashi; Sitaru, Cassian

    2016-09-01

    Laminins are ubiquitous constituents of the basement membranes with major architectural and functional role as supported by the fact that absence or mutations of laminins lead to either lethal or severely impairing phenotypes. Besides genetic defects, laminins are involved in a wide range of human diseases including cancer, infections, and inflammatory diseases, as well as autoimmune disorders. A growing body of evidence implicates several laminin chains as autoantigens in blistering skin diseases, collagenoses, vasculitis, or post-infectious autoimmunity. The current paper reviews the existing knowledge on autoimmunity against laminins referring to both experimental and clinical data, and on therapeutic implications of anti-laminin antibodies. Further investigation of relevant laminin epitopes in pathogenic autoimmunity would facilitate the development of appropriate diagnostic tools for thorough characterization of patients' antibody specificities and should decisively contribute to designing more specific therapeutic interventions.

  4. Laminin production by human endometrial stromal cells relates to the cyclic and pathologic state of the endometrium

    DEFF Research Database (Denmark)

    Faber, M; Wewer, U M; Berthelsen, J G

    1986-01-01

    hyperplasia and adenocarcinomas did not react with antibody to laminin. The expression of laminin receptor in the stromal cells codistributed with laminin. Basement membranes of the surface epithelium, the glandular epithelium, and the vessels stained strongly with antibodies to laminin. In preneoplastic...

  5. Crystal structure of IgE bound to its B-cell receptor CD23 reveals a mechanism of reciprocal allosteric inhibition with high affinity receptor FcεRI.

    Science.gov (United States)

    Dhaliwal, Balvinder; Yuan, Daopeng; Pang, Marie O Y; Henry, Alistair J; Cain, Katharine; Oxbrow, Amanda; Fabiane, Stella M; Beavil, Andrew J; McDonnell, James M; Gould, Hannah J; Sutton, Brian J

    2012-07-31

    The role of IgE in allergic disease mechanisms is performed principally through its interactions with two receptors, FcεRI on mast cells and basophils, and CD23 (FcεRII) on B cells. The former mediates allergic hypersensitivity, the latter regulates IgE levels, and both receptors, also expressed on antigen-presenting cells, contribute to allergen uptake and presentation to the immune system. We have solved the crystal structure of the soluble lectin-like "head" domain of CD23 (derCD23) bound to a subfragment of IgE-Fc consisting of the dimer of Cε3 and Cε4 domains (Fcε3-4). One CD23 head binds to each heavy chain at the interface between the two domains, explaining the known 2:1 stoichiometry and suggesting mechanisms for cross-linking membrane-bound trimeric CD23 by IgE, or membrane IgE by soluble trimeric forms of CD23, both of which may contribute to the regulation of IgE synthesis by B cells. The two symmetrically located binding sites are distant from the single FcεRI binding site, which lies at the opposite ends of the Cε3 domains. Structural comparisons with both free IgE-Fc and its FcεRI complex reveal not only that the conformational changes in IgE-Fc required for CD23 binding are incompatible with FcεRI binding, but also that the converse is true. The two binding sites are allosterically linked. We demonstrate experimentally the reciprocal inhibition of CD23 and FcεRI binding in solution and suggest that the mutual exclusion of receptor binding allows IgE to function independently through its two receptors.

  6. Dysregulation of laminins in intestinal inflammation.

    Science.gov (United States)

    Spenlé, C; Hussenet, T; Lacroute, J; Lefebvre, O; Kedinger, M; Orend, G; Simon-Assmann, P

    2012-02-01

    Laminins are structural components of basement membranes that regulate and control many cellular functions. Changes in basement membrane composition play significant roles in etiology of diseases. Inflammatory bowel diseases are conditions that lead to defects in the mucosal barrier which includes the basement membrane underlying the epithelium. This review will summarize the main findings related to the involvement of laminins and of the laminin-binding receptors in inflammatory conditions such as Crohn's disease and ulcerative colitis. We will review the current literature devoted to studies in humans (immunolocalisation, genetic factors, microarray data), as well as experimental cell models that show that laminins contribute to the inflammation process probably linked to the deregulation of proinflammatory cytokines.

  7. High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-erbβ Leads to Its Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor.

    Science.gov (United States)

    Carter, Eric L; Gupta, Nirupama; Ragsdale, Stephen W

    2016-01-29

    Rev-erbα and Rev-erbβ are heme-binding nuclear receptors (NR) that repress the transcription of genes involved in regulating metabolism, inflammation, and the circadian clock. Previous gene expression and co-immunoprecipitation studies led to a model in which heme binding to Rev-erbα recruits nuclear receptor corepressor 1 (NCoR1) into an active repressor complex. However, in contradiction, biochemical and crystallographic studies have shown that heme decreases the affinity of the ligand-binding domain of Rev-erb NRs for NCoR1 peptides. One explanation for this discrepancy is that the ligand-binding domain and NCoR1 peptides used for in vitro studies cannot replicate the key features of the full-length proteins used in cellular studies. However, the combined in vitro and cellular results described here demonstrate that heme does not directly promote interactions between full-length Rev-erbβ (FLRev-erbβ) and an NCoR1 construct encompassing all three NR interaction domains. NCoR1 tightly binds both apo- and heme-replete FLRev-erbβ·DNA complexes; furthermore, heme, at high concentrations, destabilizes the FLRev-erbβ·NCoR1 complex. The interaction between FLRev-erbβ and NCoR1 as well as Rev-erbβ repression at the Bmal1 promoter appear to be modulated by another cellular factor(s), at least one of which is related to the ubiquitin-proteasome pathway. Our studies suggest that heme is involved in regulating the degradation of Rev-erbβ in a manner consistent with its role in circadian rhythm maintenance. Finally, the very slow rate constant (10(-6) s(-1)) of heme dissociation from Rev-erbβ rules out a prior proposal that Rev-erbβ acts as an intracellular heme sensor.

  8. Laminins in peripheral nerve development and muscular dystrophy.

    Science.gov (United States)

    Yu, Wei-Ming; Yu, Huaxu; Chen, Zu-Lin

    2007-06-01

    Laminins are extracellular matrix (ECM) proteins that play an important role in cellular function and tissue morphogenesis. In the peripheral nervous system (PNS), laminins are expressed in Schwann cells and participate in their development. Mutations in laminin subunits expressed in the PNS and in skeleton muscle may cause peripheral neuropathies and muscular dystrophy in both humans and mice. Recent studies using gene knockout technology, such as cell-type specific gene targeting techniques, revealed that laminins and their receptors mediate Schwann cell and axon interactions. Schwann cells with disrupted laminin expression exhibit impaired proliferation and differentiation and also undergo apoptosis. In this review, we focus on the potential molecular mechanisms by which laminins participate in the development of Schwann cells.

  9. Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway.

    Science.gov (United States)

    Ku, Hui-Chen; Chang, Hsin-Huei; Liu, Hsien-Chun; Hsiao, Chiao-Hsin; Lee, Meng-Jung; Hu, Yu-Jung; Hung, Pei-Fang; Liu, Chi-Wei; Kao, Yung-Hsi

    2009-07-01

    Insulin and (-)-epigallocatechin gallate (EGCG) have been reported to regulate fat cell mitogenesis and adipogenesis, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated mitogenesis in 3T3-L1 preadipocytes. EGCG inhibited insulin stimulation of preadipocyte proliferation in a dose- and time-dependent manner. EGCG also suppressed insulin-stimulated phosphorylation of the insulin receptor-beta, insulin receptor (IR) substrates 1 and 2 (IRS1 and IRS2), and mitogen-activated protein kinase pathway proteins, RAF1, MEK1/2, and ERK1/2, but not JNK. Furthermore, EGCG inhibited the association of IR with the IRS1 and IRS2 proteins, but not with the IRS4 protein. These data suggest that EGCG selectively affects particular types of IRS and MAPK family members. Generally, EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in modulating insulin-stimulated mitogenic signaling. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and found that its expression was sensitive to growth phase, tissue type, and differentiation state. Pretreatment of preadipocytes with 67LR antiserum prevented the effects of EGCG on insulin-stimulated phosphorylation of IRS2, RAF1, and ERK1/2 and insulin-stimulated preadipocyte proliferation (cell number and bromodeoxyuridine incorporation). Moreover, EGCG tended to increase insulin-stimulated associations between the 67LR and IR, IRS1, IRS2, and IRS4 proteins. These data suggest that EGCG mediates anti-insulin signaling in preadipocyte mitogenesis via the 67LR pathway.

  10. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Eui-Baek [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Choi, Han-Gyu [Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@gmail.com [Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  11. Role of laminins in physiological and pathological angiogenesis.

    Science.gov (United States)

    Simon-Assmann, Patricia; Orend, Gertraud; Mammadova-Bach, Elmina; Spenlé, Caroline; Lefebvre, Olivier

    2011-01-01

    The interaction of endothelial cells and pericytes with their microenvironment, in particular with the basement membrane, plays a crucial role during vasculogenesis and angiogenesis. In this review, we focus on laminins, a major family of extracellular matrix molecules present in basement membranes. Laminins interact with cell surface receptors to trigger intracellular signalling that shapes cell behaviour. Each laminin exerts a distinct effect on endothelial cells and pericytes which largely depends on the adhesion receptor profile expressed on the cell surface. Moreover, proteolytic cleavage of laminins may affect their role in angiogenesis. We report in vitro and in vivo data on laminin-111, -411, -511 and -332 and their associated signalling that regulates cell behaviour and angiogenesis under normal and pathological conditions. We also discuss how tissue-specific deletion of laminin genes affects the behaviour of endothelial cells and pericytes and thus angiogenesis. Finally, we examine how coculture systems with defined laminin expression contribute to our understanding of the roles of laminins in normal and pathological vasculogenesis and angiogenesis.

  12. The impact of the 67kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins.

    Science.gov (United States)

    Fujimura, Yoshinori; Umeda, Daisuke; Yamada, Koji; Tachibana, Hirofumi

    2008-08-15

    Here, we investigated the structure-activity relationship of major green tea catechins and their corresponding epimers on cell-surface binding and inhibitory effect on histamine release. Galloylated catechins; (-)-epigallocatechin-3-O-gallate (EGCG), (-)-gallocatechin-3-O-gallate (GCG), (-)-epicatechin-3-O-gallate (ECG), and (-)-catechin-3-O-gallate (CG) showed the cell-surface binding to the human basophilic KU812 cells by surface plasmon resonance analysis, but their non-galloylated forms did not. Binding activities of pyrogallol-type catechins (EGCG and GCG) were higher than those of catechol-type catechins (ECG and CG). These patterns were also observed in their inhibitory effects on histamine release. Previously, we have reported that biological activities of EGCG are mediated through the binding to the cell-surface 67kDa laminin receptor (67LR). Downregulation of 67LR expression caused a reduction of both activities of galloylated catechins. These results suggest that both the galloyl moiety and the B-ring hydroxylation pattern contribute to the exertion of biological activities of tea catechins and their 67LR-dependencies.

  13. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J.; Muschler, John L.

    2006-02-17

    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.

  14. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  15. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages

    Directory of Open Access Journals (Sweden)

    Qi-Ming Wang

    2016-11-01

    Full Text Available Background/Aims: It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer and MMPs (matrix metalloproteinases by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Methods: Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA. Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. Results: We showed that EGCG (10-50µmol/L significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2, p38 and c-Jun N-terminal kinase (JNK in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Conclusion: Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque.

  16. Synergetic downregulation of 67 kDa laminin receptor by the green tea (Camellia sinensis secondary plant compound epigallocatechin gallate: a new gateway in metastasis prevention?

    Directory of Open Access Journals (Sweden)

    Müller Jakob

    2012-12-01

    Full Text Available Abstract Background In traditional Chinese medicine, green tea is considered to have a life-prolonging effect, possibly as a result of its rich content of antioxidant tea polyphenols, and hence has the potential to prevent cancer. This study investigated the role of the major tea secondary plant compound epigallocatechin gallate (EGCG for its inhibitory effects on the metastasis-associated 67 kDa laminin receptor (67LR. Methods To clarify the impact of EGCG on siRNA-silenced expression of 67LR, we applied an adenoviral-based intestinal in vitro knockdown model, porcine IPEC-J2 cells. Quantitative real-time polymerase chain reaction was performed to analyze 67LR gene expression following treatment with physiological and pharmacological concentrations of EGCG (1.0 g/l, 0.1 g/l, 0.02 g/l and 0.002 g/l. Results We report co-regulation of EGCG and 67LR, which is known to be an EGCG receptor. siRNA selectively and highly significantly suppressed expression of 67LR under the impact of EGCG in a synergetic manner. Conclusions Our findings suggest that 67LR expression is regulated by EGCG via a negative feedback loop. The explicit occurrence of this effect in synergy with a small RNA pathway and a plant-derived drug reveals a new mode of action. Our findings may help to provide insights into the many unsolved health-promoting activities of other natural pharmaceuticals.

  17. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways.

    Science.gov (United States)

    Hsieh, Chi-Fen; Tsuei, Yi-Wei; Liu, Chi-Wei; Kao, Chung-Cheng; Shih, Li-Jane; Ho, Low-Tone; Wu, Liang-Yi; Wu, Chi-Peng; Tsai, Pei-Hua; Chang, Hsin-Huei; Ku, Hui-Chen; Kao, Yung-Hsi

    2010-10-01

    Insulin and (-)-epigallocatechin gallate (EGCG) are reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased insulin-stimulated glucose uptake by 50-60% was approximately 5-10 µM for a period of 2 h. At 10 µM, EGCG and gallic acid were more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin 3-gallate. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and extended the findings for this study to clarify whether EGCG-induced changes in insulin-stimulated glucose uptake in adipocytes could be mediated through the 67LR. Pretreatment of adipocytes with a 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin-increased glucose uptake. This suggests that the 67LR mediates the effect of EGCG on insulin-stimulated glucose uptake in adipocytes. Moreover, pretreatment with an AMP-activated protein kinase (AMPK) inhibitor, such as compound C, but not with a glutathione (GSH) activator, such as N-acetyl-L-cysteine (NAC), blocked the antiinsulin effect of EGCG on adipocyte glucose uptake. These data suggest that EGCG exerts its anti-insulin action on adipocyte glucose uptake via the AMPK, but not the GSH, pathway. The results of this study possibly support that EGCG mediates fat content. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Laminin isoforms in endothelial and perivascular basement membranes.

    Science.gov (United States)

    Yousif, Lema F; Di Russo, Jacopo; Sorokin, Lydia

    2013-01-01

    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.

  19. Alternative splicing of TGF-betas and their high-affinity receptors TβRI, TβRII and TβRIII (betaglycan) reveal new variants in human prostatic cells

    Science.gov (United States)

    Konrad, Lutz; Scheiber, Jonas A; Völck-Badouin, Elke; Keilani, Marcel M; Laible, Leslie; Brandt, Heidrun; Schmidt, Ansgar; Aumüller, Gerhard; Hofmann, Rainer

    2007-01-01

    Background The transforming growth factors (TGF)-β, TGF-β1, TGF-β2 and TGF-β3, and their receptors [TβRI, TβRII, TβRIII (betaglycan)] elicit pleiotropic functions in the prostate. Although expression of the ligands and receptors have been investigated, the splice variants have never been analyzed. We therefore have analyzed all ligands, the receptors and the splice variants TβRIB, TβRIIB and TGF-β2B in human prostatic cells. Results Interestingly, a novel human receptor transcript TβRIIC was identified, encoding additional 36 amino acids in the extracellular domain, that is expressed in the prostatic cancer cells PC-3, stromal hPCPs, and other human tissues. Furthermore, the receptor variant TβRIB with four additional amino acids was identified also in human. Expression of the variant TβRIIB was found in all prostate cell lines studied with a preferential localization in epithelial cells in some human prostatic glands. Similarly, we observed localization of TβRIIC and TGF-β2B mainly in the epithelial cells with a preferential localization of TGF-β2B in the apical cell compartment. Whereas in the androgen-independent hPCPs and PC-3 cells all TGF-β ligands and receptors are expressed, the androgen-dependent LNCaP cells failed to express all ligands. Additionally, stimulation of PC-3 cells with TGF-β2 resulted in a significant and strong increase in secretion of plasminogen activator inhibitor-1 (PAI-1) with a major participation of TβRII. Conclusion In general, expression of the splice variants was more heterogeneous in contrast to the well-known isoforms. The identification of the splice variants TβRIB and the novel isoform TβRIIC in man clearly contributes to the growing complexity of the TGF-β family. PMID:17845732

  20. Alternative splicing of TGF-betas and their high-affinity receptors TβRI, TβRII and TβRIII (betaglycan reveal new variants in human prostatic cells

    Directory of Open Access Journals (Sweden)

    Brandt Heidrun

    2007-09-01

    Full Text Available Abstract Background The transforming growth factors (TGF-β, TGF-β1, TGF-β2 and TGF-β3, and their receptors [TβRI, TβRII, TβRIII (betaglycan] elicit pleiotropic functions in the prostate. Although expression of the ligands and receptors have been investigated, the splice variants have never been analyzed. We therefore have analyzed all ligands, the receptors and the splice variants TβRIB, TβRIIB and TGF-β2B in human prostatic cells. Results Interestingly, a novel human receptor transcript TβRIIC was identified, encoding additional 36 amino acids in the extracellular domain, that is expressed in the prostatic cancer cells PC-3, stromal hPCPs, and other human tissues. Furthermore, the receptor variant TβRIB with four additional amino acids was identified also in human. Expression of the variant TβRIIB was found in all prostate cell lines studied with a preferential localization in epithelial cells in some human prostatic glands. Similarly, we observed localization of TβRIIC and TGF-β2B mainly in the epithelial cells with a preferential localization of TGF-β2B in the apical cell compartment. Whereas in the androgen-independent hPCPs and PC-3 cells all TGF-β ligands and receptors are expressed, the androgen-dependent LNCaP cells failed to express all ligands. Additionally, stimulation of PC-3 cells with TGF-β2 resulted in a significant and strong increase in secretion of plasminogen activator inhibitor-1 (PAI-1 with a major participation of TβRII. Conclusion In general, expression of the splice variants was more heterogeneous in contrast to the well-known isoforms. The identification of the splice variants TβRIB and the novel isoform TβRIIC in man clearly contributes to the growing complexity of the TGF-β family.

  1. Nucleus pulposus cell-matrix interactions with laminins.

    Science.gov (United States)

    Gilchrist, C L; Francisco, A T; Plopper, G E; Chen, J; Setton, L A

    2011-06-20

    The cells of the nucleus pulposus (NP) region of the intervertebral disc play a critical role in this tissue's generation and maintenance, and alterations in NP cell viability, metabolism, and phenotype with aging may be key contributors to progressive disc degeneration. Relatively little is understood about the phenotype of NP cells, including their cell-matrix interactions which may modulate phenotype and survival. Our previous work has identified strong and region-specific expression of laminins and laminin cell-surface receptors in immature NP tissues, suggesting laminin cell-matrix interactions are uniquely important to the biology of NP cells. Whether these observed tissue-level laminin expression patterns reflect functional adhesion behaviors for these cells is not known. In this study, we examined NP cell-matrix interactions with specific matrix ligands, including various laminin isoforms, using quantitative assays of cell attachment, spreading, and adhesion strength. NP cells were found to attach in higher numbers and exhibited rapid cell spreading and higher resistance to detachment force on two laminin isoforms (LM-511,LM-332) identified to be uniquely expressed in the NP region, as compared to another laminin isoform (LM-111) and several other matrix ligands (collagen, fibronectin). Additionally, NP cells were found to attach in higher numbers to laminins as compared to cells isolated from the disc's annulus fibrosus region. These findings confirm that laminin and laminin receptor expression documented in NP tissues translates into unique functional NP cell adhesion behaviors that may be useful tools for in vitro cell culture and biomaterials that support NP cells.

  2. Nucleus pulposus cell-matrix interactions with laminins

    Directory of Open Access Journals (Sweden)

    CL Gilchrist

    2011-06-01

    Full Text Available The cells of the nucleus pulposus (NP region of the intervertebral disc play a critical role in this tissue’s generation and maintenance, and alterations in NP cell viability, metabolism, and phenotype with aging may be key contributors to progressive disc degeneration. Relatively little is understood about the phenotype of NP cells, including their cell-matrix interactions which may modulate phenotype and survival. Our previous work has identified strong and region-specific expression of laminins and laminin cell-surface receptors in immature NP tissues, suggesting laminin cell-matrix interactions are uniquely important to the biology of NP cells. Whether these observed tissue-level laminin expression patterns reflect functional adhesion behaviors for these cells is not known. In this study, we examined NP cell-matrix interactions with specific matrix ligands, including various laminin isoforms, using quantitative assays of cell attachment, spreading, and adhesion strength. NP cells were found to attach in higher numbers and exhibited rapid cell spreading and higher resistance to detachment force on two laminin isoforms (LM-511,LM-332 identified to be uniquely expressed in the NP region, as compared to another laminin isoform (LM-111 and several other matrix ligands (collagen, fibronectin. Additionally, NP cells were found to attach in higher numbers to laminins as compared to cells isolated from the disc’s annulus fibrosus region. These findings confirm that laminin and laminin receptor expression documented in NP tissues translates into unique functional NP cell adhesion behaviors that may be useful tools for in vitro cell culture and biomaterials that support NP cells.

  3. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Lash, L Leanne; Naur, Peter

    2009-01-01

    The prevailing structural model for ligand activation of ionotropic glutamate receptors posits that agonist efficacy arises from the stability and magnitude of induced domain closure in the ligand-binding core structure. Here we describe an exception to the correlation between ligand efficacy...... and domain closure. A weakly efficacious partial agonist of very low potency for homomeric iGluR5 kainate receptors, 8,9-dideoxy-neodysiherbaine (MSVIII-19), induced a fully closed iGluR5 ligand-binding core. The degree of relative domain closure, ~30 degrees , was similar to that we resolved...... to inter-domain hydrogen bonds residues Glu441 and Ser721 in the iGluR5-S1S2 structure. The weaker interactions of MSVIII-19 with iGluR5 compared to DH, together with altered stability of the inter-domain interaction, may be responsible for the apparent uncoupling of domain closure and channel opening...

  4. Nicotine Withdrawal-Induced Deficits in Trace Fear Conditioning in C57BL/6 Mice: A Role for High-Affinity β2 Subunit-Containing Nicotinic Acetylcholine Receptors

    OpenAIRE

    Raybuck, J. D.; Gould, T. J.

    2009-01-01

    Nicotine alters cognitive processes that include working memory and long-term memory. Trace fear conditioning may involve working memory during acquisition while also allowing the assessment of long-term memory. The present study used trace fear conditioning in C57BL/6 mice to investigate the effects of acute nicotine, chronic nicotine, and withdrawal of chronic nicotine on processes active during acquisition and recall 24 hours later and examine the nicotinic acetylcholine receptor subtypes ...

  5. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples.

    Science.gov (United States)

    Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin

    2016-03-10

    Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.

  6. Development and characterization of high affinity leptins and leptin antagonists.

    Science.gov (United States)

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-02-11

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.

  7. Development and Characterization of High Affinity Leptins and Leptin Antagonists*

    Science.gov (United States)

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-01-01

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin. PMID:21119198

  8. Insights into the structural determinants required for high-affinity binding of chiral cyclopropane-containing ligands to α4β2-nicotinic acetylcholine receptors: an integrated approach to behaviorally active nicotinic ligands.

    Science.gov (United States)

    Zhang, Han-Kun; Eaton, J Brek; Yu, Li-Fang; Nys, Mieke; Mazzolari, Angelica; van Elk, René; Smit, August B; Alexandrov, Vadim; Hanania, Taleen; Sabath, Emily; Fedolak, Allison; Brunner, Daniela; Lukas, Ronald J; Vistoli, Giulio; Ulens, Chris; Kozikowski, Alan P

    2012-09-27

    Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a cocrystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine a previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. To validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogues of compound 5. The most promising compound, 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral end points in the rodent studies.

  9. Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 7. Synthesis and Pharmacological Evaluation of 4-Quinolone-3-carboxamides and 4-Hydroxy-2-quinolone-3-carboxamides as High Affinity Cannabinoid Receptor 2 (CB2R) Ligands with Improved Aqueous Solubility.

    Science.gov (United States)

    Mugnaini, Claudia; Brizzi, Antonella; Ligresti, Alessia; Allarà, Marco; Lamponi, Stefania; Vacondio, Federica; Silva, Claudia; Mor, Marco; Di Marzo, Vincenzo; Corelli, Federico

    2016-02-11

    4-Quinolone-3-carboxamide derivatives have long been recognized as potent and selective cannabinoid type-2 receptor (CB2R) ligands. With the aim to improve their physicochemical properties, basically aqueous solubility, two different approaches were followed, entailing the substitution of the alkyl chain with a basic replacement or scaffold modification to 4-hydroxy-2-quinolone structure. According to the first approach, compound 6d was obtained, showing slightly reduced receptor affinity (K(i) = 60 nM) compared to the lead compound 4 (0.8 nM) but greatly enhanced solubility (400-3400 times depending on the pH of the medium). On the other hand, shifting from 4-quinolone to 4-hydroxy-2-quinolone structure enabled the discovery of a novel class of CB2R ligands, such as 7b and 7c, characterized by K(i) 1300. At pH 7.4, compound 7c resulted by 100-fold more soluble than 4.

  10. Schwann cell myelination requires integration of laminin activities.

    Science.gov (United States)

    McKee, Karen K; Yang, Dong-Hua; Patel, Rajesh; Chen, Zu-Lin; Strickland, Sidney; Takagi, Junichi; Sekiguchi, Kiyotoshi; Yurchenco, Peter D

    2012-10-01

    Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination.

  11. Laminin-dependent and laminin-independent adhesion of human melanoma cells to sulfatides

    DEFF Research Database (Denmark)

    Roberts, D D; Wewer, U M; Liotta, L A

    1988-01-01

    Sulfatides (galactosylceramide-I3-sulfate) but not neutral glycolipids or gangliosides adsorbed on plastic promote adhesion of the human melanoma cell line G361. Direct adhesion of G361 cells requires densities of sulfatide greater than 1 pmol/mm2. In the presence of laminin, however, specific...... by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed on the plastic. Although thrombospondin binds to sulfatides and G361 cells, it does not enhance, but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide. In contrast, C32 melanoma cells also adhere...

  12. Synthesis, structure activity relationship, radiolabeling and preclinical evaluation of high affinity ligands for the ion channel of the N-methyl-d-aspartate receptor as potential imaging probes for positron emission tomography.

    Science.gov (United States)

    Klein, Pieter J; Christiaans, Johannes A M; Metaxas, Athanasios; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2015-03-01

    The N-methyl-d-aspartate receptor (NMDAr) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. Currently, it is not possible to assess NMDAr availability in vivo. The purpose of this study was to develop a positron emission tomography (PET) ligand for the NMDAr ion channel. A series of di- and tri-N-substituted diarylguanidines was synthesized. In addition, in vitro binding affinity for the NMDAr ion channel in rat forebrain membrane fractions was assessed. Compounds 10, 11 and 32 were radiolabeled with either carbon-11 or fluorine-18. Ligands [(11)C]10 and [(18)F]32 were evaluated ex vivo in B6C3 mice. Biodistribution studies showed higher uptake of [(11)C]10 and [(18)F]32 in forebrain regions compared with cerebellum. In addition, for [(11)C]10 54% and for [(18)F]32 70% of activity in the brain at 60min was due to intact tracer. Pre-treatment with MK-801 (0.6mg·kg(-1), ip) slightly decreased uptake in NMDAr-specific regions for [(18)F]32, but not for [(11)C]10. As such [(18)F]32 has the best characteristics as a PET tracer for the ion channel of the NMDAr.

  13. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system.

    Science.gov (United States)

    Gulyás, Balázs; Makkai, Boglárka; Kása, Péter; Gulya, Károly; Bakota, Lidia; Várszegi, Szilvia; Beliczai, Zsuzsa; Andersson, Jan; Csiba, László; Thiele, Andrea; Dyrks, Thomas; Suhara, Tetsua; Suzuki, Kazutoshi; Higuchi, Makato; Halldin, Christer

    2009-01-01

    The binding of two radiolabelled analogues (N-(5-[125I]Iodo-2-phenoxyphenyl)-N-(2,5-dimethoxybenzyl)acetamide ([125I]desfluoro-DAA1106) and N-(5-[125I]Fluoro-2-phenoxyphenyl)-N-(2-[125I]Iodo-5-methoxybenzyl)acetamide ([125I]desmethoxy-DAA1106) of the peripheral benzodiazepine receptor (PBR) (or TSPO, 18kDa translocator protein) ligand DAA1106 was examined by in vitro autoradiography on human post mortem whole hemisphere brain slices obtained from Alzheimer's disease (AD) patients and age-matched controls. Both [(125)I]desfluoro-IDAA1106 and [(125)I]desmethoxy-IDAA1106 were effectively binding to various brain structures. The binding could be blocked by the unlabelled ligand as well as by other PBR specific ligands. With both radiolabelled compounds, the binding showed regional inhomogeneity and the specific binding values proved to be the highest in the hippocampus, temporal and parietal cortex, the basal ganglia and thalamus in the AD brains. Compared with age-matched control brains, specific binding in several brain structures (temporal and parietal lobes, thalamus and white matter) in Alzheimer brains was significantly higher, indicating that the radioligands can effectively label-activated microglia and the up-regulated PBR/TSPO system in AD. Complementary immunohistochemical studies demonstrated reactive microglia activation in the AD brain tissue and indicated that increased ligand binding coincides with increased regional microglia activation due to neuroinflammation. These investigations yield further support to the PBR/TSPO binding capacity of DAA1106 in human brain tissue, demonstrate the effective usefulness of its radio-iodinated analogues as imaging biomarkers in post mortem human studies, and indicate that its radiolabelled analogues, labelled with short half-time bioisotopes, can serve as prospective in vivo imaging biomarkers of activated microglia and the up-regulated PBR/TSPO system in the human brain.

  14. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    Science.gov (United States)

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  15. Adhesion, growth, and matrix production by fibroblasts on laminin substrates

    DEFF Research Database (Denmark)

    Couchman, J R; Höök, M; Rees, D A;

    1983-01-01

    Human embryonic skin fibroblasts have been shown to attach and spread on laminin substrates in the absence of protein synthesis and presence of fibronectin-depleted serum and anti-fibronectin antibodies. Rates of attachment and the type of spreading are virtually identical on fibronectin and lami......Human embryonic skin fibroblasts have been shown to attach and spread on laminin substrates in the absence of protein synthesis and presence of fibronectin-depleted serum and anti-fibronectin antibodies. Rates of attachment and the type of spreading are virtually identical on fibronectin...... and laminin-coated substrates with the development of microfilament bundles and focal adhesions. Antibodies to laminin, but not fibronectin, will prevent or reverse fibroblast adhesion to laminin, whereas antibodies to fibronectin but not laminin will give similar results on fibronectin-coated substrates....... These and other results indicate that fibroblasts possess distinct receptors for laminin and fibronectin which on contact with suitable substrates promote adhesion through interaction with common intermediates. This type of adhesion is compatible with subsequent growth and extracellular matrix production....

  16. 基质金属蛋白酶-2和层粘连蛋白受体表达与胃癌生物学行为的关系%Matrix metalloproteinase-2 and laminin receptor in association with biological behavior of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    王克兵; 徐澍

    2010-01-01

    目的 探讨基质金属蛋白酶-2(MMP-2)和层粘连蛋白受体(laminin receptor,laminin-R)在胃癌中的表达与胃癌生物学行为的关系.方法 采用免疫组化EnvisionTM法检测82例胃腺癌组织中MMP-2和laminin-R的表达情况,分析其与胃癌生物学行为的关系.结果 MMP-2和laminin-R在胃癌中的阳性表达率分别为62.2%和52.44%;MMP-2和laminin-R与患者年龄、性别、肿瘤发病部位、肿瘤大小和分级均不相关 (P > 0.05);MMP-2蛋白表达与浸润深度、TNM分期相关(P < 0.01,P < 0.01);laminin-R表达与胃癌浸润深度、淋巴结转移、TNM分期相关(P < 0.01,P < 0.05,P < 0.01);MMP-2和laminin-R在胃癌中表达呈正相关关系(r = 0.72).结论 胃癌组织中MMP-2与laminin-R表达参与胃癌的侵袭和淋巴结转移.

  17. Laminin 511 partners with laminin 332 to mediate directional migration of Madin–Darby canine kidney epithelial cells

    Science.gov (United States)

    Greciano, Patricia G.; Moyano, Jose V.; Buschmann, Mary M.; Tang, Jun; Lu, Yue; Rudnicki, Jean; Manninen, Aki; Matlin, Karl S.

    2012-01-01

    Sustained directional migration of epithelial cells is essential for regeneration of injured epithelia. Front–rear polarity of migrating cells is determined by local activation of a signaling network involving Cdc42 and other factors in response to spatial cues from the environment, the nature of which are obscure. We examined the roles of laminin (LM)-511 and LM-332, two structurally different laminin isoforms, in the migration of Madin–Darby canine kidney cells by suppressing expression of their α subunits using RNA interference. We determined that knockdown of LM-511 inhibits directional migration and destabilizes cell–cell contacts, in part by disturbing the localization and activity of the polarization machinery. Suppression of integrin α3, a laminin receptor subunit, in cells synthesizing normal amounts of both laminins has a similar effect as knockdown of LM-511. Surprisingly, simultaneous suppression of both laminin α5 and laminin α3 restores directional migration and cell–cell contact stability, suggesting that cells recognize a haptotactic gradient formed by a combination of laminins. PMID:22031290

  18. Laminin 511 partners with laminin 332 to mediate directional migration of Madin-Darby canine kidney epithelial cells.

    Science.gov (United States)

    Greciano, Patricia G; Moyano, Jose V; Buschmann, Mary M; Tang, Jun; Lu, Yue; Rudnicki, Jean; Manninen, Aki; Matlin, Karl S

    2012-01-01

    Sustained directional migration of epithelial cells is essential for regeneration of injured epithelia. Front-rear polarity of migrating cells is determined by local activation of a signaling network involving Cdc42 and other factors in response to spatial cues from the environment, the nature of which are obscure. We examined the roles of laminin (LM)-511 and LM-332, two structurally different laminin isoforms, in the migration of Madin-Darby canine kidney cells by suppressing expression of their α subunits using RNA interference. We determined that knockdown of LM-511 inhibits directional migration and destabilizes cell-cell contacts, in part by disturbing the localization and activity of the polarization machinery. Suppression of integrin α3, a laminin receptor subunit, in cells synthesizing normal amounts of both laminins has a similar effect as knockdown of LM-511. Surprisingly, simultaneous suppression of both laminin α5 and laminin α3 restores directional migration and cell-cell contact stability, suggesting that cells recognize a haptotactic gradient formed by a combination of laminins.

  19. Interaction of human laminin receptor with Sup35, the [PSI⁺] prion-forming protein from S. cerevisiae: a yeast model for studies of LamR interactions with amyloidogenic proteins.

    Directory of Open Access Journals (Sweden)

    Christine Pampeno

    Full Text Available The laminin receptor (LamR is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrP(C and PrP(Sc. Indeed, LamR is a receptor for PrP(C. Whether LamR interacts with PrP(Sc exclusively in a capacity of the PrP receptor, or LamR specifically recognizes prion determinants of PrP(Sc, is unclear. In order to explore whether LamR has a propensity to interact with prions and amyloids, we examined LamR interaction with the yeast prion-forming protein, Sup35. Sup35 is a translation termination factor with no homology or functional relationship to PrP. Plasmids expressing LamR or LamR fused with the green fluorescent protein (GFP were transformed into yeast strain variants differing by the presence or absence of the prion conformation of Sup35, respectively [PSI⁺] and [psi⁻]. Analyses by immunoprecipitation, centrifugal fractionation and fluorescent microscopy reveal interaction between LamR and Sup35 in [PSI⁺] strains. The presence of [PSI⁺] promotes LamR co-precipitation with Sup35 as well as LamR aggregation. In [PSI⁺] cells, LamR tagged with GFP or mCherry forms bright fluorescent aggregates that co-localize with visible [PSI⁺] foci. The yeast prion model will facilitate studying the interaction of LamR with amyloidogenic prions in a safe and easily manipulated system that may lead to a better understanding and treatment of amyloid diseases.

  20. 层粘连蛋白受体表达与高温治癌相关性的研究%The study on the relation between laminin receptor(Ln-R) expression and hyperthermia treatment of cancer

    Institute of Scientific and Technical Information of China (English)

    费继敏; 何永文; 刘流; 赵德萍

    2003-01-01

    目的研究高温对人舌癌细胞与层粘连蛋白(laminin,Ln)粘附性及层粘连蛋白受体(laminin receptor,Ln-R)表达量的影响,以探寻高温治癌的机理.方法采用结晶紫染色法和流式细胞术测定37℃条件与43℃条件下加热40分钟后继续培养24小时的人舌癌细胞对Ln的粘附性及Ln-R的表达量.结果高温处理后的细胞对Ln的粘附能力明显降低,与对照组相比,具有显著性差异(P<0.05),同时Ln-R蛋白表达量下降.结论高温通过降低肿瘤细胞对基质的粘附力而降低肿瘤细胞对周围组织的侵袭转移力,从而达到治癌的目的.

  1. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction.

    Science.gov (United States)

    Nishimune, Hiroshi; Valdez, Gregorio; Jarad, George; Moulson, Casey L; Müller, Ulrich; Miner, Jeffrey H; Sanes, Joshua R

    2008-09-22

    A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the alpha4, alpha5, and beta2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at the NMJ. Topological maturation of AChR clusters was delayed in targeted mutant mice lacking laminin alpha5 and arrested in mutants lacking both alpha4 and alpha5. Analysis of chimeric laminins in vivo and of mutant myotubes cultured aneurally demonstrated that the laminins act directly on muscle cells to promote postsynaptic maturation. Immunohistochemical studies in vivo and in vitro along with analysis of targeted mutants provide evidence that laminin-dependent aggregation of dystroglycan in the postsynaptic membrane is a key step in synaptic maturation. Another synaptically concentrated laminin receptor, Bcam, is dispensable. Together with previous studies implicating laminins as organizers of presynaptic differentiation, these results show that laminins coordinate post- with presynaptic maturation.

  2. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  3. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.

  4. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes.

    Science.gov (United States)

    Wensveen, Felix M; van Gisbergen, Klaas P J M; Eldering, Eric

    2012-09-01

    Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses.

  5. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  6. Intrathymic laminin-mediated interactions: role in T cell migration and development

    Directory of Open Access Journals (Sweden)

    Wilson eSavino

    2015-11-01

    Full Text Available Intrathymic T cell differentiation is a key process for the development and maintenance of cell-mediated immunity, and occurs concomitantly to highly regulated migratory events. We have proposed a multivectorial model for describing intrathymic thymocyte migration. One of the individual vectors comprises interactions mediated by laminins, a heterotrimeric protein family of the extracellular matrix. Several laminins are expressed in the thymus, being produced by microenvironmental cells, particularly thymic epithelial cells. Also, thymocytes and epithelial cells express integrin-type laminin receptors. Functionally, it has been reported that the dy/dy mutant mouse (lacking the laminin isoform 211 exhibits defective thymocyte differentiation. Several data show haptotactic effects of laminins upon thymocytes, as well as their adhesion on thymic epithelial cells; both effects being prevented by anti-laminin or anti-laminin receptor antibodies. Interestingly, laminin synergizes with chemokines to enhance thymocyte migration, whereas classe-3 semaphorins and B ephrins, which exhibit chemorepulsive effects in the thymus, downregulate laminin-mediated migratory responses of thymocytes. More recently, we showed that knocking down the ITGA6 gene (which encodes the α6 integrin chain of laminin receptors in human thymic epithelial cells, modulates a large number of cell-migration related genes, and results in changes of adhesion pattern of thymocytes onto the thymic epithelium. Overall, laminin-mediated interactions can be placed at the cross-road of the multivectorial process of thymocyte migration, with a direct influence per se, as well as by modulating other molecular interactions associated with the intrathymic trafficking events.

  7. Novel high-affinity and selective biaromatic 4-substituted ¿-hydroxybutyric acid (GHB) analogues as GHB ligands

    DEFF Research Database (Denmark)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte;

    2008-01-01

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites...

  8. Cytisine derivatives as high affinity nAChR ligands: synthesis and comparative molecular field analysis.

    Science.gov (United States)

    Nicolotti, O; Canu Boido, C; Sparatore, F; Carotti, A

    2002-06-01

    A number of new N-substituted cytisine derivatives were prepared and tested, along with similar compounds already described by us and others, as high affinity neuronal acetylcholine receptor ligands. Structure-affinity relationships were discussed in the light of our recently proposed pharmacophore model for nicotinic receptor agonists. The most significant physicochemical interactions modulating the receptor-ligand binding were detected at the three dimensional (3D) level by means of comparative molecular field analysis (CoMFA). The best predictive PLS model was a single-field steric model showing good statistical figures: n = 17, Q2 = 0.717, s(ev) = 0.566, r2 = 0.942, s = 0.275.

  9. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization

    DEFF Research Database (Denmark)

    Henry, M D; Satz, J S; Brakebusch, C

    2001-01-01

    Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface....... Here we show that DG-mediated laminin clustering on mouse embryonic stem (ES) cells is a dynamic process in which clusters are consolidated over time into increasingly more complex structures. Utilizing various null-mutant ES cell lines, we define roles for other molecules in this process. In beta1...... integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that beta1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells...

  10. The role of laminins in the organization and function of neuromuscular junctions.

    Science.gov (United States)

    Rogers, Robert S; Nishimune, Hiroshi

    2017-01-01

    The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.

  11. The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways.

    Science.gov (United States)

    Wang, Chih-Ting; Chang, Hsin-Huei; Hsiao, Chiao-Hsin; Lee, Meng-Jung; Ku, Hui-Chen; Hu, Yu-Jung; Kao, Yung-Hsi

    2009-03-01

    Green tea (-)-epigallocatechin-3-gallate (EGCG) is known as to regulate obesity and fat cell activity. However, little information is known about the effects of EGCG on oxidative reactive oxygen species (ROS) of fat cells. Using 3T3-L1 preadipocytes and adipocytes, we found that EGCG increased ROS production in dose- and time-dependent manners. The concentration of EGCG that increased ROS levels by 180-500% was approximately 50 muM for a range of 8-16 h of treatment. In contrast, EGCG dose- and time-dependently decreased the amount of intracellular glutathione (GSH) levels. EGCG was more effective than (-)-epicatechin, (-)-epicatechin-3-gallate, and (-)-epigallocatechin in changing ROS and GSH levels. This suggests a catechin-specific effect. To further examine the relation of GSH to ROS as altered by EGCG, we observed that exposure of preadipocytes and adipocytes to N-acetyl-L-cysteine (a GSH precursor) blocked the EGCG-induced increases in ROS levels and decreases in GSH levels. These observations suggest a GSH-dependent effect of EGCG on ROS production. While EGCG was demonstrated to alter levels of ROS and GSH, its signaling was altered by an EGCG receptor (the so-called 67 kDa laminin receptor(67LR)) antiserum, but not by normal rabbit serum. These data suggest that EGCG mediates GSH and ROS levels via the 67LR pathway.

  12. Laminin isoform expression in breast tumors

    OpenAIRE

    Holler, Eggehard

    2005-01-01

    Certain laminins of vascular basement membranes have been identified in human breast tumors and brain gliomas that share the same β1 chain. These laminins are new carcinoma angiogenic markers and might represent potential targets for antiangiogenic therapy.

  13. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  14. A novel monoclonal antibody to human laminin α5 chain strongly inhibits integrin-mediated cell adhesion and migration on laminins 511 and 521.

    Science.gov (United States)

    Wondimu, Zenebech; Omrani, Shahin; Ishikawa, Taichi; Javed, Fawad; Oikawa, Yuko; Virtanen, Ismo; Juronen, Erkki; Ingerpuu, Sulev; Patarroyo, Manuel

    2013-01-01

    Laminins, a large family of αβγ heterotrimeric proteins mainly found in basement membranes, are strong promoters of adhesion and migration of multiple cell types, such as tumor and immune cells, via several integrin receptors. Among laminin α (LMα) chains, α5 displays the widest tissue distribution in adult life and is synthesized by most cell types. Here, we have generated and characterized five novel monoclonal antibodies (mAbs) to the human LMα5 chain to further study the biological relevance of α5 laminins, such as laminins 511 (α5β1γ1) and 521 (α5β2γ1). As detected by ELISA, immunohistochemistry, immunoprecipitation and Western blotting, each antibody displayed unique properties when compared to mAb 4C7, the prototype LMα5 antibody. Of greatest interest, mAb 8G9, but not any other antibody, strongly inhibited α3β1/α6β1 integrin-mediated adhesion and migration of glioma, melanoma, and carcinoma cells on laminin-511 and, together with mAb 4C7, on laminin-521. Accordingly, mAb 8G9 abolished the interaction of soluble α3β1 integrin with immobilized laminins 511 and 521. Binding of mAb 8G9 to laminin-511 was unaffected by the other mAbs to the LMα5 chain but largely hindered by mAb 4E10 to a LMβ1 chain epitope near the globular domain of laminin-511. Thus, mAb 8G9 defines a novel epitope localized at or near the integrin-binding globular domain of the LMα5 chain, which is essential for cell adhesion and migration, and identifies a potential therapeutic target in malignant and inflammatory diseases.

  15. A novel monoclonal antibody to human laminin α5 chain strongly inhibits integrin-mediated cell adhesion and migration on laminins 511 and 521.

    Directory of Open Access Journals (Sweden)

    Zenebech Wondimu

    Full Text Available Laminins, a large family of αβγ heterotrimeric proteins mainly found in basement membranes, are strong promoters of adhesion and migration of multiple cell types, such as tumor and immune cells, via several integrin receptors. Among laminin α (LMα chains, α5 displays the widest tissue distribution in adult life and is synthesized by most cell types. Here, we have generated and characterized five novel monoclonal antibodies (mAbs to the human LMα5 chain to further study the biological relevance of α5 laminins, such as laminins 511 (α5β1γ1 and 521 (α5β2γ1. As detected by ELISA, immunohistochemistry, immunoprecipitation and Western blotting, each antibody displayed unique properties when compared to mAb 4C7, the prototype LMα5 antibody. Of greatest interest, mAb 8G9, but not any other antibody, strongly inhibited α3β1/α6β1 integrin-mediated adhesion and migration of glioma, melanoma, and carcinoma cells on laminin-511 and, together with mAb 4C7, on laminin-521. Accordingly, mAb 8G9 abolished the interaction of soluble α3β1 integrin with immobilized laminins 511 and 521. Binding of mAb 8G9 to laminin-511 was unaffected by the other mAbs to the LMα5 chain but largely hindered by mAb 4E10 to a LMβ1 chain epitope near the globular domain of laminin-511. Thus, mAb 8G9 defines a novel epitope localized at or near the integrin-binding globular domain of the LMα5 chain, which is essential for cell adhesion and migration, and identifies a potential therapeutic target in malignant and inflammatory diseases.

  16. 中国南方汉族人群高亲和度IgE受体β链 基因突变的研究%Study on mutations of β chain of high-affinity IgE receptor gene in people of Han nationality of southern China

    Institute of Scientific and Technical Information of China (English)

    汤彦; 温德良; 丁勇; 刘晓妍; 曾艺; 李月琴; 吴骎

    2001-01-01

    目的检测中国南方汉族人群高亲和度IgE受体β链基因3个突变(I181L、V183L和E237G)在支气管哮喘组和正常人群中的存在与频率。探讨这些突变与哮喘的相关性。方法利用扩增阻滞突变系统聚合酶链技术(ARMS-PCR)对60例哮喘患者Fc ε RI-β基因的编码181、183和237氨基酸位点进行分析和检测,并与65例正常人进行对照。结果在哮喘组中检测到1例I181L杂合子,被检人群中没有发现V183L突变。Glu237/Gly237在哮喘组中频率是18.3%,正常组中频率是6.2%,两者比较差异有显著性(P<0.05)。结论在中国南方汉族人群中存在E237突变,与哮喘相关。I181L突变频率很低。不存在V183L突变或频率极低。%Objective To detect mutations of β chain of high-affinity IgE receptor (Fc ε RI-β)gene and analyze the association between its mutation and asthma in people of Han nationality of southern China. Methods Amplification refractory mutation system-polymerase chain reaction technique was used to determine 3 mutations (I181L,V183L and E237G) at Fc ε RI-β gene in 60 unrelated patients with asthma and 65 healthy controls from people of Han nationality of southern China. Results (1) The mutation V183L was not detected in patient and control groups. (2) The only one heterozygous for I181/L181 was found in patient group, and no homozygous for L181/L181. (3) The frequency of Glu237/Gly237 genotype is 18.3% in patient group,and 6.2% in control group. The frequency of Gly237 gene is 9.2% in patient group,and 3.1% in control group. (4) There was a significant difference in the frequencies of Glu237/Gly237 genotype and Gly237 gene. Conclusion These results suggest that E237G mutation of Fc ε RI-β gene presents in people of Han nationality of southern China,and is correlated with asthma. There are the lack or very low frequencies of V183L and I181L mutations in people of Han nationality of southern China.

  17. A high-affinity, radioiodinatable neuropeptide FF analogue incorporating a photolabile p-(4-hydroxybenzoyl)phenylalanine.

    Science.gov (United States)

    Bray, Lauriane; Moulédous, Lionel; Tafani, Jean A M; Germanier, Maryse; Zajac, Jean-Marie

    2014-05-15

    A new radioiodinated photoaffinity compound, [(125)I]YE(Bpa)WSLAAPQRFNH2, derived from a peptide present in the rat neuropeptide FF (NPFF) precursor was synthesized, and its binding characteristics were investigated on a neuroblastoma clone, SH-SY5Y, stably expressing rat NPFF2 receptors tagged with the T7 epitope. The binding of the probe was saturable and revealed a high-affinity interaction (KD=0.24nM) with a single class of binding sites. It was also able to affinity label NPFF2 receptor in a specific and efficient manner given that 38% of the bound radioligand at saturating concentration formed a wash-resistant binding after ultraviolet (UV) irradiation. Photoaffinity labeling with [(125)I]YE(Bpa)WSLAAPQRFamide showed two molecular forms of NPFF2 receptor with apparent molecular weights of 140 and 95kDa in a 2:1 ratio. The comparison of the results between photoaffinity labeling and Western blot analysis suggests that all receptor forms bind the probe irreversibly with the same efficiency. On membranes of mouse olfactory bulb, only the high molecular weight form of NPFF2 receptor is observed. [(125)I]YE(Bpa)WSLAAPQRFamide is an excellent radioiodinated peptidic ligand for direct and selective labeling of NPFF2 receptors in vitro.

  18. Laminins and their roles in mammals.

    Science.gov (United States)

    Miner, Jeffrey H

    2008-05-01

    Laminins are alpha-beta-gamma heterotrimeric components of all basement membranes. Laminins are now known to play the central role in organizing and establishing the basement membrane. The diversity of laminins allows them to impart special structural and signaling properties to the basement membrane. Of the 12 known laminin chain genes, 10 have been either found to be mutated in humans or experimentally mutated in mice. This has led to great progress over the last several years towards understanding both the functions of laminins and the reasons for their great diversity. In this review, I will summarize the in vivo studies in mice and humans that have contributed to this new knowledge.

  19. High affinity binding of (/sup 3/H)cocaine to rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    )/sup 3/H)cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in (/sup 3/H)cocaine binding. On the other hand, chronic administration of cocaine reduced (/sup 3/H)cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of (/sup 3/H)cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced (/sup 3/H)cocaine binding to liver with a different rank order of potency than their displacement of (/sup 3/H)cocaine binding to striatum. This high affinity (/sup 3/H)cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  20. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction

    OpenAIRE

    Nishimune, Hiroshi; Jarad, George; Moulson, Casey L.; Müller, Ulrich; Miner, Jeffrey H.; Valdez, Gregorio; Sanes, Joshua R

    2008-01-01

    A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the α4, α5, and β2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at ...

  1. Bridging structure with function: structural, regulatory, and developmental role of laminins.

    Science.gov (United States)

    Tzu, Julia; Marinkovich, M Peter

    2008-01-01

    The basement membrane is a highly intricate and organized portion of the extracellular matrix that interfaces with a variety of cell types including epithelial, endothelial, muscle, nerve, and fat cells. The laminin family of glycoproteins is a major constituent of the basement membrane. The 16 known laminin isoforms are formed from combinations of alpha, beta, and gamma chains, with each chain containing specific domains capable of interacting with cellular receptors such as integrins and other extracellular ligands. In addition to its role in the assembly and architectural integrity of the basement membrane, laminins interact with cells to influence proliferation, differentiation, adhesion, and migration, processes activated in normal and pathologic states. In vitro these functions are regulated by the post-translational modifications of the individual laminin chains. In vivo laminin knockout mouse studies have been particularly instructive in defining the function of specific laminins in mammalian development and have also highlighted its role as a key component of the basement membrane. In this review, we will define how laminin structure complements function and explore its role in both normal and pathologic processes.

  2. Probes for narcotic receptor mediated phenomena 22. Pt.1: Synthesis and characterization of optically pure [{sup 3}H](+)-4-[({alpha}R)-{alpha}-((2S,5R)-4-propyl-2,5-dimethyl-1-pi perazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide, [{sup 3}H]SNC 121, a novel high affinity and selective ligand for delta opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, S.N.; Bertha, C.M.; Rice, K.C. [National Inst. of Diabetes and Digestive and Kidney Diseases, Medicinal Chemistry Lab., Bethesda, MD (United States); Gutkind, J.S. [National Inst. of Dental Research, Bethesda, MD (United States); Heng Xu; Partilla, J.S.; Rothman, R.B. [National Inst. on Drug Abuse, Clinical Psychopharmacology Section, Baltimore, MD (United States)

    1996-09-01

    The synthesis of unlabelled and labelled SNC 121, a selective nonpeptide ligand for the delta opioid receptor is reported. [{sup 3}H]SNC 121 of specific activity of 26.8 Ci/mmol, was synthesized by catalytic tritiation of the optically pure precursor SNC 80. (author).

  3. The C-terminal region of laminin beta chains modulates the integrin binding affinities of laminins.

    Science.gov (United States)

    Taniguchi, Yukimasa; Ido, Hiroyuki; Sanzen, Noriko; Hayashi, Maria; Sato-Nishiuchi, Ryoko; Futaki, Sugiko; Sekiguchi, Kiyotoshi

    2009-03-20

    Laminins are major cell-adhesive proteins in basement membranes that are capable of binding to integrins. Laminins consist of three chains (alpha, beta, and gamma), in which three laminin globular modules in the alpha chain and the Glu residue in the C-terminal tail of the gamma chain have been shown to be prerequisites for binding to integrins. However, it remains unknown whether any part of the beta chain is involved in laminin-integrin interactions. We compared the binding affinities of pairs of laminin isoforms containing the beta1 or beta2 chain toward a panel of laminin-binding integrins, and we found that beta2 chain-containing laminins (beta2-laminins) bound more avidly to alpha3beta1 and alpha7X2beta1 integrins than beta1 chain-containing laminins (beta1-laminins), whereas alpha6beta1, alpha6beta4, and alpha7X1beta1 integrins did not show any preference toward beta2-laminins. Because alpha3beta1 contains the "X2-type" variable region in the alpha3 subunit and alpha6beta1 and alpha6beta4 contain the "X1-type" region in the alpha6 subunit, we hypothesized that only integrins containing the X2-type region were capable of discriminating between beta1-laminins and beta2-laminins. In support of this possibility, a putative X2-type variant of alpha6beta1 was produced and found to bind preferentially to beta2-laminins. Production of a series of swap mutants between the beta1 and beta2 chains revealed that the C-terminal 20 amino acids in the coiled-coil domain were responsible for the enhanced integrin binding by beta2-laminins. Taken together, the results provide evidence that the C-terminal region of beta chains is involved in laminin recognition by integrins and modulates the binding affinities of laminins toward X2-type integrins.

  4. Neurotensin decreases high affinity [3H]-ouabain binding to cerebral cortex membranes.

    Science.gov (United States)

    Rosin, Carina; Ordieres, María Graciela López; Arnaiz, Georgina Rodríguez de Lores

    2011-12-10

    Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.

  5. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies

    Directory of Open Access Journals (Sweden)

    Gawlik Kinga I

    2011-03-01

    Full Text Available Abstract Laminin-211 is a cell-adhesion molecule that is strongly expressed in the basement membrane of skeletal muscle. By binding to the cell surface receptors dystroglycan and integrin α7β1, laminin-211 is believed to protect the muscle fiber from damage under the constant stress of contractions, and to influence signal transmission events. The importance of laminin-211 in skeletal muscle is evident from merosin-deficient congenital muscular dystrophy type 1A (MDC1A, in which absence of the α2 chain of laminin-211 leads to skeletal muscle dysfunction. MDC1A is the commonest form of congenital muscular dystrophy in the European population. Severe hypotonia, progressive muscle weakness and wasting, joint contractures and consequent impeded motion characterize this incurable disorder, which causes great difficulty in daily life and often leads to premature death. Mice with laminin α2 chain deficiency have analogous phenotypes, and are reliable models for studies of disease mechanisms and potential therapeutic approaches. In this review, we introduce laminin-211 and describe its structure, expression pattern in developing and adult muscle and its receptor interactions. We will also discuss the molecular pathogenesis of MDC1A and advances toward the development of treatment.

  6. Laminins and retinal vascular development.

    Science.gov (United States)

    Edwards, Malia M; Lefebvre, Olivier

    2013-01-01

    The mechanisms controlling vascular development, both normal and pathological, are not yet fully understood. Many diseases, including cancer and diabetic retinopathy, involve abnormal blood vessel formation. Therefore, increasing knowledge of these mechanisms may help develop novel therapeutic targets. The identification of novel proteins or cells involved in this process would be particularly useful. The retina is an ideal model for studying vascular development because it is easy to access, particularly in rodents where this process occurs post-natally. Recent studies have suggested potential roles for laminin chains in vascular development of the retina. This review will provide an overview of these studies, demonstrating the importance of further research into the involvement of laminins in retinal blood vessel formation.

  7. A high-affinity molybdate transporter in eukaryotes.

    Science.gov (United States)

    Tejada-Jiménez, Manuel; Llamas, Angel; Sanz-Luque, Emanuel; Galván, Aurora; Fernández, Emilio

    2007-12-11

    Molybdenum is an essential element for almost all living beings, which, in the form of a molybdopterin-cofactor, participates in the active site of enzymes involved in key reactions of carbon, nitrogen, and sulfur metabolism. This metal is taken up by cells in form of the oxyanion molybdate. Bacteria acquire molybdate by an ATP-binding-cassette (ABC) transport system in a widely studied process, but how eukaryotic cells take up molybdenum is unknown because molybdate transporters have not been identified so far. Here, we report a eukaryotic high-affinity molybdate transporter, encoded by the green alga Chlamydomonas reinhardtii gene MoT1. An antisense RNA strategy over the MoT1 gene showed that interference of the expression of this gene leads to the inhibition of molybdate transport activity and, in turn, of the Mo-containing enzyme nitrate reductase, indicating a function of MoT1 in molybdate transport. MOT1 functionality was also shown by heterologous expression in Saccharomyces cerevisiae. Molybdate uptake mediated by MOT1 showed a K(m) of approximately 6 nM, which is the range of the lowest K(m) values reported and was activated in the presence of nitrate. Analysis of deduced sequence from the putative protein coded by MoT1 showed motifs specifically conserved in similar proteins present in the databases, and defines a family of membrane proteins in both eukaryotes and prokaryotes probably involved in molybdate transport and distantly related to plant sulfate transporters SULTR. These findings represent an important step in the understanding of molybdate transport, a crucial process in eukaryotic cells.

  8. Laminin is required for Schwann cell morphogenesis.

    Science.gov (United States)

    Yu, Wei-Ming; Chen, Zu-Lin; North, Alison J; Strickland, Sidney

    2009-04-01

    Development of the peripheral nervous system requires radial axonal sorting by Schwann cells (SCs). To accomplish sorting, SCs must both proliferate and undergo morphogenetic changes such as process extension. Signaling studies reveal pathways that control either proliferation or morphogenesis, and laminin is essential for SC proliferation. However, it is not clear whether laminin is also required for SC morphogenesis. By using a novel time-lapse live-cell-imaging technique, we demonstrated that laminins are required for SCs to form a bipolar shape as well as for process extension. These morphological deficits are accompanied by alterations in signaling pathways. Phosphorylation of Schwannomin at serine 518 and activation of Rho GTPase Cdc42 and Rac1 were all significantly decreased in SCs lacking laminins. Inhibiting Rac1 and/or Cdc42 activities in cultured SCs attenuated laminin-induced myelination, whereas forced activation of Rac1 and/or Cdc42 in vivo improved sorting and hypomyelinating phenotypes in SCs lacking laminins. These findings indicate that laminins play a pivotal role in regulating SC cytoskeletal signaling. Coupled with previous results demonstrating that laminin is critical for SC proliferation, this work identifies laminin signaling as a central regulator coordinating the processes of proliferation and morphogenesis in radial axonal sorting.

  9. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage

    DEFF Research Database (Denmark)

    Bach, Anders*; Clausen, Bettina H; Møller, Magda;

    2012-01-01

    Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors...

  10. Loss of cell-surface laminin anchoring promotes tumor growth and is associated with poor clinical outcomes.

    Science.gov (United States)

    Akhavan, Armin; Griffith, Obi L; Soroceanu, Liliana; Leonoudakis, Dmitri; Luciani-Torres, Maria Gloria; Daemen, Anneleen; Gray, Joe W; Muschler, John L

    2012-05-15

    Perturbations in the composition and assembly of extracellular matrices (ECM) contribute to progression of numerous diseases, including cancers. Anchoring of laminins at the cell surface enables assembly and signaling of many ECMs, but the possible contributions of altered laminin anchoring to cancer progression remain undetermined. In this study, we investigated the prominence and origins of defective laminin anchoring in cancer cells and its association with cancer subtypes and clinical outcomes. We found loss of laminin anchoring to be widespread in cancer cells. Perturbation of laminin anchoring originated from several distinct defects, which all led to dysfunctional glycosylation of the ECM receptor dystroglycan. In aggressive breast and brain cancers, defective laminin anchoring was often due to suppressed expression of the glycosyltransferase LARGE. Reduced expression of LARGE characterized a broad array of human tumors in which it was associated with aggressive cancer subtypes and poor clinical outcomes. Notably, this defect robustly predicted poor survival in patients with brain cancers. Restoring LARGE expression repaired anchoring of exogenous and endogenous laminin and modulated cell proliferation and tumor growth. Together, our findings suggest that defects in laminin anchoring occur commonly in cancer cells, are characteristic of aggressive cancer subtypes, and are important drivers of disease progression.

  11. Analysis of high affinity self-association by fluorescence optical sedimentation velocity analytical ultracentrifugation of labeled proteins: opportunities and limitations.

    Directory of Open Access Journals (Sweden)

    Huaying Zhao

    Full Text Available Sedimentation velocity analytical ultracentrifugation (SV is a powerful first-principle technique for the study of protein interactions, and allows a rigorous characterization of binding stoichiometry and affinities. A recently introduced commercial fluorescence optical detection system (FDS permits analysis of high-affinity interactions by SV. However, for most proteins the attachment of an extrinsic fluorophore is an essential prerequisite for analysis by FDS-SV. Using the glutamate receptor GluA2 amino terminal domain as a model system for high-affinity homo-dimerization, we demonstrate how the experimental design and choice of fluorescent label can impact both the observed binding constants as well as the derived hydrodynamic parameter estimates for the monomer and dimer species. Specifically, FAM (5,6-carboxyfluorescein was found to create different populations of artificially high-affinity and low-affinity dimers, as indicated by both FDS-SV and the kinetics of dimer dissociation studied using a bench-top fluorescence spectrometer and Förster Resonance Energy Transfer. By contrast, Dylight488 labeled GluA2, as well as GluA2 expressed as an EGFP fusion protein, yielded results consistent with estimates for unlabeled GluA2. Our study suggests considerations for the choice of labeling strategies, and highlights experimental designs that exploit specific opportunities of FDS-SV for improving the reliability of the binding isotherm analysis of interacting systems.

  12. High affinity IgM(+) memory B cells are generated through a germinal center-dependent pathway.

    Science.gov (United States)

    Hara, Yasushi; Tashiro, Yasuyuki; Murakami, Akikazu; Nishimura, Miyuki; Shimizu, Takeyuki; Kubo, Masato; Burrows, Peter D; Azuma, Takachika

    2015-12-01

    During a T cell-dependent immune response, B cells undergo clonal expansion and selection and the induction of isotype switching and somatic hypermutation (SHM). Although somatically mutated IgM(+) memory B cells have been reported, it has not been established whether they are really high affinity B cells. We tracked (4-hydroxy-3-nitrophenyl) acetyl hapten-specific GC B cells from normal immunized mice based on affinity of their B cell receptor (BCR) and performed BCR sequence analysis. SHM was evident by day 7 postimmunization and increased with time, such that high affinity IgM(+) as well as IgG(+) memory B cells continued to be generated up to day 42. In contrast, class-switch recombination (CSR) was almost completed by day 7 and then the ratio of IgG1(+)/IgM(+) GC B cells remained unchanged. Together these findings suggest that IgM(+) B cells undergo SHM in the GC to generate high affinity IgM(+) memory cells and that this process continues even after CSR is accomplished.

  13. Laminins: Roles and Utility in Wound Repair.

    Science.gov (United States)

    Iorio, Valentina; Troughton, Lee D; Hamill, Kevin J

    2015-04-01

    Significance: Laminins are complex extracellular macromolecules that are major players in the control of a variety of core cell processes, including regulating rates of cell proliferation, differentiation, adhesion, and migration. Laminins, and related extracellular matrix components, have essential roles in tissue homeostasis; however, during wound healing, the same proteins are critical players in re-epithelialization and angiogenesis. Understanding how these proteins influence cell behavior in these different conditions holds great potential in identifying new strategies to enhance normal wound closure or to treat chronic/nonhealing wounds. Recent Advances: Laminin-derived bioactive peptides and, more recently, laminin-peptide conjugated scaffolds, have been designed to improve tissue regeneration after injuries. These peptides have been shown to be effective in decreasing inflammation and granulation tissue, and in promoting re-epithelialization, angiogenesis, and cell migration. Critical Issues: Although there is now a wealth of knowledge concerning laminin form and function, there are still areas of some controversy. These include the relative contribution of two laminin-based adhesive devices (focal contacts and hemidesmosomes) to the re-epithelialization process, the impact and implications of laminin proteolytic processing, and the importance of laminin polymer formation on cell behavior. In addition, the roles in wound healing of the laminin-related proteins, netrins, and LaNts are still to be fully defined. Future Directions: The future of laminin-based therapeutics potentially lies in the bioengineering of specific substrates to support laminin deposition for ex vivo expansion of autologous cells for graft formation and transplantation. Significant recent advances suggest that this goal is within sight.

  14. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Directory of Open Access Journals (Sweden)

    Graham S Baldwin

    Full Text Available The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  15. Laminin and Fibronectin in Cell Adhesion: Enhanced Adhesion of Cells from Regenerating Liver to Laminin

    Science.gov (United States)

    Carlsson, Roland; Engvall, Eva; Freeman, Aaron; Ruoslahti, Erkki

    1981-04-01

    Laminin, a basement membrane glycoprotein isolated from cultures of mouse endodermal cells and rat yolk sac carcinoma cells, promoted the attachment of liver cells obtained from regenerating mouse liver. Cells from normal mouse liver attached readily to dishes coated with fibronectin but attached poorly to surfaces coated with laminin. Both proteins efficiently promoted the attachment of cells from livers undergoing regeneration. After regeneration, the attachment to laminin returned to the low levels found in animals not subjected to partial hepatectomy but attachment to fibronectin remained high. Immunofluorescent staining of sections of normal liver with antilaminin revealed the presence of laminin in or adjacent to the walls of the bile ducts and blood vessels. After induction of regeneration by partial hepatectomy, increased amounts of laminin appeared in the sinusoidal areas. After carbon tetrachloride poisoning, staining for laminin was especially pronounced in the necrotic and postnecrotic areas around the central veins. This additional expression of laminin was transient. It reached a maximum around 5-6 days after the injury and then gradually disappeared. These findings show that laminin is an adhesive protein. The increase of laminin in regenerating liver and the adhesiveness of cells from such livers to laminin suggest a role for laminin in the maintenance of a proper tissue organization during liver regeneration.

  16. Merosin/laminin-2 and muscular dystrophy

    DEFF Research Database (Denmark)

    Wewer, U M; Engvall, E

    1996-01-01

    in any of the laminin alpha 3, beta 3 or gamma 2 chain genes. The medical importance of laminins provides a further impetus to study the basic structure-function relationships in laminins in order to understand genotype-phenotype relationships and to design prenatal diagnostic tests and therapies aimed......The laminins are a family of structural basement membrane components with major influences on cells. They are high molecular weight glycoproteins composed of three different but homologous chains, alpha, beta and gamma. At present 10 different chains have been identified. Each chain has a distinct...... structural organization of domains, some of which have been assigned biological activities, including self-assembly and interactions with other proteins. The particular importance of laminins for the formation and stability of cell adhesion complexes is highlighted in severe inherited diseases of muscle...

  17. Laminin-121--recombinant expression and interactions with integrins.

    Science.gov (United States)

    Sasaki, Takako; Takagi, Junichi; Giudici, Camilla; Yamada, Yoshihiko; Arikawa-Hirasawa, Eri; Deutzmann, Rainer; Timpl, Rupert; Sonnenberg, Arnoud; Bächinger, Hans Peter; Tonge, David

    2010-07-01

    Laminin-121, previously referred as to laminin-3, was expressed recombinantly in human embryonic kidney (HEK) 293 cells by triple transfection of full-length cDNAs encoding mouse laminin α1, β2 and γ1 chains. The recombinant laminin-121 was purified using Heparin-Sepharose followed by molecular sieve chromatography and shown to be correctly folded by electron microscopy and circular dichroism (CD). The CD spectra of recombinant laminin-121 were very similar to those of laminin-111 isolated from Engelbreth-Holm-Swarm tumor (EHS-laminin) but its T(m) value was smaller than EHS-laminin and recombinant lamnin-111 suggesting that the replacement of the β chain reduced the stability of the coiled-coil structure of laminin-121. Its binding to integrins was compared with EHS-laminin, laminin-3A32 purified from murine epidermal cell line and recombinantly expressed laminins-111, -211 and -221. Laminin-121 showed the highest affinity to α6β1 and α7β1 integrins and furthermore, laminin-121 most effectively supported neurite outgrowth. Together, this suggests that the β2 laminins have higher affinity for integrins than the β1 laminins.

  18. Screening of integrin-binding peptides in a laminin peptide library derived from the mouse laminin β chain short arm regions.

    Science.gov (United States)

    Katagiri, Fumihiko; Takagi, Masaharu; Nakamura, Minako; Tanaka, Yoichiro; Hozumi, Kentaro; Kikkawa, Yamato; Nomizu, Motoyoshi

    2014-05-15

    Laminins, major components of basement membrane, consist of three different subunits, α, β, and γ chains, and so far, five α, three β, and three γ chains have been identified. We have constructed synthetic peptide libraries derived from the laminin sequences and identified various cell-adhesive peptides. Ten active peptides from the laminin α chain sequences (α1-α5) were found to promote integrin-mediated cell adhesion. Previously, we found fourteen cell-adhesive peptides from the β1 chain sequence but their receptors have not been analyzed. Here, we expanded the synthetic peptide library to add peptides from the short arm regions of the laminin β2 and β3 chains and screened for integrin-binding peptides. Twenty-seven peptides promoted human dermal fibroblast (HDF) attachment in a peptide-coated plate assay. The morphological appearance of HDFs on the peptide-coated plates differed depending on the peptides. B34 (REKYYYAVYDMV, mouse laminin β1 chain, 255-266), B67 (IPYSMEYEILIRY, mouse laminin β1 chain, 604-616), B2-105 (APNFWNFTSGRG, mouse laminin β2 chain, 1081-1092), and B3-19 (GHLTGGKVQLNL, mouse laminin β3 chain, 182-193) promoted HDF spreading and HDF attachment was inhibited by EDTA, suggesting that the peptides interact with integrins. Immunostaining analyses revealed that B67 induced well-organized actin stress fibers and focal contacts containing vinculin, however, B34, B2-105, and B3-19 did not exhibit stress fiber formation or focal contacts. The inhibition assay using anti-integrin antibodies indicated that B67 interacts with α3, α6, and β1 integrins, and B34 and B3-19 interact with β1 integrin. Based on adhesion analysis of peptides modified with an alanine scan and on switching analysis with the homologous inactive sequence B2-64 (LPRAMDYDLLLRW, mouse laminin β2 chain, 618-630), the Glu(8) residue in the B67 peptide was critical for HDF adhesion. These findings are useful for identifying an integrin binding motif. The B67 peptide

  19. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production.

    Science.gov (United States)

    Abraham, Michal; Weiss, Ido D; Wald, Hanna; Wald, Ori; Nagler, Arnon; Beider, Katia; Eizenberg, Orly; Peled, Amnon

    2013-10-01

    Platelets are the terminal differentiation product of megakaryocytes (MKs). Cytokines, such as thrombopoietin (TPO), are known to influence different steps in MK development; however, the complex differentiation and platelet localization processes are not fully understood. MKs express the receptor CXCR4 and have been shown to migrate in response to CXCL12 and to increase their platelet production. In this study, we studied the role of CXCR4 in platelet production with the high affinity CXCR4 antagonist, BKT140. Single and sequential administration of BKT140 significantly increased the number of MKs and haematopoietic progenitors (HPCs) within the bone marrow (BM). Increased megakaryopoiesis was associated with increased platelet production. Single and sequential administration of BKT140 also increased the number of HPCs in the blood. In a model of 5-fluorouracil-induced thrombocytopenia, BKT140 significantly reduced the severity and duration of thrombocytopenia and cytopenia when administered before and after chemotherapy. Our results demonstrated that the CXCR4 antagonist, BKT140, mediated unique beneficial effects by stimulating megakaryopoiesis and platelet production. These results provide evidence for the possible therapeutic use of BKT140 for modulating platelet numbers in thrombocytopenic conditions. © 2013 John Wiley & Sons Ltd.

  20. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  1. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Christopher J Arnusch

    Full Text Available Many cationic antimicrobial peptides (AMPs target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.

  2. Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain.

    Science.gov (United States)

    Wellendorph, Petrine; Høg, Signe; Greenwood, Jeremy R; de Lichtenberg, Anne; Nielsen, Birgitte; Frølund, Bente; Brehm, Lotte; Clausen, Rasmus P; Bräuner-Osborne, Hans

    2005-10-01

    Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites, the molecular cloning of which remains a challenge. Ligands with high affinity and specificity for the reported GHB binding site are needed for pharmacological dissection of the GHB and GABA(B) effects and for mapping the structural requirements of the GHB receptor-ligand interactions. For this purpose, we have synthesized and assayed three conformationally restricted GHB analogs for binding against the GHB-specific ligand [3H]NCS-382 [(E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene-)acetic acid] in rat brain homogenate. The cyclohexene and cyclopentene analogs, 3-hydroxycyclohex-1-enecarboxylic acid [(RS)-HOCHCA] and 3-hydroxycyclopent-1-enecarboxylic acid [(RS)-HOCPCA], were found to be high-affinity GHB ligands, with IC50 values in the nanomolar range, and had 9 and 27 times, respectively, higher affinity than GHB. The stereo-selectively synthesized R,R-isomer of the trans-cyclopropyl GHB analog, HOCPrCA, proved to have 10-fold higher affinity than its enantiomer. Likewise, the R-enantiomers of HOCHCA and HOCPCA selectively inhibited [3H]NCS-382 binding. The best inhibitor of these, (R)-HOCPCA, has an affinity 39 times higher than GHB and is thus among the best GHB ligands reported to date. Neither of the cycloalkenes showed any affinity (IC50 > 1 mM) for GABA(A) or GABA(B) receptors. These compounds show excellent potential as lead structures and novel tools for studying specific GHB receptor-mediated pharmacology.

  3. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    Science.gov (United States)

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  4. Laminins: Roles and Utility in Wound Repair

    OpenAIRE

    Iorio, Valentina; Troughton, Lee D.; Hamill, Kevin J.

    2015-01-01

    Significance: Laminins are complex extracellular macromolecules that are major players in the control of a variety of core cell processes, including regulating rates of cell proliferation, differentiation, adhesion, and migration. Laminins, and related extracellular matrix components, have essential roles in tissue homeostasis; however, during wound healing, the same proteins are critical players in re-epithelialization and angiogenesis. Understanding how these proteins influence cell behavio...

  5. Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Greenwood, Jeremy R

    2005-01-01

    acid [(RS)-HOCHCA] and 3-hydroxycyclopent-1-enecarboxylic acid [(RS)-HOCPCA], were found to be high-affinity GHB ligands, with IC50 values in the nanomolar range, and had 9 and 27 times, respectively, higher affinity than GHB. The stereo-selectively synthesized R,R-isomer of the trans-cyclopropyl GHB...... analog, HOCPrCA, proved to have 10-fold higher affinity than its enantiomer. Likewise, the R-enantiomers of HOCHCA and HOCPCA selectively inhibited [3H]NCS-382 binding. The best inhibitor of these, (R)-HOCPCA, has an affinity 39 times higher than GHB and is thus among the best GHB ligands reported......Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites...

  6. Selective assembly of laminin variants by human carcinoma cells

    DEFF Research Database (Denmark)

    Wewer, U M; Wayner, E A; Hoffstrom, B G

    1994-01-01

    basement membranes, the pattern of production of various laminin subunits remains to be explored. EXPERIMENTAL DESIGN: The expression of laminin was examined in several human carcinoma cells using a panel of specific cDNA probes as well as polyclonal and chain specific monoclonal antibodies......BACKGROUND: The laminins are heterotrimeric basement membrane glycoproteins. Eight subunits that can be assembled into laminins have been characterized and are known as: A, B1, B2, S, M, K, B2t, B1k laminin chains. Although many neoplastic cells secrete laminins and some of them even assemble....... For this purpose a human laminin S chain 2 kb cDNA was isolated and characterized and used together with existing probes for laminin chains. RESULTS: All carcinoma cell lines had a high level of expression of three light chains (B1, S and B2) mRNA. In contrast, the heavy chains of laminin, A and M, were expressed...

  7. Integrating Activities of Laminins that Drive Basement Membrane Assembly and Function.

    Science.gov (United States)

    Yurchenco, Peter D

    2015-01-01

    Studies on extracellular matrix proteins, cells, and genetically modified animals have converged to reveal mechanisms of basement membrane self-assembly as mediated by γ1 subunit-containing laminins, the focus of this chapter. The basic model is as follows: A member of the laminin family adheres to a competent cell surface and typically polymerizes followed by laminin binding to the extracellular adaptor proteins nidogen, perlecan, and agrin. Assembly is completed by the linking of nidogen and heparan sulfates to type IV collagen, allowing it to form a second stabilizing network polymer. The assembled matrix provides structural support, anchoring the extracellular matrix to the cytoskeleton, and acts as a signaling platform. Heterogeneity of function is created in part by the isoforms of laminin that vary in their ability to polymerize and to interact with integrins, dystroglycan, and other receptors. Mutations in laminin subunits, affecting expression or LN domain-specific functions, are a cause of human diseases that include those of muscle, nerve, brain, and kidney.

  8. Twins in spirit part II: DOTATATE and high-affinity DOTATATE - the clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Brogsitter, Claudia; Zoephel, Klaus; Hartmann, Holger; Kotzerke, Joerg [Technische Universitaet Dresden, Department of Nuclear Medicine, Dresden (Germany); Schottelius, Margret; Wester, Hans-Juergen [Technische Universitaet Muenchen, Pharmaceutical Radiochemistry and Department of Nuclear Medicine, Muenchen (Germany)

    2014-06-15

    Over recent decades interest in diagnosis and treatment of neuroendocrine tumours (NET) has steadily grown. The basis for diagnosis and therapy of NET with radiolabelled somatostatin (hsst) analogues is the variable overexpression of hsst receptors (hsst1-5 receptors). We hypothesized that radiometal derivatives of DOTA-iodo-Tyr{sup 3}-octreotide analogues might be excellent candidates for somatostatin receptor imaging. We therefore explored the diagnostic potential of {sup 68}Ga-DOTA-iodo-Tyr{sup 3}-octreotate [{sup 68}Ga-DOTA,3-iodo-Tyr{sup 3},Thr{sup 8}]octreotide ({sup 68}Ga-HA-DOTATATE; HA, high-affinity) compared to the established {sup 68}Ga-DOTA-Tyr{sup 3}-octreotate ({sup 68}Ga-DOTATATE) in vivo. The study included 23 patients with known somatostatin receptor-positive metastases from NETs, thyroid cancer or glomus tumours who were investigated with both {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE. A patient-based and a lesion-based comparative analysis was carried out of normal tissue distribution and lesion detectability in a qualitative and a semiquantitative manner. {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE showed comparable uptake in the liver (SUV{sub mean} 8.9 ± 2.2 vs. 9.3 ± 2.5, n.s.), renal cortex (SUV{sub mean} 13.3 ± 3.9 vs. 14.5 ± 3.7, n.s.) and spleen (SUV{sub mean} 24.0 ± 6.7 vs. 22.9 ± 7.3, n.s.). A somewhat higher pituitary uptake was found with {sup 68}Ga-HA-DOTATATE (SUV{sub mean} 6.3 ± 1.8 vs. 5.4 ± 2.1, p < 0.05). On a lesion-by-lesion basis a total of 344 lesions were detected. {sup 68}Ga-HA-DOTATATE demonstrated 328 lesions (95.3 % of total lesions seen), and {sup 68}Ga-DOTATATE demonstrated 332 lesions (96.4 %). The mean SUV{sub max} of all lesions was not significantly different between {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE (17.8 ± 11.4 vs. 16.7 ± 10.7, n.s.). Our analysis demonstrated very good concordance between {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE PET data. As the availability and use of {sup

  9. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment.

    Science.gov (United States)

    Levay, Agata; Brenneman, Randall; Hoinka, Jan; Sant, David; Cardone, Marco; Trinchieri, Giorgio; Przytycka, Teresa M; Berezhnoy, Alexey

    2015-07-13

    Oligonucleotide aptamers represent a novel platform for creating ligands with desired specificity, and they offer many potentially significant advantages over monoclonal antibodies in terms of feasibility, cost, and clinical applicability. However, the isolation of high-affinity aptamer ligands from random oligonucleotide pools has been challenging. Although high-throughput sequencing (HTS) promises to significantly facilitate systematic evolution of ligands by exponential enrichment (SELEX) analysis, the enormous datasets generated in the process pose new challenges for identifying those rare, high-affinity aptamers present in a given pool. We show that emulsion PCR preserves library diversity, preventing the loss of rare high-affinity aptamers that are difficult to amplify. We also demonstrate the importance of using reference targets to eliminate binding candidates with reduced specificity. Using a combination of bioinformatics and functional analyses, we show that the rate of amplification is more predictive than prevalence with respect to binding affinity and that the mutational landscape within a cluster of related aptamers can guide the identification of high-affinity aptamer ligands. Finally, we demonstrate the power of this selection process for identifying cross-species aptamers that can bind human receptors and cross-react with their murine orthologs.

  10. Laminin from rat yolk sac tumor: isolation, partial characterization, and comparison with mouse laminin

    DEFF Research Database (Denmark)

    Engvall, E; Krusius, T; Wewer, U

    1983-01-01

    Laminin was isolated from a rat yolk sac tumor by salt extraction, gel filtration, and affinity chromatography on heparin-Sepharose. The purified laminin gave two polypeptide chains with approximate Mr of 200,000 and 400,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its amino...

  11. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots.

    Science.gov (United States)

    Rizzardo, Cecilia; Tomasi, Nicola; Monte, Rossella; Varanini, Zeno; Nocito, Fabio F; Cesco, Stefano; Pinton, Roberto

    2012-12-01

    Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.

  12. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers.

    Science.gov (United States)

    Elshafey, Reda; Siaj, Mohamed; Zourob, Mohammed

    2014-09-16

    Contamination of freshwater with cyanotoxin cylindrospermopsin (CYN) represents a significant global concern for public health. The sensitive detection of CYN is necessary to effectively manage and control the treatment of water resources. Here we report a novel, highly sensitive label-free aptasensor for CYN analysis, using aptamers as specific receptors. We have selected the DNA aptamers from a diverse random library using the in vitro screening SELEX approach. The aptamers exhibited high affinity for CYN with Kd of nanomolar range. One aptamer exhibited conformational change upon CYN recognition (CD analysis) and was used to fabricate the label-free impedimetric aptasensor for CYN. A self-assembled monolayer from a disulfide-derivatized aptamer was formed on a gold electrode to fabricate the aptasensor. Upon CYN capturing to the aptasensor surface, a marked drop in the electron transfer resistance was obtained, which was used as the principle of detection of CYN. This resulted from the aptamer's conformational change induced by CYN recognition. The present aptasensor could detect CYN with the limit of detection as low as 100 pM and a wide linear range of 0.1 to 80 nM. When mounted on the gold surface, the aptamer exhibited a lower dissociation constant for CYN than that observed in the fluorescence assay, implying that the anchoring of the aptamer on the Au surface improved its affinity to CYN. Moreover, the aptasensor showed high specificity toward other coexistent cyanobacterial toxins of microcystin-LR and Anatoxin-a. Further biosensor designs will be generated using those aptamers for simple and sensitive CYN monitoring.

  13. High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons.

    Science.gov (United States)

    Cosgrove, Kathleen E; Meriney, Stephen D; Barrionuevo, Germán

    2011-12-01

    Stratum lacunosum-moleculare interneurons (L-Mi) in hippocampal area CA3 target the apical dendrite of pyramidal cells providing feedforward inhibition. Here we report that selective activation of group III metabotropic glutamate receptors (mGluRs) 4/8 with L(+)-2-amino-4-phosphnobytyric acid (L-AP4; 10 μM) decreased the probability of glutamate release from the mossy fiber (MF) terminals synapsing onto L-Mi. Consistent with this interpretation, application of L-AP4 in the presence of 3 mM strontium decreased the frequency of asynchronous MF EPSCs in L-Mi. Furthermore, the dose response curve showed that L-AP4 at 400 μM produced no further decrease in MF EPSC amplitude compared with 20 μM L-AP4, indicating the lack of mGluRs 7 at these MF terminals. We also found that one mechanism of mGluRs 4/8-mediated inhibition of release is linked to N-type voltage gated calcium channels at MF terminals. Application of the group III mGluR antagonist MSOP (100 μM) demonstrated that mGluRs 4/8 are neither tonically active nor activated by low and moderate frequencies of activity. However, trains of stimuli to the MF at 20 and 40 Hz delivered during the application of MSOP revealed a relief of inhibition of transmitter release and an increase in the overall probability of action potential firing in the postsynaptic L-Mi. Interestingly, the time to first action potential was significantly shorter in the presence of MSOP, indicating that mGluR 4/8 activation delays L-Mi firing in response to MF activity. Taken together, our data demonstrate that the timing and probability of action potentials in L-Mi evoked by MF synaptic input is regulated by the activation of presynaptic high affinity group III mGluRs.

  14. Heparin binds to the laminin alpha4 chain LG4 domain at a site different from that found for other laminins.

    Science.gov (United States)

    Yamashita, Hironobu; Beck, Konrad; Kitagawa, Yasuo

    2004-01-30

    We previously reported that the LG4 domain of the laminin alpha4 chain is responsible for high-affinity heparin binding. To specify the amino acid residues involved in this activity, we produced a series of alpha4 LG4-fusion proteins in which each of the 27 basic residues (arginine, R; histidine; lysine, K) were replaced one by one with alanine (A). When the effective residues R1520A, K1531A, K1533A, and K1539A are mapped on a structural model, they form a track on the concave surface of the beta-sandwich, suggesting that they interact with adjacent sulfate groups along the heparin chain. Whereas low-affinity heparin-binding sites of other LG domains have been located at the top of the beta-sheet sandwich opposite the N and C termini, the residues for high-affinity heparin binding of alpha4 LG4 reveal a new topological area of the LG module.

  15. Recent Progress in Laminin-511%层黏连蛋白1aminin-511的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨海莲; 刘宁生

    2012-01-01

    Laminin-511 is a highly conservative laminin protein and widely expressed from early embryos to adulthood. Laminin-511 is involved in basement membrane structural and cell signal transduction pathways through its interaction with cell surface receptors. Based on the simple summarization of its structure and mechanisms, we reviewed the role of laminin-511 in embryo development, hair follicles regeneration and self-renewal of ES cells.%Laminin-511是层黏连蛋白(1aminin)家族中高度保守的一员,在早期胚胎及成体多种组织的基底膜中广泛分布.Laminin-511通过其肽链的相应区域与细胞受体及基底膜成分连接,参与维持基底膜的完整性和调节细胞的多种生物学功能.该文在概述1aminin-511的结构特点、作用机制的基础上,对其在胚胎发育、干细胞研究中的功能作一综述.

  16. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood-brain barrier.

    Science.gov (United States)

    Menezes, Michael J; McClenahan, Freyja K; Leiton, Cindy V; Aranmolate, Azeez; Shan, Xiwei; Colognato, Holly

    2014-11-12

    Laminins are major constituents of the gliovascular basal lamina of the blood-brain barrier (BBB); however, the role of laminins in BBB development remains unclear. Here we report that Lama2(-/-) mice, lacking expression of the laminin α2 subunit of the laminin-211 heterotrimer expressed by astrocytes and pericytes, have a defective BBB in which systemically circulated tracer leaks into the brain parenchyma. The Lama2(-/-) vascular endothelium had significant abnormalities, including altered integrity and composition of the endothelial basal lamina, inappropriate expression of embryonic vascular endothelial protein MECA32, substantially reduced pericyte coverage, and tight junction abnormalities. Additionally, astrocytic endfeet were hypertrophic and lacked appropriately polarized aquaporin4 channels. Laminin-211 appears to mediate these effects at least in part by dystroglycan receptor interactions, as preventing dystroglycan expression in neural cells led to a similar set of BBB abnormalities and gliovascular disturbances, which additionally included perturbed vascular endothelial glucose transporter-1 localization. These findings provide insight into the cell and molecular changes that occur in congenital muscular dystrophies caused by Lama2 mutations or inappropriate dystroglycan post-translational modifications, which have accompanying brain abnormalities, including seizures. Our results indicate a novel role for laminin-dystroglycan interactions in the cooperative integration of astrocytes, endothelial cells, and pericytes in regulating the BBB.

  17. Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics

    Science.gov (United States)

    Aweda, Tolulope A.; Meares, Claude F.

    2011-01-01

    For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (KA >108 M−1; KD calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate. PMID:21964396

  18. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. at 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.

  19. Preparation of a novel antiserum to aromatase with high affinity and specificity: Its clinicopathological significance on breast cancer tissue.

    Science.gov (United States)

    Kanomata, Naoki; Matsuura, Shiro; Nomura, Tsunehisa; Kurebayashi, Junichi; Mori, Taisuke; Kitawaki, Jo; Moriya, Takuya

    2017-01-01

    Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 statuses. This antiserum will be applicable to clinicopathological examination of aromatase in addition to ER and PgR for an appropriate use of aromatase inhibitor on the treatment of breast cancer. Further studies on the relationship between Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and

  20. Ex vivo pathogenicity of anti-laminin γ1 autoantibodies.

    Science.gov (United States)

    Florea, Florina; Bernards, Claudia; Caproni, Marzia; Kleindienst, Jessika; Hashimoto, Takashi; Koch, Manuel; Sitaru, Cassian

    2014-02-01

    Autoimmunity against laminins has been described in several autoimmune diseases (including mucous membrane pemphigoid, anti-laminin γ1 pemphigoid, and connective tissue diseases), in pregnancy loss, and in infections such as Chagas disease. Except for anti-laminin-332 mucous membrane pemphigoid, adequate evidence has been lacking for the tissue injury potential of laminin-specific antibodies and the pathogenic epitopes. We evaluated the pathogenic potential of antibodies targeting laminin γ1, a major constituent of basement membranes and the main antigen in anti-laminin γ1 pemphigoid. Rabbit antibodies were generated against fragments of the N-terminus and C-terminus of murine laminin γ1, and their ability to disrupt ligand interactions and/or to activate complement and granulocytes was assessed using previously established ex vivo assays. Our findings document a pathogenic potential of antibodies targeting the laminin γ1 N-terminus. These antibodies interfere with the binding of nidogen to laminin and can activate granulocytes and the complement cascade. We detected antibodies with different degrees of reactivity with laminin γ1 N-terminus in patients with anti-laminin γ1 pemphigoid, cutaneous lupus erythematosus, and scleroderma. Our results provide mechanistic insights into the tissue damage associated with laminin autoimmunity and could facilitate development of appropriate diagnostic tools and therapeutic strategies.

  1. LAMB2 — EDRN Public Portal

    Science.gov (United States)

    Laminin is a complex glycoprotein, consisting of three different polypeptide chains (alpha, beta, gamma), which are bound to each other by disulfide bonds into a cross-shaped molecule comprising one long and three short arms with globules at each end. LMB2 is a subunit of laminin-3 (laminin-121 or S-laminin), laminin-4 (laminin-221 or S-merosin), laminin-7 (laminin-321 or KS-laminin), laminin-9 (laminin-421), laminin-11 (laminin-521), laminin-14 (laminin-423) and laminin-15 (laminin-523). LAMB2 binds to cells via a high affinity receptor and is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components.

  2. Laminin database: a tool to retrieve high-throughput and curated data for studies on laminins.

    Science.gov (United States)

    Golbert, Daiane C F; Linhares-Lacerda, Leandra; Almeida, Luiz G; Correa-de-Santana, Eliane; de Oliveira, Alice R; Mundstein, Alex S; Savino, Wilson; de Vasconcelos, Ana T R

    2011-01-01

    The Laminin(LM)-database, hosted at http://www.lm.lncc.br, is the first database focusing a non-collagenous extracellular matrix protein family, the LMs. Part of the knowledge available in this website is automatically retrieved, whereas a significant amount of information is curated and annotated, thus placing LM-database beyond a simple repository of data. In its home page, an overview of the rationale for the database is seen and readers can access a tutorial to facilitate navigation in the website, which in turn is presented with tabs subdivided into LMs, receptors, extracellular binding and other related proteins. Each tab opens into a given LM or LM-related molecule, where the reader finds a series of further tabs for 'protein', 'gene structure', 'gene expression' and 'tissue distribution' and 'therapy'. Data are separated as a function of species, comprising Homo sapiens, Mus musculus and Rattus novergicus. Furthermore, there is specific tab displaying the LM nomenclatures. In another tab, a direct link to PubMed, which can be then consulted in a specific way, in terms of the biological functions of each molecule, knockout animals and genetic diseases, immune response and lymphomas/leukemias. LM-database will hopefully be a relevant tool for retrieving information concerning LMs in health and disease, particularly regarding the hemopoietic system.

  3. 131I标记VEGFR-3高亲和融合多肽对荷人卵巢癌裸鼠靶向治疗的实验研究%Targeting therapy for human ovarian cancer transplanted into nude mice with 131I-labeled high affinity fusion polypeptide VEGF receptor 3

    Institute of Scientific and Technical Information of China (English)

    朱丽芳; 梁志清; 王玲; 徐燕; 张广运

    2010-01-01

    目的 观察131I标记血管内皮生长因子受体-3(vascular endothelial growth factor receptor-3,VEGFR-3)高亲和融合多肽(phage-SHSWHWLPNLRHYAS)对荷人卵巢癌小鼠移植瘤的靶向治疗作用.方法 用Iodogen法合成131I-多肽及131I-单抗,体外分别与人淋巴管内皮细胞(LEC)共培养,MTT法检测其对LEC细胞生长的抑制作用;体内44只裸鼠经皮下接种卵巢癌细胞株,成瘤后2周,将20只荷瘤小鼠按随机数字表法分成4组,每组5只.分别经尾静脉注射,Ⅰ组:多肽4.4 μg/只,Ⅱ组:131I-多肽7.4 MBq/只,Ⅲ组:131I-单抗7.4 MBq/只,Ⅳ组:生理盐水0.2 ml作为对照组.干预后每周测量1次小鼠肿瘤的长径及短径,观察4周.余24只荷瘤鼠瘤体达1 cm后行SPECT显像.结果 体外131I多肽组对LEC细胞的生长抑制率在72 h达到最高,131I单抗组对LEC细胞的生长抑制率在96 h达到最高;72 h及96 h 131I多肽组与131I单抗组及多肽组比较抑制率差异均有统计学意义(P<0.05);体内4周治疗结束时,Ⅰ、Ⅱ、Ⅲ、Ⅳ组小鼠肿瘤的体积分别为(723±164)、(291±68)、(457±88)、(792±112) mm3,其中Ⅱ、Ⅲ组与Ⅳ组肿瘤体积相比差异有统计学意义(P<0.05),而Ⅰ组治疗结束时肿瘤体积与Ⅳ组比较差异无统计学意义(P>0.05),Ⅱ、Ⅲ组的抑瘤率分别为63%和44%.结论 131I标记高亲和融合多肽对荷人卵巢癌小鼠移植瘤的生长具有显著抑制作用.

  4. Distinct antigenic characteristics of murine parietal yolk sac laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Tichy, D; Damjanov, A

    1987-01-01

    with purified PYS laminin in ELISA. LAM-A reacted with mouse and rat PYS laminin, whereas LAM-B reacted only with mouse PYS laminin. Formaldehyde- and methanol-fixed adult and fetal somatic tissues were immunohistochemically unreactive with either of the two antibodies. In acetone-fixed tissue sections, both...... antibodies reacted weakly with some medullary tubules of the kidney, the follicular basement membrane of the ovaries, and the seminiferous tubules. The antibodies appear to react with the polypeptide determinants residing on the terminal portion of the long arm of laminin. It is concluded that laminin...

  5. Isolation and cloning of the gene encoding high affinity phosphate transporter in rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High affinity phosphate transporter plays an important role in plant adapting to low phosphorus. Isolation of genes coding this kind of protein has attracted worldwide scholars to accomplish. We aimed to isolate the gene and transfer it to target plants for breeding.

  6. Supramolecular surface immobilization of knottin derivatives for dynamic display of high affinity binders

    NARCIS (Netherlands)

    Sankaran, S.; Ruiter, de M.V.; Cornelissen, J.J.L.M.; Jonkheijm, P.

    2015-01-01

    Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly

  7. Supramolecular surface immobilization of knottin derivatives for dynamic display of high affinity binders

    NARCIS (Netherlands)

    Sankaran, S.; de Ruiter, Mark Vincent; Cornelissen, Jeroen Johannes Lambertus Maria; Jonkheijm, Pascal

    2015-01-01

    Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly

  8. High affinity, bioavailable 3-amino-1,4-benzodiazepine-based gamma-secretase inhibitors.

    Science.gov (United States)

    Owens, Andrew P; Nadin, Alan; Talbot, Adam C; Clarke, Earl E; Harrison, Timothy; Lewis, Huw D; Reilly, Michael; Wrigley, Jonathan D J; Castro, José L

    2003-11-17

    In this paper, we describe the development of a novel series of high affinity, orally bioavailable 3-amino-1,4 benzodiazepine-based gamma-secretase inhibitors for the potential treatment of Alzheimer's disease. We disclose structure-activity relationships based around the 1, 3 and 5 positions of the benzodiazepine core structure.

  9. High Affinity Iron Permease is Required for Virulence of Rhizopus oryzae

    Science.gov (United States)

    Rhizopus oryzae is the most common cause of mucormycosis. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to develop mucormycosis. The high affinity iron permease gene (rFTR1) is required for R. oryzae iron transport in iro...

  10. The dual aptamer approach: rational design of a high-affinity FAD aptamer.

    Science.gov (United States)

    Merkle, T; Holder, I T; Hartig, J S

    2016-01-14

    A design strategy for high-affinity aptamers of complex biomolecules is presented. We developed an RNA with FAD-binding properties by combining known ATP- and FMN-aptamers. Cooperative binding of FAD was shown by SPR spectroscopy and fluorescence assays. The strategy should be transferable to several other biomolecules.

  11. Downregulation of a newly identified laminin, laminin-3B11, in vascular basement membranes of invasive human breast cancers.

    Science.gov (United States)

    Mori, Taizo; Kariya, Yoshinobu; Komiya, Eriko; Higashi, Shouichi; Miyagi, Yohei; Sekiguchi, Kiyotoshi; Miyazaki, Kaoru

    2011-05-01

    Laminins present in the basement membranes (BM) of blood vessels are involved in angiogenesis and other vascular functions that are critical for tumor growth and metastasis. Two major vascular laminins, the α4 (laminin-411/421) and α5 (laminin-511/521) types, have been well characterized. We recently found a third type of vascular laminin, laminin-3B11, consisting of the α3B, β1 and γ1 chains, and revealed its biological activity. Laminin-3B11 potently stimulates vascular endothelial cells to extend lamellipodial protrusions. To understand the roles of laminin-3B11 in blood vessel functions and tumor growth, we examined localization of the laminin α3B chain in normal mammary glands and breast cancers, in comparison with the α4 and α5 laminins. In the immunohistochemical analysis, the α3B laminin was co-localized with the α4 and α5 laminins in the BM of venules and capillaries of normal breast tissues, but α3B was scarcely detected in vessels near invasive breast carcinoma cells. In contrast, the α4 laminin was overexpressed in capillaries of invasive carcinomas, where a large number of macrophages were found. The α5 laminin appeared to be weakly downregulated in cancer tissues, especially in capillary vessels. Furthermore, our in vitro analysis indicated that TNF-α significantly suppressed the laminin α3B expression in vascular endothelial cells, while it, as well as IL-1β and TGF-α, upregulated the α4 expression. These results suggest that Lm3B11/3B21 may be required for normal mature vessels and interfere with tumor angiogenesis.

  12. Linker molecules between laminins and dystroglycan ameliorate laminin-alpha2-deficient muscular dystrophy at all disease stages.

    Science.gov (United States)

    Meinen, Sarina; Barzaghi, Patrizia; Lin, Shuo; Lochmüller, Hanns; Ruegg, Markus A

    2007-03-26

    Mutations in laminin-alpha2 cause a severe congenital muscular dystrophy, called MDC1A. The two main receptors that interact with laminin-alpha2 are dystroglycan and alpha7beta1 integrin. We have previously shown in mouse models for MDC1A that muscle-specific overexpression of a miniaturized form of agrin (mini-agrin), which binds to dystroglycan but not to alpha7beta1 integrin, substantially ameliorates the disease (Moll, J., P. Barzaghi, S. Lin, G. Bezakova, H. Lochmuller, E. Engvall, U. Muller, and M.A. Ruegg. 2001. Nature. 413:302-307; Bentzinger, C.F., P. Barzaghi, S. Lin, and M.A. Ruegg. 2005. Matrix Biol. 24:326-332.). Now we show that late-onset expression of mini-agrin still prolongs life span and improves overall health, although not to the same extent as early expression. Furthermore, a chimeric protein containing the dystroglycan-binding domain of perlecan has the same activities as mini-agrin in ameliorating the disease. Finally, expression of full-length agrin also slows down the disease. These experiments are conceptual proof that linking the basement membrane to dystroglycan by specifically designed molecules or by endogenous ligands, could be a means to counteract MDC1A at a progressed stage of the disease, and thus opens new possibilities for the development of treatment options for this muscular dystrophy.

  13. Laminin isoforms in development and disease

    DEFF Research Database (Denmark)

    Schéele, Susanne; Nyström, Alexander; Durbeej, Madeleine;

    2007-01-01

    blistering and kidney defects, respectively. This review summarizes recent progress concerning the molecular mechanisms of laminins in development and disease. The current knowledge may lead to clinical treatment of lamininopathies and may include stem-cell approaches as well as gene therapy....

  14. β2 and γ3 laminins are critical cortical basement membrane components: ablation of Lamb2 and Lamc3 genes disrupts cortical lamination and produces dysplasia.

    Science.gov (United States)

    Radner, Stephanie; Banos, Charles; Bachay, Galina; Li, Yong N; Hunter, Dale D; Brunken, William J; Yee, Kathleen T

    2013-03-01

    Cortical development is dependent on the timely production and migration of neurons from neurogenic sites to their mature positions. Mutations in several receptors for extracellular matrix (ECM) molecules and their downstream signaling cascades produce dysplasia in brain. Although mutation of a critical binding site in the gene that encodes the ECM molecule laminin γ1 (Lamc1) disrupts cortical lamination, the ECM ligand(s) for many ECM receptors have not been demonstrated directly in the cortex. Several isoforms of the heterotrimeric laminins, all containing the β2 and γ3 chain, have been isolated from the brain, suggesting they are important for CNS function. Here, we report that mice homozygous null for the laminin β2 and γ3 chains exhibit cortical laminar disorganization. Mice lacking both of these laminin chains exhibit hallmarks of human cobblestone lissencephaly (type II, nonclassical): they demonstrate severe laminar disruption; midline fusion; perturbation of Cajal-Retzius cell distribution; altered radial glial cell morphology; and ectopic germinal zones. Surprisingly, heterozygous mice also exhibit laminar disruption of cortical neurons, albeit with lesser severity. In compound null mice, the pial basement membrane is fractured, and the distribution of a key laminin receptor, dystroglycan, is altered. These data suggest that β2 and γ3-containing laminins play an important dose-dependent role in development of the cortical pial basement membrane, which serves as an attachment site for Cajal-Retzius and radial glial cells, thereby guiding neural development.

  15. A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Jensen, Louise T; Møller, Tine H; Larsen, Simon A; Jakobsen, Helle; Olsen, Anders

    2012-02-01

    Protein misfolding is a common theme in aging and several age-related diseases such as Alzheimer's and Parkinson's disease. The processes involved in the development of these diseases are many and complex. Here, we show that components of the basement membrane (BM), particularly laminin, affect protein integrity of the muscle cells they support. We knocked down gene expression of epi-1, a laminin α-chain, and found that this resulted in increased proteotoxicity in different Caenorhabditis elegans transgenic models, expressing aggregating proteins in the body wall muscle. The effect could partially be rescued by decreased insulin-like signaling, known to slow the aging process and the onset of various age-related diseases. Our data points to an underlying molecular mechanism involving proteasomal degradation and HSP-16 chaperone activity. Furthermore, epi-1-depleted animals had altered synaptic function and displayed hypersensitivity to both levamisole and aldicarb, an acetylcholine receptor agonist and an acetylcholinesterase inhibitor, respectively. Our results implicate the BM as an extracellular modulator of protein homeostasis in the adjacent muscle cells. This is in agreement with previous research showing that imbalance in neuromuscular signaling disturbs protein homeostasis in the postsynaptic cell. In our study, proteotoxicity may indeed be mediated by the neuromuscular junction which is part of the BM, where laminins are present in high concentration, ensuring the proper microenvironment for neuromuscular signaling. Laminins are evolutionarily conserved, and thus the BM may play a much more causal role in protein misfolding diseases than currently recognized.

  16. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity.

    Directory of Open Access Journals (Sweden)

    Jenny Bostrom

    Full Text Available The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2 antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.

  17. Further characterization of the low and high affinity binding components of the thyrotropin receptor.

    Science.gov (United States)

    McQuade, R; Thomas, C G; Nayfeh, S N

    1986-05-29

    Following cross-linking with disuccinimidyl suberate and analysis by SDS-PAGE and autoradiography, both the high- and low-affinity TSH binding components exhibited two similar 125I-TSH-labeled bands, with Mr values of 80,000 and 68,000. IgG fractions from patients with Graves' disease inhibited 125I-TSH binding to both components, while normal IgG had no effect. Although not entirely conclusive, these results suggest that the high- and low-affinity components share similar subunit composition and antigenic determinants.

  18. Further characterization of the low and high affinity binding components of the thyrotropin receptor

    Energy Technology Data Exchange (ETDEWEB)

    McQuade, R.; Thomas, C.G. Jr.; Nayfeh, S.N.

    1986-05-29

    Following cross-linking with disuccinimdiyl suberate and analysis by SDS-PAGE and autoradiography, both the high- and low-affinity TSH binding components exhibited two similar /sup 125/I-TSH-labeled bands, with Mr values of 80,000 and 68,000. IgG fractions from patients with Graves' disease inhibited /sup 125/I-TSH binding to both components, while normal IgG had no effect. Although not entirely conclusive, these results suggest that the high- and low-affinity components share similar subunit composition and antigenic determinants.

  19. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy

    Directory of Open Access Journals (Sweden)

    zherui eWu

    2013-01-01

    Full Text Available Cancer is a worldwide health problem. Personalized treatment represents a future advancement for cancer treatment, in part due to the development of targeted therapeutic drugs. These molecules are expected to be more effective than current treatments and less harmful to normal cells. The discovery and validation of new targets are the foundation and the source of these new therapies.The neurotensinergic system has been shown to enhance cancer progression in various cancers such as pancreatic, prostate, lung, breast and colon cancer. It also triggers multiple oncogenic signaling pathways, such as the PKC/ERK and AKT pathways. In this review, we discuss the contribution of the neurotensinergic system to cancer progression, as well as the regulation and mechanisms of the system in order to highlight its potential as a therapeutic target, and its prospect for its use as a treatment in certain cancers.

  20. Neuroprotection Profile of the High Affinity NMDA Receptor Antagonist Conantokin-G

    Science.gov (United States)

    2002-01-01

    ED50 calculations were performed using the Pharmacological Calculations Computer Programs described by Tallarida and Murray (1987). Compound and...109–118. Tallarida RJ and Murray RB (1987) Manual of Pharmacologic Calculations with Computer Programs. Springer-Verlag, New York. Tatlisumak T

  1. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.

    Science.gov (United States)

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J

    2016-06-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity.

  2. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

    Institute of Scientific and Technical Information of China (English)

    XIANG YongZhe; WANG Na; ZHANG Ji; LI Kun; ZHANG ZhongWei; LIN HongHui; YU XiaoQi

    2009-01-01

    A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction be-tween 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod- odecane.High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover, the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA con-densation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

  3. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod-odecane. High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover,the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA condensation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

  4. A High-Affinity Metal-Binding Peptide From Escherichia Coli Hypb

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K.C.Chan; Cao, L.; Dias, A.V.; Pickering, I.J.; George, G.N.; Zamble, D.B.

    2009-05-12

    The high-affinity nickel-binding site of the Escherichia coli [NiFe]-hydrogenase accessory protein HypB was localized to residues at the immediate N-terminus of the protein. Modification of a metal-binding fusion protein, site-directed mutagenesis experiments, and DFT calculations were used to identify the N-terminal amine as a ligand as well as the three cysteine residues in the CXXCGCXXX motif. This sequence can be removed from the protein and both a synthesized peptide and a protein fusion bind nickel with a similar affinity and the same structure as the parent metalloprotein, indicating the self-sufficiency of this high-affinity nickel-binding sequence.

  5. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging.

    Science.gov (United States)

    Maute, Roy L; Gordon, Sydney R; Mayer, Aaron T; McCracken, Melissa N; Natarajan, Arutselvan; Ring, Nan Guo; Kimura, Richard; Tsai, Jonathan M; Manglik, Aashish; Kruse, Andrew C; Gambhir, Sanjiv S; Weissman, Irving L; Ring, Aaron M

    2015-11-24

    Signaling through the immune checkpoint programmed cell death protein-1 (PD-1) enables tumor progression by dampening antitumor immune responses. Therapeutic blockade of the signaling axis between PD-1 and its ligand programmed cell death ligand-1 (PD-L1) with monoclonal antibodies has shown remarkable clinical success in the treatment of cancer. However, antibodies have inherent limitations that can curtail their efficacy in this setting, including poor tissue/tumor penetrance and detrimental Fc-effector functions that deplete immune cells. To determine if PD-1:PD-L1-directed immunotherapy could be improved with smaller, nonantibody therapeutics, we used directed evolution by yeast-surface display to engineer the PD-1 ectodomain as a high-affinity (110 pM) competitive antagonist of PD-L1. In contrast to anti-PD-L1 monoclonal antibodies, high-affinity PD-1 demonstrated superior tumor penetration without inducing depletion of peripheral effector T cells. Consistent with these advantages, in syngeneic CT26 tumor models, high-affinity PD-1 was effective in treating both small (50 mm(3)) and large tumors (150 mm(3)), whereas the activity of anti-PD-L1 antibodies was completely abrogated against large tumors. Furthermore, we found that high-affinity PD-1 could be radiolabeled and applied as a PET imaging tracer to efficiently distinguish between PD-L1-positive and PD-L1-negative tumors in living mice, providing an alternative to invasive biopsy and histological analysis. These results thus highlight the favorable pharmacology of small, nonantibody therapeutics for enhanced cancer immunotherapy and immune diagnostics.

  6. Nuclear Choline Acetyltransferase Activates Transcription of a High-affinity Choline Transporter*

    OpenAIRE

    Matsuo, Akinori; Bellier, Jean-Pierre; Nishimura, Masaki; YASUHARA, Osamu; Saito, Naoaki; Kimura, Hiroshi

    2010-01-01

    Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter ...

  7. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site.

    Science.gov (United States)

    Piscitelli, Chayne L; Krishnamurthy, Harini; Gouaux, Eric

    2010-12-23

    Neurotransmitter/sodium symporters (NSSs) couple the uptake of neurotransmitter with one or more sodium ions, removing neurotransmitter from the synaptic cleft. NSSs are essential to the function of chemical synapses, are associated with multiple neurological diseases and disorders, and are the targets of therapeutic and illicit drugs. LeuT, a prokaryotic orthologue of the NSS family, is a model transporter for understanding the relationships between molecular mechanism and atomic structure in a broad range of sodium-dependent and sodium-independent secondary transporters. At present there is a controversy over whether there are one or two high-affinity substrate binding sites in LeuT. The first-reported crystal structure of LeuT, together with subsequent functional and structural studies, provided direct evidence for a single, high-affinity, centrally located substrate-binding site, defined as the S1 site. Recent binding, flux and molecular simulation studies, however, have been interpreted in terms of a model where there are two high-affinity binding sites: the central, S1, site and a second, the S2 site, located within the extracellular vestibule. Furthermore, it was proposed that the S1 and S2 sites are allosterically coupled such that occupancy of the S2 site is required for the cytoplasmic release of substrate from the S1 site. Here we address this controversy by performing direct measurement of substrate binding to wild-type LeuT and to S2 site mutants using isothermal titration calorimetry, equilibrium dialysis and scintillation proximity assays. In addition, we perform uptake experiments to determine whether the proposed allosteric coupling between the putative S2 site and the S1 site manifests itself in the kinetics of substrate flux. We conclude that LeuT harbours a single, centrally located, high-affinity substrate-binding site and that transport is well described by a simple, single-substrate kinetic mechanism.

  8. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice.

    Directory of Open Access Journals (Sweden)

    Daisuke Kawabata

    Full Text Available A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.

  9. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat

    2016-03-01

    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  10. Characterization of a genetically reconstituted high-affinity system for serotonin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A.S.S.; Lam, D.M.K. (Baylor College of Medicine, Woodlands, TX (USA) Baylor College of Medicine, Houston, TX (USA)); Frnka, J.V.; Chen, D. (Baylor College of Medicine, Woodlands, TX (USA))

    1989-12-01

    By transfecting mouse fibroblast L-M cells with human genomic DNA, the authors have established and identified several clonal cell lines that stably express a high-affinity serotonin (5-HT)-uptake mechanism absent in untransfected host cells. One such cell line, L-S1, possesses features of 5-({sup 3}H)HT uptake similar to those previously characterized in the central nervous system and blood platelets: (i) specificity for 5-HT; (ii) antagonism by imipramine, a known inhibitor of high-affinity 5-HT uptake; (iii) both Na{sup +} and temperature dependence; (iv) kinetic saturability; and (v) high affinity for 5-HT. This cell line can be used to compare the relative efficacies of known blockers of 5-HT uptake and thereby offers a rapid and reliable assay system for testing novel inhibitors of this system. Since L-S1 contains stably integrated human DNA in its genome, they postulate that the observed 5-HT-uptake system resulted from the expression of human gene(s) coding for the 5-HT transporter. Thus, cell lines such as L-S1 may represent novel means for screening and developing therapeutic agents specific for neutrotransmitter-uptake systems as well as substrate for the cloning and elucidation of the genes encoding the various neurotransmitter transporters.

  11. Structural Basis for High-Affinity Peptide Inhibition of Human Pin1

    Science.gov (United States)

    Zhang, Yan; Daum, Sebastian; Wildemann, Dirk; Zhou, Xiao Zhen; Verdecia, Mark A.; Bowman, Marianne E.; Lücke, Christian; Hunter, Tony; Lu, Kun-Ping; Fischer, Gunter; Noel, Joseph P.

    2009-01-01

    Human Pin1 is a key regulator of cell-cycle progression and plays growth-promoting roles in human cancers. High-affinity inhibitors of Pin1 may provide a unique opportunity for disrupting oncogenic pathways. Here we report two high-resolution X-ray crystal structures of human Pin1 bound to non-natural peptide inhibitors. The structures of the bound high-affinity peptides identify a type-I β-turn conformation for Pin1 prolyl peptide isomerase domain–peptide binding and an extensive molecular interface for high-affinity recognition. Moreover, these structures suggest chemical elements that may further improve the affinity and pharmacological properties of future peptide-based Pin inhibitors. Finally, an intramolecular hydrogen bond observed in both peptide complexes mimics the cyclic conformation of FK506 and rapamycin. Both FK506 and rapamycin are clinically important inhibitors of other peptidyl-prolyl cis-trans isomerases. This comparative discovery suggests that a cyclic peptide polyketide bridge, like that found in FK506 and rapamycin or a similar linkage, may significantly improve the binding affinity of structure-based Pin1 inhibitors. PMID:17518432

  12. Phorbol esters enhance attachment of NIH/3T3 cells to laminin and type IV collagen substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Shigemi; Ben, T.L.; De Luca, L.M. (National Institutes of Health, Bethesda, MD (USA))

    1988-11-01

    The effect of phorbol esters on the adhesive properties of NIH/3T3 mouse fibroblasts was investigated using plastic substrates precoated with the extracellular matrix proteins fibronectin, collagen, and laminin. Treatment with phorbol 12-myristate 13-acetate (PMA) enhanced NIH/3T3 cell attachment to laminin and type IV collagen substrates but had little or no effect on attachment to fibronectin and type I collagen substrates. The effect of PMA in enhancing cell attachment to laminin and type IV collagen substrates was dose dependent between 10{sup {minus}9} and 10{sup {minus}7} M. PMA was effective as early as 30 min; the effect reached a maximum at 2 h and decreased gradually. Phorbol 12, 13-dibenzoate and phorbol 12, 13-diacetate were effective but to a lesser extent and phorbol 12-myristate and phorbol 13-acetate showed little or no effect. These results suggest that PMA may enhance NIH/3T3 cell adhesion through effects on laminin and type IV collagen receptors. Retinoic acid, which itself requires at least 6 h to show an effect on attachment, did not have any effect on cell attachment in 2 h and, if anything, slightly inhibited PMA-enhanced cell attachment to laminin and type IV collagen substrates.

  13. Characterization of the laminin gene family and evolution in zebrafish.

    Science.gov (United States)

    Sztal, Tamar; Berger, Silke; Currie, Peter D; Hall, Thomas E

    2011-02-01

    Laminins are essential components of all basement membranes and are fundamental to tissue development and homeostasis. Humans possess at least 16 different heterotrimeric laminin complexes formed through different combinations of alpha, beta, and gamma chains. Individual chains appear to exhibit unique expression patterns, leading to the notion that overlap between expression domains governs the constitution of complexes found within particular tissues. However, the spatial and temporal expression of laminin genes has not been comprehensively analyzed in any vertebrate model to date. Here, we describe the tissue-specific expression patterns of all laminin genes in the zebrafish, throughout embryonic development and into the "post-juvenile" period, which is representative of the adult body form. In addition, we present phylogenetic and microsynteny analyses, which demonstrate that the majority of our zebrafish sequences are orthologous to human laminin genes. Together, these data represent a fundamental resource for the study of vertebrate laminins.

  14. Novel high-affinity and selective biaromatic 4-substituted gamma-hydroxybutyric acid (GHB) analogues as GHB ligands: design, synthesis, and binding studies.

    Science.gov (United States)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte; Frydenvang, Karla; Dahl, Ivar F; Bräuner-Osborne, Hans; Brehm, Lotte; Frølund, Bente; Clausen, Rasmus P

    2008-12-25

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites in brain, of which the latter have not been linked unequivocally to function, but are speculated to be GHB receptors. In this study, a series of biaromatic 4-substituted GHB analogues, including 4'-phenethylphenyl, 4'-styrylphenyl, and 4'-benzyloxyphenyl GHB analogues, were synthesized and characterized pharmacologically in a [3H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid ([3H]NCS-382) binding assay and in GABA(A) and GABA(B) receptor binding assays. The compounds were selective for the high-affinity GHB binding sites and several displayed Ki values below 100 nM. The affinity of the 4-[4'-(2-iodobenzyloxy)phenyl] GHB analogue 17b was shown to reside predominantly with the R-enantiomer (Ki = 22 nM), which has higher affinity than previously reported GHB ligands.

  15. Monoclonal antibodies to human laminin α4 chain globular domain inhibit tumor cell adhesion and migration on laminins 411 and 421, and binding of α6β1 integrin and MCAM to α4-laminins.

    Science.gov (United States)

    Ishikawa, Taichi; Wondimu, Zenebech; Oikawa, Yuko; Ingerpuu, Sulev; Virtanen, Ismo; Patarroyo, Manuel

    2014-06-01

    α4-Laminins, such as laminins 411 and 421, are mesenchymal laminins expressed by vascular and lymphatic endothelial cells, leukocytes and other normal cell types. These laminins are recognized by α6β1 and α6β4 integrins and MCAM (CD146), and promote adhesion and migration of the cells. α4-Laminins are also expressed and secreted by some tumor cells and strongly promote tumor cell migration. Moreover, the abluminal side of blood and/or lymphatic vessels and the nerve perineurium, common tracks of tumor cell dissemination, express α4-laminins, and these laminin isoforms, when expressed in the stroma, may contribute to tumor invasion. In the present study, we examined ten mAbs to human laminin α4 chain for their reactivity with the isolated laminin α4 globular domain, their ability to inhibit tumor cell adhesion and migration on laminins 411 and 421, and their effect on the binding of α6β1 integrin and MCAM to both α4-laminins. Most of the mAbs reacted with the laminin α4 globular domain, but only two, mAbs FC10 and 084, significantly inhibited tumor cell adhesion and migration on laminin-411. When used in combination, these antibodies practically abolished the cell adhesion and migration on laminin-411 and significantly reduced the cellular responses on laminin-421. Accordingly, mAbs FC10 and 084 significantly inhibited the binding of purified α6β1 integrin and MCAM to laminins 411 and 421. These results indicate that mAbs to the laminin α4 globular domain are able to inhibit tumor cell adhesion and migration on laminins 411 and 421, and that α6β1 integrin and MCAM bind α4-laminins at very close sites on the globular domain. These reagents contribute to a better understanding of the biology of α4-laminins and may have a therapeutic potential in malignant and inflammatory diseases.

  16. Origin and evolution of laminin gene family diversity.

    Science.gov (United States)

    Fahey, Bryony; Degnan, Bernard M

    2012-07-01

    Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, we characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. As a representative of the Demospongiae, a group consistently placed within the earliest diverging branch of animals by molecular phylogenies, Amphimedon is uniquely placed to provide insight into early steps in the evolution of metazoan gene families. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted us to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Laminin-like genes appear to have originated in the holozoan lineage (choanoflagellates + metazoans + several other unicellular opisthokont taxa), with several laminin domains originating later and appearing only in metazoan (animal) or eumetazoan (placozoans + ctenophores + cnidarians + bilaterians) laminins. Typical bilaterian α, β, and γ laminin chain forms arose in the eumetazoan stem and another chain type that is conserved in Amphimedon, the cnidarian, Nematostella vectensis, and the echinoderm, Strongylocentrotus purpuratus, appears to have been lost independently from the placozoan, Trichoplax adhaerens, and from multiple bilaterians. Phylogenetic analysis did not clearly reconstruct relationships between the distinct laminin chain types (with the exception of the α chains) but did reveal how several members of the netrin family were

  17. The functions of laminins: lessons from in vivo studies

    DEFF Research Database (Denmark)

    Ryan, M C; Christiano, A M; Engvall, E

    1996-01-01

    diversity of the laminin family members makes highly specialized functions possible. While all laminins may share many functional properties, the individual chains are involved in interactions which cannot be substituted for by other laminins or by other basement membrane components. While this concept...... is how strongly the induced mouse mutations mimic human disease. With all the concerns with genetic background differences and species specific effects, manipulation of the laminin genes appears to be a particularly good first approach to identifying the causes of human disease. There is an abundant...

  18. Can alterations in integrin and laminin-5 expression be used as markers of malignancy?

    DEFF Research Database (Denmark)

    Thorup, Alis Karabulut; Reibel, J.; Schjødt, Morten

    1998-01-01

    Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas......Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas...

  19. The C-terminal Region of Laminin β Chains Modulates the Integrin Binding Affinities of Laminins*S⃞

    OpenAIRE

    Taniguchi, Yukimasa; Ido, Hiroyuki; Sanzen, Noriko; Hayashi, Maria; Sato-Nishiuchi, Ryoko; Futaki, Sugiko; Sekiguchi, Kiyotoshi

    2009-01-01

    Laminins are major cell-adhesive proteins in basement membranes that are capable of binding to integrins. Laminins consist of three chains (α, β, and γ), in which three laminin globular modules in the α chain and the Glu residue in the C-terminal tail of the γ chain have been shown to be prerequisites for binding to integrins. However, it remains unknown whether any part of the β chain is involved in laminin-integrin interactions. We compared the binding affinities of ...

  20. Anti-laminin-1 Autoantibodies, Pregnancy Loss and Endometriosis

    Directory of Open Access Journals (Sweden)

    Junko Inagaki

    2004-01-01

    Full Text Available Laminin-1 is a major component and multifunctional glycoprotein of basement membranes that consists of three different subunits, α1, β1 and γ1 chains. It is the earliest synthesized network-forming protein during embryogenesis and plays an important role in embryonic development, embryonic implantation and placentation. We have recently shown that IgG anti-laminin-1 antibodies were significantly associated with recurrent first-trimester miscarriages and with subsequent pregnancy outcome. Interestingly, these antibodies were also observed in patients with endometriosis-associated infertility but not in patients with other causes of infertility, including tubal factors, hormonal and uterine abnormalities. Laminin-α1, -β1 and -γ1 mRNAs have been detected in 90% of endometriotic lesions and all laminin-α1, -β1 and -γ1 chains were localized in the basement membranes of glandular epithelium in endometriotic peritoneal lesions. Western blot analysis showed that anti-laminin-1 antibodies from those patients reacted with all laminin-1's chains. ELISA also confirmed that one of the target epitopes for these antibodies was located in a particular region of the laminin-1 molecule, i.e. the carboxyl-terminal globular G domain of α1 chain. IgM monoclonal anti-laminin-1 autoantibody, that we recently established, also recognized the G domain. Anti-laminin-1 antibodies from mice immunized with –mouse— laminin-1, caused a higher fetal resorption rate with lower embryonic and placental weights. Thus, anti-laminin-1 antibodies may be important in development of autoimmune-mediated reproductive failures and the assessment of the antibodies may provide a novel non-invasive diagnosis of endometriosis.

  1. Cell attachment and spreading activity of mixed laminin peptide-chitosan membranes.

    Science.gov (United States)

    Otagiri, Dai; Yamada, Yuji; Hozumi, Kentaro; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2013-11-01

    Laminins are a multifunctional molecule with numerous active sites that have been identified in short peptide sequences. Mixed peptide-conjugated chitosan membranes using laminin-derived active peptides have been previously demonstrated to be useful as a biomaterial for tissue engineering. In this study, two syndecan-binding peptides, AG73 (RKRLQVQLSIRT) and C16 (KAFDITYVRLKF), and three integrin-binding peptides, EF1zz (ATLQLQEGRLHFXFDLGKGR, X: Nle, binding to integrin α2β1), A99a (ALRGDN, binding to integrin αvβ3), and A2G10 (SYWYRIEASRTG, binding to integrin α6β1), were mixed in various combinations, conjugated to chitosan membranes, and evaluated for their cell attachment and spreading activities. The cell attachment and spreading activity of EF1zz, A99a, and A2G10 were enhanced by AG73. In contrast, C16 enhanced only the cell attachment and spreading activity of A99a and did not influence the activity of EF1zz and A2G10. As well as previous study, the AG73-chitosan membrane bound to only syndecan. On the other hand, the C16-chitosan membrane interacted with both syndecan and β1 integrin. These data suggest that interaction of different receptors can cause synergistic effects. Therefore, AG73 is widely applicable as a synergistic agent for mixed peptide-matrices using several types of integrin-binding peptides. Additionally, the A2G10/AG73-chitosan membrane may be useful to investigate detailed biological functions of α6β1 integrin, which is a major laminin-binding receptor. Using a combination of tissue-appropriate laminin-derived peptides, the mixed peptide-chitosan membranes may serve as functional biomaterials for tissue engineering.

  2. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    Science.gov (United States)

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  3. VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Barelle

    2015-09-01

    Full Text Available At 420 million years, the variable domain of New Antigen Receptors or VNARs are undoubtedly the oldest (and smallest antigen binding single domains identified in the vertebrate kingdom. Their role as an integral part of the adaptive immune system of sharks has been well established and has served to provide a greater understanding of the evolution of humoral immunity; their cellular components and processes as well as the underlying genetic organization and molecular control mechanisms. Intriguingly, unlike the variable domain of the camelid heavy chain antibodies or VHH, VNARs do not conform to all of the characteristic properties of classical antibodies with an ancestral origin that clearly distinguishes them from true immunoglobulin antibodies. However, this uniqueness of their origin only adds to their potential as next generation therapeutic biologics with their structural and functional attributes and commercial freedom all enhancing their profile and current success. In fact their small size, remarkable stability, molecular flexibility and solubility, together with their high affinity and selectivity for target, all reinforce the potential of these domains as drug candidates. The purpose of this review is to provide an overview of the existing basic biology of these unique domains, to highlight the drug-like properties of VNARs and describe current progress in their journey towards the clinic.

  4. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of [alpha]- and PPII-helices

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.; Robinette, Rebekah A.; Crowley, Paula J.; Michalek, Suzanne; Brady, L. Jeannine; Deivanayagam, Champion (Cornell); (UAB); (Florida)

    2010-08-18

    Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{sub 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.

  5. An antibody to the lutheran glycoprotein (Lu recognizing the LU4 blood type variant inhibits cell adhesion to laminin α5.

    Directory of Open Access Journals (Sweden)

    Yamato Kikkawa

    Full Text Available BACKGROUND: The Lutheran blood group glycoprotein (Lu, an Ig superfamily (IgSF transmembrane receptor, is also known as basal cell adhesion molecule (B-CAM. Lu/B-CAM is a specific receptor for laminin α5, a major component of basement membranes in various tissues. Previous reports have shown that Lu/B-CAM binding to laminin α5 contributes to sickle cell vaso-occlusion. However, as there are no useful tools such as function-blocking antibodies or drugs, it is unclear how epithelial and sickled red blood cells adhere to laminin α5 via Lu/B-CAM. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we discovered a function-blocking antibody that inhibits Lu binding to laminin α5 using a unique binding assay on tissue sections. To characterize the function-blocking antibody, we identified the site on Lu/B-CAM recognized by this antibody. The extracellular domain of Lu/B-CAM contains five IgSF domains, D1-D2-D3-D4-D5. The antibody epitope was localized to D2, but not to the D3 domain containing the major part of the laminin α5 binding site. Furthermore, mutagenesis studies showed that Arg(175, the LU4 blood group antigenic site, was crucial for forming the epitope and the antibody bound sufficiently close to sterically hinder the interaction with α5. Cell adhesion assay using the antibody also showed that Lu/B-CAM serves as a secondary receptor for the adhesion of carcinoma cells to laminin α5. CONCLUSION/SIGNIFICANCE: This function-blocking antibody against Lu/B-CAM should be useful for not only investigating cell adhesion to laminin α5 but also for developing drugs to inhibit sickle cell vaso-occlusion.

  6. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole.

    Science.gov (United States)

    Erickson, Jeffrey D

    2017-07-01

    Glutamine (Gln) is considered the preferred precursor for the neurotransmitter pool of glutamate (Glu), the major excitatory transmitter in the mammalian CNS. Here, an activity-regulated, high-affinity Gln transport system is described in developing and mature neuron-enriched hippocampal cultures that is potently inhibited by riluzole (IC50 1.3 ± 0.5 μM), an anti-glutamatergic drug, and is blocked by low concentrations of 2-(methylamino)isobutyrate (MeAIB), a system A transport inhibitor. K(+) -stimulated MeAIB transport displays an affinity (Km ) for MeAIB of 37 ± 1.2 μM, saturates at ~ 200 μM, is dependent on extracellular Ca(2+) , and is blocked by inhibition of voltage-gated Ca(2+) channels. Spontaneous MeAIB transport is also dependent on extracellullar Ca(2+) and voltage-gated calcium channels, but is also blocked by the Na(+) channel blocker tetrodotoxin, by Glu receptor antagonists, and by GABA indicating its dependence on intact neural circuits driven by endogenous glutamatergic activity. The transport of MeAIB itself does not rely on Ca(2+) , but on Na(+) ions, and is pH sensitive. Activity-regulated, riluzole-sensitive spontaneous and K(+) -stimulated transport is minimal at 7-8 days in vitro, coordinately induced during the next 2 weeks and is maximally expressed by days in vitro > 20; the known period for maturation of the Glu/Gln cycle and regulated pre-synaptic Glu release. Competition analyses with various amino acids indicate that Gln is the most likely physiological substrate. Activity-regulated Gln/MeAIB transport is not observed in astrocytes. The functional identification of activity-regulated, high-affinity, riluzole-sensitive Gln/MeAIB transport in hippocampal neurons may have important ramifications in the neurobiology of activity-stimulated pre-synaptic Glu release, the Glu/Gln cycle between astrocytes and neurons, and neuronal Glu-induced excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.13805. © 2017

  7. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  8. Laminins affect T cell trafficking and allograft fate.

    Science.gov (United States)

    Warren, Kristi J; Iwami, Daiki; Harris, Donald G; Bromberg, Jonathan S; Burrell, Bryna E

    2014-05-01

    Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4⁺ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation.

  9. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  10. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    Science.gov (United States)

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  11. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    Science.gov (United States)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  12. Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter

    Science.gov (United States)

    Choudhary, Parul; Armstrong, Emma J.; Jorgensen, Csilla C.; Piotrowski, Mary; Barthmes, Maria; Torella, Rubben; Johnston, Sarah E.; Maruyama, Yuya; Janiszewski, John S.; Storer, R. Ian; Skerratt, Sarah E.; Benn, Caroline L.

    2017-01-01

    Cholinergic hypofunction is associated with decreased attention and cognitive deficits in the central nervous system in addition to compromised motor function. Consequently, stimulation of cholinergic neurotransmission is a rational therapeutic approach for the potential treatment of a variety of neurological conditions. High affinity choline uptake (HACU) into acetylcholine (ACh)-synthesizing neurons is critically mediated by the sodium- and pH-dependent high-affinity choline transporter (CHT, encoded by the SLC5A7 gene). This transporter is comparatively well-characterized but otherwise unexplored as a potential drug target. We therefore sought to identify small molecules that would enable testing of the hypothesis that positive modulation of CHT mediated transport would enhance activity-dependent cholinergic signaling. We utilized existing and novel screening techniques for their ability to reveal both positive and negative modulation of CHT using literature tools. A screening campaign was initiated with a bespoke compound library comprising both the Pfizer Chemogenomic Library (CGL) of 2,753 molecules designed specifically to help enable the elucidation of new mechanisms in phenotypic screens and 887 compounds from a virtual screening campaign to select molecules with field-based similarities to reported negative and positive allosteric modulators. We identified a number of previously unknown active and structurally distinct molecules that could be used as tools to further explore CHT biology or as a starting point for further medicinal chemistry. PMID:28289374

  13. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma

    Science.gov (United States)

    Zhang, Yi-Fan; Ho, Mitchell

    2016-01-01

    Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer. PMID:27667400

  14. High affinity binding site-mediated prevention of chemical absorption across the gastrointestinal tract.

    Science.gov (United States)

    Rasmussen, M V; Barker, T T; Silbart, L K

    2001-12-15

    Preventing mucosal absorption of low-molecular weight compounds such as carcinogens, toxins and drugs could help prevent many diseases. To characterize the effects of dose and timing on high-affinity binding site mediated sequestration of specific chemical ligands in the gastrointestinal tract, avidin was perorally-administered to mice either prior to or mixed with 3H-biotin. Avidin enhanced fecal 3H-biotin excretion in a dose-dependent manner, consistent with the accepted mechanism of egg white-induced biotin deficiency syndrome. Avidin administration up to 4 h before 3H-biotin administration also enhanced fecal 3H-biotin excretion. Activated charcoal (AC) reduced 3H-biotin absorption when mixed with 3H-biotin before ingestion, but was ineffective when ingested prior to 3H-biotin. These studies suggest that ingestion of high-affinity protein binding sites can establish an absorptive barrier at the gastrointestinal mucosa to prevent the uptake of unwanted low molecular-weight chemicals.

  15. High affinity mouse-human chimeric Fab against Hepatitis B surface antigen

    Institute of Scientific and Technical Information of China (English)

    Biplab Bose; Navin Khanna; Subrat K Acharya; Subrata Sinha

    2005-01-01

    AIM: Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody.METHODS: We cloned the VH and VL genes of this mouse antibody; and fused them with CH1 domain of human IgG1 and CL domain of human kappa chain respectively. These chimeric genes were cloned into a phagemid vector. After initial screening using the phage display system, the chimeric Fab was expressed in soluble form in E. Coli.RESULTS: The chimeric Fab was purified from the bacterial periplasmic extract. We characterized the chimeric Fab using several in vitro techniques and it was observed that the chimeric molecule retained the high affinity and specificity of the original mouse monoclonal.This chimeric antibody fragment was further expressed in different strains of E> coli to increase the yield.CONCLUSION: We have generated a mouse-human chimeric Fab against HBsAg without any significant loss in binding and epitope specificity. This chimeric Fab fragment can be further modified to generate a fulllength chimeric antibody for therapeutic uses.

  16. AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae.

    Science.gov (United States)

    Aouida, Mustapha; Leduc, Anick; Poulin, Richard; Ramotar, Dindial

    2005-06-24

    Polyamines play essential functions in many aspects of cell biology. Plasma membrane transport systems for the specific uptake of polyamines exist in most eukaryotic cells but have been very recently identified at the molecular level only in the parasite Leishmania. We now report that the high affinity polyamine permease in Saccharomyces cerevisiae is identical to Agp2p, a member of the yeast amino acid transporter family that was previously identified as a carnitine transporter. Deletion of AGP2 dramatically reduces the initial velocity of spermidine and putrescine uptake and confers strong resistance to the toxicity of exogenous polyamines, and transformation with an AGP2 expression vector restored polyamine transport in agp2delta mutants. Yeast mutants deficient in polyamine biosynthesis required >10-fold higher concentrations of exogenous putrescine to restore cell proliferation upon deletion of the AGP2 gene. Disruption of END3, a gene required for an early step of endocytosis, increased the abundance of Agp2p, an effect that was paralleled by a marked up-regulation of spermidine transport velocity. Thus, AGP2 encodes the first eukaryotic permease that preferentially uses spermidine over putrescine as a high affinity substrate and plays a central role in the uptake of polyamines in yeast.

  17. Genetic evidence of a high-affinity cyanuric acid transport system in Pseudomonas sp. ADP.

    Science.gov (United States)

    Platero, Ana I; Santero, Eduardo; Govantes, Fernando

    2014-03-01

    The Pseudomonas sp. ADP plasmid pADP-1 encodes the activities involved in the hydrolytic degradation of the s-triazine herbicide atrazine. Here, we explore the presence of a specific transport system for the central intermediate of the atrazine utilization pathway, cyanuric acid, in Pseudomonas sp. ADP. Growth in fed-batch cultures containing limiting cyanuric acid concentrations is consistent with high-affinity transport of this substrate. Acquisition of the ability to grow at low cyanuric acid concentrations upon conjugal transfer of pADP1 to the nondegrading host Pseudomonas putida KT2442 suggests that all activities required for this phenotype are encoded in this plasmid. Co-expression of the pADP1-borne atzDEF and atzTUVW genes, encoding the cyanuric acid utilization pathway and the subunits of an ABC-type solute transport system, in P. putida KT2442 was sufficient to promote growth at cyanuric acid concentrations as low as 50 μM in batch culture. Taken together, our results strongly suggest that the atzTUVW gene products are involved in high-affinity transport of cyanuric acid.

  18. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    OpenAIRE

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H. F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affin...

  19. Effect of serum, fibronectin, and laminin on adhesion of rabbit intestinal epithelial cells in culture.

    Science.gov (United States)

    Burrill, P H; Bernardini, I; Kleinman, H K; Kretchmer, N

    1981-01-01

    Rabbit intestinal epithelial cells, obtained after a limited hyaluronidase digestion, were incubated in medium with or without calf serum, on bacteriological plastic dishes. The dishes, either plain or coated with an air-dried type I collagen film, were pretreated with medium alone or eith medium containing purified laminin or purified fibronectin. Cells did not attach in significant numbers to untreated bacteriological plastic, even in the presence of serum. Cells did attach to collagen-coated dishes, and were judged viable on the basis of their incorporation of radiolabeled leucine into cell protein. Cell adhesion to the collagen substrate increased in proportion to the concentration of serum in the medium, with maximal attachment of 5% serum or greater. Pretreatment of plain or collagen-coated dishes with increasing amounts of fibronectin enhanced cell adhesion in a concentration-dependent manner. Either serum, or fibronectin-free serum in the medium enhanced cell attachment to substrates pretreated with either fibronectin or laminin. Thus, intestinal epithelial cells appear to possess surface receptors for both laminin and fibronectin. The evidence further suggests that calf serum may contain factors, other than fibronectin, capable of enhancing intestinal epithelial cell attachment to collagen substrates.

  20. The Effect of Laminin-1-Doped Nanoroughened Implant Surfaces: Gene Expression and Morphological Evaluation

    Directory of Open Access Journals (Sweden)

    Humberto Osvaldo Schwartz-Filho

    2012-01-01

    Full Text Available Aim. This study aimed to observe the morphological and molecular effect of laminin-1 doping to nanostructured implant surfaces in a rabbit model. Materials and Methods. Nanostructured implants were coated with laminin-1 (test; dilution, 100 μg/mL and inserted into the rabbit tibiae. Noncoated implants were used as controls. After 2 weeks of healing, the implants were removed and subjected to morphological analysis using scanning electron microscopy (SEM and gene expression analysis using the real-time reverse transcriptase-polymerase chain reaction (RT-PCR. Results. SEM revealed bony tissue attachment for both control and test implants. Real-time RT-PCR analysis showed that the expression of osteoblast markers RUNX-2, osteocalcin, alkaline phosphatase, and collagen I was higher (1.62-fold, 1.53-fold, 1.97-fold, and 1.04-fold, resp. for the implants modified by laminin-1 relative to the control. All osteoclast markers investigated in the study presented higher expression on the test implants than controls as follows: tartrate-resistant acid phosphatase (1.67-fold, calcitonin receptor (1.35-fold, and ATPase (1.25-fold. The test implants demonstrated higher expression of inflammatory markers interleukin-10 (1.53-fold and tumour necrosis factor-α (1.61-fold relative to controls. Conclusion. The protein-doped surface showed higher gene expression of typical genes involved in the osseointegration cascade than the control surface.

  1. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  2. The hippocampal laminin matrix is dynamic and critical for neuronal survival.

    Science.gov (United States)

    Chen, Zu-Lin; Indyk, Justin A; Strickland, Sidney

    2003-07-01

    Laminins are extracellular matrix proteins that participate in neuronal development, survival, and regeneration. During excitotoxin challenge in the mouse hippocampus, neuron interaction with laminin-10 (alpha5,beta1,gamma1) protects against neuronal death. To investigate how laminin is involved in neuronal viability, we infused laminin-1 (alpha1,beta1,gamma1) into the mouse hippocampus. This infusion specifically disrupted the endogenous laminin layer. This disruption was at least partially due to the interaction of the laminin-1 gamma1 chain with endogenous laminin-10, because infusion of anti-laminin gamma1 antibody had the same effect. The disruption of the laminin layer by laminin-1 1) did not require the intact protein because infusion of plasmin-digested laminin-1 gave similar results; 2) was posttranscriptional, because there was no effect on laminin mRNA expression; and 3) occurred in both tPA(-/-) and plasminogen(-/-) mice, indicating that increased plasmin activity was not responsible. Finally, although tPA(-/-) mice are normally resistant to excitotoxin-induced neurodegeneration, disruption of the endogenous laminin layer by laminin-1 or anti-laminin gamma1 antibody renders the tPA(-/-) hippocampal neurons sensitive to kainate. These results demonstrate that neuron interactions with the deposited matrix are not necessarily recapitulated by interactions with soluble components and that the laminin matrix is a dynamic structure amenable to modification by exogenous molecules.

  3. Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival

    DEFF Research Database (Denmark)

    Vachon, P H; Loechel, F; Xu, H

    1996-01-01

    Laminin (laminin-1; alpha 1-beta 1-gamma 1) is known to promote myoblast proliferation, fusion, and myotube formation. Merosin (laminin-2 and -4; alpha 2-beta 1/beta 2-gamma 1) is the predominant laminin variant in skeletal muscle basement membranes; genetic defects affecting its structure or exp...

  4. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.

    Science.gov (United States)

    Straub, Daniel; Ludewig, Uwe; Neuhäuser, Benjamin

    2014-11-01

    Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.

  5. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death.

    Science.gov (United States)

    Norholm, Morten H H; Nour-Eldin, Hussam H; Brodersen, Peter; Mundy, John; Halkier, Barbara A

    2006-04-17

    We report the biochemical characterization in Xenopus oocytes of the Arabidopsis thaliana membrane protein, STP13, as a high affinity, hexose-specific H(+)-symporter. Studies with kinase activators suggest that it is negatively regulated by phosphorylation. STP13 promoter GFP reporter lines show GFP expression only in the vascular tissue in emerging petals under non-stressed conditions. Quantitative PCR and the pSTP13-GFP plants show induction of STP13 in programmed cell death (PCD) obtained by treatments with the fungal toxin fumonisin B1 and the pathogen Pseudomonas syringae. A role for STP13 in PCD is supported by microarray data from e.g. plants undergoing senescence and a strong correlation between STP13 transcripts and the PCD phenotype in different accelerated cell death (acd11) mutants.

  6. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis.

    Science.gov (United States)

    Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus

    2016-08-31

    Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E(+)) and acquire a high-affinity conformation with an 'open' headpiece (H(+)). The canonical switchblade model of integrin activation proposes that the E(+) conformation precedes H(+), and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E(-)H(+) conformation. E(-)H(+) β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation.

  7. Selection of high affine peptide ligands for detection of Clostridium Tyrobutyricum spores.

    Science.gov (United States)

    Lavilla, María; De Luis, Ruth; Pérez, María Dolores; Calvo, Miguel; Sánchez, Lourdes

    2009-11-01

    Clostridium tyrobutyricum is the main agent responsible for "late blowing" in cheese, which causes severe economic losses. Nowadays, the reference method for its detection is the Most-Probable-Number (MPN); however, it is time consuming and non-specific. Thus, in order to check milk contamination with spores of C. tyrobutyricum, a more specific and rapid method would be required. The objective of this work was to obtain a ligand to establish the basis to develop a biomagnetic separation method for detection of C. tyrobutyricum spores. This study describes the selection of thirteen highly affine peptides to C. tyrobutyricum spores from a phage-display peptide library. In order to test the ability of the peptides attached to a solid support to bind the spores, the most frequent peptide was synthesised and used to coat paramagnetic beads.

  8. Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions.

    Science.gov (United States)

    Altschuler, Sarah E; Lewis, Karen A; Wuttke, Deborah S

    2013-01-01

    The quantitative evaluation of binding interactions between proteins and nucleic acids is highly sensitive to a variety of experimental conditions. Optimization of these conditions is critical for obtaining high quality, reproducible data, particularly in the context of very high affinity interactions. Here, we discuss the practical considerations involved in optimizing the apparent binding constant of an interaction as measured by two common quantitative assays, electrophoretic mobility shift assay and double-filter binding when measuring extremely tight protein/nucleic acid interactions with sub-nanomolar binding affinities. We include specific examples from two telomere end-binding protein systems, Schizo -saccharomyces pombe Pot1 and Saccharomyces cerevisiae Cdc13, to demonstrate potential experimental pitfalls and some useful strategies for optimization.

  9. Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions

    Directory of Open Access Journals (Sweden)

    Sarah E. Altschuler

    2013-09-01

    Full Text Available The quantitative evaluation of binding interactions between proteins and nucleic acids is highly sensitive to a variety of experimental conditions. Optimization of these conditions is critical for obtaining high quality, reproducible data, particularly in the context of very high affinity interactions. Here, we discuss the practical considerations involved in optimizing the apparent binding constant of an interaction as measured by two common quantitative assays, electrophoretic mobility shift assay and double-filter binding when measuring extremely tight protein/nucleic acid interactions with sub-nanomolar binding affinities. We include specific examples from two telomere end-binding protein systems, Schizosaccharomyces pombe Pot1 and Saccharomyces cerevisiae Cdc13, to demonstrate potential experimental pitfalls and some useful strategies for optimization.

  10. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil.

    Science.gov (United States)

    Tomatsu, Hajime; Takano, Junpei; Takahashi, Hideki; Watanabe-Takahashi, Akiko; Shibagaki, Nakako; Fujiwara, Toru

    2007-11-20

    Molybdenum (Mo) is a trace element essential for living organisms, however no molybdate transporter has been identified in eukaryotes. Here, we report the identification of a molybdate transporter, MOT1, from Arabidopsis thaliana. MOT1 is expressed in both roots and shoots, and the MOT1 protein is localized, in part, to plasma membranes and to vesicles. MOT1 is required for efficient uptake and translocation of molybdate and for normal growth under conditions of limited molybdate supply. Kinetics studies in yeast revealed that the K(m) value of MOT1 for molybdate is approximately 20 nM. Furthermore, Mo uptake by MOT1 in yeast was not affected by coexistent sulfate, and MOT1 did not complement a sulfate transporter-deficient yeast mutant strain. These data confirmed that MOT1 is specific for molybdate and that the high affinity of MOT1 allows plants to obtain scarce Mo from soil.

  11. Experimental conditions can obscure the second high-affinity site in LeuT.

    Science.gov (United States)

    Quick, Matthias; Shi, Lei; Zehnpfennig, Britta; Weinstein, Harel; Javitch, Jonathan A

    2012-01-15

    Neurotransmitter:Na(+) symporters (NSSs), the targets of antidepressants and psychostimulants, recapture neurotransmitters from the synapse in a Na(+)-dependent symport mechanism. The crystal structure of the NSS homolog LeuT from Aquifex aeolicus revealed one leucine substrate in an occluded, centrally located (S1) binding site next to two Na(+) ions. Computational studies combined with binding and flux experiments identified a second substrate (S2) site and a molecular mechanism of Na(+)-substrate symport that depends upon the allosteric interaction of substrate molecules in the two high-affinity sites. Here we show that the S2 site, which has not yet been identified by crystallographic approaches, can be blocked during preparation of detergent-solubilized LeuT, thereby obscuring its crucial role in Na(+)-coupled symport. This finding points to the need for caution in selecting experimental environments in which the properties and mechanistic features of membrane proteins can be delineated.

  12. A linker peptide with high affinity towards silica-containing materials.

    Science.gov (United States)

    Sunna, Anwar; Chi, Fei; Bergquist, Peter L

    2013-06-25

    A peptide sequence with affinity to silica-containing materials was fused to a truncated form of Streptococcus strain G148 Protein G. The resulting recombinant Linker-Protein G (LPG) was produced in Escherichia coli and purified to apparent homogeneity. It displayed high affinity towards two natural clinoptilolite zeolites. The LPG also displayed high binding affinity towards commercial-grade synthetic zeolite, silica and silica-containing materials. A commercial sample of the truncated Protein G and a basic protein, both without the linker, did not bind to natural or synthetic zeolites or silica. We conclude that the zeolite-binding affinity is mediated by the linker peptide sequence. As a consequence, these data may imply that the binding affinity is directed to the SiO2 component rather than to the atomic orientation on the zeolite crystal surface as previously assumed.

  13. Structural insights into a high affinity nanobody:antigen complex by homology modelling

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2017-01-01

    B binding were identified and used as input to the docking. Furthermore, residues likely involved in the RgpB epitope was identified based upon RgpB:RgpA alignment and analysis of residue surface accessibility. CDR residues and putitative RgpB epitope residues were used as input to an information-driven...... flexible docking approach using the HADDOCK server. Analysis of the VHH7:RgpB model demonstrated that the epitope was found in the immunoglobulin-like domain and residue pairs located at the molecular paratope:epitope interface important for complex stability was identified. Collectively, the VHH7 homology...... model and VHH7:RgpB docking supplies knowledge of the residues involved in the high affinity interaction. This information could prove valuable in the design of an antibody-drug conjugate for specific RgpB targeting....

  14. A complex water network contributes to high-affinity binding in an antibody–antigen interface

    Directory of Open Access Journals (Sweden)

    S.F. Marino

    2016-03-01

    Full Text Available This data article presents an analysis of structural water molecules in the high affinity interaction between a potent tumor growth inhibiting antibody (fragment, J22.9-xi, and the tumor marker antigen CD269 (B cell maturation antigen, BCMA. The 1.89 Å X-ray crystal structure shows exquisite details of the binding interface between the two molecules, which comprises relatively few, mostly hydrophobic, direct contacts but many indirect interactions over solvent waters. These are partly or wholly buried in, and therefore part of, the interface. A partial description of the structure is included in an article on the tumor inhibiting effects of the antibody: “Potent anti-tumor response by targeting B cell maturation antigen (BCMA in a mouse model of multiple myeloma”, Mol. Oncol. 9 (7 (2015 pp. 1348–58.

  15. Expression of a Hybrid Human Superoxide Dismutase with a High Affinity for Heparin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A designed heparin-affinity of human Cu, Zn-SOD is described. The natural leader peptide of P.leiognathi Cu, Zn-SOD and a heparin-binding peptide containing a stretch of 7 Arg were fused to the N-terminal and the C-terminal of human Cu, Zn-SOD respectively. The resulted hybrid enzyme had not only a normal SOD activity but also a high affinity for heparin eluted on the heparin-Sepharose column at 0.4 mol/L NaCl. Some properties, such as the optimum pH, the thermostability and the half-life in the circulation of rats, were also analyzed.

  16. Effects of anticonvulsants in vivo on high affinity choline uptake in vitro in mouse hippocampal synaptosomes.

    Science.gov (United States)

    Miller, J. A.; Richter, J. A.

    1985-01-01

    The effects of several anticonvulsant drugs on sodium-dependent high affinity choline uptake (HACU) in mouse hippocampal synaptosomes was investigated. HACU was measured in vitro after in vivo administration of the drug to mice. HACU was inhibited by drugs which have in common the ability to facilitate gamma-aminobutyric acid (GABA) transmission, pentobarbitone, phenobarbitone, barbitone, diazepam, chloridiazepoxide, and valproic acid. Dose-response relationships were determined for these drugs and the drugs' potencies at inhibiting HACU correlated well with their anticonvulsant potencies. Clonazepam, ethosuximide, carbamazepine, and barbituric acid had no effect on HACU in the doses used while phenytoin and trimethadione stimulated HACU. These results suggest that certain anticonvulsants may elicit a part of their anticonvulsant activity by modulating cholinergic neurones. This effect may be mediated through a GABA mechanism. PMID:3978310

  17. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Katz, D.M.; Kimelberg, H.K.

    1985-07-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; (/sup 3/H)-5-HT). At concentrations in the range of 0.01 to 0.7 microM (/sup 3/H)-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM (/sup 3/H)-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of (/sup 3/H)-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of (/sup 3/H)-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate (/sup 3/H)-5-HT up to 44-fold at an external (/sup 3/H)-5-HT concentration of 10(-7) M. Inhibition of (/sup 3/H)-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of (/sup 3/H)-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on (/sup 3/H)-5-HT uptake.

  18. The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors.

    Science.gov (United States)

    Nezami, Azin; Freire, Ernesto

    2002-12-04

    The plasmepsins are key enzymes in the life cycle of the Plasmodium parasites responsible for malaria. Since plasmepsin inhibition leads to parasite death, these enzymes have been acknowledged to be important targets for the development of new antimalarial drugs. The development of effective plasmepsin inhibitors, however, is compounded by their genomic diversity which gives rise not to a unique target for drug development but to a family of closely related targets. Successful drugs will have to inhibit not one but several related enzymes with high affinity. Structure-based drug design against heterogeneous targets requires a departure from the classic 'lock-and-key' paradigm that leads to the development of conformationally constrained molecules aimed at a single target. Drug molecules designed along those principles are usually rigid and unable to adapt to target variations arising from naturally occurring genetic polymorphisms or drug-induced resistant mutations. Heterogeneous targets need adaptive drug molecules, characterised by the presence of flexible elements at specific locations that sustain a viable binding affinity against existing or expected polymorphisms. Adaptive ligands have characteristic thermodynamic signatures that distinguish them from their rigid counterparts. This realisation has led to the development of rigorous thermodynamic design guidelines that take advantage of correlations between the structure of lead compounds and the enthalpic and entropic components of the binding affinity. In this paper, we discuss the application of the thermodynamic approach to the development of high affinity (K(i) - pM) plasmepsin inhibitors. In particular, a family of allophenylnorstatine-based compounds is evaluated for their potential to inhibit a wide spectrum of plasmepsins.

  19. Production and Identification of High Affinity Monoclonal Antibodies Against Pesticide Carbofuran

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To produce high-affinity monoclonal antibodies against pesticide carbofuran, and the develop immunochemical assays for people's health and environmental protection, the hapten 4-[[(2,3-dihydro-2,2-dimethyl-7-benzofuranyloxy) carbonyl]-amino]-butanoic acid (BFNB) of carbofuran was synthesized and Balb/c mice were immunized by the hapten-carrier (BFNB-bovine serum albumin, BFNB-BSA) conjugates. The splenocytes of immunized mice were fused with Sp2/0 cells and the cultural supernatants of hybridoma cells were screened by the indirect enzyme-linked immunoabsorbent assay (ELISA), based on BFNB-ovoalbumin conjugates (BFNB-OVA). Purified monoclonal antibody (McAb) was obtained from fluids of ascites, deposited by octanoic acid and ammonium sulfate. The affinity and the specificity of McAb were characterized by ELISA or indirect competitive ELISA. A hybridoma cell line (5D3) secreting anti-carbofuran McAb had been established. The titer of culture medium and ascites was up to 1:2.048 × 103 and 1:1.024 × 106, respectively, and the subtype of the McAb was IgG1. The affinity constant of the McAb was about 2.54 × 109 L mol-1, with an IC50 value of 1.18 ng mL-1 and a detection limit of 0.01 ng mL-1. Cross-reactivity studies showed that the McAb was quiet specific for carbofuran, as among the four analogous compounds, they were all hardly recognized (4.59 × 10-4% for 2,3-dihydro-2,2-dimethyl-7-benzofuranol and less than 3.0 × 10-4% for others). The prepared McAb had a very high affinity and specificity,and it could be used to develop ELISA for rapid determination of carbofuran.

  20. Bacteriophage lambda terminase: alterations of the high-affinity ATPase affect viral DNA packaging.

    Science.gov (United States)

    Dhar, Alok; Feiss, Michael

    2005-03-18

    DNA packaging by large DNA viruses such as the tailed bacteriophages and the herpesviruses involves DNA translocation into a preformed protein shell, called the prohead. Translocation is driven by an ATP hydrolysis-powered DNA packaging motor. The bacteriophages encode a heterodimeric viral DNA packaging protein, called terminase. The terminases have an ATPase center located in the N terminus of the large subunit implicated in DNA translocation. In previous work with phage lambda, lethal mutations that changed ATP-reactive residues 46 and 84 of gpA, the large terminase subunit, were studied. These mutant enzymes retained the terminase endonuclease and helicase activities, but had severe defects in virion assembly, and lacked the terminase high-affinity ATPase activity. Surprisingly, in the work described here, we found that enzymes with the conservative gpA changes Y46F and Y46A had only mild packaging defects. These mild defects contrast with their profound virion assembly defects. Thus, these mutant enzymes have, in addition to the mild DNA packaging defects, a severe post-DNA packaging defect. In contrast, the gpA K84A enzyme had similar virion assembly and DNA packaging defects. The DNA packaging energy budget, i.e. DNA packaged/ATP hydrolyzed, was unchanged for the mutant enzymes, indicating that DNA translocation is tightly coupled to ATP hydrolysis. A model is proposed in which gpA residues 46 and 84 are important for terminase's high-affinity ATPase activity. Assembly of the translocation complex remodels this ATPase so that residues 46 and 84 are not crucial for the activated translocation ATPase. Changing gpA residues 46 and 84 primarily affects assembly, rather than the activity, of the translocation complex.

  1. Fluorescently tagged laminin subunits facilitate analyses of the properties, assembly and processing of laminins in live and fixed lung epithelial cells and keratinocytes.

    Science.gov (United States)

    Hopkinson, Susan B; DeBiase, Phillip J; Kligys, Kristina; Hamill, Kevin; Jones, Jonathan C R

    2008-09-01

    Recent analyses of collagen, elastin and fibronectin matrix assembly, organization and remodeling have been facilitated by the use of tagged proteins that can be visualized without the need for antibody labeling. Here, we report the generation of C-terminal tagged, full-length and "processed" (alpha3DeltaLG4-5) human alpha3 as well as C-terminal tagged, full-length human beta3 laminin subunits in adenoviral vectors. Human epidermal keratinocytes (HEKs) and human bronchial epithelial (BEP2D) cells, which assemble laminin-332-rich matrices, as well as primary rat lung alveolar type II (ATII) cells, which elaborate a fibrous network rich in laminin-311, were infected with adenovirus encoding the tagged human laminin subunits. In HEKs and BEP2D cells, tagged, full-length alpha3, alpha3DeltaLG4-5 and beta3 laminin subunits incorporate into arrays of matrix organized into patterns that are comparable to those observed when such cells are stained using laminin-332 subunit antibody probes. Moreover, HEKs and BEP2Ds move over these tagged, laminin-332-rich matrix arrays. We have also used the tagged beta3 laminin subunit-containing matrices to demonstrate that assembled laminin-332 arrays influence laminin matrix secretion and/or assembly. In the case of rat ATII cells, although tagged alpha3 laminin subunits are not detected in the matrix of rat ATII cells infected with virus encoding full-length human alpha3 laminin protein, processed human alpha3 laminin subunits are incorporated into an extracellular fibrous array. We discuss how these novel laminin reagents can be used to study the organization, processing and assembly of laminin matrices and how they provide new insights into the potential functional importance of laminin fragments.

  2. Laminin and the malaria parasite's journey through the mosquito midgut.

    Science.gov (United States)

    Arrighi, Romanico B G; Lycett, Gareth; Mahairaki, Vassiliki; Siden-Kiamos, Inga; Louis, Christos

    2005-07-01

    During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.

  3. Enzyme-amplified protein micorarray and a fluidic renewable surface fluorescence immunoassay for botulinum neurotoxin detection using high-affinity recombinant antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Warner, Marvin G.; Dockendorff, Brian P.; Anheier, Norman C.; Lou, Jianlong; Marks, James D.; Smith, Leonard A.; Feldhaus, Michael J.; Grate, Jay W.; Bruckner-Lea, Cindy J.

    2006-06-16

    With the use of high-affinity recombinant monoclonal antibodies against the receptor binding domain of botulinum neurotoxin A (BoNT/A), two separate immunoassay platforms were developed for either the sensitive or the rapid detection of BoNT/A. An enzyme-linked immunosorbent assay (ELISA) microarray was developed for the specific and sensitive detection of BoNT in buffer and clinical fluids. This assay has the sensitivity to detect BoNT in diverse samples down to 14 fM (1.4 pg/mL). Using the recombinant monoclonal antibodies, a renewable surface microcolumn sensor was developed for the rapid detection of BoNT/A in an automated fluidic system. While the ELISA microarray assay, because of its sensitivity, offers an alternative to the mouse bioassay, the renewable surface assay has potential as a rapid screening assay for the analysis of complex environmental samples.

  4. Gene Structure and Expression of the High-affinity Nitrate Transport System in Rice Roots

    Institute of Scientific and Technical Information of China (English)

    Chao Cai; Jun-Yi Wang; Yong-Guan Zhu; Qi-Rong Shen; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2008-01-01

    Rice has a preference for uptake of ammonium over nitrate and can use ammonium-N efficiently. Consequently, transporters mediating ammonium uptake have been extensively studied, but nitrate transporters have been largely ignored. Recently,some reports have shown that rice also has high capacity to acquire nitrate from growth medium, so understanding the nitrate transport system in rice roots is very important for improving N use efficiency in rice. The present study identified four putative NRT2 and two putative NAR2 genes that encode components of the high-affinity nitrate transport system (HATS) in the rice (Oryza sativa L. subsp, japonica cv. Nipponbare) genome. OsNRT2.1 and OsNRT2.2 share an identical coding region sequence, and their deduced proteins are closely related to those from monocotyledonous plants. The two NAR2 proteins are closely related to those from mono-cotyledonous plants as well. However, OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 proteins. Relative quantitative reverse tranecdption-polymerase chain reaction analysis showed that all of the six genes were rapidly upregulated and then downregulated in the roots of N-starved rice plants after they were re-supplied with 0.2 mM nitrate, but the response to nitrate differed among gene members.The results from phylogenetic tree, gene structure and expression analysis implied the divergent roles for the individual members of the rice NRT2 and NAR2 families. High-affinity nitrate influx rates associated with nitrate induction in rice roots were investigated and were found to be regulated by external pH. Compared with the nitrate influx rates at pH 6.5, alkaline pH (pH 8.0) inhibited nitrate Influx, and acidic pH (pH 5.0) enhanced the nitrate influx In I h nitrate induced roots, but did not significantly affect that in 4 to 8 h nitrate induced roots.

  5. Laminin degradation by plasmin regulates long-term potentiation.

    Science.gov (United States)

    Nakagami, Y; Abe, K; Nishiyama, N; Matsuki, N

    2000-03-01

    Plasmin is converted from its zymogen plasminogen by tissue type or urokinase type plasminogen activator (PA) and degrades many components of the extracellular matrix (ECM). To explore the possibility that the PA-plasmin system regulates synaptic plasticity, we investigated the effect of plasmin on degradation of ECM and synaptic plasticity by using organotypic hippocampal cultures. High-frequency stimulation produced long-term potentiation (LTP) in control slices, whereas the potentiation was induced but not maintained in slices pretreated with 100 nM plasmin for 6 hr. The baseline synaptic responses were not affected by pretreatment with plasmin. The impairment of LTP maintenance was not observed in slices pretreated with 100 nM plasmin for 6 hr, washed, and then cultured for 24-48 hr in the absence of plasmin. To identify substrates of plasmin, the expression of three major components of ECM, laminin, fibronectin, and type IV collagen, was investigated by immunofluorescence imaging. The three ECM components were widely distributed in the hippocampus, and only laminin was degraded by plasmin pretreatment. The expression level of laminin returned to normal levels when the slices were cultured for 24-48 hr after washout of plasmin. Furthermore, preincubation with anti-laminin antibodies prevented both the degradation of laminin and the impairment of LTP maintenance by plasmin. These results suggest that the laminin-mediated cell-ECM interaction may be necessary for the maintenance of LTP.

  6. Tityus serrulatus venom contains two classes of toxins. Tityus gamma toxin is a new tool with a very high affinity for studying the Na+ channel.

    Science.gov (United States)

    Barhanin, J; Giglio, J R; Léopold, P; Schmid, A; Sampaio, S V; Lazdunski, M

    1982-11-10

    The interaction of TiTx gamma, the major toxin in the venom of the scorpion Tityus serrulatus, with its receptor in excitable membranes was studied with the use of 125I-TiTx gamma. This derivative retains biological activity, and its specific binding to both brain synaptosomes and electroplaque membranes from Electrophorus electricus is characterized by a dissociation constant equal to that of the native toxin-receptor complex, about 2 to 5 pM. This very high affinity results mainly from a very slow rate of dissociation, equivalent to a half-life longer than 10 h at 4 degrees C. There is a 1:1 stoichiometry between TiTx gamma binding and tetrodotoxin binding to the membranes, but neither tetrodotoxin nor any of 7 other neurotoxins that are representative of 4 different classes of effectors of the Na+ channel interfere with TiTx gamma binding. Similarly, local anesthetics and other molecules that affect other types of ionic channels or neurotransmitter receptors have no effect on TiTx gamma binding. However, toxin II from Centruroides suffusus suffusus does compete with TiTx gamma, though its affinity for the receptor is much lower. Since the Centruroides toxin II is known to affect Na+ channel function, these two scorpion toxins must be put into a fifth class of Na+ channel effectors.

  7. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    Science.gov (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  8. New synthesis and tritium labeling of a selective ligand for studying high-affinity γ-hydroxybutyrate (GHB) binding sites.

    Science.gov (United States)

    Vogensen, Stine B; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H F; Clausen, Rasmus P

    2013-10-24

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [(3)H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity, and we demonstrate in vivo brain penetration. In vitro characterization of [(3)H]-1 binding shows high specificity to the high-affinity GHB binding sites.

  9. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide....... Screening of 1 against different CNS targets establishes a high selectivity, and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites....

  10. Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High Affinity Ligand for STING

    Science.gov (United States)

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J.

    2013-01-01

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2′-OH of GMP and 5′-phosphate of AMP, and the other between 3′-OH of AMP and 5′-phosphate of GMP. This molecule, termed 2′3′-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2′3′-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation. PMID:23747010

  11. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  12. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination.

    Directory of Open Access Journals (Sweden)

    Kaval Kaur

    Full Text Available Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE. Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.

  13. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination

    Science.gov (United States)

    Kaur, Kaval; Zheng, Nai-Ying; Smith, Kenneth; Huang, Min; Li, Lie; Pauli, Noel T.; Henry Dunand, Carole J.; Lee, Jane-Hwei; Morrissey, Michael; Wu, Yixuan; Joachims, Michelle L.; Munroe, Melissa E.; Lau, Denise; Qu, Xinyan; Krammer, Florian; Wrammert, Jens; Palese, Peter; Ahmed, Rafi; James, Judith A.; Wilson, Patrick C.

    2015-01-01

    Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus. PMID:25951191

  14. Peptide array-based characterization and design of ZnO-high affinity peptides.

    Science.gov (United States)

    Okochi, Mina; Sugita, Tomoya; Furusawa, Seiji; Umetsu, Mitsuo; Adschiri, Tadafumi; Honda, Hiroyuki

    2010-08-15

    Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self-assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO-binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO-binding peptide, 125 spot-synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO-binding sites were found as 6-mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles.

  15. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin.

    Science.gov (United States)

    Shulman, Ziv; Shinder, Vera; Klein, Eugenia; Grabovsky, Valentin; Yeger, Orna; Geron, Erez; Montresor, Alessio; Bolomini-Vittori, Matteo; Feigelson, Sara W; Kirchhausen, Tomas; Laudanna, Carlo; Shakhar, Guy; Alon, Ronen

    2009-03-20

    Endothelial chemokines are instrumental for integrin-mediated lymphocyte adhesion and transendothelial migration (TEM). By dissecting how chemokines trigger lymphocyte integrins to support shear-resistant motility on and across cytokine-stimulated endothelial barriers, we found a critical role for high-affinity (HA) LFA-1 integrin in lymphocyte crawling on activated endothelium. Endothelial-presented chemokines triggered HA-LFA-1 and adhesive filopodia at numerous submicron dots scattered underneath crawling lymphocytes. Shear forces applied to endothelial-bound lymphocytes dramatically enhanced filopodia density underneath crawling lymphocytes. A fraction of the adhesive filopodia invaded the endothelial cells prior to and during TEM and extended large subluminal leading edge containing dots of HA-LFA-1 occupied by subluminal ICAM-1. Memory T cells generated more frequent invasive filopodia and transmigrated more rapidly than their naive counterparts. We propose that shear forces exerted on HA-LFA-1 trigger adhesive and invasive filopodia at apical endothelial surfaces and thereby promote lymphocyte crawling and probing for TEM sites.

  16. High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion.

    Science.gov (United States)

    Anderson, Cyrus A; Jones, Amanda R; Briggs, Ellen M; Novitsky, Eric J; Kuykendall, Darrell W; Sottos, Nancy R; Zimmerman, Steven C

    2013-05-15

    Adhesion phenomena are essential to many biological processes and to synthetic adhesives and manufactured coatings and composites. Supramolecular interactions are often implicated in various adhesion mechanisms. Recently, supramolecular building blocks, such as synthetic DNA base-pair mimics, have drawn attention in the context of molecular recognition, self-assembly, and supramolecular polymers. These reversible, hydrogen-bonding interactions have been studied extensively for their adhesive capabilities at the nano- and microscale, however, much less is known about their utility for practical adhesion in macroscopic systems. Herein, we report the preparation and evaluation of supramolecular coupling agents based on high-affinity, high-fidelity quadruple hydrogen-bonding units (e.g., DAN·DeUG, Kassoc = 10(8) M(-1) in chloroform). Macroscopic adhesion between polystyrene films and glass surfaces modified with 2,7-diamidonaphthyridine (DAN) and ureido-7-deazaguanine (DeUG) units was evaluated by mechanical testing. Structure-property relationships indicate that the designed supramolecular interaction at the nanoscale plays a key role in the observed macroscopic adhesive response. Experiments probing reversible adhesion or self-healing properties of bulk samples indicate that significant recovery of initial strength can be realized after failure but that the designed noncovalent interaction does not lead to healing during the process of adhesion loss.

  17. Dynein and dynactin leverage their bivalent character to form a high-affinity interaction.

    Directory of Open Access Journals (Sweden)

    Amanda E Siglin

    Full Text Available Cytoplasmic dynein and dynactin participate in retrograde transport of organelles, checkpoint signaling and cell division. The principal subunits that mediate this interaction are the dynein intermediate chain (IC and the dynactin p150(Glued; however, the interface and mechanism that regulates this interaction remains poorly defined. Herein, we use multiple methods to show the N-terminus of mammalian dynein IC, residues 10-44, is sufficient for binding p150(Glued. Consistent with this mapping, monoclonal antibodies that antagonize the dynein-dynactin interaction also bind to this region of the IC. Furthermore, double and triple alanine point mutations spanning residues 6 to 19 in the yeast IC homolog, Pac11, produce significant defects in spindle positioning. Using the same methods we show residues 381 to 530 of p150(Glued form a minimal fragment that binds to the dynein IC. Sedimentation equilibrium experiments indicate that these individual fragments are predominantly monomeric, but admixtures of the IC and p150(Glued fragments produce a 2:2 complex. This tetrameric complex is sensitive to salt, temperature and pH, suggesting that the binding is dominated by electrostatic interactions. Finally, circular dichroism (CD experiments indicate that the N-terminus of the IC is disordered and becomes ordered upon binding p150(Glued. Taken together, the data indicate that the dynein-dynactin interaction proceeds through a disorder-to-order transition, leveraging its bivalent-bivalent character to form a high affinity, but readily reversible interaction.

  18. High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid

    Science.gov (United States)

    Vernhes, Emeline; Renouard, Madalena; Gilquin, Bernard; Cuniasse, Philippe; Durand, Dominique; England, Patrick; Hoos, Sylviane; Huet, Alexis; Conway, James F.; Glukhov, Anatoly; Ksenzenko, Vladimir; Jacquet, Eric; Nhiri, Naïma; Zinn-Justin, Sophie; Boulanger, Pascale

    2017-01-01

    Bacteriophage capsids constitute icosahedral shells of exceptional stability that protect the viral genome. Many capsids display on their surface decoration proteins whose structure and function remain largely unknown. The decoration protein pb10 of phage T5 binds at the centre of the 120 hexamers formed by the major capsid protein. Here we determined the 3D structure of pb10 and investigated its capsid-binding properties using NMR, SAXS, cryoEM and SPR. Pb10 consists of an α-helical capsid-binding domain and an Ig-like domain exposed to the solvent. It binds to the T5 capsid with a remarkably high affinity and its binding kinetics is characterized by a very slow dissociation rate. We propose that the conformational exchange events observed in the capsid-binding domain enable rearrangements upon binding that contribute to the quasi-irreversibility of the pb10-capsid interaction. Moreover we show that pb10 binding is a highly cooperative process, which favours immediate rebinding of newly dissociated pb10 to the 120 hexamers of the capsid protein. In extreme conditions, pb10 protects the phage from releasing its genome. We conclude that pb10 may function to reinforce the capsid thus favouring phage survival in harsh environments. PMID:28165000

  19. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    Energy Technology Data Exchange (ETDEWEB)

    Raza, H.; Chung, W.L.; Mukhtar, H. (Department of Dermatology, University Hospitals of Cleveland, Case Western Reserve University, OH (USA))

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  20. Conformation-Dependent High-Affinity Potent Ricin-Neutralizing Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Wei-Gang Hu

    2013-01-01

    Full Text Available Ricin is a potential biothreat agent with no approved antidote available for ricin poisoning. The aim of this study was to develop potent antibody-based antiricin antidotes. Four strong ricin resistant hybridoma clones secreting antiricin monoclonal antibodies (mAbs were developed. All four mAbs are bound to conformational epitopes of ricin toxin B (RTB with high affinity (KD values from 2.55 to 36.27 nM. RTB not only triggers cellular uptake of ricin, but also facilitates transport of the ricin toxin A (RTA from the endoplasmic reticulum to the cytosol, where RTA exerts its toxic activity. The four mAbs were found to have potent ricin-neutralizing capacities and synergistic effects among them as determined by an in vitro neutralization assay. In vivo protection assay demonstrated that all four mAbs had strong efficacy against ricin challenges. D9 was found to be exceptionally effective. Intraperitoneal (i.p. administration of D9, at a dose of 5 μg, 6 weeks before or 6 hours after an i.p. challenge with 5 × LD50 of ricin was able to protect or rescue 100% of the mice, indicating that mAb D9 is an excellent candidate to be developed as a potent antidote against ricin poisoning for both prophylactic and therapeutic purposes.

  1. Molecular evolutionary analysis of the high-affinity K+ transporter gene family in angiosperms.

    Science.gov (United States)

    Yang, P; Hua, C; Zhou, F; Zhang, B-J; Cai, X-N; Chen, Q-Z; Wang, R-L

    2016-07-15

    The high-affinity K(+) transporter (HKT) family comprises a group of multifunctional cation transporters widely distributed in organisms ranging from Bacteria to Eukarya. In angiosperms, the HKT family consists primarily of nine types, whose evolutionary relationships are not fully understood. The available sequences from 31 plant species were used to perform a comprehensive evolutionary analysis, including an examination of selection pressure and estimating phylogenetic tree and gene duplication events. Our results show that a gene duplication in the HKT1;5/HKT1;4 cluster might have led to the divergence of the HKT1;5 and HKT1;4 subfamilies. Additionally, maximum likelihood analysis revealed that the HKT family has undergone a strong purifying selection. An analysis of the amino acids provided strong statistical evidence for a functional divergence between subfamilies 1 and 2. Our study was the first to provide evidence of this functional divergence between these two subfamilies. Analysis of co-evolution in HKT identified 25 co-evolved groups. These findings expanded our understanding of the evolutionary mechanisms driving functional diversification of HKT proteins.

  2. High affinity germinal center B cells are actively selected into the plasma cell compartment.

    Science.gov (United States)

    Phan, Tri Giang; Paus, Didrik; Chan, Tyani D; Turner, Marian L; Nutt, Stephen L; Basten, Antony; Brink, Robert

    2006-10-30

    A hallmark of T cell-dependent immune responses is the progressive increase in the ability of serum antibodies to bind antigen and provide immune protection. Affinity maturation of the antibody response is thought to be connected with the preferential survival of germinal centre (GC) B cells that have acquired increased affinity for antigen via somatic hypermutation of their immunoglobulin genes. However, the mechanisms that drive affinity maturation remain obscure because of the difficulty in tracking the affinity-based selection of GC B cells and their differentiation into plasma cells. We describe a powerful new model that allows these processes to be followed as they occur in vivo. In contrast to evidence from in vitro systems, responding GC B cells do not undergo plasma cell differentiation stochastically. Rather, only GC B cells that have acquired high affinity for the immunizing antigen form plasma cells. Affinity maturation is therefore driven by a tightly controlled mechanism that ensures only antibodies with the greatest possibility of neutralizing foreign antigen are produced. Because the body can sustain only limited numbers of plasma cells, this "quality control" over plasma cell differentiation is likely critical for establishing effective humoral immunity.

  3. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins

    Directory of Open Access Journals (Sweden)

    Sergi Puig

    2014-01-01

    Full Text Available Copper (Cu is an essential micronutrient for all eukaryotes because it participates as a redox active cofactor in multiple biological processes, including mitochondrial respiration, photosynthesis, oxidative stress protection, and iron (Fe transport. In eukaryotic cells, Cu transport toward the cytoplasm is mediated by the conserved CTR/COPT family of high-affinity Cu transport proteins. This outlook paper reviews the contribution of our research group to the characterization of the function played by the Arabidopsis thaliana COPT1–6 family of proteins in plant Cu homeostasis. Our studies indicate that the different tissue specificity, Cu-regulated expression, and subcellular localization dictate COPT-specialized contribution to plant Cu transport and distribution. By characterizing lack-of-function Arabidopsis mutant lines, we conclude that COPT1 mediates root Cu acquisition, COPT6 facilitates shoot Cu distribution, and COPT5 mobilizes Cu from storage organelles. Furthermore, our work with copt2 mutant and COPT-overexpressing plants has also uncovered Cu connections with Fe homeostasis and the circadian clock, respectively. Future studies on the interaction between COPT transporters and other components of the Cu homeostasis network will improve our knowledge of plant Cu acquisition, distribution, regulation, and utilization by Cu-proteins.

  4. PREPARATION AND CHARACTERISTICS OF ANIONIC POLYACRYLAMIDES CONTAINING DIRECT DYE WITH A HIGH AFFINITY FOR CELLULOSE

    Directory of Open Access Journals (Sweden)

    Shingo Yokota

    2009-05-01

    Full Text Available Direct dye with a high affinity for cellulose substrate was utilized as a cellulose anchor to promote retention of paper strengthening additives under various conditions associated with the wet end of a paper machine. Direct Red 28 (DR was covalently linked to anionic polyacrylamide (A-PAM via a condensation reaction using water-soluble carbodiimide. The DR-conjugated A-PAM (DR-A-PAM demonstrated good retention efficiency, resulting in strength enhancement of handsheets. Anionic trash showed no interference with the performance of DR-A-PAM in the wet end, while the additive performance was sensitive to calcium ions. Surface plasmon resonance analysis gave useful information on the cellulose-anchoring ability of DR-A-PAM. Dye molecules were irreversibly adsorbed onto the cellulose substrate under aqueous conditions, while A-PAM possessed no significant affinity for cellulose. These results suggest that anionic DR moieties in DR-A-PAM molecules served as a cellulose-anchor, possibly due to multiple CH-π interaction between hydrophobic face of cellulose substrate and π-conjugated system of dye molecules. Such a unique interaction of direct dye and cellulose provides a new insight into the wet end system, and does not depend on conventional electrostatic attraction.

  5. Alumina-zirconia composites functionalized with laminin-1 and laminin-5 for dentistry: effect of protein adsorption on cellular response.

    Science.gov (United States)

    Vallée, A; Faga, M G; Mussano, F; Catalano, F; Tolosano, E; Carossa, S; Altruda, F; Martra, G

    2014-02-01

    The present paper describes a study on laminin interaction with the surface of two alumina-zirconia composites with different percentages of ZrO2, both with submicrometric grain size. As major molecules within the basement membrane (BM), laminins are important protein fragments for epithelial cell adhesion and migration. On the other hand, alumina-zirconia composites are very attractive materials for dental applications due to their esthetic and mechanical properties. X-Ray photoelectron spectroscopy and atomic force microscopy were used to study the adsorption of two types of laminin, laminin-1 (Ln-1) and laminin-5 (Ln-5), onto the ceramics surfaces. The in vitro cell response was determined by intracellular phosphorylation of major kinases. Ceramics samples functionalized with laminins showed better cellular activation than untreated specimens; furthermore, cellular activation was found to be greater for the composite with higher percentage in zirconia when functionalized with Ln-5, whereas the adsorption of Ln-1 resulted in a greater activation for the alumina-rich oxide.

  6. The physiological significance of HKT1, a Na{sup +} - coupled high affinity K{sup +} transporter in `Triticum aestivum`

    Energy Technology Data Exchange (ETDEWEB)

    Box, S.; Schachtman, D.P. [University of Adelaide, SA (Australia). Department of Botany

    1997-12-31

    Full text: Several mechanisms for high affinity K{sup +} uptake by higher plants have been proposed:-an ATP-energised K:+ pump, a K{sup +}/H{sup +} antiport and a H{sup +}coupled carrier. Recently, a Na{sup +}--coupled high affinity K{sup +} transporter, HKT1, was isolated from wheat roots. Whilst Na{sup +}K{sup +} symports have been described in charophyte algae, the cloning of HKT1 from wheat is the first, evidence that this type d transport mechanism may function in higher plants. Is the activity of HKT1 an important mechanism involved in K{sup +} acquisition by wheat? The aim of this study was to assess the physiological significance of Na{sup +}- coupled high affinity K{sup +} uptake in T. aestivum. To determine whether HKT1 plays a significant role in wheat growth, we measured the dry weights and ion content of plants grown in a range of [K{sup +}], with and without Na{sup +}. To directly assess the activity of Na{sup +}- coupled K{sup +} transport, {sup 86}Rb{sup +} and {sup 22}Na{sup +} flux analyses were performed on the elongation zones and whole roots of intact seedlings, expressing a high affinity K{sup +} uptake system. The results of these growth and tracer flux studies will be discussed in relation to the expression of the gene encoding HKT1 in T. aestivum

  7. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter

    DEFF Research Database (Denmark)

    Zhang, Peng; Jørgensen, Trine Nygaard; Løland, Claus Juul

    2013-01-01

    A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino)prop...

  8. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casas, C; Aldea, M; Espinet, C; Gallego, C; Gil, R; Herrero, E

    1997-06-15

    High-affinity iron uptake in Saccharomyces cerevisiae involves the extracytoplasmic reduction of ferric ions by FRE1 and FRE2 reductases. Ferrous ions are then transported across the plasma membrane through the FET3 oxidase-FTR1 permease complex. Expression of the high-affinity iron uptake genes is induced upon iron deprivation. We demonstrate that AFT1 is differentially involved in such regulation. Aft1 protein is required for maintaining detectable non-induced level of FET3 expression and for induction of FRE2 in iron starvation conditions. On the contrary, FRE1 mRNA induction is normal in the absence of Aft1, although the existence of AFT1 point mutations causing constitutive expression of FRE1 (Yamaguchi-Iwai et al., EMBO J. 14: 1231-1239, 1995) indicates that Aft1 may also participate in FRE1 expression in a dispensable way. The alterations in the basal levels of expression of the high-affinity iron uptake genes may explain why the AFT1 mutant is unable to grow on respirable carbon sources. Overexpression of AFT1 leads to growth arrest of the G1 stage of the cell cycle. Aft1 is a transcriptional activator that would be part of the different transcriptional complexes interacting with the promoter of the high-affinity iron uptake genes. Aft1 displays phosphorylation modifications depending on the growth stage of the cells, and it might link induction of genes for iron uptake to other metabolically dominant requirement for cell growth.

  9. High-affinity accumulation of a maytansinoid in cells via weak tubulin interaction.

    Science.gov (United States)

    Goldmacher, Victor S; Audette, Charlene A; Guan, Yinghua; Sidhom, Eriene-Heidi; Shah, Jagesh V; Whiteman, Kathleen R; Kovtun, Yelena V

    2015-01-01

    The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4-6 × 10(7) copies). Efflux of 3[H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death.

  10. Devices and approaches for generating specific high-affinity nucleic acid aptamers

    Science.gov (United States)

    Szeto, Kylan; Craighead, Harold G.

    2014-09-01

    High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized in vitro to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.

  11. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James (NIH); (Kansas); (HWMRI)

    2010-04-07

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 {angstrom} cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the 'off-target' effect of a small molecule is mediated by an MAI mechanism.

  12. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    Directory of Open Access Journals (Sweden)

    Klaus B Nissen

    Full Text Available PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  13. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids.

    Science.gov (United States)

    Lyakhova, Tatyana A; Knight, Jefferson D

    2014-09-01

    Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.

  14. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    Science.gov (United States)

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James

    2010-01-01

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 (Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 Å cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the “off-target” effect of a small molecule is mediated by an MAI mechanism. PMID:20194791

  15. In silico analysis of high affinity potassium transporter (HKT) isoforms in different plants.

    Science.gov (United States)

    Zamani Babgohari, Mahbobeh; Ebrahimie, Esmaeil; Niazi, Ali

    2014-01-01

    High affinity potassium transporters (HKTs) are located in the plasma membrane of the vessels and have significant influence on salt tolerance in some plants. They exclude Na(+) from the parenchyma cells to reduce Na(+) concentration. Despite many studies, the underlying regulatory mechanisms and the exact functions of HKTs within different genomic backgrounds are relatively unknown. In this study, various bioinformatics techniques, including promoter analysis, identification of HKT-surrounding genes, and construction of gene networks, were applied to investigate the HKT regulatory mechanism. Promoter analysis showed that rice HKTs carry ABA response elements. Additionally, jasmonic acid response elements were detected on promoter region of TmHKT1;5. In silico synteny highlighted several unknown and new loci near rice, Arabidopsis thaliana and Physcomitrella patent HKTs, which may play a significant role in salt stress tolerance in concert with HKTs. Gene network prediction unravelled that crosstalk between jasmonate and ethylene reduces AtHKT1;1 expression. Furthermore, antiporter and transferase proteins were found in AtHKT1;1 gene network. Interestingly, regulatory elements on the promoter region of HKT in wild genotype (TmHKT1;5) were more frequent and variable than the ones in cultivated wheat (TaHKT1;5) which provides the possibility of rapid response and better understanding of environmental conditions for wild genotype. Detecting ABA and jasmonic acid response elements on promoter regions of HKTs provide valuable clues on underlying regulatory mechanisms of HKTs. In silico synteny and pathway discovery indicated several candidates which act in concert with HKTs in stress condition. We highlighted different arrangement of regulatory elements on promoter region of wild wheat (TmHKT1;5) compared to bread wheat (TaHKT1;5) in this study.

  16. Keratinocyte-targeted expression of human laminin γ2 rescues skin blistering and early lethality of laminin γ2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Tracy L Adair-Kirk

    Full Text Available Laminin-332 is a heterotrimeric basement membrane component comprised of the α3, ß3, and γ2 laminin chains. Laminin-332 modulates epithelial cell processes, such as adhesion, migration, and differentiation and is prominent in many embryonic and adult tissues. In skin, laminin-332 is secreted by keratinocytes and is a key component of hemidesmosomes connecting the keratinocytes to the underlying dermis. In mice, lack of expression of any of the three Laminin-332 chains result in impaired anchorage and detachment of the epidermis, similar to that seen in human junctional epidermolysis bullosa, and death occurs within a few days after birth. To bypass the early lethality of laminin-332 deficiency caused by the knockout of the mouse laminin γ2 chain, we expressed a dox-controllable human laminin γ2 transgene under a keratinocyte-specific promoter on the laminin γ2 (Lamc2 knockout background. These mice appear similar to their wild-type littermates, do not develop skin blisters, are fertile, and survive >1.5 years. Immunofluorescence analyses of the skin showed that human laminin γ2 colocalized with mouse laminin α3 and ß3 in the basement membrane zone underlying the epidermis. Furthermore, the presence of "humanized" laminin-332 in the epidermal basement membrane zone rescued the alterations in the deposition of hemidesmosomal components, such as plectin, collagen type XVII/BP180, and integrin α6 and ß4 chains, seen in conventional Lamc2 knockout mice, leading to restored formation of hemidesmosomes. These mice will be a valuable tool for studies of organs deficient in laminin-332 and the role of laminin-332 in skin, including wound healing.

  17. Taking Advantage: High Affinity B cells in the Germinal Center Have Lower Death Rates, But Similar Rates of Division Compared to Low Affinity Cells1

    OpenAIRE

    2009-01-01

    B lymphocytes producing high affinity antibodies (Abs) are critical for protection from extracellular pathogens, such as bacteria and parasites. The process by which high affinity B cells are selected during the immune response has never been elucidated. Though it has been shown that high affinity cells directly outcompete low affinity cells in the germinal center (GC)2, whether there are also intrinsic differences between these cells has not been addressed. It could be that higher affinity c...

  18. Structures of the ultra-high-affinity protein–protein complexes of pyocins S2 and AP41 and their cognate immunity proteins from pseudomonas aeruginosa

    OpenAIRE

    Joshi, Amar; Grinter, Rhys; Josts, Inokentijs; Chen, Sabrina; Wojdyla, Justyna; Lowe, Edward; Kaminska, Renata; Sharp, Connor; McCaughey, Laura; Roszak, Aleksander; Cogdell, Richard; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2015-01-01

    How ultra-high-affinity protein–protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase–Im interaction is a model system for the study of high-affinity protein–protein interactions. However, despit...

  19. Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells.

    Science.gov (United States)

    Das, Lipsa; Anderson, Todd A; Gard, Jaime M C; Sroka, Isis C; Strautman, Stephanie R; Nagle, Raymond B; Morrissey, Colm; Knudsen, Beatrice S; Cress, Anne E

    2017-05-01

    Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modeling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (kactual ) of 3.25 min(-1) , threefold faster than α3 integrin (1.0 min(-1) ), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min(-1) ), and significantly slower than the unrelated transferrin receptor (CD71) (15 min(-1) ). Silencing of α3 integrin protein expression in DU145, PC3, and PC3B1 cells resulted in up to a 1.71-fold increase in kactual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8-fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the kactual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. J. Cell. Biochem. 118: 1038-1049, 2017. © 2016 Wiley Periodicals, Inc.

  20. Laminin-111: a potential therapeutic agent for Duchenne muscular dystrophy.

    Science.gov (United States)

    Goudenege, Sébastien; Lamarre, Yann; Dumont, Nicolas; Rousseau, Joël; Frenette, Jérôme; Skuk, Daniel; Tremblay, Jacques P

    2010-12-01

    Duchenne muscular dystrophy (DMD) still needs effective treatments, and myoblast transplantation (MT) is considered as an approach to repair damaged skeletal muscles. DMD is due to the complete loss of dystrophin from muscles. The lack of link between the contracting apparatus and the extracellular matrix leads to frequent damage to the sarcolemma triggering muscle fiber necrosis. Laminins are major proteins in the extracellular matrix. Laminin-111 is normally present in skeletal and cardiac muscles in mice and humans but only during embryonic development. In this study, we showed that intramuscular injection of laminin-111 increased muscle strength and resistance in mdx mice. We also used laminin-111 as a coadjuvant in MT, and we showed this protein decreased considerably the repetitive cycles of degeneration, inflammatory reaction, and regeneration. Moreover, MT is significantly improved. To explain the improvement, we confirmed with the same myoblast cell batch that laminin-111 improves proliferation and drastically increases migration in vitro. These results are extremely important because DMD could be treated only by the injection of a recombinant protein, a simple and safe therapy to prevent loss of muscle function. Moreover, the improvement in MT would be significant to treat the muscles of DMD patients who are already weak.

  1. Laminins containing the beta2 chain modulate the precise organization of CNS synapses.

    Science.gov (United States)

    Egles, Christophe; Claudepierre, Thomas; Manglapus, Mary K; Champliaud, Marie-France; Brunken, William J; Hunter, Dale D

    2007-03-01

    Synapses are formed and stabilized by concerted interactions of pre-, intra-, and post-synaptic components; however, the precise nature of the intrasynaptic components in the CNS remains obscure. Potential intrasynaptic components include extracellular matrix molecules such as laminins; here, we isolate beta2-containing laminins, including perhaps laminins 13 (alpha3beta2gamma3) and 14 (alpha4beta2gamma3), from CNS synaptosomes suggesting a role for these molecules in synaptic organization. Indeed, hippocampal synapses that form in vivo in the absence of these laminins are malformed at the ultrastructural level and this malformation is replicated in synapses formed in vitro, where laminins are provided largely by the post-synaptic neuron. This recapitulation of the in vivo function of laminins in vitro suggests that the malformations are a direct consequence of the removal of laminins from the synapse. Together, these results support a role for neuronal laminins in the structural integrity of central synapses.

  2. Enhancing neural stem cell response to SDF-1α gradients through hyaluronic acid-laminin hydrogels.

    Science.gov (United States)

    Addington, C P; Heffernan, J M; Millar-Haskell, C S; Tucker, E W; Sirianni, R W; Stabenfeldt, S E

    2015-12-01

    Traumatic brain injury (TBI) initiates an expansive biochemical insult that is largely responsible for the long-term dysfunction associated with TBI; however, current clinical treatments fall short of addressing these underlying sequelae. Pre-clinical investigations have used stem cell transplantation with moderate success, but are plagued by staggeringly low survival and engraftment rates (2-4%). As such, providing cell transplants with the means to better dynamically respond to injury-related signals within the transplant microenvironment may afford improved transplantation survival and engraftment rates. The chemokine stromal cell-derived factor-1α (SDF-1α) is a potent chemotactic signal that is readily present after TBI. In this study, we sought to develop a transplantation vehicle to ultimately enhance the responsiveness of neural transplants to injury-induced SDF-1α. Specifically, we hypothesize that a hyaluronic acid (HA) and laminin (Lm) hydrogel would promote 1. upregulated expression of the SDF-1α receptor CXCR4 in neural progenitor/stem cells (NPSCs) and 2. enhanced NPSC migration in response to SDF-1α gradients. We demonstrated successful development of a HA-Lm hydrogel and utilized standard protein and cellular assays to probe NPSC CXCR4 expression and NPSC chemotactic migration. The findings demonstrated that NPSCs significantly increased CXCR4 expression after 48 h of culture on the HA-Lm gel in a manner critically dependent on both HA and laminin. Moreover, the HA-Lm hydrogel significantly increased NPSC chemotactic migration in response to SDF-1α at 48 h, an effect that was critically dependent on HA, laminin and the SDF-1α gradient. Therefore, this hydrogel serves to 1. prime NPSCs for the injury microenvironment and 2. provide the appropriate infrastructure to support migration into the surrounding tissue, equipping cells with the tools to more effectively respond to the injury microenvironment.

  3. A bambusuril macrocycle that binds anions in water with high affinity and selectivity.

    Science.gov (United States)

    Yawer, Mirza Arfan; Havel, Vaclav; Sindelar, Vladimir

    2015-01-02

    Synthetic receptors that function in water are important for the qualitative and quantitative detection of anions, which may act as pollutants in the environment or play important roles in biological processes. Neutral receptors are particularly appealing because they are often more selective than positively charged receptors; however, their affinity towards anions in pure water is only in range of 1-10(3)  L mol(-1) . The anion-templated synthesis of a water-soluble bambusuril derivative is shown to be an outstanding receptor for various inorganic anions in pure water, with association constants of up to 10(7)  L mol(-1) . Furthermore, the macrocycle discriminates between anions with unprecedented selectivity (up to 500 000-fold). We anticipate that the combination of remarkable affinity and selectivity of this macrocycle will enable the efficient detection and isolation of diverse anions in aqueous solutions, which is not possible with current supramolecular systems.

  4. Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells

    Directory of Open Access Journals (Sweden)

    Mirick Gary

    2009-04-01

    Full Text Available Abstract Background A variety of arginine-rich peptide sequences similar to those found in viral proteins have been conjugated to other molecules to facilitate their transport into the cytoplasm and nucleus of targeted cells. The selective high affinity ligand (SHAL (DvLPBaPPP2LLDo, which was developed to bind only to cells expressing HLA-DR10, has been conjugated to one of these peptide transduction domains, hexa-arginine, to assess the impact of the peptide on SHAL uptake and internalization by Raji cells, a B-cell lymphoma. Results An analog of the SHAL (DvLPBaPPP2LLDo containing a hexa-arginine peptide was created by adding six D-arginine residues sequentially to a lysine inserted in the SHAL's linker. SHAL binding, internalization and residualization by Raji cells expressing HLA-DR10 were examined using whole cell binding assays and confocal microscopy. Raji cells were observed to bind two fold more 111In-labeled hexa-arginine SHAL analog than Raji cells treated with the parent SHAL. Three fold more hexa-arginine SHAL remained associated with the Raji cells after washing, suggesting that the peptide also enhanced residualization of the 111In transported into cells. Confocal microscopy showed both SHALs localized in the cytoplasm of Raji cells, whereas a fraction of the hexa-arginine SHAL localized in the nucleus. Conclusion The incorporation of a hexa-D-arginine peptide into the linker of the SHAL (DvLPBaPPP2LLDo enhanced both the uptake and residualization of the SHAL analog by Raji cells. In contrast to the abundant cell surface binding observed with Lym-1 antibody, the majority of (DvLPBaPPP2LArg6AcLLDo and the parent SHAL were internalized. Some of the internalized hexa-arginine SHAL analog was also associated with the nucleus. These results demonstrate that several important SHAL properties, including uptake, internalization, retention and possibly intracellular distribution, can be enhanced or modified by conjugating the SHALs to a

  5. Structural characterization of a high affinity mononuclear site in the copper(II)-α-synuclein complex.

    Science.gov (United States)

    Bortolus, Marco; Bisaglia, Marco; Zoleo, Alfonso; Fittipaldi, Maria; Benfatto, Maurizio; Bubacco, Luigi; Maniero, Anna Lisa

    2010-12-29

    Human α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein. In this work, we investigated the high affinity binding mode of truncated aS (1-99) (aS99) with Cu(II), in a stoichiometric ratio, to elucidate the residues involved in the binding site and the role of copper ions in the protein oligomerization. We used Electron Paramagnetic Resonance spectroscopy on the Cu(II)-aS99 complex at pH 6.5, performing both multifrequency continuous wave experiments and pulsed experiments at X-band. The comparison of 9.5 and 95 GHz data showed that at this pH only one binding mode is present. To identify the nature of the ligands, we performed Electron Spin Echo Envelope Modulation, Hyperfine Sublevel Correlation Spectroscopy, and pulsed Davies Electron-Nuclear Double Resonance (Davies-ENDOR) experiments. We determined that the EPR parameters are typical of a type-II copper complex, in a slightly distorted square planar geometry. Combining the results from the different pulsed techniques, we obtained that the equatorial coordination is {N(Im), N(-), H(2)O, O}, where N(im) is the imino nitrogen of His50, N(-) a deprotonated amido backbone nitrogen that we attribute to His50, H(2)O an exchangeable water molecule, and O an unidentified oxygen ligand. Moreover, we propose that the free amino terminus (Met1) participates in the complex as an axial ligand. The MXAN analysis of the XAS k-edge absorption data allowed us to independently validate the structural features proposed on the basis of the magnetic parameters of the Cu(II)-aS99 complex and then to further refine the quality of the proposed structural model.

  6. Inhibition of the high affinity choline transporter enhances hyperalgesia in a rat model of chronic pancreatitis.

    Science.gov (United States)

    Luo, Dan; Chen, Lei; Yu, Baoping

    2017-06-17

    The mechanisms underlying chronic and persistent pain associated with chronic pancreatitis (CP) are not completely understood. The cholinergic system is one of the major neural pathways of the pancreas. Meanwhile, this system plays an important role in chronic pain. We hypothesized that the high affinity choline transporter CHT1, which is a main determinant of cholinergic signaling capacity, is involved in regulating pain associated with CP. CP was induced by intraductal injection of 2% trinitrobenzene sulfonic acid (TNBS) in Sprague-Dawley rats. Pathological examination was used to evaluate the inflammation of pancreas and hyperalgesia was assessed by measuring the number of withdrawal events evoked by application of the von Frey filaments. CHT1 expression in pancreas-specific dorsal root ganglia (DRGs) was assessed through immunohistochemistry and western blotting. We also intraperitoneally injected the rats with hemicholinium-3 (HC-3, a specific inhibitor of CHT1). Then we observed its effects on the visceral hyperalgesia induced by CP, and on the acetylcholine (ACh) levels in the DRGs through using an acetylcholine/acetylcholinesterase assay kit. Signs of CP were observed 21 days after TNBS injection. Rats subjected to TNBS infusions had increased sensitivity to mechanical stimulation of the abdomen. CHT1-immunoreactive cells were increased in the DRGs from rats with CP compared to naive or sham rats. Western blots indicated that CHT1 expression was significantly up-regulated in TNBS-treated rats when compared to naive or sham-operated rats at all time points following surgery. In the TNBS group, CHT1 expression was higher on day 28 than on day 7 or day 14, but there was no statistical difference in CHT1 expression on day 28 vs. day 21. Treatment with HC-3 (60 μg/kg, 80 μg/kg, or 100 μg/kg) markedly enhanced the mechanical hyperalgesia and reduced ACh levels in a dose-dependent manner in rats with CP. We report for the first time that CHT1 may be involved

  7. Laminin in the anterior pituitary gland of the rat. Laminin in the gonadotrophic cells correlates with their functional state

    DEFF Research Database (Denmark)

    Holck, S; Albrechtsen, R; Wewer, U M

    1987-01-01

    The distribution pattern of laminin in the rat anterior pituitary gland under physiological and hormonally altered conditions was studied immunohistochemically. Intense immunoreactivity of the capillaries and of the basement membranes surrounding parenchymal cells was found. Five to 10% of the pa......The distribution pattern of laminin in the rat anterior pituitary gland under physiological and hormonally altered conditions was studied immunohistochemically. Intense immunoreactivity of the capillaries and of the basement membranes surrounding parenchymal cells was found. Five to 10...... laminin and tubulin. After treatment with estrogen, which is known to suppress the function of the gonadotrophic cells, virtually no cytoplasmic laminin was found. Ultrastructurally, the number of light bodies in the gonadotrophic cells diminished significantly, from approximately 3 to 8 per cell to 0...... to 1 per cell in a given section. In contrast, after castration, the number of laminin positive cells increased to a number above that found in the normal adult male rat, and the number of light bodies increased two to four times. Based on these results, it appears that the presence of cytoplasmic...

  8. The functions of laminins: lessons from in vivo studies

    DEFF Research Database (Denmark)

    Ryan, M C; Christiano, A M; Engvall, E;

    1996-01-01

    This series of three short reviews is an attempt to summarize our current knowledge of the in vivo tests of hypotheses of laminin functions. The structures of the laminins have been thoroughly reviewed recently (P. Ekblom and R. Timpl, in press), and I will not attempt to repeat this information...... here. Instead, I will focus on the recent evidence gathered from gene knock out experiments in mice and from naturally occurring human and mouse gene mutations. The most obvious lesson from the above studies--other than demonstrating the importance of laminins in general--is that the structural...... normal-other than the anchoring complex itself. The pathology observed in the newborn is believed to be due to the frictional trauma of birth, with the expectation that the function of the fetal skin is normal in utero. The Herlitz epidermolysis bullosa phenotype is obvious immediately at birth...

  9. Laminin-based Nanomaterials for Peripheral Nerve Tissue Engineering

    Science.gov (United States)

    Neal, Rebekah Anne

    Peripheral nerve transection occurs commonly in traumatic injury, causing motor and sensory deficits distal to the site of injury. One option for surgical repair is the nerve conduit. Conduits currently on the market are hollow tubes into which the nerve ends are sutured. Although these conduits fill the gap, they often fail due to the slow rate of regeneration over long gaps. To facilitate increased speed of regeneration and greater potential for functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in peripheral nerve regeneration. In this dissertation, I fabricated laminin-1 and laminin-polycaprolactone (PCL) blend nanofibers that mimic the geometry and functionality of the peripheral nerve basement membrane. These fibers resist hydration in aqueous media and require no harsh chemical crosslinkers. Adhesion and differentiation of both neuron-like and neuroprogenitor cells is improved on laminin nanofibrous meshes over two-dimensional laminin substrates. Blend meshes with varying laminin content were characterized for composition, tensile properties, degradation rates, and bioactivity in terms of cell attachment and axonal elongation. I have established that 10% (wt) laminin content is sufficient to retain the significant neurite-promoting effects of laminin critical in peripheral nerve repair. In addition, I utilized modified collector plate design to manipulate electric field gradients during electrospinning for the fabrication of aligned nanofibers. These aligned substrates provide enhanced directional guidance cues to the regenerating axons. Finally, I replicated the clinical problem of peripheral nerve transection using a rat tibial nerve defect model for conduit implantation. When the lumens of conduits were filled with nanofiber meshes of varying laminin content and alignment, I observed significant recovery of sensory and motor function over six weeks. This recovery was

  10. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.; Canoll, P.D.; Musacchio, J.M. (New York Univ. Medical Center, New York, NY (USA))

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.

  11. PREPARATION OF IMMUNOGEN AND PURIFICA¬TION OF HIGH AFFINITY AND SPECIFICITY FAB FRAGMENT OF ANTI-DIGOXIN POLYCLONAL ANTIBODIES

    Directory of Open Access Journals (Sweden)

    M. Pour-Amir

    2000-01-01

    Full Text Available In this study we produced and purified a high titer of specific and high affin¬ity Fab fragments of anti-digoxin antibody. Immunization of rabbits with a conju¬gate of the cardiac glycoside digoxin, coupled by a periodate oxidation method to the amino group of lysine in bovine serum albumin resulted in the production of this type of high titer digoxin-specific antibodies with exceptionally high affinity (109 L/mol and specificity in immune response. Increase in titer was found in steps of purification ending up with the highest titer for Fab fragment to be at 1.75 ug of purified Fab (for 50% binding of I25I-digoxin. High specificity for antigenic determinants of the steroid nucleus of digoxin was observed such that much less cross-reaction with digoxin (2.3% and no cross-reaction with ouabaine, estradiol, Cortisol, progesterone and testosterone were detected.

  12. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    Science.gov (United States)

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications.

  13. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA

    DEFF Research Database (Denmark)

    Klein, A B; Bay, T; Villumsen, I S

    2016-01-01

    analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations......, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high...... density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse...

  14. Immunotherapy Expands and Maintains the Function of High-Affinity Tumor-Infiltrating CD8 T Cells In Situ.

    Science.gov (United States)

    Moran, Amy E; Polesso, Fanny; Weinberg, Andrew D

    2016-09-15

    Cancer cells harbor high-affinity tumor-associated Ags capable of eliciting potent antitumor T cell responses, yet detecting these polyclonal T cells is challenging. Therefore, surrogate markers of T cell activation such as CD69, CD44, and programmed death-1 (PD-1) have been used. We report in this study that in mice, expression of activation markers including PD-1 is insufficient in the tumor microenvironment to identify tumor Ag-specific T cells. Using the Nur77GFP T cell affinity reporter mouse, we highlight that PD-1 expression can be induced independent of TCR ligation within the tumor. Given this, we characterized the utility of the Nur77GFP model system in elucidating mechanisms of action of immunotherapies independent of PD-1 expression. Coexpression of Nur77GFP and OX40 identifies a polyclonal population of high-affinity tumor-associated Ag-specific CD8(+) T cells, which produce more IFN-γ in situ than OX40 negative and doubles in quantity with anti-OX40 and anti-CTLA4 mAb therapy but not with anti-PD-1 or programmed death ligand-1. Moreover, expansion of these high-affinity CD8 T cells prolongs survival of tumor-bearing animals. Upon chronic stimulation in tumors and after adoptive cell therapy, CD8 TCR signaling and Nur77GFP induction is impaired, and tumors progress. However, this can be reversed and overall survival significantly enhanced after adoptive cell therapy with agonist OX40 immunotherapy. Therefore, we propose that OX40 agonist immunotherapy can maintain functional TCR signaling of chronically stimulated tumor-resident CD8 T cells, thereby increasing the frequency of cytotoxic, high-affinity, tumor-associated Ag-specific cells.

  15. High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes

    Science.gov (United States)

    Ventura, Luisa; González, Ramón; Ramón, Daniel; MacCabe, Andrew P.

    2014-01-01

    Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation. PMID:24751997

  16. High-affinity glucose transport in Aspergillus nidulans is mediated by the products of two related but differentially expressed genes.

    Directory of Open Access Journals (Sweden)

    Josep V Forment

    Full Text Available Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation.

  17. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture.

    Science.gov (United States)

    Hongisto, Heidi; Vuoristo, Sanna; Mikhailova, Alexandra; Suuronen, Riitta; Virtanen, Ismo; Otonkoski, Timo; Skottman, Heli

    2012-01-01

    Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Prospects for prostate cancer imaging and therapy using high-affinity TRPM8 activators.

    NARCIS (Netherlands)

    Beck, B.; Bidaux, G.; Bavencoffe, A.; Lemonnier, L.; Thebault, S.C.; Shuba, Y.; Barrit, G.; Skryma, R.; Prevarskaya, N.

    2007-01-01

    One of the best-studied temperature-gated channels is transient receptor potential melastatin 8 (TRPM8), which is activated by cold and cooling agents, such as menthol. Besides inducing a cooling sensation in sensory neurons, TRPM8 channel activation also plays a major role in physiopathology. Indee

  19. Laminin alpha2 chain-deficient congenital muscular dystrophy: variable epitope expression in severe and mild cases

    DEFF Research Database (Denmark)

    Cohn, R D; Herrmann, R; Sorokin, L;

    1998-01-01

    To characterize the expression of distinct fragments of laminin alpha2 chain in patients with partial laminin alpha2 chain deficiency and variable clinical severity.......To characterize the expression of distinct fragments of laminin alpha2 chain in patients with partial laminin alpha2 chain deficiency and variable clinical severity....

  20. Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146).

    Science.gov (United States)

    Ishikawa, Taichi; Wondimu, Zenebech; Oikawa, Yuko; Gentilcore, Giusy; Kiessling, Rolf; Egyhazi Brage, Suzanne; Hansson, Johan; Patarroyo, Manuel

    2014-09-01

    α4-laminins, such as laminins 411 and 421, are mesenchymal laminins expressed by blood and lymphatic vessels and some tumor cells. Laminin-411 promotes migration of leukocytes and endothelial cells, but the effect of this laminin and laminin-421 on tumor cells is poorly understood. In the present study, we demonstrate that laminin-411 and, to a greater extent, laminin-421 significantly promote migration of tumor cells originated from melanomas, gliomas and different carcinomas via α6β1 integrin. In solid-phase binding assays, both laminins similarly bound α6β1 integrin but only laminin-421, among several laminin isoforms, readily bound MCAM (CD146), a cell-surface adhesion molecule strongly associated with tumor progression. Accordingly, a function-blocking mAb to MCAM inhibited tumor cell migration on laminin-421 but not on laminins 411 or 521. In tumor tissues, melanoma cells co-expressed MCAM, laminin α4, β1, β2 and γ1 chains, and integrin α6 and β1 chains. The present data highlight the novel role of α4-laminins in tumor cell migration and identify laminin-421 as a primary ligand for MCAM and a putative mediator of tumor invasion and metastasis.

  1. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Sixt, M; Engelhardt, B; Pausch, F; Hallmann, R; Wendler, O; Sorokin, L M

    2001-05-28

    An active involvement of blood-brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune encephalomyelitis (EAE). Endothelial basement membranes contained laminin 8 (alpha4beta1gamma1) and/or 10 (alpha5beta1gamma1) and their expression was influenced by proinflammatory cytokines or angiostatic agents. T cells emigrating into the CNS during EAE encountered two biochemically distinct basement membranes, the endothelial (containing laminins 8 and 10) and the parenchymal (containing laminins 1 and 2) basement membranes. However, inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin 8, whereas in the presence of laminin 10 no infiltration was detectable. In vitro assays using encephalitogenic T cell lines revealed adhesion to laminins 8 and 10, whereas binding to laminins 1 and 2 could not be induced. Downregulation of integrin alpha6 on cerebral endothelium at sites of T cell infiltration, plus a high turnover of laminin 8 at these sites, suggested two possible roles for laminin 8 in the endothelial basement membrane: one at the level of the endothelial cells resulting in reduced adhesion and, thereby, increased penetrability of the monolayer; and secondly at the level of the T cells providing direct signals to the transmigrating cells.

  2. Ecdysteroid receptors in Drosophila melanogaster adult females

    Science.gov (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  3. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... and in their basement membranes suggesting, but not proving, that both types of cells have ability to synthesize laminin. Production of laminin and the presence of laminin-containing basement membrane material may be important for the biological behavior of the yolk sac tumor. This tumor will also be a useful source...

  4. Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle

    DEFF Research Database (Denmark)

    Wewer, U M; Thornell, L E; Loechel, F

    1997-01-01

    to the laminin beta 2 chain. We found that laminin beta 1 chain was detected at all times during development from 10 weeks of gestation. Laminin beta 2 chain was first detected in 15 to 22-week-old fetal skeletal muscle as distinct focal immunoreactivity in the sarcolemmal basement membrane area of some......We have investigated the distribution of the laminin beta 2 chain (previously s-laminin) in human fetal and adult skeletal muscle and compared it to the distribution of laminin beta 1. Immunoblotting and transfection assays were used to characterize a panel of monoclonal and polyclonal antibodies...... results demonstrate a prominent extrasynaptic localization of laminin beta 2 in the human muscle, suggesting that it may have an important function in the sarcolemmal basement membrane....

  5. Changes of laminin beta 2 chain expression in congenital muscular dystrophy

    DEFF Research Database (Denmark)

    Cohn, R D; Herrmann, R; Wewer, U M;

    1997-01-01

    We studied the distribution of laminin beta 2 chain in the skeletal muscle basement membrane of 16 patients with congenital muscular dystrophy (CMD) by immunohistochemistry. A dramatic reduction in the laminin beta 2 staining was observed in four patients with classical merosin-negative CMD....... A moderate reduction of laminin beta 2 labelling was observed in four patients with partial merosin deficiency and two patients with merosin-positive CMD. Two patients with merosin-positive CMD had no apparent changes in the expression of laminin beta 2. In three patients and one fetus diagnosed as Walker......-Warburg syndrome (WWS) the laminin beta 2 pattern was similar to normal controls. We conclude that a primary deficiency in the laminin alpha 2 chain may lead to a vast or moderate reduction in the laminin beta 2 chain in the skeletal muscle membrane....

  6. Carcinoma-associated perisinusoidal laminin may signal tumour cell metastasis to the liver

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R

    1992-01-01

    The perisinusoidal space of the liver shows extensive modulation of the extracellular matrix in response to various pathological conditions. We studied perisinusoidal laminin expression immunohistochemically using polyclonal and monoclonal antibodies in 110 human liver specimens obtained at autopsy...... in cancer patients without liver metastasis. In 3 cases of leukaemia sinusoids were laminin negative. In cirrhosis and chronic passive congestion there was, as expected, laminin immunoreactivity in the perisinusoidal space. The results obtained using polyclonal antibodies against laminin were confirmed...... using chain-specific monoclonal antibodies against B2 laminin. In an ex vivo assay, viable tumour cells (Panc-1 and clone A) were found to bind with remarkable specificity to frozen sections of liver tissue containing perisinusoidal laminin as opposed to liver tissues without laminin. We suggest...

  7. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj

    2006-01-01

    . However, a relationship between the AS status and FcepsilonRI has not been investigated. We aimed to characterize basophils from AS by looking at histamine release (HR) (sensitivity and reactivity) and the FcepsilonRI molecule, and compare it with nonatopic (NA) or allergic (A) persons....

  8. Specific high-affinity binding sites for a synthetic gliadin heptapeptide of human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Payan, D.G.; Horvath, K.; Graf, L.

    1987-03-23

    The synthetic peptide containing residues 43-49 of ..cap alpha..-gliadin, the major protein component of gluten, has previously been shown to inhibit the production of lymphokine activities by mononuclear leukocytes. The authors demonstrate using radiolabeled ..cap alpha..-gliadin(43-49) that human peripheral blood lymphocytes express approximately 20,000-25,000 surface receptors for this peptide, with a dissociation constant (K/sub D/) of 20 nM. In addition, binding is inhibited by naloxone and an enkephalin analog, thus confirming the functional correlate which demonstrates inhibition by these agents of ..cap alpha..-gliadin(43-49) functional effects. Furthermore, B-lymphocytes bind specifically a greater amount of (/sup 125/I)..cap alpha..-gliadin(43-49) than T-lymphocytes. The lymphocyte ..cap alpha..-gliadin(43-49) receptor may play an important role in mediating the immunological response to ..cap alpha..-gliadin. 16 references, 4 figures.

  9. Laminins Expression in Children with Mesangial Proliferative Glomerulonephritis

    Institute of Scientific and Technical Information of China (English)

    赵非; 黄松明; 陈荣华; 费莉; 郭梅; 黄文彦

    2003-01-01

    Objective: To investigate the role of laminins in the pathogensis of mesangial praliferalive glomeruonephritis (MsPGN ) in children. Methods: Eighteen renal biopsy specimens of MsPGN and 6 normal kidneys were studied by means of immunohistochemistry and in situ hybridization.Results: ① Protein of α1 chain and γ1 chain of laminin increased around the segments of proliferative mesangium. Increased expression of α2 and βl proteins was found in the segments with mesangial proliferation whereas the β2 chain expression decreased in these areas. ② The mRNA expression of αl,α2,β1 and γ1 increased to different degrees in glomeeruli with mesangial proliferation. But no difference was detected among Mild, Moderate, and Severe MsPGN. Conclusion:①The quantitative and qualitative alterations of laminin chains’ distribution were found in the measngial proliferative glomeruli. The proliferative mesougial cells were the origins of abnormal accumulation and expression of laminins.③ These changes may be the basis of the progresses of MsPGN.

  10. CORRELATION BETWEEN LAMININ AND CATHEPSIN D EXPRESSIONS IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    CHEN Feng; CHEN Wei-hong; ZHENG Jian-ming; HUANG Ling

    2006-01-01

    Objective: Laminin is a major glycoprotein component of basement membrance which is an important barrier to tumor cells which must be breeched before metastatic spread can occur. Proteolytic enzymes play an important role in mediating the passage of cancer cells through the basement membrane (BM) and extracellular matrix. We compared the patterns of laminin and cathepsin D (CD) expressions in a range of benign and malignant breast lesions to better understand the process of tumor progression. Methods: One hundred and sixty-two cases of breast samples comprising 18 fibroadeomas, 22 cases of fibrocystic disease, 96 cases of invasive ductal carcinoma and 26 carcinomas with intraductal components were evaluated for laminin and cathepsin D expressions by immunohistochemical staining. Results: The prevalence of CD positivity in both neoplastic and stromal cell components were significantly higher in higher histological grade tumors compared to lower grades (P<0.001). Various severity of BM disruption correlated with histological grade of the carcinomas (P<0.001). There was a negative correlation between the laminin expression and CD presence. Conclusion: In the process of cancer cell invasion and metastasis, the basement membrane is disrupted by proteinase secreted by cancer cells, especially by stroma cells of cancer.

  11. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra

    DEFF Research Database (Denmark)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D

    2010-01-01

    properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new......Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated...... by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore...

  12. Nitrosamines as nicotinic receptor ligands

    OpenAIRE

    Schuller, Hildegard M

    2007-01-01

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (α7nAChR) whereas NNN bound with high affinity to epibatidine-sensi...

  13. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  14. The Laminin 511/521 Binding Site on the Lutheran Blood Group Glycoprotein is Located at theFlexible Junction of Ig Domains 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Mankelow, Tosti J.; Burton, Nicholas; Stedansdottir, Fanney O.; Spring, Frances A.; Parsons, Stephen F.; Pesersen, Jan S.; Oliveira, Cristiano L.P.; Lammie, Donna; Wess, Timothy; Mohandas, Narla; Chasis, Joel A.; Brady, R. Leo; Anstee, David J.

    2007-07-01

    The Lutheran blood group glycoprotein, first discovered on erythrocytes, is widely expressed in human tissues. It is a ligand for the {alpha}5 subunit of Laminin 511/521, an extracellular matrix protein. This interaction may contribute to vasocclusive events that are an important cause of morbidity in sickle cell disease. Using X-ray crystallography, small angle X-ray scattering and site directed mutagenesis we show that the extracellular region of Lutheran forms an extended structure with a distinctive bend between the second and third immunoglobulin-like domains. The linker between domains 2 and 3 appears to be flexible and is a critical determinant in maintaining an overall conformation for Lutheran that is capable of binding to Laminin. Mutagenesis studies indicate that Asp312 of Lutheran and the surrounding cluster of negatively charged residues in this linker region form the Laminin binding site. Unusually, receptor binding is therefore not a function of the domains expected to be furthermost from the plasma membrane. These studies imply that structural flexibility of Lutheran may be essential for its interaction with Laminin and present a novel opportunity for the development of therapeutics for sickle cell disease.

  15. Structure of IL-22 Bound to Its High-Affinity IL-22R1 Chain

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.C.; Logsdon, N.J.; Walter, M.R. (UAB)

    2008-09-29

    IL-22 is an IL-10 family cytokine that initiates innate immune responses against bacterial pathogens and contributes to immune disease. IL-22 biological activity is initiated by binding to a cell-surface complex composed of IL-22R1 and IL-10R2 receptor chains and further regulated by interactions with a soluble binding protein, IL-22BP, which shares sequence similarity with an extracellular region of IL-22R1 (sIL-22R1). IL-22R1 also pairs with the IL-20R2 chain to induce IL-20 and IL-24 signaling. To define the molecular basis of these diverse interactions, we have determined the structure of the IL-22/sIL-22R1 complex. The structure, combined with homology modeling and surface plasmon resonance studies, defines the molecular basis for the distinct affinities and specificities of IL-22 and IL-10 receptor chains that regulate cellular targeting and signal transduction to elicit effective immune responses.

  16. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  17. Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts

    Science.gov (United States)

    Stagg, Amy R.; Fleming, Judith C.; Baker, Meghan A.; Sakamoto, Massayuki; Cohen, Nadine; Neufeld, Ellis J.

    1999-01-01

    We have investigated the cellular pathology of the syndrome called thiamine-responsive megaloblastic anemia (TRMA) with diabetes and deafness. Cultured diploid fibroblasts were grown in thiamine-free medium and dialyzed serum. Normal fibroblasts survived indefinitely without supplemental thiamine, whereas patient cells died in 5–14 days (mean 9.5 days), and heterozygous cells survived for more than 30 days. TRMA fibroblasts were rescued from death with 10–30 nM thiamine (in the range of normal plasma thiamine concentrations). Positive terminal deoxynucleotide transferase–mediated dUTP nick end-labeling (TUNEL) staining suggested that cell death was due to apoptosis. We assessed cellular uptake of [3H]thiamine at submicromolar concentrations. Normal fibroblasts exhibited saturable, high-affinity thiamine uptake (Km 400–550 nM; Vmax 11 pmol/min/106 cells) in addition to a low-affinity unsaturable component. Mutant cells lacked detectable high-affinity uptake. At 30 nM thiamine, the rate of uptake of thiamine by TRMA fibroblasts was 10-fold less than that of wild-type, and cells from obligate heterozygotes had an intermediate phenotype. Transfection of TRMA fibroblasts with the yeast thiamine transporter gene THI10 prevented cell death when cells were grown in the absence of supplemental thiamine. We therefore propose that the primary abnormality in TRMA is absence of a high-affinity thiamine transporter and that low intracellular thiamine concentrations in the mutant cells cause biochemical abnormalities that lead to apoptotic cell death. J. Clin. Invest. 103:723–729 (1999). PMID:10074490

  18. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  19. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA.

    Science.gov (United States)

    Klein, A B; Bay, T; Villumsen, I S; Falk-Petersen, C B; Marek, A; Frølund, B; Clausen, R P; Hansen, H D; Knudsen, G M; Wellendorph, P

    2016-11-01

    GHB (γ-hydroxybutyric acid) is a compound endogenous to mammalian brain with high structural resemblance to GABA. GHB possesses nanomolar-micromolar affinity for a unique population of binding sites, but the exact nature of these remains elusive. In this study we utilized the highly selective GHB analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over the commonly used radioligand (3)H-NCS-382, and thus a very suitable in vitro tool for qualitative and quantitative autoradiography of the GHB high-affinity site.

  20. Tityus gamma toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane.

    Science.gov (United States)

    Barhanin, J; Ildefonse, M; Rougier, O; Sampaio, S V; Giglio, J R; Lazdunski, M

    1984-01-01

    Toxin gamma from the venom of Tityus serrulatus scorpion produces a partial block of the surface Na+ channel in frog muscle. This block occurs with no change in the voltage-dependence or in the kinetics of the remaining surface Na+ current. The partial blockade of Na+ channel activity occurs with no change in tubular Na+ currents nor in twitch tension. The maximum effect of the toxin is attained at concentrations as low as 3 X 10(-10) M. Hyperpolarization to potentials more negative than the resting potential (E = -90 mV) reduces or abolishes the effect of the toxin. Radioiodinated toxin gamma binds to frog muscle membranes with a very high affinity corresponding to a dissociation constant of about 1 X 10(-11) M. Data obtained with both rabbit and frog muscle indicate that toxin gamma is specific for Na+ channels in surface membranes. Toxin gamma does not seem to bind to Na+ channels in T-tubule membranes. The biochemical data are in good agreement with electrophysiological studies and data on contraction. There is one Tityus gamma toxin binding site per tetrodotoxin binding site in surface membranes. Competition experiments have confirmed that Tityus gamma toxin binds to a new toxin receptor site on the Na+ channel structure. This site is the same that the toxin II from Centruroides suffusus binding site, but this toxin has 100 times less affinity for the Na+ channel than Tityus gamma toxin.

  1. Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.

    Science.gov (United States)

    Nallapareddy, Sreedhar R; Sillanpää, Jouko; Ganesh, Vannakambadi K; Höök, Magnus; Murray, Barbara E

    2007-06-01

    Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

  2. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin.

    Science.gov (United States)

    Ryan, Ali J; Chung, Chun-Wa; Curry, Stephen

    2011-04-18

    Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which--in drugs sites 1 and 2 on the protein--are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  3. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    Directory of Open Access Journals (Sweden)

    Chung Chun-wa

    2011-04-01

    Full Text Available Abstract Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA. It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  4. Biomagnetic separation of Salmonella Typhimurium with high affine and specific ligand peptides isolated by phage display technique

    Energy Technology Data Exchange (ETDEWEB)

    Steingroewer, Juliane [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany)]. E-mail: juliane.steingroewer@tu-dresden.de; Bley, Thomas [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany); Bergemann, Christian [Chemicell GmbH, D-10823, Berlin (Germany); Boschke, Elke [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2007-04-15

    Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.

  5. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  6. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET

    DEFF Research Database (Denmark)

    Ettrup, Anders; Palner, Mikael; Gillings, Nic;

    2010-01-01

    PET tracers would, however, enable imaging of the active, high-affinity state of receptors, which may provide a more meaningful assessment of membrane-bound receptors. In this study, we radiolabel the high-affinity 5-HT(2A) receptor agonist 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-[(11)C-OCH(3...

  7. Laminin-database v.2.0: an update on laminins in health and neuromuscular disorders.

    Science.gov (United States)

    Golbert, Daiane C F; Santana-van-Vliet, Eliane; Mundstein, Alex S; Calfo, Vicente; Savino, Wilson; de Vasconcelos, Ana Tereza R

    2014-01-01

    The laminin (LM)-database, hosted at http://www.lm.lncc.br, was published in the NAR database 2011 edition. It was the first database that provided comprehensive information concerning a non-collagenous family of extracellular matrix proteins, the LMs. In its first version, this database contained a large amount of information concerning LMs related to health and disease, with particular emphasis on the haemopoietic system. Users can easily access several tabs for LMs and LM-related molecules, as well as LM nomenclatures and direct links to PubMed. The LM-database version 2.0 integrates data from several publications to achieve a more comprehensive knowledge of LMs in health and disease. The novel features include the addition of two new tabs, 'Neuromuscular Disorders' and 'miRNA--LM Relationship'. More specifically, in this updated version, an expanding set of data has been displayed concerning the role of LMs in neuromuscular and neurodegenerative diseases, as well as the putative involvement of microRNAs. Given the importance of LMs in several biological processes, such as cell adhesion, proliferation, differentiation, migration and cell death, this upgraded version expands for users a panoply of information, regarding complex molecular circuitries that involve LMs in health and disease, including neuromuscular and neurodegenerative disorders.

  8. Molecular cloning and characterization of a cDNA encoding a laminin-binding protein (AhLBP) from Acanthamoeba healyi.

    Science.gov (United States)

    Hong, Yeon-Chul; Lee, Won-Myung; Kong, Hyun-Hee; Jeong, Hae-Jin; Chung, Dong-Il

    2004-01-01

    Adherence of Acanthamoeba to host tissue is believed to be crucial in the establishment of amoebic keratitis or GAE. We have isolated a cDNA from a GAE-causing gymnoamoeba, Acanthamoeba healyi, encoding a protein that binds laminin by screening with a peptide G-specific DNA probe. The cDNA clone (AhLBP) was identified on the basis of sequence homology to the nonintegrin mammalian metastasis-associated 67-kDa laminin receptor (67-LR). The predicted amino acid sequence is 256 residues long with a calculated molecular mass of 28.2kDa and a theoretical pI of 5.48. Southern and Northern blot analyses suggested the gene as a single copy in A. healyi genome and expressed as a single transcript of approximately 1.0kb. Virulent strains of Acanthamoeba revealed higher level of the AhLBP mRNA expression than soil isolates. Specific binding of the purified recombinant protein to laminin was confirmed by sandwich Western blot. The polypeptide encoded by AhLBP shared substantial identity with the acidic class ribosomal proteins involved in protein synthesis. Therefore, the AhLBP may be multifunctional in A. healyi, acting as a laminin-binding molecule but also playing a role in cell division and growth. AhLBP-EGFP fusion protein expressed in A. healyi was localized mainly at the cell membrane and nucleus and at cytoplasm with lesser degree. N-terminal 64 amino acids were important for the localization at the cell membrane. This is the first description of a cDNA encoding a laminin-binding protein from protozoan parasites.

  9. Intermolecular forces and enthalpies in the adhesion of Streptococcus mutans and an antigen I/II-deficient mutant to laminin films.

    Science.gov (United States)

    Busscher, Henk J; van de Belt-Gritter, Betsy; Dijkstra, Rene J B; Norde, Willem; Petersen, Fernanda C; Scheie, Anne A; van der Mei, Henny C

    2007-04-01

    The antigen I/II family of surface proteins is expressed by most oral streptococci, including Streptococcus mutans, and mediates specific adhesion to, among other things, salivary films and extracellular matrix proteins. In this study we showed that antigen I/II-deficient S. mutans isogenic mutant IB03987 was nearly unable to adhere to laminin films under flow conditions due to a lack of specific interactions (0.8 x 10(6) and 1.1 x 10(6) cells cm(-2) at pH 5.8 and 6.8, respectively) compared with parent strain LT11 (21.8 x 10(6) and 26.1 x 10(6) cells cm(-2)). The adhesion of both the parent and mutant strains was slightly greater at pH 6.8 than at pH 5.8. In addition, atomic force microscopy (AFM) experiments demonstrated that the parent strain experienced less repulsion when it approached a laminin film than the mutant experienced. Upon retraction, combined specific and nonspecific adhesion forces were stronger for the parent strain (up to -5.0 and -4.9 nN at pH 5.8 and 6.8, respectively) than for the mutant (up to -1.5 and -2.1 nN), which was able to interact only through nonspecific interactions. Enthalpy was released upon adsorption of laminin to the surface of the parent strain but not upon adsorption of laminin to the surface of IB03987. A comparison of the adhesion forces in AFM with the adhesion forces reported for specific ligand-receptor complexes resulted in the conclusion that the number of antigen I/II binding sites for laminin on S. mutans LT11 is on the order of 6 x 10(4) sites per organism and that the sites are probably arranged along exterior surface structures, as visualized here by immunoelectron microscopy.

  10. Identification of a high-affinity Ca sup 2+ pump associated with endocytotic vesicles in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Milne, J.L.; Coukell, M.B. (York Univ., North York, Ontario (Canada))

    1989-11-01

    In the cellular slime mold Dictyostelium discoideum, changes in free cytosolic Ca{sup 2+} are thought to regulate certain processes during cell aggregation and differentiation. To understand the mechanisms controlling free Ca{sup 2+} levels in this organism, the authors previously isolated and characterized an ATP/Mg{sup 2+}-dependent, high-affinity Ca{sup 2+} pump which appeared to be a component of inside-out plasma membrane vesicles. In this report, they demonstrate that a high-affinity Ca{sup 2+} pump, with properties virtually identical to the isolated pump, can be detected in filipin- or digitonin-permeabilized cells of Dictyostelium. Moreover, Ca{sup 2+}-pumping vesicles, which migrate on Percoll/KCl gradients like the vesicles identified earlier, can be isolated from the permeabilized cells. Results of additional experiments suggest that this intracellular Ca{sup 2+} transporter is associated with a high-capacity non-IP{sub 3}-releasable Ca{sup 2+} store which is generated by endocytosis. A possible role for this store in maintaining Ca{sup 2+} homeostasis in Dictyostelium is discussed.

  11. Identification of a high-affinity monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Zhang, Xian; Sun, Mengjiao; Kang, Yue; Xie, Hui; Wang, Xin; Song, Houhui; Li, Xiaoliang; Fang, Weihuan

    2015-11-01

    Ochratoxin A (OTA) is one of the most commonly occurring mycotoxins produced by some species of Aspergillus and can contaminate cereal and cereal products. A high-affinity anti-OTA monoclonal antibody (mAb) was generated from a hybridoma cell line 2D8 using splenocytes from a BALB/c mouse immunized with synthesized OTA-bovine serum albumin conjugate. The mAb 2D8 is specific with high affinity (3.75 × 10(9) L/M). An indirect competitive ELISA (ic-ELISA) was then developed using this mAb for quantitative determination of OTA in corn and feed samples. Using the optimized conditions, there was good linearity between OTA concentration and competitive inhibition (y = -0.6076x + 0.2441, R(2) = 0.9923) with the working range from 2.4 to 23.6 μg/kg, IC50 at 7.6 μg/kg and lower limit of detection at 1.4 μg/kg. The recovery rates in spiked samples were 91.2-110.3%. Of the 56 corn and feed samples, this ic-ELISA and a commercial kit both found the same 13 samples positive for OTA with good linear correlation between the two methods in OTA quantification (R(2) = 0.9706). We conclude that this ic-ELISA can be used for rapid and quantitative screening of corn and feed samples for the presence of OTA.

  12. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif.

    Science.gov (United States)

    Senchou, V; Weide, R; Carrasco, A; Bouyssou, H; Pont-Lezica, R; Govers, F; Canut, H

    2004-02-01

    The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and plasma membrane. Photoaffinity cross-linking of [125I]-azido-RGD heptapeptide in the presence of purified plasma membrane vesicles of Arabidopsis thaliana led to label incorporation into a single protein with an apparent molecular mass of 80 kDa. Incorporation could be prevented by excess RGD peptides, but also by the IPI-O protein, an RGD-containing protein secreted by the oomycete plant pathogen Phytophthora infestans. Hydrophobic cluster analysis revealed that the RGD motif of IPI-O (positions 53-56) is readily accessible for interactions. Single amino acid mutations in the RGD motif in IPI-O (of Asp56 into Glu or Ala) resulted in the loss of protection of the 80-kDa protein from labelling. Thus, the interaction between the two proteins is mediated through RGD recognition and the 80-kDa RGD-binding protein has the characteristics of a receptor for IPI-O. The IPI-O protein also disrupted cell wall-plasma membrane adhesions in plasmolysed A. thaliana cells, whereas IPI-O proteins mutated in the RGD motif (D56A and D56E) did not.

  13. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo

    National Research Council Canada - National Science Library

    Yu, Channing; Cantor, Alan B; Yang, Haidi; Browne, Carol; Wells, Richard A; Fujiwara, Yuko; Orkin, Stuart H

    2002-01-01

    .... Here we demonstrate that deletion of a high-affinity GATA-binding site in the GATA-1 promoter, an element presumed to mediate positive autoregulation of GATA-1 expression, leads to selective loss...

  14. Megakaryocytic cells synthesize and platelets secrete alpha5-laminins, and the endothelial laminin isoform laminin 10 (alpha5beta1gamma1) strongly promotes adhesion but not activation of platelets.

    Science.gov (United States)

    Nigatu, Ayele; Sime, Wondossen; Gorfu, Gezahegn; Geberhiwot, Tarekegn; Andurén, Ingegerd; Ingerpuu, Sulev; Doi, Masayuki; Tryggvason, Karl; Hjemdahl, Paul; Patarroyo, Manuel

    2006-01-01

    Following vascular injury, basement membrane (BM) components of the blood vessels are exposed to circulating cells and may contribute to hemostasis and/or thrombosis. Laminins 8 (LN-8) (alpha4beta1gamma1) and 10 (LN-10) (alpha5beta1gamma1) are major laminin isoforms of the endothelial BM, and LN-8 is also secreted by activated platelets. In the present study, we demonstrate synthesis of alpha5-laminins LN-10 and LN-11 (alpha5beta2gamma1) by megakaryocytic cells, and intracellular expression of these laminin isoforms in blood platelets. In contrast to platelet LN alpha4 chain that had an apparent molecular weight of 180 kDa and associated mostly to LNbeta1 chain, platelet LNalpha5 consisted of 300/350 kDa polypeptides and associated mainly to LNbeta2. Both alpha4- and alpha5-laminins were secreted by platelets following stimulation. When compared to recombinant human (rh) LN-8, rhLN-10 was much more adhesive to platelets, though adhesion to both proteins was largely mediated via alpha6beta1 integrin. In spite of their adhesive properties, rhLN-8 and rhLN-10 induced neither P-selectin expression nor cell aggregation, two signs of platelet activation. This study demonstrates synthesis/expression of heterotrimeric alpha5-laminins in hematopoietic/blood cells, and provides evidence for the adhesive, but not activating, role of endothelial laminin isoforms in platelet biology.

  15. High molecular weight kininogen binds to laminin--characterization and kinetic analysis

    DEFF Research Database (Denmark)

    Schousboe, Inger; Nystrøm, Birthe

    2009-01-01

    proteins laminin, but not to vitronectin or fibronectin coated on microtiter plates. The binding to laminin was Zn2+ independent. However, at low but not at high concentrations of albumin, Zn2+ increased the affinity for the binding by abolishing an inhibitory effect of Ca2+. Recombinant human kininostatin...... encompassing the amino acid sequence, Arg439-Ser532 but not the endothelial cell binding peptide sequence (His479-His498; HKH20) within kininostatin inhibited the binding of HKa to laminin. This established that the amino acid sequence Arg439-Lys478 in domain 5 of HK is of importance for its binding to laminin....... Extensive proteolytic cleavage of HK and HKa with kallikrein abolished the binding to laminin, releasing a 12 kDa anti-kininostatin reacting peptide. On the basis of these results, we propose that the binding of HK to laminin is a primary event, which secures proper localization of the cleavage products...

  16. Neuroimaging of the serotonin reuptake site requires high-affinity ligands.

    Science.gov (United States)

    Elfving, Betina; Madsen, Jacob; Knudsen, Gitte M

    2007-11-01

    Numerous attempts have been made to develop suitable radiolabeled tracers for positron emission tomography or single photon emission computed tomography imaging of the serotonin transporter (SERT), but most often, negative outcomes are reported. The aim of this study is to define characteristics of a good SERT radioligand and to investigate species differences. We examined seven different selective serotonin reuptake inhibitors (SSRIs) and that except for one all have been previously tested as emission tomography ligands. The outcome of the ligands as emission tomography tracers was compared in relation with receptor density (Bmax) and/or ligand affinity (Kd) in rat and monkey cerebrum and cerebellum (reference region) membranes. [3H]-(S)-Citalopram and [3H]-(+)-McN5652 display statistically significantly lower affinity, whereas [3H]paroxetine displays statistically significantly higher affinity for SERT in monkey cortex when compared with the rat cerebrum. The affinity of [3H]MADAM, [123I]ADAM, and [11C]DASB for SERT obtained with rat cerebrum and monkey cortex are similar. In monkey cortex, Kd and Bmax could not be determined with [3H]fluoxetine. Of the seven SSRIs, [3H]-(S)-citalopram, [3H]MADAM, and [11C]DASB displayed significant specific binding to SERT in monkey cerebellum, with Bmax cortex:cerebellum ratios being 17, 3, and 4, respectively. In rat brain tissue the ratios were 12, 6, and 3, respectively. In conclusion, it can be estimated that imaging of the human SERT in a high-density region requires radioligands with Kd values between 0.03 and a maximum of 0.3 nM (at 37 degrees C). The differential specific cerebellar binding raises the question of the suitability of cerebellum as a reference region for nonspecific binding.

  17. Scaffold-forming and Adhesive Contributions of Synthetic Laminin-binding Proteins to Basement Membrane Assembly.

    Science.gov (United States)

    McKee, Karen K; Capizzi, Stephanie; Yurchenco, Peter D

    2009-03-27

    Laminins that possess three short arms contribute to basement membrane assembly by anchoring to cell surfaces, polymerizing, and binding to nidogen and collagen IV. Although laminins containing the alpha4 and alpha5 subunits are expressed in alpha2-deficient congenital muscular dystrophy, they may be ineffective substitutes because they bind weakly to cell surfaces and/or because they lack the third arm needed for polymerization. We asked whether linker proteins engineered to bind to deficient laminins that provide such missing activities would promote basement membrane assembly in a Schwann cell model. A chimeric fusion protein (alphaLNNd) that adds a short arm terminus to laminin through the nidogen binding locus was generated and compared with the dystrophy-ameliorating protein miniagrin (mAgrin) that binds to the laminin coiled-coil dystroglycan and sulfatides. alphaLNNd was found to mediate laminin binding to collagen IV, to bind to galactosyl sulfatide, and to selectively convert alpha-short arm deletion-mutant laminins LmDeltaalphaLN and LmDeltaalphaLN-L4b into polymerizing laminins. This protein enabled polymerization-deficient laminin but not an adhesion-deficient laminin lacking LG domains (LmDeltaLG) to assemble an extracellular matrix on Schwann cell surfaces. mAgrin, on the other hand, enabled LmDeltaLG to form an extracellular matrix on cell surfaces without increasing accumulation of non-polymerizing laminins. These gain-of-function studies reveal distinct polymerization and anchorage contributions to basement membrane assembly in which the three different LN domains mediate the former, and the LG domains provide primary anchorage with secondary contributions from the alphaLN domain. These findings may be relevant for an understanding of the pathogenesis and treatment of laminin deficiency states.

  18. Biological activities of the homologous loop regions in the laminin α chain LG modules.

    Science.gov (United States)

    Katagiri, Fumihiko; Hara, Toshihiro; Yamada, Yuji; Urushibata, Shunsuke; Hozumi, Kentaro; Kikkawa, Yamato; Nomizu, Motoyoshi

    2014-06-10

    Each laminin α chain (α1-α5 chains) has chain-specific diverse biological functions. The C-terminal globular domain of the α chain consists of five laminin-like globular (LG1-5) modules and plays a critical role in biological activities. The LG modules consist of a 14-stranded β-sheet (A-N) sandwich structure. Previously, we described the chain-specific biological activities of the loop regions between the E and F strands in the LG4 modules using five homologous peptides (G4EF1-G4EF5). Here, we further analyze the biological activities of the E-F strands loop regions in the rest of LG modules. We designed 20 homologous peptides (approximately 20 amino acid length), and 17 soluble peptides were used for the cell attachment assay. Thirteen peptides promoted cell attachment activity with different cell morphologies. Cell attachment to peptides G1EF1, G1EF2, G2EF1, G3EF4, and G5EF4 was inhibited by heparin, and peptides G1EF1, G1EF2, and G2EF1 specifically bound to syndecan-overexpressing cells. Cell attachment to peptides G2EF3, G3EF1, G3EF3, G5EF1, G5EF3, and G5EF5 was inhibited EDTA. Further, cell attachment to peptides G3EF3, G5EF1, and G5EF5 was inhibited by both anti-integrin α2 and β1 antibodies, whereas cell attachment to peptide G5EF3 was inhibited by only anti-integrin β1 antibody. Cell attachment to peptides G1EF4, G3EF4, and G5EF4 was inhibited by both heparin and EDTA and was not inhibited by anti-integrin antibodies. The active peptide sequence alignments suggest that the syndecan-binding peptides contain a "basic amino acid (BAA)-Gly-BAA" motif in the middle of the molecule and that the integrin-binding peptides contain an "acidic amino acid (AAA)"-Gly-BAA motif. Core-switched peptide analyses suggested that the "BAA-Gly-BAA" motif is critical for binding to syndecans and that the "AAA-Gly-BAA" motif has potential to recognize integrins. These findings are useful for understanding chain-specific biological activities of laminins and to evaluate

  19. Selection and design of high affinity DNA ligands for mutant single-chain derivatives of the bacteriophage 434 repressor

    Institute of Scientific and Technical Information of China (English)

    LIANG; Tiebing

    2001-01-01

    ., 1996, 255: 373-386.[13]Kim, J. -S., Pabo, C. O., Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants, Proc. Natl. Acad. Sci. USA, 1998, 95: 2812-2817.[14]Wu, H., Yang, W. -P., BarbasIII, C. F., Building zinc fingers by selection: toward a therapeutic application, Proc. Natl. Acad. Sci. USA, 1995, 92: 344-348.[15]Wang, B. S., Pabo, C. O., Dimerization of zinc fingers mediated by peptides evolved in vitro from random sequences, Proc. Natl. Acad. Sci. USA, 1999, 96: 9568-9573.[16]Choo, Y., Sánchez-García, I., Klug, A., In vivo repression by a site-specific DNA-binding protein designed against an on-cogenic sequence, Nature, 1994, 372: 642-645.[17]Wolfe, S. A., Greisman, H. A., Ramm, E. I. et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code, J. Mol. Biol., 1999, 285: 1917-1934.[18]Chen, J. -Q., Pongor, S., Simoncsits, A., Recognition of DNA by single-chain derivatives of the phage 434 repressor: high affinity binding depends on both the contacted and non-contacted base pairs, Nucleic Acids Research, 1997, 25: 2047-2054.[19]Simoncsits, A., Tj?rnhammar, M. -L., Wang, S. -L. et al., Isolation of altered specificity mutants of the single-chain 434 repressor that recognize asymmetric DNA sequences containing the TTAA and TTAC subsites, Nucleic Acids Research, 1999, 27: 3474-3480.[20]Zhou, Y. -H., Busby, S., Ebright, R. H., Identification of the functional subunit of a dimeric transcription activator protein by use of oriented heterodimers, Cell, 1993, 73: 375-379.[21]Studier, F. W., Rosenberg, A. H., Dunn, J. J. et al., Use of T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol., 1990, 185: 60-89.[22]Simoncsits, A., Bristulf, J., Tj?rnhammar, M. -L. et al., Deletion mutants of human interleukin 1? with significantly re-duced agonist properties: search for agonist/ antagonist switch in ligands to the interleukin 1

  20. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Martin Pook

    Full Text Available Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA. We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

  1. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Pook, Martin; Teino, Indrek; Kallas, Ade; Maimets, Toivo; Ingerpuu, Sulev; Jaks, Viljar

    2015-01-01

    Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

  2. The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain.

    Science.gov (United States)

    Ryndak, Michelle B; Wang, Shuishu; Smith, Issar; Rodriguez, G Marcela

    2010-02-01

    Iron is an essential nutrient not freely available to microorganisms infecting mammals. To overcome iron deficiency, bacteria have evolved various strategies including the synthesis and secretion of high-affinity iron chelators known as siderophores. The siderophores produced and secreted by Mycobacterium tuberculosis, exomycobactins, compete for iron with host iron-binding proteins and, together with the iron-regulated ABC transporter IrtAB, are required for the survival of M. tuberculosis in iron deficient conditions and for normal replication in macrophages and in mice. This study further characterizes the role of IrtAB in M. tuberculosis iron acquisition. Our results demonstrate a role for IrtAB in iron import and show that the amino terminus domain of IrtA is a flavin-adenine dinucleotide-binding domain essential for iron acquisition. These results suggest a model in which the amino terminus of IrtA functions to couple iron transport and assimilation.

  3. Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions.

    Science.gov (United States)

    Himmel, Mirko; Ritter, Anett; Rothemund, Sven; Pauling, Björg V; Rottner, Klemens; Gingras, Alexandre R; Ziegler, Wolfgang H

    2009-05-15

    In cell-extracellular matrix junctions (focal adhesions), the cytoskeletal protein talin is central to the connection of integrins to the actin cytoskeleton. Talin is thought to mediate this connection via its two integrin, (at least) three actin, and several vinculin binding sites. The binding sites are cryptic in the head-to-rod autoinhibited cytoplasmic form of the protein and require (stepwise) conformational activation. This activation process, however, remains poorly understood, and there are contradictory models with respect to the determinants of adhesion site localization. Here, we report turnover rates and protein-protein interactions in a range of talin rod domain constructs varying in helix bundle structure. We conclude that several bundles of the C terminus cooperate to regulate targeting and concomitantly tailor high affinity interactions of the talin rod in cell adhesions. Intrinsic control of ligand binding activities is essential for the coordination of adhesion site function of talin.

  4. The occurrence and production of avidin: a new conception of the high-affinity biotin-binding protein.

    Science.gov (United States)

    Elo, H A; Korpela, J

    1984-01-01

    The production of avidin, a high-affinity biotin-binding egg-white protein, is not restricted to the avian, amphibian and reptilian oviducts. In the acute phase of inflammation, avidin is synthesized and secreted by various injured tissues in the domestic fowl, both male and female. Also in other avian species and a lizard, injured tissues produce an avidin-like biotin-binding factor. The non-oviductal production of avidin in domestic fowl has a great variety of inducers, for example acute inflammation caused by mechanical or thermal tissue injury, septic bacterial infection and (toxic) drugs, and even retrovirus-induced cell transformation. In culture, chicken embryo fibroblasts and yolk sac macrophages synthesize and secrete avidin. Besides the albumen, avidin may act as an antibacterial protein also in the tissues.

  5. Peptide-based protein capture agents with high affinity, selectivity, and stability as antibody replacements in biodetection assays

    Science.gov (United States)

    Coppock, Matthew B.; Farrow, Blake; Warner, Candice; Finch, Amethist S.; Lai, Bert; Sarkes, Deborah A.; Heath, James R.; Stratis-Cullum, Dimitra

    2014-05-01

    Current biodetection assays that employ monoclonal antibodies as primary capture agents exhibit limited fieldability, shelf life, and performance due to batch-to-batch production variability and restricted thermal stability. In order to improve upon the detection of biological threats in fieldable assays and systems for the Army, we are investigating protein catalyzed capture (PCC) agents as drop-in replacements for the existing antibody technology through iterative in situ click chemistry. The PCC agent oligopeptides are developed against known protein epitopes and can be mass produced using robotic methods. In this work, a PCC agent under development will be discussed. The performance, including affinity, selectivity, and stability of the capture agent technology, is analyzed by immunoprecipitation, western blotting, and ELISA experiments. The oligopeptide demonstrates superb selectivity coupled with high affinity through multi-ligand design, and improved thermal, chemical, and biochemical stability due to non-natural amino acid PCC agent design.

  6. A High-affinity Activator of G551D-CFTR Chloride Channel Identified By High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lu; HE Cheng-yan; LIU Yan-li; ZHOU Hong-lan; ZHOU Jin-song; SHANG De-jing; YANG Hong

    2004-01-01

    A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(Kd=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.

  7. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  8. The requirement of the glutamic acid residue at the third position from the carboxyl termini of the laminin gamma chains in integrin binding by laminins.

    Science.gov (United States)

    Ido, Hiroyuki; Nakamura, Aya; Kobayashi, Reiko; Ito, Shunsuke; Li, Shaoliang; Futaki, Sugiko; Sekiguchi, Kiyotoshi

    2007-04-13

    Laminins are the major cell-adhesive proteins in the basement membrane, consisting of three subunits termed alpha, beta, and gamma. The putative binding site for integrins has been mapped to the G domain of the alpha chain, although trimerization with beta and gamma chains is necessary for the G domain to exert its integrin binding activity. The mechanism underlying the requirement of beta and gamma chains in integrin binding by laminins remains poorly understood. Here, we show that the C-terminal region of the gamma chain is involved in modulation of the integrin binding activity of laminins. We found that deletion of the C-terminal three but not two amino acids within the gamma1 chain completely abrogated the integrin binding activity of laminin-511. Furthermore, substitution of Gln for Glu-1607, the amino acid residue at the third position from the C terminus of the gamma1 chain, also abolished the integrin binding activity, underscoring the role of Glu-1607 in integrin binding by the laminin. We also found that the conserved Glu residue of the gamma2 chain is necessary for integrin binding by laminin-332, suggesting that the same mechanism operates in the modulation of the integrin binding activity of laminins containing either gamma1 or gamma2 chains. However, the peptide segment modeled after the C-terminal region of gamma1 chain was incapable of either binding to integrin or inhibiting integrin binding by laminin-511, making it unlikely that the Glu residue is directly recognized by integrin. These results, together, indicate a novel mechanism operating in ligand recognition by laminin binding integrins.

  9. High-Affinity, Small-Molecule Peptidomimetic Inhibitors of MLL1/WDR5 Protein-Protein Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Hacer; Townsend, Elizabeth C; Cao, Fang; Chen, Yong; Bernard, Denzil; Liu, Liu; Lei, Ming; Dou, Yali; Wang, Shaomeng [Michigan; (HHMI)

    2013-02-12

    Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase, and targeting the MLL1 enzymatic activity has been proposed as a novel therapeutic strategy for the treatment of acute leukemia harboring MLL1 fusion proteins. The MLL1/WDR5 protein–protein interaction is essential for MLL1 enzymatic activity. In the present study, we designed a large number of peptidomimetics to target the MLL1/WDR5 interaction based upon -CO-ARA-NH–, the minimum binding motif derived from MLL1. Our study led to the design of high-affinity peptidomimetics, which bind to WDR5 with Ki < 1 nM and function as potent antagonists of MLL1 activity in a fully reconstituted in vitro H3K4 methyltransferase assay. Determination of co-crystal structures of two potent peptidomimetics in complex with WDR5 establishes their structural basis for high-affinity binding to WDR5. Evaluation of one such peptidomimetic, MM-102, in bone marrow cells transduced with MLL1-AF9 fusion construct shows that the compound effectively decreases the expression of HoxA9 and Meis-1, two critical MLL1 target genes in MLL1 fusion protein mediated leukemogenesis. MM-102 also specifically inhibits cell growth and induces apoptosis in leukemia cells harboring MLL1 fusion proteins. Our study provides the first proof-of-concept for the design of small-molecule inhibitors of the WDR5/MLL1 protein–protein interaction as a novel therapeutic approach for acute leukemia harboring MLL1 fusion proteins.

  10. Cyr61/CCN1 displays high-affinity binding to the somatomedin B(1-44 domain of vitronectin.

    Directory of Open Access Journals (Sweden)

    Ivo M B Francischetti

    Full Text Available BACKGROUND: Cyr61 is a member of the CCN (Cyr61, connective tissue growth, NOV family of extracellular-associated (matricellular proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP, von Willebrand factor type C (vWF, thrombospondin type 1 (TSP, and C-terminal growth factor cysteine knot (CT domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. METHODS AND FINDINGS: In this report, surface plasmon resonance (SPR experiments and solid-phase binding assays demonstrate that recombinant Cyr61 interacts with immobilized monomeric or multimeric vitronectin (VTNC with K(D in the nanomolar range. Notably, the binding site for Cyr61 was identified as the somatomedin B domain (SMTB(1-44 of VTNC, which mediates its interaction with PAI-1, uPAR, and integrin alphav beta3. Accordingly, PAI-1 outcompetes Cyr61 for binding to immobilized SMTB(1-44, and Cyr61 attenuates uPAR-mediated U937 adhesion to VTNC. In contrast, isothermal titration calorimetry shows that Cyr61 does not display high-affinity binding for SMTB(1-44 in solution. Nevertheless, competitive ELISA revealed that multimeric VTNC, heat-modified monomeric VTNC, or SMTB(1-44 at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, beta-endorphin, and other molecules. CONCLUSIONS: The finding that Cyr61 interacts with the SMTB(1-44 domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis.

  11. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV).

    Science.gov (United States)

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-10-12

    Zr(IV) can form phosphate and Zr(IV) (-PO₃(2-)-Zr(4+)-) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  12. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV)

    Science.gov (United States)

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-01-01

    Zr(IV) can form phosphate and Zr(IV) (–PO32−–Zr4+–) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP. PMID:27754349

  13. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2016-10-01

    Full Text Available Zr(IV can form phosphate and Zr(IV (–PO32−–Zr4+– complex owing to the high affinity between Zr(IV with phosphate. Zr(IV can induce the aggregation of gold nanoparticles (AuNPs, while adenosine triphosphate(ATP can prevent Zr(IV-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRAsensor for ATP have been developed using AuNPs based on the high affinity between Zr(IVwith ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV. After the addition of ATP, ATP reacts with Zr(IV and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV, ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945 with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  14. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Altar, C.A.; Burton, L.E.; Bennett, G.L.; Dugich-Djordjevic, M. (Genentech, Inc., South San Francisco, CA (USA))

    1991-01-01

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF.

  15. Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter.

    Science.gov (United States)

    Bagchi, Rammyani; Salehin, Mohammad; Adeyemo, O Sarah; Salazar, Carolina; Shulaev, Vladimir; Sherrier, D Janine; Dickstein, Rebecca

    2012-10-01

    The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function.

  16. Sertraline and its metabolite desmethylsertraline, but not bupropion or its three major metabolites, have high affinity for P-glycoprotein.

    Science.gov (United States)

    Wang, Jun-Sheng; Zhu, Hao-Jie; Gibson, Bryan Bradford; Markowitz, John Seth; Donovan, Jennifer Lyn; DeVane, Carl Lindsay

    2008-02-01

    The ATP-binding cassette (ABC) transporter protein subfamily B1 line (ABCB1) transporter P-glycoprotein (P-gp) plays an important role in the blood-brain barrier limiting a broad spectrum of substrates from entering the central nervous system. In the present study, the transport activity of P-gp for sertraline, desmethylsertraline, bupropion, and the major metabolites of bupropion, threo-amino alcohol (TB), erythro-amino alcohol (EB), and hydroxy metabolite (HB) was studied using an ATPase assay in expressed human P-gp membranes by measuring concentrations of inorganic P(i) in expressed human P-gp membranes. Verapamil was included as a positive control. The Michaelis-Menten equation was used for characterizing the kinetic data. Sertraline and desmethylsertraline showed high affinity for P-gp. The V(max)/K(m) values of sertraline (1.6 min(-1) x 10(-3)) and desmethylsertraline (1.4 min(-1) x 10(-3)) were comparable with that of verapamil (1.7 min(-1) x 10(-3)). Bupropion and its three metabolites showed very weak affinity for P-gp, with V(max)/K(m) values lower than 0.01 min(-1) x 10(-3). The results of the present study indicate that sertraline and desmethylsertraline have high affinity for P-gp, whereas bupropion and its three major metabolites TB, EB, and HB have very weak affinity for P-gp. These findings may help to explain observed drug-drug interactions among antidepressants.

  17. Viral reverse transcriptases show selective high affinity binding to DNA-DNA primer-templates that resemble the polypurine tract.

    Directory of Open Access Journals (Sweden)

    Gauri R Nair

    Full Text Available Previous results using a SELEX (Systematic Evolution of Ligands by Exponential Enrichment-based approach that selected DNA primer-template duplexes binding with high affinity to HIV reverse transcriptase (RT showed that primers mimicking the 3' end, and in particular the six nt terminal G tract, of the RNA polypurine tract (PPT; HIV PPT: 5'-AAAAGAAAAGGGGGG-3' were preferentially selected. In this report, two viral (Moloney murine leukemia virus (MuLV and avian myeloblastosis virus (AMV and one retrotransposon (Ty3 RTs were used for selection. Like HIV RT, both viral RTs selected duplexes with primer strands mimicking the G tract at the PPT 3' end (AMV PPT: 5'-AGGGAGGGGGA-3'; MuLV PPT: 5'-AGAAAAAGGGGGG-3'. In contrast, Ty3, whose PPT lacks a G tract (5'-GAGAGAGAGGAA-3' showed no selective binding to any duplex sequences. Experiments were also conducted with DNA duplexes (termed DNA PPTs mimicking the RNA PPT-DNA duplex of each virus and a control duplex with a random DNA sequence. Retroviral RTs bound with high affinity to all viral DNA PPT constructs, with HIV and MuLV RTs showing comparable binding to the counterpart DNA PPT duplexes and reduced affinity to the AMV DNA PPT. AMV RT showed similar behavior with a modest preference for its own DNA PPT. Ty3 RT showed no preferential binding for its own or any other DNA PPT and viral RTs bound the Ty3 DNA PPT with relatively low affinity. In contrast, binding affinity of HIV RT to duplexes containing the HIV RNA PPT was less dependent on the G tract, which is known to be pivotal for efficient extension. We hypothesize that the G tract on the RNA PPT helps shift the binding orientation of RT to the 3' end of the PPT where extension can occur.

  18. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  19. Responses of cultured neural retinal cells to substratum-bound laminin and other extracellular matrix molecules.

    Science.gov (United States)

    Adler, R; Jerdan, J; Hewitt, A T

    1985-11-01

    The responses of cultured chick embryo retinal neurons to several extracellular matrix molecules are described. Retinal cell suspensions in serum-free medium containing the "N1" supplement (J. E. Bottenstein, S. D. Skaper, S. Varon, and J. Sato, 1980, Exp. Cell Res. 125, 183-190) were seeded on tissue culture plastic surfaces pretreated with polyornithine (PORN) and with one of the factors to be tested. Substantial cell survival could be observed after 72 hr in vitro on PORN pretreated with serum or laminin, whereas most cells appeared to be degenerating on untreated PORN, PORN-fibronectin, and PORN-chondronectin. Cell attachment, although quantitatively similar for all these substrata, was temperature-dependent on serum and laminin but not on fibronectin or untreated PORN. In a short-term bioassay, neurite development was abundant on laminin, scarce on serum and fibronectin, and absent on PORN. No positive correlation between cell spreading and neurite production could be seen: cell spreading was more extensive on PORN and fibronectin than on laminin or serum, while on laminin-treated dishes, spreading was similar for neurite-bearing and non-neurite-bearing cells. Laminin effects on retinal neurons were clearly substratum dependent. When bound to tissue culture plastic, laminin showed a dose-dependent inhibitory effect on cell attachment and did not stimulate neurite development. PORN-bound laminin, on the other hand, did not affect cell attachment but caused marked stimulation of neurite development, suggesting that laminin conformation and/or the spatial distribution of active sites play an important role in the neurite-promoting function of this extracellular matrix molecule. Investigation of the embryonic retina with ELISA and immunocytochemical methods showed that laminin is present in this organ during development. Therefore, in vivo and in vitro observations are consistent with the possibility that laminin might influence neuronal development in the retina.

  20. Phenothiazine-bridged cyclic porphyrin dimers as high-affinity hosts for fullerenes and linear array of C60 in self-assembled porphyrin nanotube.

    Science.gov (United States)

    Sakaguchi, Ken-ichi; Kamimura, Takuya; Uno, Hidemitsu; Mori, Shigeki; Ozako, Shuwa; Nobukuni, Hirofumi; Ishida, Masatoshi; Tani, Fumito

    2014-04-01

    Free-bases and a nickel(II) complex of phenothiazine-bridged cyclic porphyrin dimers bearing self-assembling 4-pyridyl groups (M2-Ptz-CPDPy(OCn); M = H2 or Ni, OCn = OC6 or OC3) at opposite meso-positions have been prepared as host molecules for fullerenes. The free-base dimer (H4-Ptz-CPDPy(OC6)) includes fullerenes with remarkably high association constants such as 3.9 ± 0.7 × 10(6) M(-1) for C60 and 7.4 ± 0.8 × 10(7) M(-1) for C70 in toluene. This C60 affinity is the highest value ever among reported receptors composed of free-base porphyrins. The nickel dimer (Ni2-Ptz-CPDPy(OC6)) also shows high affinities for C60 (1.3 ± 0.2 × 10(6) M(-1)) and C70 (over 10(7) M(-1)). In the crystal structure of the inclusion complex of C60 within H4-Ptz-CPDpy(OC3), the C60 molecule is located just above the centers of the porphyrins. The two porphyrin planes are almost parallel to each other and the center-to-center distance (12.454 Å) is close to the optimal separation (∼12.5 Å) for C60 inclusion. The cyclic porphyrin dimer forms a nanotube through its self-assembly induced by C-H···N hydrogen bonds between porphyrin β-CH groups and pyridyl nitrogens as well as π-π interactions of the pyridyl groups. The C60 molecules are linearly arranged in the inner channel of this nanotube.

  1. Rethinking Molecular Mimicry in Rheumatic Heart Disease andAutoimmune Myocarditis: Laminin, Collagen IV, CAR and B1AR as Initial Targets of Disease

    Directory of Open Access Journals (Sweden)

    Robert eRoot-Bernstein

    2014-08-01

    Full Text Available Rationale: Molecular mimicry theory (MMT suggests that epitope mimicry between pathogens and human proteins can activate autoimmune disease. Group A streptococci (GAS mimics human cardiac myosin in rheumatic heart disease (RHD and coxsackie viruses (CX mimic actin in autoimmune myocarditis (AM. But myosin and actin are immunologically inaccessible and unlikely initial targets. Extracellular cardiac proteins that mimic GAS and CX would be more likely.Objectives: To determine whether extracellular cardiac proteins such as coxsackie and adenovirus receptor (CAR, beta 1 adrenergic receptor (B1AR, CD55/DAF, laminin, and collagen IV mimic GAS, CX and/or cardiac myosin or actin. Methods: BLAST 2.0 and LALIGN searches of the UniProt protein database were employed to identify potential molecular mimics. Quantitative ELISA was used to measure antibody cross-reactivity. Measurements: Similarities were considered to be significant if a sequence contained at least 5 identical amino acids in 10. Antibodies were considered to be cross-reactive if the binding constant had a Kd less than 10-9 M. Main Results: GAS mimics laminin, CAR and myosin. CX mimics actin and collagen IV and B1AR. The similarity search results are mirrored by antibody cross-reactivities. Additionally, antibodies against laminin recognize antibodies against collagen IV; antibodies against actin recognize antibodies against myosin, and antibodies against GAS recognize antibodies against CX. Thus, there is both mimicry of extracellular proteins and antigenic complementarity between GAS-CX in RHD/AM.Conclusions: RHD/AM may be due to combined infections of GAS with CX localize at cardiomyocytes may produce a synergistic, hyperinflammatory response that cross-reacts with laminin, collagen IV, CAR and/or B1AR. Epitope drift shifts the immune response to myosin and actin after cardiomyocytes become damaged.

  2. De novo deposition of laminin-positive basement membrane in vitro by normal hepatocytes and during hepatocarcinogenesis

    DEFF Research Database (Denmark)

    Albrechtsen, R; Wewer, U M; Thorgeirsson, S S

    1988-01-01

    De novo formation of laminin-positive basement membranes was found to be a distinct morphologic feature of diethylnitrosamine/phenobarbital-induced hepatocellular carcinomas of the rat. The first appearance of extracellularly located laminin occurred in the preneoplastic liver lesions (correspond......De novo formation of laminin-positive basement membranes was found to be a distinct morphologic feature of diethylnitrosamine/phenobarbital-induced hepatocellular carcinomas of the rat. The first appearance of extracellularly located laminin occurred in the preneoplastic liver lesions...

  3. Laminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zahra Khalaj

    2016-01-01

    Results:The results demonstrated that the culture of hBM-MSC on laminin considerably improved hepatogenic differentiation compared to TCP group. A significant elevated level of urea biosynthesis and CYP3A4 enzyme activity was observed in the media of the laminin-coated differentiated cells (P

  4. Laminin α2-secreting fibroblasts enhance the therapeutic effect of skeletal myoblast sheets.

    Science.gov (United States)

    Uchinaka, Ayako; Tasaka, Kanako; Mizuno, Yoko; Maeno, Yoshitaka; Ban, Tsuyoshi; Mori, Seiji; Hamada, Yoshinosuke; Miyagawa, Shigeru; Saito, Atsuhiro; Sawa, Yoshiki; Matsuura, Nariaki; Nagata, Kohzo; Yamamoto, Hirofumi; Kawaguchi, Naomasa

    2017-03-01

    Skeletal myoblast sheet (SMB) transplantation, a method used for treating failing hearts, results in the secretion of cytokines that improve heart function. Enhancing the survival rate of implanted myoblasts should yield more continuous and effective therapies. We hypothesized that laminin-211 (merosin), a major component of skeletal muscle extracellular matrix (ECM), which mediates cell-to-ECM adhesion by binding to α -dystroglycan ( α DG) on muscle cells, could inhibit detachment of implanted myoblasts from host myocardia. Multilayered sheets composed of fibroblasts expressing laminin G-module (LG)4-5 of α 2 and skeletal myoblasts were transplanted into ischemic cardiomyopathy model rats. Animals were divided into four groups: the ligation only (Control) group, and those transplanted with SMB alone, with both myoblasts and control fibroblast sheets (SMB + normal Fb), or with myoblasts and laminin α 2 LG4-5-expressing fibroblast sheets (SMB + laminin Fb). Quantitative estimation of nebulin mRNA levels indicated that the transplanted myoblasts in SMB + laminin Fb group exhibited significantly higher survival rates than those in the other groups. Consistent with these findings, the myoblasts in SMB + laminin Fb group exhibited elevated expression of growth factors, while SMB + laminin Fb rats also showed significant improvements in percent fractional shortening (%FS) and left ventricular remodelling, compared to the other groups. Laminin secreted by implanted fibroblasts inhibited the detachment of implanted myoblasts from grafted myocardia, resulting in more permanent therapeutic effects upon myoblast sheet transplantation.

  5. Differential expression of integrins and laminin-5 in normal oral epithelia

    DEFF Research Database (Denmark)

    Thorup, A K; Dabelsteen, Erik; Schou, S

    1997-01-01

    of different integrins and laminin-5 was studied in oral epithelium to characterize regional variations in these adhesion molecules. Monoclonal antibodies directed against alpha 2-alpha 6 beta 1/alpha 6 beta 4 and laminin-5 were examined in cryopreserved biopsies of normal mucosa by immunohistochemistry...

  6. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene

    DEFF Research Database (Denmark)

    Xu, H; Wu, X R; Wewer, U M;

    1994-01-01

    The classic murine muscular dystrophy strain, dy, was first described almost 40 years ago. We have identified the molecular basis of an allele of dy, called dy2J, by detecting a mutation in the laminin alpha 2 chain gene--the first identified mutation in laminin-2. The G to A mutation in a splice...

  7. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan [Key Laboratory of Advanced Materials Technology of Ministry of Education, Department of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden 01069 (Germany); Zhao, Anshan [Key Laboratory of Advanced Materials Technology of Ministry of Education, Department of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-07-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. - Highlights: • Construction of fucoidan/laminin functional multilayer to biomimic the basement membrane of vascular • The fucoidan/laminin complex demonstrates anti-coagulation property. • The fucoidan/laminin complex can selectively regulate EC and SMC growth behavior to prevent restenosis.

  8. Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin

    DEFF Research Database (Denmark)

    Albrechtsen, R; Nielsen, M; Wewer, U

    1981-01-01

    with molecular weights of 400,000 and 200,000 of rat laminin in sodium dodecyl sulfate:polyacrylamide gel electrophoresis. The neoplastic cells in malignant breast tissues showed strong cytoplasmic staining for laminin, and a positive reaction was aslo found in lymph node metastases. In some cases in which only...

  9. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin.

    Science.gov (United States)

    Chen, Z L; Strickland, S

    1997-12-26

    Excess excitatory amino acids can provoke neuronal death in the hippocampus, and the extracellular proteases tissue plasminogen activator (tPA) and plasmin (ogen) have been implicated in this death. To investigate substrates for plasmin that might influence neuronal degeneration, extracellular matrix (ECM) protein expression was examined. Laminin is expressed in the hippocampus and disappears after excitotoxin injection. Laminin disappearance precedes neuronal death, is spatially coincident with regions that exhibit neuronal loss, and is blocked by either tPA-deficiency or infusion of a plasmin inhibitor, both of which also block neuronal degeneration. Preventing neuron-laminin interaction by infusion of anti-laminin antibodies into tPA-deficient mice restores excitotoxic sensitivity to their hippocampal neurons. These results indicate that disruption of neuron-ECM interaction via tPA/plasmin catalyzed degradation of laminin sensitizes hippocampal neurons to cell death.

  10. Preparation of Laminin-apatite-polymer Composites Using Metastable Calcium Phosphate Solutions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly ( ethylene terephthalate ) (PET) and polyethylene ( PE ) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable ealcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin- apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite composite coating.

  11. Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp

    Energy Technology Data Exchange (ETDEWEB)

    Linke, Christian, E-mail: clin180@ec.auckland.ac.nz [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Caradoc-Davies, Tom T. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Australian Synchrotron, Clayton, Victoria 3168 (Australia); Proft, Thomas [School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Baker, Edward N. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2008-02-01

    The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution.

  12. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.

  13. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W

    2003-01-01

    Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...... models may be valuable for such genotype-phenotype analysis and for determining mechanism of disease as well as function of laminin. Here, we have analyzed protein expression in three lines of mice with mutations in the laminin alpha2 chain gene and in two lines of transgenic mice overexpressing...... substantially prevented the muscular dystrophy in these mice. However, dy(W)/dy(W) mice, expressing the human laminin alpha2 under the control of the striated muscle-specific portion of the desmin promoter, still developed muscular dystrophy. This failure to rescue is apparently because of insufficient...

  14. Laminin-511 and integrin beta-1 in hair follicle development and basal cell carcinoma formation

    Directory of Open Access Journals (Sweden)

    Williams Samantha

    2010-11-01

    Full Text Available Abstract Background Initiation of the hair follicle placode and its subsequent growth, maturation and cycling in post-natal skin requires signaling interactions between epithelial cells and adjacent dermal cells and involves Shh signaling via the primary cilium. Previous reports have implicated laminins in hair follicle epithelial invagination. Results Here we use a human BCC model system and mouse mutants to re-evaluate the role of laminin-511 in epithelial invagination in the skin. Blocking laminin 511 and 332 in BCCs maintains primary cilia and Shh signalling, but prevents invagination. Similarly, in laminin-511 and dermal beta-1 integrin mutants, dermal papilla development and primary cilia formation are normal. Dermal beta-1 integrin mutants have normal hair follicle development. Conclusions Our data provides support for a primary role of laminin-511 promoting hair follicle epithelial downgrowth without affecting dermal primary cilia and Shh target gene induction.

  15. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina

    2017-01-01

    the (11)C-labeling and subsequent evaluation of [(11)C]HOCPCA in a domestic pig, as a PET-radioligand for visualization of the high-affinity GHB binding sites in the live pig brain. To investigate the regional binding of HOCPCA in pig brain prior to in vivo PET studies, in vitro quantitative......γ-Hydroxybutyric acid (GHB) is an endogenous neuroactive substance and proposed neurotransmitter with affinity for both low- and high-affinity binding sites. A radioligand with high and specific affinity toward the high-affinity GHB binding site would be a unique tool toward a more complete...... understanding of this population of binding sites. With its high specific affinity and monocarboxylate transporter (MCT1) mediated transport across the blood-brain barrier in pharmacological doses, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) seems like a suitable PET radiotracer candidate. Here, we report...

  16. Regulation of the High-Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine

    Institute of Scientific and Technical Information of China (English)

    Chao Cai; Xue-Qiang Zhao; Yong-Guan Zhu; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2007-01-01

    Nitrate is a major nitrogen (N) source for most crops.Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels.Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency.The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots.Wheat seedlings grown in nutrient solution containing 2 mmollL nitrate as the only nitrogen source for 2 weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h.Treated wheat plants were then divided into two groups.One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L 15 N-labeled nitrate.The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate.Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction.When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced.These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media.Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.

  17. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  18. [Lipoprotein receptors. Old acquaintances and newcomers].

    Science.gov (United States)

    Ducobu, J

    1997-02-01

    Lipoprotein receptors are plasma membrane proteins of high affinity which interact with circulating lipoprotein particles. The well characterized LDL receptor continues to be analysed and some new findings on its intracellular mechanisms of action have emerged. New lipoprotein receptors have recently been described: the chylomicron remnant receptor or LDL-related protein (LRP), the lipolysis stimulated receptor (LSR), the very low density lipoprotein receptor (VLDLR), the HDL receptor (HDLR) and the scavenger receptor (SR). The molecular details of the receptors will facilitate the development of new therapeutic means to improve receptor-mediated clearance of lipoproteins.

  19. Association of the Laminin, Alpha 5 (LAMA5) rs4925386 with height and longevity in an elderly population from Southern Italy.

    Science.gov (United States)

    De Luca, Maria; Crocco, Paolina; De Rango, Francesco; Passarino, Giuseppe; Rose, Giuseppina

    2016-04-01

    Studies in animal models and humans suggest that reduced growth and adult stature are associated with lifespan extension. Moreover, epidemiological studies reported a positive association between adult height and risk of multiple cancers. Yet, it is unclear which factors mediate these relationships. Laminins are major components of the basement membranes and cooperate with growth factors and matrix-dependent receptors in cell proliferation and differentiation. Previously, we reported the association of rs659822-C/T in LAMA5, encoding the laminin-α5 chain, with weight and height in a cohort of healthy 64-107 aged Italian individuals. Notably, two independent meta-analyses of genome-wide association studies found the C-allele of LAMA5 rs4925386-C/T correlated with the risk of colorectal cancer. We tested additional SNPs within the LAMA5 gene for association with anthropometric traits and longevity in our cohort of elderly subjects (N=624). Under an additive model, the rs2427283-C allele (P=0.02) and the rs4925386-T allele (P=0.01) were associated with shorter stature. Age-stratified analyses showed that the rs4925386-T allele was also positively associated with longevity (P=0.001). The association of LAMA5 rs4925386 alleles with both inter-individual differences in height and in longevity suggests that laminins may be among the factors linking stature and cancer susceptibility.

  20. Fragile X mental retardation protein recognition of G quadruplex structure per se is sufficient for high affinity binding to RNA.

    Science.gov (United States)

    Bole, Medhavi; Menon, Lakshmi; Mihailescu, Mihaela-Rita

    2008-12-01

    Fragile X syndrome, the most common form of inherited mental retardation is caused by the expansion of a CGG trinucleotide repeat in the fragile X mental retardation 1 (fmr1) gene. The abnormal expansion of the CGG repeat causes hypermethylation and subsequent silencing of the fmr1 gene, resulting in the loss of the fragile X mental retardation protein (FMRP). FMRP has been shown to use its arginine-glycine-glycine rich region (RGG box) to bind to messenger RNAs that form G quadruplex structures. Several studies reported that the G quadruplex RNA recognition alone is not sufficient for FMRP RGG box binding and that an additional stem and/or a G quadruplex-stem junction region may also be important in recognition. In this study we have used biophysical methods such as fluorescence, UV, CD and NMR spectroscopy to demonstrate that the recognition of the RNA G quadruplex structure per se, in the absence of a stem region, is sufficient for the FMRP high affinity and specific binding. These findings indicate that the presence of a stem structure in some of the FMRP G quadruplex forming mRNAs is not a requirement for protein recognition as previously believed, but rather for the proper formation of the correct RNA G quadruplex structure recognized by FMRP.

  1. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  2. G196 epitope tag system: a novel monoclonal antibody, G196, recognizes the small, soluble peptide DLVPR with high affinity

    Science.gov (United States)

    Tatsumi, Kasumi; Sakashita, Gyosuke; Nariai, Yuko; Okazaki, Kosuke; Kato, Hiroaki; Obayashi, Eiji; Yoshida, Hisashi; Sugiyama, Kanako; Park, Sam-Yong; Sekine, Joji; Urano, Takeshi

    2017-01-01

    The recognition specificity of monoclonal antibodies (mAbs) has made mAbs among the most frequently used tools in both basic science research and in clinical diagnosis and therapies. Precise determination of the epitope allows the development of epitope tag systems to be used with recombinant proteins for various purposes. Here we describe a new family of tag derived from the epitope recognized by a highly specific mAb G196. The minimal epitope was identified as the five amino acid sequence Asp-Leu-Val-Pro-Arg. Permutation analysis was used to characterize the binding requirements of mAb G196, and the variable regions of the mAb G196 were identified and structurally analyzed by X-ray crystallography. Isothermal titration calorimetry revealed the high affinity (Kd = 1.25 nM) of the mAb G196/G196-epitope peptide interaction, and G196-tag was used to detect several recombinant cytosolic and nuclear proteins in human and yeast cells. mAb G196 is valuable for developing a new peptide tagging system for cell biology and biochemistry research. PMID:28266535

  3. ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii.

    Directory of Open Access Journals (Sweden)

    Maria José Leandro

    Full Text Available Zygosaccharomyces rouxii is a fructophilic yeast than can grow at very high sugar concentrations. We have identified an ORF encoding a putative fructose/H(+ symporter in the Z. rouxii CBS 732 genome database. Heterologous expression of this ORF in a S. cerevisiae strain lacking its own hexose transporters (hxt-null and subsequent kinetic characterization of its sugar transport activity showed it is a high-affinity low-capacity fructose/H(+ symporter, with Km 0.45 ± 0.07 mM and Vmax 0.57 ± 0.02 mmol h(-1 (gdw(-1. We named it ZrFsy1. This protein also weakly transports xylitol and sorbose, but not glucose or other hexoses. The expression of ZrFSY1 in Z. rouxii is higher when the cells are cultivated at extremely low fructose concentrations (<0.2% and on non-fermentable carbon sources such as mannitol and xylitol, where the cells have a prolonged lag phase, longer duplication times and change their microscopic morphology. A clear phenotype was determined for the first time for the deletion of a fructose/H(+ symporter in the genome where it occurs naturally. The effect of the deletion of ZrFSY1 in Z. rouxii cells is only evident when the cells are cultivated at very low fructose concentrations, when the ZrFsy1 fructose symporter is the main active fructose transporter system.

  4. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall.

    Science.gov (United States)

    Canut, H; Carrasco, A; Galaud, J P; Cassan, C; Bouyssou, H; Vita, N; Ferrara, P; Pont-Lezica, R

    1998-10-01

    The heptapeptide Tyr-Gly-Arg-Gly-Asp-Ser-Pro containing the sequence Arg-Gly-Asp (RGD--the essential structure recognised by animal cells in substrate adhesion molecules) was tested on epidermal cells of onion and cultured cells of Arabidopsis upon plasmolysis. Dramatic changes were observed on both types of cells following treatment: on onion cells, Hechtian strands linking the cell wall to the membrane were lost, while Arabidopsis cells changed from concave to convex plasmolysis. A control heptapeptide Tyr-Gly-Asp-Gly-Arg-Ser-Pro had no effect on the shape of plasmolysed cells. Protoplasts isolated from Arabidopsis cells agglutinate in the presence of ProNectinF, a genetically engineered protein of 72 kDa containing 13 RGD sequences: several protoplasts may adhere to a single molecule of ProNectinF. The addition of the RGD-heptapeptide disrupted the adhesion between the protoplasts. Purified plasma membrane from Arabidopsis cells exhibits specific binding sites for the iodinated RGD-heptapeptide. The binding is saturable, reversible, and two types of high affinity sites (Kd1 approximately 1 nM, and Kd2 approximately 40 nM) can be discerned. Competitive inhibition by several structurally related peptides and proteins noted the specific requirement for the RGD sequence. Thus, the RGD-binding activity of Arabidopsis fulfils the adhesion features of integrins, i.e. peptide specificity, subcellular location, and involvement in plasma membrane-cell wall attachments.