WorldWideScience

Sample records for high-affinity copper transporter

  1. Role of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy.

    Science.gov (United States)

    Kuo, Macus Tien; Fu, Siqing; Savaraj, Niramol; Chen, Helen H W

    2012-09-15

    The high-affinity copper transporter (Ctr1; SCLC31A1) plays an important role in regulating copper homeostasis because copper is an essential micronutrient and copper deficiency is detrimental to many important cellular functions, but excess copper is toxic. Recent research has revealed that human copper homeostasis is tightly controlled by interregulatory circuitry involving copper, Sp1, and human (hCtr1). This circuitry uses Sp1 transcription factor as a copper sensor in modulating hCtr1 expression, which in turn controls cellular copper and Sp1 levels in a 3-way mutual regulatory loop. Posttranslational regulation of hCtr1 expression by copper stresses has also been described in the literature. Because hCtr1 can also transport platinum drugs, this finding underscores the important role of hCtr1 in platinum-drug sensitivity in cancer chemotherapy. Consistent with this notion is the finding that elevated hCtr1 expression was associated with favorable treatment outcomes in cisplatin-based cancer chemotherapy. Moreover, cultured cell studies showed that elevated hCtr1 expression can be induced by depleting cellular copper levels, resulting in enhanced cisplatin uptake and its cell-killing activity. A phase I clinical trial using a combination of trientine (a copper chelator) and carboplatin has been carried out with encouraging results. This review discusses new insights into the role of hCtr1 in regulating copper homeostasis and explains how modulating cellular copper availability could influence treatment efficacy in platinum-based cancer chemotherapy through hCtr1 regulation.

  2. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins

    Directory of Open Access Journals (Sweden)

    Sergi Puig

    2014-01-01

    Full Text Available Copper (Cu is an essential micronutrient for all eukaryotes because it participates as a redox active cofactor in multiple biological processes, including mitochondrial respiration, photosynthesis, oxidative stress protection, and iron (Fe transport. In eukaryotic cells, Cu transport toward the cytoplasm is mediated by the conserved CTR/COPT family of high-affinity Cu transport proteins. This outlook paper reviews the contribution of our research group to the characterization of the function played by the Arabidopsis thaliana COPT1–6 family of proteins in plant Cu homeostasis. Our studies indicate that the different tissue specificity, Cu-regulated expression, and subcellular localization dictate COPT-specialized contribution to plant Cu transport and distribution. By characterizing lack-of-function Arabidopsis mutant lines, we conclude that COPT1 mediates root Cu acquisition, COPT6 facilitates shoot Cu distribution, and COPT5 mobilizes Cu from storage organelles. Furthermore, our work with copt2 mutant and COPT-overexpressing plants has also uncovered Cu connections with Fe homeostasis and the circadian clock, respectively. Future studies on the interaction between COPT transporters and other components of the Cu homeostasis network will improve our knowledge of plant Cu acquisition, distribution, regulation, and utilization by Cu-proteins.

  3. Regulation of the high-affinity copper transporter (hCtr1) expression by cisplatin and heavy metals.

    Science.gov (United States)

    Liang, Zheng Dong; Long, Yan; Chen, Helen H W; Savaraj, Niramol; Kuo, Macus Tien

    2014-01-01

    Platinum-based antitumor agents have been the mainstay in cancer chemotherapy for many human malignancies. Drug resistance is an important obstacle to achieving the maximal therapeutic efficacy of these drugs. Understanding how platinum drugs enter cells is of great importance in improving therapeutic efficacy. It has been demonstrated that human high-affinity copper transporter 1 (hCtr1) is involved in transporting cisplatin into cells to elicit cytotoxic effects, although other mechanisms may exist. In this communication, we demonstrate that cisplatin transcriptionally induces the expression of hCtr1 in time- and concentration-dependent manners. Cisplatin functions as a competitor for hCtr1-mediated copper transport, resulting in reduced cellular copper levels and leading to upregulated expression of Sp1, which is a positive regulator for hCtr1 expression. Thus, regulation of hCtr1 expression by cisplatin is an integral part of the copper homeostasis regulation system. We also demonstrate that Ag(I) and Zn(II), which are known to suppress hCtr1-mediated copper transport, can also induce hCtr1/Sp1 expression. In contrast, Cd(II), another inhibitor of copper transport, downregulates hCtr1 expression by suppressing Sp1 expression. Collectively, our results demonstrate diverse mechanisms of regulating copper metabolism by these heavy metals.

  4. [Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver and cisplatin].

    Science.gov (United States)

    Skvortsov, A N; Zatulovskiĭ, E A; Puchkova, L V

    2012-01-01

    It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.

  5. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis

    Directory of Open Access Journals (Sweden)

    Christopher J. Hlynialuk

    2015-02-01

    Full Text Available Human SCO1 fulfills essential roles in cytochrome c oxidase (COX assembly and the regulation of copper (Cu homeostasis, yet it remains unclear why pathogenic mutations in this gene cause such clinically heterogeneous forms of disease. Here, we establish a Sco1 mouse model of human disease and show that ablation of Sco1 expression in the liver is lethal owing to severe COX and Cu deficiencies. We further demonstrate that the Cu deficiency is explained by a functional connection between SCO1 and CTR1, the high-affinity transporter that imports Cu into the cell. CTR1 is rapidly degraded in the absence of SCO1 protein, and we show that its levels are restored in Sco1−/− mouse embryonic fibroblasts upon inhibition of the proteasome. These data suggest that mitochondrial signaling through SCO1 provides a post-translational mechanism to regulate CTR1-dependent Cu import into the cell, and they further underpin the importance of mitochondria in cellular Cu homeostasis.

  6. A high-affinity molybdate transporter in eukaryotes.

    Science.gov (United States)

    Tejada-Jiménez, Manuel; Llamas, Angel; Sanz-Luque, Emanuel; Galván, Aurora; Fernández, Emilio

    2007-12-11

    Molybdenum is an essential element for almost all living beings, which, in the form of a molybdopterin-cofactor, participates in the active site of enzymes involved in key reactions of carbon, nitrogen, and sulfur metabolism. This metal is taken up by cells in form of the oxyanion molybdate. Bacteria acquire molybdate by an ATP-binding-cassette (ABC) transport system in a widely studied process, but how eukaryotic cells take up molybdenum is unknown because molybdate transporters have not been identified so far. Here, we report a eukaryotic high-affinity molybdate transporter, encoded by the green alga Chlamydomonas reinhardtii gene MoT1. An antisense RNA strategy over the MoT1 gene showed that interference of the expression of this gene leads to the inhibition of molybdate transport activity and, in turn, of the Mo-containing enzyme nitrate reductase, indicating a function of MoT1 in molybdate transport. MOT1 functionality was also shown by heterologous expression in Saccharomyces cerevisiae. Molybdate uptake mediated by MOT1 showed a K(m) of approximately 6 nM, which is the range of the lowest K(m) values reported and was activated in the presence of nitrate. Analysis of deduced sequence from the putative protein coded by MoT1 showed motifs specifically conserved in similar proteins present in the databases, and defines a family of membrane proteins in both eukaryotes and prokaryotes probably involved in molybdate transport and distantly related to plant sulfate transporters SULTR. These findings represent an important step in the understanding of molybdate transport, a crucial process in eukaryotic cells.

  7. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  8. Isolation and cloning of the gene encoding high affinity phosphate transporter in rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High affinity phosphate transporter plays an important role in plant adapting to low phosphorus. Isolation of genes coding this kind of protein has attracted worldwide scholars to accomplish. We aimed to isolate the gene and transfer it to target plants for breeding.

  9. Nuclear Choline Acetyltransferase Activates Transcription of a High-affinity Choline Transporter*

    OpenAIRE

    Matsuo, Akinori; Bellier, Jean-Pierre; Nishimura, Masaki; YASUHARA, Osamu; Saito, Naoaki; Kimura, Hiroshi

    2010-01-01

    Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter ...

  10. Structural characterization of a high affinity mononuclear site in the copper(II)-α-synuclein complex.

    Science.gov (United States)

    Bortolus, Marco; Bisaglia, Marco; Zoleo, Alfonso; Fittipaldi, Maria; Benfatto, Maurizio; Bubacco, Luigi; Maniero, Anna Lisa

    2010-12-29

    Human α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein. In this work, we investigated the high affinity binding mode of truncated aS (1-99) (aS99) with Cu(II), in a stoichiometric ratio, to elucidate the residues involved in the binding site and the role of copper ions in the protein oligomerization. We used Electron Paramagnetic Resonance spectroscopy on the Cu(II)-aS99 complex at pH 6.5, performing both multifrequency continuous wave experiments and pulsed experiments at X-band. The comparison of 9.5 and 95 GHz data showed that at this pH only one binding mode is present. To identify the nature of the ligands, we performed Electron Spin Echo Envelope Modulation, Hyperfine Sublevel Correlation Spectroscopy, and pulsed Davies Electron-Nuclear Double Resonance (Davies-ENDOR) experiments. We determined that the EPR parameters are typical of a type-II copper complex, in a slightly distorted square planar geometry. Combining the results from the different pulsed techniques, we obtained that the equatorial coordination is {N(Im), N(-), H(2)O, O}, where N(im) is the imino nitrogen of His50, N(-) a deprotonated amido backbone nitrogen that we attribute to His50, H(2)O an exchangeable water molecule, and O an unidentified oxygen ligand. Moreover, we propose that the free amino terminus (Met1) participates in the complex as an axial ligand. The MXAN analysis of the XAS k-edge absorption data allowed us to independently validate the structural features proposed on the basis of the magnetic parameters of the Cu(II)-aS99 complex and then to further refine the quality of the proposed structural model.

  11. Characterization of a genetically reconstituted high-affinity system for serotonin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A.S.S.; Lam, D.M.K. (Baylor College of Medicine, Woodlands, TX (USA) Baylor College of Medicine, Houston, TX (USA)); Frnka, J.V.; Chen, D. (Baylor College of Medicine, Woodlands, TX (USA))

    1989-12-01

    By transfecting mouse fibroblast L-M cells with human genomic DNA, the authors have established and identified several clonal cell lines that stably express a high-affinity serotonin (5-HT)-uptake mechanism absent in untransfected host cells. One such cell line, L-S1, possesses features of 5-({sup 3}H)HT uptake similar to those previously characterized in the central nervous system and blood platelets: (i) specificity for 5-HT; (ii) antagonism by imipramine, a known inhibitor of high-affinity 5-HT uptake; (iii) both Na{sup +} and temperature dependence; (iv) kinetic saturability; and (v) high affinity for 5-HT. This cell line can be used to compare the relative efficacies of known blockers of 5-HT uptake and thereby offers a rapid and reliable assay system for testing novel inhibitors of this system. Since L-S1 contains stably integrated human DNA in its genome, they postulate that the observed 5-HT-uptake system resulted from the expression of human gene(s) coding for the 5-HT transporter. Thus, cell lines such as L-S1 may represent novel means for screening and developing therapeutic agents specific for neutrotransmitter-uptake systems as well as substrate for the cloning and elucidation of the genes encoding the various neurotransmitter transporters.

  12. Genetic evidence of a high-affinity cyanuric acid transport system in Pseudomonas sp. ADP.

    Science.gov (United States)

    Platero, Ana I; Santero, Eduardo; Govantes, Fernando

    2014-03-01

    The Pseudomonas sp. ADP plasmid pADP-1 encodes the activities involved in the hydrolytic degradation of the s-triazine herbicide atrazine. Here, we explore the presence of a specific transport system for the central intermediate of the atrazine utilization pathway, cyanuric acid, in Pseudomonas sp. ADP. Growth in fed-batch cultures containing limiting cyanuric acid concentrations is consistent with high-affinity transport of this substrate. Acquisition of the ability to grow at low cyanuric acid concentrations upon conjugal transfer of pADP1 to the nondegrading host Pseudomonas putida KT2442 suggests that all activities required for this phenotype are encoded in this plasmid. Co-expression of the pADP1-borne atzDEF and atzTUVW genes, encoding the cyanuric acid utilization pathway and the subunits of an ABC-type solute transport system, in P. putida KT2442 was sufficient to promote growth at cyanuric acid concentrations as low as 50 μM in batch culture. Taken together, our results strongly suggest that the atzTUVW gene products are involved in high-affinity transport of cyanuric acid.

  13. Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter

    Science.gov (United States)

    Choudhary, Parul; Armstrong, Emma J.; Jorgensen, Csilla C.; Piotrowski, Mary; Barthmes, Maria; Torella, Rubben; Johnston, Sarah E.; Maruyama, Yuya; Janiszewski, John S.; Storer, R. Ian; Skerratt, Sarah E.; Benn, Caroline L.

    2017-01-01

    Cholinergic hypofunction is associated with decreased attention and cognitive deficits in the central nervous system in addition to compromised motor function. Consequently, stimulation of cholinergic neurotransmission is a rational therapeutic approach for the potential treatment of a variety of neurological conditions. High affinity choline uptake (HACU) into acetylcholine (ACh)-synthesizing neurons is critically mediated by the sodium- and pH-dependent high-affinity choline transporter (CHT, encoded by the SLC5A7 gene). This transporter is comparatively well-characterized but otherwise unexplored as a potential drug target. We therefore sought to identify small molecules that would enable testing of the hypothesis that positive modulation of CHT mediated transport would enhance activity-dependent cholinergic signaling. We utilized existing and novel screening techniques for their ability to reveal both positive and negative modulation of CHT using literature tools. A screening campaign was initiated with a bespoke compound library comprising both the Pfizer Chemogenomic Library (CGL) of 2,753 molecules designed specifically to help enable the elucidation of new mechanisms in phenotypic screens and 887 compounds from a virtual screening campaign to select molecules with field-based similarities to reported negative and positive allosteric modulators. We identified a number of previously unknown active and structurally distinct molecules that could be used as tools to further explore CHT biology or as a starting point for further medicinal chemistry. PMID:28289374

  14. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil.

    Science.gov (United States)

    Tomatsu, Hajime; Takano, Junpei; Takahashi, Hideki; Watanabe-Takahashi, Akiko; Shibagaki, Nakako; Fujiwara, Toru

    2007-11-20

    Molybdenum (Mo) is a trace element essential for living organisms, however no molybdate transporter has been identified in eukaryotes. Here, we report the identification of a molybdate transporter, MOT1, from Arabidopsis thaliana. MOT1 is expressed in both roots and shoots, and the MOT1 protein is localized, in part, to plasma membranes and to vesicles. MOT1 is required for efficient uptake and translocation of molybdate and for normal growth under conditions of limited molybdate supply. Kinetics studies in yeast revealed that the K(m) value of MOT1 for molybdate is approximately 20 nM. Furthermore, Mo uptake by MOT1 in yeast was not affected by coexistent sulfate, and MOT1 did not complement a sulfate transporter-deficient yeast mutant strain. These data confirmed that MOT1 is specific for molybdate and that the high affinity of MOT1 allows plants to obtain scarce Mo from soil.

  15. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.

    Science.gov (United States)

    Straub, Daniel; Ludewig, Uwe; Neuhäuser, Benjamin

    2014-11-01

    Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.

  16. Gene Structure and Expression of the High-affinity Nitrate Transport System in Rice Roots

    Institute of Scientific and Technical Information of China (English)

    Chao Cai; Jun-Yi Wang; Yong-Guan Zhu; Qi-Rong Shen; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2008-01-01

    Rice has a preference for uptake of ammonium over nitrate and can use ammonium-N efficiently. Consequently, transporters mediating ammonium uptake have been extensively studied, but nitrate transporters have been largely ignored. Recently,some reports have shown that rice also has high capacity to acquire nitrate from growth medium, so understanding the nitrate transport system in rice roots is very important for improving N use efficiency in rice. The present study identified four putative NRT2 and two putative NAR2 genes that encode components of the high-affinity nitrate transport system (HATS) in the rice (Oryza sativa L. subsp, japonica cv. Nipponbare) genome. OsNRT2.1 and OsNRT2.2 share an identical coding region sequence, and their deduced proteins are closely related to those from monocotyledonous plants. The two NAR2 proteins are closely related to those from mono-cotyledonous plants as well. However, OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 proteins. Relative quantitative reverse tranecdption-polymerase chain reaction analysis showed that all of the six genes were rapidly upregulated and then downregulated in the roots of N-starved rice plants after they were re-supplied with 0.2 mM nitrate, but the response to nitrate differed among gene members.The results from phylogenetic tree, gene structure and expression analysis implied the divergent roles for the individual members of the rice NRT2 and NAR2 families. High-affinity nitrate influx rates associated with nitrate induction in rice roots were investigated and were found to be regulated by external pH. Compared with the nitrate influx rates at pH 6.5, alkaline pH (pH 8.0) inhibited nitrate Influx, and acidic pH (pH 5.0) enhanced the nitrate influx In I h nitrate induced roots, but did not significantly affect that in 4 to 8 h nitrate induced roots.

  17. Molecular evolutionary analysis of the high-affinity K+ transporter gene family in angiosperms.

    Science.gov (United States)

    Yang, P; Hua, C; Zhou, F; Zhang, B-J; Cai, X-N; Chen, Q-Z; Wang, R-L

    2016-07-15

    The high-affinity K(+) transporter (HKT) family comprises a group of multifunctional cation transporters widely distributed in organisms ranging from Bacteria to Eukarya. In angiosperms, the HKT family consists primarily of nine types, whose evolutionary relationships are not fully understood. The available sequences from 31 plant species were used to perform a comprehensive evolutionary analysis, including an examination of selection pressure and estimating phylogenetic tree and gene duplication events. Our results show that a gene duplication in the HKT1;5/HKT1;4 cluster might have led to the divergence of the HKT1;5 and HKT1;4 subfamilies. Additionally, maximum likelihood analysis revealed that the HKT family has undergone a strong purifying selection. An analysis of the amino acids provided strong statistical evidence for a functional divergence between subfamilies 1 and 2. Our study was the first to provide evidence of this functional divergence between these two subfamilies. Analysis of co-evolution in HKT identified 25 co-evolved groups. These findings expanded our understanding of the evolutionary mechanisms driving functional diversification of HKT proteins.

  18. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter

    DEFF Research Database (Denmark)

    Zhang, Peng; Jørgensen, Trine Nygaard; Løland, Claus Juul

    2013-01-01

    A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino)prop...

  19. The physiological significance of HKT1, a Na{sup +} - coupled high affinity K{sup +} transporter in `Triticum aestivum`

    Energy Technology Data Exchange (ETDEWEB)

    Box, S.; Schachtman, D.P. [University of Adelaide, SA (Australia). Department of Botany

    1997-12-31

    Full text: Several mechanisms for high affinity K{sup +} uptake by higher plants have been proposed:-an ATP-energised K:+ pump, a K{sup +}/H{sup +} antiport and a H{sup +}coupled carrier. Recently, a Na{sup +}--coupled high affinity K{sup +} transporter, HKT1, was isolated from wheat roots. Whilst Na{sup +}K{sup +} symports have been described in charophyte algae, the cloning of HKT1 from wheat is the first, evidence that this type d transport mechanism may function in higher plants. Is the activity of HKT1 an important mechanism involved in K{sup +} acquisition by wheat? The aim of this study was to assess the physiological significance of Na{sup +}- coupled high affinity K{sup +} uptake in T. aestivum. To determine whether HKT1 plays a significant role in wheat growth, we measured the dry weights and ion content of plants grown in a range of [K{sup +}], with and without Na{sup +}. To directly assess the activity of Na{sup +}- coupled K{sup +} transport, {sup 86}Rb{sup +} and {sup 22}Na{sup +} flux analyses were performed on the elongation zones and whole roots of intact seedlings, expressing a high affinity K{sup +} uptake system. The results of these growth and tracer flux studies will be discussed in relation to the expression of the gene encoding HKT1 in T. aestivum

  20. In silico analysis of high affinity potassium transporter (HKT) isoforms in different plants.

    Science.gov (United States)

    Zamani Babgohari, Mahbobeh; Ebrahimie, Esmaeil; Niazi, Ali

    2014-01-01

    High affinity potassium transporters (HKTs) are located in the plasma membrane of the vessels and have significant influence on salt tolerance in some plants. They exclude Na(+) from the parenchyma cells to reduce Na(+) concentration. Despite many studies, the underlying regulatory mechanisms and the exact functions of HKTs within different genomic backgrounds are relatively unknown. In this study, various bioinformatics techniques, including promoter analysis, identification of HKT-surrounding genes, and construction of gene networks, were applied to investigate the HKT regulatory mechanism. Promoter analysis showed that rice HKTs carry ABA response elements. Additionally, jasmonic acid response elements were detected on promoter region of TmHKT1;5. In silico synteny highlighted several unknown and new loci near rice, Arabidopsis thaliana and Physcomitrella patent HKTs, which may play a significant role in salt stress tolerance in concert with HKTs. Gene network prediction unravelled that crosstalk between jasmonate and ethylene reduces AtHKT1;1 expression. Furthermore, antiporter and transferase proteins were found in AtHKT1;1 gene network. Interestingly, regulatory elements on the promoter region of HKT in wild genotype (TmHKT1;5) were more frequent and variable than the ones in cultivated wheat (TaHKT1;5) which provides the possibility of rapid response and better understanding of environmental conditions for wild genotype. Detecting ABA and jasmonic acid response elements on promoter regions of HKTs provide valuable clues on underlying regulatory mechanisms of HKTs. In silico synteny and pathway discovery indicated several candidates which act in concert with HKTs in stress condition. We highlighted different arrangement of regulatory elements on promoter region of wild wheat (TmHKT1;5) compared to bread wheat (TaHKT1;5) in this study.

  1. Inhibition of the high affinity choline transporter enhances hyperalgesia in a rat model of chronic pancreatitis.

    Science.gov (United States)

    Luo, Dan; Chen, Lei; Yu, Baoping

    2017-06-17

    The mechanisms underlying chronic and persistent pain associated with chronic pancreatitis (CP) are not completely understood. The cholinergic system is one of the major neural pathways of the pancreas. Meanwhile, this system plays an important role in chronic pain. We hypothesized that the high affinity choline transporter CHT1, which is a main determinant of cholinergic signaling capacity, is involved in regulating pain associated with CP. CP was induced by intraductal injection of 2% trinitrobenzene sulfonic acid (TNBS) in Sprague-Dawley rats. Pathological examination was used to evaluate the inflammation of pancreas and hyperalgesia was assessed by measuring the number of withdrawal events evoked by application of the von Frey filaments. CHT1 expression in pancreas-specific dorsal root ganglia (DRGs) was assessed through immunohistochemistry and western blotting. We also intraperitoneally injected the rats with hemicholinium-3 (HC-3, a specific inhibitor of CHT1). Then we observed its effects on the visceral hyperalgesia induced by CP, and on the acetylcholine (ACh) levels in the DRGs through using an acetylcholine/acetylcholinesterase assay kit. Signs of CP were observed 21 days after TNBS injection. Rats subjected to TNBS infusions had increased sensitivity to mechanical stimulation of the abdomen. CHT1-immunoreactive cells were increased in the DRGs from rats with CP compared to naive or sham rats. Western blots indicated that CHT1 expression was significantly up-regulated in TNBS-treated rats when compared to naive or sham-operated rats at all time points following surgery. In the TNBS group, CHT1 expression was higher on day 28 than on day 7 or day 14, but there was no statistical difference in CHT1 expression on day 28 vs. day 21. Treatment with HC-3 (60 μg/kg, 80 μg/kg, or 100 μg/kg) markedly enhanced the mechanical hyperalgesia and reduced ACh levels in a dose-dependent manner in rats with CP. We report for the first time that CHT1 may be involved

  2. High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes

    Science.gov (United States)

    Ventura, Luisa; González, Ramón; Ramón, Daniel; MacCabe, Andrew P.

    2014-01-01

    Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation. PMID:24751997

  3. High-affinity glucose transport in Aspergillus nidulans is mediated by the products of two related but differentially expressed genes.

    Directory of Open Access Journals (Sweden)

    Josep V Forment

    Full Text Available Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation.

  4. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  5. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  6. Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence.

    Science.gov (United States)

    Guigues, Stéphanie; Bravin, Matthieu N; Garnier, Cédric; Masion, Armand; Chevassus-Rosset, Claire; Cazevieille, Patrick; Doelsch, Emmanuel

    2016-03-01

    Carboxylic groups located in plant cell walls (CW) are generally considered to be the main copper binding sites in plant roots, despite the presence of other functional groups. The aim of this study was to investigate sites responsible for copper binding in root apoplasts, i.e. CW and outer surface of the plasma membrane (PM) continuum. Binding sites in root apoplasts were investigated by comparing isolated CW of a monocotyledon (Triticum aestivum L.) and dicotyledon (Solanum lycopersicum L.) crop with their respective whole roots. Copper speciation was examined by X-ray absorption (XAS) and (13)C-nuclear magnetic resonance spectroscopies while the affinity of ligands involved in copper binding was investigated by modeling copper sorption isotherms. Homogeneous speciation and binding of copper was found in wheat and tomato root apoplasts. Only Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. Furthermore, low- and high-affinity binding sites contributed in an almost equivalent proportion to copper binding in root apoplasts. The high-affinity N functional groups embedded in root apoplasts participated in copper binding in the same magnitude than the low-affinity carboxylic groups.

  7. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer's disease-like symptoms.

    Science.gov (United States)

    Lang, Minglin; Fan, Qiangwang; Wang, Lei; Zheng, Yajun; Xiao, Guiran; Wang, Xiaoxi; Wang, Wei; Zhong, Yi; Zhou, Bing

    2013-11-01

    Disruption of copper homeostasis has been implicated in Alzheimer's disease (AD) during the last 2 decades; however, whether copper is a friend or a foe is controversial. Within a genetically tractable Drosophila AD model, we manipulated the expression of human high-affinity copper importer orthologous in Drosophila to explore the in vivo roles of copper ions in the development of AD. We found that inhibition of Ctr1C expression by RNAi in Aβ-expressing flies significantly reduced copper accumulation in the brains of the flies as well as ameliorating neurodegeneration, enhancing climbing ability, and prolonging lifespan. Interestingly, Ctr1C inhibition led to a significant increase in higher-molecular-weight Aβ42 forms in brain lysates, whereas it was accompanied by a trend of decreased expression of amyloid-β degradation proteases (including NEP1-3 and IDE) with age and reduced Cu-Aβ interaction-induced oxidative stress in Ctr1C RNAi flies. Similar results were obtained from inhibiting another copper importer Ctr1B and overexpressing a copper exporter DmATP7 in the nervous system of AD flies. These results imply that copper may play a causative role in developing AD, as either Aβ oligomers or aggregates were less toxic in a reduced copper environment or one with less copper binding. Early manipulation of brain copper uptake can have a great effect on Aβ pathology.

  8. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death.

    Science.gov (United States)

    Norholm, Morten H H; Nour-Eldin, Hussam H; Brodersen, Peter; Mundy, John; Halkier, Barbara A

    2006-04-17

    We report the biochemical characterization in Xenopus oocytes of the Arabidopsis thaliana membrane protein, STP13, as a high affinity, hexose-specific H(+)-symporter. Studies with kinase activators suggest that it is negatively regulated by phosphorylation. STP13 promoter GFP reporter lines show GFP expression only in the vascular tissue in emerging petals under non-stressed conditions. Quantitative PCR and the pSTP13-GFP plants show induction of STP13 in programmed cell death (PCD) obtained by treatments with the fungal toxin fumonisin B1 and the pathogen Pseudomonas syringae. A role for STP13 in PCD is supported by microarray data from e.g. plants undergoing senescence and a strong correlation between STP13 transcripts and the PCD phenotype in different accelerated cell death (acd11) mutants.

  9. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  10. Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter.

    Science.gov (United States)

    Bagchi, Rammyani; Salehin, Mohammad; Adeyemo, O Sarah; Salazar, Carolina; Shulaev, Vladimir; Sherrier, D Janine; Dickstein, Rebecca

    2012-10-01

    The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function.

  11. Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts

    Science.gov (United States)

    Stagg, Amy R.; Fleming, Judith C.; Baker, Meghan A.; Sakamoto, Massayuki; Cohen, Nadine; Neufeld, Ellis J.

    1999-01-01

    We have investigated the cellular pathology of the syndrome called thiamine-responsive megaloblastic anemia (TRMA) with diabetes and deafness. Cultured diploid fibroblasts were grown in thiamine-free medium and dialyzed serum. Normal fibroblasts survived indefinitely without supplemental thiamine, whereas patient cells died in 5–14 days (mean 9.5 days), and heterozygous cells survived for more than 30 days. TRMA fibroblasts were rescued from death with 10–30 nM thiamine (in the range of normal plasma thiamine concentrations). Positive terminal deoxynucleotide transferase–mediated dUTP nick end-labeling (TUNEL) staining suggested that cell death was due to apoptosis. We assessed cellular uptake of [3H]thiamine at submicromolar concentrations. Normal fibroblasts exhibited saturable, high-affinity thiamine uptake (Km 400–550 nM; Vmax 11 pmol/min/106 cells) in addition to a low-affinity unsaturable component. Mutant cells lacked detectable high-affinity uptake. At 30 nM thiamine, the rate of uptake of thiamine by TRMA fibroblasts was 10-fold less than that of wild-type, and cells from obligate heterozygotes had an intermediate phenotype. Transfection of TRMA fibroblasts with the yeast thiamine transporter gene THI10 prevented cell death when cells were grown in the absence of supplemental thiamine. We therefore propose that the primary abnormality in TRMA is absence of a high-affinity thiamine transporter and that low intracellular thiamine concentrations in the mutant cells cause biochemical abnormalities that lead to apoptotic cell death. J. Clin. Invest. 103:723–729 (1999). PMID:10074490

  12. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil

    OpenAIRE

    Tomatsu, Hajime; Takano, Junpei; Takahashi, Hideki; Watanabe-Takahashi, Akiko; Shibagaki, Nakako; Fujiwara, Toru

    2007-01-01

    Molybdenum (Mo) is a trace element essential for living organisms, however no molybdate transporter has been identified in eukaryotes. Here, we report the identification of a molybdate transporter, MOT1, from Arabidopsis thaliana. MOT1 is expressed in both roots and shoots, and the MOT1 protein is localized, in part, to plasma membranes and to vesicles. MOT1 is required for efficient uptake and translocation of molybdate and for normal growth under conditions of limited molybdate supply. Kine...

  13. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole.

    Science.gov (United States)

    Erickson, Jeffrey D

    2017-07-01

    Glutamine (Gln) is considered the preferred precursor for the neurotransmitter pool of glutamate (Glu), the major excitatory transmitter in the mammalian CNS. Here, an activity-regulated, high-affinity Gln transport system is described in developing and mature neuron-enriched hippocampal cultures that is potently inhibited by riluzole (IC50 1.3 ± 0.5 μM), an anti-glutamatergic drug, and is blocked by low concentrations of 2-(methylamino)isobutyrate (MeAIB), a system A transport inhibitor. K(+) -stimulated MeAIB transport displays an affinity (Km ) for MeAIB of 37 ± 1.2 μM, saturates at ~ 200 μM, is dependent on extracellular Ca(2+) , and is blocked by inhibition of voltage-gated Ca(2+) channels. Spontaneous MeAIB transport is also dependent on extracellullar Ca(2+) and voltage-gated calcium channels, but is also blocked by the Na(+) channel blocker tetrodotoxin, by Glu receptor antagonists, and by GABA indicating its dependence on intact neural circuits driven by endogenous glutamatergic activity. The transport of MeAIB itself does not rely on Ca(2+) , but on Na(+) ions, and is pH sensitive. Activity-regulated, riluzole-sensitive spontaneous and K(+) -stimulated transport is minimal at 7-8 days in vitro, coordinately induced during the next 2 weeks and is maximally expressed by days in vitro > 20; the known period for maturation of the Glu/Gln cycle and regulated pre-synaptic Glu release. Competition analyses with various amino acids indicate that Gln is the most likely physiological substrate. Activity-regulated Gln/MeAIB transport is not observed in astrocytes. The functional identification of activity-regulated, high-affinity, riluzole-sensitive Gln/MeAIB transport in hippocampal neurons may have important ramifications in the neurobiology of activity-stimulated pre-synaptic Glu release, the Glu/Gln cycle between astrocytes and neurons, and neuronal Glu-induced excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.13805. © 2017

  14. Novel and high affinity fluorescent ligands for the serotonin transporter based on (s)-citalopram

    DEFF Research Database (Denmark)

    Kumar, Vivek; Rahbek-Clemmensen, Troels; Billesbølle, Christian B

    2014-01-01

    Novel rhodamine-labeled ligands, based on (S)-citalopram, were synthesized and evaluated for uptake inhibition at the human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) and for binding at SERT, in transiently transfected COS7 cells. Compound 14 demons...

  15. Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.

    Science.gov (United States)

    Belenky, Peter A; Moga, Tiberiu G; Brenner, Charles

    2008-03-28

    NAD(+) is an essential coenzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+)-consuming enzymes. Nicotinamide riboside is a recently discovered eukaryotic NAD(+) precursor converted to NAD(+) via the nicotinamide riboside kinase pathway and by nucleosidase activity and nicotinamide salvage. Nicotinamide riboside supplementation of yeast extends replicative life span on high glucose medium. The molecular basis for nicotinamide riboside uptake was unknown in any eukaryote. Here, we show that deletion of a single gene, YOR071C, abrogates nicotinamide riboside uptake without altering nicotinic acid or nicotinamide import. The gene, which is negatively regulated by Sum1, Hst1, and Rfm1, fully restores nicotinamide riboside import and utilization when resupplied to mutant yeast cells. The encoded polypeptide, Nrt1, is a predicted deca-spanning membrane protein related to the thiamine transporter, which functions as a pH-dependent facilitator with a K(m) for nicotinamide riboside of 22 microm. Nrt1-related molecules are conserved in particular fungi, suggesting a similar basis for nicotinamide riboside uptake.

  16. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  17. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Science.gov (United States)

    Stockner, Thomas; Montgomery, Therese R; Kudlacek, Oliver; Weissensteiner, Rene; Ecker, Gerhard F; Freissmuth, Michael; Sitte, Harald H

    2013-01-01

    The high-resolution crystal structure of the leucine transporter (LeuT) is frequently used as a template for homology models of the dopamine transporter (DAT). Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i) when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii) LeuT and DAT share a rather low overall sequence identity (22%) and (iii) the extracellular loop 2 (EL2) of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  18. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    Science.gov (United States)

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  19. Plant High-Affinity Potassium (HKT Transporters Involved in Salinity Tolerance: Structural Insights to Probe Differences in Ion Selectivity

    Directory of Open Access Journals (Sweden)

    Maria Hrmova

    2013-04-01

    Full Text Available High-affinity Potassium Transporters (HKTs belong to an important class of integral membrane proteins (IMPs that facilitate cation transport across the plasma membranes of plant cells. Some members of the HKT protein family have been shown to be critical for salinity tolerance in commercially important crop species, particularly in grains, through exclusion of Na+ ions from sensitive shoot tissues in plants. However, given the number of different HKT proteins expressed in plants, it is likely that different members of this protein family perform in a range of functions. Plant breeders and biotechnologists have attempted to manipulate HKT gene expression through genetic engineering and more conventional plant breeding methods to improve the salinity tolerance of commercially important crop plants. Successful manipulation of a biological trait is more likely to be effective after a thorough understanding of how the trait, genes and proteins are interconnected at the whole plant level. This article examines the current structural and functional knowledge relating to plant HKTs and how their structural features may explain their transport selectivity. We also highlight specific areas where new knowledge of plant HKT transporters is needed. Our goal is to present how knowledge of the structure of HKT proteins is helpful in understanding their function and how this understanding can be an invaluable experimental tool. As such, we assert that accurate structural information of plant IMPs will greatly inform functional studies and will lead to a deeper understanding of plant nutrition, signalling and stress tolerance, all of which represent factors that can be manipulated to improve agricultural productivity.

  20. Plant High-Affinity Potassium (HKT) Transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity.

    Science.gov (United States)

    Waters, Shane; Gilliham, Matthew; Hrmova, Maria

    2013-04-09

    High-affinity Potassium Transporters (HKTs) belong to an important class of integral membrane proteins (IMPs) that facilitate cation transport across the plasma membranes of plant cells. Some members of the HKT protein family have been shown to be critical for salinity tolerance in commercially important crop species, particularly in grains, through exclusion of Na+ ions from sensitive shoot tissues in plants. However, given the number of different HKT proteins expressed in plants, it is likely that different members of this protein family perform in a range of functions. Plant breeders and biotechnologists have attempted to manipulate HKT gene expression through genetic engineering and more conventional plant breeding methods to improve the salinity tolerance of commercially important crop plants. Successful manipulation of a biological trait is more likely to be effective after a thorough understanding of how the trait, genes and proteins are interconnected at the whole plant level. This article examines the current structural and functional knowledge relating to plant HKTs and how their structural features may explain their transport selectivity. We also highlight specific areas where new knowledge of plant HKT transporters is needed. Our goal is to present how knowledge of the structure of HKT proteins is helpful in understanding their function and how this understanding can be an invaluable experimental tool. As such, we assert that accurate structural information of plant IMPs will greatly inform functional studies and will lead to a deeper understanding of plant nutrition, signalling and stress tolerance, all of which represent factors that can be manipulated to improve agricultural productivity.

  1. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron.

    Science.gov (United States)

    Miethke, Marcus; Monteferrante, Carmine G; Marahiel, Mohamed A; van Dijl, Jan Maarten

    2013-10-01

    Efficient uptake of iron is of critical importance for growth and viability of microbial cells. Nevertheless, several mechanisms for iron uptake are not yet clearly defined. Here we report that the widely conserved transporter EfeUOB employs an unprecedented dual-mode mechanism for acquisition of ferrous (Fe[II]) and ferric (Fe[III]) iron in the bacterium Bacillus subtilis. We show that the binding protein EfeO and the permease EfeU form a minimal complex for ferric iron uptake. The third component EfeB is a hemoprotein that oxidizes ferrous iron to ferric iron for uptake by EfeUO. Accordingly, EfeB promotes growth under microaerobic conditions where ferrous iron is more abundant. Notably, EfeB also fulfills a vital role in cell envelope stress protection by eliminating reactive oxygen species that accumulate in the presence of ferrous iron. In conclusion, the EfeUOB system contributes to the high-affinity uptake of iron that is available in two different oxidation states. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Regulation of the High-Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine

    Institute of Scientific and Technical Information of China (English)

    Chao Cai; Xue-Qiang Zhao; Yong-Guan Zhu; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2007-01-01

    Nitrate is a major nitrogen (N) source for most crops.Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels.Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency.The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots.Wheat seedlings grown in nutrient solution containing 2 mmollL nitrate as the only nitrogen source for 2 weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h.Treated wheat plants were then divided into two groups.One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L 15 N-labeled nitrate.The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate.Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction.When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced.These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media.Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.

  3. Rhodamine-labeled 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane analogues as high-affinity fluorescent probes for the dopamine transporter

    DEFF Research Database (Denmark)

    Cha, Joo Hwan; Zou, Mu-Fa; Adkins, Erika M

    2005-01-01

    Novel fluorescent ligands were synthesized to identify a high-affinity probe that would enable visualization of the dopamine transporter (DAT) in living cells. Fluorescent tags were extended from the N- or 2-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane, using an ethylamino lin...

  4. Monomeric TonB and the Ton box are required for the Formation of a High-Affinity Transporter-TonB Complex†

    Science.gov (United States)

    Freed, Daniel M.; Lukasik, Stephen M.; Sikora, Arthur; Mokdad, Audrey; Cafiso, David S.

    2013-01-01

    The energy-dependent uptake of trace nutrients by Gram-negative bacteria involves the coupling of an outer membrane transport protein to the transperiplasmic protein TonB. In the present study, a soluble construct of Escherichia coli TonB (residues 33–239) was used to determine the affinity of TonB to the outer membrane transporters BtuB, FecA and FhuA. Using fluorescence anisotropy, TonB(33–239) was found to bind with high-affinity (tens of nM) to both BtuB and FhuA; however, no high-affinity binding was observed to FecA. In BtuB, the high affinity binding of TonB(33–239) was eliminated by mutations in the Ton box, which yield transport-defective protein, or by the addition of a Colicin E3 fragment, which stabilizes the Ton box in a folded state. These results indicate that transport requires a high-affinity transporter-TonB interaction that is mediated by the Ton box. Characterization of TonB(33–239) using double electron-electron resonance (DEER) demonstrates that a significant population of TonB(33–239) exists as a dimer; moreover, interspin distances are in approximate agreement with interlocked dimers observed previously by crystallography for shorter TonB fragments. When bound to the outer membrane transporter, DEER shows that the TonB(33–239) dimer is converted to a monomeric form, suggesting that a dimer-monomer conversion takes place at the outer membrane during the TonB-dependent transport cycle. PMID:23517233

  5. Monomeric TonB and the Ton box are required for the formation of a high-affinity transporter-TonB complex.

    Science.gov (United States)

    Freed, Daniel M; Lukasik, Stephen M; Sikora, Arthur; Mokdad, Audrey; Cafiso, David S

    2013-04-16

    The energy-dependent uptake of trace nutrients by Gram-negative bacteria involves the coupling of an outer membrane transport protein to the transperiplasmic protein TonB. In this study, a soluble construct of Escherichia coli TonB (residues 33-239) was used to determine the affinity of TonB for outer membrane transporters BtuB, FecA, and FhuA. Using fluorescence anisotropy, TonB(33-239) was found to bind with high affinity (tens of nanomolar) to both BtuB and FhuA; however, no high-affinity binding to FecA was observed. In BtuB, the high-affinity binding of TonB(33-239) was eliminated by mutations in the Ton box, which yield transport-defective protein, or by the addition of a Colicin E3 fragment, which stabilizes the Ton box in a folded state. These results indicate that transport requires a high-affinity transporter-TonB interaction that is mediated by the Ton box. Characterization of TonB(33-239) using double electron-electron resonance (DEER) demonstrates that a significant population of TonB(33-239) exists as a dimer; moreover, interspin distances are in approximate agreement with interlocked dimers observed previously by crystallography for shorter TonB fragments. When the TonB(33-239) dimer is bound to the outer membrane transporter, DEER shows that the TonB(33-239) dimer is converted to a monomeric form, suggesting that a dimer-monomer conversion takes place at the outer membrane during the TonB-dependent transport cycle.

  6. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  7. Centrifuge-induced hypergravity and glutamate efflux by reversal of high-affinity, sodium-dependent transporters from rat brain synaptosomes.

    Science.gov (United States)

    Borisova, T.; Himmelreich, N.

    Glutamate uptake by high affinity sodium-dependent glutamate transporters is essential for termination of the synaptic transmission. Glutamate transporters may also contribute to an increase in extracellular glutamate. Glutamate efflux can occur by reversal of the sodium-dependent glutamate transporters during ATP depletion and dissipation of the sodium gradient across the cell membrane. Depolarization-induced calcium independent release of neurotransmitter from synaptosomal cytosolic pool is Na+-dependent and due to reverse of the neurotransmitter transporters also. We used monovalent organic cations N-methyl-D-glucamine (NMDG) to replace extracellular sodium, suggesting that the reducing of Na+ elucidate further the mechanism underlying Ca2+-independent glutamate release. A reduction in extracellular sodium would facilitate reversal of sodium-dependent transporters with extrusion of glutamate. We have compared the basal release of glutamate in Ca2+-free Na+-supplemented and NMDG-supplemented medium in control and after exposure of animals to long-arm centrifuge-induced hypergravity (ten G, during one hour). Replacement of sodium by NMDG enhanced basal level of neurotransmitter. The value of basal level increased to 110± 4% and 140± 2% in the medium with NMDG in comparison with Na+ under the control and hypergravity conditions, respectively. It is likely to reflect the enhancement of the neurotransmitter level in cytosolic pool. Thermodynamic considerations show that the extracellular level of a amino acid neurotransmitter, such as glutamate, that can be generated by transporter reversal are directly proportional to the intracellular concentration of the intracellular concentration of amino acid. KCl-stimulated glutamate release from cytosolic pool increased not statistically after hypergravity loading. We examined the effects of transporter inhibitors DL-threo-beta-benzyloxyaspartate ( DL-TBOA) on the release to elucidate whether reverse transport via the

  8. Effect of P Availability on Temporal Dynamics of Carbon Allocation and Glomus intraradices High-Affinity P Transporter Gene Induction in Arbuscular Mycorrhiza

    Science.gov (United States)

    Olsson, Pål Axel; Hansson, Maria C.; Burleigh, Stephen H.

    2006-01-01

    Arbuscular mycorrhizal (AM) fungi depend on a C supply from the plant host and simultaneously provide phosphorus to the colonized plant. We therefore evaluated the influence of external P on C allocation in monoxenic Daucus carota-Glomus intraradices cultures in an AM symbiosis. Fungal hyphae proliferated from a solid minimal medium containing colonized roots into a C-free liquid minimal medium with high or low P availability. Roots and hyphae were harvested periodically, and the flow of C from roots to fungus was measured by isotope labeling. We also measured induction of a G. intraradices high-affinity P transporter to estimate fungal P demand. The prevailing hypothesis is that high P availability reduces mycorrhizal fungal growth, but we found that C flow to the fungus was initially highest at the high P level. Only at later harvests, after 100 days of in vitro culture, were C flow and fungal growth limited at high P availability. Thus, AM fungi can benefit initially from P-enriched environments in terms of plant C allocation. As expected, the P transporter induction was significantly greater at low P availability and greatest in very young mycelia. We found no direct link between C flow to the fungus and the P transporter transcription level, which indicates that a good C supply is not essential for induction of the high-affinity P transporter. We describe a mechanism by which P regulates symbiotic C allocation, and we discuss how this mechanism may have evolved in a competitive environment. PMID:16751522

  9. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Hall, Lena Sørensen;

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslin......Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode...

  10. The Glucose Sensor-Like Protein Hxs1 Is a High-Affinity Glucose Transporter and Required for Virulence in Cryptococcus neoformans

    Science.gov (United States)

    Baker, Gregory M.; Fahmy, Hany; Jiang, Linghuo; Xue, Chaoyang

    2013-01-01

    Cryptococcus is a major fungal pathogen that frequently causes systemic infection in patients with compromised immunity. Glucose, an important signal molecule and the preferred carbon source for Cryptococcus, plays a critical role in fungal development and virulence. Cryptococcus contains more than 50 genes sharing high sequence homology with hexose transporters in Saccharomyces cerevisiae. However, there is no report on their function in glucose sensing or transport. In this study, we investigated two hexose transporter-like proteins (Hxs1 and Hxs2) in Cryptococcus that share the highest sequence identity with the glucose sensors Snf3 and Rgt2 in S. cerevisiae. The expression of HXS1 is repressed by high glucose, while the HXS2 expression is not regulated by glucose. Functional studies showed that Hxs1 is required for fungal resistance to oxidative stress and fungal virulence. The hxs1Δ mutant exhibited a significant reduction in glucose uptake activity, indicating that Hxs1 is required for glucose uptake. Heterologous expression of Cryptococcus HXS1 rendered the S. cerevisiae mutant lacking all 20 hexose transporters a high glucose uptake activity, demonstrating that Hxs1 functions as a glucose transporter. Heterologous expression of HXS1 in the snf3Δ rgt2Δ double mutant did not complement its growth in YPD medium containing the respiration inhibitor antimycin A, suggesting that Hxs1 may not function as a glucose sensor. Taken together, our results demonstrate that Hxs1 is a high-affinity glucose transporter and required for fungal virulence. PMID:23691177

  11. Arg-425 of the citrate transporter CitP is responsible for high affinity binding of di- and tricarboxylatese

    NARCIS (Netherlands)

    Bandell, M; Lolkema, JS

    2000-01-01

    The citrate transporter of Leuconostoc mesenteroides (CitP) catalyzes exchange of divalent anionic citrate from the medium for monovalent anionic lactate, which is an end product of citrate degradation. The exchange generates a membrane potential and thus metabolic energy for the cell. The mechanism

  12. Arg-425 of the Citrate Transporter CitP Is Responsible for High Affinity Binding of Di- and Tricarboxylates

    NARCIS (Netherlands)

    Bandell, Michael; Lolkema, Juke S.

    2000-01-01

    The citrate transporter of Leuconostoc mesenteroides (CitP) catalyzes exchange of divalent anionic citrate from the medium for monovalent anionic lactate, which is an end product of citrate degradation. The exchange generates a membrane potential and thus metabolic energy for the cell. The mechanism

  13. Glucose Transport in the Extremely Thermoacidophilic Sulfolobus solfataricus Involves a High-Affinity Membrane-Integrated Binding Protein

    NARCIS (Netherlands)

    Albers, Sonja-V.; Elferink, Marieke G.L.; Charlebois, Robert L.; Sensen, Christoph W.; Driessen, Arnold J.M.; Konings, Wil N.

    1999-01-01

    The archaeon Sulfolobus solfataricus grows optimally at 80°C and pH 2.5 to 3.5 on carbon sources such as yeast extracts, tryptone, and various sugars. Cells rapidly accumulate glucose. This transport activity involves a membrane-bound glucose-binding protein that interacts with its substrate with

  14. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron

    NARCIS (Netherlands)

    Miethke, Marcus; Monteferrante, Carmine G.; Marahiel, Mohamed A.; van Dijl, Jan Maarten

    2013-01-01

    Efficient uptake of iron is of critical importance for growth and viability of microbial cells. Nevertheless, several mechanisms for iron uptake are not yet clearly defined. Here we report that the widely conserved transporter EfeUOB employs an unprecedented dual-mode mechanism for acquisition of

  15. The Prostaglandin Transporter: Eicosanoid Reuptake, Control of Signaling, and Development of High-Affinity Inhibitors as Drug Candidates.

    Science.gov (United States)

    Schuster, Victor L; Chi, Yuling; Lu, Run

    2015-01-01

    We discovered the prostaglandin transporter (PGT) and cloned the human cDNA and gene. PGT transports extracellular prostaglandins (PGs) into the cytoplasm for enzymatic inactivation. PGT knockout mice have elevated prostaglandin E2 (PGE2) and neonatal patent ductus arteriosus, which reflects PGT's control over PGE2 signaling at EP1/EP4 cell-surface receptors. Interestingly, rescued PGT knockout pups have a nearly normal phenotype, as do human PGT nulls. Given the benign phenotype of PGT genetic nulls, and because PGs are useful medicines, we have approached PGT as a drug target. Triazine library screening yielded a lead compound of inhibitory constant 50% (IC50) = 3.7 μM, which we developed into a better inhibitor of IC50 378 nM. Further structural improvements have yielded 26 rationally designed derivatives with IC50 < 100 nM. The therapeutic approach of increasing endogenous PGs by inhibiting PGT offers promise in diseases such as pulmonary hypertension and obesity.

  16. The diamidine diminazene aceturate is a substrate for the high-affinity pentamidine transporter: implications for the development of high resistance levels in trypanosomes.

    Science.gov (United States)

    Teka, Ibrahim A; Kazibwe, Anne J N; El-Sabbagh, Nasser; Al-Salabi, Mohammed I; Ward, Christopher P; Eze, Anthonius A; Munday, Jane C; Mäser, Pascal; Matovu, Enock; Barrett, Michael P; de Koning, Harry P

    2011-07-01

    African trypanosomiasis is a disease of humans and livestock in many areas south of the Sahara. Resistance to the few existing drugs is a major impediment to the control of these diseases, and we investigated how resistance to the main veterinary drug diminazene aceturate correlates with changes in drug transport in resistant strains. The strain tbat1(-/-), lacking the TbAT1/P2 aminopurine transporter implicated previously in diminazene transport, was adapted to higher levels of diminazene resistance. The resulting cell line was designated ABR and was highly cross-resistant to other diamidines and moderately resistant to cymelarsan. Procyclic trypanosomes were shown to be a convenient model to study diamidine uptake in Trypanosoma brucei brucei given the lack of TbAT1/P2 and a 10-fold higher activity of the high-affinity pentamidine transporter (HAPT1). Diminazene could be transported by HAPT1 in procyclic trypanosomes. This drug transport activity was lacking in the ABR line, as reported previously for the pentamidine-adapted line B48. The K(m) for diminazene transport in bloodstream tbat1(-/-) trypanosomes was consistent with uptake by HAPT1. Diminazene transport in ABR and B48 cells was reduced compared with tbat1(-/-), but their resistance phenotype was different: B48 displayed higher levels of resistance to pentamidine and the melaminophenyl arsenicals, whereas ABR displayed higher resistance to diminazene. These results establish a loss of HAPT1 function as a contributing factor to diminazene resistance but equally demonstrate for the first time that adaptations other than those determining the initial rates of drug uptake contribute to diamidine and arsenical resistance in African trypanosomes.

  17. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Ramon Wahl

    2010-02-01

    Full Text Available Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1 from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host.

  18. The solute carrier family 1 (glial high affinity glutamate transporter), member 2 gene, SLC1A2, rs3794087 variant and assessment risk for restless legs syndrome.

    Science.gov (United States)

    Jiménez-Jiménez, Félix Javier; Alonso-Navarro, Hortensia; Martínez, Carmen; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Rojo-Sebastián, Ana; Rubio, Lluisa; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-de-la-Fuente, Belén; Arroyo-Solera, Margarita; García-Martín, Elena; Agúndez, José A G

    2014-02-01

    A glutamatergic dysfunction has been postulated to play a role in restless legs syndrome (RLS) pathophysiology, as glutamate concentrations have been found to increase in the thalamus of RLS patients. The aim of our study was to investigate the possible association between the single nucleotide polymorphism (SNP) rs3794087 in the solute carrier family 1 (glial high affinity glutamate transporter), member 2 gene, SLC1A2, related with glutamate transport and the risk for RLS. We studied the allelic and genotype frequencies of the SNP rs3794087 in 205 patients with RLS and 328 healthy controls using TaqMan genotyping. The rs3794087 genotype and allelic frequencies did not significantly differ between patients with RLS and controls and were unrelated with the age at onset of RLS, gender, and family history of RLS. The results of our study suggest that the rs3794087 polymorphism is not related to the risk for RLS. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Expression of Brassica napus L. γ-Glutamylcysteine Synthetase and Low-and High-Affinity Sulfate Transporters in Response to Excess Cadmium

    Institute of Scientific and Technical Information of China (English)

    Xin SUN; Xue-Mei SUN; Zhi-Min YANG; Shao-Qiong LI; Jin WANG; Song-Hua WANG

    2005-01-01

    In both the roots and leaves ofBrassica napus L. cv. Youyan No. 8 under treatment with 30 μmol/L Cd, massive production of non-protein thiols (NPT; mainly containing glutathione (GSH) and phytochelatins (PCs)) was induced, together with an increase in γ-glutamylcysteine synthetase (γ-ECS)mRNA transcripts. Because γ-ECS is the key enzyme catalyzing the first step in GSH biosynthesis, which, in turn, is converted to PCs, the Cd-induced increase in γ-ECS expression may be responsible for the observed increase in the production of NPT. Using a quantitative reverse transcription polymerase chain reaction (RT-PCR) approach, the expression of genes encoding a putative low-affinity sulfate transporter (LAST) and a putative high-affinity sulfate transporter (HAST) was determined at the transcriptional level. The RT-PCR analysis of relative transcript amounts indicates that the LAST gene in B. napus leaves showed a constitutive expression, which was hardly affected by Cd treatment. However, treatment with 30 μmol/L Cd for 2 or 3 d induced a marked increase in the expression of LAST in roots. Transcriptional expression of the HAST gene occurred in roots, but not in leaves. The expression of HAST only in the roots suggests that it has a specific function in sulfate uptake from soil and that the putative LAST may be responsible for the transport of sulfate from the roots to the shoots, as well as for the uptake of sulfate from soil. These results indicate that changes in transcriptional expression for sulfate transporters were required for the increased demand for sulfate during Cd stress.

  20. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1.

    Science.gov (United States)

    Li, Guowei; Tillard, Pascal; Gojon, Alain; Maurel, Christophe

    2016-04-01

    The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.1, nrt1.2, nrt1.5 and nrt2.1), signaling (nrt1.1 and nrt2.1) and metabolism (nia) mutants in Arabidopsis, grown under various NO3(-) conditions. First, a strong positive relationship between Lpr and NO3(-) accumulation, in shoots rather than in roots, was revealed. Secondly, a specific 30% reduction of Lpr in nrt2.1 plants unraveled a major role for the high-affinity NO3(-) transporter NRT2.1 in increasing Lpr These results indicate that NO3(-)signaling rather than nitrogen assimilation products governs Lpr in Arabidopsis. Quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assays (ELISAs) were used to investigate the effects of NO3(-) availability on plasma membrane aquaporin (plasma membrane intrinsic protein; PIP) expression. Whereas PIP regulation mostly occurs at the post-translational level in wild-type plants, a regulation of PIPs at both the transcriptional and translational levels was uncovered in nrt2.1 plants. In conclusion, this work reveals that control of Arabidopsis Lpr and PIP functions by NO3(-) involves novel shoot to root signaling and NRT2.1-dependent functions.

  1. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status.

    Science.gov (United States)

    Bao, Aili; Liang, Zhijun; Zhao, Zhuqing; Cai, Hongmei

    2015-04-23

    AMT1-3 encodes the high affinity NH₄⁺ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants.

  2. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status

    Directory of Open Access Journals (Sweden)

    Aili Bao

    2015-04-01

    Full Text Available AMT1-3 encodes the high affinity NH4+ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants.

  3. Time-resolved investigation of molecular components involved in the induction of NO3- high affinity transport system in maize roots

    Directory of Open Access Journals (Sweden)

    Youry Pii

    2016-11-01

    Full Text Available The induction, i.e. the rapid increase of nitrate (NO3- uptake following the exposure of roots to the anion, was studied integrating physiological and molecular levels in maize roots. Responses to NO3- treatment were characterized in terms of changes in NO3- uptake rate and plasma membrane (PM H+-ATPase activity and related to transcriptional and protein profiles of NRT2, NRT3 and PM H+-ATPase gene families. The behaviour of transcripts and proteins of ZmNRT2s and ZmNRT3s suggested that the regulation of the activity of inducible high-affinity transport system (iHATS is mainly based on the transcriptional/translational modulation of the accessory protein ZmNRT3.1A. Furthermore, ZmNRT2.1 and ZmNRT3.1A appear to be associated in a ∼ 150 kDa oligomer. The expression trend during the induction of the 11 identified PM H+-ATPase transcripts indicates that those mainly involved in the response to NO3- treatment are ZmHA2 and ZmHA4. Yet, partial correlation between the gene expression, protein levels and enzyme activity suggests an involvement of post-transcriptional and post-translational mechanisms of regulation. A nondenaturing Deriphat-PAGE approach allowed demonstrating for the first time that PM H+-ATPase can occur in vivo as hexameric complex together with the already described monomeric and dimeric forms.

  4. Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation.

    Science.gov (United States)

    Boscari, Alexandre; Van de Sype, Ghislaine; Le Rudulier, Daniel; Mandon, Karine

    2006-08-01

    Sinorhizobium meliloti possesses several betaine transporters to cope with salt stress, and BetS represents a crucial high-affinity glycine and proline betaine uptake system involved in the rapid acquisition of betaines by cells subjected to osmotic upshock. Using a transcriptional lacZ (beta-galactosidase) fusion, we showed that betS is expressed during the establishment of the symbiosis and in mature nitrogen-fixing nodules. However, neither Nod nor Fix phenotypes were impaired in a betS mutant. BetS is functional in isolated bacteroids, and its activity is strongly activated by high osmolarity. In bacteroids from a betS mutant, glycine betaine and proline betaine uptake was reduced by 85 to 65%, indicating that BetS is a major component of the overall betaine uptake activity in bacteroids in response to osmotic stress. Upon betS overexpression (strain UNA349) in free-living cells, glycine betaine transport was 2.3-fold higher than in the wild-type strain. Interestingly, the accumulation of proline betaine, the endogenous betaine synthesized by alfalfa plants, was 41% higher in UNA349 bacteroids from alfalfa plants subjected to 1 week of salinization (0.3 M NaCl) than in wild-type bacteroids. In parallel, a much better maintenance of nitrogen fixation activity was observed in 7-day-salinized plants nodulated with the overexpressing strain than in wild-type nodulated plants. Taken altogether, these results are consistent with the major role of BetS as an emergency system involved in the rapid uptake of betaines in isolated and in planta osmotically stressed bacteroids of S. meliloti.

  5. The Human Carnitine Transporter SLC22A16 Mediates High Affinity Uptake of the Anticancer Polyamine Analogue Bleomycin-A5*

    Science.gov (United States)

    Aouida, Mustapha; Poulin, Richard; Ramotar, Dindial

    2010-01-01

    Bleomycin is used in combination with other antineoplastic agents to effectively treat lymphomas, testicular carcinomas, and squamous cell carcinomas of the cervix, head, and neck. However, resistance to bleomycin remains a persistent limitation in exploiting the full therapeutic benefit of the drug with other types of cancers. Previously, we documented that the Saccharomyces cerevisiae l-carnitine transporter Agp2 is responsible for the high affinity uptake of polyamines and of the polyamine analogue bleomycin-A5. Herein, we document that the human l-carnitine transporter hCT2 encoded by the SLC22A16 gene is involved in bleomycin-A5 uptake, as well as polyamines. We show that NT2/D1 human testicular cancer cells, which highly express hCT2, are extremely sensitive to bleomycin-A5, whereas HCT116 human colon carcinoma cells devoid of detectable hCT2 expression or MCF-7 human breast cancer cells that only weakly express the permease showed striking resistance to the drug. NT2/D1 cells accumulated fluorescein-labeled bleomycin-A5 to substantially higher levels than HCT116 cells. Moreover, l-carnitine protected NT2/D1 cells from the lethal effects of bleomycin-A5 by preventing its influx, and siRNA targeted to hCT2 induced resistance to bleomycin-A5-dependent genotoxicity. Furthermore, hCT2 overexpression induced by transient transfection of a functional hCT2-GFP fusion protein sensitized HCT116 cells to bleomycin-A5. Collectively, our data strongly suggest that hCT2 can mediate bleomycin-A5 and polyamine uptake, and that the rate of bleomycin-A5 accumulation may account for the differential response to the drug in patients. PMID:20037140

  6. The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5.

    Science.gov (United States)

    Aouida, Mustapha; Poulin, Richard; Ramotar, Dindial

    2010-02-26

    Bleomycin is used in combination with other antineoplastic agents to effectively treat lymphomas, testicular carcinomas, and squamous cell carcinomas of the cervix, head, and neck. However, resistance to bleomycin remains a persistent limitation in exploiting the full therapeutic benefit of the drug with other types of cancers. Previously, we documented that the Saccharomyces cerevisiae L-carnitine transporter Agp2 is responsible for the high affinity uptake of polyamines and of the polyamine analogue bleomycin-A5. Herein, we document that the human L-carnitine transporter hCT2 encoded by the SLC22A16 gene is involved in bleomycin-A5 uptake, as well as polyamines. We show that NT2/D1 human testicular cancer cells, which highly express hCT2, are extremely sensitive to bleomycin-A5, whereas HCT116 human colon carcinoma cells devoid of detectable hCT2 expression or MCF-7 human breast cancer cells that only weakly express the permease showed striking resistance to the drug. NT2/D1 cells accumulated fluorescein-labeled bleomycin-A5 to substantially higher levels than HCT116 cells. Moreover, L-carnitine protected NT2/D1 cells from the lethal effects of bleomycin-A5 by preventing its influx, and siRNA targeted to hCT2 induced resistance to bleomycin-A5-dependent genotoxicity. Furthermore, hCT2 overexpression induced by transient transfection of a functional hCT2-GFP fusion protein sensitized HCT116 cells to bleomycin-A5. Collectively, our data strongly suggest that hCT2 can mediate bleomycin-A5 and polyamine uptake, and that the rate of bleomycin-A5 accumulation may account for the differential response to the drug in patients.

  7. Time-Resolved Investigation of Molecular Components Involved in the Induction of NO3– High Affinity Transport System in Maize Roots

    Science.gov (United States)

    Pii, Youry; Alessandrini, Massimiliano; Dall’Osto, Luca; Guardini, Katia; Prinsi, Bhakti; Espen, Luca; Zamboni, Anita; Varanini, Zeno

    2016-01-01

    The induction, i.e., the rapid increase of nitrate (NO3–) uptake following the exposure of roots to the anion, was studied integrating physiological and molecular levels in maize roots. Responses to NO3– treatment were characterized in terms of changes in NO3– uptake rate and plasma membrane (PM) H+-ATPase activity and related to transcriptional and protein profiles of NRT2, NRT3, and PM H+-ATPase gene families. The behavior of transcripts and proteins of ZmNRT2s and ZmNRT3s suggested that the regulation of the activity of inducible high-affinity transport system (iHATS) is mainly based on the transcriptional/translational modulation of the accessory protein ZmNRT3.1A. Furthermore, ZmNRT2.1 and ZmNRT3.1A appear to be associated in a ∼150 kDa oligomer. The expression trend during the induction of the 11 identified PM H+-ATPase transcripts indicates that those mainly involved in the response to NO3– treatment are ZmHA2 and ZmHA4. Yet, partial correlation between the gene expression, protein levels and enzyme activity suggests an involvement of post-transcriptional and post-translational mechanisms of regulation. A non-denaturing Deriphat-PAGE approach allowed demonstrating for the first time that PM H+-ATPase can occur in vivo as hexameric complex together with the already described monomeric and dimeric forms. PMID:27877183

  8. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms.

    Science.gov (United States)

    Santi, Simonetta; Locci, Geraldine; Monte, Rossella; Pinton, Roberto; Varanini, Zeno

    2003-08-01

    An investigation was carried out to assess the effect of nitrate supply on the root plasma membrane (PM) H+-ATPase of etiolated maize (Zea mays L.) seedlings grown in hydroponics. The treatment induced higher uptake rates of the anion and the expression of a putative high-affinity nitrate transporter gene (ZmNRT2.1), the first to be identified in maize. Root PM H+-ATPase activity displayed a similar time-course pattern as that of net nitrate uptake and investigations were carried out to determine which of the two isoforms reported to date in maize, MHA1 and 2, responded to the treatment. MHA1 was not expressed under the conditions analysed. Genome analysis revealed that MHA2, described as the most abundant form in all maize tissues, was not present in the maize hybrid investigated, but a similar form was found instead and named MHA3. A second gene (named MHA4) was also identified and partially sequenced. Both genes, classified as members of the PM H+-ATPase subfamily II, responded to nitrate supply, although to different degrees: MHA4, in particular, proved more sensitive than MHA3, with a greater up- and down-regulation in response to the treatment. Increased expression of subfamily II genes resulted in higher steady-state levels of the enzyme in the root tissues and enhanced ATP-hydrolysing activity. The results support the idea that greater proton-pumping activity is required when nitrate inflow increases and suggest that nitrate may be the signal triggering the expression of the two members of PM H+-ATPase subfamily II.

  9. Time-Resolved Investigation of Molecular Components Involved in the Induction of [Formula: see text] High Affinity Transport System in Maize Roots.

    Science.gov (United States)

    Pii, Youry; Alessandrini, Massimiliano; Dall'Osto, Luca; Guardini, Katia; Prinsi, Bhakti; Espen, Luca; Zamboni, Anita; Varanini, Zeno

    2016-01-01

    The induction, i.e., the rapid increase of nitrate ([Formula: see text]) uptake following the exposure of roots to the anion, was studied integrating physiological and molecular levels in maize roots. Responses to [Formula: see text] treatment were characterized in terms of changes in [Formula: see text] uptake rate and plasma membrane (PM) H(+)-ATPase activity and related to transcriptional and protein profiles of NRT2, NRT3, and PM H(+)-ATPase gene families. The behavior of transcripts and proteins of ZmNRT2s and ZmNRT3s suggested that the regulation of the activity of inducible high-affinity transport system (iHATS) is mainly based on the transcriptional/translational modulation of the accessory protein ZmNRT3.1A. Furthermore, ZmNRT2.1 and ZmNRT3.1A appear to be associated in a ∼150 kDa oligomer. The expression trend during the induction of the 11 identified PM H(+)-ATPase transcripts indicates that those mainly involved in the response to [Formula: see text] treatment are ZmHA2 and ZmHA4. Yet, partial correlation between the gene expression, protein levels and enzyme activity suggests an involvement of post-transcriptional and post-translational mechanisms of regulation. A non-denaturing Deriphat-PAGE approach allowed demonstrating for the first time that PM H(+)-ATPase can occur in vivo as hexameric complex together with the already described monomeric and dimeric forms.

  10. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level. Th

  11. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation.

    Science.gov (United States)

    Milner, Matthew J; Craft, Eric; Yamaji, Naoki; Koyama, Emi; Ma, Jian Feng; Kochian, Leon V

    2012-07-01

    • In this paper, we conducted a detailed analysis of the ZIP family transporter, NcZNT1, in the zinc (Zn)/cadmium (Cd) hyperaccumulating plant species, Noccaea caerulescens, formerly known as Thlaspi caerulescens. NcZNT1 was previously suggested to be the primary root Zn/Cd uptake transporter. Both a characterization of NcZNT1 transport function in planta and in heterologous systems, and an analysis of NcZNT1 gene expression and NcZNT1 protein localization were carried out. • We show that NcZNT1 is not only expressed in the root epidermis, but also is highly expressed in the root and shoot vasculature, suggesting a role in long-distance metal transport. Also, NcZNT1 was found to be a plasma membrane transporter that mediates Zn but not Cd, iron (Fe), manganese (Mn) or copper (Cu) uptake into plant cells. • Two novel regions of the NcZNT1 promoter were identified which may be involved in both the hyperexpression of NcZNT1 and its ability to be regulated by plant Zn status. • In conclusion, we demonstrate here that NcZNT1 plays a role in Zn and not Cd uptake from the soil, and based on its strong expression in the root and shoot vasculature, could be involved in long-distance transport of Zn from the root to the shoot via the xylem. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  12. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K

    2005-01-01

    in delivering iron to cells during formation of the tubular epithelial cells of the primordial kidney. No cellular receptor for NGAL has been described. We show here that megalin, a member of the low-density lipoprotein receptor family expressed in polarized epithelia, binds NGAL with high affinity, as shown...

  13. Semax, an ACTH4-10 peptide analog with high affinity for copper(II) ion and protective ability against metal induced cell toxicity.

    Science.gov (United States)

    Tabbì, Giovanni; Magrì, Antonio; Giuffrida, Alessandro; Lanza, Valeria; Pappalardo, Giuseppe; Naletova, Irina; Nicoletti, Vincenzo Giuseppe; Attanasio, Francesco; Rizzarelli, Enrico

    2015-01-01

    Heptapeptide Semax, encompassing the sequence 4-7 of N-terminal domain of the adrenocorticotropic hormone (ACTH) and a C-terminal Pro-Gly-Pro tripeptide, belongs to a short regulatory peptides family. This compound has been found to affect learning processes and to exert marked neuroprotective activities on cognitive brain functions. Dys-homeostasis of metal ions is involved in several neurodegenerative disorders and growing evidences have showed that brain is a specialized organ able to concentrate metal ions. In this work, the metal binding ability and protective activity of Semax and its metal complexes were studied. The equilibrium study clearly demonstrated the presence of three complex species. Two minor species [CuL] and [CuLH-1]- co-exist together with the [CuLH-2]2- in the pH range from 3.6 to 5. From pH5 the [CuLH-2]2- species becomes predominant with the donor atoms around copper arranged in a 4N planar coordination mode. Noteworthy, a reduced copper induced cytotoxicity was observed in the presence of Semax by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on a SHSY5Y neuroblastoma and RBE4 endothelial cell lines.

  14. High-affinity glutamate transporter and glutamine synthetase content in longissimus dorsi and adipose tissues of growing Angus steers differs among suckling, weanling, backgrounding, and finishing production stages.

    Science.gov (United States)

    Matthews, J C; Huang, J; Rentfrow, G

    2016-03-01

    Skeletal muscle and adipose tissues play important roles in maintaining whole-body Glu and N homeostasis by the uptake of Glu and release of Gln. To test the hypothesis that expression of high-affinity Glu transporters (GLAST1, EAAT4, EAAC1, GLT-1) and glutamine synthetase (GS) would increase in longissimus dorsi and adipose tissue of newborn Angus steers randomly assigned ( = 6) to develop through suckling (S; 32 d) and/or weanling (W; 184 d), backgrounding (B; 248 d), and finishing (F; 423 d) production stages. Carcass quality was determined at slaughter to verify shifts in adipose and lean deposition with development. Expression of mRNA (RT-PCR/Southern) and relative protein abundance (Western analysis) were determined in tissue homogenates isolated from longissimus dorsi, and kidney and subcutaneous adipose. The effect of production stage or tissue type on carcass and protein abundance was assessed by 1-way ANOVA using the GLM procedure of SAS, and Fisher's protected LSD procedure was used to separate data means. Neither GLAST1 nor EAAT4 mRNA or protein was detected. EAAC1, GLT-1, and GS mRNA were identified in all tissues, but GLT-1 and GS protein were not detected in kidney or subcutaneous adipose, and GS protein was not detected in longissimus dorsi. The EAAC1 content of subcutaneous ( = 0.06) and kidney ( = 0.02) adipose was 2 times greater in B and F than W steers, whereas GS was 5 times greater ( F). For longissimus dorsi, EAAC1 ( W > B = F, S = W > B = F, respectively). Within F steers, EAAC1 and GLT-1 mRNA was expressed by subcutaneous, kidney, omental, mesenchymal, and intramuscular adipose tissues, whereas GS mRNA was expressed by all except for intramuscular. Only EAAC1 protein was detected in any adipose tissue, with EAAC1 content being 104% and 112% greater ( adipose, respectively, and not differing ( > 0.45) from omental or mesenchymal adipose. These data demonstrate (1) longissimus dorsi and adipose tissues of steers developing through typical

  15. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  16. Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein.

    Science.gov (United States)

    De Ricco, Riccardo; Valensin, Daniela; Dell'Acqua, Simone; Casella, Luigi; Dorlet, Pierre; Faller, Peter; Hureau, Christelle

    2015-05-18

    Parkinson's disease (PD) etiology is closely linked to the aggregation of α-synuclein (αS). Copper(II) ions can bind to αS and may impact its aggregation propensity. As a consequence, deciphering the exact mode of Cu(II) binding to αS is important in the PD context. Several previous reports have shown some discrepancies in the description of the main Cu(II) site in αS, which are resolved here by a new scenario. Three Cu(II) species can be encountered, depending on the pH and the Cu:αS ratio. At low pH, Cu(II) is bound to the N-terminal part of the protein by the N-terminal amine, the adjacent deprotonated amide group of the Asp2 residue, and the carboxylate group from the side chain of the same Asp2. At pH 7.4, the imidazole group of remote His50 occupies the fourth labile equatorial position of the previous site. At high Cu(II):αS ratio (>1), His50 leaves the coordination sphere of the first Cu site centered at the N-terminus, because a second weak affinity site centered on His50 is now filled with Cu(II). In this new scheme, the remote His plays the role of a molecular switch and it can be anticipated that the binding of the remote His to the Cu(II) ion can induce different folding of the αS protein, having various aggregation propensity.

  17. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.

    Science.gov (United States)

    Smart, Jonathan P; Cliff, Matthew J; Kelly, David J

    2009-11-01

    The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium.

  18. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    OpenAIRE

    Choveaux David L; Przyborski Jude M; Goldring JP

    2012-01-01

    Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper st...

  19. Placenta Copper Transport Proteins in Preeclampsia

    Science.gov (United States)

    Placental insufficiency underlying preeclampsia (PE) is associated with impaired placental angiogenesis. As copper (Cu) is essential to angiogenesis, we investigated differences in the expression of placental Cu transporters Menkes (ATP7A), Wilsons (ATP7B) and the Cu chaperone (CCS) for superoxide d...

  20. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions.

    Science.gov (United States)

    Gurav, Ashish; Sivaprakasam, Sathish; Bhutia, Yangzom D; Boettger, Thomas; Singh, Nagendra; Ganapathy, Vadivel

    2015-07-15

    Mammalian colon harbours trillions of bacteria under physiological conditions; this symbiosis is made possible because of a tolerized response from the mucosal immune system. The mechanisms underlying this tolerogenic phenomenon remain poorly understood. In the present study we show that Slc5a8 (solute carrier gene family 5a, member 8), a Na(+)-coupled high-affinity transporter in colon for the bacterial fermentation product butyrate, plays a critical role in this process. Among various immune cells in colon, dendritic cells (DCs) are unique not only in their accessibility to luminal contents but also in their ability to induce tolerogenic phenotype in T-cells. We found that DCs exposed to butyrate express the immunosuppressive enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and aldehyde dehydrogenase 1A2 (Aldh1A2), promote conversion of naive T-cells into immunosuppressive forkhead box P3(+) (FoxP3(+)) Tregs (regulatory T-cells) and suppress conversion of naive T-cells into pro-inflammatory interferon (IFN)-γ-producing cells. Slc5a8-null DCs do not induce IDO1 and Aldh1A2 and do not generate Tregs or suppress IFN-γ-producing T-cells in response to butyrate. We also provide in vivo evidence for an obligatory role for Slc5a8 in suppression of IFN-γ-producing T-cells. Furthermore, Slc5a8 protects against colitis and colon cancer under conditions of low-fibre intake but not when dietary fibre intake is optimal. This agrees with the high-affinity nature of the transporter to mediate butyrate entry into cells. We conclude that Slc5a8 is an obligatory link between dietary fibre and mucosal immune system via the bacterial metabolite butyrate and that this transporter is a conditional tumour suppressor in colon linked to dietary fibre content. © 2015 Authors; published by Portland Press Limited.

  1. Interrogating the Molecular Basis for Substrate Recognition in Serotonin and Dopamine Transporters with High-Affinity Substrate-Based Bivalent Ligands

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Kristensen, Trine N. Bjerre

    2016-01-01

    The transporters for the neurotransmitters serotonin and dopamine (SERT and DAT, respectively) are targets for drugs used in the treatment of mental disorders and widely used drugs of abuse. Studies of prokaryotic homologues have advanced our structural understanding of SERT and DAT, but it still...

  2. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  3. Characterisation of [11C]PR04.MZ in Papio anubis baboon: A selective high-affinity radioligand for quantitative imaging of the dopamine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Riss P. J.; Fowler J.; Riss, P.J.; Hooker, J.M.; Shea, C.; Xu, Y.; Carter, P.; Warner, D.; Ferrari V.; Kim, S.W.; Aigbirhio, F.I.; Fowler, J.S.; Roesch, F.

    2011-10-25

    N-(4-fluorobut-2-yn-1-yl)-2{beta}-carbomethoxy-3{beta}-(4{prime}-tolyl)nortropane (PR04.MZ, 1) is a PET radioligand for the non-invasive exploration of the function of the cerebral dopamine transporter (DAT). A reliable automated process for routine production of the carbon-11 labelled analogue [{sup 11}C]PR04.MZ ([{sup 11}C]-1) has been developed using GMP compliant equipment. An adult female Papioanubis baboon was studied using a test-retest protocol with [{sup 11}C]-1 in order to assess test-retest reliability, metabolism and CNS distribution profile of the tracer in non-human primates. Blood sampling was performed throughout the studies for determination of the free fraction in plasma (fP), plasma input functions and metabolic degradation of the radiotracer [{sup 11}C]-1. Time-activity curves were derived for the putamen, the caudate nucleus, the ventral striatum, the midbrain and the cerebellum. Distribution volumes (VT) and non-displaceable binding potentials (BPND) for various brain regions and the blood were obtained from kinetic modelling. [{sup 11}C]-1 shows promising results as aselective marker of the presynaptic dopamine transporter. With the reliable visualisation of the extra-striatal dopaminergic neurons and no indication on labelled metabolites, the tracer provides excellent potential for translation into man.

  4. Characterisation of [¹¹C]PR04.MZ in Papio anubis baboon: a selective high-affinity radioligand for quantitative imaging of the dopamine transporter.

    Science.gov (United States)

    Riss, Patrick J; Hooker, Jacob M; Shea, Colleen; Xu, Youwen; Carter, Pauline; Warner, Donald; Ferrari, Valentina; Kim, Sung-Won; Aigbirhio, Franklin I; Fowler, Joanna S; Roesch, Frank

    2012-01-01

    N-(4-fluorobut-2-yn-1-yl)-2β-carbomethoxy-3β-(4'-tolyl)nortropane (PR04.MZ, 1) is a PET radioligand for the non-invasive exploration of the function of the cerebral dopamine transporter (DAT). A reliable automated process for routine production of the carbon-11 labelled analogue [(11)C]PR04.MZ ([(11)C]-1) has been developed using GMP compliant equipment. An adult female Papio anubis baboon was studied using a test-retest protocol with [(11)C]-1 in order to assess test-retest reliability, metabolism and CNS distribution profile of the tracer in non-human primates. Blood sampling was performed throughout the studies for determination of the free fraction in plasma (f(P)), plasma input functions and metabolic degradation of the radiotracer [(11)C]-1. Time-activity curves were derived for the putamen, the caudate nucleus, the ventral striatum, the midbrain and the cerebellum. Distribution volumes (V(T)) and non-displaceable binding potentials (BP(ND)) for various brain regions and the blood were obtained from kinetic modelling. [(11)C]-1 shows promising results as a selective marker of the presynaptic dopamine transporter. With the reliable visualisation of the extra-striatal dopaminergic neurons and no indication on labelled metabolites, the tracer provides excellent potential for translation into man. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions.

    Science.gov (United States)

    Garcia-Molina, Antoni; Andrés-Colás, Nuria; Perea-García, Ana; Neumann, Ulla; Dodani, Sheel C; Huijser, Peter; Peñarrubia, Lola; Puig, Sergi

    2013-08-01

    Copper (Cu), an essential redox active cofactor, participates in fundamental biological processes, but it becomes highly cytotoxic when present in excess. Therefore, living organisms have established suitable mechanisms to balance cellular and systemic Cu levels. An important strategy to maintain Cu homeostasis consists of regulating uptake and mobilization via the conserved family of CTR/COPT Cu transport proteins. In the model plant Arabidopsis thaliana, COPT1 protein mediates root Cu acquisition, whereas COPT5 protein functions in Cu mobilization from intracellular storage organelles. The function of these transporters becomes critical when environmental Cu bioavailability diminishes. However, little is know about the mechanisms that mediate plant Cu distribution. In this report, we present evidence supporting an important role for COPT6 in Arabidopsis Cu distribution. Similarly to COPT1 and COPT2, COPT6 fully complements yeast mutants defective in high-affinity Cu uptake and localizes to the plasma membrane of Arabidopsis cells. Whereas COPT2 mRNA is only up-regulated upon severe Cu deficiency, COPT6 transcript is expressed under Cu excess conditions and displays a more gradual increase in response to decreases in environmental Cu levels. Consistent with COPT6 expression in aerial vascular tissues and reproductive organs, copt6 mutant plants exhibit altered Cu distribution under Cu-deficient conditions, including increased Cu in rosette leaves but reduced Cu levels in seeds. This altered Cu distribution is fully rescued when the wild-type COPT6 gene is reintroduced into the copt6 mutant line. Taken together, these findings highlight the relevance of COPT6 in shoot Cu redistribution when environmental Cu is limited.

  6. Molecular Characterization of CTR-type Copper Transporters in an Oceanic Diatom, Thalassiosira oceanica 1005

    Science.gov (United States)

    Kong, L.; Price, N. M.

    2016-02-01

    Copper is an essential micronutrient for phytoplankton growth because of its role as a redox cofactor in electron transfer proteins in photosynthesis and respiration, and a potentially limiting resource in parts of the open sea. Thalassiosira oceanica 1005 can grow at inorganic copper concentrations varying from 10 fmol/L to 10 nmol/L by regulating copper uptake across plasma membrane. Four putative CTR-type copper transporter genes (ToCTR1, ToCTR2, ToCTR3.1 and ToCTR3.2) were identified by BLASTP search against the T. oceanica genome. Predicted gene models were revised by assembled mRNA sequencing transcripts and updated gene models contained all conserved features of characterized CTR-type copper transporters. ToCTR3.1 and ToCTR3.2 may arise from one another by gene duplication as they shared a sequence similarity of 97.6% with a peptide insertion of 5 amino acids at N-terminus of ToCTR3.1. The expression of ToCTR1, ToCTR2 and ToCTR3.1/3.2 was upregulated in low copper concentrations, but only ToCTR3.1/3.2 showed a significant increase (2.5 fold) in copper-starved cells. Both ToCTR3.1 and ToCTR3.2 restored growth of a yeast double mutant, Saccharomyces cerevisiae ctr1Δctr3Δ, in copper deficient medium. GFP-fused ToCTR expression showed that some ToCTR3.1 localized to the plasma membrane but a large portion was retained in the endoplasmic reticulum. Inefficient targeting of ToCTR3.1 to the yeast outer membrane may explain poorer growth compared to the Saccharomyces native ScCTR1 transformant. Thus, diatom CTR genes encoding CTR-type copper transporters show high-affinity copper uptake and their regulation may enable diatoms to survive in ocean environments containing a wide range of copper concentrations.

  7. Centrifuge-induced hypergravity: [ 3H]GABA and L-[ 14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters

    Science.gov (United States)

    Borisova, T. A.; Himmelreich, N. H.

    The effects of centrifuge-induced hypergravity on the presynaptic events have been investigated in order to provide further insight into regulation of glutamate and GABA neurotransmission and correlation between excitatory and inhibitory responses under artificial gravity conditions. Exposure of animals to hypergravity (centrifugation of rats at 10 G for 1 h) has been found to cause changes in the synaptic processes of brain, in particular neurotransmitter release and uptake in rat brain synaptosomes. Hypergravity loading resulted in more than two-fold enhancement of GABA transporter activity ( Vmax increased from 1.4 ± 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for the animals exposed to hypergravity ( P ⩽ 0.05)). The maximal velocity of L-[ 14C]glutamate uptake decreased from 12.5 ± 3.2 to 5.6 ± 0.9 nmol/min/mg of protein under artificial gravity conditions. Depolarization-evoked exocytotic release of the neurotransmitters has also changed in response to hypergravity. It increased for GABA (7.2 ± 0.54% and 11.74 ± 1.2% of total accumulated label for control and hypergravity, respectively ( P ⩽ 0.05)), but reduced for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%, for control and hypergravity, respectively). Thus, comparative analysis of the neurotransmitter uptake and release has demonstrated that short-term centrifuge-induced 10 G hypergravity loading intensified inhibitory and attenuated excitatory processes in nerve terminals. The activation or reduction of neurotransmitter uptake appeared to be coupled with similarly directed alterations of the neurotransmitter release.

  8. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  9. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin.

    Science.gov (United States)

    Huang, Carlos P; Fofana, Mariama; Chan, Jefferson; Chang, Christopher J; Howell, Stephen B

    2014-03-01

    Mammalian cells express two copper (Cu) influx transporters, CTR1 and CTR2. CTR1 serves as an influx transporter for both Cu and cisplatin (cDDP). In mouse embryo fibroblasts, reduction of CTR1 expression renders cells resistant to cDDP whereas reduction of CTR2 makes them hypersensitive both in vitro and in vivo. To investigate the role of CTR2 on intracellular Cu and cDDP sensitivity its expression was molecularly altered in the human epithelial 2008 cancer cell model. Intracellular exchangeable Cu(+) was measured with the fluorescent probe Coppersensor-3 (CS3). The ability of CS3 to report on changes in intracellular Cu(+) was validated by showing that Cu chelators reduced its signal, and that changes in signal accompanied alterations in expression of the major Cu influx transporter CTR1 and the two Cu efflux transporters, ATP7A and ATP7B. Constitutive knock down of CTR2 mRNA by ∼50% reduced steady-state exchangeable Cu by 22-23% and increased the sensitivity of 2008 cells by a factor of 2.6-2.9 in two separate clones. Over-expression of CTR2 increased exchangeable Cu(+) by 150% and rendered the 2008 cells 2.5-fold resistant to cDDP. The results provide evidence that CS3 can quantitatively assess changes in exchangeable Cu(+), and that CTR2 regulates both the level of exchangeable Cu(+) and sensitivity to cDDP in a model of human epithelial cancer. This study introduces CS3 and related sensors as novel tools for probing and assaying Cu-dependent sensitivity to anticancer therapeutics.

  10. SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress

    Institute of Scientific and Technical Information of China (English)

    Tian-Tian Wang; Zhi-Jie Ren; Zhi-Quan Liu; Xue Feng; Rui-Qi Guo; Bao-Guo Li; Le-Gong Li; HaiChun Jing

    2014-01-01

    In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake Kþ in the presence of toxic concentrations of Naþ. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKT1;4, a member of the HKT gene family from Sorghum bicolor. Upon Naþ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Naþ/Kþ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Naþ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of Kþ, implicating that SbHKT1;4 may mediate Kþ uptake in the presence of excessive Naþ. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Naþ and Kþ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKT1;4 functions to maintain optimal Naþ/Kþ balance under Naþ stress to the breeding of salt-tolerant glycophytic crops is discussed.

  11. Coordination of platinum therapeutic agents to met-rich motifs of human copper transport protein1.

    Science.gov (United States)

    Crider, Sarah E; Holbrook, Robert J; Franz, Katherine J

    2010-01-01

    Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into cells. Human hCtr1 contains two methionine-rich Mets motifs on its extracellular N-terminus that are potential platinum-binding sites: the first one encompasses residues 7-14 with amino acid sequence Met-Gly-Met-Ser-Tyr-Met-Asp-Ser and the second one spans residues 39-46 with sequence Met-Met-Met-Met-Pro-Met-Thr-Phe. In these studies, we use liquid chromatography and mass spectrometry to compare the binding interactions between cisplatin, carboplatin and oxaliplatin with synthetic peptides corresponding to hCtr1 Mets motifs. The interactions of cisplatin and carboplatin with Met-rich motifs that contain three or more methionines result in removal of the carrier ligands of both platinum complexes. In contrast, oxaliplatin retains its cyclohexyldiamine ligand upon platinum coordination to the peptide.

  12. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport.

    Science.gov (United States)

    Liu, Xiaoqin; Huang, Daimin; Tao, Jinyuan; Miller, Anthony J; Fan, Xiaorong; Xu, Guohua

    2014-10-01

    A partner protein, NAR2, is essential for high-affinity nitrate transport of the NRT2 protein in plants. However, the NAR2 motifs that interact with NRT2s for their plasma membrane (PM) localization and nitrate transporter activity have not been functionally characterized. In this study, OsNAR2.1 mutations with different carbon (C)-terminal deletions and nine different point mutations in the conserved regions of NAR2 homologs in plants were generated to explore the essential motifs involved in the interaction with OsNRT2.3a. Screening using the membrane yeast two-hybrid system and Xenopus oocytes for nitrogen-15 ((15)N) uptake demonstrated that either R100G or D109N point mutations impaired the OsNAR2.1 interaction with OsNRT2.3a. Western blotting and visualization using green fluorescent protein fused to either the N- or C-terminus of OsNAR2.1 indicated that OsNAR2.1 is expressed in both the PM and cytoplasm. The split-yellow fluorescent protein (YFP)/BiFC analyses indicated that OsNRT2.3a was targeted to the PM in the presence of OsNAR2.1, while either R100G or D109N mutation resulted in the loss of OsNRT2.3a-YFP signal in the PM. Based on these results, arginine 100 and aspartic acid 109 of the OsNAR2.1 protein are key amino acids in the interaction with OsNRT2.3a, and their interaction occurs in the PM but not cytoplasm.

  13. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1.

    Science.gov (United States)

    Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni

    2014-07-01

    The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

  14. El receptor de la hormona de crecimiento humana (hGH y la proteína de transporte de alta afinidad de la hGH Human Growth Hormone (GH Receptor and the High Affinity GH-Binding Protein

    Directory of Open Access Journals (Sweden)

    María Gabriela Ballerini

    2008-03-01

    Full Text Available La hormona de crecimiento humana (hGH circula parcialmente unida a su proteína de transporte de alta afinidad (GHBP la cual resulta del clivaje proteolítico del dominio extracelular del receptor de GH. Recientemente la enzima TACE se identificó como la metaloproteasa responsable del clivaje y liberación de GHBP a circulación. Aunque aún se desconoce la función específica de esta proteína de transporte, distintos trabajos en la literatura demuestran efectos que potencian y efectos inhibitorios sobre la acción de GH. Por otro lado, existen evidencias que demuestran una fuerte relación entre la GHBP y el nivel de receptor de GH en el hígado en situaciones fisiológicas y patológicas. Esto permitió proponer a la determinación de GHBP en suero como un marcador periférico de la abundancia del receptor de GH en los tejidos. La determinación de la concentración de GHBP sería de especial interés para evaluar pacientes con diagnóstico probable de insensibilidad a la acción de GH y orientar el posterior estudio de anormalidades en el gen del receptor de GH. En la presente revisión, también se abordan dificultades metodológicas relacionadas a la medición de GHBP sérica.Human circulating growth hormone (GH is partly bound to a high-affinity binding protein (GHBP which is derived from proteolytical cleavage of the extracellular domain of the GH receptor. Recently, the metalloproteinase TACE has been identified as an important enzyme responsive for inducing GHBP shedding. Although the specific function of GHBP is not fully known, both enhancing and inhibitory roles of this binding protein on GH action have been proposed. Many reports have demonstrated a close relationship between GHBP and the liver GH receptor status in physiological conditions and diseases. Moreover, serum GHBP measurement has been proposed as an useful peripheral index of the GH receptor abundance. Related to the latter, circulating GHBP concentration would be of

  15. Transport properties of zigzag graphene nanoribbon decorated with copper clusters

    Energy Technology Data Exchange (ETDEWEB)

    Berahman, M.; Sheikhi, M. H., E-mail: msheikhi@shirazu.ac.ir [School of Electrical and Computer Eng, Shiraz University, Shiraz (Iran, Islamic Republic of); Nanotechnology Research Institute, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-09-07

    Using non-equilibrium green function with density functional theory, the present study investigates the transport properties of decorated zigzag graphene nanoribbon with a copper cluster. We have represented the decoration of zigzag graphene nanoribbon with single copper atom and cluster containing two and three copper atoms. In all the cases, copper atoms tend to occupy the edge state. In addition, we have shown that copper can alter the current-voltage characteristic of zigzag graphene nanoribbon and create new fluctuations and negative differential resistance. These alternations are made due to discontinuity in the combination of orbitals along the graphene nanoribbon. Decoration alters these discontinuities and creates more visible fluctuations. However, in low bias voltages, the changes are similar in all the cases. The study demonstrates that in the decorated zigzag graphene nanoribbon, the edge states are the main states for transporting electron from one electrode to another.

  16. Dyes with high affinity for polylactide

    Institute of Scientific and Technical Information of China (English)

    Liang He; Shu Fen Zhang; Bing Tao Tang; Li Li Wang; Jin Zong Yang

    2007-01-01

    Attempts were made to develop dyes with high affinity for polylactide as an alternative to the existent commercial disperse dyes.The dyes synthesized according to the affinity concept of dye to polylactide exhibited excellent dyeing properties on polylactide compared with the commercial disperse dyes.

  17. Roles and mechanisms of copper transporting ATPases in cancer pathogenesis.

    Science.gov (United States)

    Zhang, Yuqing; Li, Min; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Copper (Cu) is an essential trace element for cell metabolism as a cofactor to many key metabolic enzymes. Numerous physiological processes rely on the adequate and timely transport of copper ions mediated by copper-transporting ATPases (Cu-ATPases), which are essential for human cell growth and development. Inherited gene mutations of ATP7A and ATP7B result in clinical diseases related to damage in the multiple organ systems. Increased expression of these genes has been recently observed in some human cancer specimens, and may be associated with tumorigenesis and chemotherapy resistance. However, underlying mechanisms of Cu-ATPases in human cancer progression and treatment are largely unknown. In this review, we summarize current progress on the copper transport system, the structural and functional properties of the Cu-ATPases, ATP7A and ATP7B, in copper homeostasis, and their roles in anti-tumor drug resistance and cancer metastasis. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in copper transport as important mediators in human physiology and cancer.

  18. Adenosine triphosphate-dependent copper transport in human liver

    NARCIS (Netherlands)

    vandenBerg, GJ; Wolters, H; Veld, GI; Slooff, MJH; Heymans, GSA; Kuipers, F; Vonk, RJ

    1996-01-01

    Background/Aim: The recent cloning and sequencing of the Wilson disease gene indicates that hepatic copper (Cu) transport is mediated by a P-type ATPase. The location of this Cu-transporting protein within the hepatocyte is not known; in view of its proposed function and current concepts of hepatic

  19. Copper transport systems are involved in multidrug resistance and drug transport.

    Science.gov (United States)

    Furukawa, Tatsuhiko; Komatsu, Masaharu; Ikeda, Ryuji; Tsujikawa, Kazutake; Akiyama, Shin-ichi

    2008-01-01

    Copper is an essential trace element and several copper containing proteins are indispensable for such processes as oxidative respiration, neural development and collagen remodeling. Copper metabolism is precisely regulated by several transporters and chaperone proteins. Copper Transport Protein 1 (CTR1) selectively uptakes copper into cells. Subsequently three chaperone proteins, HAH1 (human atx1 homologue 1), Cox17p and CCS (copper chaperone for superoxide dismutase) transport copper to the Golgi apparatus, mitochondria and copper/zinc superoxide dismutase respectively. Defects in the copper transporters ATP7A and ATP7B are responsible for Menkes disease and Wilson's disease respectively. These proteins transport copper via HAH1 to the Golgi apparatus to deliver copper to cuproenzymes. They also prevent cellular damage from an excess accumulation of copper by mediating the efflux of copper from the cell. There is increasing evidence that copper transport mechanisms may play a role in drug resistance. We, and others, found that ATP7A and ATP7B are involved in drug resistance against the anti-tumor drug cis-diamminedichloroplatinum (II) (CDDP). A relationship between the expression of ATP7A or ATP7B in tumors and CDDP resistance is supported by clinical studies. In addition, the copper uptake transporter CTR1 has also been reported to play a role in CDDP sensitivity. Furthermore, we have recently found that the effect of ATP7A on drug resistance is not limited to CDDP. Using an ex vivo drug sensitivity assay, the histoculture drug response assay (HDRA), the expression of ATP7A in human surgically resected colon cancer cells correlated with sensitivity to 7-ethyl-10-hydroxy-camptothecin (SN-38). ATP7A-overexpressing cells are resistant to many anticancer drugs including SN-38, 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin (CPT-11), vincristine, paclitaxel, etoposide, doxorubicin (Dox), and mitoxantron. The mechanism by which ATP7A and copper

  20. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  1. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots.

    Science.gov (United States)

    Rizzardo, Cecilia; Tomasi, Nicola; Monte, Rossella; Varanini, Zeno; Nocito, Fabio F; Cesco, Stefano; Pinton, Roberto

    2012-12-01

    Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.

  2. Brachypodium distachyon as a model system for studies of copper transport in cereal crops

    Directory of Open Access Journals (Sweden)

    Ha-il eJung

    2014-05-01

    Full Text Available Copper (Cu is an essential micronutrient that performs a remarkable array of functions in plants including photosynthesis, cell wall remodeling, flowering, and seed set. Of the world's major cereal crops, wheat, barley, and oat are the most sensitive to Cu deficiency. Cu deficient soils include alkaline soils, which occupy approximately 30% of the world’s arable lands, and organic soils that occupy an estimated 19% of arable land in Europe. We used Brachypodium distachyon (brachypodium as a proxy for wheat and other grain cereals to initiate analyses of the molecular mechanisms underlying their increased susceptibility to Cu deficiency. In this report, we focus on members of the CTR/COPT family of Cu transporters because their homologs in A. thaliana are transcriptionally upregulated in Cu-limited conditions and are involved either in Cu uptake from soils into epidermal cells in the root, or long-distance transport and distribution of Cu in photosynthetic tissues. We found that of five COPT proteins in brachypodium, BdCOPT3 and BdCOPT4 localize to the plasma membrane and are transcriptionally upregulated in roots and leaves by Cu deficiency. We also found that BdCOPT3, BdCOPT4, and BdCOPT5 confer low affinity Cu transport, in contrast to their counterparts in A. thaliana that confer high affinity Cu transport. These data suggest that increased sensitivity to Cu deficiency in some grass species may arise from lower efficiency and, possibly, other properties of components of Cu uptake and tissue partitioning systems and reinforce the importance of using brachypodium as a model for the comprehensive analyses of Cu homeostasis in cereal crops.

  3. Transport of cisplatin by the copper efflux transporter ATP7B.

    Science.gov (United States)

    Safaei, Roohangiz; Otani, Shinji; Larson, Barrett J; Rasmussen, Michael L; Howell, Stephen B

    2008-02-01

    ATP7B is a P-type ATPase that mediates the efflux of copper. Recent studies have demonstrated that ATP7B regulates the cellular efflux of cisplatin (DDP) and controls sensitivity to the cytotoxic effects of this drug. To determine whether DDP is a substrate for ATP7B, DDP transport was assayed in vesicles isolated from Sf9 cells infected with a baculovirus that expressed either the wild-type ATP7B or a mutant ATP7B that was unable to transport copper as a result of conversion of the transmembrane metal binding CPC motif to CPA. Only the wild-type ATP7B-expressing vesicles exhibited copper-dependent ATPase activity, copper-induced acyl-phosphate formation, and ATP-dependent transport of copper. The amount of DDP that became bound was higher for vesicles expressing either type of ATP7B than for those not expressing either form of ATP7B, but only the vesicles expressing wild-type ATP7B mediated ATP-dependent accumulation of the drug. At pH 4.6, the vesicles expressing the wild-type ATP7B exhibited ATP-dependent accumulation of DDP with an apparent K(m) of 1.2 +/- 0.5 (S.E.M.) muM and V(max) of 0.03 +/- 0.002 (S.E.M.) nmol/mg of protein/min. DDP also induced the acyl-phosphorylation of ATP7B but at a much slower rate than copper. Copper and DDP each inhibited the ATP-dependent transport of the other. These results establish that DDP is a substrate for ATP7B but is transported at a much slower rate than copper.

  4. Copper transportion of WD protein in hepatocytes from Wilson disease patients in vitro

    Institute of Scientific and Technical Information of China (English)

    Guo-Qing Hou; Xiu-Ling Liang; Rong Chen; Li-Wen Tang; Ying Wang; Ping-Yi Xu; Ying-Ru Zhang; Cui-Hua Ou

    2001-01-01

    AIM: To study the effect of copper transporting P-type ATPase in copper metabolism of hepatocyte and pathogenesis of Wilson disease (WD). METHODS: WD copper transporting properties in some organelles of the cultured hepatocytes were studied from WD patients and normal controls. These cultured hepatocytes were incubated in the media of copper 15mg.L-1 only, copper 15 mg. L-1 with vincristine (agonist of P-type ArPase) 0.5mg. L-1, or copper 15 mg. L-1 withvanadate (antagonist of P-type ATPase) 18.39 mg. L-1separately. Microsome (endoplasmic reticulum and Golgi apparatus), lysosome, mitochondria, and cytosol were isolated by differential centrifugation. Copper contents in these organelles were measured with atomic absorption spectrophotometer, and the influence in copper transportion of these organelles by vanadate and vincristine were comparatively analyzed between WD patients and controls.WD copper transporting P-type ATPase was detected by SDS-PAGE in conjunction with Western blot in liver samples of WD patients and controls. RESULTS: The specific WD proteins (Mr155 000 lanes) were expressed in human hepatocytes, including the control and WD patients. After incubation with medium containing copper for 2 h or 24 h, the microsome copper concentration in WD patients was obviously lower than that of controls,and the addtion of vanadate or vincristine would change the copper transporting of microsomes obviously. When incubated with vincristine, levels of copper in microsome were significantly increased, while incubated with vanadate,the copper concentrations in microsome were obviously decreased. The results indicated that there were Wdproteins, the copper transportion P-type ATPase in the microsome of hepatocytes. WD patients possessed abnormal copper transporting function of WD protein in the microsome, and the agonist might correct the defect of copper transportion by promoting the activity of copper transportion P-type ATPase. CONCLUSION: Copper transportion P

  5. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression

    Directory of Open Access Journals (Sweden)

    Fernando eAleman

    2014-09-01

    Full Text Available Potassium (K+ is an essential macronutrient required for plant growth, development and high yield production of crops. Members of group I of the KT/HAK/KUP family of transporters, such as HAK5, are key components for K+ acquisition by plant roots at low external K+ concentrations. Certain abiotic stress conditions such as salinity or Cs+-polluted soils may jeopardize plant K+ nutrition because HAK5-mediated K+ transport is inhibited by Na+ and Cs+. Here, by screening in yeast a randomly-mutated collection of AtHAK5 transporters, a new mutation in AtHAK5 sequence is identified that greatly increases Na+ tolerance. The single point mutation F130S, affecting an amino acid residue conserved in HAK5 transporters from several species, confers high salt tolerance, as well as Cs+ tolerance. This mutation increases more than 100-fold the affinity of AtHAK5 for K+ and reduces the Ki values for Na+ and Cs+, suggesting that the F130 residue may contribute to the structure of the pore region involved in K+ binding. In addition, this mutation increases the Vmax for K+. All this changes occur without increasing the amount of the AtHAK5 protein in yeast and support the idea that this residue is contributing to shape the selectivity filter of the AtHAK5 transporter.

  6. The Copper Transporter 1 (CTR1) is Required to Maintain the Stability of Copper Transporter 2 (CTR2)

    Science.gov (United States)

    Tsai, Cheng-Yu; Liebig, Janika K.; Tsigelny, Igor F.; Howell, Stephen B.

    2015-01-01

    Mammalian cells have two influx Cu transporters that form trimers in membranes. CTR1 is the high affinity transporter that resides largely in the plasma membrane, and CTR2 is the low affinity transporter that is primarily associated with vesicular structures inside the cell. The major differences between CTR1 and CTR2 are that CTR1 contains a HIS/MET-rich domain N-terminal of the METS that participate in the first two stacked rings that form the pore, and a longer C-terminal tail that includes a Cu binding HIS-CYS-HIS (HCH) motif right at the end. It has been reported that CTR1 and CTR2 are physically associated with each other in the cell. We used the CRISPR-Cas9 technology to knock out either CTR1 or CTR2 in fully malignant HEK293T and OVCAR8 human ovarian cancer cells to investigate the interaction of CTR1 and CTR2. We report here that the level of CTR2 protein is markedly decreased in CTR1 knockout clones while the CTR2 transcript level remains unchanged. CTR2 was found to be highly ubiquitinated in the CTR1 knock out cells, and inhibition of the proteosome prevented the degradation of CTR2 when CTR1 was not present while inhibition of autophagy had no effect. Re-expression of CTR1 rescued CTR2 from degradation in the CTR1 knockout cells. We conclude that CTR1 is essential to maintain the stability of CTR2 and that in the absence of CTR1 CTR2 is degraded by the proteosome. This reinforces the concept that the functions of CTR1 and CTR2 are inter-dependent within the Cu homeostasis system. PMID:26205368

  7. The copper transporter 1 (CTR1) is required to maintain the stability of copper transporter 2 (CTR2).

    Science.gov (United States)

    Tsai, Cheng-Yu; Liebig, Janika K; Tsigelny, Igor F; Howell, Stephen B

    2015-11-01

    Mammalian cells have two influx Cu transporters that form trimers in membranes. CTR1 is the high affinity transporter that resides largely in the plasma membrane, and CTR2 is the low affinity transporter that is primarily associated with vesicular structures inside the cell. The major differences between CTR1 and CTR2 are that CTR1 contains a HIS/MET-rich domain N-terminal of the METS that participate in the first two stacked rings that form the pore, and a longer C-terminal tail that includes a Cu binding HIS-CYS-HIS (HCH) motif right at the end. It has been reported that CTR1 and CTR2 are physically associated with each other in the cell. We used the CRISPR-Cas9 technology to knock out either CTR1 or CTR2 in fully malignant HEK293T and OVCAR8 human ovarian cancer cells to investigate the interaction of CTR1 and CTR2. We report here that the level of CTR2 protein is markedly decreased in CTR1 knockout clones while the CTR2 transcript level remains unchanged. CTR2 was found to be highly ubiquitinated in the CTR1 knock out cells, and inhibition of the proteasome prevented the degradation of CTR2 when CTR1 was not present while inhibition of autophagy had no effect. Re-expression of CTR1 rescued CTR2 from degradation in the CTR1 knockout cells. We conclude that CTR1 is essential to maintain the stability of CTR2 and that in the absence of CTR1 CTR2 is degraded by the proteasome. This reinforces the concept that the functions of CTR1 and CTR2 are inter-dependent within the Cu homeostasis system.

  8. High Affinity Iron Permease is Required for Virulence of Rhizopus oryzae

    Science.gov (United States)

    Rhizopus oryzae is the most common cause of mucormycosis. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to develop mucormycosis. The high affinity iron permease gene (rFTR1) is required for R. oryzae iron transport in iro...

  9. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    of copper concentration on the movement of an inert tracer, tritium, and the mobilization and transport of colloid particles in undisturbed soil cores (10 cm diameter and 8 cm height). The cores were sampled along a copper gradient of 21 to 3837 mg Cu kg-1 soil on an abandoned arable soil polluted by copper...

  10. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  11. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1.

    Science.gov (United States)

    Pushie, M Jake; Shaw, Katharine; Franz, Katherine J; Shearer, Jason; Haas, Kathryn L

    2015-09-08

    Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.

  12. Evolution of Copper Transporting ATPases in Eukaryotic Organisms

    OpenAIRE

    Gupta, Arnab; Lutsenko, Svetlana

    2012-01-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases i...

  13. Evolution of copper transporting ATPases in eukaryotic organisms.

    Science.gov (United States)

    Gupta, Arnab; Lutsenko, Svetlana

    2012-04-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.

  14. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin;

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points......Copper is accumulated in soils due to human activities such as mining industry, agriculture practises, or waste deposals. High concentrations of copper can affect plants and soil organisms, and subsequently the soil structure and its inner space architecture. In this work we investigated the effect...... of copper concentration on the movement of an inert tracer, tritium, and the mobilization and transport of colloid particles in undisturbed soil cores (10 cm diameter and 8 cm height). The cores were sampled along a copper gradient of 21 to 3837 mg Cu kg-1 soil on an abandoned arable soil polluted by copper...

  15. Copper Transporter 2 Content Is Lower in Liver and Heart of Copper-Deficient Rats

    Directory of Open Access Journals (Sweden)

    Jesse Bertinato

    2010-11-01

    Full Text Available Copper (Cu transporter 2 (Ctr2 is a transmembrane protein that transports Cu across cell membranes and increases cytosolic Cu levels. Experiments using cell lines have suggested that Ctr2 expression is regulated by Cu status. The importance of changes in Ctr2 expression is underscored by recent studies demonstrating that lower Ctr2 content in cells increases the cellular uptake of platinum-containing cancer drugs and toxicity to the drugs. In this study, we examined whether Ctr2 expression is altered by a nutritional Cu deficiency in vivo. Ctr2 mRNA and protein in liver and heart from rats fed a normal (Cu-N, moderately deficient (Cu-M or deficient (Cu-D Cu diet was measured. Rats fed the Cu-deficient diets showed a dose-dependent decrease in liver Ctr2 protein compared to Cu-N rats. Ctr2 protein was 42% and 85% lower in Cu-M and Cu-D rats, respectively. Liver Ctr2 mRNA was 50% lower in Cu-D rats and unaffected in Cu-M rats. In heart, Ctr2 protein was only lower in Cu-D rats (46% lower. These data show that Cu deficiency decreases Ctr2 content in vivo.

  16. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  17. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site.

    Science.gov (United States)

    Piscitelli, Chayne L; Krishnamurthy, Harini; Gouaux, Eric

    2010-12-23

    Neurotransmitter/sodium symporters (NSSs) couple the uptake of neurotransmitter with one or more sodium ions, removing neurotransmitter from the synaptic cleft. NSSs are essential to the function of chemical synapses, are associated with multiple neurological diseases and disorders, and are the targets of therapeutic and illicit drugs. LeuT, a prokaryotic orthologue of the NSS family, is a model transporter for understanding the relationships between molecular mechanism and atomic structure in a broad range of sodium-dependent and sodium-independent secondary transporters. At present there is a controversy over whether there are one or two high-affinity substrate binding sites in LeuT. The first-reported crystal structure of LeuT, together with subsequent functional and structural studies, provided direct evidence for a single, high-affinity, centrally located substrate-binding site, defined as the S1 site. Recent binding, flux and molecular simulation studies, however, have been interpreted in terms of a model where there are two high-affinity binding sites: the central, S1, site and a second, the S2 site, located within the extracellular vestibule. Furthermore, it was proposed that the S1 and S2 sites are allosterically coupled such that occupancy of the S2 site is required for the cytoplasmic release of substrate from the S1 site. Here we address this controversy by performing direct measurement of substrate binding to wild-type LeuT and to S2 site mutants using isothermal titration calorimetry, equilibrium dialysis and scintillation proximity assays. In addition, we perform uptake experiments to determine whether the proposed allosteric coupling between the putative S2 site and the S1 site manifests itself in the kinetics of substrate flux. We conclude that LeuT harbours a single, centrally located, high-affinity substrate-binding site and that transport is well described by a simple, single-substrate kinetic mechanism.

  18. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs.

    Science.gov (United States)

    Howell, Stephen B; Safaei, Roohangiz; Larson, Christopher A; Sailor, Michael J

    2010-06-01

    Multiple lines of evidence indicate that the platinum-containing cancer drugs enter cells, are distributed to various subcellular compartments, and are exported from cells via transporters that evolved to manage copper homeostasis. The cytotoxicity of the platinum drugs is directly related to how much drug enters the cell, and almost all cells that have acquired resistance to the platinum drugs exhibit reduced drug accumulation. The major copper influx transporter, copper transporter 1 (CTR1), has now been shown to control the tumor cell accumulation and cytotoxic effect of cisplatin, carboplatin, and oxaliplatin. There is a good correlation between change in CTR1 expression and acquired cisplatin resistance among ovarian cancer cell lines, and genetic knockout of CTR1 renders cells resistant to cisplatin in vivo. The expression of CTR1 is regulated at the transcriptional level by copper via Sp1 and at the post-translational level by the proteosome. Copper and cisplatin both trigger the down-regulation of CTR1 via a process that involves ubiquitination and proteosomal degradation and requires the copper chaperone antioxidant protein 1 (ATOX1). The cisplatin-induced degradation of CTR1 can be blocked with the proteosome inhibitor bortezomib, and this increases the cellular uptake and the cytotoxicity of cisplatin in a synergistic manner. Copper and platinum(II) have similar sulfur binding characteristics, and the presence of stacked rings of methionines and cysteines in the CTR1 trimer suggest a mechanism by which CTR1 selectively transports copper and the platinum-containing drugs via sequential transchelation reactions similar to the manner in which copper is passed from ATOX1 to the copper efflux transporters.

  19. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment.

    Science.gov (United States)

    Kodama, Hiroko; Fujisawa, Chie; Bhadhprasit, Wattanaporn

    2012-03-01

    Copper is an essential trace element required by all living organisms. Excess amounts of copper, however, results in cellular damage. Disruptions to normal copper homeostasis are hallmarks of three genetic disorders: Menkes disease, occipital horn syndrome, and Wilson's disease. Menkes disease and occipital horn syndrome are characterized by copper deficiency. Typical features of Menkes disease result from low copper-dependent enzyme activity. Standard treatment involves parenteral administration of copper-histidine. If treatment is initiated before 2 months of age, neurodegeneration can be prevented, while delayed treatment is utterly ineffective. Thus, neonatal mass screening should be implemented. Meanwhile, connective tissue disorders cannot be improved by copper-histidine treatment. Combination therapy with copper-histidine injections and oral administration of disulfiram is being investigated. Occipital horn syndrome characterized by connective tissue abnormalities is the mildest form of Menkes disease. Treatment has not been conducted for this syndrome. Wilson's disease is characterized by copper toxicity that typically affects the hepatic and nervous systems severely. Various other symptoms are observed as well, yet its early diagnosis is sometimes difficult. Chelating agents and zinc are effective treatments, but are inefficient in most patients with fulminant hepatic failure. In addition, some patients with neurological Wilson's disease worsen or show poor response to chelating agents. Since early treatment is critical, a screening system for Wilson's disease should be implemented in infants. Patients with Wilson's disease may be at risk of developing hepatocellular carcinoma. Understanding the link between Wilson's disease and hepatocellular carcinoma will be beneficial for disease treatment and prevention.

  20. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    Science.gov (United States)

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  1. High affinity ligands for 'diazepam-insensitive' benzodiazepine receptors.

    Science.gov (United States)

    Wong, G; Skolnick, P

    1992-01-14

    Structurally diverse compounds have been shown to possess high affinities for benzodiazepine receptors in their 'diazepam-sensitive' (DS) conformations. In contrast, only the imidazobenzodiazepinone Ro 15-4513 has been shown to exhibit a high affinity for the 'diazepam-insensitive' (DI) conformation of benzodiazepine receptors. We examined a series of 1,4-diazepines containing one or more annelated ring systems for their affinities at DI and DS benzodiazepine receptors, several 1,4-diazepinone carboxylates including Ro 19-4603, Ro 16-6028 and Ro 15-3505 were found to possess high affinities (Ki approximately 2.6-20 nM) for DI. Nonetheless, among the ligands examined, Ro 15-4513 was the only substance with a DI/DS potency ratio approximately 1; other substances had ratios ranging from 13 to greater than 1000. Ligands with high to moderate affinities at DI were previously classified as partial agonists, antagonists, or partial inverse agonists at DS benzodiazepine receptors, but behaved as 'GABA neutral' (antagonist) substances at DI. The identification of several additional high affinity ligands at DI benzodiazepine receptors may be helpful in elucidating the pharmacological and physiological importance of these sites.

  2. Copper-transporting ATPase is important for malaria parasite fertility

    NARCIS (Netherlands)

    Kenthirapalan, S.; Waters, A.P.; Matuschewski, K.; Kooij, T.W.A.

    2014-01-01

    Homeostasis of the trace element copper is essential to all eukaryotic life. Copper serves as a cofactor in metalloenzymes and catalyses electron transfer reactions as well as the generation of potentially toxic reactive oxygen species. Here, we describe the functional characterization of an

  3. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

    Energy Technology Data Exchange (ETDEWEB)

    Ashino, T.; Varadarajan, S.; Urao, N.; Oshikawa, J.; Chen, G. -F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R. D.; Maryon, E. B.; Kaplan, J. H.; Ushio-Fukai, M.; Fukai, T. (Biosciences Division); ( XSD); ( PSC-USR); (Univ. of Illinois at Chicago); (Univ. of Minnesota)

    2010-09-09

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  4. Copper does not alter the intracellular distribution of ATP7B, a copper-transporting ATPase.

    Science.gov (United States)

    Harada, M; Sakisaka, S; Kawaguchi, T; Kimura, R; Taniguchi, E; Koga, H; Hanada, S; Baba, S; Furuta, K; Kumashiro, R; Sugiyama, T; Sata, M

    2000-09-01

    Wilson's disease is a genetic disorder characterized by the accumulation of copper in the body due to a defect of biliary copper excretion. However, the mechanism of biliary copper excretion has not been fully clarified. We examined the effect of copper on the intracellular localization of the Wilson disease gene product (ATP7B) and green fluorescent protein (GFP)-tagged ATP7B in a human hepatoma cell line (Huh7). The intracellular organelles were visualized by fluorescence microscopy. GFP-ATP7B colocalized with late endosome markers, but not with endoplasmic reticulum, Golgi, or lysosome markers in both the steady and copper-loaded states. ATP7B mainly localized at the perinuclear regions in both states. These results suggest that the main localization of ATP7B is in the late endosomes in both the steady and copper-loaded states. ATP7B seems to translocate copper from the cytosol to the late endosomal lumen, thus participating in biliary copper excretion via lysosomes.

  5. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    Worgan, K.J.; Apted, M.J. [QuantiSci Inc., Denver, CO (United States)

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented. 28 refs, 5 tabs, 6 figs.

  6. AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae.

    Science.gov (United States)

    Aouida, Mustapha; Leduc, Anick; Poulin, Richard; Ramotar, Dindial

    2005-06-24

    Polyamines play essential functions in many aspects of cell biology. Plasma membrane transport systems for the specific uptake of polyamines exist in most eukaryotic cells but have been very recently identified at the molecular level only in the parasite Leishmania. We now report that the high affinity polyamine permease in Saccharomyces cerevisiae is identical to Agp2p, a member of the yeast amino acid transporter family that was previously identified as a carnitine transporter. Deletion of AGP2 dramatically reduces the initial velocity of spermidine and putrescine uptake and confers strong resistance to the toxicity of exogenous polyamines, and transformation with an AGP2 expression vector restored polyamine transport in agp2delta mutants. Yeast mutants deficient in polyamine biosynthesis required >10-fold higher concentrations of exogenous putrescine to restore cell proliferation upon deletion of the AGP2 gene. Disruption of END3, a gene required for an early step of endocytosis, increased the abundance of Agp2p, an effect that was paralleled by a marked up-regulation of spermidine transport velocity. Thus, AGP2 encodes the first eukaryotic permease that preferentially uses spermidine over putrescine as a high affinity substrate and plays a central role in the uptake of polyamines in yeast.

  7. ADENOSINE TRIPHOSPHATE-DEPENDENT COPPER TRANSPORT IN ISOLATED RAT-LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    INTVELD, G; VANDENBERG, GJ; MULLER, M; KUIPERS, F; VONK, RJ

    1995-01-01

    The process of hepatobiliary copper (Cu) secretion is still poorly understood: Cu secretion as a complex with glutathione and transport via a lysosomal pathway have been proposed. The recent cloning and sequencing of the gene for Wilson disease indicates that Cu transport in liver cells may be media

  8. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases.

  9. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  10. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant G

  11. Copper-transporting P-type ATPases use a unique ion-release pathway

    DEFF Research Database (Denmark)

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations...

  12. The high-affinity immunoglobulin E receptor as pharmacological target.

    Science.gov (United States)

    Blank, Ulrich; Charles, Nicolas; Benhamou, Marc

    2016-05-05

    The high-affinity receptor for immunoglobulin E is expressed mainly on mast cells and basophils, but also on neutrophils, eosinophils, platelets, monocytes, Langerhans and dendritic cells, airway smooth muscle cells and some nerve cells. Its main function is, upon its engagement by IgE and specific antigen, to trigger a powerful defense against invading pathogens and a rapid neutralization of dangerous toxic substances introduced in the body. This powerful response could be wielded against tumors. But, when control over this receptor is lost, its unchecked activation can induce an array of diseases, some of which can lead to death. In this review we will summarize the pharmacological approaches and strategies that are currently used, or under study, to harness or wield activation of this receptor for therapeutic purposes.

  13. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casas, C; Aldea, M; Espinet, C; Gallego, C; Gil, R; Herrero, E

    1997-06-15

    High-affinity iron uptake in Saccharomyces cerevisiae involves the extracytoplasmic reduction of ferric ions by FRE1 and FRE2 reductases. Ferrous ions are then transported across the plasma membrane through the FET3 oxidase-FTR1 permease complex. Expression of the high-affinity iron uptake genes is induced upon iron deprivation. We demonstrate that AFT1 is differentially involved in such regulation. Aft1 protein is required for maintaining detectable non-induced level of FET3 expression and for induction of FRE2 in iron starvation conditions. On the contrary, FRE1 mRNA induction is normal in the absence of Aft1, although the existence of AFT1 point mutations causing constitutive expression of FRE1 (Yamaguchi-Iwai et al., EMBO J. 14: 1231-1239, 1995) indicates that Aft1 may also participate in FRE1 expression in a dispensable way. The alterations in the basal levels of expression of the high-affinity iron uptake genes may explain why the AFT1 mutant is unable to grow on respirable carbon sources. Overexpression of AFT1 leads to growth arrest of the G1 stage of the cell cycle. Aft1 is a transcriptional activator that would be part of the different transcriptional complexes interacting with the promoter of the high-affinity iron uptake genes. Aft1 displays phosphorylation modifications depending on the growth stage of the cells, and it might link induction of genes for iron uptake to other metabolically dominant requirement for cell growth.

  14. Band structure and transport studies of copper selenide: An efficient thermoelectric material

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Auluck, S.; Dhar, Ajay

    2014-10-01

    We report the band structure calculations for high temperature cubic phase of copper selenide (Cu2Se) employing Hartree-Fock approximation using density functional theory within the generalized gradient approximation. These calculations were further extended to theoretically estimate the electrical transport coefficients of Cu2Se employing Boltzmann transport theory, which show a reasonable agreement with the corresponding experimentally measured values. The calculated transport coefficients are discussed in terms of the thermoelectric (TE) performance of this material, which suggests that Cu2Se can be a potential p-type TE material with an optimum TE performance at a carrier concentration of ˜ 4 - 6 × 10 21 cm - 3 .

  15. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    OpenAIRE

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered ...

  16. Role of copper transporters in the uptake and efflux of platinum containing drugs.

    Science.gov (United States)

    Safaei, Roohangiz

    2006-03-08

    Cellular mechanisms for the uptake, intracellular distribution and efflux of the platinum (Pt) containing compounds cisplatin (DDP), carboplatin (CBDCA) and oxaliplatin (LOHP) are unknown. Current data suggest that specialized transporters/carriers mediate the transport of Pt drugs across the cellular membranes. Specific roles for the copper (Cu) transporters CTR1, ATP7A and ATP7B have been demonstrated during recent years. The finding that in cultured cells and tumor samples a correlation can be found between the expression of Cu transporters and the degree of the acquired resistance to Pt drug suggests that the Cu transporters are important constituents of the program that regulates sensitivity to Pt drugs. A model is presented that describes the function of Cu transporters in the regulation of Pt drug uptake and efflux.

  17. An analysis of copper transport in the insulation of high voltage transformers

    CERN Document Server

    Whitfield, T B

    2001-01-01

    Measurements of surface concentrations by XPS correlate well with measurements made with atomic absorption spectroscopy on solutions of extracts of the contaminated paper. The laboratory measurements have allowed determination of the diffusion coefficients and activation energy for the transport process and thus give a basis for interpretation of the diffusion profiles found in the transformer in terms of time and temperature of operation. The diffusion process is temperature dependant. The results have been used to produce long term prediction curves. Examination of the paper insulation and copper stress braiding during stripdown of a number of Current Transformers (FMK type 400kV) has revealed the presence of dark deposits. Copper foils are often interspersed within layers of paper insulation and mineral oil found in transformer windings. The dark deposits were often found in association with these foils, affecting several layers of paper in addition to the layer in contact with the copper foil. This thesis...

  18. Altered microglial copper homeostasis in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Zheng, Zhiqiang; White, Carine; Lee, Jaekwon; Peterson, Troy S; Bush, Ashley I; Sun, Grace Y; Weisman, Gary A; Petris, Michael J

    2010-09-01

    Alzheimer's disease (AD) is characterized by progressive neurodegeneration associated with the aggregation and deposition of β-amyloid (Aβ(40) and Aβ(42) ) peptide in senile plaques. Recent studies suggest that copper may play an important role in AD pathology. Copper concentrations are elevated in amyloid plaques and copper binds with high affinity to the Aβ peptide and promotes Aβ oligomerization and neurotoxicity. Despite this connection between copper and AD, it is unknown whether the expression of proteins involved in regulating copper homeostasis is altered in this disorder. In this study, we demonstrate that the copper transporting P-type ATPase, ATP7A, is highly expressed in activated microglial cells that are specifically clustered around amyloid plaques in the TgCRND8 mouse model of AD. Using a cultured microglial cell line, ATP7A expression was found to be increased by the pro-inflammatory cytokine interferon-gamma, but not by TNF-α or IL-1β. Interferon-gamma also elicited marked changes in copper homeostasis, including copper-dependent trafficking of ATP7A from the Golgi to cytoplasmic vesicles, increased copper uptake and elevated expression of the CTR1 copper importer. These findings suggest that pro-inflammatory conditions associated with AD cause marked changes in microglial copper trafficking, which may underlie the changes in copper homeostasis in AD. It is concluded that copper sequestration by microglia may provide a neuroprotective mechanism in AD.

  19. Characterization of copper transport in gill cells of a mangrove crab Ucides cordatus

    Energy Technology Data Exchange (ETDEWEB)

    Sá, M.G. [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Zanotto, F.P., E-mail: fzanotto@usp.br [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Três de Maio 100, Sao Paulo 04044-020 (Brazil)

    2013-11-15

    Highlights: •Copper transport in gill cells of a mangrove crab Ucides cordatus is dependent of calcium. •Copper transport mechanism is ATP-dependent. •Transport was monitored second by second during 300 s. -- Abstract: The branchial epithelium of crustaceans is exposed to the environment and is the first site affected by metal pollution. The aim of this work was to characterize copper (Cu) transport using a fluorescent dye, Phen Green, in gill cells of a hypo-hyper-regulator mangrove crab Ucides cordatus. The results showed that added extracellular CuCl{sub 2} (0, 0.025, 0.150, 0.275, 0.550 and 1.110 μM) showed typical Michaelis–Menten transport for Cu in anterior and posterior gill cells (V{sub max} for anterior and posterior gills: 0.41 ± 0.12 and 1.76 ± 0.27 intracellular Cu in μM × 22.10{sup 4} cells{sup −1} × 300 s{sup −1} respectively and K{sub m} values: 0.44 ± 0.04 and 0.32 ± 0.13 μM, respectively). Intracellular Cu was significantly higher for posterior gill cells compared to anterior gill cells, suggesting differential accumulation for each gill type. Extracellular Ca at 20 mM decreased cellular Cu transport for both anterior and posterior gill cells. Nifedipine and verapamil, calcium channel inhibitors from plasma membrane, decreased Cu transport and affected K{sub m} for both gills. These results could be due to a competition between Cu and Ca. Amiloride, a Na/Ca exchanger inhibitor, as well as bafilomycin, a proton pump inhibitor, caused a decrease of intracellular Cu compared to control. Ouabain and KB-R 7943, acting on Na homeostasis, similarly decreased intracellular Cu in both gill cells. Besides that, gill cells exposed to ATP and Cu simultaneously, showed an increase in intracellular copper, which was inhibited by vanadate, an inhibitor of P-type ATPase. These results suggest either the presence of a Cu-ATPase in crab gill cells, responsible for Cu influx, or the effect of a change in electrochemical membrane potential that

  20. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    Science.gov (United States)

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  1. Conditional knockout of the Menkes disease copper transporter demonstrates its critical role in embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yanfang Wang

    Full Text Available The transition metal, copper (Cu, is an enzymatic cofactor required for a wide range of biochemical processes. Its essentiality is demonstrated by Menkes disease, an X-linked copper deficiency disorder characterized by defects in nervous-, cardiovascular- and skeletal systems, and is caused by mutations in the ATP7A copper transporter. Certain ATP7A mutations also cause X-linked Spinal Muscular Atrophy type 3 (SMAX3, which is characterized by neuromuscular defects absent an underlying systemic copper deficiency. While an understanding of these ATP7A-related disorders would clearly benefit from an animal model that permits tissue-specific deletion of the ATP7A gene, no such model currently exists. In this study, we generated a floxed mouse model allowing the conditional deletion of the Atp7a gene using Cre recombinase. Global deletion of Atp7a resulted in morphological and vascular defects in hemizygous male embryos and death in utero. Heterozygous deletion in females resulted in a 50% reduction in live births and a high postnatal lethality. These studies demonstrate the essential role of the Atp7a gene in mouse embryonic development and establish a powerful model for understanding the tissue-specific roles of ATP7A in copper metabolism and disease.

  2. Development and characterization of high affinity leptins and leptin antagonists.

    Science.gov (United States)

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-02-11

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.

  3. Development and Characterization of High Affinity Leptins and Leptin Antagonists*

    Science.gov (United States)

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-01-01

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin. PMID:21119198

  4. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina

    2017-01-01

    the (11)C-labeling and subsequent evaluation of [(11)C]HOCPCA in a domestic pig, as a PET-radioligand for visualization of the high-affinity GHB binding sites in the live pig brain. To investigate the regional binding of HOCPCA in pig brain prior to in vivo PET studies, in vitro quantitative......γ-Hydroxybutyric acid (GHB) is an endogenous neuroactive substance and proposed neurotransmitter with affinity for both low- and high-affinity binding sites. A radioligand with high and specific affinity toward the high-affinity GHB binding site would be a unique tool toward a more complete...... understanding of this population of binding sites. With its high specific affinity and monocarboxylate transporter (MCT1) mediated transport across the blood-brain barrier in pharmacological doses, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) seems like a suitable PET radiotracer candidate. Here, we report...

  5. Role of the copper transporter, CTR1, in platinum-induced ototoxicity

    Science.gov (United States)

    More, Swati S.; Akil, Omar; Ianculescu, Alexandra G.; Geier, Ethan G.; Lustig, Lawrence R.; Giacomini, Kathleen M.

    2010-01-01

    The goal of this study was to determine the role of an influx copper transporter, CTR1, in the ototoxicity induced by cisplatin, a potent anticancer platinum analog used in the treatment of a variety of solid tumors. As determined through RT-PCR, quantitative RT-PCR (qPCR), Western blot and immunohistochemistry, mouse CTR1 (Ctr1) was found to be abundantly expressed and highly localized at the primary sites of cisplatin toxicity in the inner ear; mainly outer hair cells (OHC), inner hair cells (IHC), stria vascularis (SV), spiral ganglia (SG) and surrounding nerves in the mouse cochlea. A CTR1 substrate, copper sulfate, decreased the uptake and cytotoxicity of cisplatin in HEI-OC1, a cell line that expresses many molecular markers reminiscent of OHCs. siRNA-mediated knockdown of Ctr1 in this cell line caused a corresponding decrease in cisplatin uptake. In mice, intratympanic administration of copper sulfate 30 min before intraperitoneal administration of cisplatin was found to prevent hearing loss at click stimulus and 8, 16 and 32 kHz frequencies. To date, the utility of cisplatin remains severely limited due to its ototoxic effects. The studies described in this report suggest that cisplatin induced ototoxicity and cochlear uptake can be modulated by administration of a CTR1 inhibitor, copper sulfate. The possibility of local administration of CTR1 inhibitors during cisplatin therapy as a means of otoprotection is thereby raised. PMID:20631178

  6. Crystal structure of a copper-transporting PIB-type ATPase.

    Science.gov (United States)

    Gourdon, Pontus; Liu, Xiang-Yu; Skjørringe, Tina; Morth, J Preben; Møller, Lisbeth Birk; Pedersen, Bjørn Panyella; Nissen, Poul

    2011-07-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B proteins associated with Menkes' and Wilson's diseases.

  7. Crystal structure of a copper-transporting PIB-type ATPase

    DEFF Research Database (Denmark)

    Gourdon, Pontus; Liu, Xiang-Yu; Skjørringe, Tina

    2011-01-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, ......Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu......(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative...... copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B...

  8. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Directory of Open Access Journals (Sweden)

    Graham S Baldwin

    Full Text Available The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  9. Influence of Copper on Transport and Dissipation of Lambda-Cyhalothrin and Cypermethrin in Soils

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; L(U) Xiao-Meng; XIE Ji-Min; LI Ping-Ping; HAN Jian-Gang; SUN Cheng

    2013-01-01

    Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid insecticides (Pys)have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils.To understand the potential influence of Cu on the fate of Pys in the soil environment,we selected two Pys,cypermethrin (CPM) and lambda-cyhalothrin (λ-CHT),and two typical Chinese vineyard soils,Haplic Acrisol and Luvic Phaeozem,as experimental samples.The dissipation experiment was conducted at room temperature in the dark,and the transport of both Pys through the soils was investigated using soil thin-layer chromatography.The results showed that the transport of Pys in both soils increased as the Cu2+ concentration increased from 0 to 100 mg L-1,and Pys were more transportable in Haplic Acrisol (HA) than in Luvic Phaeozem (LP) under the same experimental conditions.For CPM,only 100 mg L-1 of Cu2+ significantly (P < 0.05) increased Pys transport through both soils relative to water.Lambda-CHT was significantly (P < 0.05) transported through HA by all the Cu2+ concentrations compared to water,and all but the 1 mg L-1 of Cu2+ significantly (P < 0.05) increased the transport of λ-CHT through LP relative to water.However,the dissipation rates of CPM and λ-CHT decreased with the addition of Cu to soils.Our findings suggest that the risk of groundwater contamination by Pys increases in the soils with elevated Cu concentrations.

  10. Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil

    NARCIS (Netherlands)

    Weng, L.; Fest, E.P.M.J.; Filius, J.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2002-01-01

    The transport of inorganic and organic pollutants in water and soil can be strongly influenced by the mobility of natural dissolved organic matter (DOM). In this paper, the transport of a humic acid (HA) and a fulvic acid (FA) in a copper-contaminated acid sandy soil was studied. The data showed

  11. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  12. Copper Transporter 2 Regulates Endocytosis and Controls Tumor Growth and Sensitivity to Cisplatin In Vivo

    Science.gov (United States)

    Blair, Brian G.; Larson, Christopher A.; Adams, Preston L.; Abada, Paolo B.; Pesce, Catherine E.; Safaei, Roohangiz

    2011-01-01

    Copper transporter 2 (CTR2) is one of the four copper transporters in mammalian cells that influence the cellular pharmacology of cisplatin and carboplatin. CTR2 was knocked down using a short hairpin RNA interference. Robust expression of CTR2 was observed in parental tumors grown in vivo, whereas no staining was found in the tumors formed from cells in which CTR2 had been knocked down. Knockdown of CTR2 reduced growth rate by 5.8-fold, increased the frequency of apoptotic cells, and decreased the vascular density, but it did not change copper content. Knockdown of CTR2 increased the tumor accumulation of cis-diamminedichloroplatinum(II) [cisplatin (cDDP)] by 9.1-fold and greatly increased its therapeutic efficacy. Because altered endocytosis has been implicated in cDDP resistance, uptake of dextran was used to quantify the rate of macropinocytosis. Knockdown of CTR2 increased dextran uptake 2.5-fold without reducing exocytosis. Inhibition of macropinocytosis with either amiloride or wortmannin blocked the increase in macropinocytosis mediated by CTR2 knockdown. Stimulation of macropinocytosis by platelet-derived growth factor coordinately increased dextran and cDDP uptake. Knockdown of CTR2 was associated with activation of the Rac1 and cdc42 GTPases that control macropinocytosis but not activation of the phosphoinositide-3 kinase pathway. We conclude that CTR2 is required for optimal tumor growth and that it is an unusually strong regulator of cisplatin accumulation and cytotoxicity. CTR2 regulates the transport of cDDP in part through control of the rate of macropinocytosis via activation of Rac1 and cdc42. Selective knockdown of CTR2 in tumors offers a strategy for enhancing the efficacy of cDDP. PMID:20930109

  13. Chemical vapor transport and solid-state exchange synthesis of new copper selenite bromides

    Science.gov (United States)

    Charkin, Dmitri O.; Kayukov, Roman A.; Zagidullin, Karim A.; Siidra, Oleg I.

    2017-02-01

    A new dimorphic copper selenite bromide, Cu5(SeO3)4Br2 was obtained via chemical transport reactions. α-Cu5(SeO3)4Br2, monoclinic (1m) and β-Cu5(SeO3)4Br2, triclinic (1a) polymorphs were produced simultaneously upon reaction of amorphous, partially dehydrated copper selenite and copper bromide. 1m is similar to Cu5(SeO3)4Cl2, whereas 1a is distantly related to Ni5(SeO3)4Br2 and Co5(SeO3)4Br2. Attempts to reproduce synthesis of 1a via exchange reaction between Na2SeO3 and CuBr2 resulted in a new Na2[Cu7O2](SeO3)4Br4 (2). Current study demonstrates for the first time, that both chemical vapor and exchange reactions can be employed in preparation of new selenite halides.

  14. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A.

    Science.gov (United States)

    Phillips-Krawczak, Christine A; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G; Li, Haiying; Dick, Christopher J; Gomez, Timothy S; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F; Geng, Linda N; Kaufmann, Scott H; Hein, Marco Y; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; Sluis, Bart van de; Billadeau, Daniel D; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.

  15. A revised estimate of copper emissions from road transport in UNECE-Europe and its impact on predicted copper concentrations

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.; Hulskotte, J.H.J.; Visschedijk, A.J.H.; Schaap, M.

    2007-01-01

    Comparisons of measured and model-predicted atmospheric copper concentrations show a severe underestimation of the observed concentrations by the models. This underestimation may be (partly) due to underestimated emissions of copper to air. Since the phase out of asbestos brake lining material, the

  16. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  17. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D., E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Vourlias, George; Patsalas, Panos A. [Department of Physics, Laboratory of Applied Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2015-06-15

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  18. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Science.gov (United States)

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Vourlias, George; Patsalas, Panos A.; Bradley, Donal D. C.; He, Zhiqun; Anthopoulos, Thomas D.

    2015-06-01

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ˜5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  19. A comparative study of interatomic potentials for copper and aluminum gas phase sputter atom transport simulations

    CERN Document Server

    Kuwata, K T; Doyle, J R

    2003-01-01

    A comparative study of interatomic potential models for use in gas phase sputter atom transport simulations is presented. Quantum chemical interatomic potentials for argon-copper and argon-aluminum are calculated using Kohn-Sham density functional theory utilizing the PW91 functional. These potentials (PW91) are compared to the commonly used Born-Mayer potentials calculated by Abrahamson [Phys. Rev. 178 (1969) 76] using the Thomas-Fermi-Dirac model (TFD) and the screened Coulomb potentials derived from the 'universal' form calculated by Ziegler, Biersack and Littmark (ZBL). Monte Carlo simulations of gas phase sputter atom transport were performed to determine the average energy of atoms arriving at the substrate versus pressure for the three potential models. Overall, the ZBL potential gave results in much better agreement with the PW91 potential than the TFD potential. A characteristic thermalization pressure-distance product of approx 0.11 mTorr cm was found for both copper and aluminum using the PW91 pote...

  20. Copper content in lake sediments as a tracer of urban emissions: evaluation through a source-transport-storage model.

    Science.gov (United States)

    Cui, Qing; Brandt, Nils; Sinha, Rajib; Malmström, Maria E

    2010-06-01

    A coupled source-transport-storage model was developed to determine the origin and path of copper from materials/goods in use in the urban drainage area and the fate of copper in local recipient lakes. The model was applied and tested using five small lakes in Stockholm, Sweden. In the case of the polluted lakes Råcksta Träsk, Trekanten and Långsjön, the source strengths of copper identified by the model were found to be well linked with independently observed copper contents in the lake sediments through the model. The model results also showed that traffic emissions, especially from brake linings, dominated the total load in all five cases. Sequential sedimentation and burial proved to be the most important fate processes of copper in all lakes, except Råcksta Träsk, where outflow dominated. The model indicated that the sediment copper content can be used as a tracer of the urban diffuse copper source strength, but that the response to changes in source strength is fairly slow (decades). Major uncertainties in the source model were related to management of stormwater in the urban area, the rate of wear of brake linings and weathering of copper roofs. The uncertainty of the coupled model is in addition affected mainly by parameters quantifying the sedimentation and bury processes, such as particulate fraction, settling velocity of particles, and sedimentation rate. As a demonstration example, we used the model to predict the response of the sediment copper level to a decrease in the copper load from the urban catchment in one of the case study lakes.

  1. Dynein and dynactin leverage their bivalent character to form a high-affinity interaction.

    Directory of Open Access Journals (Sweden)

    Amanda E Siglin

    Full Text Available Cytoplasmic dynein and dynactin participate in retrograde transport of organelles, checkpoint signaling and cell division. The principal subunits that mediate this interaction are the dynein intermediate chain (IC and the dynactin p150(Glued; however, the interface and mechanism that regulates this interaction remains poorly defined. Herein, we use multiple methods to show the N-terminus of mammalian dynein IC, residues 10-44, is sufficient for binding p150(Glued. Consistent with this mapping, monoclonal antibodies that antagonize the dynein-dynactin interaction also bind to this region of the IC. Furthermore, double and triple alanine point mutations spanning residues 6 to 19 in the yeast IC homolog, Pac11, produce significant defects in spindle positioning. Using the same methods we show residues 381 to 530 of p150(Glued form a minimal fragment that binds to the dynein IC. Sedimentation equilibrium experiments indicate that these individual fragments are predominantly monomeric, but admixtures of the IC and p150(Glued fragments produce a 2:2 complex. This tetrameric complex is sensitive to salt, temperature and pH, suggesting that the binding is dominated by electrostatic interactions. Finally, circular dichroism (CD experiments indicate that the N-terminus of the IC is disordered and becomes ordered upon binding p150(Glued. Taken together, the data indicate that the dynein-dynactin interaction proceeds through a disorder-to-order transition, leveraging its bivalent-bivalent character to form a high affinity, but readily reversible interaction.

  2. Conformation-Dependent High-Affinity Potent Ricin-Neutralizing Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Wei-Gang Hu

    2013-01-01

    Full Text Available Ricin is a potential biothreat agent with no approved antidote available for ricin poisoning. The aim of this study was to develop potent antibody-based antiricin antidotes. Four strong ricin resistant hybridoma clones secreting antiricin monoclonal antibodies (mAbs were developed. All four mAbs are bound to conformational epitopes of ricin toxin B (RTB with high affinity (KD values from 2.55 to 36.27 nM. RTB not only triggers cellular uptake of ricin, but also facilitates transport of the ricin toxin A (RTA from the endoplasmic reticulum to the cytosol, where RTA exerts its toxic activity. The four mAbs were found to have potent ricin-neutralizing capacities and synergistic effects among them as determined by an in vitro neutralization assay. In vivo protection assay demonstrated that all four mAbs had strong efficacy against ricin challenges. D9 was found to be exceptionally effective. Intraperitoneal (i.p. administration of D9, at a dose of 5 μg, 6 weeks before or 6 hours after an i.p. challenge with 5 × LD50 of ricin was able to protect or rescue 100% of the mice, indicating that mAb D9 is an excellent candidate to be developed as a potent antidote against ricin poisoning for both prophylactic and therapeutic purposes.

  3. Elevated glutathione levels confer cellular sensitization to cisplatin toxicity by up-regulation of copper transporter hCtr1.

    Science.gov (United States)

    Chen, Helen H W; Song, Im-Sook; Hossain, Anwar; Choi, Min-Koo; Yamane, Yoshiaki; Liang, Zheng D; Lu, Jia; Wu, Lily Y-H; Siddik, Zahid H; Klomp, Leo W J; Savaraj, Niramol; Kuo, Macus Tien

    2008-09-01

    Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) up-regulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunit. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Because the GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into consideration that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with an expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through up-regulation of human copper transporter (hCtr) 1, which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. Although rates of copper transport were also up-regulated in the transfected cells, these cells exhibited biochemical signature of copper deficiency, suggesting that GSH functions as an intracellular copper-chelator and that overexpression of GSH can alter copper metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes the bioavailable copper pool, leading to up-regulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications in that modulation of the intracellular copper pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents.

  4. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Sánchez-Marín, Paula; Fortin, Claude; Campbell, Peter G C

    2014-02-01

    The unicellular alga Chlamydomonas reinhardtii has a very high rate of lead (Pb) internalization and is known to be highly sensitive to dissolved Pb. However, the transport pathway that this metal uses to cross cellular membranes in microalgae is still unknown. To identify the Pb(2+) transport pathway in C. reinhartdii, we performed several competition experiments with environmentally relevant concentrations of Pb(2+) (~10 nM) and a variety of divalent cations. Among the essential trace metals tested, cobalt, manganese, nickel and zinc had no effect on Pb internalization. A greater than tenfold increase in the concentrations of the major ions calcium and magnesium led to a slight decrease (~34 %) in short-term Pb internalization by the algae. Copper (Cu) was even more effective: at a Cu concentration 50 times higher than that of Pb, Pb internalization by the algae decreased by 87 %. Pre-exposure of the algae to Cu showed that the effect was not due to a physiological effect of Cu on the algae, but rather to competition for the same transporter. A reciprocal effect of Pb on Cu internalization was also observed. These results suggest that Cu and Pb share a common transport pathway in C. reinhardtii at environmentally relevant metal concentrations.

  5. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    Science.gov (United States)

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury. PMID:24614235

  6. Thermal transport properties of multiphase sintered metals microstructures. The copper-tungsten system: Experiments and modeling

    Science.gov (United States)

    Gheribi, Aïmen E.; Autissier, Emmanuel; Gardarein, Jean-Laurent; Richou, Marianne

    2016-04-01

    The thermal diffusivity of Cu-W sintered alloys microstructures is measured at room temperature at different compositions, using rear face flash experiments. The samples are synthesized with the Spark Plasma Sintering technique. The resulting microstructures are slightly porous and consist of angular nanoscale grains of tungsten with medium sphericity in a copper matrix. The tungsten particles are at the nanoscale with an average grain size of 250 nm in contrast to the copper matrix for which the average grain size lies in the range 20 μm-30 μm; this is large enough to avoid the grains boundary effect upon the thermal transport. The overall porosity of the microstructures lies within the range: 6 %≤P ≤12 % . Along with the experimental work, a predictive model describing the effective thermal conductivity of multiphasic macrostructures is proposed in order to explain the obtained experimental results. The model was developed based only on physical considerations and contains no empirical parameters; it takes into account the type of microstructure and the microstructure parameters: porosity, grain shape, grain size, and grain size distribution. The agreement between the experiments and the model is found to be excellent.

  7. Insight in the transport behavior of copper glycinate complexes through the porcine gastrointestinal membrane using an Ussing chamber assisted by mass spectrometry analysis.

    Science.gov (United States)

    Tastet, Laure; Schaumlöffel, Dirk; Yiannikouris, Alexandros; Power, Ronan; Lobinski, Ryszard

    2010-04-01

    An Ussing chamber study was conducted in order to investigate the transport behavior of copper glycinate complexes through a porcine gastrointestinal membrane. Organic copper complexes such as copper tri- and tetraglycinates (GGG-Cu(II) and GGGG-Cu(II)) were used as model system. In a novel analytical approach the Ussing chamber was combined with mass spectrometry. Therefore, relevant analytical methods based on MALDI-MS and a coupling of capillary electrophoresis to ICP-MS and ESI-MS were developed for the determination of copper complexes in the mucosal and serosal half-chambers. It was found that 86.1+/-8.5% of copper triglycinate but only 20.8+/-9.9% of copper tetraglycinate penetrated the digestive membrane without modification. Furthermore, inorganic copper species were not detected but a new copper complex (m/z 442) was found to be formed in both compartments of the Ussing chamber. 2009 Elsevier GmbH. All rights reserved.

  8. Fate and Transport of Elemental Copper (Cu0) Nanoparticles through Saturated Porous Media in the Presence of Organic Materials

    Science.gov (United States)

    Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu0) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic...

  9. The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain.

    Science.gov (United States)

    Ryndak, Michelle B; Wang, Shuishu; Smith, Issar; Rodriguez, G Marcela

    2010-02-01

    Iron is an essential nutrient not freely available to microorganisms infecting mammals. To overcome iron deficiency, bacteria have evolved various strategies including the synthesis and secretion of high-affinity iron chelators known as siderophores. The siderophores produced and secreted by Mycobacterium tuberculosis, exomycobactins, compete for iron with host iron-binding proteins and, together with the iron-regulated ABC transporter IrtAB, are required for the survival of M. tuberculosis in iron deficient conditions and for normal replication in macrophages and in mice. This study further characterizes the role of IrtAB in M. tuberculosis iron acquisition. Our results demonstrate a role for IrtAB in iron import and show that the amino terminus domain of IrtA is a flavin-adenine dinucleotide-binding domain essential for iron acquisition. These results suggest a model in which the amino terminus of IrtA functions to couple iron transport and assimilation.

  10. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular......-dynamics simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  11. Tuning carrier mobility without spin transport degrading in copper-phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, S. W.; Wang, P.; Chen, B. B.; Zhou, Y. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Ding, H. F., E-mail: hfding@nju.edu.cn, E-mail: dwu@nju.edu.cn; Wu, D., E-mail: hfding@nju.edu.cn, E-mail: dwu@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2015-07-27

    We demonstrate more than one order of magnitude of carrier mobility tuning for the copper-phthalocyanine (CuPc) without spin transport degrading in organic spin valve devices. Depending on the preparation conditions, organic spin valves with the CuPc film mobility of 5.78 × 10{sup −3} and 1.11 × 10{sup −4} cm{sup 2}/V s are obtained for polycrystalline and amorphous CuPc, respectively. Strikingly, the spin diffusion lengths are almost the same regardless of their mobilities that are ∼50 times different, which is in sharp contrast with previous prediction. These findings directly support that the spin relaxation in CuPc is dominated by the spin-orbit coupling.

  12. Membrane Structure of CtrA3, a Copper-transporting P-type-ATPase from Aquifex aeolicus

    NARCIS (Netherlands)

    Chintalapati, Sivaram; Kurdi, Rana Al; Terwisscha van Scheltinga, Anke C.; Kühlbrandt, Werner

    2008-01-01

    We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting PIB-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH m

  13. Membrane Structure of CtrA3, a Copper-transporting P-type-ATPase from Aquifex aeolicus

    NARCIS (Netherlands)

    Chintalapati, Sivaram; Kurdi, Rana Al; Terwisscha van Scheltinga, Anke C.; Kühlbrandt, Werner

    2008-01-01

    We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting PIB-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH m

  14. Identification of a high-affinity Ca sup 2+ pump associated with endocytotic vesicles in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Milne, J.L.; Coukell, M.B. (York Univ., North York, Ontario (Canada))

    1989-11-01

    In the cellular slime mold Dictyostelium discoideum, changes in free cytosolic Ca{sup 2+} are thought to regulate certain processes during cell aggregation and differentiation. To understand the mechanisms controlling free Ca{sup 2+} levels in this organism, the authors previously isolated and characterized an ATP/Mg{sup 2+}-dependent, high-affinity Ca{sup 2+} pump which appeared to be a component of inside-out plasma membrane vesicles. In this report, they demonstrate that a high-affinity Ca{sup 2+} pump, with properties virtually identical to the isolated pump, can be detected in filipin- or digitonin-permeabilized cells of Dictyostelium. Moreover, Ca{sup 2+}-pumping vesicles, which migrate on Percoll/KCl gradients like the vesicles identified earlier, can be isolated from the permeabilized cells. Results of additional experiments suggest that this intracellular Ca{sup 2+} transporter is associated with a high-capacity non-IP{sub 3}-releasable Ca{sup 2+} store which is generated by endocytosis. A possible role for this store in maintaining Ca{sup 2+} homeostasis in Dictyostelium is discussed.

  15. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    Science.gov (United States)

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  16. Copper Transporter 2 Regulates the Cellular Accumulation and Cytotoxicity of Cisplatin and Carboplatin

    Science.gov (United States)

    Blair, Brian G.; Larson, Christopher A.; Safaei, Roohangiz; Howell, Stephen B.

    2010-01-01

    Purpose Copper transporter 2 (CTR2) is known to mediate the uptake of Cu+1 by mammalian cells. Several other Cu transporters, including the influx transporter CTR1 and the two efflux transporters ATP7A and ATP7B, also regulate sensitivity to the platinum-containing drugs. We sought to determine the effect of CTR2 on influx, intracellular trafficking, and efflux of cisplatin and carboplatin. Experimental Design The role of CTR2 was examined by knocking down CTR2 expression in an isogenic pair of mouse embryo fibroblasts consisting of a CTR1+/+ line and a CTR1−/− line in which both CTR1 alleles had been deleted. CTR2 levels were determined by quantitative reverse transcription-PCR and Western blot analysis. Cisplatin (DDP) was quantified by inductively coupled plasma mass spectrometry and 64Cu and [14C]carboplatin (CBDCA) accumulation by γ and scintillation counting. Results Deletion of CTR1 reduced the uptake of Cu, DDP, and CBDCA and increased resistance to their cytotoxic effects by 2- to 3-fold. Knockdown of CTR2 increased uptake of Cu only in the CTR1+/+ cells. In contrast, knockdown of CTR2 increased whole-cell DDP uptake and DNA platination in both CTR1+/+ and CTR1−/− cells and proportionately enhanced cytotoxicity while producing no effect on vesicular accumulation or efflux. A significant correlation was found between CTR2 mRNA and protein levels and sensitivity to DDP in a panel of six ovarian carcinoma cell lines. Conclusions CTR2 is a major determinant of sensitivity to the cytotoxic effects of DDP and CBDCA. CTR2 functions by limiting drug accumulation, and its expression correlates with the sensitivity of human ovarian carcinoma cell lines to DDP. PMID:19509135

  17. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites.

    Science.gov (United States)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina; Vogensen, Stine B; Lehel, Szabolcs; Thiesen, Louise; Bundgaard, Christoffer; Clausen, Rasmus P; Knudsen, Gitte M; Herth, Matthias M; Wellendorph, Petrine; Frølund, Bente

    2017-01-18

    γ-Hydroxybutyric acid (GHB) is an endogenous neuroactive substance and proposed neurotransmitter with affinity for both low- and high-affinity binding sites. A radioligand with high and specific affinity toward the high-affinity GHB binding site would be a unique tool toward a more complete understanding of this population of binding sites. With its high specific affinity and monocarboxylate transporter (MCT1) mediated transport across the blood-brain barrier in pharmacological doses, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) seems like a suitable PET radiotracer candidate. Here, we report the (11)C-labeling and subsequent evaluation of [(11)C]HOCPCA in a domestic pig, as a PET-radioligand for visualization of the high-affinity GHB binding sites in the live pig brain. To investigate the regional binding of HOCPCA in pig brain prior to in vivo PET studies, in vitro quantitative autoradiography on sections of pig brain was performed using [(3)H]HOCPCA. In vivo evaluation of [(11)C]HOCPCA showed no brain uptake, possibly due to a limited uptake of HOCPCA by the MCT1 transporter at tracer doses of [(11)C]HOCPCA.

  18. Sertraline and its metabolite desmethylsertraline, but not bupropion or its three major metabolites, have high affinity for P-glycoprotein.

    Science.gov (United States)

    Wang, Jun-Sheng; Zhu, Hao-Jie; Gibson, Bryan Bradford; Markowitz, John Seth; Donovan, Jennifer Lyn; DeVane, Carl Lindsay

    2008-02-01

    The ATP-binding cassette (ABC) transporter protein subfamily B1 line (ABCB1) transporter P-glycoprotein (P-gp) plays an important role in the blood-brain barrier limiting a broad spectrum of substrates from entering the central nervous system. In the present study, the transport activity of P-gp for sertraline, desmethylsertraline, bupropion, and the major metabolites of bupropion, threo-amino alcohol (TB), erythro-amino alcohol (EB), and hydroxy metabolite (HB) was studied using an ATPase assay in expressed human P-gp membranes by measuring concentrations of inorganic P(i) in expressed human P-gp membranes. Verapamil was included as a positive control. The Michaelis-Menten equation was used for characterizing the kinetic data. Sertraline and desmethylsertraline showed high affinity for P-gp. The V(max)/K(m) values of sertraline (1.6 min(-1) x 10(-3)) and desmethylsertraline (1.4 min(-1) x 10(-3)) were comparable with that of verapamil (1.7 min(-1) x 10(-3)). Bupropion and its three metabolites showed very weak affinity for P-gp, with V(max)/K(m) values lower than 0.01 min(-1) x 10(-3). The results of the present study indicate that sertraline and desmethylsertraline have high affinity for P-gp, whereas bupropion and its three major metabolites TB, EB, and HB have very weak affinity for P-gp. These findings may help to explain observed drug-drug interactions among antidepressants.

  19. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, Renate [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany); Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter [Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Brabec, Christoph J. [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany)

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  20. Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells

    Directory of Open Access Journals (Sweden)

    Mirick Gary

    2009-04-01

    Full Text Available Abstract Background A variety of arginine-rich peptide sequences similar to those found in viral proteins have been conjugated to other molecules to facilitate their transport into the cytoplasm and nucleus of targeted cells. The selective high affinity ligand (SHAL (DvLPBaPPP2LLDo, which was developed to bind only to cells expressing HLA-DR10, has been conjugated to one of these peptide transduction domains, hexa-arginine, to assess the impact of the peptide on SHAL uptake and internalization by Raji cells, a B-cell lymphoma. Results An analog of the SHAL (DvLPBaPPP2LLDo containing a hexa-arginine peptide was created by adding six D-arginine residues sequentially to a lysine inserted in the SHAL's linker. SHAL binding, internalization and residualization by Raji cells expressing HLA-DR10 were examined using whole cell binding assays and confocal microscopy. Raji cells were observed to bind two fold more 111In-labeled hexa-arginine SHAL analog than Raji cells treated with the parent SHAL. Three fold more hexa-arginine SHAL remained associated with the Raji cells after washing, suggesting that the peptide also enhanced residualization of the 111In transported into cells. Confocal microscopy showed both SHALs localized in the cytoplasm of Raji cells, whereas a fraction of the hexa-arginine SHAL localized in the nucleus. Conclusion The incorporation of a hexa-D-arginine peptide into the linker of the SHAL (DvLPBaPPP2LLDo enhanced both the uptake and residualization of the SHAL analog by Raji cells. In contrast to the abundant cell surface binding observed with Lym-1 antibody, the majority of (DvLPBaPPP2LArg6AcLLDo and the parent SHAL were internalized. Some of the internalized hexa-arginine SHAL analog was also associated with the nucleus. These results demonstrate that several important SHAL properties, including uptake, internalization, retention and possibly intracellular distribution, can be enhanced or modified by conjugating the SHALs to a

  1. A High-affinity Activator of G551D-CFTR Chloride Channel Identified By High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lu; HE Cheng-yan; LIU Yan-li; ZHOU Hong-lan; ZHOU Jin-song; SHANG De-jing; YANG Hong

    2004-01-01

    A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(Kd=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.

  2. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells.

    Science.gov (United States)

    Nagai, Masazumi; Vo, Nha H; Shin Ogawa, Luisa; Chimmanamada, Dinesh; Inoue, Takayo; Chu, John; Beaudette-Zlatanova, Britte C; Lu, Rongzhen; Blackman, Ronald K; Barsoum, James; Koya, Keizo; Wada, Yumiko

    2012-05-15

    Elesclomol is an investigational drug that exerts potent anticancer activity through the elevation of reactive oxygen species (ROS) levels and is currently under clinical evaluation as a novel anticancer therapeutic. Here we report the first description of selective mitochondrial ROS induction by elesclomol in cancer cells based on the unique physicochemical properties of the compound. Elesclomol preferentially chelates copper (Cu) outside of cells and enters as elesclomol-Cu(II). The elesclomol-Cu(II) complex then rapidly and selectively transports the copper to mitochondria. In this organelle Cu(II) is reduced to Cu(I), followed by subsequent ROS generation. Upon dissociation from the complex, elesclomol is effluxed from cells and repeats shuttling elesclomol-Cu complexes from the extracellular to the intracellular compartments, leading to continued copper accumulation within mitochondria. An optimal range of redox potentials exhibited by copper chelates of elesclomol and its analogs correlated with the elevation of mitochondrial Cu(I) levels and cytotoxic activity, suggesting that redox reduction of the copper triggers mitochondrial ROS induction. Importantly the mitochondrial selectivity exhibited by elesclomol is a distinct characteristic of the compound that is not shared by other chelators, including disulfiram. Together these findings highlight a unique mechanism of action with important implications for cancer therapy.

  3. High-affinity olfactory receptor for the death-associated odor cadaverine

    OpenAIRE

    2013-01-01

    Cadaverine and putrescine, two diamines emanating from decaying flesh, are strongly repulsive odors to humans but serve as innate attractive or social cues in other species. Here we show that zebrafish, a vertebrate model system, exhibit powerful and innate avoidance behavior to both diamines, and identify a high-affinity olfactory receptor for cadaverine.

  4. Supramolecular surface immobilization of knottin derivatives for dynamic display of high affinity binders

    NARCIS (Netherlands)

    Sankaran, S.; Ruiter, de M.V.; Cornelissen, J.J.L.M.; Jonkheijm, P.

    2015-01-01

    Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly

  5. GHB receptor targets in the CNS: Focus on high-affinity binding sites

    DEFF Research Database (Denmark)

    Bay, Tina; Eghorn, Laura Friis; Klein, Anders Bue;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects...

  6. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective radiol

  7. N-Oxide analogs of WAY-100635 : new high affinity 5-HT1A receptor antagonists

    NARCIS (Netherlands)

    Marchais-Oberwinkler, S; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, HV

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective radiol

  8. Supramolecular surface immobilization of knottin derivatives for dynamic display of high affinity binders

    NARCIS (Netherlands)

    Sankaran, S.; de Ruiter, Mark Vincent; Cornelissen, Jeroen Johannes Lambertus Maria; Jonkheijm, Pascal

    2015-01-01

    Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly

  9. High affinity, bioavailable 3-amino-1,4-benzodiazepine-based gamma-secretase inhibitors.

    Science.gov (United States)

    Owens, Andrew P; Nadin, Alan; Talbot, Adam C; Clarke, Earl E; Harrison, Timothy; Lewis, Huw D; Reilly, Michael; Wrigley, Jonathan D J; Castro, José L

    2003-11-17

    In this paper, we describe the development of a novel series of high affinity, orally bioavailable 3-amino-1,4 benzodiazepine-based gamma-secretase inhibitors for the potential treatment of Alzheimer's disease. We disclose structure-activity relationships based around the 1, 3 and 5 positions of the benzodiazepine core structure.

  10. The dual aptamer approach: rational design of a high-affinity FAD aptamer.

    Science.gov (United States)

    Merkle, T; Holder, I T; Hartig, J S

    2016-01-14

    A design strategy for high-affinity aptamers of complex biomolecules is presented. We developed an RNA with FAD-binding properties by combining known ATP- and FMN-aptamers. Cooperative binding of FAD was shown by SPR spectroscopy and fluorescence assays. The strategy should be transferable to several other biomolecules.

  11. Triazoloquinazolinediones as novel high affinity ligands for the benzodiazepine site of GABA(A) receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Gidlöf, Ritha; Nielsen, Elsebet Østergaard

    2011-01-01

    Based on a pharmacophore model of the benzodiazepine-binding site of GABA(A) receptors, a series of 2-aryl-2,6-dihydro[1,2,4]triazolo[4,3-c]quinazoline-3,5-diones (structure type I) were designed, synthesized, and identified as high-affinity ligands of the binding site. For several compounds, K...

  12. Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials.

    Science.gov (United States)

    Jones, Edward H; Su, Chunming

    2012-05-01

    Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu(0)) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic strength, the presence of natural organic matter (humic and fulvic acids) and an organic buffer (Trizma). At neutral pHs, Cu(0) nanoparticles were positively charged and essentially immobile in porous media. The presence of natural organic matter, trizma buffer, and high pH decreased the attachment efficiency facilitating elemental copper transport through sand columns. Experimental results suggested the presence of both favourable and unfavourable nanoparticle interactions causes significant deviation from classical colloid filtration theory.

  13. Copper transporters and chaperones: Their function on angiogenesis and cellular signalling

    Indian Academy of Sciences (India)

    SR BHARATHI DEVI; DHIVYA M ALOYSIUS; KN SULOCHANA

    2016-09-01

    Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studieshave reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate coppertrafficking to various cell organelles. However, the role and function of copper chaperones in relation to angiogenesishas to be further explored. The intracellular copper levels when in excess are deleterious and certain mutations ofcopper chaperones have been shown to induce cell death and influence various cellular metabolisms. The study ofthese chaperones will be helpful in understanding the players in the cascade of events in angiogenesis and their role incellular metabolic pathways. In this review we have briefly listed the copper chaperones associated with angiogenicand metabolic signalling and their function.

  14. ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii.

    Directory of Open Access Journals (Sweden)

    Maria José Leandro

    Full Text Available Zygosaccharomyces rouxii is a fructophilic yeast than can grow at very high sugar concentrations. We have identified an ORF encoding a putative fructose/H(+ symporter in the Z. rouxii CBS 732 genome database. Heterologous expression of this ORF in a S. cerevisiae strain lacking its own hexose transporters (hxt-null and subsequent kinetic characterization of its sugar transport activity showed it is a high-affinity low-capacity fructose/H(+ symporter, with Km 0.45 ± 0.07 mM and Vmax 0.57 ± 0.02 mmol h(-1 (gdw(-1. We named it ZrFsy1. This protein also weakly transports xylitol and sorbose, but not glucose or other hexoses. The expression of ZrFSY1 in Z. rouxii is higher when the cells are cultivated at extremely low fructose concentrations (<0.2% and on non-fermentable carbon sources such as mannitol and xylitol, where the cells have a prolonged lag phase, longer duplication times and change their microscopic morphology. A clear phenotype was determined for the first time for the deletion of a fructose/H(+ symporter in the genome where it occurs naturally. The effect of the deletion of ZrFSY1 in Z. rouxii cells is only evident when the cells are cultivated at very low fructose concentrations, when the ZrFsy1 fructose symporter is the main active fructose transporter system.

  15. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    Science.gov (United States)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  16. Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors

    DEFF Research Database (Denmark)

    Cao, Jianjing; Slack, Rachel D.; Bakare, Oluyomi M.

    2016-01-01

    pharmacological profiles in animal models of cocaine and methamphetamine abuse. Herein, we report a series of modafinil analogues that have an atypical DAT inhibitor profile. We extended SAR by chemically manipulating the oxidation states of the sulfoxide and the amide functional groups, halogenating the phenyl...

  17. Osmoprotectants in Halomonas elongata: High-affinity betaine transport system and choline-betaine pathway

    OpenAIRE

    Nieto Gutiérrez, Joaquín José; Cánovas, David; Vargas, C; Ventosa Ucero, Antonio; Csonka, Laszlo N.

    1996-01-01

    The osmoregulatory pathways of the moderately halophilic bacterium Halomonas elongata DSM 3043 have been investigated. This strain grew optimally at 1.5 to 2 M NaCl in M63 glucose-defined medium. It required at least 0.5 M NaCl for growth, which is a higher concentration than that exhibited by the H. elongata type strain ATCC 33173. Externally provided betaine, choline, or choline-O-sulfate (but not proline, ectoine, or proline betaine) enhanced the growth of H. elongata on 3 M NaCl-glucose-M...

  18. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death

    DEFF Research Database (Denmark)

    Nørholm, Morten Helge Hauberg; Nour-Eldin, Hussam H; Brodersen, Peter;

    2006-01-01

    GFP expression only in the vascular tissue in emerging petals under non-stressed conditions. Quantitative PCR and the pSTP13-GFP plants show induction of STP13 in programmed cell death (PCD) obtained by treatments with the fungal toxin fumonisin B1 and the pathogen Pseudomonas syringae. A role for STP......13 in PCD is supported by microarray data from e.g. plants undergoing senescence and a strong correlation between STP13 transcripts and the PCD phenotype in different accelerated cell death (acd11) mutants....

  19. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

    Institute of Scientific and Technical Information of China (English)

    XIANG YongZhe; WANG Na; ZHANG Ji; LI Kun; ZHANG ZhongWei; LIN HongHui; YU XiaoQi

    2009-01-01

    A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction be-tween 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod- odecane.High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover, the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA con-densation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

  20. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod-odecane. High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover,the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA condensation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

  1. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes.

    Science.gov (United States)

    Wensveen, Felix M; van Gisbergen, Klaas P J M; Eldering, Eric

    2012-09-01

    Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses.

  2. A High-Affinity Metal-Binding Peptide From Escherichia Coli Hypb

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K.C.Chan; Cao, L.; Dias, A.V.; Pickering, I.J.; George, G.N.; Zamble, D.B.

    2009-05-12

    The high-affinity nickel-binding site of the Escherichia coli [NiFe]-hydrogenase accessory protein HypB was localized to residues at the immediate N-terminus of the protein. Modification of a metal-binding fusion protein, site-directed mutagenesis experiments, and DFT calculations were used to identify the N-terminal amine as a ligand as well as the three cysteine residues in the CXXCGCXXX motif. This sequence can be removed from the protein and both a synthesized peptide and a protein fusion bind nickel with a similar affinity and the same structure as the parent metalloprotein, indicating the self-sufficiency of this high-affinity nickel-binding sequence.

  3. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging.

    Science.gov (United States)

    Maute, Roy L; Gordon, Sydney R; Mayer, Aaron T; McCracken, Melissa N; Natarajan, Arutselvan; Ring, Nan Guo; Kimura, Richard; Tsai, Jonathan M; Manglik, Aashish; Kruse, Andrew C; Gambhir, Sanjiv S; Weissman, Irving L; Ring, Aaron M

    2015-11-24

    Signaling through the immune checkpoint programmed cell death protein-1 (PD-1) enables tumor progression by dampening antitumor immune responses. Therapeutic blockade of the signaling axis between PD-1 and its ligand programmed cell death ligand-1 (PD-L1) with monoclonal antibodies has shown remarkable clinical success in the treatment of cancer. However, antibodies have inherent limitations that can curtail their efficacy in this setting, including poor tissue/tumor penetrance and detrimental Fc-effector functions that deplete immune cells. To determine if PD-1:PD-L1-directed immunotherapy could be improved with smaller, nonantibody therapeutics, we used directed evolution by yeast-surface display to engineer the PD-1 ectodomain as a high-affinity (110 pM) competitive antagonist of PD-L1. In contrast to anti-PD-L1 monoclonal antibodies, high-affinity PD-1 demonstrated superior tumor penetration without inducing depletion of peripheral effector T cells. Consistent with these advantages, in syngeneic CT26 tumor models, high-affinity PD-1 was effective in treating both small (50 mm(3)) and large tumors (150 mm(3)), whereas the activity of anti-PD-L1 antibodies was completely abrogated against large tumors. Furthermore, we found that high-affinity PD-1 could be radiolabeled and applied as a PET imaging tracer to efficiently distinguish between PD-L1-positive and PD-L1-negative tumors in living mice, providing an alternative to invasive biopsy and histological analysis. These results thus highlight the favorable pharmacology of small, nonantibody therapeutics for enhanced cancer immunotherapy and immune diagnostics.

  4. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  5. Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells.

    Science.gov (United States)

    Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin

    2012-12-12

    Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.

  6. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  7. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice.

    Directory of Open Access Journals (Sweden)

    Daisuke Kawabata

    Full Text Available A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.

  8. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.

  9. [3H]ATPA: a high affinity ligand for GluR5 kainate receptors.

    Science.gov (United States)

    Hoo, K; Legutko, B; Rizkalla, G; Deverill, M; Hawes, C R; Ellis, G J; Stensbol, T B; Krogsgaard-Larsen, P; Skolnick, P; Bleakman, D

    1999-12-01

    The pharmacological properties of [3H]ATPA ((RS)-2-amino-3(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid) are described. ATPA is a tert-butyl analogue of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) that has been shown to possess high affinity for the GluR5 subunit of kainate receptors. [3H]ATPA exhibits saturable, high affinity binding to membranes expressing human GluR5 (GluR5) kainate receptors (Kd approximately 13 nM). No specific binding was observed in membranes expressing GluR2 and GluR6 receptors. Several compounds known to interact with the GluR5 kainate receptor inhibited [3H]ATPA binding with potencies similar to those obtained for competition of [3H]kainate binding to GluR5. Saturable, high affinity [3H]ATPA binding (Kd approximately 4 nM) was also observed in DRG neuron (DRG) membranes isolated from neonatal rats. The rank order potency of compounds to inhibit [3H]ATPA binding in rat DRG and GluR5 membranes were in agreement. These finding demonstrate that [3H]ATPA can be used as a radioligand to examine the pharmacological properties of GluR5 containing kainate receptors.

  10. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat

    2016-03-01

    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  11. Structural Basis for High-Affinity Peptide Inhibition of Human Pin1

    Science.gov (United States)

    Zhang, Yan; Daum, Sebastian; Wildemann, Dirk; Zhou, Xiao Zhen; Verdecia, Mark A.; Bowman, Marianne E.; Lücke, Christian; Hunter, Tony; Lu, Kun-Ping; Fischer, Gunter; Noel, Joseph P.

    2009-01-01

    Human Pin1 is a key regulator of cell-cycle progression and plays growth-promoting roles in human cancers. High-affinity inhibitors of Pin1 may provide a unique opportunity for disrupting oncogenic pathways. Here we report two high-resolution X-ray crystal structures of human Pin1 bound to non-natural peptide inhibitors. The structures of the bound high-affinity peptides identify a type-I β-turn conformation for Pin1 prolyl peptide isomerase domain–peptide binding and an extensive molecular interface for high-affinity recognition. Moreover, these structures suggest chemical elements that may further improve the affinity and pharmacological properties of future peptide-based Pin inhibitors. Finally, an intramolecular hydrogen bond observed in both peptide complexes mimics the cyclic conformation of FK506 and rapamycin. Both FK506 and rapamycin are clinically important inhibitors of other peptidyl-prolyl cis-trans isomerases. This comparative discovery suggests that a cyclic peptide polyketide bridge, like that found in FK506 and rapamycin or a similar linkage, may significantly improve the binding affinity of structure-based Pin1 inhibitors. PMID:17518432

  12. Mechanistic basis for overcoming platinum resistance using copper chelating agents.

    Science.gov (United States)

    Liang, Zheng D; Long, Yan; Tsai, Wen-Bin; Fu, Siqing; Kurzrock, Razelle; Gagea-Iurascu, Mihai; Zhang, Fan; Chen, Helen H W; Hennessy, Bryan T; Mills, Gordon B; Savaraj, Niramol; Kuo, Macus Tien

    2012-11-01

    Platinum-based antitumor agents are widely used in cancer chemotherapy. Drug resistance is a major obstacle to the successful use of these agents because once drug resistance develops, other effective treatment options are limited. Recently, we conducted a clinical trial using a copper-lowering agent to overcome platinum drug resistance in ovarian cancer patients and the preliminary results are encouraging. In supporting this clinical study, using three pairs of cisplatin (cDDP)-resistant cell lines and two ovarian cancer cell lines derived from patients who had failed in platinum-based chemotherapy, we showed that cDDP resistance associated with reduced expression of the high-affinity copper transporter (hCtr1), which is also a cDDP transporter, can be preferentially resensitized by copper-lowering agents because of enhanced hCtr1 expression, as compared with their drug-sensitive counterparts. Such a preferential induction of hCtr1 expression in cDDP-resistant variants by copper chelation can be explained by the mammalian copper homeostasis regulatory mechanism. Enhanced cell-killing efficacy by a copper-lowering agent was also observed in animal xenografts bearing cDDP-resistant cells. Finally, by analyzing a public gene expression dataset, we found that ovarian cancer patients with elevated levels of hCtr1 in their tumors, but not ATP7A and ATP7B, had more favorable outcomes after platinum drug treatment than those expressing low hCtr1 levels. This study reveals the mechanistic basis for using copper chelation to overcome cDDP resistance in clinical investigations.

  13. Integration of XAS and NMR techniques for the structure determination of metalloproteins. Examples from the study of copper transport proteins.

    Science.gov (United States)

    Banci, Lucia; Bertini, Ivano; Mangani, Stefano

    2005-01-01

    Nuclear magnetic resonance (NMR) is a powerful technique for protein structure determination in solution. However, when dealing with metalloproteins, NMR methods are unable to directly determine the structure of the metal site and its coordination geometry. The capability of X-ray absorption spectroscopy (XAS) to provide the structure of a metal ion bound to a protein is then perfectly suited to complement the process of the structure determination. This aspect is particularly relevant in structural genomic projects where high throughput of structural results is the main goal. The synergism of the two techniques has been exploited in the structure determination of bacterial copper transport proteins.

  14. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI)

    OpenAIRE

    1992-01-01

    It has been suggested that epidermal Langerhans cells (LC) bearing immunoglobulin E (IgE) may be involved in the genesis of atopic disease. The identity of the IgE receptor(s) on LC remained unclear, although it represents a crucial point in understanding cellular events linked to the binding of allergens to LC via IgE. In this report, we demonstrate that epidermal LC express the high affinity receptor for the Fc fragment of IgE (Fc epsilon RI) which has, so far, only been described on mast c...

  15. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yliniemelae, A.; Gynther, J. (Univ. of Kuopio (Finland)); Konschin, H.; Tylli, H. (Univ. of Helsinki (Finland)); Rouvinen, J. (Univ. of Joensuu (Finland))

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  16. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1.

    Science.gov (United States)

    Haas, Kathryn L; Putterman, Allison B; White, Daniel R; Thiele, Dennis J; Franz, Katherine J

    2011-03-30

    Cellular acquisition of copper in eukaryotes is primarily accomplished through the Ctr family of copper transport proteins. In both humans and yeast, methionine-rich "Mets" motifs in the amino-terminal extracellular domain of Ctr1 are thought to be responsible for recruitment of copper at the cell surface. Unlike yeast, mammalian Ctr1 also contains extracellular histidine-rich motifs, although a role for these regions in copper uptake has not been explored in detail. Herein, synthetic model peptides containing the first 14 residues of the extracellular domain of human Ctr1 (MDHSHHMGMSYMDS) have been prepared and evaluated for their apparent binding affinity to both Cu(I) and Cu(II). These studies reveal a high affinity Cu(II) binding site (log K = 11.0 ± 0.3 at pH 7.4) at the amino-terminus of the peptide as well as a high affinity Cu(I) site (log K = 10.2 ± 0.2 at pH 7.4) that utilizes adjacent HH residues along with an additional His or Met ligand. These model studies suggest that the histidine domains may play a direct role in copper acquisition from serum copper-binding proteins and in facilitating the reduction of Cu(II) to the active Ctr1 substrate, Cu(I). We tested this hypothesis by expressing a Ctr1 mutant lacking only extracellular histidine residues in Ctr1-knockout mouse embryonic fibroblasts. Results from live cell studies support the hypothesis that extracellular amino-terminal His residues directly participate in the copper transport function of Ctr1.

  17. Predicting Soil Physical Parameters and Copper Transport in a Polluted Field From X Ray CT-Images

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Naveed, Muhammad; Møldrup, Per

    2013-01-01

    The development of 3D imaging techniques provides non-destructive tools to reveal the soil structure. X-ray computed tomography (CT) analysis has succeeded in predicting pore network properties such as macropore size distribution, tortuosity, and hydraulic properties. Since contaminant transport...... in soils is strongly controlled by the soil structure, the capabilities of these visualization techniques could be used to predict the risk of pollutants leaching. This work was carried out using soils from a field site (Hygum) in Jutland, Denmark, a historical copper (Cu) polluted field cultivated for 80...... to the volume of each soil column. Leaching experiments were performed to analyze tritium transport, colloid leaching and dissolved organic carbon and Cu losses associated with particles or dissolved organic matter (DOM). Air permeability and saturated hydraulic conductivity were measured before and after...

  18. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria.

    Science.gov (United States)

    Willmann, Anita; Weiss, Michael; Nehls, Uwe

    2007-02-01

    A main function of ectomycorrhizas, a symbiosis between certain soil fungi and fine roots of woody plants, is the exchange of plant-derived carbohydrates for fungus-derived nutrients. As it is required in large amounts, nitrogen is of special interest. A gene (AmAMT2) coding for a putative fungal ammonium importer was identified in an EST project of functional Amanita muscaria/poplar ectomycorrhizas. Heterologous expression of the entire AmAMT2 coding region in yeast revealed the corresponding protein to be a high-affinity ammonium importer. In axenically grown Amanita hyphae AmAMT2 expression was strongly repressed by nitrogen, independent of whether the offered nitrogen source was transported by AmAMT2 or not. In functional ectomycorrhizas the AmAMT2 transcript level was further decreased in both hyphal networks (sheath and Hartig net), while extraradical hyphae revealed strong gene expression. Together our data suggest that (1) AmAMT2 expression is regulated by the endogenous nitrogen content of hyphae and (2) fungal hyphae in ectomycorrhizas are well supported with nitrogen even when the extraradical mycelium is nitrogen limited. As a consequence of AmAMT2 repression in mycorrhizas, ammonium can be suggested as a potential nitrogen source delivered by fungal hyphae in symbiosis.

  19. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    Science.gov (United States)

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  20. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    Science.gov (United States)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  1. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma

    Science.gov (United States)

    Zhang, Yi-Fan; Ho, Mitchell

    2016-01-01

    Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer. PMID:27667400

  2. High affinity binding of (/sup 3/H)cocaine to rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    )/sup 3/H)cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in (/sup 3/H)cocaine binding. On the other hand, chronic administration of cocaine reduced (/sup 3/H)cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of (/sup 3/H)cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced (/sup 3/H)cocaine binding to liver with a different rank order of potency than their displacement of (/sup 3/H)cocaine binding to striatum. This high affinity (/sup 3/H)cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  3. High affinity binding site-mediated prevention of chemical absorption across the gastrointestinal tract.

    Science.gov (United States)

    Rasmussen, M V; Barker, T T; Silbart, L K

    2001-12-15

    Preventing mucosal absorption of low-molecular weight compounds such as carcinogens, toxins and drugs could help prevent many diseases. To characterize the effects of dose and timing on high-affinity binding site mediated sequestration of specific chemical ligands in the gastrointestinal tract, avidin was perorally-administered to mice either prior to or mixed with 3H-biotin. Avidin enhanced fecal 3H-biotin excretion in a dose-dependent manner, consistent with the accepted mechanism of egg white-induced biotin deficiency syndrome. Avidin administration up to 4 h before 3H-biotin administration also enhanced fecal 3H-biotin excretion. Activated charcoal (AC) reduced 3H-biotin absorption when mixed with 3H-biotin before ingestion, but was ineffective when ingested prior to 3H-biotin. These studies suggest that ingestion of high-affinity protein binding sites can establish an absorptive barrier at the gastrointestinal mucosa to prevent the uptake of unwanted low molecular-weight chemicals.

  4. High affinity mouse-human chimeric Fab against Hepatitis B surface antigen

    Institute of Scientific and Technical Information of China (English)

    Biplab Bose; Navin Khanna; Subrat K Acharya; Subrata Sinha

    2005-01-01

    AIM: Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody.METHODS: We cloned the VH and VL genes of this mouse antibody; and fused them with CH1 domain of human IgG1 and CL domain of human kappa chain respectively. These chimeric genes were cloned into a phagemid vector. After initial screening using the phage display system, the chimeric Fab was expressed in soluble form in E. Coli.RESULTS: The chimeric Fab was purified from the bacterial periplasmic extract. We characterized the chimeric Fab using several in vitro techniques and it was observed that the chimeric molecule retained the high affinity and specificity of the original mouse monoclonal.This chimeric antibody fragment was further expressed in different strains of E> coli to increase the yield.CONCLUSION: We have generated a mouse-human chimeric Fab against HBsAg without any significant loss in binding and epitope specificity. This chimeric Fab fragment can be further modified to generate a fulllength chimeric antibody for therapeutic uses.

  5. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  6. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Science.gov (United States)

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  7. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Science.gov (United States)

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  8. Investigation of iron metabolism in mice expressing a mutant Menke's copper transporting ATPase (Atp7a protein with diminished activity (Brindled; Mo (Br (/y .

    Directory of Open Access Journals (Sweden)

    Sukru Gulec

    Full Text Available During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1. Moreover, two ferroxidase proteins involved in iron homeostasis, hephaestin expressed in enterocytes and ceruloplasmin, produced and secreted into blood by the liver, are copper-dependent enzymes. We thus aimed to test the hypothesis that Atp7a function is important for the copper-related compensatory response of the intestinal epithelium to iron deficiency. Accordingly, iron homeostasis was studied for the first time in mice expressing a mutant Atp7a protein with minimal activity (Brindled [Mo (Br (/y ]. Mutant mice were rescued by perinatal copper injections, and, after a 7-8 week recovery period, were deprived of dietary iron for 3 weeks (along with WT littermates. Adult Mo (Br (/y mice displayed copper-deficiency anemia but had normal iron status; in contrast, iron-deprived Mo (Br (/y mice were iron deficient and more severely anemic with partial amelioration of the copper-deficient phenotype. Intestinal iron absorption in both genotypes (WT and Mo (Br (/y increased ∼3-fold when mice consumed a low-iron diet and ∼6-fold when mice were concurrently bled. WT mice exhibited no alterations in copper homeostasis in response to iron deprivation or phlebotomy. Conversely, upregulation of iron absorption was associated with increased enterocyte and liver copper levels and serum ferroxidase (ceruloplasmin activity in Mo (Br (/y mice, typifying the response to iron deprivation in many mammalian species. We thus speculate that a copper threshold exists that is necessary to allow appropriate regulate of iron absorption. In summary, Mo (Br (/y mice were able to adequately regulate iron absorption

  9. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    OpenAIRE

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H. F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affin...

  10. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, C.L.; Eldefrawi, A.T.; Eldefrawi, M.E. (Univ. of Maryland, Baltimore (USA))

    1990-05-01

    The M2 subtype of muscarinic receptor is predominant in heart, and such receptors were reported to be located in muscles as well as in presynaptic cholinergic and adrenergic nerve terminals. Muscarinic receptors of rat heart were identified by the high affinity binding of the agonist (+)-(3H)cis-methyldioxolane ((3H)CD), which has been used to label a high affinity population of M2 receptors. A single population of sites was detected and (3H)CD binding was sensitive to the M2 antagonist himbacine but much less so to pirenzepine, the M1 antagonist. These cardiac receptors had different sensitivities to NiCl2 and N-ethylmaleimide from brain muscarinic receptors, that were also labeled with (3H)CD and considered to be of the M2 subtype. Up to 70% of the (3H)CD-labeled cardiac receptors had high affinities for several organophosphate (OP) anticholinesterases. (3H)CD binding was inhibited by the nerve agents soman, VX, sarin, and tabun, with K0.5 values of 0.8, 2, 20, and 50 nM, respectively. It was also inhibited by echothiophate and paraoxon with K0.5 values of 100 and 300 nM, respectively. The apparent competitive nature of inhibition of (3H)CD binding by both sarin and paraoxon suggests that the OPs bind to the acetylcholine binding site of the muscarinic receptor. Other OP insecticides had lower potencies, inhibiting less than 50% of 5 nM (3H)CD binding by 1 microM of EPN, coumaphos, dioxathion, dichlorvos, or chlorpyriphos. There was poor correlation between the potencies of the OPs in reversibly inhibiting (3H)CD binding, and their anticholinesterase activities and toxicities. Acetylcholinesterases are the primary targets for these OP compounds because of the irreversible nature of their inhibition, which results in building of acetylcholine concentrations that activate muscarinic and nicotinic receptors and desensitize them, thereby inhibiting respiration.

  11. The Role of the N-terminus of Mammalian Copper Transporter 1 in the Cellular Accumulation of Cisplatin

    Science.gov (United States)

    Larson, Christopher A.; Adams, Preston L.; Jandial, Danielle D.; Blair, Brian G.; Safaei, Roohangiz; Howell, Stephen B.

    2010-01-01

    The mammalian Copper Transporter 1 (CTR1) is responsible for the uptake of copper (Cu) from the extracellular space, and has been shown to play a major role in the initial accumulation of platinum-based drugs. In this study we re-expressed wild type and structural variants of hCTR1 in mouse embryo fibroblasts in which both alleles of mCTR1 had been knocked out (CTR1−/−) to examine the role of the N-terminal extracellular domain of hCTR1 in the accumulation of cisplatin (cDDP). Deletion of either the first 45 amino acids or just the 40MXXM45 motif in the N-terminal domain did not alter subcellular distribution or the amount of protein in the plasma membrane but it eliminated the ability of hCTR1 to mediate the uptake of Cu. In contrast it only partially reduced cDDP transport capacity. Neither of these structural changes prevented cDDP from triggering the rapid degradation of hCTR1. However, they did alter the potency of the cDDP that achieved cell entry, possibly reflecting the fact that hCTR1 may mediate the transport of cDDP both through the pore it forms in the plasma membrane and via endocytosis. We conclude that cDDP interacts with hCTR1 both at 40MXXM45 and at sites outside the N-terminal domain that produce the conformational changes that trigger degradation. PMID:20451502

  12. Canine models of copper toxicosis for understanding mammalian copper metabolism

    OpenAIRE

    Fieten, Hille; Leegwater, Peter A. J.; Watson, Adrian L.; Rothuizen, Jan

    2011-01-01

    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeo...

  13. A predictive model for the transport of copper by HCl-bearing water vapour in ore-forming magmatic-hydrothermal systems: Implications for copper porphyry ore formation

    Science.gov (United States)

    Migdisov, Art. A.; Bychkov, A. Yu.; Williams-Jones, A. E.; van Hinsberg, V. J.

    2014-03-01

    The solubility of copper chloride and metallic copper in low-density homogenous HCl-bearing aqueous fluids was investigated experimentally at temperatures between 350 and 550 °C. Analysis of the resulting data and those on the solubility of copper chloride reported in Archibald et al. (2002) for temperatures between 280 and 320 °C suggests that at temperatures <450 °C, the solubility of copper chloride is controlled by a species having a Cu:Cl ratio of 1:1. The data also suggest that the solubility of copper chloride is controlled by the formation of hydrated copper clusters, i.e., CuCl:(H2O)n, and increases exponentially with H2O fugacity rather than linearly, as previously assumed. The hydration number (n) of the predominant cluster increases systematically with increasing pressure, and each of the gaseous solutions investigated at temperatures <450 °C contains a mixture of clusters with different hydration numbers that predominate at different pressures. A model is proposed for the quantitative evaluation of the stability of these clusters based on the observation that the Gibbs free energy of formation of the clusters determined from the experimental data shows a strong linear correlation with reciprocal temperature. This model reliably predicts the fugacity of copper in chlorine-bearing water vapour determined from solubility and liquid-vapour partitioning reported in the literature. At temperatures above 450 °C, the stoichiometry of the dominant form of the dissolved copper chloride changes from copper monochloride (Cu:Cl = 1:1) to copper dichloride (Cu:Cl = 1:2) and the hydration numbers of the corresponding clusters are constant for the range of temperatures and pressures investigated. We did not manage to determine the valence state of copper in these species, and therefore interpreted our stability data separately for two alternative sets of hydration clusters, namely; one containing monovalent copper (CuCl:HCl or CuCl2H), and the other containing

  14. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis.

    Science.gov (United States)

    Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus

    2016-08-31

    Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E(+)) and acquire a high-affinity conformation with an 'open' headpiece (H(+)). The canonical switchblade model of integrin activation proposes that the E(+) conformation precedes H(+), and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E(-)H(+) conformation. E(-)H(+) β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation.

  15. Selection of high affine peptide ligands for detection of Clostridium Tyrobutyricum spores.

    Science.gov (United States)

    Lavilla, María; De Luis, Ruth; Pérez, María Dolores; Calvo, Miguel; Sánchez, Lourdes

    2009-11-01

    Clostridium tyrobutyricum is the main agent responsible for "late blowing" in cheese, which causes severe economic losses. Nowadays, the reference method for its detection is the Most-Probable-Number (MPN); however, it is time consuming and non-specific. Thus, in order to check milk contamination with spores of C. tyrobutyricum, a more specific and rapid method would be required. The objective of this work was to obtain a ligand to establish the basis to develop a biomagnetic separation method for detection of C. tyrobutyricum spores. This study describes the selection of thirteen highly affine peptides to C. tyrobutyricum spores from a phage-display peptide library. In order to test the ability of the peptides attached to a solid support to bind the spores, the most frequent peptide was synthesised and used to coat paramagnetic beads.

  16. Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions.

    Science.gov (United States)

    Altschuler, Sarah E; Lewis, Karen A; Wuttke, Deborah S

    2013-01-01

    The quantitative evaluation of binding interactions between proteins and nucleic acids is highly sensitive to a variety of experimental conditions. Optimization of these conditions is critical for obtaining high quality, reproducible data, particularly in the context of very high affinity interactions. Here, we discuss the practical considerations involved in optimizing the apparent binding constant of an interaction as measured by two common quantitative assays, electrophoretic mobility shift assay and double-filter binding when measuring extremely tight protein/nucleic acid interactions with sub-nanomolar binding affinities. We include specific examples from two telomere end-binding protein systems, Schizo -saccharomyces pombe Pot1 and Saccharomyces cerevisiae Cdc13, to demonstrate potential experimental pitfalls and some useful strategies for optimization.

  17. Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions

    Directory of Open Access Journals (Sweden)

    Sarah E. Altschuler

    2013-09-01

    Full Text Available The quantitative evaluation of binding interactions between proteins and nucleic acids is highly sensitive to a variety of experimental conditions. Optimization of these conditions is critical for obtaining high quality, reproducible data, particularly in the context of very high affinity interactions. Here, we discuss the practical considerations involved in optimizing the apparent binding constant of an interaction as measured by two common quantitative assays, electrophoretic mobility shift assay and double-filter binding when measuring extremely tight protein/nucleic acid interactions with sub-nanomolar binding affinities. We include specific examples from two telomere end-binding protein systems, Schizosaccharomyces pombe Pot1 and Saccharomyces cerevisiae Cdc13, to demonstrate potential experimental pitfalls and some useful strategies for optimization.

  18. Experimental conditions can obscure the second high-affinity site in LeuT.

    Science.gov (United States)

    Quick, Matthias; Shi, Lei; Zehnpfennig, Britta; Weinstein, Harel; Javitch, Jonathan A

    2012-01-15

    Neurotransmitter:Na(+) symporters (NSSs), the targets of antidepressants and psychostimulants, recapture neurotransmitters from the synapse in a Na(+)-dependent symport mechanism. The crystal structure of the NSS homolog LeuT from Aquifex aeolicus revealed one leucine substrate in an occluded, centrally located (S1) binding site next to two Na(+) ions. Computational studies combined with binding and flux experiments identified a second substrate (S2) site and a molecular mechanism of Na(+)-substrate symport that depends upon the allosteric interaction of substrate molecules in the two high-affinity sites. Here we show that the S2 site, which has not yet been identified by crystallographic approaches, can be blocked during preparation of detergent-solubilized LeuT, thereby obscuring its crucial role in Na(+)-coupled symport. This finding points to the need for caution in selecting experimental environments in which the properties and mechanistic features of membrane proteins can be delineated.

  19. Cytisine derivatives as high affinity nAChR ligands: synthesis and comparative molecular field analysis.

    Science.gov (United States)

    Nicolotti, O; Canu Boido, C; Sparatore, F; Carotti, A

    2002-06-01

    A number of new N-substituted cytisine derivatives were prepared and tested, along with similar compounds already described by us and others, as high affinity neuronal acetylcholine receptor ligands. Structure-affinity relationships were discussed in the light of our recently proposed pharmacophore model for nicotinic receptor agonists. The most significant physicochemical interactions modulating the receptor-ligand binding were detected at the three dimensional (3D) level by means of comparative molecular field analysis (CoMFA). The best predictive PLS model was a single-field steric model showing good statistical figures: n = 17, Q2 = 0.717, s(ev) = 0.566, r2 = 0.942, s = 0.275.

  20. A linker peptide with high affinity towards silica-containing materials.

    Science.gov (United States)

    Sunna, Anwar; Chi, Fei; Bergquist, Peter L

    2013-06-25

    A peptide sequence with affinity to silica-containing materials was fused to a truncated form of Streptococcus strain G148 Protein G. The resulting recombinant Linker-Protein G (LPG) was produced in Escherichia coli and purified to apparent homogeneity. It displayed high affinity towards two natural clinoptilolite zeolites. The LPG also displayed high binding affinity towards commercial-grade synthetic zeolite, silica and silica-containing materials. A commercial sample of the truncated Protein G and a basic protein, both without the linker, did not bind to natural or synthetic zeolites or silica. We conclude that the zeolite-binding affinity is mediated by the linker peptide sequence. As a consequence, these data may imply that the binding affinity is directed to the SiO2 component rather than to the atomic orientation on the zeolite crystal surface as previously assumed.

  1. Structural insights into a high affinity nanobody:antigen complex by homology modelling

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2017-01-01

    B binding were identified and used as input to the docking. Furthermore, residues likely involved in the RgpB epitope was identified based upon RgpB:RgpA alignment and analysis of residue surface accessibility. CDR residues and putitative RgpB epitope residues were used as input to an information-driven...... flexible docking approach using the HADDOCK server. Analysis of the VHH7:RgpB model demonstrated that the epitope was found in the immunoglobulin-like domain and residue pairs located at the molecular paratope:epitope interface important for complex stability was identified. Collectively, the VHH7 homology...... model and VHH7:RgpB docking supplies knowledge of the residues involved in the high affinity interaction. This information could prove valuable in the design of an antibody-drug conjugate for specific RgpB targeting....

  2. A complex water network contributes to high-affinity binding in an antibody–antigen interface

    Directory of Open Access Journals (Sweden)

    S.F. Marino

    2016-03-01

    Full Text Available This data article presents an analysis of structural water molecules in the high affinity interaction between a potent tumor growth inhibiting antibody (fragment, J22.9-xi, and the tumor marker antigen CD269 (B cell maturation antigen, BCMA. The 1.89 Å X-ray crystal structure shows exquisite details of the binding interface between the two molecules, which comprises relatively few, mostly hydrophobic, direct contacts but many indirect interactions over solvent waters. These are partly or wholly buried in, and therefore part of, the interface. A partial description of the structure is included in an article on the tumor inhibiting effects of the antibody: “Potent anti-tumor response by targeting B cell maturation antigen (BCMA in a mouse model of multiple myeloma”, Mol. Oncol. 9 (7 (2015 pp. 1348–58.

  3. Expression of a Hybrid Human Superoxide Dismutase with a High Affinity for Heparin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A designed heparin-affinity of human Cu, Zn-SOD is described. The natural leader peptide of P.leiognathi Cu, Zn-SOD and a heparin-binding peptide containing a stretch of 7 Arg were fused to the N-terminal and the C-terminal of human Cu, Zn-SOD respectively. The resulted hybrid enzyme had not only a normal SOD activity but also a high affinity for heparin eluted on the heparin-Sepharose column at 0.4 mol/L NaCl. Some properties, such as the optimum pH, the thermostability and the half-life in the circulation of rats, were also analyzed.

  4. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor

    DEFF Research Database (Denmark)

    Rao, C N; Castronovo, V; Schmitt, M C;

    1989-01-01

    The high-affinity cellular receptor for the basement membrane component laminin is differentially expressed during tumor invasion and metastasis. A cDNA clone encoding the murine laminin receptor was isolated and identified on the basis of sequence homology to the human laminin receptor [Wewer et...... al. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 7137-7141]. Primer extension experiments demonstrated that the clone contained the complete 5' sequence of the murine laminin receptor mRNA. RNA blot data demonstrated a single-sized laminin receptor mRNA, approximately 1400 bases long, in human, mouse......, and rat. The nascent laminin receptor predicted from the cDNA sequence is 295 amino acids long, with a molecular weight of 33,000, and contains one intradisulfide bridge, a short putative transmembrane domain, and an extracellular carboxy-terminal region which has abundant glutamic acid residues...

  5. Effects of anticonvulsants in vivo on high affinity choline uptake in vitro in mouse hippocampal synaptosomes.

    Science.gov (United States)

    Miller, J. A.; Richter, J. A.

    1985-01-01

    The effects of several anticonvulsant drugs on sodium-dependent high affinity choline uptake (HACU) in mouse hippocampal synaptosomes was investigated. HACU was measured in vitro after in vivo administration of the drug to mice. HACU was inhibited by drugs which have in common the ability to facilitate gamma-aminobutyric acid (GABA) transmission, pentobarbitone, phenobarbitone, barbitone, diazepam, chloridiazepoxide, and valproic acid. Dose-response relationships were determined for these drugs and the drugs' potencies at inhibiting HACU correlated well with their anticonvulsant potencies. Clonazepam, ethosuximide, carbamazepine, and barbituric acid had no effect on HACU in the doses used while phenytoin and trimethadione stimulated HACU. These results suggest that certain anticonvulsants may elicit a part of their anticonvulsant activity by modulating cholinergic neurones. This effect may be mediated through a GABA mechanism. PMID:3978310

  6. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Katz, D.M.; Kimelberg, H.K.

    1985-07-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; (/sup 3/H)-5-HT). At concentrations in the range of 0.01 to 0.7 microM (/sup 3/H)-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM (/sup 3/H)-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of (/sup 3/H)-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of (/sup 3/H)-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate (/sup 3/H)-5-HT up to 44-fold at an external (/sup 3/H)-5-HT concentration of 10(-7) M. Inhibition of (/sup 3/H)-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of (/sup 3/H)-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on (/sup 3/H)-5-HT uptake.

  7. The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors.

    Science.gov (United States)

    Nezami, Azin; Freire, Ernesto

    2002-12-04

    The plasmepsins are key enzymes in the life cycle of the Plasmodium parasites responsible for malaria. Since plasmepsin inhibition leads to parasite death, these enzymes have been acknowledged to be important targets for the development of new antimalarial drugs. The development of effective plasmepsin inhibitors, however, is compounded by their genomic diversity which gives rise not to a unique target for drug development but to a family of closely related targets. Successful drugs will have to inhibit not one but several related enzymes with high affinity. Structure-based drug design against heterogeneous targets requires a departure from the classic 'lock-and-key' paradigm that leads to the development of conformationally constrained molecules aimed at a single target. Drug molecules designed along those principles are usually rigid and unable to adapt to target variations arising from naturally occurring genetic polymorphisms or drug-induced resistant mutations. Heterogeneous targets need adaptive drug molecules, characterised by the presence of flexible elements at specific locations that sustain a viable binding affinity against existing or expected polymorphisms. Adaptive ligands have characteristic thermodynamic signatures that distinguish them from their rigid counterparts. This realisation has led to the development of rigorous thermodynamic design guidelines that take advantage of correlations between the structure of lead compounds and the enthalpic and entropic components of the binding affinity. In this paper, we discuss the application of the thermodynamic approach to the development of high affinity (K(i) - pM) plasmepsin inhibitors. In particular, a family of allophenylnorstatine-based compounds is evaluated for their potential to inhibit a wide spectrum of plasmepsins.

  8. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  9. Production and Identification of High Affinity Monoclonal Antibodies Against Pesticide Carbofuran

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To produce high-affinity monoclonal antibodies against pesticide carbofuran, and the develop immunochemical assays for people's health and environmental protection, the hapten 4-[[(2,3-dihydro-2,2-dimethyl-7-benzofuranyloxy) carbonyl]-amino]-butanoic acid (BFNB) of carbofuran was synthesized and Balb/c mice were immunized by the hapten-carrier (BFNB-bovine serum albumin, BFNB-BSA) conjugates. The splenocytes of immunized mice were fused with Sp2/0 cells and the cultural supernatants of hybridoma cells were screened by the indirect enzyme-linked immunoabsorbent assay (ELISA), based on BFNB-ovoalbumin conjugates (BFNB-OVA). Purified monoclonal antibody (McAb) was obtained from fluids of ascites, deposited by octanoic acid and ammonium sulfate. The affinity and the specificity of McAb were characterized by ELISA or indirect competitive ELISA. A hybridoma cell line (5D3) secreting anti-carbofuran McAb had been established. The titer of culture medium and ascites was up to 1:2.048 × 103 and 1:1.024 × 106, respectively, and the subtype of the McAb was IgG1. The affinity constant of the McAb was about 2.54 × 109 L mol-1, with an IC50 value of 1.18 ng mL-1 and a detection limit of 0.01 ng mL-1. Cross-reactivity studies showed that the McAb was quiet specific for carbofuran, as among the four analogous compounds, they were all hardly recognized (4.59 × 10-4% for 2,3-dihydro-2,2-dimethyl-7-benzofuranol and less than 3.0 × 10-4% for others). The prepared McAb had a very high affinity and specificity,and it could be used to develop ELISA for rapid determination of carbofuran.

  10. Bacteriophage lambda terminase: alterations of the high-affinity ATPase affect viral DNA packaging.

    Science.gov (United States)

    Dhar, Alok; Feiss, Michael

    2005-03-18

    DNA packaging by large DNA viruses such as the tailed bacteriophages and the herpesviruses involves DNA translocation into a preformed protein shell, called the prohead. Translocation is driven by an ATP hydrolysis-powered DNA packaging motor. The bacteriophages encode a heterodimeric viral DNA packaging protein, called terminase. The terminases have an ATPase center located in the N terminus of the large subunit implicated in DNA translocation. In previous work with phage lambda, lethal mutations that changed ATP-reactive residues 46 and 84 of gpA, the large terminase subunit, were studied. These mutant enzymes retained the terminase endonuclease and helicase activities, but had severe defects in virion assembly, and lacked the terminase high-affinity ATPase activity. Surprisingly, in the work described here, we found that enzymes with the conservative gpA changes Y46F and Y46A had only mild packaging defects. These mild defects contrast with their profound virion assembly defects. Thus, these mutant enzymes have, in addition to the mild DNA packaging defects, a severe post-DNA packaging defect. In contrast, the gpA K84A enzyme had similar virion assembly and DNA packaging defects. The DNA packaging energy budget, i.e. DNA packaged/ATP hydrolyzed, was unchanged for the mutant enzymes, indicating that DNA translocation is tightly coupled to ATP hydrolysis. A model is proposed in which gpA residues 46 and 84 are important for terminase's high-affinity ATPase activity. Assembly of the translocation complex remodels this ATPase so that residues 46 and 84 are not crucial for the activated translocation ATPase. Changing gpA residues 46 and 84 primarily affects assembly, rather than the activity, of the translocation complex.

  11. Neurotensin decreases high affinity [3H]-ouabain binding to cerebral cortex membranes.

    Science.gov (United States)

    Rosin, Carina; Ordieres, María Graciela López; Arnaiz, Georgina Rodríguez de Lores

    2011-12-10

    Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.

  12. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  13. Effects of spin–orbit coupling and many-body correlations in STM transport through copper phthalocyanine

    Directory of Open Access Journals (Sweden)

    Benjamin Siegert

    2015-12-01

    Full Text Available The interplay of exchange correlations and spin–orbit interaction (SOI on the many-body spectrum of a copper phtalocyanine (CuPc molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet–triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects.

  14. Transport Measurements in the Mixed Ion-Electron Conductor Copper(x) Carbon-Disulfide

    Science.gov (United States)

    Kuo, Hung-Jen

    (sigma)(,i), (sigma)(,e), and the chemical diffusion coefficient, (')D, of highly-disordered Cu(,x)CS(,2) were investigated using a dc 4-lead technique employing Pt electrodes. The experiments were performed at various copper concentrations from x = 2.87 to 3.60 and various temperatures from 260 K to 350 K. The results were interpreted by Yokota's and ionic hopping diffusion theories. (sigma)(,i) and (sigma)(,e) are comparable at room temperature, 4.18 x 10('-3) (OMEGA)('-1)cm('-1) and 1.55 x 10('-3) (OMEGA)('-1)cm('-1) respectively at X = 3.60 and 300 K. Both (sigma)(,i) and (sigma)(,e) follow a simple Arrhenius form with activation energies (TURN)0.40 eV and (TURN)0.29 eV respectively. The exponential dependence of (sigma)(,i) on X is explained in terms of the activation entropy associated with the motion of ions. Electronic conduction is by hopping. Results show that it is reasonable to assume that all the copper ions are mobile. The mobility and the diffusivity of copper ions were found to be 0.71 x 10('-6) cm('2)V(' -1)sec('-1) and 1.83 x 10('-8) cm('2)/sec respectively at X = 3.6 and 300 K. The diffusivity is much less than the chemical diffusion coefficient evaluated from the diffusion time constant, (')D = 0.829 x 10('-5) cm('2)/sec at X = 3.60 and 300 K. This is because of a large enhancement factor W (TURN) 453, or a large (PAR-DIFF)m(,e)/(PAR-DIFF)N. The change in galvanic cell potential E with X, -(PAR-DIFF)E/(PAR -DIFF)X, calculated from the measurements of (sigma)(,i), (sigma)(,e), and (')D, is 14 Volt.

  15. Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya

    2013-01-01

    The optical, structural and charge transport properties of solution-processed films of copper(i) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ∼20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics with a maximum field-effect mobility in the range of 0.01-0.1 cm2 V-1 s-1. © 2013 The Royal Society of Chemistry.

  16. Mammary gland copper transport is stimulated by prolactin through alterations in Ctr1 and Atp7A localization.

    Science.gov (United States)

    Kelleher, Shannon L; Lönnerdal, Bo

    2006-10-01

    Milk copper (Cu) concentration declines and directly reflects the stage of lactation. Three Cu-specific transporters (Ctr1, Atp7A, Atp7B) have been identified in the mammary gland; however, the integrated role they play in milk Cu secretion is not understood. Whereas the regulation of milk composition by the lactogenic hormone prolactin (PRL) has been documented, the specific contribution of PRL to this process is largely unknown. Using the lactating rat as a model, we determined that the normal decline in milk Cu concentration parallels declining Cu availability to the mammary gland and is associated with decreased Atp7B protein levels. Mammary gland Cu transport was highest during early lactation and was stimulated by suckling and hyperprolactinemia, which was associated with Ctr1 and Atp7A localization at the plasma membrane. Using cultured mammary epithelial cells (HC11), we demonstrated that Ctr1 stains in association with intracellular vesicles that partially colocalize with transferrin receptor (recycling endosome marker). Atp7A was primarily colocalized with mannose 6-phosphate receptor (M6PR; late endosome marker), whereas Atp7B was partially colocalized with protein disulfide isomerase (endoplasmic reticulum marker), TGN38 (trans-Golgi network marker) and M6PR. Prolactin stimulated Cu transport as a result of increased Ctr1 and Atp7A abundance at the plasma membrane. Although the molecular mechanisms responsible for these posttranslational changes are not understood, transient changes in prolactin signaling play a role in the regulation of mammary gland Cu secretion during lactation.

  17. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor.

    Directory of Open Access Journals (Sweden)

    Bryan L Roth

    Full Text Available In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS-2-(ethylamino-2-(3-methoxyphenylcyclohexanone and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenylcyclohexanamine and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenylcyclohexyl]piperidine and 1-[1-(4-methoxyphenylcyclohexyl]piperidine, were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

  18. T versus D in the MTCXXC motif of copper transport proteins plays a role in directional metal transport.

    Science.gov (United States)

    Niemiec, Moritz S; Dingeldein, Artur P G; Wittung-Stafshede, Pernilla

    2014-08-01

    To avoid toxicity and control levels of metal ions, organisms have developed specific metal transport systems. In humans, the cytoplasmic Cu chaperone Atox1 delivers Cu to metal-binding domains of ATP7A/B in the Golgi, for incorporation into Cu-dependent proteins. The Cu-binding motif in Atox1, as well as in target Cu-binding domains of ATP7A/B, consists of a MX1CXXC motif where X1 = T. The same motif, with X1 = D, is found in metal-binding domains of bacterial zinc transporters, such as ZntA. The Asp is proposed to stabilize divalent over monovalent metals in the binding site, although metal selectivity in vivo appears predominantly governed by protein-protein interactions. To probe the role of T versus D at the X1 position for Cu transfer in vitro, we created MDCXXC variants of Atox1 and the fourth metal-binding domain of ATP7B, WD4. We find that the mutants bind Cu like the wild-type proteins, but when mixed, in contrast to the wild-type pair, the mutant pair favors Cu-dependent hetero-dimers over directional Cu transport from Atox1 to WD4. Notably, both wild-type and mutant proteins can bind Zn in the absence of competing reducing agents. In presence of zinc, hetero-complexes are strongly favored for both protein pairs. We propose that T is conserved in this motif of Cu-transport proteins to promote directional metal transfer toward ATP7B, without formation of energetic sinks. The ability of both Atox1 and WD4 to bind zinc ions may not be a problem in vivo due to the presence of specific transport chains for Cu and Zn ions.

  19. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs.

    Science.gov (United States)

    Safaei, Roohangiz; Howell, Stephen B

    2005-01-01

    Recent studies have demonstrated that the major Cu influx transporter CTR1 regulates tumor cell uptake of cisplatin (DDP), carboplatin (CBDCA) and oxaliplatin (L-OHP), and that the two Cu efflux transporters ATP7A and ATP7B regulate the efflux of these drugs. Evidence for the concept that these platinum (Pt) drugs enter cells and are distributed to various subcellular compartments via transporters that have evolved to manage Cu homeostasis includes the demonstration of: (1) bidirectional cross-resistance between cells selected for resistance to either the Pt drugs or Cu; (2) parallel changes in the transport of Pt and Cu drugs in resistant cells; (3) altered cytotoxic sensitivity and Pt drug accumulation in cells transfected with Cu transporters; and (4) altered expression of Cu transporters in Pt drug-resistant tumors. Appreciation of the role of the Cu transporters in the development of resistance to DDP, CBDCA, and L-OHP offers novel insights into strategies for preventing or reversing resistance to this very important family of anticancer drugs.

  20. Copper and copper proteins in Parkinson's disease.

    Science.gov (United States)

    Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  1. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    Science.gov (United States)

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  2. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    Science.gov (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  3. New synthesis and tritium labeling of a selective ligand for studying high-affinity γ-hydroxybutyrate (GHB) binding sites.

    Science.gov (United States)

    Vogensen, Stine B; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H F; Clausen, Rasmus P

    2013-10-24

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [(3)H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity, and we demonstrate in vivo brain penetration. In vitro characterization of [(3)H]-1 binding shows high specificity to the high-affinity GHB binding sites.

  4. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide....... Screening of 1 against different CNS targets establishes a high selectivity, and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites....

  5. Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants.

    Science.gov (United States)

    Reis, C R; van der Sloot, A M; Natoni, A; Szegezdi, E; Setroikromo, R; Meijer, M; Sjollema, K; Stricher, F; Cool, R H; Samali, A; Serrano, L; Quax, W J

    2010-10-21

    The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment.

  6. Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High Affinity Ligand for STING

    Science.gov (United States)

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J.

    2013-01-01

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2′-OH of GMP and 5′-phosphate of AMP, and the other between 3′-OH of AMP and 5′-phosphate of GMP. This molecule, termed 2′3′-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2′3′-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation. PMID:23747010

  7. Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors.

    Directory of Open Access Journals (Sweden)

    Eleni eKonsolaki

    2016-04-01

    Full Text Available In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. Α deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-, which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioural signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviours, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm and extend the hypothesis that β2-/- animals exhibit age-related cognitive impairments, manifested in both spatial learning and recognition memory tasks. In addition, we reveal deficits in spontaneous behaviour and habituation processes earlier in life. To our knowledge, this is the first study to perform an extensive behavioural examination of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioural changes to global dementia due to the combined effect of the neuropathology and aging.

  8. Glycation of the high affinity NGF-receptor and RAGE leads to reduced ligand affinity.

    Science.gov (United States)

    Bennmann, Dorit; Kannicht, Christoph; Fisseau, Claudine; Jacobs, Kathleen; Navarette-Santos, Alexander; Hofmann, Britt; Horstkorte, Rüdiger

    2015-09-01

    AGEs are posttranslational modifications generated by irreversible non-enzymatic crosslinking reactions between sugars and proteins - a reaction referred to as glycation. Glycation, a feature of ageing, can lead to non-degradable and less functional proteins and enzymes and can additionally induce inflammation and further pathophysiological processes such as neurodegeneration. In this study we investigated the influence of glycation on the high affinity NGF-receptor TrkA and the AGE-receptor RAGE. We quantified the binding affinity of the TrkA-receptor and RAGE to their ligands by surface plasmon resonance (SPR) and compared these to the binding affinity after glycation. At the same time, we established a glycation procedure using SPR. We found that glycation of TrkA reduced the affinity to NGF by a factor of three, which could be shown to lead to a reduction of NGF-dependent neurite outgrowth in PC12 cells. Glycation of RAGE reduced binding affinity of AGEs by 10-fold.

  9. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  10. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  11. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination.

    Directory of Open Access Journals (Sweden)

    Kaval Kaur

    Full Text Available Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE. Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.

  12. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination

    Science.gov (United States)

    Kaur, Kaval; Zheng, Nai-Ying; Smith, Kenneth; Huang, Min; Li, Lie; Pauli, Noel T.; Henry Dunand, Carole J.; Lee, Jane-Hwei; Morrissey, Michael; Wu, Yixuan; Joachims, Michelle L.; Munroe, Melissa E.; Lau, Denise; Qu, Xinyan; Krammer, Florian; Wrammert, Jens; Palese, Peter; Ahmed, Rafi; James, Judith A.; Wilson, Patrick C.

    2015-01-01

    Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus. PMID:25951191

  13. Peptide array-based characterization and design of ZnO-high affinity peptides.

    Science.gov (United States)

    Okochi, Mina; Sugita, Tomoya; Furusawa, Seiji; Umetsu, Mitsuo; Adschiri, Tadafumi; Honda, Hiroyuki

    2010-08-15

    Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self-assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO-binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO-binding peptide, 125 spot-synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO-binding sites were found as 6-mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles.

  14. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin.

    Science.gov (United States)

    Shulman, Ziv; Shinder, Vera; Klein, Eugenia; Grabovsky, Valentin; Yeger, Orna; Geron, Erez; Montresor, Alessio; Bolomini-Vittori, Matteo; Feigelson, Sara W; Kirchhausen, Tomas; Laudanna, Carlo; Shakhar, Guy; Alon, Ronen

    2009-03-20

    Endothelial chemokines are instrumental for integrin-mediated lymphocyte adhesion and transendothelial migration (TEM). By dissecting how chemokines trigger lymphocyte integrins to support shear-resistant motility on and across cytokine-stimulated endothelial barriers, we found a critical role for high-affinity (HA) LFA-1 integrin in lymphocyte crawling on activated endothelium. Endothelial-presented chemokines triggered HA-LFA-1 and adhesive filopodia at numerous submicron dots scattered underneath crawling lymphocytes. Shear forces applied to endothelial-bound lymphocytes dramatically enhanced filopodia density underneath crawling lymphocytes. A fraction of the adhesive filopodia invaded the endothelial cells prior to and during TEM and extended large subluminal leading edge containing dots of HA-LFA-1 occupied by subluminal ICAM-1. Memory T cells generated more frequent invasive filopodia and transmigrated more rapidly than their naive counterparts. We propose that shear forces exerted on HA-LFA-1 trigger adhesive and invasive filopodia at apical endothelial surfaces and thereby promote lymphocyte crawling and probing for TEM sites.

  15. High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion.

    Science.gov (United States)

    Anderson, Cyrus A; Jones, Amanda R; Briggs, Ellen M; Novitsky, Eric J; Kuykendall, Darrell W; Sottos, Nancy R; Zimmerman, Steven C

    2013-05-15

    Adhesion phenomena are essential to many biological processes and to synthetic adhesives and manufactured coatings and composites. Supramolecular interactions are often implicated in various adhesion mechanisms. Recently, supramolecular building blocks, such as synthetic DNA base-pair mimics, have drawn attention in the context of molecular recognition, self-assembly, and supramolecular polymers. These reversible, hydrogen-bonding interactions have been studied extensively for their adhesive capabilities at the nano- and microscale, however, much less is known about their utility for practical adhesion in macroscopic systems. Herein, we report the preparation and evaluation of supramolecular coupling agents based on high-affinity, high-fidelity quadruple hydrogen-bonding units (e.g., DAN·DeUG, Kassoc = 10(8) M(-1) in chloroform). Macroscopic adhesion between polystyrene films and glass surfaces modified with 2,7-diamidonaphthyridine (DAN) and ureido-7-deazaguanine (DeUG) units was evaluated by mechanical testing. Structure-property relationships indicate that the designed supramolecular interaction at the nanoscale plays a key role in the observed macroscopic adhesive response. Experiments probing reversible adhesion or self-healing properties of bulk samples indicate that significant recovery of initial strength can be realized after failure but that the designed noncovalent interaction does not lead to healing during the process of adhesion loss.

  16. High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid

    Science.gov (United States)

    Vernhes, Emeline; Renouard, Madalena; Gilquin, Bernard; Cuniasse, Philippe; Durand, Dominique; England, Patrick; Hoos, Sylviane; Huet, Alexis; Conway, James F.; Glukhov, Anatoly; Ksenzenko, Vladimir; Jacquet, Eric; Nhiri, Naïma; Zinn-Justin, Sophie; Boulanger, Pascale

    2017-01-01

    Bacteriophage capsids constitute icosahedral shells of exceptional stability that protect the viral genome. Many capsids display on their surface decoration proteins whose structure and function remain largely unknown. The decoration protein pb10 of phage T5 binds at the centre of the 120 hexamers formed by the major capsid protein. Here we determined the 3D structure of pb10 and investigated its capsid-binding properties using NMR, SAXS, cryoEM and SPR. Pb10 consists of an α-helical capsid-binding domain and an Ig-like domain exposed to the solvent. It binds to the T5 capsid with a remarkably high affinity and its binding kinetics is characterized by a very slow dissociation rate. We propose that the conformational exchange events observed in the capsid-binding domain enable rearrangements upon binding that contribute to the quasi-irreversibility of the pb10-capsid interaction. Moreover we show that pb10 binding is a highly cooperative process, which favours immediate rebinding of newly dissociated pb10 to the 120 hexamers of the capsid protein. In extreme conditions, pb10 protects the phage from releasing its genome. We conclude that pb10 may function to reinforce the capsid thus favouring phage survival in harsh environments. PMID:28165000

  17. [The high-affinity IgE receptor: lessons from structural analysis].

    Science.gov (United States)

    Blank, Ulrich; Jouvin, Marie-Hélène; Guérin-Marchand, Claudine; Kinet, Jean-Pierre

    2003-01-01

    The high affinity receptor for IgE, FcERI, is at the core of the allergic reaction. This receptor is expressed mainly on mast cells and basophils. Interaction of an allergen with its specific IgE bound to FcERI triggers cell activation, which induces the release of numerous mediators that are responsible for allergic manifestations. The recent increase in the prevalence of allergic diseases in developed countries has resulted in renewed efforts towards the development of new drugs. One of these is a humanised antibody directed against the IgE ligand. This antibody recognises specifically free but not FcERI-bound IgE thus preventing ligand binding and subsequent cell activation. This antibody has shown some efficacy in clinical trials involving patients with asthma and allergic rhinitis. The recent elucidation of the tridimensional structure of the complex between IgE and FcERI provides unexpected information regarding the mechanism of assembly of the complex, which now can be used to design small chemical compounds capable of specifically inhibiting this interaction.

  18. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    Energy Technology Data Exchange (ETDEWEB)

    Raza, H.; Chung, W.L.; Mukhtar, H. (Department of Dermatology, University Hospitals of Cleveland, Case Western Reserve University, OH (USA))

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  19. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production.

    Science.gov (United States)

    Abraham, Michal; Weiss, Ido D; Wald, Hanna; Wald, Ori; Nagler, Arnon; Beider, Katia; Eizenberg, Orly; Peled, Amnon

    2013-10-01

    Platelets are the terminal differentiation product of megakaryocytes (MKs). Cytokines, such as thrombopoietin (TPO), are known to influence different steps in MK development; however, the complex differentiation and platelet localization processes are not fully understood. MKs express the receptor CXCR4 and have been shown to migrate in response to CXCL12 and to increase their platelet production. In this study, we studied the role of CXCR4 in platelet production with the high affinity CXCR4 antagonist, BKT140. Single and sequential administration of BKT140 significantly increased the number of MKs and haematopoietic progenitors (HPCs) within the bone marrow (BM). Increased megakaryopoiesis was associated with increased platelet production. Single and sequential administration of BKT140 also increased the number of HPCs in the blood. In a model of 5-fluorouracil-induced thrombocytopenia, BKT140 significantly reduced the severity and duration of thrombocytopenia and cytopenia when administered before and after chemotherapy. Our results demonstrated that the CXCR4 antagonist, BKT140, mediated unique beneficial effects by stimulating megakaryopoiesis and platelet production. These results provide evidence for the possible therapeutic use of BKT140 for modulating platelet numbers in thrombocytopenic conditions. © 2013 John Wiley & Sons Ltd.

  20. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  1. A high-affinity, radioiodinatable neuropeptide FF analogue incorporating a photolabile p-(4-hydroxybenzoyl)phenylalanine.

    Science.gov (United States)

    Bray, Lauriane; Moulédous, Lionel; Tafani, Jean A M; Germanier, Maryse; Zajac, Jean-Marie

    2014-05-15

    A new radioiodinated photoaffinity compound, [(125)I]YE(Bpa)WSLAAPQRFNH2, derived from a peptide present in the rat neuropeptide FF (NPFF) precursor was synthesized, and its binding characteristics were investigated on a neuroblastoma clone, SH-SY5Y, stably expressing rat NPFF2 receptors tagged with the T7 epitope. The binding of the probe was saturable and revealed a high-affinity interaction (KD=0.24nM) with a single class of binding sites. It was also able to affinity label NPFF2 receptor in a specific and efficient manner given that 38% of the bound radioligand at saturating concentration formed a wash-resistant binding after ultraviolet (UV) irradiation. Photoaffinity labeling with [(125)I]YE(Bpa)WSLAAPQRFamide showed two molecular forms of NPFF2 receptor with apparent molecular weights of 140 and 95kDa in a 2:1 ratio. The comparison of the results between photoaffinity labeling and Western blot analysis suggests that all receptor forms bind the probe irreversibly with the same efficiency. On membranes of mouse olfactory bulb, only the high molecular weight form of NPFF2 receptor is observed. [(125)I]YE(Bpa)WSLAAPQRFamide is an excellent radioiodinated peptidic ligand for direct and selective labeling of NPFF2 receptors in vitro.

  2. High affinity germinal center B cells are actively selected into the plasma cell compartment.

    Science.gov (United States)

    Phan, Tri Giang; Paus, Didrik; Chan, Tyani D; Turner, Marian L; Nutt, Stephen L; Basten, Antony; Brink, Robert

    2006-10-30

    A hallmark of T cell-dependent immune responses is the progressive increase in the ability of serum antibodies to bind antigen and provide immune protection. Affinity maturation of the antibody response is thought to be connected with the preferential survival of germinal centre (GC) B cells that have acquired increased affinity for antigen via somatic hypermutation of their immunoglobulin genes. However, the mechanisms that drive affinity maturation remain obscure because of the difficulty in tracking the affinity-based selection of GC B cells and their differentiation into plasma cells. We describe a powerful new model that allows these processes to be followed as they occur in vivo. In contrast to evidence from in vitro systems, responding GC B cells do not undergo plasma cell differentiation stochastically. Rather, only GC B cells that have acquired high affinity for the immunizing antigen form plasma cells. Affinity maturation is therefore driven by a tightly controlled mechanism that ensures only antibodies with the greatest possibility of neutralizing foreign antigen are produced. Because the body can sustain only limited numbers of plasma cells, this "quality control" over plasma cell differentiation is likely critical for establishing effective humoral immunity.

  3. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Christopher J Arnusch

    Full Text Available Many cationic antimicrobial peptides (AMPs target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.

  4. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen.

    Science.gov (United States)

    Konitsiotis, Antonios D; Raynal, Nicolas; Bihan, Dominique; Hohenester, Erhard; Farndale, Richard W; Leitinger, Birgit

    2008-03-14

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.

  5. PREPARATION AND CHARACTERISTICS OF ANIONIC POLYACRYLAMIDES CONTAINING DIRECT DYE WITH A HIGH AFFINITY FOR CELLULOSE

    Directory of Open Access Journals (Sweden)

    Shingo Yokota

    2009-05-01

    Full Text Available Direct dye with a high affinity for cellulose substrate was utilized as a cellulose anchor to promote retention of paper strengthening additives under various conditions associated with the wet end of a paper machine. Direct Red 28 (DR was covalently linked to anionic polyacrylamide (A-PAM via a condensation reaction using water-soluble carbodiimide. The DR-conjugated A-PAM (DR-A-PAM demonstrated good retention efficiency, resulting in strength enhancement of handsheets. Anionic trash showed no interference with the performance of DR-A-PAM in the wet end, while the additive performance was sensitive to calcium ions. Surface plasmon resonance analysis gave useful information on the cellulose-anchoring ability of DR-A-PAM. Dye molecules were irreversibly adsorbed onto the cellulose substrate under aqueous conditions, while A-PAM possessed no significant affinity for cellulose. These results suggest that anionic DR moieties in DR-A-PAM molecules served as a cellulose-anchor, possibly due to multiple CH-π interaction between hydrophobic face of cellulose substrate and π-conjugated system of dye molecules. Such a unique interaction of direct dye and cellulose provides a new insight into the wet end system, and does not depend on conventional electrostatic attraction.

  6. Extended adsorption transport models for permeation of copper ions through nanocomposite chitosan/polyvinyl alcohol thin affinity membranes

    Institute of Scientific and Technical Information of China (English)

    Ehsan Salehi; Leila Bakhtiari; Mahdi Askari

    2016-01-01

    Transport of copper ions through nanocomposite chitosan/polyvinyl alcohol thin adsorptive membranes has been mathematical y investigated in the current study. Unsteady-state diffusive transport model was coupled with the Freundlich isotherm to predict the concentration of the ions in dialysis permeation operation. Pristine model was not successful in predicting the experimental data based upon its low coefficients of determination (0.1﹤R2﹤0.65). Well-behaved polynomial and exponential functions were used to describe time-dependency of the inlet-concentration in the first extension of the model with a little improvement in the model adjustment (0.4﹤R2﹤0.69). Similar time-dependent functions were employed for tracking the ion diffusivity and then applied in combination with the optimized functions of inlet-concentration in the second extension of the model. A sensible enhancement was obtained in the adjustment of the second extended models as a result of this combination (0.73﹤R2﹤0.93). APRE, AAPRE, RSME, RMSE, STD and R-square statistical analyses were per-formed to verify the agreement of the models with the experimental results. Concentration distribution versus time and location (inside the membrane) was obtained as 3D plots with the help of the optimized models. Modeling results emphasized on the transiency of diffusivity and feed-side concentration in dialysis permeation through chitosan membranes.

  7. Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer

    Science.gov (United States)

    Huangfu, Minzan; Shen, Yue; Zhu, Gongbo; Xu, Kai; Cao, Meng; Gu, Feng; Wang, Linjun

    2015-12-01

    This study is the first to report the preparation of Copper iodide (CuI) thick films by means of convenient airbrush process and their application as inorganic hole transport layers (HTL) in organo-lead halide perovskite-based solar cells. CuI thick films exhibit high conductivity, wide-band-gap and solution-processable. Organo-lead halide perovskite solar cells with different thickness of mesoporous layers and CuI hole transport layers were fabricated. Performance of the cells were mainly controlled by the thickness of TiO2 mesoporous layers. Under optimized conditions, a power conversion efficiency of 5.8% has been achieved with short-circuit current density JSC of 22.3 mA/cm2, open-circuit voltage VOC of 614 mV and fill factor of 42%. However, the VOC remains low in comparison with the state of the art perovskite-based solar cells, which is attributed to the high recombination in CuI devices as determined by impedance spectroscopy.

  8. EGCG Enhances Cisplatin Sensitivity by Regulating Expression of the Copper and Cisplatin Influx Transporter CTR1 in Ovary Cancer.

    Directory of Open Access Journals (Sweden)

    Xuemin Wang

    Full Text Available Cisplatin is one of the first-line platinum-based chemotherapeutic agents for treatment of many types of cancer, including ovary cancer. CTR1 (copper transporter 1, a transmembrane solute carrier transporter, has previously been shown to increase the cellular uptake and sensitivity of cisplatin. It is hypothesized that increased CTR1 expression would enhance the sensitivity of cancer cells to cisplatin (cDDP. The present study demonstrates for the first time that (--epigallocatechin-3-gallate (EGCG, a major polyphenol from green tea, can enhance CTR1 mRNA and protein expression in ovarian cancer cells and xenograft mice. EGCG inhibits the rapid degradation of CTR1 induced by cDDP. The combination of EGCG and cDDP increases the accumulation of cDDP and DNA-Pt adducts, and subsequently enhances the sensitivity of ovarian cancer SKOV3 and OVCAR3 cells to the chemotherapeutic agent. In the OVCAR3 ovarian cancer xenograft nude mice model, the combination of the lower concentration of cDDP and EGCG strongly repressed the tumor growth and exhibited protective effect on the nephrotoxicity induced by cisplatin. Overall, these findings uncover a novel chemotherapy mechanism of EGCG as an adjuvant for the treatment of ovarian cancer.

  9. ALTERED MICROGLIAL COPPER HOMEOSTASIS IN A MOUSE MODEL OF ALZHEIMER’S DISEASE

    OpenAIRE

    Zheng, Zhiqiang; White, Carine; Lee, Jaekwon; Peterson, Troy S.; Bush, Ashley I.; Sun, Grace; Weisman, Gary A.; Petris, Michael J.

    2010-01-01

    Alzheimer’s disease (AD) is characterized by progressive neurodegeneration associated with the aggregation and deposition of β-amyloid (Aβ40 and Aβ42) peptide in senile plaques. Recent studies suggest that copper may play an important role in AD pathology. Copper concentrations are elevated in amyloid plaques and copper binds with high affinity to the Aβ peptide and promotes Aβ oligomerization and neurotoxicity. Despite this connection between copper and AD, it is unknown whether the expressi...

  10. Molecular modulation of the copper and cisplatin transport function of CTR1 and its interaction with IRS-4

    Science.gov (United States)

    Tsai, Cheng-Yu; Larson, Christopher A.; Safaei, Roohangiz

    2015-01-01

    The copper influx transporter CTR1 is also a major influx transporter for cisplatin (cDDP) in tumor cells. It influences the cytotoxicity of cDDP both in vivo and in vitro. Whereas Cu triggers internalization of CTR1 from the plasma membrane, cDDP does not. To investigate the mechanisms of these effects, myc-tagged forms of wild type hCTR1 and variants in which Y103 was converted to alanine, C189 was converted to serine, or the K178/K179 dilysine motif was converted to alanines were re-expressed in mouse embryo cells in which both alleles of CTR1 had been knocked out and also in HEK293T cells. The Y103A mutation and to a lesser extent the C189S mutation reduced internalization of CTR1 induced by Cu while the K178A/K179A had little effect. Both Y103 and C189 were required for Cu and cDDP transport whereas the K178/K179 motif was not. While Y103 lies in an YXXM motif that, when phosphorylated, is a potential docking site for phosphatidylinositol 3-kinase and other proteins involved in endocytosis, Western blot analysis of immunoprecipitated myc-CTR1, and proteomic analysis of peptides derived from CTR1, failed to identify any basal or Cu-induced phosphorylation. However, proteomic analysis did identify an interaction of CTR1 with IRS-4 and this was confirmed by co-immunoprecipitation from HEK cells expressing either FLAG-CTR1 or myc-CTR1. The interaction was greater in the Y103A-expressing cells. We conclude that Y103 is required for the internalization of hCTR1 in response to Cu, that this occurs by a mechanism other than phosphorylation and that mutation of Y103 modulates the interaction with IRS-4. PMID:24967972

  11. Silencing of the Menkes copper-transporting ATPase (Atp7a) gene increases cyclin D1 protein expression and impairs proliferation of rat intestinal epithelial (IEC-6) cells.

    Science.gov (United States)

    Gulec, Sukru; Collins, James F

    2014-10-01

    The Menkes copper-transporting ATPase (Atp7a) has dual roles in mammalian enterocytes: pumping copper into the trans-Golgi network (to support cuproenzyme synthesis) and across the basolateral membrane (to deliver dietary copper to the blood). Atp7a is strongly induced in the rodent duodenum during iron deprivation, suggesting that copper influences iron homeostasis. To investigate this possibility, Atp7a was silenced in rat intestinal epithelial (IEC-6) cells. Irrespective of its influence on iron homeostasis, an unexpected observation was made in the Atp7a knockdown (KD) cells: the cells grew slower (∼40% fewer cells at 96h) and were larger than negative-control shRNA-transfected cells. Lack of Atp7a activity thus perturbed cell cycle control. To elucidate a possible molecular mechanism, expression of two important cell cycle control proteins was assessed. Cyclin D1 (CD1) protein expression increased in Atp7a KD cells whereas proliferating-cell nuclear antigen (PCNA) expression was unaltered. Increased CD1 expression is consistent with impaired cell cycle progression. Expression of additional cell proliferation marker genes (p21 and Ki67) was also investigated; p21 expression increased, whereas Ki67 decreased, both consistent with diminished cell growth. Further experiments were designed to determine whether increased cellular copper content was the trigger for the altered growth phenotype of the Atp7a KD cells. Copper loading, however, did not influence the expression patterns of CD1, p21 or Ki67. Overall, these findings demonstrate that Atp7a is required for normal proliferation of IEC-6 cells. How Atp7a influences cell growth is unclear, but the underlying mechanism could relate to its roles in intracellular copper distribution or cuproenzyme synthesis. Copyright © 2014. Published by Elsevier GmbH.

  12. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj;

    2006-01-01

    Immunoglobulin (Ig)E-sensitized persons with positive skin prick test, but no allergy symptoms, are classified as being asymptomatic skin sensitized (AS). The allergic type 1 disease is dependant on IgE binding to the high affinity IgE-receptor (FcepsilonRI) expressed on basophils and mast cells...

  13. Novel high-affinity and selective biaromatic 4-substituted ¿-hydroxybutyric acid (GHB) analogues as GHB ligands

    DEFF Research Database (Denmark)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte;

    2008-01-01

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites...

  14. Low affinity and slow Na+-binding precedes high affinity aspartate binding in GltPh

    NARCIS (Netherlands)

    Hänelt, Inga; Jensen, Sonja; Wunnicke, Dorith; Slotboom, Dirk Jan

    2015-01-01

    GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters (EAATs) that take up the neurotransmitter glutamate. Each protomer in GltPh consis

  15. High-affinity accumulation of a maytansinoid in cells via weak tubulin interaction.

    Science.gov (United States)

    Goldmacher, Victor S; Audette, Charlene A; Guan, Yinghua; Sidhom, Eriene-Heidi; Shah, Jagesh V; Whiteman, Kathleen R; Kovtun, Yelena V

    2015-01-01

    The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4-6 × 10(7) copies). Efflux of 3[H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death.

  16. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors.

    Science.gov (United States)

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging.

  17. Devices and approaches for generating specific high-affinity nucleic acid aptamers

    Science.gov (United States)

    Szeto, Kylan; Craighead, Harold G.

    2014-09-01

    High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized in vitro to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.

  18. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James (NIH); (Kansas); (HWMRI)

    2010-04-07

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 {angstrom} cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the 'off-target' effect of a small molecule is mediated by an MAI mechanism.

  19. A pharmacological profile of the high-affinity GluK5 kainate receptor.

    Science.gov (United States)

    Møllerud, Stine; Kastrup, Jette Sandholm; Pickering, Darryl S

    2016-10-05

    Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [(3)H]-kainate in receptor binding assays (Kd=6.9nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128kDa) and deglycosylated (111kDa) protein, which was identical to the band pattern of native rat brain GluK5. A pharmacological profile of the high-affinity kainate receptor GluK5 is described which is distinct from the profiles of other kainate receptors (GluK1-3). The 27 tested ligands generally show a preferential affinity to GluK1 over GluK5, the exceptions being: dihydrokainate, (S)-5-fluorowillardiine, (S)-glutamate and quisqualate, where the affinity is similar at GluK1 and GluK5. In contrast, quisqualate shows 40-fold higher affinity at GluK5 over GluK3 whereas (S)-1-(2'-amino-2'-caboxyethyl)thienol[3,4-d]pyrimidin-2,4-dione (NF1231), (RS)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2S,4R)-4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar disorder), selective GluK5 ligands could have therapeutic potential. The distinct pharmacological profile of GluK5 suggests that it would be possible to design ligands with selectivity towards GluK5.

  20. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    Directory of Open Access Journals (Sweden)

    Klaus B Nissen

    Full Text Available PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  1. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers.

    Science.gov (United States)

    Elshafey, Reda; Siaj, Mohamed; Zourob, Mohammed

    2014-09-16

    Contamination of freshwater with cyanotoxin cylindrospermopsin (CYN) represents a significant global concern for public health. The sensitive detection of CYN is necessary to effectively manage and control the treatment of water resources. Here we report a novel, highly sensitive label-free aptasensor for CYN analysis, using aptamers as specific receptors. We have selected the DNA aptamers from a diverse random library using the in vitro screening SELEX approach. The aptamers exhibited high affinity for CYN with Kd of nanomolar range. One aptamer exhibited conformational change upon CYN recognition (CD analysis) and was used to fabricate the label-free impedimetric aptasensor for CYN. A self-assembled monolayer from a disulfide-derivatized aptamer was formed on a gold electrode to fabricate the aptasensor. Upon CYN capturing to the aptasensor surface, a marked drop in the electron transfer resistance was obtained, which was used as the principle of detection of CYN. This resulted from the aptamer's conformational change induced by CYN recognition. The present aptasensor could detect CYN with the limit of detection as low as 100 pM and a wide linear range of 0.1 to 80 nM. When mounted on the gold surface, the aptamer exhibited a lower dissociation constant for CYN than that observed in the fluorescence assay, implying that the anchoring of the aptamer on the Au surface improved its affinity to CYN. Moreover, the aptasensor showed high specificity toward other coexistent cyanobacterial toxins of microcystin-LR and Anatoxin-a. Further biosensor designs will be generated using those aptamers for simple and sensitive CYN monitoring.

  2. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids.

    Science.gov (United States)

    Lyakhova, Tatyana A; Knight, Jefferson D

    2014-09-01

    Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.

  3. Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9.

    Science.gov (United States)

    Heikkilä, Outi; Susi, Petri; Stanway, Glyn; Hyypiä, Timo

    2009-01-01

    Coxsackievirus A9 (CAV9), a member of the genus Enterovirus in the family Picornaviridae, possesses an integrin-binding arginine-glycine-aspartic acid (RGD) motif in the C terminus of VP1 capsid protein. CAV9 has been shown to utilize integrins alphaVbeta3 and alphaVbeta6 as primary receptors for cell attachment. While CAV9 RGD-mutants (RGE and RGDdel) are capable of infecting rhabdomyosarcoma (RD) cell line, they grow very poorly in an epithelial lung carcinoma cell line (A549). In this study, the relationships between CAV9 infectivity in A549 and RD cells, receptor expression and integrin binding were analysed. A549 cells were shown to express both integrins alphaVbeta3 and alphaVbeta6, whereas alphaVbeta6 expression was not detected on the RD cells. Native CAV9 but not RGE and RGDdel mutants bound efficiently to immobilized alphaVbeta3 and alphaVbeta6. Adhesion of CAV9 but not RGE/RGDdel to A549 cells was also significantly higher than to RD cells. In contrast, no affinity or adhesion of bacterially produced VP1 proteins to the integrins or to the cells was detected. Function-blocking antibodies against alphaV-integrins blocked CAV9 but not CAV9-RGDdel infectivity, indicating that the viruses use different internalization routes; this may explain the differential infection kinetics of CAV9 and RGDdel. In an affinity assay, soluble alphaVbeta6, but not alphaVbeta3, bound to immobilized CAV9. Similarly, only soluble alphaVbeta6 blocked virus infectivity. These data suggest that CAV9 binding to alphaVbeta6 is a high-affinity interaction, which may indicate its importance in clinical infections; this remains to be determined.

  4. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    Science.gov (United States)

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James

    2010-01-01

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 (Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 Å cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the “off-target” effect of a small molecule is mediated by an MAI mechanism. PMID:20194791

  5. High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons.

    Science.gov (United States)

    Cosgrove, Kathleen E; Meriney, Stephen D; Barrionuevo, Germán

    2011-12-01

    Stratum lacunosum-moleculare interneurons (L-Mi) in hippocampal area CA3 target the apical dendrite of pyramidal cells providing feedforward inhibition. Here we report that selective activation of group III metabotropic glutamate receptors (mGluRs) 4/8 with L(+)-2-amino-4-phosphnobytyric acid (L-AP4; 10 μM) decreased the probability of glutamate release from the mossy fiber (MF) terminals synapsing onto L-Mi. Consistent with this interpretation, application of L-AP4 in the presence of 3 mM strontium decreased the frequency of asynchronous MF EPSCs in L-Mi. Furthermore, the dose response curve showed that L-AP4 at 400 μM produced no further decrease in MF EPSC amplitude compared with 20 μM L-AP4, indicating the lack of mGluRs 7 at these MF terminals. We also found that one mechanism of mGluRs 4/8-mediated inhibition of release is linked to N-type voltage gated calcium channels at MF terminals. Application of the group III mGluR antagonist MSOP (100 μM) demonstrated that mGluRs 4/8 are neither tonically active nor activated by low and moderate frequencies of activity. However, trains of stimuli to the MF at 20 and 40 Hz delivered during the application of MSOP revealed a relief of inhibition of transmitter release and an increase in the overall probability of action potential firing in the postsynaptic L-Mi. Interestingly, the time to first action potential was significantly shorter in the presence of MSOP, indicating that mGluR 4/8 activation delays L-Mi firing in response to MF activity. Taken together, our data demonstrate that the timing and probability of action potentials in L-Mi evoked by MF synaptic input is regulated by the activation of presynaptic high affinity group III mGluRs.

  6. Knockdown of copper-transporting ATPase 1 (Atp7a) impairs iron flux in fully-differentiated rat (IEC-6) and human (Caco-2) intestinal epithelial cells.

    Science.gov (United States)

    Ha, Jung-Heun; Doguer, Caglar; Collins, James F

    2016-09-01

    Intestinal iron absorption is highly regulated since no mechanism for iron excretion exists. We previously demonstrated that expression of an intestinal copper transporter (Atp7a) increases in parallel with genes encoding iron transporters in the rat duodenal epithelium during iron deprivation (Am. J. Physiol.: Gastrointest. Liver Physiol., 2005, 288, G964-G971). This led us to postulate that Atp7a may influence intestinal iron flux. Therefore, to test the hypothesis that Atp7a is required for optimal iron transport, we silenced Atp7a in rat IEC-6 and human Caco-2 cells. Iron transport was subsequently quantified in fully-differentiated cells plated on collagen-coated, transwell inserts. Interestingly, (59)Fe uptake and efflux were impaired in both cell lines by Atp7a silencing. Concurrent changes in the expression of key iron transport-related genes were also noted in IEC-6 cells. Expression of Dmt1 (the iron importer), Dcytb (an apical membrane ferrireductase) and Fpn1 (the iron exporter) was decreased in Atp7a knockdown (KD) cells. Paradoxically, cell-surface ferrireductase activity increased (>5-fold) in Atp7a KD cells despite decreased Dcytb mRNA expression. Moreover, increased expression (>10-fold) of hephaestin (an iron oxidase involved in iron efflux) was associated with increased ferroxidase activity in KD cells. Increases in ferrireductase and ferroxidase activity may be compensatory responses to increase iron flux. In summary, in these reductionist models of the mammalian intestinal epithelium, Atp7a KD altered expression of iron transporters and impaired iron flux. Since Atp7a is a copper transporter, it is a logical supposition that perturbations in intracellular copper homeostasis underlie the noted biologic changes in these cell lines.

  7. Transport of contaminants in geologic media: Radioactive waste in salt, corrosion of copper, and colloid migration

    Science.gov (United States)

    Hwang, Yong Soo

    Analytical and numerical models on mass transfer of radionuclides from a waste package to surrounding rock are analyzed. Based on developed models corresponding computer programs are developed. These models would be used to evaluate possible hazardous radionuclide release rates into the surrounding rock/biosphere. Specifically the following fields are studied. (1) Analysis on the possible copper canister pitting corrosion by sulfide intrusion is performed to predict the canister lifetime. The study includes both steady-state and time-dependent cases. (2) Analysis on the brine migration in a salt repository is studied. Brine was traditionally thought to be the major factor on radionuclide migration in salt. But results given in this dissertation provide that the brine migration velocity is small enough to be neglected. Two analyses are developed for open bore hole as well as consolidated salt cases. (3) Analysis on the radionuclide migration in a salt repository is carried out. After proving that the diffusion is a dominant migration mechanism, the time-dependent diffusive mass transfer theory is used to predict fractional release rates of low-soluble as well as highly-soluble nuclides. Also the steady-state radionuclide migration through interbeds is analyzed based on the potential flow theory. Finally assuming no advective flow inside interbeds the transient radionuclide migration into interbeds is studied. Results show that salt is a good host rock for a future high-level waste repository. (4) Analysis on the radiocolloid migration through the porous media with filtration effect is performed. Results show that due to the strong filtration radiocolloid would not migrate significant distance in geologic media. Cylindrical geometry is used. For this analysis due to the complexity of the prescribed problem the numerical analysis based on upwind scheme is developed. (5) Analysis on the radiocolloid migration through fractures with solute matrix diffusion into

  8. Taking Advantage: High Affinity B cells in the Germinal Center Have Lower Death Rates, But Similar Rates of Division Compared to Low Affinity Cells1

    OpenAIRE

    2009-01-01

    B lymphocytes producing high affinity antibodies (Abs) are critical for protection from extracellular pathogens, such as bacteria and parasites. The process by which high affinity B cells are selected during the immune response has never been elucidated. Though it has been shown that high affinity cells directly outcompete low affinity cells in the germinal center (GC)2, whether there are also intrinsic differences between these cells has not been addressed. It could be that higher affinity c...

  9. Structures of the ultra-high-affinity protein–protein complexes of pyocins S2 and AP41 and their cognate immunity proteins from pseudomonas aeruginosa

    OpenAIRE

    Joshi, Amar; Grinter, Rhys; Josts, Inokentijs; Chen, Sabrina; Wojdyla, Justyna; Lowe, Edward; Kaminska, Renata; Sharp, Connor; McCaughey, Laura; Roszak, Aleksander; Cogdell, Richard; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2015-01-01

    How ultra-high-affinity protein–protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase–Im interaction is a model system for the study of high-affinity protein–protein interactions. However, despit...

  10. Marked changes in electron transport through the blue copper protein azurin in the solid state upon deuteration

    CERN Document Server

    Amdursky, Nadav; Sheves, Mordechai; Cahen, David

    2012-01-01

    Measuring electron transport (ETp) across proteins in the solid-state offers a way to study electron transfer (ET) mechanism(s) that minimizes solvation effects on the process. Solid state ETp is sensitive to any static (conformational) or dynamic (vibrational) changes in the protein. Our macroscopic measurement technique extends the use of ETp meas-urements down to low temperatures and the concomitant lower current densities, because the larger area still yields measurable currents. Thus, we reported previously a surprising lack of temperature-dependence for ETp via the blue copper protein azurin (Az), from 80K till denaturation, while ETp via apo-(Cu-free) Az was found to be temperature de-pendent \\geq 200K. H/D substitution (deuteration) can provide a potentially powerful means to unravel factors that affect the ETp mechanism at a molecular level. Therefore, we measured and report here the kinetic deuterium isotope effect (KIE) on ETp through holo-Az as a function of temperature (30-340K). We find that deu...

  11. ,* Copper transport and accumulation in spruce stems (picea abies(L.) Karsten) revelaed by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krajcarova, Dr. Lucie [Czech Technical University; Novotny, Dr. Karel [Mendel University of Brno; Babula, Dr. Petr [Czech Technical University; Pravaznik, Dr Ivo [Czech Technical University; Kucerova, Dr. Petra [Czech Technical University; Vojtech, Dr. Adam [Czech Technical University; Martin, Madhavi Z [ORNL; Kizek, Dr. Rene [Czech Technical University; Kaiser, Jozef [ORNL

    2013-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) in double pulse configuration (DP LIBS) was used for scanning elemental spatial distribution in annual terminal stems of spruce (Picea abies (L.) Karsten). Cross sections of stems cultivated in Cu2+ solution of different concentrations were prepared and analyzed by DP LIBS. Raster scanning with 150 m spatial resolution was set and 2D (2-dimentional) maps of Cu and Ca distribution were created on the basis of the data obtained. Stem parts originating in the vicinity of the implementation of the cross sections were mineralized and subsequently Cu and Ca contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results provide quantitative information about overall concentration of the elements in places, where LIBS measurements were performed. The fluorescence pictures were created to compare LIBS distribution maps and the fluorescence intensity (or the increase in autofluorescence) was used for the comparison of ICP-MS quantitative results. Results from these three methods can be utilized for quantitative measurements of copper ions transport in different plant compartments in dependence on the concentration of cultivation medium and/or the time of cultivation.

  12. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui

    2015-07-30

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.

  13. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. at 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.

  14. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

    Science.gov (United States)

    Smith, Kayla J; Murray, Iain A; Tanos, Rachel; Tellew, John; Boitano, Anthony E; Bisson, William H; Kolluri, Siva K; Cooke, Michael P; Perdew, Gary H

    2011-07-01

    The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, "pure" or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a

  15. Twins in spirit part II: DOTATATE and high-affinity DOTATATE - the clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Brogsitter, Claudia; Zoephel, Klaus; Hartmann, Holger; Kotzerke, Joerg [Technische Universitaet Dresden, Department of Nuclear Medicine, Dresden (Germany); Schottelius, Margret; Wester, Hans-Juergen [Technische Universitaet Muenchen, Pharmaceutical Radiochemistry and Department of Nuclear Medicine, Muenchen (Germany)

    2014-06-15

    Over recent decades interest in diagnosis and treatment of neuroendocrine tumours (NET) has steadily grown. The basis for diagnosis and therapy of NET with radiolabelled somatostatin (hsst) analogues is the variable overexpression of hsst receptors (hsst1-5 receptors). We hypothesized that radiometal derivatives of DOTA-iodo-Tyr{sup 3}-octreotide analogues might be excellent candidates for somatostatin receptor imaging. We therefore explored the diagnostic potential of {sup 68}Ga-DOTA-iodo-Tyr{sup 3}-octreotate [{sup 68}Ga-DOTA,3-iodo-Tyr{sup 3},Thr{sup 8}]octreotide ({sup 68}Ga-HA-DOTATATE; HA, high-affinity) compared to the established {sup 68}Ga-DOTA-Tyr{sup 3}-octreotate ({sup 68}Ga-DOTATATE) in vivo. The study included 23 patients with known somatostatin receptor-positive metastases from NETs, thyroid cancer or glomus tumours who were investigated with both {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE. A patient-based and a lesion-based comparative analysis was carried out of normal tissue distribution and lesion detectability in a qualitative and a semiquantitative manner. {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE showed comparable uptake in the liver (SUV{sub mean} 8.9 ± 2.2 vs. 9.3 ± 2.5, n.s.), renal cortex (SUV{sub mean} 13.3 ± 3.9 vs. 14.5 ± 3.7, n.s.) and spleen (SUV{sub mean} 24.0 ± 6.7 vs. 22.9 ± 7.3, n.s.). A somewhat higher pituitary uptake was found with {sup 68}Ga-HA-DOTATATE (SUV{sub mean} 6.3 ± 1.8 vs. 5.4 ± 2.1, p < 0.05). On a lesion-by-lesion basis a total of 344 lesions were detected. {sup 68}Ga-HA-DOTATATE demonstrated 328 lesions (95.3 % of total lesions seen), and {sup 68}Ga-DOTATATE demonstrated 332 lesions (96.4 %). The mean SUV{sub max} of all lesions was not significantly different between {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE (17.8 ± 11.4 vs. 16.7 ± 10.7, n.s.). Our analysis demonstrated very good concordance between {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE PET data. As the availability and use of {sup

  16. A comprehensive phylogenetic analysis of copper transporting P1B ATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes

    OpenAIRE

    Cubillas, Ciro; Miranda?S?nchez, Fabiola; González Sánchez, Antonio; Elizalde, Jos? Pedro; Vinuesa, Pablo; Brom, Susana; Garc?a?de los Santos, Alejandro

    2017-01-01

    Abstract The ubiquitous cytoplasmic membrane copper transporting P1B?1 and P1B?3?type ATPases pump out Cu+ and Cu2+, respectively, to prevent cytoplasmic accumulation and avoid toxicity. The presence of five copies of Cu?ATPases in the symbiotic nitrogen?fixing bacteria Sinorhizobium meliloti is remarkable; it is the largest number of Cu+?transporters in a bacterial genome reported to date. Since the prevalence of multiple Cu?ATPases in members of the Rhizobiales order is unknown, we performe...

  17. The Lys1010-Lys1325 fragment of the Wilson's disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner.

    Science.gov (United States)

    Tsivkovskii, R; MacArthur, B C; Lutsenko, S

    2001-01-19

    Wilson's disease, an autosomal disorder associated with vast accumulation of copper in tissues, is caused by mutations in a gene encoding a copper-transporting ATPase (Wilson's disease protein, WNDP). Numerous mutations have been identified throughout the WNDP sequence, particularly in the Lys(1010)-Lys(1325) segment; however, the biochemical properties and molecular mechanism of WNDP remain poorly characterized. Here, the Lys(1010)-Lys(1325) fragment of WNDP was overexpressed, purified, and shown to form an independently folded ATP-binding domain (ATP-BD). ATP-BD binds the fluorescent ATP analogue trinitrophenyl-ATP with high affinity, and ATP competes with trinitrophenyl-ATP for the binding site; ADP and AMP appear to bind to ATP-BD at the site separate from ATP. Purified ATP-BD hydrolyzes ATP and interacts specifically with the N-terminal copper-binding domain of WNDP (N-WNDP). Strikingly, copper binding to N-WNDP diminishes these interactions, suggesting that the copper-dependent change in domain-domain contact may represent the mechanism of WNDP regulation. In agreement with this hypothesis, N-WNDP induces conformational changes in ATP-BD as evidenced by the altered nucleotide binding properties of ATP-BD in the presence of N-WNDP. Significantly, the effects of copper-free and copper-bound N-WNDP on ATP-BD are not identical. The implications of these results for the WNDP function are discussed.

  18. Identification of threats to the position of a transport worker in Legnica Copper Smelter and Refinery

    Directory of Open Access Journals (Sweden)

    J. Pietruszka

    2010-04-01

    Full Text Available The paper presents the major issues concerning the assessment of working conditions - harmful and disruptive factors occurring in theselected position of the transport worker at HM Legnica. To assess the risk of occupational hazard two methods have been applied: themethod according to PN-N-18002: 2000 (a 3-step method and Risk Score method. The applied methods were compared and assessedpaying special attention to usefulness and accuracy in carrying out further assessments of test positions in HM Legnica. Additionally, thework carried out in this paper includes detailed analysis of: the organization of the work process, the type of instruments and carrying out operations as well as the conditions of the working environment. The most important threats were identified. An important element of this work was to make a risk assessment of occupational hazard and give the necessary actions which should be taken to minimize all risks.

  19. Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers.

    Science.gov (United States)

    Wu, Bing; Torres-Duarte, Cristina; Cole, Bryan J; Cherr, Gary N

    2015-05-05

    The ability of engineered nanomaterials (NMs) to act as inhibitors of ATP-binding cassette (ABC) efflux transporters in embryos of white sea urchin (Lytechinus pictus) was studied. Nanocopper oxide (nano-CuO), nanozinc oxide (nano-ZnO), and their corresponding metal ions (CuSO4 and ZnSO4) were used as target chemicals. The results showed that nano-CuO, nano-ZnO, CuSO4, and ZnSO4, even at relatively low concentrations (0.5 ppm), significantly increased calcein-AM (CAM, an indicator of ABC transporter activity) accumulation in sea urchin embryos at different stages of development. Exposure to nano-CuO, a very low solubility NM, at increasing times after fertilization (>30 min) decreased CAM accumulation, but nano-ZnO (much more soluble NM) did not, indicating that metal ions could cross the hardened fertilization envelope, but not undissolved metal oxide NMs. Moreover, nontoxic levels (0.5 ppm) of nano-CuO and nano-ZnO significantly increased developmental toxicity of vinblastine (an established ABC transporter substrate) and functioned as chemosensitizers. The multidrug resistance associated protein (MRP, one of ABC transporters) inhibitor MK571 significantly increased copper concentrations in embryos, indicating ABC transporters are important in maintaining low intracellular copper levels. We show that low concentrations of nano-CuO and nano-ZnO can make embryos more susceptible to other contaminants, representing a potent amplification of nanomaterial-related developmental toxicity.

  20. [Copper pathology (author's transl)].

    Science.gov (United States)

    Mallet, B; Romette, J; Di Costanzo, J D

    1982-01-30

    Copper is an essential dietary component, being the coenzyme of many enzymes with oxidase activity, e.g. ceruloplasmin, superoxide dismutase, monoamine oxidase, etc. The metabolism of copper is complex and imperfectly known. Active transport of copper through the intestinal epithelial cells involves metallothionein, a protein rich in sulfhydryl groups which also binds the copper in excess and probably prevents absorption in toxic amounts. In hepatocytes a metallothionein facilitates absorption by a similar mechanism and regulates copper distribution in the liver: incorporation in an apoceruloplasmin, storage and synthesis of copper-dependent enzymes. Metallothioneins and ceruloplasmin are essential to adequate copper homeostasis. Apart from genetic disorders, diseases involving copper usually result from hypercupraemia of varied origin. Wilson's disease and Menkes' disease, although clinically and pathogenetically different, are both marked by low ceruloplasmin and copper serum levels. The excessive liver retention of copper in Wilson's disease might be due to increased avidity of hepatic metallothioneins for copper and decreased biliary excretion through lysosomal dysfunction. Menkes' disease might be due to low avidity of intestinal and hepatic metallothioneins for copper. The basic biochemical defect responsible for these two hereditary conditions has not yet been fully elucidated.

  1. PREPARATION OF IMMUNOGEN AND PURIFICA¬TION OF HIGH AFFINITY AND SPECIFICITY FAB FRAGMENT OF ANTI-DIGOXIN POLYCLONAL ANTIBODIES

    Directory of Open Access Journals (Sweden)

    M. Pour-Amir

    2000-01-01

    Full Text Available In this study we produced and purified a high titer of specific and high affin¬ity Fab fragments of anti-digoxin antibody. Immunization of rabbits with a conju¬gate of the cardiac glycoside digoxin, coupled by a periodate oxidation method to the amino group of lysine in bovine serum albumin resulted in the production of this type of high titer digoxin-specific antibodies with exceptionally high affinity (109 L/mol and specificity in immune response. Increase in titer was found in steps of purification ending up with the highest titer for Fab fragment to be at 1.75 ug of purified Fab (for 50% binding of I25I-digoxin. High specificity for antigenic determinants of the steroid nucleus of digoxin was observed such that much less cross-reaction with digoxin (2.3% and no cross-reaction with ouabaine, estradiol, Cortisol, progesterone and testosterone were detected.

  2. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    Science.gov (United States)

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications.

  3. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA

    DEFF Research Database (Denmark)

    Klein, A B; Bay, T; Villumsen, I S

    2016-01-01

    analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations......, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high...... density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse...

  4. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L., E-mail: fceoni@hotmail.com, E-mail: ffsene@hotmail.com, E-mail: armandocirilo@yahoo.com, E-mail: evandrobetini@gmail.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rizzuto, Marcia A., E-mail: marizzutto@if.usp.br [Universidade de Sao Paulo (IF/USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I{sub (x)} = I{sub 0}e{sup (-ux)}. Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N{sub 2}+H{sub 2}. The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  5. Synthesis, crystal structure and photoluminescence of phosphorescent copper (I) complexes containing hole-transporting carbazoly moiety.

    Science.gov (United States)

    Yu, Tianzhi; Chai, Haifang; Zhao, Yuling; Zhang, Chengcheng; Liu, Peng; Fan, Duowang

    2013-05-15

    Two new mononuclear Cu(I) complexes based on 2-(2'-pyridyl)benzimidazolyl derivative ligand containing hole-transporting carbazole (L), [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4), where L=(4-(9H-carbazol-9-yl)phenyl)methyl-2-(2'-pyridyl)benzimidazole; DPEphos=bis[2-(diphenylphosphino)phenyl]ether and PPh3=triphenylphosphine, have been synthesized and characterized on the basis of elemental analysis, (1)H NMR and FT-IR spectra. The structures of the ligand L and the Cu(I) complexes were characterized by single crystal X-ray diffraction. The results reveal that in the Cu(I) complexes the central Cu(I) ions assume the irregular distorted tetrahedral geometry and are tetra-coordinated by the two nitrogen atoms from L ligand and two phosphorus atoms from ancillary ligands. The photophysical properties of the complexes were examined by using UV-vis, photoluminescence spectroscopic analysis. The complexes exhibit weak MLCT absorption bands ranging from 360 to 480 nm, and display strong orange phosphorescence in the solid states at room temperature, which is completely quenched in solutions.

  6. Synthesis, crystal structure and photoluminescence of phosphorescent copper (I) complexes containing hole-transporting carbazoly moiety

    Science.gov (United States)

    Yu, Tianzhi; Chai, Haifang; Zhao, Yuling; Zhang, Chengcheng; Liu, Peng; Fan, Duowang

    2013-05-01

    Two new mononuclear Cu(I) complexes based on 2-(2'-pyridyl)benzimidazolyl derivative ligand containing hole-transporting carbazole (L), [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4), where L = (4-(9H-carbazol-9-yl)phenyl)methyl-2-(2'-pyridyl)benzimidazole; DPEphos = bis[2-(diphenylphosphino)phenyl]ether and PPh3 = triphenylphosphine, have been synthesized and characterized on the basis of elemental analysis, 1H NMR and FT-IR spectra. The structures of the ligand L and the Cu(I) complexes were characterized by single crystal X-ray diffraction. The results reveal that in the Cu(I) complexes the central Cu(I) ions assume the irregular distorted tetrahedral geometry and are tetra-coordinated by the two nitrogen atoms from L ligand and two phosphorus atoms from ancillary ligands. The photophysical properties of the complexes were examined by using UV-vis, photoluminescence spectroscopic analysis. The complexes exhibit weak MLCT absorption bands ranging from 360 to 480 nm, and display strong orange phosphorescence in the solid states at room temperature, which is completely quenched in solutions.

  7. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens.

    Science.gov (United States)

    Sharma, Preeti; Wang, Ningyan; Kranz, David M

    2014-01-28

    Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs), so-called because they stimulate a large fraction of an individual's T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR) on a T cell and a class II product of the major histocompatibility complex (MHC) on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V) of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1) or S. pyogenes (SpeA and SpeC) have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  8. Immunotherapy Expands and Maintains the Function of High-Affinity Tumor-Infiltrating CD8 T Cells In Situ.

    Science.gov (United States)

    Moran, Amy E; Polesso, Fanny; Weinberg, Andrew D

    2016-09-15

    Cancer cells harbor high-affinity tumor-associated Ags capable of eliciting potent antitumor T cell responses, yet detecting these polyclonal T cells is challenging. Therefore, surrogate markers of T cell activation such as CD69, CD44, and programmed death-1 (PD-1) have been used. We report in this study that in mice, expression of activation markers including PD-1 is insufficient in the tumor microenvironment to identify tumor Ag-specific T cells. Using the Nur77GFP T cell affinity reporter mouse, we highlight that PD-1 expression can be induced independent of TCR ligation within the tumor. Given this, we characterized the utility of the Nur77GFP model system in elucidating mechanisms of action of immunotherapies independent of PD-1 expression. Coexpression of Nur77GFP and OX40 identifies a polyclonal population of high-affinity tumor-associated Ag-specific CD8(+) T cells, which produce more IFN-γ in situ than OX40 negative and doubles in quantity with anti-OX40 and anti-CTLA4 mAb therapy but not with anti-PD-1 or programmed death ligand-1. Moreover, expansion of these high-affinity CD8 T cells prolongs survival of tumor-bearing animals. Upon chronic stimulation in tumors and after adoptive cell therapy, CD8 TCR signaling and Nur77GFP induction is impaired, and tumors progress. However, this can be reversed and overall survival significantly enhanced after adoptive cell therapy with agonist OX40 immunotherapy. Therefore, we propose that OX40 agonist immunotherapy can maintain functional TCR signaling of chronically stimulated tumor-resident CD8 T cells, thereby increasing the frequency of cytotoxic, high-affinity, tumor-associated Ag-specific cells.

  9. α4βδ GABA receptors are high-affinity targets for γ-hydroxybutyric acid (GHB)

    DEFF Research Database (Denmark)

    Absalom, N.; Karim, N.; Eghorn, L.F.;

    2012-01-01

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinit...... and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism....

  10. Soluble T Cell Receptor Vβ Domains Engineered for High-Affinity Binding to Staphylococcal or Streptococcal Superantigens

    Directory of Open Access Journals (Sweden)

    Preeti Sharma

    2014-01-01

    Full Text Available Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs, so-called because they stimulate a large fraction of an individual’s T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR on a T cell and a class II product of the major histocompatibility complex (MHC on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1 or S. pyogenes (SpeA and SpeC have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  11. Analysis of high affinity self-association by fluorescence optical sedimentation velocity analytical ultracentrifugation of labeled proteins: opportunities and limitations.

    Directory of Open Access Journals (Sweden)

    Huaying Zhao

    Full Text Available Sedimentation velocity analytical ultracentrifugation (SV is a powerful first-principle technique for the study of protein interactions, and allows a rigorous characterization of binding stoichiometry and affinities. A recently introduced commercial fluorescence optical detection system (FDS permits analysis of high-affinity interactions by SV. However, for most proteins the attachment of an extrinsic fluorophore is an essential prerequisite for analysis by FDS-SV. Using the glutamate receptor GluA2 amino terminal domain as a model system for high-affinity homo-dimerization, we demonstrate how the experimental design and choice of fluorescent label can impact both the observed binding constants as well as the derived hydrodynamic parameter estimates for the monomer and dimer species. Specifically, FAM (5,6-carboxyfluorescein was found to create different populations of artificially high-affinity and low-affinity dimers, as indicated by both FDS-SV and the kinetics of dimer dissociation studied using a bench-top fluorescence spectrometer and Förster Resonance Energy Transfer. By contrast, Dylight488 labeled GluA2, as well as GluA2 expressed as an EGFP fusion protein, yielded results consistent with estimates for unlabeled GluA2. Our study suggests considerations for the choice of labeling strategies, and highlights experimental designs that exploit specific opportunities of FDS-SV for improving the reliability of the binding isotherm analysis of interacting systems.

  12. High affinity IgM(+) memory B cells are generated through a germinal center-dependent pathway.

    Science.gov (United States)

    Hara, Yasushi; Tashiro, Yasuyuki; Murakami, Akikazu; Nishimura, Miyuki; Shimizu, Takeyuki; Kubo, Masato; Burrows, Peter D; Azuma, Takachika

    2015-12-01

    During a T cell-dependent immune response, B cells undergo clonal expansion and selection and the induction of isotype switching and somatic hypermutation (SHM). Although somatically mutated IgM(+) memory B cells have been reported, it has not been established whether they are really high affinity B cells. We tracked (4-hydroxy-3-nitrophenyl) acetyl hapten-specific GC B cells from normal immunized mice based on affinity of their B cell receptor (BCR) and performed BCR sequence analysis. SHM was evident by day 7 postimmunization and increased with time, such that high affinity IgM(+) as well as IgG(+) memory B cells continued to be generated up to day 42. In contrast, class-switch recombination (CSR) was almost completed by day 7 and then the ratio of IgG1(+)/IgM(+) GC B cells remained unchanged. Together these findings suggest that IgM(+) B cells undergo SHM in the GC to generate high affinity IgM(+) memory cells and that this process continues even after CSR is accomplished.

  13. Mitochondrial Electron Transport Chain in Heavy Metal-Induced Neurotoxicity: Effects of Cadmium, Mercury, and Copper

    Directory of Open Access Journals (Sweden)

    Elena A. Belyaeva

    2012-01-01

    Full Text Available To clarify the role of mitochondrial electron transport chain (mtETC in heavy-metal-induced neurotoxicity, we studied action of Cd2+, Hg2+, and Cu2+ on cell viability, intracellular reactive oxygen species formation, respiratory function, and mitochondrial membrane potential of rat cell line PC12. As found, the metals produced, although in a different way, dose- and time-dependent changes of all these parameters. Importantly, Cd2+ beginning from 10 [mu]M and already at short incubation time (3 h significantly inhibited the FCCP-uncoupled cell respiration; besides, practically the complete inhibition of the respiration was reached after 3 h incubation with 50 [mu]M Hg2+ or 500 [mu]M Cd2+, whereas even after 48 h exposure with 500 [mu]M Cu2+, only a 50% inhibition of the respiration occurred. Against the Cd2+-induced cell injury, not only different antioxidants and mitochondrial permeability transition pore inhibitors were protective but also such mtETC effectors as FCCP and stigmatellin (complex III inhibitor. However, all mtETC effectors used did not protect against the Hg2+- or Cu2+-induced cell damage. Notably, stigmatellin was shown to be one of the strongest protectors against the Cd2+-induced cell damage, producing a 15–20% increase in the cell viability. The mechanisms of the mtETC involvement in the heavy-metal-induced mitochondrial membrane permeabilization and cell death are discussed.

  14. Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts

    OpenAIRE

    1999-01-01

    We have investigated the cellular pathology of the syndrome called thiamine-responsive megaloblastic anemia (TRMA) with diabetes and deafness. Cultured diploid fibroblasts were grown in thiamine-free medium and dialyzed serum. Normal fibroblasts survived indefinitely without supplemental thiamine, whereas patient cells died in 5–14 days (mean 9.5 days), and heterozygous cells survived for more than 30 days. TRMA fibroblasts were rescued from death with 10–30 nM thiamine (in the range of norma...

  15. Species-scanning mutagenesis of the serotonin transporter reveals residues essential in selective, high-affinity recognition of antidepressants

    DEFF Research Database (Denmark)

    Mortensen, O V; Kristensen, A S; Wiborg, O

    2001-01-01

    of the antidepressants citalopram, fluoxetine, paroxetine and imipramine were several-fold higher at hSERT compared with bSERT. No species selectivity was observed for the antidepressants fluvoxamine, and sertraline or for the psychostimulants cocaine, the cocaine analogue beta-carbomethoxy-3beta-(4-iodophenyl......-180 and phenylalanine-513 to confer species selectivity at hSERT for fluoxetine and imipramine. Results were obtained by doing the forward, bovine to human, mutations and confirmed by doing the reverse mutations. Citalopram analogues were used to define the roles of methionine-180, tyrosine-495...

  16. Small pH and salt variations radically alter the thermal stability of metal-binding domains in the copper transporter, Wilson disease protein.

    Science.gov (United States)

    Nilsson, Lina; Ådén, Jörgen; Niemiec, Moritz S; Nam, Kwangho; Wittung-Stafshede, Pernilla

    2013-10-24

    Although strictly regulated, pH and solute concentrations in cells may exhibit temporal and spatial fluctuations. Here we study the effect of such changes on the stability, structure, and dynamics in vitro and in silico of a two-domain construct (WD56) of the fifth and sixth metal-binding domains of the copper transport protein, ATP7B (Wilson disease protein). We find that the thermal stability of WD56 is increased by 40 °C when increasing the pH from 5.0 to 7.5. In contrast, addition of salt at pH 7.2 decreases WD56 stability by up to 30 °C. In agreement with domain-domain coupling, fractional copper loading increases the stability of both domains. HSQC chemical shift changes demonstrate that, upon lowering the pH from 7.2 to 6, both His in WD6 as well as the second Cys of the copper site in each domain become protonated. MD simulations reveal increased domain-domain fluctuations at pH 6 and in the presence of high salt concentration, as compared to at pH 7 and low salt concentration. Thus, the surface charge distribution at high pH contributes favorably to overall WD56 stability. By introducing more positive charges by lowering the pH, or by diminishing charge-charge interactions by salt, fluctuations among the domains are increased and thereby overall stability is reduced. Copper transfer activity also depends on pH: delivery of copper from chaperone Atox1 to WD56 is more efficient at pH 7.2 than at pH 6 by a factor of 30. It appears that WD56 is an example where the free energy landscapes for folding and function are linked via structural stability.

  17. N,N',N"-tris(dihydroxyphosphorylmethyl)-1,4,7-triazacyclononane (Deofix) - a high-affinity, high-specificity chelator for first transition series metal cations with significant deodorant, antimicrobial, and antioxidant activity.

    Science.gov (United States)

    Laden, Karl; Zaklad, Haim; Simhon, Elliot D; Klein, Joseph Y; Cyjon, Rosa L; Winchell, Harry S

    2003-01-01

    Deofix, N,N',N"-tris(dihydroxyphosphorylmethyl)-1,4,7-triazacyclononane, is a high-affinity, high-specificity chelator for first transition series cations such as iron, zinc, manganese, and copper. A 1% solution in 50% ethanol was found to be significantly better at reducing underarm malodor than a solution of 0.3% Triclosan in 50% ethanol. Compared to a 50% alcohol control, Deofix was found to produce a significant reduction in malodor for at least 48 hours. Deofix appears to work by reducing the concentration of first transition series metal ions below the levels needed for microbial cell reproduction and by inhibiting oxidative processes by interfering with catalytic formation of free radicals. Deofix has very low levels of toxicity when measured via a number of screening techniques.

  18. Effects of nanomolar copper on water plants—Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George, E-mail: george.thomas@uni.kn [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: ha-jo.staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Wellenreuther, Gerd, E-mail: Gerd.wellenreuther@desy.de [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Dickinson, Bryan C., E-mail: bryan.dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: hendrik.kuepper@uni-konstanz.de [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-09-15

    Highlights: •We found different optimal Cu requirement for different physiological mechanisms. •Kinetics and concentration thresholds of damage mechanisms were established. •Cu toxicity caused internal Cu re-distribution and inhibition of Zn uptake. •Cu deficient plants released Cu, indicating lack of high-affinity Cu transporters. •Cu deficiency caused re-distribution of zinc in the plant. -- Abstract: Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO{sub 4}) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 2 nM Cu. Damage to the PSII reaction centre was the first target of Cu toxicity, followed by disturbed regulation of heat dissipation (NPQ). Only after that, electron transport through PSII (Φ{sub PSII}) was inhibited, and finally chlorophylls decreased. Copper accumulation in the plants was stable until 10 nM Cu in solution, but strongly increased at higher concentrations. The vein was the main storage site for Cu up to physiological concentrations (10 nM). At toxic levels it was also sequestered to the epidermis and mesophyll until export from the vein became inhibited, accompanied by inhibition of Zn uptake. Copper deficiency led to a complete stop of growth at “0” nM Cu after 6 weeks. This was accompanied by high starch accumulation although electron flow through PSII (Φ{sub PSII}) decreased from 2 weeks, followed by decrease in pigments and increase of non photochemical quenching (NPQ). Release of Cu from the plants below 10 nM Cu supply in the nutrient solution indicated lack of high-affinity Cu transporters, and on the tissue level copper deficiency led to a re-distribution of zinc.

  19. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals

    DEFF Research Database (Denmark)

    Grosell, Martin Hautopp; Nielsen, Claus; Bianchini, A.

    2002-01-01

    Copper, Silver, Freshwater, Fish, Crustaceans, Sodium transport, Ammonia excretion, Predicting mortality......Copper, Silver, Freshwater, Fish, Crustaceans, Sodium transport, Ammonia excretion, Predicting mortality...

  20. Assembly, activation, and trafficking of the Fet3p.Ftr1p high affinity iron permease complex in Saccharomyces cerevisiae.

    Science.gov (United States)

    Singh, Arvinder; Severance, Scott; Kaur, Navjot; Wiltsie, William; Kosman, Daniel J

    2006-05-12

    The high affinity iron uptake complex in the yeast plasma membrane (PM) consists of the ferroxidase, Fet3p, and the ferric iron permease, Ftr1p. We used a combination of yeast two-hybrid analysis, confocal fluorescence microscopy, and fluorescence resonance energy transfer (FRET) quantification to delineate the motifs in the two proteins required for assembly and maturation into an uptake-competent complex. The cytoplasmic, carboxyl-terminal domain of each protein contains a four-residue motif adjacent to the cytoplasm-PM interface that supports an interaction between the proteins. This interaction has been quantified by two-hybrid analysis and is required for assembly and trafficking of the complex to the PM and for the approximately 13% maximum FRET efficiency determined. In contrast, the Fet3p transmembrane domain (TM) can be exchanged with the TM domain from the vacuolar ferroxidase, Fet5p, with no loss of assembly and trafficking. A carboxyl-terminal interaction between the vacuolar proteins, Fet5p and Fth1p, also was quantified. As a measure of the specificity of interaction, no interaction between heterologous ferroxidase permease pairs was observed. Also, whereas FRET was quantified between fluorescent fusions of the copper permease (monomers), Ctr1p, none was observed between Fet3p and Ctr1p. The results are consistent with a (minimal) heterodimer model of the Fet3p.Ftr1p complex that supports the trafficking of iron from Fet3p to Ftr1p for iron permeation across the yeast PM.

  1. α4βδ GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB).

    Science.gov (United States)

    Absalom, Nathan; Eghorn, Laura F; Villumsen, Inge S; Karim, Nasiara; Bay, Tina; Olsen, Jesper V; Knudsen, Gitte M; Bräuner-Osborne, Hans; Frølund, Bente; Clausen, Rasmus P; Chebib, Mary; Wellendorph, Petrine

    2012-08-14

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinity binding, we undertook photolinking studies combined with proteomic analyses and identified several GABA(A) receptor subunits as possible candidates. A subsequent functional screening of various recombinant GABA(A) receptors in Xenopus laevis oocytes using the two-electrode voltage clamp technique showed GHB to be a partial agonist at αβδ- but not αβγ-receptors, proving that the δ-subunit is essential for potency and efficacy. GHB showed preference for α4 over α(1,2,6)-subunits and preferably activated α4β1δ (EC(50) = 140 nM) over α4β(2/3)δ (EC(50) = 8.41/1.03 mM). Introduction of a mutation, α4F71L, in α4β1(δ)-receptors completely abolished GHB but not GABA function, indicating nonidentical binding sites. Radioligand binding studies using the specific GHB radioligand [(3)H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid showed a 39% reduction (P = 0.0056) in the number of binding sites in α4 KO brain tissue compared with WT controls, corroborating the direct involvement of the α4-subunit in high-affinity GHB binding. Our data link specific GHB forebrain binding sites with α4-containing GABA(A) receptors and postulate a role for extrasynaptic α4δ-containing GABA(A) receptors in GHB pharmacology and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism.

  2. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA.

    Science.gov (United States)

    Klein, A B; Bay, T; Villumsen, I S; Falk-Petersen, C B; Marek, A; Frølund, B; Clausen, R P; Hansen, H D; Knudsen, G M; Wellendorph, P

    2016-11-01

    GHB (γ-hydroxybutyric acid) is a compound endogenous to mammalian brain with high structural resemblance to GABA. GHB possesses nanomolar-micromolar affinity for a unique population of binding sites, but the exact nature of these remains elusive. In this study we utilized the highly selective GHB analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over the commonly used radioligand (3)H-NCS-382, and thus a very suitable in vitro tool for qualitative and quantitative autoradiography of the GHB high-affinity site.

  3. Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.

    Science.gov (United States)

    Nallapareddy, Sreedhar R; Sillanpää, Jouko; Ganesh, Vannakambadi K; Höök, Magnus; Murray, Barbara E

    2007-06-01

    Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

  4. (/sup 3/H)pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Watson, M.; Roeske, W.R.; Yamamura, H.I.

    1982-11-01

    The specific binding of (/sup 3/H)pirenzepine was investigated in homogenates of rat cerebral cortex, cerebellar cortex, and heart. Specific binding of (/sup 3/H)pirenzepine in the cerebral cortex as defined by displacement with atropine sulfate (1..mu..M) was of high affinity (K/sub d/ = 4-10 nM, receptor density = 1.06 pmoles/mg protein), stereoselective, and competitive with drugs specific for the muscarinic receptor. In contrast, few (/sup 3/H)pirenzepine binding sites were demonstrated in cerebellar and heart homogenates.

  5. cDNA heterogeneity suggests structural variants related to the high-affinity IgE receptor.

    OpenAIRE

    Liu, F T; Albrandt, K; Robertson, M W

    1988-01-01

    The high-affinity IgE receptor present on mast cells and basophils is responsible for the IgE-mediated activation of these cells. The current model for this receptor depicts a four-subunit structure, alpha beta gamma 2. A cDNA for the alpha subunit was recently cloned and predicts a structure consisting of two homologous extracellular domains, a transmembrane segment, and a cytoplasmic tail. Using a synthetic oligonucleotide corresponding to the amino-terminal sequence of the alpha subunit, w...

  6. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin.

    Science.gov (United States)

    Ryan, Ali J; Chung, Chun-Wa; Curry, Stephen

    2011-04-18

    Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which--in drugs sites 1 and 2 on the protein--are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  7. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    Directory of Open Access Journals (Sweden)

    Chung Chun-wa

    2011-04-01

    Full Text Available Abstract Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA. It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  8. (TH)205-501, a non-catechol dopaminergic agonist, labels selectively and with high affinity dopamine D2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Closse, A.; Frick, W.; Markstein, R.; Maurer, R.; Nordmann, R.

    1985-01-01

    (TH)205-501, a non dopaminergic agonist, is presented as a ligand with high affinity (Ksub(D) approx= 1 nM) and high selectivity for dopamine receptors. pKsubi values of dopaminergic agonists derived from competition isotherms in the (TH)205-501 binding assay correlate very well with their potency in the acetylcholine release assay, which is controlled by dopamine D2 receptors. There is however no correlation with their potency stimulating aldenylate cyclase, a process controlled by dopamine D1 receptors. Thus (TH)205-501 is the first agonist ligand selective for dopamine D2 receptors. (Author).

  9. Biomagnetic separation of Salmonella Typhimurium with high affine and specific ligand peptides isolated by phage display technique

    Energy Technology Data Exchange (ETDEWEB)

    Steingroewer, Juliane [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany)]. E-mail: juliane.steingroewer@tu-dresden.de; Bley, Thomas [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany); Bergemann, Christian [Chemicell GmbH, D-10823, Berlin (Germany); Boschke, Elke [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2007-04-15

    Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.

  10. Breathing air to save energy--new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis.

    Science.gov (United States)

    Liot, Quentin; Constant, Philippe

    2016-02-01

    The Streptomyces avermitilis genome encodes a putative high-affinity [NiFe]-hydrogenase conferring the ability to oxidize tropospheric H2 in mature spores. Here, we used a combination of transcriptomic and mutagenesis approaches to shed light on the potential ecophysiological role of the enzyme. First, S. avermitilis was either exposed to low or hydrogenase-saturating levels of H2 to investigate the impact of H2 on spore transcriptome. In total, 1293 genes were differentially expressed, with 1127 and 166 showing lower and higher expression under elevated H2 concentration, respectively. High H2 exposure lowered the expression of the Sec protein secretion pathway and ATP-binding cassette-transporters, with increased expression of genes encoding proteins directing carbon metabolism toward sugar anabolism and lower expression of NADH dehydrogenase in the respiratory chain. Overall, the expression of relA responsible for the synthesis of the pleiotropic alarmone ppGpp decreased upon elevated H2 exposure, which likely explained the reduced expression of antibiotic synthesis and stress response genes. Finally, deletion of hhySL genes resulted in a loss of H2 uptake activity and a dramatic loss of viability in spores. We propose that H2 is restricted to support the seed bank of Streptomyces under a unique survival-mixotrophic energy mode and discuss important ecological implications of this finding.

  11. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S.J.; Catterall, W.A.

    1982-11-01

    Specific binding of /sup 3/H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD . 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors.

  12. cDNA heterogeneity suggests structural variants related to the high-affinity IgE receptor.

    Science.gov (United States)

    Liu, F T; Albrandt, K; Robertson, M W

    1988-08-01

    The high-affinity IgE receptor present on mast cells and basophils is responsible for the IgE-mediated activation of these cells. The current model for this receptor depicts a four-subunit structure, alpha beta gamma 2. A cDNA for the alpha subunit was recently cloned and predicts a structure consisting of two homologous extracellular domains, a transmembrane segment, and a cytoplasmic tail. Using a synthetic oligonucleotide corresponding to the amino-terminal sequence of the alpha subunit, we identified a number of cDNA clones from a rat basophilic leukemia cell cDNA library. Nucleotide sequencing established four different forms of cDNA: one is nearly identical to the published cDNA; the second differs from the first in the 5' untranslated sequence; the other two forms use either one or the other of the 5'-end sequences as above and lack 163 base pairs in the region coding for the second extracellular domain. RNase protection analysis with radioactive RNA probes established the heterogeneity of rat basophilic leukemia cell mRNA with regard to both the 5' and the internal sequences. Our results suggest the existence of at least four different protein forms related to the alpha subunit of the high-affinity IgE receptor.

  13. Identification of a high-affinity monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Zhang, Xian; Sun, Mengjiao; Kang, Yue; Xie, Hui; Wang, Xin; Song, Houhui; Li, Xiaoliang; Fang, Weihuan

    2015-11-01

    Ochratoxin A (OTA) is one of the most commonly occurring mycotoxins produced by some species of Aspergillus and can contaminate cereal and cereal products. A high-affinity anti-OTA monoclonal antibody (mAb) was generated from a hybridoma cell line 2D8 using splenocytes from a BALB/c mouse immunized with synthesized OTA-bovine serum albumin conjugate. The mAb 2D8 is specific with high affinity (3.75 × 10(9) L/M). An indirect competitive ELISA (ic-ELISA) was then developed using this mAb for quantitative determination of OTA in corn and feed samples. Using the optimized conditions, there was good linearity between OTA concentration and competitive inhibition (y = -0.6076x + 0.2441, R(2) = 0.9923) with the working range from 2.4 to 23.6 μg/kg, IC50 at 7.6 μg/kg and lower limit of detection at 1.4 μg/kg. The recovery rates in spiked samples were 91.2-110.3%. Of the 56 corn and feed samples, this ic-ELISA and a commercial kit both found the same 13 samples positive for OTA with good linear correlation between the two methods in OTA quantification (R(2) = 0.9706). We conclude that this ic-ELISA can be used for rapid and quantitative screening of corn and feed samples for the presence of OTA.

  14. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate.

    Science.gov (United States)

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2016-09-01

    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  15. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo

    National Research Council Canada - National Science Library

    Yu, Channing; Cantor, Alan B; Yang, Haidi; Browne, Carol; Wells, Richard A; Fujiwara, Yuko; Orkin, Stuart H

    2002-01-01

    .... Here we demonstrate that deletion of a high-affinity GATA-binding site in the GATA-1 promoter, an element presumed to mediate positive autoregulation of GATA-1 expression, leads to selective loss...

  16. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann

    2014-01-01

    conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed......γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate...... whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...

  17. Facilitated Transport of Ethylene in Poly (Amide 12-Block Tetramethylenoxide) Copolymer/AgBF4 Membranes Containing Silver (I) and Copper (I) Ions as Carriers

    Science.gov (United States)

    Ben Hamouda, Sofiane; Trong Nguyen, Quang; Langevin, Dominique; Roudesli, Sadok

    Metal-incorporated poly(amide 12-block-tetramethylenoxide) (PA12-co-PTMO) copolymer was used for studying facilitated transport of olefines through new composite membranes. The metals incorporated were silver {Ag(I)} and copper {Cu(I)}. Tests were carried out at room temperature (25±2°C) to determine the selectivity and permeability of these membranes to ethylene and ethane gas. The membranes prepared by mixing in solution the copolymer with silver (AgBF4) or copper (CuBF4) salt show a ethylene/ethane selectivity much higher than that of pure PA12-co-PTMO. The membranes were also characterized by Fourier Transform Infra Red (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) in order to understand the structural feature responsible for the observed behaviour. The IRFT spectrum indicate that Ag+ and Cu+ ions are developing interactions with the copolymer. The permeation results obtained with copper containing membranes show that CuBF4 salt introduction in the copolymer tends to reduce ethane permeability. This phenomenon is explained by a diminution of the free volume caused by a decrease of the interchain distance due to the formation of metal ions-polymer matrix complexes. At the same time, for ethylene, the decrease in permeability observed at low salt content is recouped rapidly, when the salt content increases, by a dramatic increase of the permeability which attains 10 times that of the pure PA12-co-PTMO. This behaviour is attributed to the facilitated transport mechanism of the ethylene molecules able to develop specific interactions with the incorporated metal ions. It results from these two antagonistic phenomena a multiplication by 18 of the ethylene/ethane selectivity of the pure copolymer when the CuBF4 content of the composite attains 60%.

  18. Predicting Soil Physical Parameters and Copper Transport in a Polluted Field From X Ray CT-Images

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Naveed, Muhammad; Møldrup, Per

    2013-01-01

    in soils is strongly controlled by the soil structure, the capabilities of these visualization techniques could be used to predict the risk of pollutants leaching. This work was carried out using soils from a field site (Hygum) in Jutland, Denmark, a historical copper (Cu) polluted field cultivated for 80...

  19. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    NARCIS (Netherlands)

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; De Sluis, Bart van; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex

  20. Effects of lead exposure on copper and copper transporters in choroid plexus of rats%染铅大鼠脉络丛中铜及铜转运蛋白的变化

    Institute of Scientific and Technical Information of China (English)

    赵会新; 杨辉; 闫立成; 蒋守芳; 薛玲; 赵海鹰; 关维俊; 庞淑兰; 张艳淑

    2014-01-01

    Objective To investigate the effects of lead exposure on the copper concentration in the brain and serum and the expression of copper transporters in the choroid plexus among rats.Methods Sixty specific pathogen-free Sprague-Dawley rats were randomly divided into a control group and three lead-exposed groups,with 8 mice in each group.The lead-exposed groups were orally administrated with 500 (low-dose group),1 000 (middle-dose group),and 2 000 mg/L (high-dose group) lead acetate in drinking water for eight weeks.And the rats in control group were given 2 000 mg/L sodium acetate in drinking water.The content of lead and copper in the serum,hippocampus,cortex,choroid plexus,bones,and cerebrospinal fluid (CSF) was determined by inductively coupled plasma-mass spectrometry (ICP-MS).Confocal and real-time PCR methods were applied to measure the expression of copper transporters including copper transporter 1 (Ctr1),antioxidant protein 1 (ATX1),and Cu ATPase (ATP7A).Results Compared with the control group,the lead-exposed groups showed significantly higher lead concentrations in the serum,cortex,hippocampus,choroid plexus,CSF,and bones (P<0.05) and significantly higher copper concentrations in the CSF,choroid plexus,serum,and hippocampus (P<0.05).Confocal images showed that Ctr1 protein was expressed in the cytoplasm and cell membrane of choroid plexus in control group.However,Ctr1 migrated to CSF surface microvilli after lead exposure.Ctr1 fluorescence intensity gradually increased with increasing dose of lead,except that the middledose group had a higher Ctr1 fluorescence intensity than the high-dose group.In addition,the middle-and highdose groups showed a lower ATX1 fluorescence intensity compared with the control group.Real-time PCR data indicated that the three lead-exposed groups showed significantly higher mRNA levels of Ctr1 and ATP7A compared with the control group (P<0.05).Conclusion Copper homeostasis in the choroid plexus is affected by lead exposure

  1. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    Science.gov (United States)

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  2. Neuroimaging of the serotonin reuptake site requires high-affinity ligands.

    Science.gov (United States)

    Elfving, Betina; Madsen, Jacob; Knudsen, Gitte M

    2007-11-01

    Numerous attempts have been made to develop suitable radiolabeled tracers for positron emission tomography or single photon emission computed tomography imaging of the serotonin transporter (SERT), but most often, negative outcomes are reported. The aim of this study is to define characteristics of a good SERT radioligand and to investigate species differences. We examined seven different selective serotonin reuptake inhibitors (SSRIs) and that except for one all have been previously tested as emission tomography ligands. The outcome of the ligands as emission tomography tracers was compared in relation with receptor density (Bmax) and/or ligand affinity (Kd) in rat and monkey cerebrum and cerebellum (reference region) membranes. [3H]-(S)-Citalopram and [3H]-(+)-McN5652 display statistically significantly lower affinity, whereas [3H]paroxetine displays statistically significantly higher affinity for SERT in monkey cortex when compared with the rat cerebrum. The affinity of [3H]MADAM, [123I]ADAM, and [11C]DASB for SERT obtained with rat cerebrum and monkey cortex are similar. In monkey cortex, Kd and Bmax could not be determined with [3H]fluoxetine. Of the seven SSRIs, [3H]-(S)-citalopram, [3H]MADAM, and [11C]DASB displayed significant specific binding to SERT in monkey cerebellum, with Bmax cortex:cerebellum ratios being 17, 3, and 4, respectively. In rat brain tissue the ratios were 12, 6, and 3, respectively. In conclusion, it can be estimated that imaging of the human SERT in a high-density region requires radioligands with Kd values between 0.03 and a maximum of 0.3 nM (at 37 degrees C). The differential specific cerebellar binding raises the question of the suitability of cerebellum as a reference region for nonspecific binding.

  3. [Copper metabolism and genetic disorders].

    Science.gov (United States)

    Shimizu, Norikazu

    2016-07-01

    Copper is one of essential trace elements. Copper deficiency lead to growth and developmental failure and/or neurological dysfunction. However, excess copper is also problems for human life. There are two disorders of inborn error of copper metabolism, Menkes disease and Wilson disease. Menkes disease is an X linked recessive disorder with copper deficiency and Wilson disease is an autosomal recessive disorder with copper accumulation. These both disorders result from the defective functioning of copper transport P-type ATPase, ATP7A of Menkes disease and ATP7B of Wilson disease. In this paper, the author describes about copper metabolism of human, and clinical feature, diagnosis and treatment of Menkes disease and Wilson disease.

  4. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); MacDougald, Michelle [Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John’s, NL, A1B 3V6 (Canada); Fast, Mark [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Siah, Ahmed [British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada)

    2015-08-15

    Highlights: • Sequential inhibition and activation allows assessment of multiple segments of the electron transport system. • Warm acclimation and hypoxia-reoxygenation have global effects on the electron transport system. • Warm acclimation and hypoxia-reoxygenation sensitize the electron transport system to copper. • Thermal stress, hypoxia-reoxygenation and copper act additively to impair mitochondrial function. - Abstract: Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20 °C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0–20 μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I–IV (CI–IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11 → 20 °C) in temperature increased mitochondrial oxidation rates supported by CI–IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI–IV, reduced RCR for all except

  5. Multiple di-leucines in the ATP7A copper transporter are required for retrograde trafficking to the trans-Golgi network.

    Science.gov (United States)

    Zhu, Sha; Shanbhag, Vinit; Hodgkinson, Victoria L; Petris, Michael J

    2016-09-01

    The ATP7A protein is a ubiquitous copper-transporting P-type ATPase that is mutated in the lethal pediatric disorder of copper metabolism, Menkes disease. The steady-state location of ATP7A is within the trans-Golgi network (TGN), where it delivers copper to copper-dependent enzymes within the secretory pathway. However, ATP7A constantly cycles between the TGN and the plasma membrane, and in the presence of high copper concentrations, the exocytic arm of this cycling pathway is enhanced to promote a steady-state distribution of ATP7A to post-Golgi vesicles and the plasma membrane. A single di-leucine endocytic motif within the cytosolic carboxy tail of ATP7A (1487LL) was previously shown to be essential for TGN localization by functioning in retrieval from the plasma membrane, however, the requirement of other di-leucine signals in this region has not been fully investigated. While there has been some success in identifying sequence elements within ATP7A required for trafficking and catalysis, progress has been hampered by the instability of the ATP7A cDNA in high-copy plasmids during replication in Escherichia coli. In this study, we find that the use of DNA synthesis to generate silent mutations across the majority of both mouse and human ATP7A open reading frames was sufficient to stabilize these genes in high-copy plasmids, thus permitting the generation of full-length expression constructs. Using the stabilized mouse Atp7a construct, we identify a second di-leucine motif in the carboxy tail of ATP7A (1459LL) as essential for steady-state localization in the TGN by functioning in endosome-to-TGN trafficking. Taken together, these findings demonstrate that multiple di-leucine signals are required for recycling ATP7A from the plasma membrane to the TGN and illustrate the utility of large-scale codon reassignment as a simple and effective approach to circumvent cDNA instability in high-copy plasmids.

  6. Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics

    Science.gov (United States)

    Aweda, Tolulope A.; Meares, Claude F.

    2011-01-01

    For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (KA >108 M−1; KD calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate. PMID:21964396

  7. Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions.

    Science.gov (United States)

    Himmel, Mirko; Ritter, Anett; Rothemund, Sven; Pauling, Björg V; Rottner, Klemens; Gingras, Alexandre R; Ziegler, Wolfgang H

    2009-05-15

    In cell-extracellular matrix junctions (focal adhesions), the cytoskeletal protein talin is central to the connection of integrins to the actin cytoskeleton. Talin is thought to mediate this connection via its two integrin, (at least) three actin, and several vinculin binding sites. The binding sites are cryptic in the head-to-rod autoinhibited cytoplasmic form of the protein and require (stepwise) conformational activation. This activation process, however, remains poorly understood, and there are contradictory models with respect to the determinants of adhesion site localization. Here, we report turnover rates and protein-protein interactions in a range of talin rod domain constructs varying in helix bundle structure. We conclude that several bundles of the C terminus cooperate to regulate targeting and concomitantly tailor high affinity interactions of the talin rod in cell adhesions. Intrinsic control of ligand binding activities is essential for the coordination of adhesion site function of talin.

  8. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype

    DEFF Research Database (Denmark)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte

    2002-01-01

    with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable......Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor...... Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding...

  9. The occurrence and production of avidin: a new conception of the high-affinity biotin-binding protein.

    Science.gov (United States)

    Elo, H A; Korpela, J

    1984-01-01

    The production of avidin, a high-affinity biotin-binding egg-white protein, is not restricted to the avian, amphibian and reptilian oviducts. In the acute phase of inflammation, avidin is synthesized and secreted by various injured tissues in the domestic fowl, both male and female. Also in other avian species and a lizard, injured tissues produce an avidin-like biotin-binding factor. The non-oviductal production of avidin in domestic fowl has a great variety of inducers, for example acute inflammation caused by mechanical or thermal tissue injury, septic bacterial infection and (toxic) drugs, and even retrovirus-induced cell transformation. In culture, chicken embryo fibroblasts and yolk sac macrophages synthesize and secrete avidin. Besides the albumen, avidin may act as an antibacterial protein also in the tissues.

  10. Peptide-based protein capture agents with high affinity, selectivity, and stability as antibody replacements in biodetection assays

    Science.gov (United States)

    Coppock, Matthew B.; Farrow, Blake; Warner, Candice; Finch, Amethist S.; Lai, Bert; Sarkes, Deborah A.; Heath, James R.; Stratis-Cullum, Dimitra

    2014-05-01

    Current biodetection assays that employ monoclonal antibodies as primary capture agents exhibit limited fieldability, shelf life, and performance due to batch-to-batch production variability and restricted thermal stability. In order to improve upon the detection of biological threats in fieldable assays and systems for the Army, we are investigating protein catalyzed capture (PCC) agents as drop-in replacements for the existing antibody technology through iterative in situ click chemistry. The PCC agent oligopeptides are developed against known protein epitopes and can be mass produced using robotic methods. In this work, a PCC agent under development will be discussed. The performance, including affinity, selectivity, and stability of the capture agent technology, is analyzed by immunoprecipitation, western blotting, and ELISA experiments. The oligopeptide demonstrates superb selectivity coupled with high affinity through multi-ligand design, and improved thermal, chemical, and biochemical stability due to non-natural amino acid PCC agent design.

  11. Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Greenwood, Jeremy R

    2005-01-01

    acid [(RS)-HOCHCA] and 3-hydroxycyclopent-1-enecarboxylic acid [(RS)-HOCPCA], were found to be high-affinity GHB ligands, with IC50 values in the nanomolar range, and had 9 and 27 times, respectively, higher affinity than GHB. The stereo-selectively synthesized R,R-isomer of the trans-cyclopropyl GHB...... analog, HOCPrCA, proved to have 10-fold higher affinity than its enantiomer. Likewise, the R-enantiomers of HOCHCA and HOCPCA selectively inhibited [3H]NCS-382 binding. The best inhibitor of these, (R)-HOCPCA, has an affinity 39 times higher than GHB and is thus among the best GHB ligands reported......Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites...

  12. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  13. A comprehensive phylogenetic analysis of copper transporting P1B ATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes.

    Science.gov (United States)

    Cubillas, Ciro; Miranda-Sánchez, Fabiola; González-Sánchez, Antonio; Elizalde, José Pedro; Vinuesa, Pablo; Brom, Susana; García-de Los Santos, Alejandro

    2017-08-01

    The ubiquitous cytoplasmic membrane copper transporting P1B-1 and P1B-3 -type ATPases pump out Cu(+) and Cu(2+) , respectively, to prevent cytoplasmic accumulation and avoid toxicity. The presence of five copies of Cu-ATPases in the symbiotic nitrogen-fixing bacteria Sinorhizobium meliloti is remarkable; it is the largest number of Cu(+) -transporters in a bacterial genome reported to date. Since the prevalence of multiple Cu-ATPases in members of the Rhizobiales order is unknown, we performed an in silico analysis to understand the occurrence, diversity and evolution of Cu(+) -ATPases in members of the Rhizobiales order. Multiple copies of Cu-ATPase coding genes (2-8) were detected in 45 of the 53 analyzed genomes. The diversity inferred from a maximum-likelihood (ML) phylogenetic analysis classified Cu-ATPases into four monophyletic groups. Each group contained additional subtypes, based on the presence of conserved motifs. This novel phylogeny redefines the current classification, where they are divided into two subtypes (P1B-1 and P1B-3 ). Horizontal gene transfer (HGT) as well as the evolutionary dynamic of plasmid-borne genes may have played an important role in the functional diversification of Cu-ATPases. Homologous cytoplasmic and periplasmic Cu(+) -chaperones, CopZ, and CusF, that integrate a CopZ-CopA-CusF tripartite efflux system in gamma-proteobacteria and archeae, were found in 19 of the 53 surveyed genomes of the Rhizobiales. This result strongly suggests a high divergence of CopZ and CusF homologs, or the existence of unexplored proteins involved in cellular copper transport. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. 铜离子转运蛋白家族与肺癌顺铂耐药的研究进展%Research progress on copper ion transport protein family and cisplatin drug resistance in lung cancer

    Institute of Scientific and Technical Information of China (English)

    阳甜; 陈天君; 陈明伟

    2012-01-01

    铂类药作为化疗一种关键药之一,被广泛用于治疗各种恶性肿瘤,如卵巢、膀胱、头颈部肿瘤及肺癌.但铂类耐药的发生限制了化疗反应,影响了患者的预后.目前在铂类耐药的机制方面已经有一些重要的发展,其中之一是肿瘤铂类耐药与细胞内浓度的蓄积之间的相关性,摄入的减少和泵出过多均可减少药物在细胞内的聚积,导致耐药.但是具体耐药机制尚不清楚.铜离子动态平衡是由铜离子转运蛋白及其分子伴侣来维持.铜离子转运蛋白家族包括铜离子转运蛋白和铜离子转运磷酸化ATP酶.本文将就铜离子转运蛋白家族与肺癌顺铂耐药作一综述.%Cisplatin is one of the most important chemotherapeutic agents,commonly used for treatment of various cancers including ovary,endometrial,lung and gastric cancer.The secondary drugresistance,however,limits the efficacy of chemotherapy and consequently compromises the prognosis of patients.Recently,there have been some important developments in the understanding of mechanisms of tumor resistance to cisplatin.One of them is concerning the association between the tumor resistance to platinum drugs and the reduced intracellular accumulation owing to impaired drug intake and enhanced outward transport.However,mechanisms for transporting platinum drugs were not known until recently studies have shown that copper transporters may be involved in the transport of platinum-based anticancer drugs.Body copper homeostasis is maintained by a group of proteins including copper transporters and chaperones.Copper transporters include copper transporter 1 and copper-transporting P-type adenosine triphosphatase.This paper will state copper ion transport protein family and cisplatin drug resistance in lung cancer.

  15. High-Affinity, Small-Molecule Peptidomimetic Inhibitors of MLL1/WDR5 Protein-Protein Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Hacer; Townsend, Elizabeth C; Cao, Fang; Chen, Yong; Bernard, Denzil; Liu, Liu; Lei, Ming; Dou, Yali; Wang, Shaomeng [Michigan; (HHMI)

    2013-02-12

    Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase, and targeting the MLL1 enzymatic activity has been proposed as a novel therapeutic strategy for the treatment of acute leukemia harboring MLL1 fusion proteins. The MLL1/WDR5 protein–protein interaction is essential for MLL1 enzymatic activity. In the present study, we designed a large number of peptidomimetics to target the MLL1/WDR5 interaction based upon -CO-ARA-NH–, the minimum binding motif derived from MLL1. Our study led to the design of high-affinity peptidomimetics, which bind to WDR5 with Ki < 1 nM and function as potent antagonists of MLL1 activity in a fully reconstituted in vitro H3K4 methyltransferase assay. Determination of co-crystal structures of two potent peptidomimetics in complex with WDR5 establishes their structural basis for high-affinity binding to WDR5. Evaluation of one such peptidomimetic, MM-102, in bone marrow cells transduced with MLL1-AF9 fusion construct shows that the compound effectively decreases the expression of HoxA9 and Meis-1, two critical MLL1 target genes in MLL1 fusion protein mediated leukemogenesis. MM-102 also specifically inhibits cell growth and induces apoptosis in leukemia cells harboring MLL1 fusion proteins. Our study provides the first proof-of-concept for the design of small-molecule inhibitors of the WDR5/MLL1 protein–protein interaction as a novel therapeutic approach for acute leukemia harboring MLL1 fusion proteins.

  16. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity.

    Science.gov (United States)

    Sharma, P; Postel, S; Sundberg, E J; Kranz, D M

    2013-12-01

    Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.

  17. Cyr61/CCN1 displays high-affinity binding to the somatomedin B(1-44 domain of vitronectin.

    Directory of Open Access Journals (Sweden)

    Ivo M B Francischetti

    Full Text Available BACKGROUND: Cyr61 is a member of the CCN (Cyr61, connective tissue growth, NOV family of extracellular-associated (matricellular proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP, von Willebrand factor type C (vWF, thrombospondin type 1 (TSP, and C-terminal growth factor cysteine knot (CT domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. METHODS AND FINDINGS: In this report, surface plasmon resonance (SPR experiments and solid-phase binding assays demonstrate that recombinant Cyr61 interacts with immobilized monomeric or multimeric vitronectin (VTNC with K(D in the nanomolar range. Notably, the binding site for Cyr61 was identified as the somatomedin B domain (SMTB(1-44 of VTNC, which mediates its interaction with PAI-1, uPAR, and integrin alphav beta3. Accordingly, PAI-1 outcompetes Cyr61 for binding to immobilized SMTB(1-44, and Cyr61 attenuates uPAR-mediated U937 adhesion to VTNC. In contrast, isothermal titration calorimetry shows that Cyr61 does not display high-affinity binding for SMTB(1-44 in solution. Nevertheless, competitive ELISA revealed that multimeric VTNC, heat-modified monomeric VTNC, or SMTB(1-44 at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, beta-endorphin, and other molecules. CONCLUSIONS: The finding that Cyr61 interacts with the SMTB(1-44 domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis.

  18. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV).

    Science.gov (United States)

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-10-12

    Zr(IV) can form phosphate and Zr(IV) (-PO₃(2-)-Zr(4+)-) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  19. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity.

    Directory of Open Access Journals (Sweden)

    Jenny Bostrom

    Full Text Available The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2 antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.

  20. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV)

    Science.gov (United States)

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-01-01

    Zr(IV) can form phosphate and Zr(IV) (–PO32−–Zr4+–) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP. PMID:27754349

  1. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2016-10-01

    Full Text Available Zr(IV can form phosphate and Zr(IV (–PO32−–Zr4+– complex owing to the high affinity between Zr(IV with phosphate. Zr(IV can induce the aggregation of gold nanoparticles (AuNPs, while adenosine triphosphate(ATP can prevent Zr(IV-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRAsensor for ATP have been developed using AuNPs based on the high affinity between Zr(IVwith ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV. After the addition of ATP, ATP reacts with Zr(IV and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV, ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945 with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  2. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Altar, C.A.; Burton, L.E.; Bennett, G.L.; Dugich-Djordjevic, M. (Genentech, Inc., South San Francisco, CA (USA))

    1991-01-01

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF.

  3. Viral reverse transcriptases show selective high affinity binding to DNA-DNA primer-templates that resemble the polypurine tract.

    Directory of Open Access Journals (Sweden)

    Gauri R Nair

    Full Text Available Previous results using a SELEX (Systematic Evolution of Ligands by Exponential Enrichment-based approach that selected DNA primer-template duplexes binding with high affinity to HIV reverse transcriptase (RT showed that primers mimicking the 3' end, and in particular the six nt terminal G tract, of the RNA polypurine tract (PPT; HIV PPT: 5'-AAAAGAAAAGGGGGG-3' were preferentially selected. In this report, two viral (Moloney murine leukemia virus (MuLV and avian myeloblastosis virus (AMV and one retrotransposon (Ty3 RTs were used for selection. Like HIV RT, both viral RTs selected duplexes with primer strands mimicking the G tract at the PPT 3' end (AMV PPT: 5'-AGGGAGGGGGA-3'; MuLV PPT: 5'-AGAAAAAGGGGGG-3'. In contrast, Ty3, whose PPT lacks a G tract (5'-GAGAGAGAGGAA-3' showed no selective binding to any duplex sequences. Experiments were also conducted with DNA duplexes (termed DNA PPTs mimicking the RNA PPT-DNA duplex of each virus and a control duplex with a random DNA sequence. Retroviral RTs bound with high affinity to all viral DNA PPT constructs, with HIV and MuLV RTs showing comparable binding to the counterpart DNA PPT duplexes and reduced affinity to the AMV DNA PPT. AMV RT showed similar behavior with a modest preference for its own DNA PPT. Ty3 RT showed no preferential binding for its own or any other DNA PPT and viral RTs bound the Ty3 DNA PPT with relatively low affinity. In contrast, binding affinity of HIV RT to duplexes containing the HIV RNA PPT was less dependent on the G tract, which is known to be pivotal for efficient extension. We hypothesize that the G tract on the RNA PPT helps shift the binding orientation of RT to the 3' end of the PPT where extension can occur.

  4. Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain.

    Science.gov (United States)

    Wellendorph, Petrine; Høg, Signe; Greenwood, Jeremy R; de Lichtenberg, Anne; Nielsen, Birgitte; Frølund, Bente; Brehm, Lotte; Clausen, Rasmus P; Bräuner-Osborne, Hans

    2005-10-01

    Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites, the molecular cloning of which remains a challenge. Ligands with high affinity and specificity for the reported GHB binding site are needed for pharmacological dissection of the GHB and GABA(B) effects and for mapping the structural requirements of the GHB receptor-ligand interactions. For this purpose, we have synthesized and assayed three conformationally restricted GHB analogs for binding against the GHB-specific ligand [3H]NCS-382 [(E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene-)acetic acid] in rat brain homogenate. The cyclohexene and cyclopentene analogs, 3-hydroxycyclohex-1-enecarboxylic acid [(RS)-HOCHCA] and 3-hydroxycyclopent-1-enecarboxylic acid [(RS)-HOCPCA], were found to be high-affinity GHB ligands, with IC50 values in the nanomolar range, and had 9 and 27 times, respectively, higher affinity than GHB. The stereo-selectively synthesized R,R-isomer of the trans-cyclopropyl GHB analog, HOCPrCA, proved to have 10-fold higher affinity than its enantiomer. Likewise, the R-enantiomers of HOCHCA and HOCPCA selectively inhibited [3H]NCS-382 binding. The best inhibitor of these, (R)-HOCPCA, has an affinity 39 times higher than GHB and is thus among the best GHB ligands reported to date. Neither of the cycloalkenes showed any affinity (IC50 > 1 mM) for GABA(A) or GABA(B) receptors. These compounds show excellent potential as lead structures and novel tools for studying specific GHB receptor-mediated pharmacology.

  5. Alteration of the Copper-Binding Capacity of Iron-Rich Humic Colloids during Transport from Peatland to Marine Waters.

    Science.gov (United States)

    Muller, François L L; Cuscov, Marco

    2017-02-28

    Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L2]/[Corg], where L2 was the second strongest copper-binding ligand, was 0.75 × 10(-4) when the reservoir residence time was 5 h but 0.34 × 10(-4) when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[Corg] = (0.80 ± 0.20) × 10(-2). Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.

  6. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  8. clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum.

    Science.gov (United States)

    Parisot, D; Dufresne, M; Veneault, C; Laugé, R; Langin, T

    2002-10-01

    A screen for insertional mutants of Colletrichum lindemuthianum, the causative agent of common bean anthracnose, led to the identification of a non-pathogenic, lightly colored transformant. This mutant is unable to induce disease symptoms on intact or wounded primary leaves of seedlings and plantlets of Phaseolus vulgaris. In vitro, it exhibits normal vegetative growth, sporulation and conidial germination, but the cultures remain beige instead of becoming black. Microscopic examination revealed that this mutant forms fewer appressoria than the wild-type strain, and these are misshapen and poorly melanized. Molecular analyses indicated that the mutagenic plasmid had targeted clap1, a gene encoding a putative copper-transporting ATPase sharing 35% identity with the human Menkes and Wilson proteins and the product of the CCC2 gene of Saccharomyces cerevisiae. Complementation of the non-pathogenic beige mutant with a wild-type allele of clap1 restored both pathogenicity and pigmentation. Conversely, replacement of the wild-type allele with a disrupted clap1 gene gave rise to non-pathogenic beige transformants. Compared with the wild-type strain, extracts from clap1 mutants were found to have very low levels of phenol oxidase activity. These observations suggest that the clap1 gene product may be involved in the pathogenicity of C. lindemuthianum strains because of its role in delivering copper to secreted cuproenzymes, such as the phenol oxidases that mediate the polymerization of 1,8-dihydroxynaphthalene to melanin.

  9. Electrical and thermal transports of binary copper sulfides CuxS with x from 1.8 to 1.96

    Science.gov (United States)

    Qiu, Pengfei; Zhu, Yaqin; Qin, Yuting; Shi, Xun; Chen, Lidong

    2016-10-01

    In this study, a series of copper sulfides CuxS with x spanning from 1.8 to 1.96 was prepared and their crystal structures, elemental valence states, and thermoelectric properties were systematically studied. The valence state of Cu in CuxS is unchanged as the ratio of Cu/S varies, while the thermoelectric properties are very sensitive to the deficiency of Cu. In addition, the type of sulfur arrangement in the crystal structure also plays an important role on the electrical transports. Finally, the optimum Cu/S atomic ratios in the binary CuxS system were identified for high power factor and thermoelectric figure of merit.

  10. Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters.

    Science.gov (United States)

    Regier, Nicole; Larras, Floriane; Bravo, Andrea Garcia; Ungureanu, Viorel-Gheorghe; Amouroux, David; Cosio, Claudia

    2013-01-01

    Previous studies suggest that macrophytes might participate in bioaccumulation and biomagnification of toxic mercury (Hg) in aquatic environment. Hg bioaccumulation and uptake mechanisms in macrophytes need therefore to be studied. Amongst several macrophytes collected in an Hg contaminated reservoir in Romania, Elodea nuttallii showed a high organic and inorganic Hg accumulation and was then further studied in the laboratory. Tolerance and accumulation of Hg of this plant was also high in the microcosm. Basipetal transport of inorganic Hg was predominant, whereas acropetal transport of methyl-Hg was observed with apparently negligible methylation or demethylation in planta. Hg concentrations were higher in roots>leaves>stems and in top>middle>bottom of shoots. In shoots, more than 60% Hg was found intracellularly where it is believed to be highly available to predators. Accumulation in shoots was highly reduced by cold, death and by competition with Cu(+). Hg in E. nuttallii shoots seems to mainly originate from the water column, but methyl-Hg could also be remobilized from the sediments and might drive in part its entry in the food web. At the cellular level, uptake of Hg into the cell sap of shoots seems linked to the metabolism and to copper transporters. The present work highlights an important breakthrough in our understanding of Hg accumulation and biomagnifications: the remobilization of methyl-Hg from sediments to aquatic plants and differences in uptake mechanisms of inorganic and methyl-Hg in a macrophyte.

  11. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Preparation of a novel antiserum to aromatase with high affinity and specificity: Its clinicopathological significance on breast cancer tissue.

    Science.gov (United States)

    Kanomata, Naoki; Matsuura, Shiro; Nomura, Tsunehisa; Kurebayashi, Junichi; Mori, Taisuke; Kitawaki, Jo; Moriya, Takuya

    2017-01-01

    Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 statuses. This antiserum will be applicable to clinicopathological examination of aromatase in addition to ER and PgR for an appropriate use of aromatase inhibitor on the treatment of breast cancer. Further studies on the relationship between Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and

  13. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    Science.gov (United States)

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-05

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  14. Silencing the Menkes Copper-Transporting ATPase (Atp7a) Gene in Rat Intestinal Epithelial (IEC-6) Cells Increases Iron Flux via Transcriptional Induction of Ferroportin 1 (Fpn1)123

    Science.gov (United States)

    Gulec, Sukru; Collins, James F.

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron (59Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished. PMID:24174620

  15. Silencing the Menkes copper-transporting ATPase (Atp7a) gene in rat intestinal epithelial (IEC-6) cells increases iron flux via transcriptional induction of ferroportin 1 (Fpn1).

    Science.gov (United States)

    Gulec, Sukru; Collins, James F

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron ((59)Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished.

  16. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    Science.gov (United States)

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  17. Fragile X mental retardation protein recognition of G quadruplex structure per se is sufficient for high affinity binding to RNA.

    Science.gov (United States)

    Bole, Medhavi; Menon, Lakshmi; Mihailescu, Mihaela-Rita

    2008-12-01

    Fragile X syndrome, the most common form of inherited mental retardation is caused by the expansion of a CGG trinucleotide repeat in the fragile X mental retardation 1 (fmr1) gene. The abnormal expansion of the CGG repeat causes hypermethylation and subsequent silencing of the fmr1 gene, resulting in the loss of the fragile X mental retardation protein (FMRP). FMRP has been shown to use its arginine-glycine-glycine rich region (RGG box) to bind to messenger RNAs that form G quadruplex structures. Several studies reported that the G quadruplex RNA recognition alone is not sufficient for FMRP RGG box binding and that an additional stem and/or a G quadruplex-stem junction region may also be important in recognition. In this study we have used biophysical methods such as fluorescence, UV, CD and NMR spectroscopy to demonstrate that the recognition of the RNA G quadruplex structure per se, in the absence of a stem region, is sufficient for the FMRP high affinity and specific binding. These findings indicate that the presence of a stem structure in some of the FMRP G quadruplex forming mRNAs is not a requirement for protein recognition as previously believed, but rather for the proper formation of the correct RNA G quadruplex structure recognized by FMRP.

  18. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  19. G196 epitope tag system: a novel monoclonal antibody, G196, recognizes the small, soluble peptide DLVPR with high affinity

    Science.gov (United States)

    Tatsumi, Kasumi; Sakashita, Gyosuke; Nariai, Yuko; Okazaki, Kosuke; Kato, Hiroaki; Obayashi, Eiji; Yoshida, Hisashi; Sugiyama, Kanako; Park, Sam-Yong; Sekine, Joji; Urano, Takeshi

    2017-01-01

    The recognition specificity of monoclonal antibodies (mAbs) has made mAbs among the most frequently used tools in both basic science research and in clinical diagnosis and therapies. Precise determination of the epitope allows the development of epitope tag systems to be used with recombinant proteins for various purposes. Here we describe a new family of tag derived from the epitope recognized by a highly specific mAb G196. The minimal epitope was identified as the five amino acid sequence Asp-Leu-Val-Pro-Arg. Permutation analysis was used to characterize the binding requirements of mAb G196, and the variable regions of the mAb G196 were identified and structurally analyzed by X-ray crystallography. Isothermal titration calorimetry revealed the high affinity (Kd = 1.25 nM) of the mAb G196/G196-epitope peptide interaction, and G196-tag was used to detect several recombinant cytosolic and nuclear proteins in human and yeast cells. mAb G196 is valuable for developing a new peptide tagging system for cell biology and biochemistry research. PMID:28266535

  20. High affinity melatonin receptors in the vertebrate brain: implications for the control of the endogenous oscillatory systems.

    Science.gov (United States)

    Fraschini, F; Stankov, B

    1994-01-01

    Currently, the melatonin receptor is depicted as a membrane-associated protein, linked to a guanine nucleotide-binding protein (G-protein), and thus the melatonin receptor represents a member of a receptor superfamily, acting through G-proteins in the first step of their signal-transduction pathways. Although on a number of occasions specific binding of radioactive melatonin has been demonstrated in a wide variety of tissues and organs, to date, high affinity G-protein-regulated melatonin binding sites, suggestive for a functional melatonin receptor, have been convincingly confirmed in the brain only. There is a significant species variation in the distribution of the melatonin receptor in the vertebrate brain. The limited number of studies prevents any definitive conclusion in terms of phylogeny, though generally speaking, the lower vertebrates' brains tend to express melatonin receptors with wider distribution. Two sites have been consistently found to express high density of melatonin receptors: the pars tuberalis of the adenohypophysis and the hypothalamic suprachiasmatic nuclei (SCN). It must be pointed out, however, that there are some exceptions. Binding in the human pars tuberalis has not been reported, and apparently, the sheep and the mustelids' suprachiasmatic nuclei do not express detectable binding. The function of melatonin in pars tuberalis is unclear, and the control of the synthesis (and release) of paracrine factors that act at site(s) distant from the melatonin target cells, have been suggested.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall.

    Science.gov (United States)

    Canut, H; Carrasco, A; Galaud, J P; Cassan, C; Bouyssou, H; Vita, N; Ferrara, P; Pont-Lezica, R

    1998-10-01

    The heptapeptide Tyr-Gly-Arg-Gly-Asp-Ser-Pro containing the sequence Arg-Gly-Asp (RGD--the essential structure recognised by animal cells in substrate adhesion molecules) was tested on epidermal cells of onion and cultured cells of Arabidopsis upon plasmolysis. Dramatic changes were observed on both types of cells following treatment: on onion cells, Hechtian strands linking the cell wall to the membrane were lost, while Arabidopsis cells changed from concave to convex plasmolysis. A control heptapeptide Tyr-Gly-Asp-Gly-Arg-Ser-Pro had no effect on the shape of plasmolysed cells. Protoplasts isolated from Arabidopsis cells agglutinate in the presence of ProNectinF, a genetically engineered protein of 72 kDa containing 13 RGD sequences: several protoplasts may adhere to a single molecule of ProNectinF. The addition of the RGD-heptapeptide disrupted the adhesion between the protoplasts. Purified plasma membrane from Arabidopsis cells exhibits specific binding sites for the iodinated RGD-heptapeptide. The binding is saturable, reversible, and two types of high affinity sites (Kd1 approximately 1 nM, and Kd2 approximately 40 nM) can be discerned. Competitive inhibition by several structurally related peptides and proteins noted the specific requirement for the RGD sequence. Thus, the RGD-binding activity of Arabidopsis fulfils the adhesion features of integrins, i.e. peptide specificity, subcellular location, and involvement in plasma membrane-cell wall attachments.

  2. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes.

    Science.gov (United States)

    Lang, Benjamin; Blot, Nicolas; Bouffartigues, Emeline; Buckle, Malcolm; Geertz, Marcel; Gualerzi, Claudio O; Mavathur, Ramesh; Muskhelishvili, Georgi; Pon, Cynthia L; Rimsky, Sylvie; Stella, Stefano; Babu, M Madan; Travers, Andrew

    2007-01-01

    The global transcriptional regulator H-NS selectively silences bacterial genes associated with pathogenicity and responses to environmental insults. Although there is ample evidence that H-NS binds preferentially to DNA containing curved regions, we show here that a major basis for this selectivity is the presence of a conserved sequence motif in H-NS target transcriptons. We further show that there is a strong tendency for the H-NS binding sites to be clustered, both within operons and in genes contained in the pathogenicity-associated islands. In accordance with previously published findings, we show that these motifs occur in AT-rich regions of DNA. On the basis of these observations, we propose that H-NS silences extensive regions of the bacterial chromosome by binding first to nucleating high-affinity sites and then spreading along AT-rich DNA. This spreading would be reinforced by the frequent occurrence of the motif in such regions. Our findings suggest that such an organization enables the silencing of extensive regions of the genetic material, thereby providing a coherent framework that unifies studies on the H-NS protein and a concrete molecular basis for the genetic control of H-NS transcriptional silencing.

  3. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.

    Science.gov (United States)

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J

    2016-06-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity.

  4. A soluble form of the high affinity IgE receptor, Fc-epsilon-RI, circulates in human serum.

    Directory of Open Access Journals (Sweden)

    Eleonora Dehlink

    Full Text Available Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI, the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ∼40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum.

  5. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle.

    Science.gov (United States)

    Redhu, Naresh Singh; Gounni, Abdelilah S

    2013-02-01

    The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.

  6. Cubilin, a High Affinity Receptor for Fibroblast Growth Factor 8, Is Required for Cell Survival in the Developing Vertebrate Head*

    Science.gov (United States)

    Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P.; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E.; Kozyraki, Renata

    2013-01-01

    Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity. PMID:23592779

  7. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head.

    Science.gov (United States)

    Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E; Kozyraki, Renata

    2013-06-07

    Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.

  8. The High Affinity IgE Receptor (FcεRI as a Target for Anti-allergic Agents

    Directory of Open Access Journals (Sweden)

    Kyoko Takahashi

    2005-01-01

    Full Text Available Prevention of the effector cell activation via high affinity IgE receptor (FcεRI is thought to be a straightforward strategy for suppressing the allergic reaction. Among the numerous methods to prevent the activation through FcεRI, three versions are described in this article. The first and second ideas involve inhibition of binding between FcεRI and IgE with a soluble form of the FceRI α chain and a humanized antibody directed against the a chain, respectively. Both of these paths involve suppression the histamine release from human peripheral blood basophils in vitro. They also inhibited the allergic reaction in vivo. The soluble α inhibited the anaphylactic reaction in rodents and the Fab fragments of the humanized anti-FcεRI α chain antibody suppressed the dermal response in rhesus monkeys. The third idea involves repression of FcεRI expression by suppressing the transcription of the genes encoding the subunits of FceRI. Although no plausible candidate molecule for actualizing this idea can be identified at present, further analyses of the transcriptional regulatory mechanisms in the human FcεRI α and β chain genes will lead to the discovery of novel targets for developing anti-allergic agents.

  9. ZK91587: a novel synthetic antimineralocorticoid displays high affinity for corticosterone (type I) receptors in the rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto, W.; de Kloet, E.R.

    1988-01-01

    In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15..beta.., 16..beta..b-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of (/sup 3/H) ZK91587 to the total hippocampal coritcosteroid receptor sites with high affinity, and low capacity. When 100-fold excess RU28362 was included simultaneously with (/sup 3/H) ZK91587, the labelled steroid binds with the same affinity and capacity. Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) > cortisol (F); Type II: B > F >>> ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat. The steroid dissociates following a one slope pattern, indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like receptor.

  10. Synthesis of tetravalent LacNAc-glycoclusters as high-affinity cross-linker against Erythrina cristagalli agglutinin.

    Science.gov (United States)

    Ogata, Makoto; Chuma, Yasushi; Yasumoto, Yoshinori; Onoda, Takashi; Umemura, Myco; Usui, Taichi; Park, Enoch Y

    2016-01-01

    Four kinds of tetravalent double-headed glycoclusters [(LacNAc)4-DHGs] were designed with linkers of varying lengths consisting of alkanedioic carboxyamido groups (C6, C12, C18 and C24) between two bi-antennary LacNAc-glycosides. These glycoclusters served as high-affinity cross-linking ligands for the LacNAc-binding lectin Erythrina cristagalli agglutinin (ECA). The binding activity and cross-linking between each ligand and ECA were characterized by a hemagglutination inhibition (HI) assay, isothermal titration calorimetry (ITC), a quantitative precipitation assay and dynamic light scattering (DLS). For the precipitation assay and DLS measurement, the synthesized (LacNAc)4-DHGs were found to be capable of binding and precipitating the ECA as multivalent ligands. ITC analysis indicated the binding of (LacNAc)4-DHGs was driven by a favorable enthalpy change. Furthermore, the entropy penalty from binding (LacNAc)4-DHGs clearly decreased in a spacer length-dependent manner. The binding affinities of flexible (LacNAc)4-DHGs (C18 and C24) with long spacers were found to be more favorable than those of the clusters having short spacers (C6 and C12). These results were supported by molecular dynamics simulations with explicit water molecules for the tetravalent glycoclusters with ECA. We concluded that the subtle modification in the epitope-presenting scaffolds exerts the significant effect in the recognition efficiency involved in the LacNAc moieties by ECA.

  11. A Class of High-affinity Bicyclooctane G551D-CFTR Activators Identified by High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-yan; ZHAO Lu; LIU Yan-li; XU Li-na; SHANG De-jing; YANG Hong

    2004-01-01

    The glycine-to-aspartic acid missense mutation at the codon 551(G551D) of the cystic fibrosis transmembrane conductance regulator(CFTR) is one of the five most frequent cystic fibrosis(CF) mutations associated with a severe CF phenotype. To explore the feasibility of pharmacological correction of disrupted activation of CFTR chloride channel caused by G551D mutation, we developed a halide-sensitive fluorescence miniassay for G551D-CFTR in Fisher rat thyroid(FRT) epithelial cells for the discovery of novel activators of G551D-CFTR. A class of bicyclooctane small molecule compounds that efficiently stimulate G551D-CFTR chloride channel activity was identified by high throughput screening via the FRT cell-based assay. This class of compounds selectively activates G551D-CFTR with a high affinity, whereas little effect of the compounds on wildtype CFTR can be seen. The discovery of a class of bicyclooctane G551D-CFTR activators will permit the analysis of structure-activity relationship of the compounds to identify ideal leads for in vivo therapeutic studies.

  12. VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Barelle

    2015-09-01

    Full Text Available At 420 million years, the variable domain of New Antigen Receptors or VNARs are undoubtedly the oldest (and smallest antigen binding single domains identified in the vertebrate kingdom. Their role as an integral part of the adaptive immune system of sharks has been well established and has served to provide a greater understanding of the evolution of humoral immunity; their cellular components and processes as well as the underlying genetic organization and molecular control mechanisms. Intriguingly, unlike the variable domain of the camelid heavy chain antibodies or VHH, VNARs do not conform to all of the characteristic properties of classical antibodies with an ancestral origin that clearly distinguishes them from true immunoglobulin antibodies. However, this uniqueness of their origin only adds to their potential as next generation therapeutic biologics with their structural and functional attributes and commercial freedom all enhancing their profile and current success. In fact their small size, remarkable stability, molecular flexibility and solubility, together with their high affinity and selectivity for target, all reinforce the potential of these domains as drug candidates. The purpose of this review is to provide an overview of the existing basic biology of these unique domains, to highlight the drug-like properties of VNARs and describe current progress in their journey towards the clinic.

  13. ZipA binds to FtsZ with high affinity and enhances the stability of FtsZ protofilaments.

    Directory of Open Access Journals (Sweden)

    Anuradha Kuchibhatla

    Full Text Available A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0 pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.

  14. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of [alpha]- and PPII-helices

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.; Robinette, Rebekah A.; Crowley, Paula J.; Michalek, Suzanne; Brady, L. Jeannine; Deivanayagam, Champion (Cornell); (UAB); (Florida)

    2010-08-18

    Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{sub 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.

  15. Copper hypersensitivity.

    Science.gov (United States)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  16. Relative contribution of CTR1 and DMT1 in copper transport by the blood–CSF barrier: Implication in manganese-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Gang [School of Health Sciences, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an, Shanxi 710032 (China); Chen, Jingyuan [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an, Shanxi 710032 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, Indiana 47907 (United States)

    2012-05-01

    The homeostasis of copper (Cu) in the cerebrospinal fluid (CSF) is partially regulated by the Cu transporter-1 (CTR1) and divalent metal transporter-1 (DMT1) at the blood–CSF barrier (BCB) in the choroid plexus. Data from human and animal studies suggest an increased Cu concentration in blood, CSF, and brains following in vivo manganese (Mn) exposure. This study was designed to investigate the relative role of CTR1 and DMT1 in Cu transport under normal or Mn-exposed conditions using an immortalized choroidal Z310 cell line. Mn exposure in vitro resulted in an increased cellular {sup 64}Cu uptake and the up-regulation of both CTR1 and DMT1. Knocking down CTR1 by siRNA counteracted the Mn-induced increase of {sup 64}Cu uptake, while knocking down DMT1 siRNA resulted in an increased cellular {sup 64}Cu uptake in Mn-exposed cells. To distinguish the roles of CTR1 and DMT1 in Cu transport, the Z310 cell-based tetracycline (Tet)-inducible CTR1 and DMT1 expression cell lines were developed, namely iZCTR1 and iZDMT1 cells, respectively. In iZCTR1 cells, Tet induction led to a robust increase (25 fold) of {sup 64}Cu uptake with the time course corresponding to the increased CTR1. Induction of DMT1 by Tet in iZDMT1 cells, however, resulted in only a slight increase of {sup 64}Cu uptake in contrast to a substantial increase in DMT1 mRNA and protein expression. These data indicate that CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB in the choroid plexus. Mn-induced cellular overload of Cu at the BCB is due, primarily, to Mn-induced over-expression of CTR1. -- Highlights: ► This study compares the relative role of CTR1 and DMT1 in Cu transport by the BCB. ► Two novel tetracycline-inducible CTR1 and DMT1 expression cell lines are created. ► CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB. ► Mn-induced cellular Cu overload is due to its induction of CTR1 rather than DMT1. ► Induction of CTR1 by Mn in the BCB

  17. The Political Economy of Raw Materials Transport from Internal Periphery to Core in the Early 20th Century US: The Calumet & Hecla Copper Company’s Struggle for Market Access, 1922–39

    Directory of Open Access Journals (Sweden)

    Jonathan Leitner

    2015-08-01

    Full Text Available The Calumet & Hecla Copper Company was a firm funded by core capital, but operating in an internal periphery (Michigan’s Upper Peninsula, and eventually subject to peripheral constraints, along with the constraints of the physical environment, the physical characteristics of copper, and a concentrating industrial structure itself due largely to the physical characteristics of other types of copper mined elsewhere in the world. I focus on the firm’s efforts to maintain market access in the face of both a restructuring copper industry, driven by the coming online of much larger, lower-grade deposits that required much larger aggregations of capital to extract and process; and a restructuring transport system, driven by copper’s industrial restructuring, but also by the politics of core and periphery within the U.S., including the imperatives of transport capital that tied peripheral resources to core manufacturing industry. A number of world-systems works over the past decade have examined periphery-core resource transport, exploring its importance to historical capitalism via increasing the speed and scope of circulation, improving access to raw materials, and being a leading sector for rising hegemons, due to the ever-increasing need for raw materials entailed by economic ascent. The case examined here was part of the United States’ own core emergence and eventual hegemonic ascendance, which was largely based on its domestic raw materials and the internal transport lines that enabled core industry to gain cheap access to those resources.

  18. Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells

    KAUST Repository

    Zhao, Kui

    2015-08-27

    CuSCN is a highly transparent, highly stable, low cost and easy to solution process HTL that is proposed as a low cost replacement to existing organic and inorganic metal oxide hole transporting materials. Here, we demonstrate hybrid organic-inorganic perovskite-based p-i-n planar heterojunction solar cells using a solution-processed copper(I) thiocyanate (CuSCN) bottom hole transporting layer (HTL). CuSCN, with its high workfunction, increases the open circuit voltage (Voc) by 0.23 V to 1.06 V as compared with devices based on the well-known poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (0.83 V), resulting in a superior power conversion efficiency (PCE) of 10.8% without any notable hysteresis. Photoluminescence measurements suggest a similar efficiency of charge transfer at HTL/perovskite interface as PEDOT:PSS. However, we observe more efficient light harvesting in the presence of CuSCN at shorter wavelengths despite PEDOT:PSS being more transparent. Further investigation of the microstructure and morphology reveals differences in the crystallographic texture of the polycrystalline perovskite film, suggesting somewhat modified perovskite growth on the surface of CuSCN. The successful demonstration of the solution-processed inorganic HTL using simple and low temperature processing routes bodes well for the development of reliable and efficient flexible p-i-n perovskite modules or for integration as a front cell in hybrid tandem solar cells.

  19. Kinetic Study of Copper(II Simultaneous Extraction/Stripping from Aqueous Solutions by Bulk Liquid Membranes Using Coupled Transport Mechanisms

    Directory of Open Access Journals (Sweden)

    Loreto León

    2016-09-01

    Full Text Available Heavy metals removal/recovery from industrial wastewater has become a prime concern for both economic and environmental reasons. This paper describes a comparative kinetic study of the removal/recovery of copper(II from aqueous solutions by bulk liquid membrane using two types of coupled facilitated transport mechanisms and three carriers of different chemical nature: benzoylacetone, 8-hydroxyquinoline, and tri-n-octylamine. The results are analyzed by means of a kinetic model involving two consecutive irreversible first-order reactions (extraction and stripping. Rate constants and efficiencies of the extraction (k1, EE and the stripping (k2, SE reactions, and maximum fluxes through the membrane, were determined for the three carriers to compare their efficiency in the Cu(II removal/recovery process. Counter-facilitated transport mechanism using benzoylacetone as carrier and protons as counterions led to higher maximum flux and higher extraction and stripping efficiencies due to the higher values of both the extraction and the stripping rate constants. Acceptable linear relationships between EE and k1, and between SE and k2, were found.

  20. The Role of Transition Metal Transporters for Iron, Zinc, Manganese, and Copper in the Pathogenesis of Yersinia pestis

    Science.gov (United States)

    Perry, Robert D.; Bobrov, Alexander G.; Fetherston, Jacqueline D.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent. PMID:25891079

  1. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis.

    Science.gov (United States)

    Perry, Robert D; Bobrov, Alexander G; Fetherston, Jacqueline D

    2015-06-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.

  2. Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells.

    Science.gov (United States)

    Anderson, Shannon M; Khalil, Ashraf; Uduman, Mohamed; Hershberg, Uri; Louzoun, Yoram; Haberman, Ann M; Kleinstein, Steven H; Shlomchik, Mark J

    2009-12-01

    B lymphocytes producing high-affinity Abs are critical for protection from extracellular pathogens, such as bacteria and parasites. The process by which high-affinity B cells are selected during the immune response has never been elucidated. Although it has been shown that high-affinity cells directly outcompete low-affinity cells in the germinal center (GC), whether there are also intrinsic differences between these cells has not been addressed. It could be that higher affinity cells proliferate more rapidly or are more likely to enter cell cycle, thereby outgrowing lower affinity cells. Alternatively, higher affinity cells could be relatively more resistant to cell death in the GC. By comparing high- and low-affinity B cells for the same Ag, we show here that low-affinity cells have an intrinsically higher death rate than do cells of higher affinity, even in the absence of competition. This suggests that selection in the GC reaction is due at least in part to the control of survival of higher affinity B cells and not by a proliferative advantage conferred upon these cells compared with lower affinity B cells. Control over survival rather than proliferation of low- and high-affinity B cells in the GC allows greater diversity not only in the primary response but also in the memory response.

  3. Replacement of the Bryostatin A- and B-Pyran Rings With Phenyl Rings Leads to Loss of High Affinity Binding With PKC.

    Science.gov (United States)

    Petersen, Mark E; Kedei, Noemi; Lewin, Nancy E; Blumberg, Peter M; Keck, Gary E

    2016-10-19

    We describe a convergent synthesis of a bryostatin analogue in which the natural A- and B-ring pyrans have been replaced by phenyl rings. The new analogue exhibited PMA like behavior in cell assays, but failed to maintain high affinity binding for PKC, despite retaining an unaltered C-ring 'binding domain'.

  4. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition

    NARCIS (Netherlands)

    Khdhiri, Mondher; Hesse, Laura; Popa, Maria Elena; Quiza, Liliana; Lalonde, Isabelle; Meredith, Laura K.; Röckmann, Thomas; Constant, Philippe

    2015-01-01

    Soil-atmosphere exchange of H2 is controlled by gas diffusion and the microbial production and oxidation activities in soil. Among these parameters, the H2 oxidation activity catalyzed by soil microorganisms harboring high affinity hydrogenase is the most difficult variable to parameterize because i

  5. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole;

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human...

  6. High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in Drosophila

    NARCIS (Netherlands)

    Ramírez, Fidel; Lingg, Thomas; Toscano, Sarah; Lam, Kin Chung; Georgiev, Plamen; Chung, Ho-Ryun; Lajoie, Bryan R; de Wit, Elzo; Zhan, Ye; de Laat, Wouter; Dekker, Job; Manke, Thomas; Akhtar, Asifa

    2015-01-01

    Dosage compensation mechanisms provide a paradigm to study the contribution of chromosomal conformation toward targeting and spreading of epigenetic regulators over a specific chromosome. By using Hi-C and 4C analyses, we show that high-affinity sites (HAS), landing platforms of the male-specific le

  7. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft

    DEFF Research Database (Denmark)

    Kandra, L.; Abou Hachem, Maher; Gyemant, G.;

    2006-01-01

    as binding barriers. Barley a-amylase I mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile...

  8. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  9. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage

    DEFF Research Database (Denmark)

    Bach, Anders*; Clausen, Bettina H; Møller, Magda;

    2012-01-01

    Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors...

  10. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment.

    Science.gov (United States)

    Levay, Agata; Brenneman, Randall; Hoinka, Jan; Sant, David; Cardone, Marco; Trinchieri, Giorgio; Przytycka, Teresa M; Berezhnoy, Alexey

    2015-07-13

    Oligonucleotide aptamers represent a novel platform for creating ligands with desired specificity, and they offer many potentially significant advantages over monoclonal antibodies in terms of feasibility, cost, and clinical applicability. However, the isolation of high-affinity aptamer ligands from random oligonucleotide pools has been challenging. Although high-throughput sequencing (HTS) promises to significantly facilitate systematic evolution of ligands by exponential enrichment (SELEX) analysis, the enormous datasets generated in the process pose new challenges for identifying those rare, high-affinity aptamers present in a given pool. We show that emulsion PCR preserves library diversity, preventing the loss of rare high-affinity aptamers that are difficult to amplify. We also demonstrate the importance of using reference targets to eliminate binding candidates with reduced specificity. Using a combination of bioinformatics and functional analyses, we show that the rate of amplification is more predictive than prevalence with respect to binding affinity and that the mutational landscape within a cluster of related aptamers can guide the identification of high-affinity aptamer ligands. Finally, we demonstrate the power of this selection process for identifying cross-species aptamers that can bind human receptors and cross-react with their murine orthologs.

  11. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  12. A human β-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding

    Science.gov (United States)

    Avery, Adam W.; Crain, Jonathan; Thomas, David D.; Hays, Thomas S.

    2016-01-01

    Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein β-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of β-III-spectrin. We report that the L253P substitution in the isolated β-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 μM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P β-III-spectrin is a likely driver of neurodegeneration. PMID:26883385

  13. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application.

    Science.gov (United States)

    Gao, Shunxiang; Hu, Bo; Zheng, Xin; Cao, Ying; Liu, Dejing; Sun, Mingjuan; Jiao, Binghua; Wang, Lianghua

    2016-05-15

    Gonyautoxin 1/4 (GTX1/4) are potent marine neurotoxins with significant public health impact. However, the ethical issues and technical defects associated with the currently applied detection methods for paralytic shellfish toxin GTX1/4 are pressing further studies to develop suitable alternatives in a regulatory monitoring system. This work describes the first successful selection, optimization, and characterization of an aptamer that bind with high affinity and specificity to GTX1/4. Compared to the typical MB-SELEX, GO-SELEX, an advanced screening technology, has significant advantages for small molecular aptamer development. Furthermore, we truncated GTX1/4 aptamer and obtained the aptamer core sequence with a higher Kd of 17.7 nM. The aptamer GO18-T-d was then used to construct a label-free and real-time optical BLI aptasensor for the detection of GTX1/4. The aptasensor showed a broad detection range from 0.2 to 200 ng/mL GTX1/4 (linear range from 0.2 to 90 ng/mL), with a low detection limit of 50 pg/mL. Moreover, the aptasensor exhibited a high degree of specificity for GTX1/4 and no cross reactivity to other marine toxins. The aptasensor was then applied to the detection of GTX1/4 in spiked shellfish samples and showed a good reproducibility and stability. We believe that this novel aptasensor offers a promising alternative to traditional analytical methods for the rapid detection of the marine biotoxin GTX1/4. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of repeated nicotine exposure on high-affinity nicotinic acetylcholine receptor density in spontaneously hypertensive rats.

    Science.gov (United States)

    Hohnadel, Elizabeth J; Hernandez, Caterina M; Gearhart, Debra A; Terry, Alvin V

    Spontaneously hypertensive rats (SHRs) are often used as a model of attention deficit hyperactivity disorder (ADHD) and to investigate the effects of hypertension on cognitive function. Further, they appear to have reduced numbers of central nicotinic acetylcholine receptors (nAChRs) and, therefore, may be useful to model certain aspects of Alzheimer's disease (AD) and other forms of dementia given that a decrease in nAChRs is thought to contribute to cognitive decline in these disorders. In the present study, based on reports that chronic nicotine exposure increases nAChRs in several mammalian models, we tested the hypothesis that repeated exposures to a relatively low dose of the alkaloid would ameliorate the receptor deficits in SHR. Thus, young-adult SHRs and age-matched Wistar-Kyoto (WKY) control rats were treated with either saline or nicotine twice a day for 14 days (total daily dose = 0.7 mg/kg nicotine base) and then sacrificed. Quantitative receptor autoradiography with [125I]-IPH, an epibatidine analog, revealed: (1) that high-affinity nAChRs were higher in saline-treated WKY (control) rats compared to saline-treated SHRs in 18 of the 19 brain region measured, although statistically different only in the mediodorsal thalamic nuclei, (2) that nicotine significantly increased nAChR binding in WKY rats in six brain areas including cortical regions and the anterior thalamic nucleus, (3) that there were no cases where nicotine significantly increased nAChR binding in SHRs. These results indicate that subjects deficient in nAChRs may be less sensitive to nAChR upregulation with nicotine than normal subjects and require higher doses or longer periods of exposure.

  15. Fast-onset lidocaine block of rat NaV1.4 channels suggests involvement of a second high-affinity open state.

    Science.gov (United States)

    Gingrich, Kevin J; Wagner, Larry E

    2016-06-01

    Local anesthetics (LAs) block resting, open, and inactivated states of voltage-gated Na(+) channels where inactivated states are thought to bind with highest affinity. However, reports of fast-onset block occurring over milliseconds hint at high-affinity block of open channels. Movement of voltage-sensor domain IV-segment 4 (DIVS4) has been associated with high affinity LA block termed voltage-sensor block (VSB) that also leads to a second open state. These observations point to a second high-affinity open state that may underlie fast-onset block. To test for this state, we analyzed the modulation of Na(+) currents by lidocaine and its quaternary derivative (QX222) from heterologously expressed (Xenopus laevis oocytes) rat skeletal muscle μ1 NaV1.4 (rSkM1) with β1 (WT-β1), and a mutant form (IFM-QQQ mutation in the III-IV interdomain, QQQ) lacking fast inactivation, in combination with Markov kinetic gating models. 100 μM lidocaine induced fast-onset (τonset≈2 ms), long-lived (τrecovery≈120 ms) block of WT-β1 macroscopic currents. Lidocaine blocked single-channel and macroscopic QQQ currents in agreement with our previously described mechanism of dual, open-channel block (DOB mechanism). A DOB kinetic model reproduced lidocaine effects on QQQ currents. The DOB model was extended to include trapping fast-inactivation and activation gates, and a second open state (OS2); the latter arising from DIVS4 translocation that precedes inactivation and exhibits high-affinity, lidocaine binding (apparent Kd=25 μM) that accords with VSB (DOB-S2VSB mechanism). The DOB-S2VSB kinetic model predicted fast-onset block of WT-β1. The findings support the involvement of a second, high-affinity, open state in lidocaine modulation of Na(+) channels.

  16. 49 CFR 192.279 - Copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or... heavier wall pipe listed in Table C1 of ASME/ANSI B16.5. [Amdt. 192-62, 54 FR 5628, Feb. 6, 1989, as...

  17. Cellular copper distribution: a mechanistic systems biology approach.

    Science.gov (United States)

    Banci, Lucia; Bertini, Ivano; Cantini, Francesca; Ciofi-Baffoni, Simone

    2010-08-01

    Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.

  18. Copper homeostasis networks in the bacterium Pseudomonas aeruginosa.

    Science.gov (United States)

    Quintana, Julia; Novoa-Aponte, Lorena; Argüello, José M

    2017-07-31

    Bacterial copper (Cu(+)) homeostasis enables both precise metallation of diverse cuproproteins and control of variable metal levels. To this end, protein networks mobilize Cu(+) to cellular targets with remarkable specificity. However, the understanding of these processes is rather fragmented. Here, we use genome-wide transcriptomic analysis by RNA-Seq to characterize the response of Pseudomonas aeruginosa to external 0.5 mM CuSO4, a condition that did not generate pleiotropic effects. Pre-steady (5 min) and steady state (2 h) Cu(+) fluxes, resulted in distinct transcriptome landscapes. Cells quickly responded to Cu(2+) stress by slowing down metabolism. This was restored once steady state was reached. Specific Cu(+) homeostasis genes were strongly regulated in both conditions. Our systemwide analysis revealed induction of three Cu(+) efflux systems (a P1B-ATPase, a porin and a resistance-nodulation-division (RND) system), and of a putative Cu(+) binding periplasmic chaperone and the unusual presence of two cytoplasmic CopZ proteins. Both CopZ chaperones could bind Cu(+) with high affinity. Importantly, novel transmembrane transporters likely mediating Cu(+) influx were among those largely repressed upon Cu(+) stress. Compartmental Cu(+) levels appear independently controlled; the cytoplasmic Cu(+) sensor CueR controls cytoplasmic chaperones and plasma membrane transporters; while CopR/S responds to periplasmic Cu(+) Analysis of ΔcopR and ΔcueR mutant strains revealed a CopR regulon composed of genes involved in periplasmic Cu(+) homeostasis and its putative DNA recognition sequence. In conclusion our study established a system-wide model of a network of sensors/regulators, soluble chaperones, and influx/efflux transporters that control theCu(+) levels in P. aeruginosa compartments. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  19. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis

    Directory of Open Access Journals (Sweden)

    Elisabeth eTamayo

    2014-10-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF, belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization.

  20. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis

    Science.gov (United States)

    Tamayo, Elisabeth; Gómez-Gallego, Tamara; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization. PMID:25352857

  1. Sertraline and Its Metabolite Desmethylsertraline, but not Bupropion or Its Three Major Metabolites, Have High Affinity for P-Glycoprotein

    OpenAIRE

    Wang, Jun-Sheng; Zhu, Hao-Jie; Gibson, Bryan Bradford; Markowitz, John Seth; Donovan, Jennifer Lyn; DeVane, Carl Lindsay

    2008-01-01

    The ATP-binding cassette (ABC) transporter protein subfamily Bl line (ABCBl) transporter P-glycoprotein (P-gp) plays an important role in the blood–brain barrier limiting a broad spectrum of substrates from entering the central nervous system. In the present study, the transport activity of P-gp for sertraline, desmethylsertralin, bupropion, and the major metabolites of bupropion, threo-amino alcohol (TB), erythro-amino alchhol (EB), and hydroxy metabolite (HB) was studied using an ATPase ass...

  2. Selection and design of high affinity DNA ligands for mutant single-chain derivatives of the bacteriophage 434 repressor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Single-chain repressor RRTRES is a derivative of bacteriophage 434 repressor, which contains covalently dimerized DNA-binding domains (amino acids 1-69) of the phage 434 repressor. In this single-chain molecule, the wild type domain R is connected to the mutant domain RTRES by a recombinant linker in a head-to-tail arrangement. The DNA-contacting amino acids of RTRES at the -1, 1, 2, and 5 positions of the a3 helix are T, R, E, S respectively. By using a randomized DNA pool containing the central sequence -CATACAAGAAAGNNNNNNTTT-, a cyclic, in vitro DNA-binding site selection was performed. The selected population was cloned and the individual members were characterized by determining their binding affinities to RRTRES. The results showed that the optimal operators contained the TTAC or TTCC sequences in the underlined positions as above, and that the Kd values were in the 1×10-12 mol/L-1×10-11mol/L concentration range. Since the affinity of the natural 434 repressor to its natural operator sites is in the 1×10-9 mol/L range, the observed binding affinity increase is remarkable. It was also found that binding affinity was strongly affected by the flanking bases of the optimal tetramer binding sites, especially by the base at the 5′ position. We constructed a new homodimeric single-chain repressor RTRESRTRES and its DNA-binding specificity was tested by using a series of new operators designed according to the recog-nition properties previously determined for the RTRES domain. These operators containing the con-sensus sequence GTAAGAAARNTTACN or GGAAGAAARNTTCCN (R is A or G) were recognized by RTRESRTRES specifically, and with high binding affinity. Thus, by using a combination of random selection and rational design principles, we have discovered novel, high affinity protein-DNA inter-actions with new specificity. This method can potentially be used to obtain new binding specificity for other DNA-binding proteins.

  3. BDNF Binds Its Pro-Peptide with High Affinity and the Common Val66Met Polymorphism Attenuates the Interaction.

    Science.gov (United States)

    Uegaki, Koichi; Kumanogoh, Haruko; Mizui, Toshiyuki; Hirokawa, Takatsugu; Ishikawa, Yasuyuki; Kojima, Masami

    2017-05-12

    Most growth factors are initially synthesized as precursors then cleaved into bioactive mature domains and pro-domains, but the biological roles of pro-domains are poorly understood. In the present study, we investigated the pro-domain (or pro-peptide) of brain-derived neurotrophic factor (BDNF), which promotes neuronal survival, differentiation and synaptic plasticity. The BDNF pro-peptide is a post-processing product of the precursor BDNF. Using surface plasmon resonance and biochemical experiments, we first demonstrated that the BDNF pro-peptide binds to mature BDNF with high affinity, but not other neurotrophins. This interaction was more enhanced at acidic pH than at neutral pH, suggesting that the binding is significant in intracellular compartments such as trafficking vesicles rather than the extracellular space. The common Val66Met BDNF polymorphism results in a valine instead of a methionine in the pro-domain, which affects human brain functions and the activity-dependent secretion of BDNF. We investigated the influence of this variation on the interaction between BDNF and the pro-peptide. Interestingly, the Val66Met polymorphism stabilized the heterodimeric complex of BDNF and its pro-peptide. Furthermore, compared with the Val-containing pro-peptide, the complex with the Met-type pro-peptide was more stable at both acidic and neutral pH, suggesting that the Val66Met BDNF polymorphism forms a more stable complex. A computational modeling provided an interpretation to the role of the Val66Met mutation in the interaction of BDNF and its pro-peptide. Lastly, we performed electrophysiological experiments, which indicated that the BDNF pro-peptide, when pre-incubated with BDNF, attenuated the ability of BDNF to inhibit hippocampal long-term depression (LTD), suggesting a possibility that the BDNF pro-peptide may interact directly with BDNF and thereby inhibit its availability. It was previously reported that the BDNF pro-domain exerts a chaperone-like function

  4. Human Eosinophils Express the High Affinity IgE Receptor, FcεRI, in Bullous Pemphigoid

    Science.gov (United States)

    Messingham, Kelly N.; Holahan, Heather M.; Frydman, Alexandra S.; Fullenkamp, Colleen; Srikantha, Rupasree; Fairley, Janet A.

    2014-01-01

    Bullous pemphigoid (BP) is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen). Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1) To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2) To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16) with total IgE≥400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ) of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils. PMID:25255430

  5. Human eosinophils express the high affinity IgE receptor, FcεRI, in bullous pemphigoid.

    Directory of Open Access Journals (Sweden)

    Kelly N Messingham

    Full Text Available Bullous pemphigoid (BP is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen. Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1 To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2 To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16 with total IgE ≥ 400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils.

  6. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    Science.gov (United States)

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  7. A tRNA body with high affinity for EF-Tu hastens ribosomal incorporation of unnatural amino acids.

    Science.gov (United States)

    Ieong, Ka-Weng; Pavlov, Michael Y; Kwiatkowski, Marek; Ehrenberg, Måns; Forster, Anthony C

    2014-05-01

    There is evidence that tRNA bodies have evolved to reduce differences between aminoacyl-tRNAs in their affinity to EF-Tu. Here, we study the kinetics of incorporation of L-amino acids (AAs) Phe, Ala allyl-glycine (aG), methyl-serine (mS), and biotinyl-lysine (bK) using a tRNA(Ala)-based body (tRNA(AlaB)) with a high affinity for EF-Tu. Results are compared with previous data on the kinetics of incorporation of the same AAs using a tRNA(PheB) body with a comparatively low affinity for EF-Tu. All incorporations exhibited fast and slow phases, reflecting the equilibrium fraction of AA-tRNA in active ternary complex with EF-Tu:GTP before the incorporation reaction. Increasing the concentration of EF-Tu increased the amplitude of the fast phase and left its rate unaltered. This allowed estimation of the affinity of each AA-tRNA to EF-Tu:GTP during translation, showing about a 10-fold higher EF-Tu affinity for AA-tRNAs formed from the tRNA(AlaB) body than from the tRNA(PheB) body. At ∼1 µM EF-Tu, tRNA(AlaB) conferred considerably faster incorporation kinetics than tRNA(PheB), especially in the case of the bulky bK. In contrast, the swap to the tRNA(AlaB) body did not increase the fast phase fraction of N-methyl-Phe incorporation, suggesting that the slow incorporation of N-methyl-Phe had a different cause than low EF-Tu:GTP affinity. The total time for AA-tRNA release from EF-Tu:GDP, accommodation, and peptidyl transfer on the ribosome was similar for the tRNA(AlaB) and tRNA(PheB) bodies. We conclude that a tRNA body with high EF-Tu affinity can greatly improve incorporation of unnatural AAs in a potentially generalizable manner.

  8. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells

    Directory of Open Access Journals (Sweden)

    Reedijk Jan

    2008-06-01

    Full Text Available Abstract Background Copper homeostasis proteins ATP7A and ATP7B are assumed to be involved in the intracellular transport of cisplatin. The aim of the present study was to assess the relevance of sub cellular localisation of these transporters for acquired cisplatin resistance in vitro. For this purpose, localisation of ATP7A and ATP7B in A2780 human ovarian carcinoma cells and their cisplatin-resistant variant, A2780cis, was investigated. Methods Sub cellular localisation of ATP7A and ATP7B in sensitive and resistant cells was investigated using confocal fluorescence microscopy after immunohistochemical staining. Co-localisation experiments with a cisplatin analogue modified with a carboxyfluorescein-diacetate residue were performed. Cytotoxicity of the fluorescent cisplatin analogue in A2780 and A2780cis cells was determined using an MTT-based assay. The significance of differences was analysed using Student's t test or Mann-Whitney test as appropriate, p values of Results In the sensitive cells, both transporters are mainly localised in the trans-Golgi network, whereas they are sequestrated in more peripherally located vesicles in the resistant cells. Altered localisation of ATP7A and ATP7B in A2780cis cells is likely to be a consequence of major abnormalities in intracellular protein trafficking related to a reduced lysosomal compartment in this cell line. Changes in sub cellular localisation of ATP7A and ATP7B may facilitate sequestration of cisplatin in the vesicular structures of A2780cis cells, which may prevent drug binding to genomic DNA and thereby contribute to cisplatin resistance. Conclusion Our results indicate that alterations in sub cellular localisation of transport proteins may contribute to cisplatin resistance in vitro. Investigation of intracellular protein localisation in primary tumour cell cultures and tumour tissues may help to develop markers of clinically relevant cisplatin resistance. Detection of resistant tumours

  9. Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability.

    Science.gov (United States)

    Jiang, Xiaoqing; Yu, Ze; Lai, Jianbo; Zhang, Yuchen; Hu, Maowei; Lei, Ning; Wang, Dongping; Yang, Xichuan; Sun, Licheng

    2017-04-22

    In high-performance perovskite solar cells (PSCs), hole-transporting materials (HTMs) play an important role in extracting and transporting the photo-generated holes from the perovskite absorber to the cathode, thus reducing unwanted recombination losses and enhancing the photovoltaic performance. Herein, solution-processable tetra-4-(bis(4-tert-butylphenyl)amino)phenoxy-substituted copper phthalocyanine (CuPc-OTPAtBu) was synthesized and explored as a HTM in PSCs. The optical, electrochemical, and thermal properties were fully characterized for this organic metal complex. The photovoltaic performance of PSCs employing this CuPc derivative as a HTM was further investigated, in combination with a mixed-ion perovskite as a light absorber and a low-cost vacuum-free carbon as cathode. The optimized devices [doped with 6 % (w/w) tetrafluoro-tetracyano-quinodimethane (F4TCNQ)] showed a decent power conversion efficiency of 15.0 %, with an open-circuit voltage of 1.01 V, a short-circuit current density of 21.9 mA cm(-2) , and a fill factor of 0.68. Notably, the PSC devices studied also exhibited excellent long-term durability under ambient condition for 720 h, mainly owing to the introduction of the hydrophobic HTM interlayer, which prevents moisture penetration into the perovskite film. The present work emphasizes that solution-processable CuPc holds a great promise as a class of alternative HTMs that can be further explored for efficient and stable PSCs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CELLULAR MULTITASKING: THE DUAL ROLE OF HUMAN CU-ATPASES IN COFACTOR DELIVERY AND INTRACELLULAR COPPER BALANCE

    OpenAIRE

    Lutsenko, Svetlana; Gupta, Arnab; Burkhead, Jason L.; Zuzel, Vesna

    2008-01-01

    The human copper-transporting ATPases (Cu-ATPases) are essential for dietary copper uptake, normal development and function of the CNS, and regulation of copper homeostasis in the body. In a cell, Cu-ATPases maintain the intracellular concentration of copper by transporting copper into intracellular exocytic vesicles. In addition, these P-type ATPases mediate delivery of copper to copper-dependent enzymes in the secretory pathway and in specialized cell compartments such as secretory granules...

  11. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin.

    Science.gov (United States)

    Schalch, Thomas; Job, Godwin; Noffsinger, Victoria J; Shanker, Sreenath; Kuscu, Canan; Joshua-Tor, Leemor; Partridge, Janet F

    2009-04-10

    In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.

  12. N- and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor

    DEFF Research Database (Denmark)

    Hansen, L S; Sparre-Ulrich, A H; Christensen, M.

    2016-01-01

    BACKGROUND AND PURPOSE: Glucose-dependent insulinotropic polypeptide (GIP) impacts lipid, bone, and glucose homeostasis. The GIP receptor belongs to G protein-coupled receptor family B1 and signals through GαS. High affinity ligands for in vivo use are needed to elucidate GIP's physiological...... functions and pharmacological potential. GIP(1-30)NH2 is a naturally occurring truncation of GIP(1-42). Here we characterize eight N-terminal trrncations of human GIP(1-30)NH2 : GIP(2- to 9-30)NH2 . EXPERIMENTAL APPROACH: COS-7 cells were transiently transfected with the human GIP receptor and assessed......, but superior antagonist GIP(3-30)NH2 , that together with GIP(5-30)NH2 were high-affinity competitive antagonist and thus may be suitable tool compounds for basic GIP research and future pharmacological interventions....

  13. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  14. The S2 Cu(I) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance†

    Science.gov (United States)

    Fu, Yue; Bruce, Kevin E.; Wu, Hongwei; Giedroc, David P.

    2015-01-01

    Pathogenic bacteria have evolved copper homeostasis and resistance systems for fighting copper toxicity imposed by the human immune system. Streptococcus pneumoniae is a respiratory pathogen that encodes an obligatorily membrane-anchored Cu(I) binding protein, CupA, and a P1B-type ATPase efflux transporter, CopA. The soluble, cytoplasmic domain of CupA (sCupA) contains a binuclear Cu(I) cluster consisting of S1 and S2 Cu(I) ions. The NMR solution structure of apo-sCupA reveals the same cupredoxin fold of Cu2-sCupA, except that the Cu(I) binding loop (residues 112–116, harboring S2 Cu ligands M113 and M115) is highly dynamic as documented by both backbone and side chain methionine methyl order parameters. In contrast to the more solvent exposed, lower affinity S2 Cu site, the high affinity S1 Cu-coordinating cysteines (C74, C111) are pre-organized in the apo-sCupA structure. Biological experiments reveal that the S1 site is largely dispensable for cellular Cu resistance and may be involved in buffering low cytoplasmic Cu(I). In contrast, the S2 site is essential for Cu resistance. Expression of a chimeric CopZ chaperone fused to the CupA transmembrane helix does not protect S. pneumoniae from copper toxicity and substitution of a predicted cytoplasm-facing Cu(I) entry metal-binding site (MBS) on CopA also gives rise to a Cu-sensitivity phenotype. These findings suggest that CupA and CopA may interact and filling of the CupA S2 site with Cu(I) results in stimulation of cellular copper efflux by CopA. PMID:26346139

  15. Identification and Characterization of Glucosinolate Transporters

    DEFF Research Database (Denmark)

    Jørgensen, Morten Egevang

    of plant defence, and the distribution pattern reflects the individual contributions from biosynthesis, transport and turnover. However, little is known about how and to what extent transport processes contribute to establishing these distribution patterns. With the recent identification of AtGTR1 and At......GTR2, two high-affinity glucosinolate transporters, a new molecular tool was provided to study glucosinlate transport in A. thaliana. This thesis contains 6 papers where transporter proteins are identified and characterized biochemically and genetically....

  16. Structures of the Ultra-High-Affinity Protein-Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa.

    Science.gov (United States)

    Joshi, Amar; Grinter, Rhys; Josts, Inokentijs; Chen, Sabrina; Wojdyla, Justyna A; Lowe, Edward D; Kaminska, Renata; Sharp, Connor; McCaughey, Laura; Roszak, Aleksander W; Cogdell, Richard J; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2015-08-28

    How ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase-Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase-ImS2 and pyocin AP41 DNase-ImAP41. These structures represent divergent DNase-Im subfamilies and are important in extending our understanding of protein-protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase-Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase-Immunity pairs that appear to underpin the split of this family into two distinct groups.

  17. Structures of the Ultra-High-Affinity Protein–Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa

    Science.gov (United States)

    Joshi, Amar; Grinter, Rhys; Josts, Inokentijs; Chen, Sabrina; Wojdyla, Justyna A.; Lowe, Edward D.; Kaminska, Renata; Sharp, Connor; McCaughey, Laura; Roszak, Aleksander W.; Cogdell, Richard J.; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2015-01-01

    How ultra-high-affinity protein–protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase–Im interaction is a model system for the study of high-affinity protein–protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase–Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase–ImS2 and pyocin AP41 DNase–ImAP41. These structures represent divergent DNase–Im subfamilies and are important in extending our understanding of protein–protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase–Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase–Immunity pairs that appear to underpin the split of this family into two distinct groups. PMID:26215615

  18. Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin.

    Science.gov (United States)

    Brophy, Megan Brunjes; Nakashige, Toshiki G; Gaillard, Aleth; Nolan, Elizabeth M

    2013-11-27

    Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96-114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (Damo, S. M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103-105 to 104-106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity.

  19. The copper-transporting capacity of ATP7A mutants associated with Menkes disease is ameliorated by COMMD1 as a result of improved protein expression

    NARCIS (Netherlands)

    Vonk, Willianne I. M.; de Bie, Prim; Wichers, Catharina G. K.; van den Berghe, Peter V. E.; van der Plaats, Rozemarijn; Berger, Ruud; Wijmenga, Cisca; Klomp, Leo W. J.; van de Sluis, Bart

    2012-01-01

    Menkes disease (MD) is an X-linked recessive disorder characterized by copper deficiency resulting in a diminished function of copper-dependent enzymes. Most MD patients die in early childhood, although mild forms of MD have also been described. A diversity of mutations in the gene encoding of the G

  20. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones

    Science.gov (United States)

    Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till FM; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J

    2015-01-01

    Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes. DOI: http://dx.doi.org/10.7554/eLife.06935.001 PMID:26274777

  1. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.

    Science.gov (United States)

    Burel, Sebastien A; Hart, Christopher E; Cauntay, Patrick; Hsiao, Jill; Machemer, Todd; Katz, Melanie; Watt, Andy; Bui, Huynh-Hoa; Younis, Husam; Sabripour, Mahyar; Freier, Susan M; Hung, Gene; Dan, Amy; Prakash, T P; Seth, Punit P; Swayze, Eric E; Bennett, C Frank; Crooke, Stanley T; Henry, Scott P

    2016-03-18

    High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    Science.gov (United States)

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  3. Existence of an Endogenous Glutamate and Aspartate Transporter in Chinese Hamster Ovary Cells

    Institute of Scientific and Technical Information of China (English)

    Xunhe JI; Yuhua JIN; Yaoyue CHEN; Chongyong LI; Lihe GUO

    2007-01-01

    Chinese hamster ovary cells show endogenous high-affinity Na+-dependent glutamate transport activity. This transport activity is kinetically similar to a glutamate transporter family strategically expressed in the central nervous system and is pharmacologically unlike glutamate transporter-1 or excitatory amino acid carrier 1. The cDNA of a glutamate/aspartate transporter (GLAST)-like transporter was obtained and analyzed. The deduced amino acid sequence showed high similarity to human, mouse, and rat GLAST. We concluded that a GLAST-like glutamate transporter exists in Chinese hamster ovary cells that might confer the endogenous high-affinity Na+-dependent glutamate transport activity evident in these cells.

  4. Oxidation Mechanism of Copper Selenide

    Science.gov (United States)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  5. Neomycin-neomycin dimer: an all-carbohydrate scaffold with high affinity for AT-rich DNA duplexes.

    Science.gov (United States)

    Kumar, Sunil; Xue, Liang; Arya, Dev P

    2011-05-18

    A dimeric neomycin-neomycin conjugate 3 with a flexible linker, 2,2'-(ethylenedioxy)bis(ethylamine), has been synthesized and characterized. Dimer 3 can selectively bind to AT-rich DNA duplexes with high affinity. Biophysical studies have been performed between 3 and different nucleic acids with varying base composition and conformation by using ITC (isothermal calorimetry), CD (circular dichroism), FID (fluorescent intercalator displacement), and UV (ultraviolet) thermal denaturation experiments. A few conclusions can be drawn from this study: (1) FID assay with 3 and polynucleotides demonstrates the preference of 3 toward AT-rich sequences over GC-rich sequences. (2) FID assay and UV thermal denaturation experiments show that 3 has a higher affinity for the poly(dA)·poly(dT) DNA duplex than for the poly(dA)·2poly(dT) DNA triplex. Contrary to neomycin, 3 destabilizes poly(dA)·2poly(dT) triplex but stabilizes poly(dA)·poly(dT) duplex, suggesting the major groove as the binding site. (3) UV thermal denaturation studies and ITC experiments show that 3 stabilizes continuous AT-tract DNA better than DNA duplexes with alternating AT bases. (4) CD and FID titration studies show a DNA binding site size of 10-12 base pairs/drug, depending upon the structure/sequence of the duplex for AT-rich DNA duplexes. (5) FID and ITC titration between 3 and an intramolecular DNA duplex [d(5'-A(12)-x-T(12)-3'), x = hexaethylene glycol linker] results in a binding stoichiometry of 1:1 with a binding constant ∼10(8) M(-1) at 100 mM KCl. (6) FID assay using 3 and 512 hairpin DNA sequences that vary in their AT base content and placement also show a higher binding selectivity of 3 toward continuous AT-rich than toward DNA duplexes with alternate AT base pairs. (7) Salt-dependent studies indicate the formation of three ion pairs during binding of the DNA duplex d[5'-A(12)-x-T(12)-3'] and 3. (8) ITC-derived binding constants between 3 and DNA duplexes have the following order: AT

  6. Temperature and force dependence of electron transport via the copper protein azurin: conductive probe atomic force microscopy measurements

    CERN Document Server

    Li, Wenjie; Amdursky, Nadav; Cohen, Sidney R; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2012-01-01

    We report conducting probe atomic force microscopy (CP-AFM) measurements of electron transport (ETp), as a function of temperature and force, through monolayers of holo-azurin (holo-Az) and Cu-depleted Az (apo-Az) that retain only their tightly bound water, immobilized on gold surfaces. The changes in CP-AFM current-voltage (I-V) curves for holo-Az and apo-Az, measured between 250 - 370K, are strikingly different. While ETp across holo-Az at low force (6 nN) is temperature-independent over the whole examined range, ETp across apo-Az is thermally activated, with calculated activation energy of 600\\pm100 meV. These results confirm our results of macroscopic contact area ETp measurements via holo- and apo-Az, as a function of temperature, where the crucial role of the Cu redox centre has been observed. While increasing the applied tip force from 6 to 12 nN did not significantly change the temperature dependence of ETp via apo-Az, ETp via holo-Az changed qualitatively, namely from temperature-independent at 6 nN ...

  7. Electroleaching of Copper Waste with Recovery of Copper by Electrodialysis

    Directory of Open Access Journals (Sweden)

    Nuñez P.

    2013-04-01

    Full Text Available A new process to leach and recover copper from solid waste using electric fields was designed. The leaching with electro migration is presented as an alternative to traditional leaching. Preliminary data indicate that the copper ion migration is facilitated by using the electrical potential difference; therefore applying a potential difference in the processes of leaching facilitates the removal of copper. This is especially useful when mineral concentrations are very low. Different phenomena associated with transport of copper in solution are studied to generate a model able predict the state of the copper ion concentration in time. A kinetic model for the process was developed and fitted very well the experimental data.

  8. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    Science.gov (United States)

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  9. Iron, copper, zinc and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    Directory of Open Access Journals (Sweden)

    Gaëlle ePorcheron

    2013-12-01

    Full Text Available For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.

  10. mRNA Expression and activity of ion-transporting proteins in gills of the blue crab Callinectes sapidus: effects of waterborne copper.

    Science.gov (United States)

    Martins, Camila M G; Almeida, Daniela Volcan; Marins, Luis Fernando Fernandes; Bianchini, Adalto

    2011-01-01

    Waterborne Cu effects on the transcription of genes encoding ion-transporting proteins and the activities of these proteins were evaluated in gills of the blue crab Callinectes sapidus acclimated to diluted (2‰) and full (30‰) seawater. Crabs were exposed (96 h) to an environmentally relevant concentration of dissolved Cu (0.78 µM) and had their posterior (osmoregulating) gills dissected for enzymatic and molecular analysis. Endpoints analyzed were the activity of key enzymes involved in crab osmoregulation (sodium-potassium adenosine triphosphatase [Na(+)/K(+)-ATPase], hydrogen adenosine triphosphatase [H(+)-ATPase], and carbonic anhydrase [CA]) and the mRNA expression of genes encoding these enzymes and the sodium-potassium-chloride (Na(+)/K(+)/2Cl⁻) cotransporter. Copper effects were observed only in crabs acclimated to diluted seawater (hyperosmoregulating crabs) and were associated with an inhibition of the expression of mRNA of genes encoding the Na(+)/K(+)-ATPase and the Na(+)/K(+)/2Cl⁻ cotransporter. However, Cu did not affect Na(+)/K(+)-ATPase activity, indicating that the gene transcription is downregulated before a significant inhibition of the enzyme activity can be observed. This also suggests the existence of a compensatory response of this enzyme to prevent osmoregulatory disturbances after short-term exposure to environmentally relevant Cu concentrations. These findings suggest that Cu is a potential ionoregulatory toxicant in blue crabs C. sapidus acclimated to low salinity. The lack of Cu effect on blue crabs acclimated to full seawater would be due to the reduced ion uptake needed for the regulation of the hemolymph osmotic concentration in full seawater (30‰). Also, this could be explained considering the lower bioavailability of toxic Cu (free ion) associated with the higher ionic content and dissolved organic matter concentration in high salinity (30‰) than in diluted seawater (2‰). © 2010 SETAC.

  11. Selection and design of high affinity DNA ligands for mutant single-chain derivatives of the bacteriophage 434 repressor

    Institute of Scientific and Technical Information of China (English)

    LIANG; Tiebing

    2001-01-01

    ., 1996, 255: 373-386.[13]Kim, J. -S., Pabo, C. O., Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants, Proc. Natl. Acad. Sci. USA, 1998, 95: 2812-2817.[14]Wu, H., Yang, W. -P., BarbasIII, C. F., Building zinc fingers by selection: toward a therapeutic application, Proc. Natl. Acad. Sci. USA, 1995, 92: 344-348.[15]Wang, B. S., Pabo, C. O., Dimerization of zinc fingers mediated by peptides evolved in vitro from random sequences, Proc. Natl. Acad. Sci. USA, 1999, 96: 9568-9573.[16]Choo, Y., Sánchez-García, I., Klug, A., In vivo repression by a site-specific DNA-binding protein designed against an on-cogenic sequence, Nature, 1994, 372: 642-645.[17]Wolfe, S. A., Greisman, H. A., Ramm, E. I. et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code, J. Mol. Biol., 1999, 285: 1917-1934.[18]Chen, J. -Q., Pongor, S., Simoncsits, A., Recognition of DNA by single-chain derivatives of the phage 434 repressor: high affinity binding depends on both the contacted and non-contacted base pairs, Nucleic Acids Research, 1997, 25: 2047-2054.[19]Simoncsits, A., Tj?rnhammar, M. -L., Wang, S. -L. et al., Isolation of altered specificity mutants of the single-chain 434 repressor that recognize asymmetric DNA sequences containing the TTAA and TTAC subsites, Nucleic Acids Research, 1999, 27: 3474-3480.[20]Zhou, Y. -H., Busby, S., Ebright, R. H., Identification of the functional subunit of a dimeric transcription activator protein by use of oriented heterodimers, Cell, 1993, 73: 375-379.[21]Studier, F. W., Rosenberg, A. H., Dunn, J. J. et al., Use of T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol., 1990, 185: 60-89.[22]Simoncsits, A., Bristulf, J., Tj?rnhammar, M. -L. et al., Deletion mutants of human interleukin 1? with significantly re-duced agonist properties: search for agonist/ antagonist switch in ligands to the interleukin 1

  12. Copper-2 Ingestion, Plus Increased Meat Eating Leading to Increased Copper Absorption, Are Major Factors Behind the Current Epidemic of Alzheimer's Disease.

    Science.gov (United States)

    Brewer, George J

    2015-12-02

    It has become clear that copper toxicity is playing a major role in Alzheimer's disease; but why is the brain copper toxicity with cognition loss in Alzheimer's disease so much different clinically than brain copper toxicity in Wilson's disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer's is at least in part, a copper-2 toxicity disease, while Wilson's is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer's epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure.

  13. A Comparative Study of Electrolyte Flow and Slime Particle Transport in a Newly Designed Copper Electrolytic Cell and a Laboratory-Scale Conventional Electrolytic Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-08-01

    An innovative copper electrolytic cell was designed with its inlet at the cell top and its outlet near the cell bottom, in opposite to conventional electrolytic cells. It was modeled in COMSOL Multiphysics to simulate copper electrorefining process. Unlike conventional electrorefining cells, downward electrolyte flows are more dominant in the fluid flow field in this cell, which leads to faster settlement of slime particles and less contamination to the cathode. Copper concentration profiles, electrolyte flow velocity field, slime particle movements, and slime particle distributions were obtained as simulation results, which were compared with those in a laboratory-scale conventional electrolytic cell. Advantages of the newly designed electrolytic cell were found: copper ions are distributed more uniformly in the cell with a thinner diffusion layer near the cathode; stronger convection exists in the inter-electrode domain with dominant downward flows; and slime particles have larger possibilities to settle down and are less likely to reach the cathode.

  14. Urinary Copper Elevation in a Mouse Model of Wilson's Disease Is a Regulated Process to Specifically Decrease the Hepatic Copper Load

    OpenAIRE

    Gray, Lawrence W.; Fangyu Peng; Molloy, Shannon A.; Pendyala, Venkata S.; Abigael Muchenditsi; Otto Muzik; Jaekwon Lee; Kaplan, Jack H.; Svetlana Lutsenko

    2012-01-01

    Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b(-/-) mice at different stages...

  15. The competitive advantage of a dual-transporter system.

    Science.gov (United States)

    Levy, Sagi; Kafri, Moshe; Carmi, Miri; Barkai, Naama

    2011-12-09

    Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.

  16. High-affinity binding of southern African HIV type 1 subtype C envelope protein, gp120, to the CCR5 coreceptor.

    Science.gov (United States)

    Fromme, Bernhard J; Coetsee, Marla; Van Der Watt, Pauline; Chan, Mei-Chi; Sperling, Karin M; Katz, Arieh A; Flanagan, Colleen A

    2008-12-01

    HIV-1 subtype C is the fastest spreading subtype worldwide and predominantly uses the CCR5 coreceptor, showing minimal transition to the X4 phenotype. This raises the possibility that envelope proteins of HIV-1 subtype C have structural features that favor interaction with CCR5. Preference for CCR5 could arise from enhanced affinity of HIV-1 subtype C for CCR5. To test this, we have characterized the interaction of gp120 envelope proteins from HIV-1 subtype C clones with CD4 and CCR5. Recombinant gp120 proteins from isolates of HIV-1 subtypes B and C were expressed, purified, and assessed in a CD4 binding assay and a CCR5 chemokine competition binding assay. All gp120 proteins bound to CD4-expressing cells, except one, 97ZA347ts, which had Arg substituted for the Cys239 in the conserved C2 loop. Reconstitution of Cys239, using site-directed mutagenesis, restored CD4 binding, while introducing Arg or Ser into position 239 of the functional Du151 gp120 protein abrogated CD4 binding. This shows that the Cys228-Cys239 disulfide bond of gp120 is required for high-affinity binding to CD4. Recombinant gp120 proteins from two HIV-1 subtype B clones bound CCR5 in the presence of CD4, while gp120 from the X4-tropic, HxB2, clone did not bind CCR5. gp120 from two functional HIV-1 subtype C clones, Du151 and MOLE1, bound CCR5 with high affinity in the presence of CD4 and Du151 showed significant CCR5 binding in the absence of CD4. A gp120 from a nonfunctional subtype C clone had lower affinity for CCR5. These results indicate that HIV-1 subtype C proteins have high affinity for CCR5 with variable dependence on CD4.

  17. Reconstitution of high-affinity binding of a beta-scorpion toxin to neurotoxin receptor site 4 on purified sodium channels.

    Science.gov (United States)

    Thomsen, W; Martin-Eauclaire, M F; Rochat, H; Catterall, W A

    1995-09-01

    Reconstitution of purified sodium channels into phospholipid vesicles restores many aspects of sodium channel function including high-affinity neurotoxin binding and action at neurotoxin receptor sites 1-3 and 5, but neurotoxin binding and action at receptor site 4 has not previously been demonstrated in purified and reconstituted preparations. Toxin IV from the venom of the American scorpion Centruroides suffusus suffusus (Css IV), a beta-scorpion toxin, shifts the voltage dependence of sodium channel activation by binding with high affinity to neurotoxin receptor site 4. Sodium channels were purified from rat brain and reconstituted into phospholipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine (65:35). 125I-Css IV, purified by reversed-phase HPLC, bound rapidly and specifically to reconstituted sodium channels. Dissociation of the bound toxin was biphasic with half-times of 0.22 min-1 and 0.015 min-1. At equilibrium, the toxin bound to two classes of specific high-affinity sites, a variable minor class with KD of approximately 0.1 nM and a major class with a KD of approximately 5 nM. Approximately 0.8 mol 125I-Css IV was bound per mole of reconstituted, right-side-out sodium channels, as assessed from comparison of binding of saxitoxin and Css IV. Binding of Css IV was unaffected by membrane potential or by neurotoxins that bind at sites 1-3 or 5, consistent with the characteristics of binding of beta-scorpion toxins to sodium channels in cells and membrane preparations.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Mutations affecting the high affinity ATPase center of gpA, the large subunit of bacteriophage lambda terminase, inactivate the endonuclease activity of terminase.

    Science.gov (United States)

    Hwang, Y; Feiss, M

    1996-08-30

    Phage lambda terminase carries out the cos cleavage reaction that generates mature chromosomes from immature concatemeric DNA. The ATP-stimulated endonuclease activity of terminase is located in gpA, the large terminase subunit. There is a high affinity ATPase center in gpA, and a match to the conserved P-loop of known ATPases is found starting near residue 490. Changing the conserved P-loop lysine at residue 497 of gpA affects the high affinity ATPase activity of terminase. In the present work, mutations causing the gpA changes K497A and K497D were found to be lethal, and phages carrying these mutations were defective in cos cleavage, in vivo. Purified K497A and K497D enzymes cleaved cos in vitro at rates reduced from the wild-type rate by factors of 1000 and 2000, respectively. The strong defects in cos cleavage are sufficient to explain the lethality of the K497A and K497D defects. In in vitro packaging studies using mature (cleaved) phage DNA, the K497A enzyme was indistinguishable from the wild-type enzyme, and the K497D enzyme showed a mild packaging defect under limiting terminase conditions. In a purified DNA packaging system, the wild-type and K497D enzymes showed similar packaging activities that were stimulated to half-maximal levels at about 3 microM ATP, indicating that the K497D change does not affect DNA translocation. In sum, the work indicates