WorldWideScience

Sample records for high-affinity binding targets

  1. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    Science.gov (United States)

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  2. GHB receptor targets in the CNS: Focus on high-affinity binding sites

    DEFF Research Database (Denmark)

    Bay, Tina; Eghorn, Laura Friis; Klein, Anders Bue;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects...

  3. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo

    National Research Council Canada - National Science Library

    Yu, Channing; Cantor, Alan B; Yang, Haidi; Browne, Carol; Wells, Richard A; Fujiwara, Yuko; Orkin, Stuart H

    2002-01-01

    .... Here we demonstrate that deletion of a high-affinity GATA-binding site in the GATA-1 promoter, an element presumed to mediate positive autoregulation of GATA-1 expression, leads to selective loss...

  4. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.

    Science.gov (United States)

    Reinstein, Oren; Yoo, Mina; Han, Chris; Palmo, Tsering; Beckham, Simone A; Wilce, Matthew C J; Johnson, Philip E

    2013-12-03

    The cocaine-binding aptamer is unusual in that it tightly binds molecules other than the ligand it was selected for. Here, we study the interaction of the cocaine-binding aptamer with one of these off-target ligands, quinine. Isothermal titration calorimetry was used to quantify the quinine-binding affinity and thermodynamics of a set of sequence variants of the cocaine-binding aptamer. We find that the affinity of the cocaine-binding aptamer for quinine is 30-40 times stronger than it is for cocaine. Competitive-binding studies demonstrate that both quinine and cocaine bind at the same site on the aptamer. The ligand-induced structural-switching binding mechanism of an aptamer variant that contains three base pairs in stem 1 is retained with quinine as a ligand. The short stem 1 aptamer is unfolded or loosely folded in the free form and becomes folded when bound to quinine. This folding is confirmed by NMR spectroscopy and by the short stem 1 construct having a more negative change in heat capacity of quinine binding than is seen when stem 1 has six base pairs. Small-angle X-ray scattering (SAXS) studies of the free aptamer and both the quinine- and the cocaine-bound forms show that, for the long stem 1 aptamers, the three forms display similar hydrodynamic properties, and the ab initio shape reconstruction structures are very similar. For the short stem 1 aptamer there is a greater variation among the SAXS-derived ab initio shape reconstruction structures, consistent with the changes expected with its structural-switching binding mechanism.

  5. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H. (J. Plateaustraat, Gent (Belgium))

    1988-11-01

    Binding studies were performed with two {sup 125}I-labeled Bacillus thuringiensis {delta}-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One {delta}-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other {delta}-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis {delta}-endotoxins active against M. sexta compete for binding of {sup 125}I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles.

  6. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA.

    Directory of Open Access Journals (Sweden)

    Katharina E Rosenbusch

    Full Text Available Clostridium difficile is a Gram positive, anaerobic bacterium that can form highly resistant endospores. The bacterium is the causative agent of C. difficile infection (CDI, for which the symptoms can range from a mild diarrhea to potentially fatal pseudomembranous colitis and toxic megacolon. Endospore formation in Firmicutes, including C. difficile, is governed by the key regulator for sporulation, Spo0A. In Bacillus subtilis, this transcription factor is also directly or indirectly involved in various other cellular processes. Here, we report that C. difficile Spo0A shows a high degree of similarity to the well characterized B. subtilis protein and recognizes a similar binding sequence. We find that the laboratory strain C. difficile 630Δerm contains an 18bp-duplication near the DNA-binding domain compared to its ancestral strain 630. In vitro binding assays using purified C-terminal DNA binding domain of the C. difficile Spo0A protein demonstrate direct binding to DNA upstream of spo0A and sigH, early sporulation genes and several other putative targets. In vitro binding assays suggest that the gene encoding the major clostridial toxin TcdB may be a direct target of Spo0A, but supernatant derived from a spo0A negative strain was no less toxic towards Vero cells than that obtained from a wild type strain, in contrast to previous reports. These results identify for the first time direct (putative targets of the Spo0A protein in C. difficile and make a positive effect of Spo0A on production of the large clostridial toxins unlikely.

  7. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    OpenAIRE

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H. F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affin...

  8. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Directory of Open Access Journals (Sweden)

    Graham S Baldwin

    Full Text Available The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  9. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications

    Science.gov (United States)

    Imaduwage, Kasun P.; Go, Eden P.; Zhu, Zhikai; Desaire, Heather

    2016-09-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have Ki values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods.

  10. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications

    Science.gov (United States)

    Imaduwage, Kasun P.; Go, Eden P.; Zhu, Zhikai; Desaire, Heather

    2016-11-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have Ki values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods.

  11. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  12. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    Science.gov (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  13. New synthesis and tritium labeling of a selective ligand for studying high-affinity γ-hydroxybutyrate (GHB) binding sites.

    Science.gov (United States)

    Vogensen, Stine B; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H F; Clausen, Rasmus P

    2013-10-24

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [(3)H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity, and we demonstrate in vivo brain penetration. In vitro characterization of [(3)H]-1 binding shows high specificity to the high-affinity GHB binding sites.

  14. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide....... Screening of 1 against different CNS targets establishes a high selectivity, and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites....

  15. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  16. The high-affinity immunoglobulin E receptor as pharmacological target.

    Science.gov (United States)

    Blank, Ulrich; Charles, Nicolas; Benhamou, Marc

    2016-05-05

    The high-affinity receptor for immunoglobulin E is expressed mainly on mast cells and basophils, but also on neutrophils, eosinophils, platelets, monocytes, Langerhans and dendritic cells, airway smooth muscle cells and some nerve cells. Its main function is, upon its engagement by IgE and specific antigen, to trigger a powerful defense against invading pathogens and a rapid neutralization of dangerous toxic substances introduced in the body. This powerful response could be wielded against tumors. But, when control over this receptor is lost, its unchecked activation can induce an array of diseases, some of which can lead to death. In this review we will summarize the pharmacological approaches and strategies that are currently used, or under study, to harness or wield activation of this receptor for therapeutic purposes.

  17. A complex water network contributes to high-affinity binding in an antibody–antigen interface

    Directory of Open Access Journals (Sweden)

    S.F. Marino

    2016-03-01

    Full Text Available This data article presents an analysis of structural water molecules in the high affinity interaction between a potent tumor growth inhibiting antibody (fragment, J22.9-xi, and the tumor marker antigen CD269 (B cell maturation antigen, BCMA. The 1.89 Å X-ray crystal structure shows exquisite details of the binding interface between the two molecules, which comprises relatively few, mostly hydrophobic, direct contacts but many indirect interactions over solvent waters. These are partly or wholly buried in, and therefore part of, the interface. A partial description of the structure is included in an article on the tumor inhibiting effects of the antibody: “Potent anti-tumor response by targeting B cell maturation antigen (BCMA in a mouse model of multiple myeloma”, Mol. Oncol. 9 (7 (2015 pp. 1348–58.

  18. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann

    2014-01-01

    conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed......γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate...... whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...

  19. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  20. A High-Affinity Metal-Binding Peptide From Escherichia Coli Hypb

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K.C.Chan; Cao, L.; Dias, A.V.; Pickering, I.J.; George, G.N.; Zamble, D.B.

    2009-05-12

    The high-affinity nickel-binding site of the Escherichia coli [NiFe]-hydrogenase accessory protein HypB was localized to residues at the immediate N-terminus of the protein. Modification of a metal-binding fusion protein, site-directed mutagenesis experiments, and DFT calculations were used to identify the N-terminal amine as a ligand as well as the three cysteine residues in the CXXCGCXXX motif. This sequence can be removed from the protein and both a synthesized peptide and a protein fusion bind nickel with a similar affinity and the same structure as the parent metalloprotein, indicating the self-sufficiency of this high-affinity nickel-binding sequence.

  1. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

    Institute of Scientific and Technical Information of China (English)

    XIANG YongZhe; WANG Na; ZHANG Ji; LI Kun; ZHANG ZhongWei; LIN HongHui; YU XiaoQi

    2009-01-01

    A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction be-tween 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod- odecane.High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover, the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA con-densation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

  2. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod-odecane. High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover,the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA condensation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

  3. High affinity binding of (/sup 3/H)cocaine to rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    )/sup 3/H)cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in (/sup 3/H)cocaine binding. On the other hand, chronic administration of cocaine reduced (/sup 3/H)cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of (/sup 3/H)cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced (/sup 3/H)cocaine binding to liver with a different rank order of potency than their displacement of (/sup 3/H)cocaine binding to striatum. This high affinity (/sup 3/H)cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  4. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.

  5. α4βδ GABA receptors are high-affinity targets for γ-hydroxybutyric acid (GHB)

    DEFF Research Database (Denmark)

    Absalom, N.; Karim, N.; Eghorn, L.F.;

    2012-01-01

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinit...... and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism....

  6. High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Andrew V Oleinikov

    2009-04-01

    Full Text Available Plasmodium falciparum-infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLbetaC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLbetaC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2betaC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2betaC2(PF11_0521 best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLbetaC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLbetaC2 domain. DBL2betaC2(PF11_0521 binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2betaC2(PF11_0521 and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses.

  7. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  8. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    Directory of Open Access Journals (Sweden)

    Klaus B Nissen

    Full Text Available PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  9. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  10. α4βδ GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB).

    Science.gov (United States)

    Absalom, Nathan; Eghorn, Laura F; Villumsen, Inge S; Karim, Nasiara; Bay, Tina; Olsen, Jesper V; Knudsen, Gitte M; Bräuner-Osborne, Hans; Frølund, Bente; Clausen, Rasmus P; Chebib, Mary; Wellendorph, Petrine

    2012-08-14

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinity binding, we undertook photolinking studies combined with proteomic analyses and identified several GABA(A) receptor subunits as possible candidates. A subsequent functional screening of various recombinant GABA(A) receptors in Xenopus laevis oocytes using the two-electrode voltage clamp technique showed GHB to be a partial agonist at αβδ- but not αβγ-receptors, proving that the δ-subunit is essential for potency and efficacy. GHB showed preference for α4 over α(1,2,6)-subunits and preferably activated α4β1δ (EC(50) = 140 nM) over α4β(2/3)δ (EC(50) = 8.41/1.03 mM). Introduction of a mutation, α4F71L, in α4β1(δ)-receptors completely abolished GHB but not GABA function, indicating nonidentical binding sites. Radioligand binding studies using the specific GHB radioligand [(3)H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid showed a 39% reduction (P = 0.0056) in the number of binding sites in α4 KO brain tissue compared with WT controls, corroborating the direct involvement of the α4-subunit in high-affinity GHB binding. Our data link specific GHB forebrain binding sites with α4-containing GABA(A) receptors and postulate a role for extrasynaptic α4δ-containing GABA(A) receptors in GHB pharmacology and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism.

  11. Neurotensin decreases high affinity [3H]-ouabain binding to cerebral cortex membranes.

    Science.gov (United States)

    Rosin, Carina; Ordieres, María Graciela López; Arnaiz, Georgina Rodríguez de Lores

    2011-12-10

    Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.

  12. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    Energy Technology Data Exchange (ETDEWEB)

    Raza, H.; Chung, W.L.; Mukhtar, H. (Department of Dermatology, University Hospitals of Cleveland, Case Western Reserve University, OH (USA))

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  13. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    Science.gov (United States)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  14. High affinity binding site-mediated prevention of chemical absorption across the gastrointestinal tract.

    Science.gov (United States)

    Rasmussen, M V; Barker, T T; Silbart, L K

    2001-12-15

    Preventing mucosal absorption of low-molecular weight compounds such as carcinogens, toxins and drugs could help prevent many diseases. To characterize the effects of dose and timing on high-affinity binding site mediated sequestration of specific chemical ligands in the gastrointestinal tract, avidin was perorally-administered to mice either prior to or mixed with 3H-biotin. Avidin enhanced fecal 3H-biotin excretion in a dose-dependent manner, consistent with the accepted mechanism of egg white-induced biotin deficiency syndrome. Avidin administration up to 4 h before 3H-biotin administration also enhanced fecal 3H-biotin excretion. Activated charcoal (AC) reduced 3H-biotin absorption when mixed with 3H-biotin before ingestion, but was ineffective when ingested prior to 3H-biotin. These studies suggest that ingestion of high-affinity protein binding sites can establish an absorptive barrier at the gastrointestinal mucosa to prevent the uptake of unwanted low molecular-weight chemicals.

  15. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen.

    Science.gov (United States)

    Konitsiotis, Antonios D; Raynal, Nicolas; Bihan, Dominique; Hohenester, Erhard; Farndale, Richard W; Leitinger, Birgit

    2008-03-14

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.

  16. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    Science.gov (United States)

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-05

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  17. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis.

    Science.gov (United States)

    Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus

    2016-08-31

    Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E(+)) and acquire a high-affinity conformation with an 'open' headpiece (H(+)). The canonical switchblade model of integrin activation proposes that the E(+) conformation precedes H(+), and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E(-)H(+) conformation. E(-)H(+) β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation.

  18. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  19. High affinity binding of /sup 125/I-labeled mouse interferon to a specific cell surface receptor. II. Analysis of binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Aguet, M.; Blanchard, B.

    1981-12-01

    Direct ligand-binding studies with highly purified /sup 125/I-labeled virus-induced mouse interferon on mouse lymphoma L 1210 cells revealed a direct correlation of specific high-affinity binding with the biologic response to interferon. Neutralization of the antiviral effect by anti-interferon gamma globulin occurred at the same antibody concentration as the inhibition of specific binding. These results suggest that specific high-affinity binding of /sup 125/I-interferon occurred at a biologically functional interferon receptor. Competitive inhibition experiments using /sup 125/I- and /sup 127/I-labeled interferon provided strong evidence that the fraction of /sup 125/I-interferon inactivated upon labeling did not bind specifically. Scatchard analysis of the binding data yielded linear plots and thus suggested that interferon binds to homogeneous noncooperative receptor sites. In contrast to a characteristic property of several peptide hormone systems, binding of /sup 125/I-interferon to its specific receptor did not induce subsequent ligand degradation. At 37/sup o/ bound interferon was rapidly released in a biologically active form without evidence for molecular degradation. The expression of interferon receptors was not modified by treatment with interferon. Trypsin treatment of target cells and inhibition of protein synthesis abolished the specific binding of /sup 125/I-interferon. Three major molecular weight species of Newcastle disease virus-induced mouse C 243 cell interferon were isolated, separated, and identified as mouse ..cap alpha.. and ..beta.. interferons. These interferons were shown to inhibit competitively the specific binding of the highly purified labeled starting material thus providing evidence for a common receptor site for mouse interferon.

  20. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma

    Science.gov (United States)

    Zhang, Yi-Fan; Ho, Mitchell

    2016-01-01

    Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer. PMID:27667400

  1. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. at 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.

  2. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA

    DEFF Research Database (Denmark)

    Klein, A B; Bay, T; Villumsen, I S

    2016-01-01

    analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations......, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high...... density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse...

  3. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes.

    Science.gov (United States)

    Lang, Benjamin; Blot, Nicolas; Bouffartigues, Emeline; Buckle, Malcolm; Geertz, Marcel; Gualerzi, Claudio O; Mavathur, Ramesh; Muskhelishvili, Georgi; Pon, Cynthia L; Rimsky, Sylvie; Stella, Stefano; Babu, M Madan; Travers, Andrew

    2007-01-01

    The global transcriptional regulator H-NS selectively silences bacterial genes associated with pathogenicity and responses to environmental insults. Although there is ample evidence that H-NS binds preferentially to DNA containing curved regions, we show here that a major basis for this selectivity is the presence of a conserved sequence motif in H-NS target transcriptons. We further show that there is a strong tendency for the H-NS binding sites to be clustered, both within operons and in genes contained in the pathogenicity-associated islands. In accordance with previously published findings, we show that these motifs occur in AT-rich regions of DNA. On the basis of these observations, we propose that H-NS silences extensive regions of the bacterial chromosome by binding first to nucleating high-affinity sites and then spreading along AT-rich DNA. This spreading would be reinforced by the frequent occurrence of the motif in such regions. Our findings suggest that such an organization enables the silencing of extensive regions of the genetic material, thereby providing a coherent framework that unifies studies on the H-NS protein and a concrete molecular basis for the genetic control of H-NS transcriptional silencing.

  4. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Christopher J Arnusch

    Full Text Available Many cationic antimicrobial peptides (AMPs target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.

  5. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James (NIH); (Kansas); (HWMRI)

    2010-04-07

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 {angstrom} cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the 'off-target' effect of a small molecule is mediated by an MAI mechanism.

  6. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin.

    Science.gov (United States)

    Schalch, Thomas; Job, Godwin; Noffsinger, Victoria J; Shanker, Sreenath; Kuscu, Canan; Joshua-Tor, Leemor; Partridge, Janet F

    2009-04-10

    In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.

  7. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    Science.gov (United States)

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James

    2010-01-01

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 (Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 Å cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the “off-target” effect of a small molecule is mediated by an MAI mechanism. PMID:20194791

  8. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    Science.gov (United States)

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  9. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    Science.gov (United States)

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications.

  10. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin.

    Science.gov (United States)

    Ryan, Ali J; Chung, Chun-Wa; Curry, Stephen

    2011-04-18

    Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which--in drugs sites 1 and 2 on the protein--are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  11. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    Directory of Open Access Journals (Sweden)

    Chung Chun-wa

    2011-04-01

    Full Text Available Abstract Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA. It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  12. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA.

    Science.gov (United States)

    Klein, A B; Bay, T; Villumsen, I S; Falk-Petersen, C B; Marek, A; Frølund, B; Clausen, R P; Hansen, H D; Knudsen, G M; Wellendorph, P

    2016-11-01

    GHB (γ-hydroxybutyric acid) is a compound endogenous to mammalian brain with high structural resemblance to GABA. GHB possesses nanomolar-micromolar affinity for a unique population of binding sites, but the exact nature of these remains elusive. In this study we utilized the highly selective GHB analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over the commonly used radioligand (3)H-NCS-382, and thus a very suitable in vitro tool for qualitative and quantitative autoradiography of the GHB high-affinity site.

  13. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens.

    Science.gov (United States)

    Sharma, Preeti; Wang, Ningyan; Kranz, David M

    2014-01-28

    Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs), so-called because they stimulate a large fraction of an individual's T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR) on a T cell and a class II product of the major histocompatibility complex (MHC) on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V) of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1) or S. pyogenes (SpeA and SpeC) have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  14. Soluble T Cell Receptor Vβ Domains Engineered for High-Affinity Binding to Staphylococcal or Streptococcal Superantigens

    Directory of Open Access Journals (Sweden)

    Preeti Sharma

    2014-01-01

    Full Text Available Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs, so-called because they stimulate a large fraction of an individual’s T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR on a T cell and a class II product of the major histocompatibility complex (MHC on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1 or S. pyogenes (SpeA and SpeC have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  15. Novel radioiodinated {gamma}-hydroxybutyric acid analogues for radiolabeling and Photolinking of high-affinity {gamma}-hydroxybutyric acid binding sites

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Sabbatini, Paola;

    2010-01-01

    ¿-Hydroxybutyric acid (GHB) is a therapeutic drug, a drug of abuse, and an endogenous substance that binds to low- and high-affinity sites in the mammalian brain. To target the specific GHB binding sites, we have developed a (125)I-labeled GHB analog and characterized its binding in rat brain...... homogenate and slices. Our data show that [(125)I]4-hydroxy-4-[4-(2-iodobenzyloxy)phenyl]butanoate ([(125)I]BnOPh-GHB) binds to one site in rat brain cortical membranes with low nanomolar affinity (K(d), 7 nM; B(max), 61 pmol/mg protein). The binding is inhibited by GHB and selected analogs......, but not by ¿-aminobutyric acid. Autoradiography using horizontal slices from rat brain demonstrates the highest density of binding in hippocampus and cortical regions and the lowest density in the cerebellum. Altogether, the findings correlate with the labeling and brain regional distribution of high-affinity GHB sites...

  16. Novel Radioiodinated γ-Hydroxybutyric Acid Analogues for Radiolabeling and Photolinking of High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Sabbatini, Paola;

    2010-01-01

    γ-Hydroxybutyric acid (GHB) is a therapeutic drug, a drug of abuse, and an endogenous substance that binds to low- and high-affinity sites in the mammalian brain. To target the specific GHB binding sites, we have developed a 125I-labeled GHB analog and characterized its binding in rat brain...... homogenate and slices. Our data show that [125I]4-hydroxy-4-[4-(2-iodobenzyloxy)phenyl]butanoate ([125I]BnOPh-GHB) binds to one site in rat brain cortical membranes with low nanomolar affinity (Kd, 7 nM; Bmax, 61 pmol/mg protein). The binding is inhibited by GHB and selected analogs, but not by γ......-aminobutyric acid. Autoradiography using horizontal slices from rat brain demonstrates the highest density of binding in hippocampus and cortical regions and the lowest density in the cerebellum. Altogether, the findings correlate with the labeling and brain regional distribution of high-affinity GHB sites or [3H...

  17. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    DEFF Research Database (Denmark)

    Nissen, Klaus B; Kedström, Linda Maria Haugaard; Wilbek, Theis S

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95...... of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG...

  18. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate.

    Science.gov (United States)

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2016-09-01

    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  19. The High Affinity IgE Receptor (FcεRI as a Target for Anti-allergic Agents

    Directory of Open Access Journals (Sweden)

    Kyoko Takahashi

    2005-01-01

    Full Text Available Prevention of the effector cell activation via high affinity IgE receptor (FcεRI is thought to be a straightforward strategy for suppressing the allergic reaction. Among the numerous methods to prevent the activation through FcεRI, three versions are described in this article. The first and second ideas involve inhibition of binding between FcεRI and IgE with a soluble form of the FceRI α chain and a humanized antibody directed against the a chain, respectively. Both of these paths involve suppression the histamine release from human peripheral blood basophils in vitro. They also inhibited the allergic reaction in vivo. The soluble α inhibited the anaphylactic reaction in rodents and the Fab fragments of the humanized anti-FcεRI α chain antibody suppressed the dermal response in rhesus monkeys. The third idea involves repression of FcεRI expression by suppressing the transcription of the genes encoding the subunits of FceRI. Although no plausible candidate molecule for actualizing this idea can be identified at present, further analyses of the transcriptional regulatory mechanisms in the human FcεRI α and β chain genes will lead to the discovery of novel targets for developing anti-allergic agents.

  20. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Altar, C.A.; Burton, L.E.; Bennett, G.L.; Dugich-Djordjevic, M. (Genentech, Inc., South San Francisco, CA (USA))

    1991-01-01

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF.

  1. Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.

    Science.gov (United States)

    Nallapareddy, Sreedhar R; Sillanpää, Jouko; Ganesh, Vannakambadi K; Höök, Magnus; Murray, Barbara E

    2007-06-01

    Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

  2. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  3. Cyr61/CCN1 displays high-affinity binding to the somatomedin B(1-44 domain of vitronectin.

    Directory of Open Access Journals (Sweden)

    Ivo M B Francischetti

    Full Text Available BACKGROUND: Cyr61 is a member of the CCN (Cyr61, connective tissue growth, NOV family of extracellular-associated (matricellular proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP, von Willebrand factor type C (vWF, thrombospondin type 1 (TSP, and C-terminal growth factor cysteine knot (CT domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. METHODS AND FINDINGS: In this report, surface plasmon resonance (SPR experiments and solid-phase binding assays demonstrate that recombinant Cyr61 interacts with immobilized monomeric or multimeric vitronectin (VTNC with K(D in the nanomolar range. Notably, the binding site for Cyr61 was identified as the somatomedin B domain (SMTB(1-44 of VTNC, which mediates its interaction with PAI-1, uPAR, and integrin alphav beta3. Accordingly, PAI-1 outcompetes Cyr61 for binding to immobilized SMTB(1-44, and Cyr61 attenuates uPAR-mediated U937 adhesion to VTNC. In contrast, isothermal titration calorimetry shows that Cyr61 does not display high-affinity binding for SMTB(1-44 in solution. Nevertheless, competitive ELISA revealed that multimeric VTNC, heat-modified monomeric VTNC, or SMTB(1-44 at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, beta-endorphin, and other molecules. CONCLUSIONS: The finding that Cyr61 interacts with the SMTB(1-44 domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis.

  4. Viral reverse transcriptases show selective high affinity binding to DNA-DNA primer-templates that resemble the polypurine tract.

    Directory of Open Access Journals (Sweden)

    Gauri R Nair

    Full Text Available Previous results using a SELEX (Systematic Evolution of Ligands by Exponential Enrichment-based approach that selected DNA primer-template duplexes binding with high affinity to HIV reverse transcriptase (RT showed that primers mimicking the 3' end, and in particular the six nt terminal G tract, of the RNA polypurine tract (PPT; HIV PPT: 5'-AAAAGAAAAGGGGGG-3' were preferentially selected. In this report, two viral (Moloney murine leukemia virus (MuLV and avian myeloblastosis virus (AMV and one retrotransposon (Ty3 RTs were used for selection. Like HIV RT, both viral RTs selected duplexes with primer strands mimicking the G tract at the PPT 3' end (AMV PPT: 5'-AGGGAGGGGGA-3'; MuLV PPT: 5'-AGAAAAAGGGGGG-3'. In contrast, Ty3, whose PPT lacks a G tract (5'-GAGAGAGAGGAA-3' showed no selective binding to any duplex sequences. Experiments were also conducted with DNA duplexes (termed DNA PPTs mimicking the RNA PPT-DNA duplex of each virus and a control duplex with a random DNA sequence. Retroviral RTs bound with high affinity to all viral DNA PPT constructs, with HIV and MuLV RTs showing comparable binding to the counterpart DNA PPT duplexes and reduced affinity to the AMV DNA PPT. AMV RT showed similar behavior with a modest preference for its own DNA PPT. Ty3 RT showed no preferential binding for its own or any other DNA PPT and viral RTs bound the Ty3 DNA PPT with relatively low affinity. In contrast, binding affinity of HIV RT to duplexes containing the HIV RNA PPT was less dependent on the G tract, which is known to be pivotal for efficient extension. We hypothesize that the G tract on the RNA PPT helps shift the binding orientation of RT to the 3' end of the PPT where extension can occur.

  5. The binding of pentapeptides to biological and synthetic high affinity heparin.

    Science.gov (United States)

    Flengsrud, Ragnar; Antonsen, Simen Gjelseth

    2015-11-01

    Pentapeptides have been shown to bind the synthetic heparin fondaparinux (Arixtra) as well the biological heparins dalteparin (Fragmin) and salmon heparin. In contrast to heparin binding consensus sequences, the pentapeptides are acidic or neutral, with no arginine or histidine residue. The peptides showed an effect on in vitro heparin anti-factor X activity with a reduction of fondaparinux activity by 65-95%. Heparin binding was further studied by using peptide solid phase chromatography and NMR analysis.

  6. The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain.

    Science.gov (United States)

    Ryndak, Michelle B; Wang, Shuishu; Smith, Issar; Rodriguez, G Marcela

    2010-02-01

    Iron is an essential nutrient not freely available to microorganisms infecting mammals. To overcome iron deficiency, bacteria have evolved various strategies including the synthesis and secretion of high-affinity iron chelators known as siderophores. The siderophores produced and secreted by Mycobacterium tuberculosis, exomycobactins, compete for iron with host iron-binding proteins and, together with the iron-regulated ABC transporter IrtAB, are required for the survival of M. tuberculosis in iron deficient conditions and for normal replication in macrophages and in mice. This study further characterizes the role of IrtAB in M. tuberculosis iron acquisition. Our results demonstrate a role for IrtAB in iron import and show that the amino terminus domain of IrtA is a flavin-adenine dinucleotide-binding domain essential for iron acquisition. These results suggest a model in which the amino terminus of IrtA functions to couple iron transport and assimilation.

  7. The occurrence and production of avidin: a new conception of the high-affinity biotin-binding protein.

    Science.gov (United States)

    Elo, H A; Korpela, J

    1984-01-01

    The production of avidin, a high-affinity biotin-binding egg-white protein, is not restricted to the avian, amphibian and reptilian oviducts. In the acute phase of inflammation, avidin is synthesized and secreted by various injured tissues in the domestic fowl, both male and female. Also in other avian species and a lizard, injured tissues produce an avidin-like biotin-binding factor. The non-oviductal production of avidin in domestic fowl has a great variety of inducers, for example acute inflammation caused by mechanical or thermal tissue injury, septic bacterial infection and (toxic) drugs, and even retrovirus-induced cell transformation. In culture, chicken embryo fibroblasts and yolk sac macrophages synthesize and secrete avidin. Besides the albumen, avidin may act as an antibacterial protein also in the tissues.

  8. Organogel-assisted topochemical synthesis of multivalent glyco-polymer for high-affinity lectin binding.

    Science.gov (United States)

    Krishnan, Baiju P; Raghu, Sreedevi; Mukherjee, Somnath; Sureshan, Kana M

    2016-12-01

    An organogelator, 2,4-undeca-diynyl-4',6'-O-benzylidene-β-d-galactopyranoside, which aligns its diacetylene upon gelation, has been synthesized. UV irradiation of its gel resulted in topochemical polymerization of the gelator forming polydiacetylene (PDA). We have used this gel-state reaction for the synthesis of surface-immobilized multi-valent glycoclusters, which showed 1000-fold enhanced binding, compared to monomers, with various galactose-binding lectins.

  9. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  10. Further characterization of the low and high affinity binding components of the thyrotropin receptor.

    Science.gov (United States)

    McQuade, R; Thomas, C G; Nayfeh, S N

    1986-05-29

    Following cross-linking with disuccinimidyl suberate and analysis by SDS-PAGE and autoradiography, both the high- and low-affinity TSH binding components exhibited two similar 125I-TSH-labeled bands, with Mr values of 80,000 and 68,000. IgG fractions from patients with Graves' disease inhibited 125I-TSH binding to both components, while normal IgG had no effect. Although not entirely conclusive, these results suggest that the high- and low-affinity components share similar subunit composition and antigenic determinants.

  11. Further characterization of the low and high affinity binding components of the thyrotropin receptor

    Energy Technology Data Exchange (ETDEWEB)

    McQuade, R.; Thomas, C.G. Jr.; Nayfeh, S.N.

    1986-05-29

    Following cross-linking with disuccinimdiyl suberate and analysis by SDS-PAGE and autoradiography, both the high- and low-affinity TSH binding components exhibited two similar /sup 125/I-TSH-labeled bands, with Mr values of 80,000 and 68,000. IgG fractions from patients with Graves' disease inhibited /sup 125/I-TSH binding to both components, while normal IgG had no effect. Although not entirely conclusive, these results suggest that the high- and low-affinity components share similar subunit composition and antigenic determinants.

  12. Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain.

    Science.gov (United States)

    Wellendorph, Petrine; Høg, Signe; Greenwood, Jeremy R; de Lichtenberg, Anne; Nielsen, Birgitte; Frølund, Bente; Brehm, Lotte; Clausen, Rasmus P; Bräuner-Osborne, Hans

    2005-10-01

    Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites, the molecular cloning of which remains a challenge. Ligands with high affinity and specificity for the reported GHB binding site are needed for pharmacological dissection of the GHB and GABA(B) effects and for mapping the structural requirements of the GHB receptor-ligand interactions. For this purpose, we have synthesized and assayed three conformationally restricted GHB analogs for binding against the GHB-specific ligand [3H]NCS-382 [(E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene-)acetic acid] in rat brain homogenate. The cyclohexene and cyclopentene analogs, 3-hydroxycyclohex-1-enecarboxylic acid [(RS)-HOCHCA] and 3-hydroxycyclopent-1-enecarboxylic acid [(RS)-HOCPCA], were found to be high-affinity GHB ligands, with IC50 values in the nanomolar range, and had 9 and 27 times, respectively, higher affinity than GHB. The stereo-selectively synthesized R,R-isomer of the trans-cyclopropyl GHB analog, HOCPrCA, proved to have 10-fold higher affinity than its enantiomer. Likewise, the R-enantiomers of HOCHCA and HOCPCA selectively inhibited [3H]NCS-382 binding. The best inhibitor of these, (R)-HOCPCA, has an affinity 39 times higher than GHB and is thus among the best GHB ligands reported to date. Neither of the cycloalkenes showed any affinity (IC50 > 1 mM) for GABA(A) or GABA(B) receptors. These compounds show excellent potential as lead structures and novel tools for studying specific GHB receptor-mediated pharmacology.

  13. High-affinity small molecule-phospholipid complex formation: binding of siramesine to phosphatidicacid

    DEFF Research Database (Denmark)

    Khandelia, Himanshu

    2008-01-01

    , comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction of XPA ) 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 ( 80 × 106. An MD simulation on the siramesine:PA interaction...

  14. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian

    2006-01-01

    Haptoglobin-related protein (Hpr) is a primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL) particles shown to be a part of the innate immune defense. Despite the assumption hitherto that Hpr does not bind to hemoglobin, the present...

  15. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    Energy Technology Data Exchange (ETDEWEB)

    Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  16. Specific high-affinity binding sites for a synthetic gliadin heptapeptide of human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Payan, D.G.; Horvath, K.; Graf, L.

    1987-03-23

    The synthetic peptide containing residues 43-49 of ..cap alpha..-gliadin, the major protein component of gluten, has previously been shown to inhibit the production of lymphokine activities by mononuclear leukocytes. The authors demonstrate using radiolabeled ..cap alpha..-gliadin(43-49) that human peripheral blood lymphocytes express approximately 20,000-25,000 surface receptors for this peptide, with a dissociation constant (K/sub D/) of 20 nM. In addition, binding is inhibited by naloxone and an enkephalin analog, thus confirming the functional correlate which demonstrates inhibition by these agents of ..cap alpha..-gliadin(43-49) functional effects. Furthermore, B-lymphocytes bind specifically a greater amount of (/sup 125/I)..cap alpha..-gliadin(43-49) than T-lymphocytes. The lymphocyte ..cap alpha..-gliadin(43-49) receptor may play an important role in mediating the immunological response to ..cap alpha..-gliadin. 16 references, 4 figures.

  17. High affinity binding of proteins HMG1 and HMG2 to semicatenated DNA loops

    Directory of Open Access Journals (Sweden)

    Strauss François

    2000-10-01

    Full Text Available Abstract Background Proteins HMG1 and HMG2 are two of the most abundant non histone proteins in the nucleus of mammalian cells, and contain a domain of homology with many proteins implicated in the control of development, such as the sex-determination factor Sry and the Sox family of proteins. In vitro studies of interactions of HMG1/2 with DNA have shown that these proteins can bind to many unusual DNA structures, in particular to four-way junctions, with binding affinities of 107 to 109 M-1. Results Here we show that HMG1 and HMG2 bind with a much higher affinity, at least 4 orders of magnitude higher, to a new structure, Form X, which consists of a DNA loop closed at its base by a semicatenated DNA junction, forming a DNA hemicatenane. The binding constant of HMG1 to Form X is higher than 5 × 1012 M-1, and the half-life of the complex is longer than one hour in vitro. Conclusions Of all DNA structures described so far with which HMG1 and HMG2 interact, we have found that Form X, a DNA loop with a semicatenated DNA junction at its base, is the structure with the highest affinity by more than 4 orders of magnitude. This suggests that, if similar structures exist in the cell nucleus, one of the functions of these proteins might be linked to the remarkable property of DNA hemicatenanes to associate two distant regions of the genome in a stable but reversible manner.

  18. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina

    2017-01-01

    the (11)C-labeling and subsequent evaluation of [(11)C]HOCPCA in a domestic pig, as a PET-radioligand for visualization of the high-affinity GHB binding sites in the live pig brain. To investigate the regional binding of HOCPCA in pig brain prior to in vivo PET studies, in vitro quantitative......γ-Hydroxybutyric acid (GHB) is an endogenous neuroactive substance and proposed neurotransmitter with affinity for both low- and high-affinity binding sites. A radioligand with high and specific affinity toward the high-affinity GHB binding site would be a unique tool toward a more complete...... understanding of this population of binding sites. With its high specific affinity and monocarboxylate transporter (MCT1) mediated transport across the blood-brain barrier in pharmacological doses, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) seems like a suitable PET radiotracer candidate. Here, we report...

  19. Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Greenwood, Jeremy R

    2005-01-01

    acid [(RS)-HOCHCA] and 3-hydroxycyclopent-1-enecarboxylic acid [(RS)-HOCPCA], were found to be high-affinity GHB ligands, with IC50 values in the nanomolar range, and had 9 and 27 times, respectively, higher affinity than GHB. The stereo-selectively synthesized R,R-isomer of the trans-cyclopropyl GHB...... analog, HOCPrCA, proved to have 10-fold higher affinity than its enantiomer. Likewise, the R-enantiomers of HOCHCA and HOCPCA selectively inhibited [3H]NCS-382 binding. The best inhibitor of these, (R)-HOCPCA, has an affinity 39 times higher than GHB and is thus among the best GHB ligands reported......Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites...

  20. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  1. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  2. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Science.gov (United States)

    Stockner, Thomas; Montgomery, Therese R; Kudlacek, Oliver; Weissensteiner, Rene; Ecker, Gerhard F; Freissmuth, Michael; Sitte, Harald H

    2013-01-01

    The high-resolution crystal structure of the leucine transporter (LeuT) is frequently used as a template for homology models of the dopamine transporter (DAT). Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i) when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii) LeuT and DAT share a rather low overall sequence identity (22%) and (iii) the extracellular loop 2 (EL2) of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  3. Structure-based identification of new high-affinity nucleosome binding sequences.

    Science.gov (United States)

    Battistini, Federica; Hunter, Christopher A; Moore, Irene K; Widom, Jonathan

    2012-06-29

    The substrate for the proteins that express genetic information in the cell is not naked DNA but an assembly of nucleosomes, where the DNA is wrapped around histone proteins. The organization of these nucleosomes on genomic DNA is influenced by the DNA sequence. Here, we present a structure-based computational approach that translates sequence information into the energy required to bend DNA into a nucleosome-bound conformation. The calculations establish the relationship between DNA sequence and histone octamer binding affinity. In silico selection using this model identified several new DNA sequences, which were experimentally found to have histone octamer affinities comparable to the highest-affinity sequences known. The results provide insights into the molecular mechanism through which DNA sequence information encodes its organization. A quantitative appreciation of the thermodynamics of nucleosome positioning and rearrangement will be one of the key factors in understanding the regulation of transcription and in the design of new promoter architectures for the purposes of tuning gene expression dynamics.

  4. A human β-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding

    Science.gov (United States)

    Avery, Adam W.; Crain, Jonathan; Thomas, David D.; Hays, Thomas S.

    2016-01-01

    Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein β-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of β-III-spectrin. We report that the L253P substitution in the isolated β-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 μM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P β-III-spectrin is a likely driver of neurodegeneration. PMID:26883385

  5. Fragile X mental retardation protein recognition of G quadruplex structure per se is sufficient for high affinity binding to RNA.

    Science.gov (United States)

    Bole, Medhavi; Menon, Lakshmi; Mihailescu, Mihaela-Rita

    2008-12-01

    Fragile X syndrome, the most common form of inherited mental retardation is caused by the expansion of a CGG trinucleotide repeat in the fragile X mental retardation 1 (fmr1) gene. The abnormal expansion of the CGG repeat causes hypermethylation and subsequent silencing of the fmr1 gene, resulting in the loss of the fragile X mental retardation protein (FMRP). FMRP has been shown to use its arginine-glycine-glycine rich region (RGG box) to bind to messenger RNAs that form G quadruplex structures. Several studies reported that the G quadruplex RNA recognition alone is not sufficient for FMRP RGG box binding and that an additional stem and/or a G quadruplex-stem junction region may also be important in recognition. In this study we have used biophysical methods such as fluorescence, UV, CD and NMR spectroscopy to demonstrate that the recognition of the RNA G quadruplex structure per se, in the absence of a stem region, is sufficient for the FMRP high affinity and specific binding. These findings indicate that the presence of a stem structure in some of the FMRP G quadruplex forming mRNAs is not a requirement for protein recognition as previously believed, but rather for the proper formation of the correct RNA G quadruplex structure recognized by FMRP.

  6. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall.

    Science.gov (United States)

    Canut, H; Carrasco, A; Galaud, J P; Cassan, C; Bouyssou, H; Vita, N; Ferrara, P; Pont-Lezica, R

    1998-10-01

    The heptapeptide Tyr-Gly-Arg-Gly-Asp-Ser-Pro containing the sequence Arg-Gly-Asp (RGD--the essential structure recognised by animal cells in substrate adhesion molecules) was tested on epidermal cells of onion and cultured cells of Arabidopsis upon plasmolysis. Dramatic changes were observed on both types of cells following treatment: on onion cells, Hechtian strands linking the cell wall to the membrane were lost, while Arabidopsis cells changed from concave to convex plasmolysis. A control heptapeptide Tyr-Gly-Asp-Gly-Arg-Ser-Pro had no effect on the shape of plasmolysed cells. Protoplasts isolated from Arabidopsis cells agglutinate in the presence of ProNectinF, a genetically engineered protein of 72 kDa containing 13 RGD sequences: several protoplasts may adhere to a single molecule of ProNectinF. The addition of the RGD-heptapeptide disrupted the adhesion between the protoplasts. Purified plasma membrane from Arabidopsis cells exhibits specific binding sites for the iodinated RGD-heptapeptide. The binding is saturable, reversible, and two types of high affinity sites (Kd1 approximately 1 nM, and Kd2 approximately 40 nM) can be discerned. Competitive inhibition by several structurally related peptides and proteins noted the specific requirement for the RGD sequence. Thus, the RGD-binding activity of Arabidopsis fulfils the adhesion features of integrins, i.e. peptide specificity, subcellular location, and involvement in plasma membrane-cell wall attachments.

  7. ZipA binds to FtsZ with high affinity and enhances the stability of FtsZ protofilaments.

    Directory of Open Access Journals (Sweden)

    Anuradha Kuchibhatla

    Full Text Available A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0 pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.

  8. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers.

    Science.gov (United States)

    Elshafey, Reda; Siaj, Mohamed; Zourob, Mohammed

    2014-09-16

    Contamination of freshwater with cyanotoxin cylindrospermopsin (CYN) represents a significant global concern for public health. The sensitive detection of CYN is necessary to effectively manage and control the treatment of water resources. Here we report a novel, highly sensitive label-free aptasensor for CYN analysis, using aptamers as specific receptors. We have selected the DNA aptamers from a diverse random library using the in vitro screening SELEX approach. The aptamers exhibited high affinity for CYN with Kd of nanomolar range. One aptamer exhibited conformational change upon CYN recognition (CD analysis) and was used to fabricate the label-free impedimetric aptasensor for CYN. A self-assembled monolayer from a disulfide-derivatized aptamer was formed on a gold electrode to fabricate the aptasensor. Upon CYN capturing to the aptasensor surface, a marked drop in the electron transfer resistance was obtained, which was used as the principle of detection of CYN. This resulted from the aptamer's conformational change induced by CYN recognition. The present aptasensor could detect CYN with the limit of detection as low as 100 pM and a wide linear range of 0.1 to 80 nM. When mounted on the gold surface, the aptamer exhibited a lower dissociation constant for CYN than that observed in the fluorescence assay, implying that the anchoring of the aptamer on the Au surface improved its affinity to CYN. Moreover, the aptasensor showed high specificity toward other coexistent cyanobacterial toxins of microcystin-LR and Anatoxin-a. Further biosensor designs will be generated using those aptamers for simple and sensitive CYN monitoring.

  9. Replacement of the Bryostatin A- and B-Pyran Rings With Phenyl Rings Leads to Loss of High Affinity Binding With PKC.

    Science.gov (United States)

    Petersen, Mark E; Kedei, Noemi; Lewin, Nancy E; Blumberg, Peter M; Keck, Gary E

    2016-10-19

    We describe a convergent synthesis of a bryostatin analogue in which the natural A- and B-ring pyrans have been replaced by phenyl rings. The new analogue exhibited PMA like behavior in cell assays, but failed to maintain high affinity binding for PKC, despite retaining an unaltered C-ring 'binding domain'.

  10. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  11. The high-affinity maltose switch MBP317-347 has low affinity for glucose: implications for targeting tumors with metabolically directed enzyme prodrug therapy.

    Science.gov (United States)

    Valdes, Gilmer; Schulte, Reinhard W; Ostermeier, Marc; Iwamoto, Keisuke S

    2014-03-01

    Development of agents with high affinity and specificity for tumor-specific markers is an important goal of molecular-targeted therapy. Here, we propose a shift in paradigm using a strategy that relies on low affinity for fundamental metabolites found in different concentrations in cancerous and non-cancerous tissues: glucose and lactate. A molecular switch, MBP317-347, originally designed to be a high-affinity switch for maltose and maltose-like polysaccharides, was demonstrated to be a low-affinity switch for glucose, that is, able to be activated by high concentrations (tens of millimolar) of glucose. We propose that such a low-affinity glucose switch could be used as a proof of concept for a new prodrug therapy strategy denominated metabolically directed enzyme prodrug therapy (MDEPT) where glucose or, preferably, lactate serves as the activator. Accordingly, considering the typical differential concentrations of lactate found in tumors and in healthy tissues, a low-affinity lactate-binding switch analogous to the low-affinity glucose-binding switch MBP317-347 would be an order of magnitude more active in tumors than in normal tissues and therefore can work as a differential activator of anticancer drugs in tumors.

  12. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    Science.gov (United States)

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  13. Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding.

    Directory of Open Access Journals (Sweden)

    Changjiang Zou

    2012-09-01

    Full Text Available The homeodomain and adjacent CVC domain in the visual system homeobox (VSX proteins are conserved from nematodes to humans. Humans with missense mutations in these regions of VSX2 have microphthalmia, suggesting both regions are critical for function. To assess this, we generated the corresponding mutations in mouse Vsx2. The homeodomain mutant protein lacked DNA binding activity and the knock-in mutant phenocopied the null mutant, ocular retardation J. The CVC mutant protein exhibited weakened DNA binding; and, although the corresponding knock-in allele was recessive, it unexpectedly caused the strongest phenotype, as indicated by severe microphthalmia and hyperpigmentation of the neural retina. This occurred through a cryptic transcriptional feedback loop involving the transcription factors Mitf and Otx1 and the Cdk inhibitor p27(Kip1. Our data suggest that the phenotypic severity of the CVC mutant depends on the weakened DNA binding activity elicited by the CVC mutation and a previously unknown protein interaction between Vsx2 and its regulatory target Mitf. Our data also suggest that an essential function of the CVC domain is to assist the homeodomain in high-affinity DNA binding, which is required for eye organogenesis and unhindered execution of the retinal progenitor program in mammals. Finally, the genetic and phenotypic behaviors of the CVC mutation suggest it has the characteristics of a recessive neomorph, a rare type of genetic allele.

  14. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a concentration-depende

  15. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy

    Directory of Open Access Journals (Sweden)

    zherui eWu

    2013-01-01

    Full Text Available Cancer is a worldwide health problem. Personalized treatment represents a future advancement for cancer treatment, in part due to the development of targeted therapeutic drugs. These molecules are expected to be more effective than current treatments and less harmful to normal cells. The discovery and validation of new targets are the foundation and the source of these new therapies.The neurotensinergic system has been shown to enhance cancer progression in various cancers such as pancreatic, prostate, lung, breast and colon cancer. It also triggers multiple oncogenic signaling pathways, such as the PKC/ERK and AKT pathways. In this review, we discuss the contribution of the neurotensinergic system to cancer progression, as well as the regulation and mechanisms of the system in order to highlight its potential as a therapeutic target, and its prospect for its use as a treatment in certain cancers.

  16. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

    DEFF Research Database (Denmark)

    Hansen, Mads E; Bentin, Thomas; Nielsen, Peter E

    2009-01-01

    While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA-dsDNA triplexes-mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine subs...

  17. Histidine-rich glycoprotein binds fibrin(ogen) with high affinity and competes with thrombin for binding to the gamma'-chain.

    Science.gov (United States)

    Vu, Trang T; Stafford, Alan R; Leslie, Beverly A; Kim, Paul Y; Fredenburgh, James C; Weitz, Jeffrey I

    2011-09-01

    Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn(2+)-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn(2+)-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn(2+), HRG binds the predominant γ(A)/γ(A)-fibrinogen and the γ-chain elongated isoform, γ(A)/γ'-fibrinogen, with K(d) values of 9 nm. Likewise, (125)I-labeled HRG binds γ(A)/γ(A)- or γ(A)/γ'-fibrin clots with similar K(d) values when Zn(2+) is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ'-peptide, an analog of the COOH terminus of the γ'-chain that mediates the high affinity interaction of thrombin with γ(A)/γ'-fibrin. Thrombin competes with HRG for γ'-peptide binding and displaces (125)I-HRG from γ(A)/γ'-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γ(A)/γ'-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation.

  18. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K

    2005-01-01

    in delivering iron to cells during formation of the tubular epithelial cells of the primordial kidney. No cellular receptor for NGAL has been described. We show here that megalin, a member of the low-density lipoprotein receptor family expressed in polarized epithelia, binds NGAL with high affinity, as shown...

  19. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft

    DEFF Research Database (Denmark)

    Kandra, L.; Abou Hachem, Maher; Gyemant, G.;

    2006-01-01

    as binding barriers. Barley a-amylase I mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile...

  20. Design, Synthesis, and in Vitro Pharmacology of New Radiolabeled γ-Hydroxybutyric Acid Analogues Including Photolabile Analogues with Irreversible Binding to the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Sabbatini, Paola; Wellendorph, Petrine; Høg, Signe;

    2010-01-01

    γ-Hydroxybutyric acid (GHB) is a psychotropic compound endogenous to the brain. Despite its potential physiological significance, the complete molecular mechanisms of action remain unexplained. To facilitate the isolation and identification of the high-affinity GHB binding site, we herein report...... the design and synthesis of the first 125I-labeled radioligands in the field, one of which contains a photoaffinity label which enables it to bind irreversibly to the high-affinity GHB binding sites....

  1. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    Science.gov (United States)

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  2. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors

    Directory of Open Access Journals (Sweden)

    Sathyanarayana Bangalore K

    2006-10-01

    Full Text Available Abstract Background The mucin MUC16 and the glycosylphosphatidylinositol anchored glycoprotein mesothelin likely facilitate the peritoneal metastasis of ovarian tumors. The biochemical basis and the kinetics of the binding between these two glycoproteins are not clearly understood. Here we have addressed this deficit and provide further evidence supporting the role of the MUC16-mesothelin interaction in facilitating cell-cell binding under conditions that mimic the peritoneal environment. Results In this study we utilize recombinant-Fc tagged human mesothelin to measure the binding kinetics of this glycoprotein to MUC16 expressed on the ovarian tumor cell line OVCAR-3. OVCAR-3 derived sublines that did not express MUC16 showed no affinity for mesothelin. In a flow cytometry-based assay mesothelin binds with very high affinity to the MUC16 on the OVCAR-3 cells with an apparent Kd of 5–10 nM. Maximum interaction occurs within 5 mins of incubation of the recombinant mesothelin with the OVCAR-3 cells and significant binding is observed even after 10 sec. A five-fold molar excess of soluble MUC16 was unable to completely inhibit the binding of mesothelin to the OVCAR-3 cells. Oxidation of the MUC16 glycans, removal of its N-linked oligosaccharides, and treatment of the mucin with wheat germ agglutinin and erythroagglutinating phytohemagglutinin abrogates its binding to mesothelin. These observations suggest that at least a subset of the MUC16-asscociated N-glycans is required for binding to mesothelin. We also demonstrate that MUC16 positive ovarian tumor cells exhibit increased adherence to A431 cells transfected with mesothelin (A431-Meso+. Only minimal adhesion is observed between MUC16 knockdown cells and A431-Meso+ cells. The binding between the MUC16 expressing ovarian tumor cells and the A431-Meso+ cells occurs even in the presence of ascites from patients with ovarian cancer. Conclusion The strong binding kinetics of the mesothelin-MUC16

  3. Site-specific conjugation of an antibody-binding protein catalyzed by horseradish peroxidase creates a multivalent protein conjugate with high affinity to IgG.

    Science.gov (United States)

    Minamihata, Kosuke; Goto, Masahiro; Kamiya, Noriho

    2015-01-01

    Cross-linking proteins offers an approach to enhance the distinct function of proteins due to the multivalent effect. In this study, we demonstrated the preparation of a multivalent antibody-binding protein possessing high affinity to IgG by conjugating a number of antibody-binding proteins using the horseradish peroxidase (HRP)-mediated protein conjugation method. By introducing a peptide tag containing a tyrosine (Y-tag) to the C-terminus of the model protein, a chimera protein of protein G and protein A (pG2 pA), the Tyr residue in the Y-tag was efficiently recognized by HRP and cross-linked with each other to yield a pG2 pA conjugate, composed of mainly two to three units of pG2 pA. The cross-linking occurred site specifically at the Tyr residue in the Y-tag and introduction of the Y-tag showed no effect on the function of pG2 pA. The affinity of the Y-tagged pG2 pA conjugate against IgG clearly increased because of the multivalent effect, demonstrating the benefit of this protein cross-linking reaction, which yields functional protein oligomers. Such multivalent protein conjugates created by this reaction should have potential to be used in ELISA and Western blotting applications in which highly sensitive detection of target molecules is desired.

  4. BDNF Binds Its Pro-Peptide with High Affinity and the Common Val66Met Polymorphism Attenuates the Interaction.

    Science.gov (United States)

    Uegaki, Koichi; Kumanogoh, Haruko; Mizui, Toshiyuki; Hirokawa, Takatsugu; Ishikawa, Yasuyuki; Kojima, Masami

    2017-05-12

    Most growth factors are initially synthesized as precursors then cleaved into bioactive mature domains and pro-domains, but the biological roles of pro-domains are poorly understood. In the present study, we investigated the pro-domain (or pro-peptide) of brain-derived neurotrophic factor (BDNF), which promotes neuronal survival, differentiation and synaptic plasticity. The BDNF pro-peptide is a post-processing product of the precursor BDNF. Using surface plasmon resonance and biochemical experiments, we first demonstrated that the BDNF pro-peptide binds to mature BDNF with high affinity, but not other neurotrophins. This interaction was more enhanced at acidic pH than at neutral pH, suggesting that the binding is significant in intracellular compartments such as trafficking vesicles rather than the extracellular space. The common Val66Met BDNF polymorphism results in a valine instead of a methionine in the pro-domain, which affects human brain functions and the activity-dependent secretion of BDNF. We investigated the influence of this variation on the interaction between BDNF and the pro-peptide. Interestingly, the Val66Met polymorphism stabilized the heterodimeric complex of BDNF and its pro-peptide. Furthermore, compared with the Val-containing pro-peptide, the complex with the Met-type pro-peptide was more stable at both acidic and neutral pH, suggesting that the Val66Met BDNF polymorphism forms a more stable complex. A computational modeling provided an interpretation to the role of the Val66Met mutation in the interaction of BDNF and its pro-peptide. Lastly, we performed electrophysiological experiments, which indicated that the BDNF pro-peptide, when pre-incubated with BDNF, attenuated the ability of BDNF to inhibit hippocampal long-term depression (LTD), suggesting a possibility that the BDNF pro-peptide may interact directly with BDNF and thereby inhibit its availability. It was previously reported that the BDNF pro-domain exerts a chaperone-like function

  5. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites.

    Science.gov (United States)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina; Vogensen, Stine B; Lehel, Szabolcs; Thiesen, Louise; Bundgaard, Christoffer; Clausen, Rasmus P; Knudsen, Gitte M; Herth, Matthias M; Wellendorph, Petrine; Frølund, Bente

    2017-01-18

    γ-Hydroxybutyric acid (GHB) is an endogenous neuroactive substance and proposed neurotransmitter with affinity for both low- and high-affinity binding sites. A radioligand with high and specific affinity toward the high-affinity GHB binding site would be a unique tool toward a more complete understanding of this population of binding sites. With its high specific affinity and monocarboxylate transporter (MCT1) mediated transport across the blood-brain barrier in pharmacological doses, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) seems like a suitable PET radiotracer candidate. Here, we report the (11)C-labeling and subsequent evaluation of [(11)C]HOCPCA in a domestic pig, as a PET-radioligand for visualization of the high-affinity GHB binding sites in the live pig brain. To investigate the regional binding of HOCPCA in pig brain prior to in vivo PET studies, in vitro quantitative autoradiography on sections of pig brain was performed using [(3)H]HOCPCA. In vivo evaluation of [(11)C]HOCPCA showed no brain uptake, possibly due to a limited uptake of HOCPCA by the MCT1 transporter at tracer doses of [(11)C]HOCPCA.

  6. Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-à-go-go-related gene channels.

    Science.gov (United States)

    Perrin, Mark J; Kuchel, Philip W; Campbell, Terence J; Vandenberg, Jamie I

    2008-11-01

    Drug block of the human ether-à-go-go-related gene K(+) channel (hERG) is the most common cause of acquired long QT syndrome, a disorder of cardiac repolarization that may result in ventricular tachycardia and sudden cardiac death. We investigated the open versus inactivated state dependence of drug block by using hERG mutants N588K and N588E, which shift the voltage dependence of inactivation compared with wild-type but in which the mutated residue is remote from the drug-binding pocket in the channel pore. Four high-affinity drugs (cisapride, dofetilide, terfenadine, and astemizole) demonstrated lower affinity for the inactivation-deficient N588K mutant hERG channel compared with N588E and wild-type hERG. Three of four low-affinity drugs (erythromycin, perhexiline, and quinidine) demonstrated no preference for N588E over N588K channels, whereas dl-sotalol was an example of a low-affinity state-dependent blocker. All five state-dependent blockers showed an even lower affinity for S620T mutant hERG (no inactivation) compared with N588K mutant hERG (greatly reduced inactivation). Computer modeling indicates that the reduced affinity for S620T compared with N588K and wild-type channels can be explained by the relative kinetics of drug block and unblock compared with the kinetics of inactivation and recovery from inactivation. We were also able to calculate, for the first time, the relative affinities for the inactivated versus the open state, which for the drugs tested here ranged from 4- to 70-fold. Our results show that preferential binding to the inactivated state is necessary but not sufficient for high-affinity binding to hERG channels.

  7. Kinetic Characterization of a Panel of High-Affinity Monoclonal Antibodies Targeting Ricin and Recombinant Re-Formatting for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Michelle Cummins

    2014-05-01

    Full Text Available Ricin is a potent glycoprotein toxin that is structurally composed of two subunits joined via a disulfide bond: a ~30 kDa subunit A (RTA and a ~32 kDa subunit B (RTB. There are fears of ricin being used as a weapon for warfare and terrorism and, as such, there is an increasing need for the development of immunodiagnostic reagents targeted towards this toxin. This article describes the production and characterization of a panel of six ricin-specific monoclonal IgG antibodies (mAbs, previously selected based upon their ability to inhibit ricin-mediated killing of cultured cells. Subsequent epitope binding analysis using the surface plasmon resonance (SPR array biosensor (ProteOn XPR36 indicated three distinct, non-competitive binding epitopes (“bins”. The association (ka and dissociation (kd rate constants and binding affinities (KD of each of the mAbs to ricin were also determined by SPR using Biacore T100 instrument. Affinities (KD ranged from 0.1 nM to 9 nM. We present the coding sequences of the variable domains of the six mAbs, the expression, kinetic and cytotoxicity assays for two recombinant Fab (rFab fragments and demonstrate a rFab affinity improvement by chain-shuffling. Together, these antibodies and constituent rFabs represent a panel of reagents for high-affinity recognition of ricin with potential national security biosensor applications.

  8. An HIV-1 encoded peptide mimics the DNA binding loop of NF-{kappa}B and binds thioredoxin with high affinity

    Energy Technology Data Exchange (ETDEWEB)

    Su Guoping [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352 (United States)]. E-mail: gsu@u.washington.edu; Wang Min [Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023 (United States)]. E-mail: wang.min@yale.edu; Taylor, Ethan Will [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352 (United States)]. E-mail: wtaylor@rx.uga.edu

    2005-11-11

    Pro-fs is a human immunodeficiency virus type 1 (HIV-l)-encoded putative selenoprotein, predicted by a theoretical analysis of the viral genome; it is potentially expressed by a -1 frameshift from the protease coding region. Pro-fs has significant sequence similarity to the DNA binding loop of nuclear factor kappa B (NF-{kappa}B), which is known to bind thioredoxin (Trx). We hypothesize that the putative HIV-1 pro-fs gene product functions by mimicry of NF-{kappa}B via binding to Trx. The hypothesis was tested in vitro by co-immunoprecipitation and GST-pull down assays, using a purified mutant pro-fs protein, in which the two potential selenocysteine residues were mutated to cysteines, in order to permit expression in bacteria. Both experiments showed that pro-fs binds to human wild type Trx (Trx-wt) with high affinity. Mutation of the two conserved cysteine residues in the Trx active site redox center to serine (Ser) (Trx-CS) weakened but failed to abolish the interaction. In pro-fs-transfected 293T cells, using confocal microscopy and fluorescence resonance energy transfer (FRET), we have observed that pro-fs localizes in cell nuclei and forms oligomers. Upon stimulation by phorbol 12-myristate 13-acetate (PMA), Trx translocates into cell nuclei. Significant FRET efficiency was detected in the nuclei of PMA-stimulated 293T cells co-expressing fluorescence-tagged pro-fs and Trx-wt or Trx-CS. These results indicate that in living cells the double cysteine mutant of pro-fs binds to both Trx and Trx-CS with high affinity, suggesting that Trx-pro-fs binding is a structurally-specific interaction, involving more of the Trx molecule than just its active site cysteine residues. These results establish the capacity for functional mimicry of the Trx binding ability of the NF-{kappa}B/Rel family of transcription factors by the putative HIV-1 pro-fs protein.

  9. Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence.

    Science.gov (United States)

    Guigues, Stéphanie; Bravin, Matthieu N; Garnier, Cédric; Masion, Armand; Chevassus-Rosset, Claire; Cazevieille, Patrick; Doelsch, Emmanuel

    2016-03-01

    Carboxylic groups located in plant cell walls (CW) are generally considered to be the main copper binding sites in plant roots, despite the presence of other functional groups. The aim of this study was to investigate sites responsible for copper binding in root apoplasts, i.e. CW and outer surface of the plasma membrane (PM) continuum. Binding sites in root apoplasts were investigated by comparing isolated CW of a monocotyledon (Triticum aestivum L.) and dicotyledon (Solanum lycopersicum L.) crop with their respective whole roots. Copper speciation was examined by X-ray absorption (XAS) and (13)C-nuclear magnetic resonance spectroscopies while the affinity of ligands involved in copper binding was investigated by modeling copper sorption isotherms. Homogeneous speciation and binding of copper was found in wheat and tomato root apoplasts. Only Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. Furthermore, low- and high-affinity binding sites contributed in an almost equivalent proportion to copper binding in root apoplasts. The high-affinity N functional groups embedded in root apoplasts participated in copper binding in the same magnitude than the low-affinity carboxylic groups.

  10. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors.

    Science.gov (United States)

    Ozoe, Yoshihisa; Kita, Tomo; Ozoe, Fumiyo; Nakao, Toshifumi; Sato, Kazuyuki; Hirase, Kangetsu

    2013-11-01

    γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides

  11. High-affinity binding of southern African HIV type 1 subtype C envelope protein, gp120, to the CCR5 coreceptor.

    Science.gov (United States)

    Fromme, Bernhard J; Coetsee, Marla; Van Der Watt, Pauline; Chan, Mei-Chi; Sperling, Karin M; Katz, Arieh A; Flanagan, Colleen A

    2008-12-01

    HIV-1 subtype C is the fastest spreading subtype worldwide and predominantly uses the CCR5 coreceptor, showing minimal transition to the X4 phenotype. This raises the possibility that envelope proteins of HIV-1 subtype C have structural features that favor interaction with CCR5. Preference for CCR5 could arise from enhanced affinity of HIV-1 subtype C for CCR5. To test this, we have characterized the interaction of gp120 envelope proteins from HIV-1 subtype C clones with CD4 and CCR5. Recombinant gp120 proteins from isolates of HIV-1 subtypes B and C were expressed, purified, and assessed in a CD4 binding assay and a CCR5 chemokine competition binding assay. All gp120 proteins bound to CD4-expressing cells, except one, 97ZA347ts, which had Arg substituted for the Cys239 in the conserved C2 loop. Reconstitution of Cys239, using site-directed mutagenesis, restored CD4 binding, while introducing Arg or Ser into position 239 of the functional Du151 gp120 protein abrogated CD4 binding. This shows that the Cys228-Cys239 disulfide bond of gp120 is required for high-affinity binding to CD4. Recombinant gp120 proteins from two HIV-1 subtype B clones bound CCR5 in the presence of CD4, while gp120 from the X4-tropic, HxB2, clone did not bind CCR5. gp120 from two functional HIV-1 subtype C clones, Du151 and MOLE1, bound CCR5 with high affinity in the presence of CD4 and Du151 showed significant CCR5 binding in the absence of CD4. A gp120 from a nonfunctional subtype C clone had lower affinity for CCR5. These results indicate that HIV-1 subtype C proteins have high affinity for CCR5 with variable dependence on CD4.

  12. Reconstitution of high-affinity binding of a beta-scorpion toxin to neurotoxin receptor site 4 on purified sodium channels.

    Science.gov (United States)

    Thomsen, W; Martin-Eauclaire, M F; Rochat, H; Catterall, W A

    1995-09-01

    Reconstitution of purified sodium channels into phospholipid vesicles restores many aspects of sodium channel function including high-affinity neurotoxin binding and action at neurotoxin receptor sites 1-3 and 5, but neurotoxin binding and action at receptor site 4 has not previously been demonstrated in purified and reconstituted preparations. Toxin IV from the venom of the American scorpion Centruroides suffusus suffusus (Css IV), a beta-scorpion toxin, shifts the voltage dependence of sodium channel activation by binding with high affinity to neurotoxin receptor site 4. Sodium channels were purified from rat brain and reconstituted into phospholipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine (65:35). 125I-Css IV, purified by reversed-phase HPLC, bound rapidly and specifically to reconstituted sodium channels. Dissociation of the bound toxin was biphasic with half-times of 0.22 min-1 and 0.015 min-1. At equilibrium, the toxin bound to two classes of specific high-affinity sites, a variable minor class with KD of approximately 0.1 nM and a major class with a KD of approximately 5 nM. Approximately 0.8 mol 125I-Css IV was bound per mole of reconstituted, right-side-out sodium channels, as assessed from comparison of binding of saxitoxin and Css IV. Binding of Css IV was unaffected by membrane potential or by neurotoxins that bind at sites 1-3 or 5, consistent with the characteristics of binding of beta-scorpion toxins to sodium channels in cells and membrane preparations.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Sheppard, P O; Jensen, L B

    2001-01-01

    and the loops connecting these. The findings offer valuable insight into the mechanism of ATD closure and family C receptor activation. Furthermore, the findings demonstrate that ATD regions other than those participating in agonist binding could be potential targets for new generations of ligands......The metabotropic glutamate receptors (mGluRs) belong to family C of the G-protein-coupled receptor (GPCR) superfamily. The receptors are characterized by having unusually long amino-terminal domains (ATDs), to which agonist binding has been shown to take place. Previously, we have constructed...... of a "closed" conformation, and thus stabilizing a more or less inactive "open" form of the ATD. This study presents the first metal ion site constructed in a family C GPCR. Furthermore, it is the first time a metal ion site has been created in a region outside of the seven transmembrane regions of a GPCR...

  14. Comparison of high affinity binding of {sup 3}H-proadifen and {sup 3}H-(-)-cocaine t rat liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B. [Astra Arcus AB, Dept. of Neuropharmacology, Soedertaelje (Sweden)

    1995-06-01

    The characteristics of the binding of {sup 3}H-proadifen to rat liver membranes were studied and compared to those of {sup 3}H-cocaine. It was found that {sup 3}H-proadifen was bound reversibly with high affinity (K{sub D}=1.8{+-}0.5 nM) and large capacity (B{sub max}=2010{+-}340 pmol/g wet tissue) to liver membranes. The corresponding values for the {sup 3}H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of {sup 3}H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 {mu}M CdCl{sub 2} in the incubation buffer it was possible to differentiate between two {sup 3}H-cocaine binding sites with K{sub d} values of 1.6 and 7.7 nM and B{sub max} values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of {sup 3}H-proadifen and {sup 3}H-cocaine inhibited the binding of {sup 3}H-proadifen (IC{sub 50}=10 nM) and proadifen that of {sup 3}H-cocaine (IC{sub 50}=1 nM). There was a high correlation coefficient (r{sub r}=0.972; P<0.01; n=12) in the Spearman rank test between the inhibitory potencies of compounds examined in both systems. Beside some potent alaproclate analogues a couple of compounds had moderately high affinity (IC{sub 50}=100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl{sub 2}, ZnCl{sub 2} and CuCl{sub 2} inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd{sup 2+} on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15{mu}M. The similarity of the characteristics of the binding of these ligands with that of {sup 3}H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.).

  15. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  16. Novel high-affinity and selective biaromatic 4-substituted gamma-hydroxybutyric acid (GHB) analogues as GHB ligands: design, synthesis, and binding studies.

    Science.gov (United States)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte; Frydenvang, Karla; Dahl, Ivar F; Bräuner-Osborne, Hans; Brehm, Lotte; Frølund, Bente; Clausen, Rasmus P

    2008-12-25

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites in brain, of which the latter have not been linked unequivocally to function, but are speculated to be GHB receptors. In this study, a series of biaromatic 4-substituted GHB analogues, including 4'-phenethylphenyl, 4'-styrylphenyl, and 4'-benzyloxyphenyl GHB analogues, were synthesized and characterized pharmacologically in a [3H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid ([3H]NCS-382) binding assay and in GABA(A) and GABA(B) receptor binding assays. The compounds were selective for the high-affinity GHB binding sites and several displayed Ki values below 100 nM. The affinity of the 4-[4'-(2-iodobenzyloxy)phenyl] GHB analogue 17b was shown to reside predominantly with the R-enantiomer (Ki = 22 nM), which has higher affinity than previously reported GHB ligands.

  17. Kaposi's Sarcoma-Associated Herpesvirus Rta Tetramers Make High-Affinity Interactions with Repetitive DNA Elements in the Mta Promoter To Stimulate DNA Binding of RBP-Jk/CSL ▿ †

    Science.gov (United States)

    Palmeri, Diana; Carroll, Kyla Driscoll; Gonzalez-Lopez, Olga; Lukac, David M.

    2011-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]) is the etiologic agent of Kaposi's sarcoma (KS) and lymphoproliferative diseases. We previously demonstrated that the KSHV lytic switch protein Rta stimulates DNA binding of the cellular RBP-Jk/CSL protein, the nuclear component of the Notch pathway, on Rta target promoters. In the current study, we define the promoter requirements for formation of transcriptionally productive Rta/RBP-Jk/DNA complexes. We show that highly pure Rta footprints 7 copies of a previously undescribed repetitive element in the promoter of the essential KSHV Mta gene. We have termed this element the “CANT repeat.” CANT repeats are found on both strands of DNA and have a consensus sequence of ANTGTAACANT(A/T)(A/T)T. We demonstrate that Rta tetramers make high-affinity interactions (i.e., nM) with 64 bp of the Mta promoter but not single CANT units. The number of CANT repeats, their presence in palindromes, and their positions relative to the RBP-Jk binding site determine the optimal target for Rta stimulation of RBP-Jk DNA binding and formation of ternary Rta/RBP-Jk/DNA complexes. DNA binding and tetramerization mutants of Rta fail to stimulate RBP-Jk DNA binding. Our chromatin immunoprecipitation assays show that RBP-Jk DNA binding is broadly, but selectively, stimulated across the entire KSHV genome during reactivation. We propose a model in which tetramerization of Rta allows it to straddle RBP-Jk and contact repeat units on both sides of RBP-Jk. Our study integrates high-affinity Rta DNA binding with the requirement for a cellular transcription factor in Rta transactivation. PMID:21880753

  18. High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.

    Science.gov (United States)

    Matsunaga, Ken-Ichiro; Kimoto, Michiko; Hirao, Ichiro

    2017-01-11

    The novel evolutionary engineering method ExSELEX (genetic alphabet expansion for systematic evolution of ligands by exponential enrichment) provides high-affinity DNA aptamers that specifically bind to target molecules, by introducing an artificial hydrophobic base analogue as a fifth component into DNA aptamers. Here, we present a newer version of ExSELEX, using a library with completely randomized sequences consisting of five components: four natural bases and one unnatural hydrophobic base, 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds). In contrast to the limited number of Ds-containing sequence combinations in our previous library, the increased complexity of the new randomized library could improve the success rates of high-affinity aptamer generation. To this end, we developed a sequencing method for each clone in the enriched library after several rounds of selection. Using the improved library, we generated a Ds-containing DNA aptamer targeting von Willebrand factor A1-domain (vWF) with significantly higher affinity (KD = 75 pM), relative to those generated by the initial version of ExSELEX, as well as that of the known DNA aptamer consisting of only the natural bases. In addition, the Ds-containing DNA aptamer was stabilized by introducing a mini-hairpin DNA resistant to nucleases, without any loss of affinity (KD = 61 pM). This new version is expected to consistently produce high-affinity DNA aptamers.

  19. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  20. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  1. High-affinity binding of fungal beta-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts.

    Science.gov (United States)

    Cosio, E G; Pöpperl, H; Schmidt, W E; Ebel, J

    1988-08-01

    We have recently reported the existence of binding sites in soybean membranes for a beta-glucan fraction derived from the fungal pathogen Phytophthora megasperma f. sp. glycinea, which may play a role in the elicitor-mediated phytoalexin response of this plant [Schmidt, W. E. & Ebel, J. (1987) Proc. Natl Acad. Sci. USA 84, 4117-4121]. The specificity of beta-glucan binding to soybean membranes has now been investigated using a variety of competing polyglucans and oligoglucans of fungal origin. P. megasperma beta-glucan binding showed high apparent affinity for branched glucans with degrees of polymerization greater than 12. Binding affinity showed good correlation with elicitor activity as measured in a soybean cotyledon bioassay. Modification of the glucans at the reducing end with phenylalkylamine reagents had no effect on binding affinity. This characteristic was used to synthesize an oligoglucosyl tyramine derivative suitable for radioiodination. The 125I-glucan (15-30 Ci/mmol) provided higher sensitivity and lower detection limits for the binding assays while behaving in a manner identical to the [3H]glucan used previously. More accurate determinations of the Kd value for glucan binding indicated a higher affinity than previously shown (37 nM versus 200 nM). The 125I-glucan was used to provide the first reported evidence of specific binding of a fungal beta-glucan fraction in vivo to soybean protoplasts. The binding affinity to protoplasts proved identical to that found in microsomal fractions.

  2. Rational design, synthesis and biological evaluations of amino-noscapine: a high affinity tubulin-binding noscapinoid

    Science.gov (United States)

    Naik, Pradeep K.; Chatterji, Biswa Prasun; Vangapandu, Surya N.; Aneja, Ritu; Chandra, Ramesh; Kanteveri, Srinivas; Joshi, Harish C.

    2011-05-01

    Noscapine and its derivatives are important microtubule-interfering agents shown to have potent anti-tumor activity. The binding free energies (Δ G bind) of noscapinoids computed using linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model were in agreement with the experimental Δ G bind with average root mean square error of 0.082 kcal/mol. This LIE-SGB model guided us in designing a novel derivative of noscapine, amino-noscapine [(S)-3-((R)-9-amino-4-methoxy-6-methyl-5,6,7,8-tetrahydro [1, 3] dioxolo[4,5- g]isoquinolin-5-yl)-6,7-dimethoxy isobenzo-furan-1(3 H)-one] that has higher tubulin binding activity (predicted Δ G bind = -6.438 kcal/mol and experimental Δ G bind = -6.628 kcal/mol) than noscapine, but does not significantly change the total extent of the tubulin subunit/polymer ratio. The modes of interaction of amino-noscapine with the binding pocket of tubulin involved three hydrogen bonds and are distinct compared to noscapine which involved only one hydrogen bond. Also the patterns of non-bonded interactions are albeit different between both the lignads. The `blind docking' approach (docking of ligand with different binding sites of a protein and their evaluations) as well as the reasonable accuracy of calculating Δ G bind using LIE-SGB model constitutes the first evidence that this class of compounds binds to tubulin at a site overlapping with colchicine-binding site or close to it. Our results revealed that amino-noscapine has better anti-tumor activity than noscapine.

  3. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    Science.gov (United States)

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date.

  4. Negative Cooperativity and High Affinity in Chitooligosaccharide Binding by a Mycobacterium smegmatis Protein Containing LysM and Lectin Domains.

    Science.gov (United States)

    Patra, Dhabaleswar; Mishra, Padmanabh; Vijayan, Mamannamana; Surolia, Avadhesha

    2016-01-12

    LysM domains have been recognized in bacteria and eukaryotes as carbohydrate-binding protein modules, but the mechanism of their binding to chitooligosaccharides has been underexplored. Binding of a Mycobacterium smegmatis protein containing a lectin (MSL) and one LysM domain to chitooligosaccharides has been studied using isothermal titration calorimetry and fluorescence titration that demonstrate the presence of two binding sites of nonidentical affinities per dimeric MSL-LysM molecule. The affinity of the molecule for chitooligosaccharides correlates with the length of the carbohydrate chain. Its binding to chitooligosaccharides is characterized by negative cooperativity in the interactions of the two domains. Apparently, the flexibility of the long linker that connects the LysM and MSL domains plays a facilitating role in this recognition. The LysM domain in the MSL-LysM molecule, like other bacterial domains but unlike plant LysM domains, recognizes equally well peptidoglycan fragments as well as chitin polymers. Interestingly, in the case presented here, two LysM domains are enough for binding to peptidoglycan in contrast to the three reportedly required by the LysM domains of Bacillus subtilis and Lactococcus lactis. Also, the affinity of the MSL-LysM molecule for chitooligosaccharides is higher than that of LysM-chitooligosaccharide interactions reported so far.

  5. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.; Canoll, P.D.; Musacchio, J.M. (New York Univ. Medical Center, New York, NY (USA))

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.

  6. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Hall, Lena Sørensen;

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslin......Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode...

  7. Structure-affinity properties of a high-affinity ligand of FKBP12 studied by molecular simulations of a binding intermediate.

    Directory of Open Access Journals (Sweden)

    Lilian Olivieri

    Full Text Available With a view to explaining the structure-affinity properties of the ligands of the protein FKBP12, we characterized a binding intermediate state between this protein and a high-affinity ligand. Indeed, the nature and extent of the intermolecular contacts developed in such a species may play a role on its stability and, hence, on the overall association rate. To find the binding intermediate, a molecular simulation protocol was used to unbind the ligand by gradually decreasing the biasing forces introduced. The intermediate was subsequently refined with 17 independent stochastic boundary molecular dynamics simulations that provide a consistent picture of the intermediate state. In this state, the core region of the ligand remains stable, notably because of the two anchoring oxygen atoms that correspond to recurrent motifs found in all FKBP12 ligand core structures. Besides, the non-core regions participate in numerous transient intermolecular and intramolecular contacts. The dynamic aspect of most of the contacts seems important both for the ligand to retain at least a part of its configurational entropy and for avoiding a trapped state along the binding pathway. Since the transient and anchoring contacts contribute to increasing the stability of the intermediate, as a corollary, the dissociation rate constant [Formula: see text] of this intermediate should be decreased, resulting in an increase of the affinity constant [Formula: see text]. The present results support our previous conclusions and provide a coherent rationale for explaining the prevalence in high-affinity ligands of (i the two oxygen atoms found in carbonyl or sulfonyl groups of dissimilar core structures and of (ii symmetric or pseudo-symmetric mobile groups of atoms found as non-core moieties. Another interesting aspect of the intermediate is the distortion of the flexible 80 s loop of the protein, mainly in its tip region, that promotes the accessibility to the bound state.

  8. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  9. Cofactor and substrate binding to vanadium chloroperoxidase determined by UV-VIS spectroscopy and evidence for high affinity for pervanadate

    NARCIS (Netherlands)

    Renirie, R.; Hemrika, W.; Piersma, S.R.; Wever, R.

    2000-01-01

    The vanadate cofactor in vanadium chloroperoxidase has been studied using UV-VIS absorption spectroscopy. A band is present in the near-UV that is red-shifted as compared to free vanadate and shifts in both position and intensity upon change in pH. Mutation of vanadate binding residues has a clear e

  10. Glucose Transport in the Extremely Thermoacidophilic Sulfolobus solfataricus Involves a High-Affinity Membrane-Integrated Binding Protein

    NARCIS (Netherlands)

    Albers, Sonja-V.; Elferink, Marieke G.L.; Charlebois, Robert L.; Sensen, Christoph W.; Driessen, Arnold J.M.; Konings, Wil N.

    1999-01-01

    The archaeon Sulfolobus solfataricus grows optimally at 80°C and pH 2.5 to 3.5 on carbon sources such as yeast extracts, tryptone, and various sugars. Cells rapidly accumulate glucose. This transport activity involves a membrane-bound glucose-binding protein that interacts with its substrate with

  11. A soluble, high-affinity, interleukin-4-binding protein is present in the biological fluids of mice

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Botran, R.; Vitetta, E.S. (Univ. of Texas Southwestern Medical Center, Dallas (USA))

    1990-06-01

    Cytokines such as interleukin 4 (IL-4) play a key role in the regulation of immune responses, but little is known about how their multiple activities are regulated in vivo. In this report, we demonstrate that an IL-4-binding protein (IL-4BP) is constitutively present in the biological fluids of mice (serum, ascites fluid, and urine). Binding of {sup 125}I-labeled IL-4 to the IL-4BP is specific and saturable and can be inhibited by an excess of unlabeled IL-4 but not IL-2. The IL-4BP binds IL-4 with an affinity similar to that reported for the cellular IL-4 with an affinity similar to that reported for the cellular IL-4 receptor (K{sub d} {approx}7 {times} 10{sup {minus}11} M) and has a molecular mass of 30-40 kDa and pI values of 3.6-4.8. IL-4BP-containing biological fluids or purified IL-4BP competitively inhibit the binding of {sup 125}I-labeled IL-4 to mouse T or B cells and inhibit the biological activity of IL-4 but not IL-2. The serum levels of IL-4BP in severe combined immunodeficiency (SCID) mice are lower than those of normal mice. The above findings suggest that IL-4BP plays an important immunoregulatory role in vivo.

  12. Assessing high affinity binding to HLA-DQ2.5 by a novel peptide library based approach

    DEFF Research Database (Denmark)

    Jüse, Ulrike; Arntzen, Magnus; Højrup, Peter

    2011-01-01

    Here we report on a novel peptide library based method for HLA class II binding motif identification. The approach is based on water soluble HLA class II molecules and soluble dedicated peptide libraries. A high number of different synthetic peptides are competing to interact with a limited amount...... to HLA are then isolated by size exclusion chromatography and sequenced by tandem mass spectrometry online coupled to liquid chromatography. The MS/MS data are subsequently searched against a library defined database using a search engine such as Mascot, followed by manual inspection of the results. We...... used two dodecamer and two decamer peptide libraries and HLA-DQ2.5 to test possibilities and limits of this method. The selected sequences which we identified in the fraction eluted from HLA-DQ2.5 showed a higher average of their predicted binding affinity values compared to the original peptide...

  13. The Positron Emission Tomography Ligand DAA1106 Binds With High Affinity to Activated Microglia in Human Neurological Disorders

    OpenAIRE

    2008-01-01

    Chronic microglial activation is an important component of many neurological disorders, and imaging activated microglia in vivo will enable the detection and improved treatment of neuroinflammation. 1-(2-Chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carbox-amide (PK11195), a peripheral benzodiazepine receptor ligand, has been used to image neuroinflammation, but the extent to which PK11195 binding distinguishes activated microglia and reactive astrocytes is unclear. Moreover, PK1119...

  14. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones

    Science.gov (United States)

    Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till FM; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J

    2015-01-01

    Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes. DOI: http://dx.doi.org/10.7554/eLife.06935.001 PMID:26274777

  15. LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor.

    Science.gov (United States)

    Fliegmann, Judith; Jauneau, Alain; Pichereaux, Carole; Rosenberg, Charles; Gasciolli, Virginie; Timmers, Antonius C J; Burlet-Schiltz, Odile; Cullimore, Julie; Bono, Jean-Jacques

    2016-05-01

    LYR3, LYK3, and NFP are lysin motif-containing receptor-like kinases (LysM-RLKs) from Medicago truncatula, involved in perception of symbiotic lipo-chitooligosaccharide (LCO) signals. Here, we show that LYR3, a high-affinity LCO-binding protein, physically interacts with LYK3, a key player regulating symbiotic interactions. In vitro, LYR3 is phosphorylated by the active kinase domain of LYK3. Fluorescence lifetime imaging/Förster resonance energy transfer (FLIM/FRET) experiments in tobacco protoplasts show that the interaction between LYR3 and LYK3 at the plasma membrane is disrupted or inhibited by addition of LCOs. Moreover, LYR3 attenuates the cell death response, provoked by coexpression of NFP and LYK3 in tobacco leaves.

  16. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  17. The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca(2+) binding site.

    Science.gov (United States)

    Laver, Derek R; Hamada, Tomoyo; Fessenden, James D; Ikemoto, Noriaki

    2007-12-01

    In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.

  18. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    Science.gov (United States)

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  19. An engineered high affinity Fbs1 carbohydrate binding protein for selective capture of N-glycans and N-glycopeptides

    Science.gov (United States)

    Chen, Minyong; Shi, Xiaofeng; Duke, Rebecca M.; Ruse, Cristian I.; Dai, Nan; Taron, Christopher H.; Samuelson, James C.

    2017-01-01

    A method for selective and comprehensive enrichment of N-linked glycopeptides was developed to facilitate detection of micro-heterogeneity of N-glycosylation. The method takes advantage of the inherent properties of Fbs1, which functions within the ubiquitin-mediated degradation system to recognize the common core pentasaccharide motif (Man3GlcNAc2) of N-linked glycoproteins. We show that Fbs1 is able to bind diverse types of N-linked glycomolecules; however, wild-type Fbs1 preferentially binds high-mannose-containing glycans. We identified Fbs1 variants through mutagenesis and plasmid display selection, which possess higher affinity and improved recovery of complex N-glycomolecules. In particular, we demonstrate that the Fbs1 GYR variant may be employed for substantially unbiased enrichment of N-linked glycopeptides from human serum. Most importantly, this highly efficient N-glycopeptide enrichment method enables the simultaneous determination of N-glycan composition and N-glycosites with a deeper coverage (compared to lectin enrichment) and improves large-scale N-glycoproteomics studies due to greatly reduced sample complexity. PMID:28534482

  20. An engineered high affinity Fbs1 carbohydrate binding protein for selective capture of N-glycans and N-glycopeptides.

    Science.gov (United States)

    Chen, Minyong; Shi, Xiaofeng; Duke, Rebecca M; Ruse, Cristian I; Dai, Nan; Taron, Christopher H; Samuelson, James C

    2017-05-23

    A method for selective and comprehensive enrichment of N-linked glycopeptides was developed to facilitate detection of micro-heterogeneity of N-glycosylation. The method takes advantage of the inherent properties of Fbs1, which functions within the ubiquitin-mediated degradation system to recognize the common core pentasaccharide motif (Man3GlcNAc2) of N-linked glycoproteins. We show that Fbs1 is able to bind diverse types of N-linked glycomolecules; however, wild-type Fbs1 preferentially binds high-mannose-containing glycans. We identified Fbs1 variants through mutagenesis and plasmid display selection, which possess higher affinity and improved recovery of complex N-glycomolecules. In particular, we demonstrate that the Fbs1 GYR variant may be employed for substantially unbiased enrichment of N-linked glycopeptides from human serum. Most importantly, this highly efficient N-glycopeptide enrichment method enables the simultaneous determination of N-glycan composition and N-glycosites with a deeper coverage (compared to lectin enrichment) and improves large-scale N-glycoproteomics studies due to greatly reduced sample complexity.

  1. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.

    Science.gov (United States)

    Ferrara, Claudia; Grau, Sandra; Jäger, Christiane; Sondermann, Peter; Brünker, Peter; Waldhauer, Inja; Hennig, Michael; Ruf, Armin; Rufer, Arne Christian; Stihle, Martine; Umaña, Pablo; Benz, Jörg

    2011-08-02

    Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen-antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate-carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions.

  2. Isolation of a high affinity neutralizing monoclonal antibody against 2009 pandemic H1N1 virus that binds at the 'Sa' antigenic site.

    Directory of Open Access Journals (Sweden)

    Nachiket Shembekar

    Full Text Available Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K(D = 2.1±0.4 pM murine MAb, MA2077 that binds specifically to the hemagglutinin (HA surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC(50 = 0.08 µg/ml. MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 µg/ml against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein 'Sa' and 'Sb' sites were independently mutated, localized the binding site of MA2077 within the 'Sa' antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.

  3. High Throughput Screening of High-Affinity Ligands for Proteins with Anion-Binding Sites using Desorption Electrospray Ionization (DESI) Mass Spectrometry

    Science.gov (United States)

    Lu, Xin; Ning, Baoming; He, Dacheng; Huang, Lingyun; Yue, Xiangjun; Zhang, Qiming; Huang, Haiwei; Liu, Yang; He, Lan; Ouyang, Jin

    2014-03-01

    A high throughput screening system involving a linear ion trap (LTQ) analyzer, a house-made platform and a desorption electrospray ionization (DESI) source was established to screen ligands with a high affinity for proteins with anion-binding sites. The complexes were analyzed after incubation, ultrafiltration, washing, and displacement. A new anionic region inhibited dissociation (ARID) mechanism that was suitable for a protein with anion-binding site was proposed. We utilized the differences in detectable dissociation of protein-ligand complexes, combined with displacement experiments, to distinguish free ligands displaced from anion-binding sites from liberated ligands dissociated from nonspecific interactions. The method was validated by α1-acid glycoprotein (AGP) and (R), (S)-amlodipine. Site-specific enantioselectivity shown in our experiments was consistent with earlier studies. Obtaining all of the qualitative information of 15*3 samples in 2.3 min indicates that the analysis process is no longer the time-limiting step in the initial stage of drug discovery. Quantitative information verified that our method was at least a semiquantitative method.

  4. Preliminary assessment of extrastriatal dopamine d-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, {sup 18}F-fallypride

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jogeshwar E-mail: jogeshwar-mukherjee@ketthealth.com; Yang, Z.-Y.; Brown, Terry; Lew, Robert; Wernick, Miles; Ouyang Xiaohu; Yasillo, Nicholas; Chen, C.-T.; Mintzer, Robert; Cooper, Malcolm

    1999-07-01

    We have identified the value of {sup 18}F-fallypride {l_brace}(S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3-dim= ethoxybenzamide{r_brace}, as a dopamine D-2 receptor radiotracer for the study of striatal and extrastriatal receptors. Fallypride exhibits high affinities for D-2 and D-3 subtypes and low affinity for D-4 ({sup 3}H-spiperone IC{sub 50}s: D-2=0.05 nM [rat striata], D-3=0.30 nM [SF9 cell lines, rat recombinant], and D-4=240 nM [CHO cell lines, human recombinant]). Biodistribution in the rat brain showed localization of {sup 18}F-fallypride in striata and extrastriatal regions such as the frontal cortex, parietal cortex, amygdala, hippocampus, thalamus, and hypothalamus. In vitro autoradiographic studies in sagittal slices of the rat brain showed localization of {sup 18}F-fallypride in striatal and several extrastriatal regions, including the medulla. Positron emission tomography (PET) experiments with {sup 18}F-fallypride in male rhesus monkeys were carried out in a PET VI scanner. In several PET experiments, apart from the specific binding seen in the striatum, specific binding of {sup 18}F-fallypride was also identified in extracellular regions (in a lower brain slice, possibly the thalamus). Specific binding in the extrastriata was, however, significantly lower compared with that observed in the striata of the monkeys (extrastriata/cerebellum = 2, striata/cerebellum = 10). Postmortem analysis of the monkey brain revealed significant {sup 18}F-fallypride binding in the striata, whereas binding was also observed in extrastriatal regions such as the thalamus, cortical areas, and brain stem.

  5. Betaglycan has two independent domains required for high affinity TGF-β binding: proteolytic cleavage separates the domains and inactivates the neutralizing activity of the soluble receptor

    Science.gov (United States)

    Mendoza, Valentín; Vilchis-Landeros, M. Magdalena; Mendoza-Hernández, Guillermo; Huang, Tao; Villarreal, Maria M.; Hinck, Andrew P.; López-Casillas, Fernando; Montiel, Jose-Luis

    2009-01-01

    Summary Betaglycan is a co-receptor for members of the TGF-β superfamily. Mutagenesis has identified two ligand binding regions, one at the membrane-distal and the other at the membrane-proximal half of the betaglycan ectodomain. Here we show that partial plasmin digestion of soluble betaglycan produces two proteolysis-resistant fragments of 45 and 55 kDa, consistent with the predicted secondary structure, which indicates an intervening non-structured linker region separating the highly structured N- and C-terminal domains. Amino terminal sequencing indicates that the 45 and 55 kDa fragments correspond, respectively, to the membrane-distal and -proximal regions. Plasmin treatment of membrane betaglycan results in the production of equivalent proteolysis-resistant fragments. The 45 and 55 kDa fragments, as well as their recombinant soluble counterparts, Sol Δ10 and Sol Δ11, bind TGF-β, nonetheless, compared to intact soluble betaglycan, have severely diminished ability to block TGF-β activity. Surface plasmon resonance (SPR) analysis indicates that soluble betaglycan has Kds in the low nanomolar range for the three TGF-β isoforms, while those for Sol Δ10 and Sol Δ11 are 1 – 2 orders of magnitude higher. SPR analysis further shows that the Kds of Sol Δ11 are not changed in the presence of Sol Δ10, indicating that the high affinity of soluble betaglycan is a consequence of tethering of the domains together. Overall, these results, suggest that betaglycan ectodomain exhibits a bi-lobular structure in which each lobule folds independently, binds TGF-β through distinct non-overlapping interfaces, and that linker modification may be an approach to improve soluble betaglycan’s TGF-β neutralizing activity. PMID:19842711

  6. Humanized mAb H22 binds the human high affinity Fc receptor for IgG (FcgammaRI), blocks phagocytosis, and modulates receptor expression.

    Science.gov (United States)

    Wallace, P K; Keler, T; Coleman, K; Fisher, J; Vitale, L; Graziano, R F; Guyre, P M; Fanger, M W

    1997-10-01

    About 10-15% of patients with immune thrombocytopenic purpura (ITP) cannot be controlled by corticosteroid therapy and splenectomy. For these patients treatment with high-dose IVIgG induces partial or complete responses. The clinical benefits of IVIgG could be due to blockade of Fc receptors for IgG (FcgammaR), because several model systems clearly show that functional FcgammaR are essential for establishment of ITP and related diseases. However, the specific contributions of the three individual classes of FcgammaR remain to be more completely defined. Recently monoclonal antibody (mAb) H22, which recognizes an epitope on FcgammaRI (CD64) outside the ligand binding domain, was humanized by grafting its complementarity determining regions onto human IgG1 constant domains. Because FcgammaRI has a high affinity for human IgG1 antibodies, we predicted mAb H22 would also bind to FcgammaRI through its Fc domain and block FcgammaRI-mediated phagocytosis. These studies demonstrate that mAb H22 blocked phagocytosis of opsonized red blood cells 1000 times more effectively than an irrelevant IgG. Moreover, cross-linking FcgammaRI with mAb H22 rapidly down-modulated FcgammaRI expression on monocytes without affecting other surface antigens. We conclude that because mAb H22 is a humanized mAb that blocks the FcgammaRI ligand binding domain and down-modulates FcgammaRI expression, it is a particularly good candidate for evaluating the role of FcgammaRI in patients with ITP.

  7. Trimeric gp120-specific bovine monoclonal antibodies require cysteine and aromatic residues in CDRH3 for high affinity binding to HIV Env

    Science.gov (United States)

    Center, Rob J.; Bebbington, Jonathan; Cuthbertson, Jack; Khoury, Georges; Lichtfuss, Marit; Rawlin, Grant; Purcell, Damian

    2017-01-01

    ABSTRACT We isolated HIV-1 Envelope (Env)-specific memory B cells from a cow that had developed high titer polyclonal immunoglobulin G (IgG) with broad neutralizing activity after a long duration vaccination with HIV-1AD8 Env gp140 trimers. We cloned the bovine IgG matched heavy (H) and light (L) chain variable (V) genes from these memory B cells and constructed IgG monoclonal antibodies (mAbs) with either a human constant (C)-region/bovine V-region chimeric or fully bovine C and V regions. Among 42 selected Ig+ memory B cells, two mAbs (6A and 8C) showed high affinity binding to gp140 Env. Characterization of both the fully bovine and human chimeric isoforms of these two mAbs revealed them as highly type-specific and capable of binding only to soluble AD8 uncleaved gp140 trimers and covalently stabilized AD8 SOSIP gp140 cleaved trimers, but not monomeric gp120. Genomic sequence analysis of the V genes showed the third heavy complementarity-determining region (CDRH3) of 6A mAb was 21 amino acids in length while 8C CDRH3 was 14 amino acids long. The entire V heavy (VH) region was 27% and 25% diverged for 6A and 8C, respectively, from the best matched germline V genes available, and the CDRH3 regions of 6A and 8C were 47.62% and 78.57% somatically mutated, respectively, suggesting a high level of somatic hypermutation compared with CDRH3 of other species. Alanine mutagenesis of the VH genes of 6A and 8C, showed that CDRH3 cysteine and tryptophan amino acids were crucial for antigen binding. Therefore, these bovine vaccine-induced anti-HIV antibodies shared some of the notable structural features of elite human broadly neutralizing antibodies, such as CDRH3 size and somatic mutation during affinity-maturation. However, while the 6A and 8C mAbs inhibited soluble CD4 binding to gp140 Env, they did not recapitulate the neutralizing activity of the polyclonal antibodies against HIV infection. PMID:27996375

  8. Effects of Midgut-Protein-Preparative and Ligand Binding Procedures on the Toxin Binding Characteristics of BT-R1, a Common High-Affinity Receptor in Manduca sexta for Cry1A Bacillus thuringiensis Toxins

    Science.gov (United States)

    Keeton, Timothy P.; Francis, Brian R.; Maaty, Walid S. A.; Bulla, Lee A.

    1998-01-01

    The identity of the physiologically important Cry1A receptor protein(s) in the lepidopteran Manduca sexta has been a matter of dispute due to the multiple proteins which bind the Cry1Ac toxin. Cry1Aa, Cry1Ab, and Cry1Ac exhibit essentially identical toxicities toward M. sexta larvae and show a high degree of sequence and presumed structural identities. These similarities make it likely that there is a common mechanism of toxicity in these lepidopteran-specific toxins in terms of both mode of action and the receptor proteins through which these toxins exert their lepidopteran-specific toxicity. Investigators in our laboratory previously demonstrated that the cloned 210-kDa glycoprotein BT-R1 binds all three Cry1A toxins (T. P. Keeton and L. A. Bulla, Jr., Appl. Environ. Microbiol. 63:3419–3425, 1997). This protein remains a common binding protein even after being subjected to various midgut membrane preparation and processing protocols. The method used to isolate proteins from the M. sexta larval midgut in no significant way affects the results of ligand binding and vacuum blotting experiments, and we have been unable to detect specific, high-affinity binding of any Cry1A toxin to Cry1Ac binding proteins other than BT-R1. Alterations in blot substrate and blocking, hybridization, and washing buffers support these conclusions. Collectively, these results indicate that in M. sexta the cadherin-like BT-R1 protein is a common high-affinity receptor protein for the Cry1A family of toxins. PMID:9603829

  9. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole;

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human...

  10. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140.

    Science.gov (United States)

    Beider, Katia; Ribakovsky, Elena; Abraham, Michal; Wald, Hanna; Weiss, Lola; Rosenberg, Evgenia; Galun, Eithan; Avigdor, Abraham; Eizenberg, Orly; Peled, Amnon; Nagler, Arnon

    2013-07-01

    Chemokine axis CXCR4/CXCL12 is critically involved in the survival and trafficking of normal and malignant B lymphocytes. Here, we investigated the effect of high-affinity CXCR4 antagonist BKT140 on lymphoma cell growth and rituximab-induced cytotoxicity in vitro and in vivo. In vitro efficacy of BKT140 alone or in combination with rituximab was determined in non-Hodgkin lymphoma (NHL) cell lines and primary samples from bone marrow aspirates of patients with NHL. In vivo efficacy was evaluated in xenograft models of localized and disseminated NHL with bone marrow involvement. Antagonizing CXCR4 with BKT140 resulted in significant inhibition of CD20+ lymphoma cell growth and in the induction of cell death, respectively. Combination of BKT140 with rituximab significantly enhanced the apoptosis against the lymphoma cells in a dose-dependent manner. Moreover, rituximab induced CXCR4 expression in lymphoma cell lines and primary lymphoma cells, suggesting the possible interaction between CD20 and CXCR4 pathways in NHL. Primary bone marrow stromal cells (BMSC) further increased CXCR4 expression and protected NHL cells from rituximab-induced apoptosis, whereas BKT140 abrogated this protective effect. Furthermore, BKT140 showed efficient antilymphoma activity in vivo in the xenograft model of disseminated NHL with bone marrow involvement. BKT140 treatment inhibited the local tumor progression and significantly reduced the number of NHL cells in the bone marrow. Combined treatment of BKT140 with rituximab further decreased the number of viable lymphoma cells in the bone marrow, achieving 93% reduction. These findings suggest the possible role of CXCR4 in NHL progression and response to rituximab and provide the scientific basis for the development of novel CXCR4-targeted therapies for refractory NHL. ©2013 AACR.

  11. Design, Synthesis, Binding and Docking-Based 3D-QSAR Studies of 2-Pyridylbenzimidazoles—A New Family of High Affinity CB1 Cannabinoid Ligands

    Directory of Open Access Journals (Sweden)

    Patricio Iturriaga-Vásquez

    2013-04-01

    Full Text Available A series of novel 2-pyridylbenzimidazole derivatives was rationally designed and synthesized based on our previous studies on benzimidazole 14, a CB1 agonist used as a template for optimization. In the present series, 21 compounds displayed high affinities with Ki values in the nanomolar range. JM-39 (compound 39 was the most active of the series (KiCB1 = 0.53 nM, while compounds 31 and 44 exhibited similar affinities to WIN 55212-2. CoMFA analysis was performed based on the biological data obtained and resulted in a statistically significant CoMFA model with high predictive value (q2 = 0.710, r2 = 0.998, r2pred = 0.823.

  12. A High-Affinity Binding Site for the AVR9 Peptide Elicitor of Cladosporium fulvum Is Present on Plasma Membranes of Tomato and Other Solanaceous Plants.

    Science.gov (United States)

    Kooman-Gersmann, M.; Honee, G.; Bonnema, G.; De Wit, PJGM.

    1996-05-01

    The race-specific Cladosporium fulvum peptide elicitor AVR9, which specifically induces a hypersensitive response in tomato genotypes carrying the Cf-9 resistance gene, was labeled with iodine-125 at the N-terminal tyrosine residue and used in binding studies. 125I-AVR9 showed specific, saturable, and reversible binding to plasma membranes isolated from leaves of tomato cultivar Moneymaker without Cf resistance genes (MM-Cf0) or from a near-isogenic genotype with the Cf-9 resistance gene (MM-Cf9). The dissociation constant was found to be 0.07 nM, and the receptor concentration was 0.8 pmol/mg microsomal protein. Binding was highly influenced by pH and the ionic strength of the binding buffer and by temperature, indicating the involvement of both electrostatic and hydrophobic interactions. Binding kinetics and binding capacity were similar for membranes of the MM-Cf0 and MM-Cf9 genotypes. In all solanaceous plant species tested, an AVR9 binding site was present, whereas in the nonsolanaceous species that were analyzed, such a binding site could not be identified. The ability of membranes isolated from different solanaceous plant species to bind AVR9 seems to correlate with the presence of members of the Cf-9 gene family, but whether this correlation is functional remains to be determined.

  13. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues.

    Science.gov (United States)

    Gettins, Peter G W; Dolmer, Klavs

    2016-01-08

    Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13-800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.

  14. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction.

    Science.gov (United States)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh; Jensen, Frank B; Wang, Tobias; Bayley, Mark

    2015-06-01

    Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors, such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl(-). Whole blood had a high O2 affinity (O2 tension at half saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔH(app) = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl(-) binding to Hb, which, in part, explains the high O2 affinity and high temperature sensitivity of blood O2 binding. This study demonstrates how a potent mechanism for increasing O2 affinity is linked to increased temperature sensitivity of O2 transport and provides a basic framework for a better understanding of how hypoxia-adapted species will react to increasing temperatures.

  15. Quantitative autoradiography of the binding sites for ( sup 125 I) iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W. (Eli Lilly and Co., Indianapolis, IN (USA))

    1991-05-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with ({sup 125}I)iodoglyburide (N-(2-((((cyclohexylamino)carbonyl)amino)sulfonyl)ethyl)-5-{sup 125}I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific ({sup 125}I)iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of ({sup 125}I)iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels.

  16. Design and synthesis of lipid-coupled inositol 1,2,3,4,5,6-hexakisphosphate derivatives exhibiting high-affinity binding for the HIV-1 MA domain.

    Science.gov (United States)

    Tateishi, Hiroshi; Anraku, Kensaku; Koga, Ryoko; Okamoto, Yoshinari; Fujita, Mikako; Otsuka, Masami

    2014-07-21

    The precursor of Gag protein (Pr55(Gag)) of human immunodeficiency virus, the principal structural component required for virus assembly, is known to bind d-myo-phosphatidylinositol 4,5-bisphosphate (PIP2). The N-terminus of Pr55(Gag), the MA domain, plays a critical role in the binding of Pr55(Gag) to the plasma membrane. Herein, we designed and synthesized myo-phosphatidylinositol 2,3,4,5,6-pentakisphosphate (PIP5) derivatives comprising highly phosphorylated inositol and variously modified diacylglycerol to examine the MA-binding properties. The inositol moiety was synthesized starting with myo-inositol and assembled with a hydrophobic glycerol moiety through a phosphate linkage. The Kd value for MA-binding of the PIP5 derivative 2 (Kd = 0.25 μM) was the lowest (i.e., highest affinity) of all derivatives, i.e., 70-fold lower than the Kd for the PIP2 derivative 1 (Kd = 16.9 μM) and 100-fold lower than the Kd for IP6 (Kd = 25.7 μM), suggesting the possibility that the PIP5 derivative blocks Pr55(Gag) membrane binding by competing with PIP2 in MA-binding.

  17. Regulation of streptokinase expression by CovR/S in Streptococcus pyogenes: CovR acts through a single high-affinity binding site.

    Science.gov (United States)

    Churchward, Gordon; Bates, Christopher; Gusa, Asiya A; Stringer, Virginia; Scott, June R

    2009-02-01

    The important human pathogen Streptococcus pyogenes (the group A streptococcus or GAS) produces many virulence factors that are regulated by the two-component signal transduction system CovRS (CsrRS). Dissemination of GAS infection originating at the skin has been shown to require production of streptokinase, whose transcription is repressed by CovR. In this work we have studied the interaction of CovR and phosphorylated CovR (CovR-P) with the promoter for streptokinase, Pska. We found that, in contrast to the other CovR-repressed promoters, Pska regulation by CovR occurs through binding at a single ATTARA consensus binding sequence (CB) that overlaps the -10 region of the promoter. Binding of CovR to other nearby consensus sequences occurs upon phosphorylation of the protein, but these other CBs do not contribute to the regulation of Pska by CovR. Thus, binding at a specific site does not necessarily indicate that the site is involved in regulation by CovR. In addition, at Pska, CovR binding to the different sites does not appear to involve cooperative interactions, which simplifies the analysis of CovR binding and gives us insight into the modes of interaction that occur between CovR and its specific DNA-binding sites. Finally, the observation that regulation of transcription from Pska occurs at a very low concentration of phosphorylated CovR may have important implications for the regulation of virulence gene expression during GAS infection.

  18. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  19. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh

    2015-01-01

    Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors, such as ......Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors...... saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔHapp = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl- binding to Hb, which, in part, explains...

  20. SCM, a novel M-like protein from Streptococcus canis, binds (mini)-plasminogen with high affinity and facilitates bacterial transmigration.

    Science.gov (United States)

    Fulde, Marcus; Rohde, Manfred; Hitzmann, Angela; Preissner, Klaus T; Nitsche-Schmitz, D Patric; Nerlich, Andreas; Chhatwal, Gursharan Singh; Bergmann, Simone

    2011-03-15

    Streptococcus canis is an important zoonotic pathogen capable of causing serious invasive diseases in domestic animals and humans. In the present paper we report the binding of human plasminogen to S. canis and the recruitment of proteolytically active plasmin on its surface. The binding receptor for plasminogen was identified as a novel M-like protein designated SCM (S. canis M-like protein). SPR (surface plasmon resonance) analyses, radioactive dot-blot analyses and heterologous expression on the surface of Streptococcus gordonii confirmed the plasminogen-binding capability of SCM. The binding domain was located within the N-terminus of SCM, which specifically bound to the C-terminal part of plasminogen (mini-plasminogen) comprising kringle domain 5 and the catalytic domain. In the presence of urokinase, SCM mediated plasminogen activation on the bacterial surface that was inhibited by serine protease inhibitors and lysine amino acid analogues. Surface-bound plasmin effectively degraded purified fibrinogen as well as fibrin clots, resulting in the dissolution of fibrin thrombi. Electron microscopic illustration and time-lapse imaging demonstrated bacterial transmigration through fibrinous thrombi. The present study has led, for the first time, to the identification of SCM as a novel receptor for (mini)-plasminogen mediating the fibrinolytic activity of S. canis.

  1. A high-affinity inhibitor of yeast carboxypeptidase Y is encoded by TFS1 and shows homology to a family of lipid binding proteins

    DEFF Research Database (Denmark)

    Bruun, A W; Svendsen, I; Sørensen, S O;

    1998-01-01

    degree of specificity, showing a 200-fold higher Ki toward a carboxypeptidase from Candida albicans which is highly homologous to carboxypeptidase Y. The TFS1 gene product shows extensive similarity to a class of proteins termed "21-23-kDa lipid binding proteins", members of which are found in several...

  2. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    The urokinase plasminogen activator receptor (uPAR) is a membrane protein comprised of three extracellular domains. In order to study the importance of this domain organization in the ligand-binding process of the receptor we subjected a recombinant, soluble uPAR (suPAR) to specific proteolytic c...

  3. The HLA-DP2 protein binds the immunodominant epitope from myelin basic protein, MBP85-99, with high affinity

    DEFF Research Database (Denmark)

    Hansen, B E; Nielsen, Claus Henrik; Madsen, H O;

    2011-01-01

    Myelin basic protein (MBP) is a candidate autoantigen in multiple sclerosis (MS). The immunodominant epitope for T-cell responses is assigned to the amino acid sequence MBP84-102, which binds to human leukocyte antigen (HLA)-DR2a (DRB5*0101) and HLA-DR2b (DRB1*1501) of the HLA-DR2 haplotype...

  4. Receptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP.

    Science.gov (United States)

    Jensen, Jan K; Dolmer, Klavs; Schar, Christine; Gettins, Peter G W

    2009-06-26

    RAP (receptor-associated protein) is a three domain 38 kDa ER (endoplasmic reticulum)-resident protein that is a chaperone for the LRP (low-density lipoprotein receptor-related protein). Whereas RAP is known to compete for binding of all known LRP ligands, neither the location, the number of binding sites on LRP, nor the domains of RAP involved in binding is known with certainty. We have systematically examined the binding of each of the three RAP domains (D1, D2 and D3) to tandem and triple CRs (complement-like repeats) that span the principal ligand-binding region, cluster II, of LRP. We found that D3 binds with low nanomolar affinity to all (CR)2 species examined. Addition of a third CR domain increases the affinity for D3 slightly. A pH change from 7.4 to 5.5 gave only a 6-fold increase in Kd for D3 at 37 degrees C, whereas temperature change from 22 degrees C to 37 degrees C has a similar small effect on affinity, raising questions about the recently proposed D3-destabilization mechanism of RAP release from LRP. Surprisingly, and in contrast to literature suggestions, D1 and D2 also bind to most (CR)2 and (CR)3 constructs with nanomolar affinity. Although this suggested that there might be three high-affinity binding sites in RAP for LRP, studies with intact RAP showed that only two binding sites are available in the intact chaperone. These findings suggest a new model for RAP to function as a folding chaperone and also for the involvement of YWTD domains in RAP release from LRP in the Golgi.

  5. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host.

    Science.gov (United States)

    González-González, Angélica; Palma-Millanao, Rubén; Yáñez, Osvaldo; Rojas, Maximiliano; Mutis, Ana; Venthur, Herbert; Quiroz, Andrés; Ramírez, Claudio C

    2016-01-01

    Hylamorpha elegans(Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs inH. elegans as well as six new volatiles released by its native host Nothofagus obliqua(Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. oblique revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies.

  6. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host

    Science.gov (United States)

    Palma-Millanao, Rubén; Yáñez, Osvaldo; Rojas, Maximiliano; Mutis, Ana; Venthur, Herbert; Quiroz, Andrés; Ramírez, Claudio C.

    2016-01-01

    Hylamorpha elegans (Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs in H. elegans as well as six new volatiles released by its native host Nothofagus obliqua (Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. obliqua revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies. PMID:27012867

  7. The extrinsic PsbO protein modulates the oxidation/reduction rate of the exogenous Mn cation at the high-affinity Mn-binding site of Mn-depleted PSII membranes.

    Science.gov (United States)

    Semin, Boris K; Podkovirina, Tatiana E; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B

    2015-08-01

    The oxidation of exogenous Mn(II) cations at the high-affinity (HA) Mn-binding site in Mn-depleted photosystem II (PSII) membranes with or without the presence of the extrinsic PsbO polypeptide was studied by EPR. The six-lines EPR spectrum of Mn(II) cation disappears in the absence of the PsbO protein in membranes under illumination, but there was no effect when PSII preparations bound the PsbO protein. Our study demonstrates that such effect is determined by significant influence of the PsbO protein on the ratio between the rates of Mn oxidation and reduction at the HA site when the membranes are illuminated.

  8. Peptides derived from HIV-1, HIV-2, Ebola virus, SARS coronavirus and coronavirus 229E exhibit high affinity binding to the formyl peptide receptor

    Science.gov (United States)

    Mills, John S.

    2007-01-01

    Peptides derived from the membrane proximal region of fusion proteins of human immunodeficiency viruses 1 and 2, Coronavirus 229 E, severe acute respiratory syndrome coronavirus and Ebola virus were all potent antagonists of the formyl peptide receptor expressed in Chinese hamster ovary cells. Binding of viral peptides was affected by the naturally occurring polymorphisms at residues 190 and 192, which are located at second extracellular loop-transmembrane helix 5 interface. Substitution of R190 with W190 enhanced the affinity for a severe acute respiratory syndrome coronavirus peptide 6 fold but reduced the affinity for N-formyl-Nle–Leu-Phe by 2.5 fold. A 12 mer peptide derived from coronavirus 229E (ETYIKPWWVWL) was the most potent antagonist of the formyl peptide receptor W190 with a Ki of 230 nM. Fluorescently labeled ETYIKPWWVWL was effectively internalized by all three variants with EC50 of ~25 nM. An HKU-1 coronavirus peptide, MYVKWPWYVWL, was a potent antagonist but N-formyl-MYVKWPWYVWL was a potent agonist. ETYIKPWWVWL did not stimulate GTPγS binding but inhibited the stimulation by formyl-NleLeuPhe. It also blocked β arrestin translocation and receptor downregulation induced by formyl-Nle–Leu–Phe. This indicates that formyl peptide receptor may be important in viral infections and that variations in its sequence among individuals may affect their likelihood of viral and bacterial infections. PMID:16842982

  9. Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site

    DEFF Research Database (Denmark)

    Laursen, Mette; Yatime, Laure; Nissen, Poul

    2013-01-01

    we describe a crystal structure of the phosphorylated pig kidney Na+,K+-ATPase in complex with the CTS representative ouabain, extending to 3.4 Å resolution. The structure provides key details on CTS binding, revealing an extensive hydrogen bonding network formed by the β-surface of the steroid core......The Na+,K+-ATPase maintains electrochemical gradients for Na+ and K+ that are critical for animal cells. Cardiotonic steroids (CTSs), widely used in the clinic and recently assigned a role as endogenous regulators of intracellular processes, are highly specific inhibitors of the Na+,K+-ATPase. Here...... of ouabain and the side chains of αM1, αM2, and αM6. Furthermore, the structure reveals that cation transport site II is occupied by Mg2+, and crystallographic studies indicate that Rb+ and Mn2+, but not Na+, bind to this site. Comparison with the low-affinity [K2]E2–MgFx–ouabain structure [Ogawa et al...

  10. Tethering of Epidermal Growth Factor (EGF) to Beta Tricalcium Phosphate (βTCP) via Fusion to a High Affinity, Multimeric βTCP-Binding Peptide: Effects on Human Multipotent Stromal Cells/Connective Tissue Progenitors.

    Science.gov (United States)

    Alvarez, Luis M; Rivera, Jaime J; Stockdale, Linda; Saini, Sunil; Lee, Richard T; Griffith, Linda G

    2015-01-01

    Transplantation of freshly-aspirated autologous bone marrow, together with a scaffold, is a promising clinical alternative to harvest and transplantation of autologous bone for treatment of large defects. However, survival proliferation, and osteogenic differentiation of the marrow-resident stem and progenitor cells with osteogenic potential can be limited in large defects by the inflammatory microenvironment. Previous studies using EGF tethered to synthetic polymer substrates have demonstrated that surface-tethered EGF can protect human bone marrow-derived osteogenic stem and progenitor cells from pro-death inflammatory cues and enhance their proliferation without detriment to subsequent osteogenic differentiation. The objective of this study was to identify a facile means of tethering EGF to clinically-relevant βTCP scaffolds and to demonstrate the bioactivity of EGF tethered to βTCP using stimulation of the proliferative response of human bone-marrow derived mesenchymal stem cells (hBMSC) as a phenotypic metric. We used a phage display library and panned against βTCP and composites of βTCP with a degradable polyester biomaterial, together with orthogonal blocking schemes, to identify a 12-amino acid consensus binding peptide sequence, LLADTTHHRPWT, with high affinity for βTCP. When a single copy of this βTCP-binding peptide sequence was fused to EGF via a flexible peptide tether domain and expressed recombinantly in E. coli together with a maltose-binding domain to aid purification, the resulting fusion protein exhibited modest affinity for βTCP. However, a fusion protein containing a linear concatamer containing 10 repeats of the binding motif the resulting fusion protein showed high affinity stable binding to βTCP, with only 25% of the protein released after 7 days at 37oC. The fusion protein was bioactive, as assessed by its abilities to activate kinase signaling pathways downstream of the EGF receptor when presented in soluble form, and to enhance

  11. Tethering of Epidermal Growth Factor (EGF to Beta Tricalcium Phosphate (βTCP via Fusion to a High Affinity, Multimeric βTCP-Binding Peptide: Effects on Human Multipotent Stromal Cells/Connective Tissue Progenitors.

    Directory of Open Access Journals (Sweden)

    Luis M Alvarez

    Full Text Available Transplantation of freshly-aspirated autologous bone marrow, together with a scaffold, is a promising clinical alternative to harvest and transplantation of autologous bone for treatment of large defects. However, survival proliferation, and osteogenic differentiation of the marrow-resident stem and progenitor cells with osteogenic potential can be limited in large defects by the inflammatory microenvironment. Previous studies using EGF tethered to synthetic polymer substrates have demonstrated that surface-tethered EGF can protect human bone marrow-derived osteogenic stem and progenitor cells from pro-death inflammatory cues and enhance their proliferation without detriment to subsequent osteogenic differentiation. The objective of this study was to identify a facile means of tethering EGF to clinically-relevant βTCP scaffolds and to demonstrate the bioactivity of EGF tethered to βTCP using stimulation of the proliferative response of human bone-marrow derived mesenchymal stem cells (hBMSC as a phenotypic metric. We used a phage display library and panned against βTCP and composites of βTCP with a degradable polyester biomaterial, together with orthogonal blocking schemes, to identify a 12-amino acid consensus binding peptide sequence, LLADTTHHRPWT, with high affinity for βTCP. When a single copy of this βTCP-binding peptide sequence was fused to EGF via a flexible peptide tether domain and expressed recombinantly in E. coli together with a maltose-binding domain to aid purification, the resulting fusion protein exhibited modest affinity for βTCP. However, a fusion protein containing a linear concatamer containing 10 repeats of the binding motif the resulting fusion protein showed high affinity stable binding to βTCP, with only 25% of the protein released after 7 days at 37oC. The fusion protein was bioactive, as assessed by its abilities to activate kinase signaling pathways downstream of the EGF receptor when presented in soluble form

  12. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site.

    Science.gov (United States)

    Piscitelli, Chayne L; Krishnamurthy, Harini; Gouaux, Eric

    2010-12-23

    Neurotransmitter/sodium symporters (NSSs) couple the uptake of neurotransmitter with one or more sodium ions, removing neurotransmitter from the synaptic cleft. NSSs are essential to the function of chemical synapses, are associated with multiple neurological diseases and disorders, and are the targets of therapeutic and illicit drugs. LeuT, a prokaryotic orthologue of the NSS family, is a model transporter for understanding the relationships between molecular mechanism and atomic structure in a broad range of sodium-dependent and sodium-independent secondary transporters. At present there is a controversy over whether there are one or two high-affinity substrate binding sites in LeuT. The first-reported crystal structure of LeuT, together with subsequent functional and structural studies, provided direct evidence for a single, high-affinity, centrally located substrate-binding site, defined as the S1 site. Recent binding, flux and molecular simulation studies, however, have been interpreted in terms of a model where there are two high-affinity binding sites: the central, S1, site and a second, the S2 site, located within the extracellular vestibule. Furthermore, it was proposed that the S1 and S2 sites are allosterically coupled such that occupancy of the S2 site is required for the cytoplasmic release of substrate from the S1 site. Here we address this controversy by performing direct measurement of substrate binding to wild-type LeuT and to S2 site mutants using isothermal titration calorimetry, equilibrium dialysis and scintillation proximity assays. In addition, we perform uptake experiments to determine whether the proposed allosteric coupling between the putative S2 site and the S1 site manifests itself in the kinetics of substrate flux. We conclude that LeuT harbours a single, centrally located, high-affinity substrate-binding site and that transport is well described by a simple, single-substrate kinetic mechanism.

  13. Dimerization is not a determining factor for functional high affinity human plasminogen binding by the group A streptococcal virulence factor PAM and is mediated by specific residues within the PAM a1a2 domain.

    Science.gov (United States)

    Bhattacharya, Sarbani; Liang, Zhong; Quek, Adam J; Ploplis, Victoria A; Law, Ruby; Castellino, Francis J

    2014-08-01

    A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97-125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83-145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1-2 nm). However, addition of two PAM residues (Arg(126)-His(127)) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg(113), His(114), Glu(116), Arg(126), His(127)), mutation of which reduced PAM binding affinity for K2hPg by ∼ 1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence.

  14. Cystatin M/E is a high affinity inhibitor of cathepsin V and cathepsin L by a reactive site that is distinct from the legumain-binding site. A novel clue for the role of cystatin M/E in epidermal cornification.

    NARCIS (Netherlands)

    Cheng, T.; Hitomi, K.; Vlijmen-Willems, I.M.J.J. van; Jongh, G.J. de; Yamamoto, K.; Nishi, K.; Watts, C.; Reinheckel, T.; Schalkwijk, J.; Zeeuwen, P.L.J.M.

    2006-01-01

    Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine p

  15. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    Science.gov (United States)

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  16. El receptor de la hormona de crecimiento humana (hGH y la proteína de transporte de alta afinidad de la hGH Human Growth Hormone (GH Receptor and the High Affinity GH-Binding Protein

    Directory of Open Access Journals (Sweden)

    María Gabriela Ballerini

    2008-03-01

    Full Text Available La hormona de crecimiento humana (hGH circula parcialmente unida a su proteína de transporte de alta afinidad (GHBP la cual resulta del clivaje proteolítico del dominio extracelular del receptor de GH. Recientemente la enzima TACE se identificó como la metaloproteasa responsable del clivaje y liberación de GHBP a circulación. Aunque aún se desconoce la función específica de esta proteína de transporte, distintos trabajos en la literatura demuestran efectos que potencian y efectos inhibitorios sobre la acción de GH. Por otro lado, existen evidencias que demuestran una fuerte relación entre la GHBP y el nivel de receptor de GH en el hígado en situaciones fisiológicas y patológicas. Esto permitió proponer a la determinación de GHBP en suero como un marcador periférico de la abundancia del receptor de GH en los tejidos. La determinación de la concentración de GHBP sería de especial interés para evaluar pacientes con diagnóstico probable de insensibilidad a la acción de GH y orientar el posterior estudio de anormalidades en el gen del receptor de GH. En la presente revisión, también se abordan dificultades metodológicas relacionadas a la medición de GHBP sérica.Human circulating growth hormone (GH is partly bound to a high-affinity binding protein (GHBP which is derived from proteolytical cleavage of the extracellular domain of the GH receptor. Recently, the metalloproteinase TACE has been identified as an important enzyme responsive for inducing GHBP shedding. Although the specific function of GHBP is not fully known, both enhancing and inhibitory roles of this binding protein on GH action have been proposed. Many reports have demonstrated a close relationship between GHBP and the liver GH receptor status in physiological conditions and diseases. Moreover, serum GHBP measurement has been proposed as an useful peripheral index of the GH receptor abundance. Related to the latter, circulating GHBP concentration would be of

  17. Preferential binding of growth inhibitory prostaglandins by the target protein of a carcinogen

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S.H.; Sorof, S. (Fox Chase Cancer Center, Philadelphia, PA (United States))

    1990-12-01

    Liver fatty acid binding protein (L-FABP) is the principal target protein of the hepatic carcinogen N-(2-fluorenyl)acetamide (2-acetylaminofluorene) in rat liver. In addition, the cyclopentenone prostaglandins (PG), PGA, PGJ{sub 2}, and {Delta}{sup 12}-PGJ{sub 2}, inhibit the growth of many cell types in vitro. This report describes the preferential binding of the growth inhibitory prostaglandins by L-FABP and the reversible inhibition of thymidine incorporation into DNA by PGA{sub 2} and {Delta}{sup 12}-PGJ{sub 2} in primary cultures of purified rat hepatocytes. As a model ligand, ({sup 3}H)PGA{sub 1} bound to L-FABP specifically, reversibly, rapidly, and with high affinity. Its dissociation constants were 134 nM (high affinity) and 3.6 {mu}M (low affinity). The high-affinity finding of ({sup 3}H)PGA{sup 1} correlated with their growth inhibitory activities reported previously and here. The in vitro actions of L-FABP are compatible with those of a specific and dissociable carrier of growth inhibitory prostaglandins in rat hepatocytes and suggest that the carcinogen may usurp the cellular machinery of the growth inhibitory prostaglandins.

  18. Efficient mRNA-Based Genetic Engineering of Human NK Cells with High-Affinity CD16 and CCR7 Augments Rituximab-Induced ADCC against Lymphoma and Targets NK Cell Migration toward the Lymph Node-Associated Chemokine CCL19.

    Science.gov (United States)

    Carlsten, Mattias; Levy, Emily; Karambelkar, Amrita; Li, Linhong; Reger, Robert; Berg, Maria; Peshwa, Madhusudan V; Childs, Richard W

    2016-01-01

    For more than a decade, investigators have pursued methods to genetically engineer natural killer (NK) cells for use in clinical therapy against cancer. Despite considerable advances in viral transduction of hematopoietic stem cells and T cells, transduction efficiencies for NK cells have remained disappointingly low. Here, we show that NK cells can be genetically reprogramed efficiently using a cGMP-compliant mRNA electroporation method that induces rapid and reproducible transgene expression in nearly all transfected cells, without negatively influencing their viability, phenotype, and cytotoxic function. To study its potential therapeutic application, we used this approach to improve key aspects involved in efficient lymphoma targeting by adoptively infused ex vivo-expanded NK cells. Electroporation of NK cells with mRNA coding for the chemokine receptor CCR7 significantly promoted migration toward the lymph node-associated chemokine CCL19. Further, introduction of mRNA coding for the high-affinity antibody-binding receptor CD16 (CD16-158V) substantially augmented NK cell cytotoxicity against rituximab-coated lymphoma cells. Based on these data, we conclude that this approach can be utilized to genetically modify multiple modalities of NK cells in a highly efficient manner with the potential to improve multiple facets of their in vivo tumor targeting, thus, opening a new arena for the development of more efficacious adoptive NK cell-based cancer immunotherapies.

  19. Dyes with high affinity for polylactide

    Institute of Scientific and Technical Information of China (English)

    Liang He; Shu Fen Zhang; Bing Tao Tang; Li Li Wang; Jin Zong Yang

    2007-01-01

    Attempts were made to develop dyes with high affinity for polylactide as an alternative to the existent commercial disperse dyes.The dyes synthesized according to the affinity concept of dye to polylactide exhibited excellent dyeing properties on polylactide compared with the commercial disperse dyes.

  20. The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors.

    Science.gov (United States)

    Nezami, Azin; Freire, Ernesto

    2002-12-04

    The plasmepsins are key enzymes in the life cycle of the Plasmodium parasites responsible for malaria. Since plasmepsin inhibition leads to parasite death, these enzymes have been acknowledged to be important targets for the development of new antimalarial drugs. The development of effective plasmepsin inhibitors, however, is compounded by their genomic diversity which gives rise not to a unique target for drug development but to a family of closely related targets. Successful drugs will have to inhibit not one but several related enzymes with high affinity. Structure-based drug design against heterogeneous targets requires a departure from the classic 'lock-and-key' paradigm that leads to the development of conformationally constrained molecules aimed at a single target. Drug molecules designed along those principles are usually rigid and unable to adapt to target variations arising from naturally occurring genetic polymorphisms or drug-induced resistant mutations. Heterogeneous targets need adaptive drug molecules, characterised by the presence of flexible elements at specific locations that sustain a viable binding affinity against existing or expected polymorphisms. Adaptive ligands have characteristic thermodynamic signatures that distinguish them from their rigid counterparts. This realisation has led to the development of rigorous thermodynamic design guidelines that take advantage of correlations between the structure of lead compounds and the enthalpic and entropic components of the binding affinity. In this paper, we discuss the application of the thermodynamic approach to the development of high affinity (K(i) - pM) plasmepsin inhibitors. In particular, a family of allophenylnorstatine-based compounds is evaluated for their potential to inhibit a wide spectrum of plasmepsins.

  1. Changes in Binding of [(123)I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Donat, Cornelius K; Gaber, Khaled; Meixensberger, Jürgen

    2016-01-01

    After traumatic brain injury (TBI), secondary injuries develop, including neuroinflammatory processes that contribute to long-lasting impairments. These secondary injuries represent potential targets for treatment and diagnostics. The translocator protein 18 kDa (TSPO) is expressed in activated...... microglia cells and upregulated in response to brain injury and therefore a potential biomarker of the neuroinflammatory processes. Second-generation radioligands of TSPO, such as [(123)I]CLINDE, have a higher signal-to-noise ratio as the prototype ligand PK11195. [(123)I]CLINDE has been employed in human...... and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [(123)I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [(123)I]CLINDE binding in the ipsilateral motor...

  2. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    Science.gov (United States)

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-04-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  3. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, C.L.; Eldefrawi, A.T.; Eldefrawi, M.E. (Univ. of Maryland, Baltimore (USA))

    1990-05-01

    The M2 subtype of muscarinic receptor is predominant in heart, and such receptors were reported to be located in muscles as well as in presynaptic cholinergic and adrenergic nerve terminals. Muscarinic receptors of rat heart were identified by the high affinity binding of the agonist (+)-(3H)cis-methyldioxolane ((3H)CD), which has been used to label a high affinity population of M2 receptors. A single population of sites was detected and (3H)CD binding was sensitive to the M2 antagonist himbacine but much less so to pirenzepine, the M1 antagonist. These cardiac receptors had different sensitivities to NiCl2 and N-ethylmaleimide from brain muscarinic receptors, that were also labeled with (3H)CD and considered to be of the M2 subtype. Up to 70% of the (3H)CD-labeled cardiac receptors had high affinities for several organophosphate (OP) anticholinesterases. (3H)CD binding was inhibited by the nerve agents soman, VX, sarin, and tabun, with K0.5 values of 0.8, 2, 20, and 50 nM, respectively. It was also inhibited by echothiophate and paraoxon with K0.5 values of 100 and 300 nM, respectively. The apparent competitive nature of inhibition of (3H)CD binding by both sarin and paraoxon suggests that the OPs bind to the acetylcholine binding site of the muscarinic receptor. Other OP insecticides had lower potencies, inhibiting less than 50% of 5 nM (3H)CD binding by 1 microM of EPN, coumaphos, dioxathion, dichlorvos, or chlorpyriphos. There was poor correlation between the potencies of the OPs in reversibly inhibiting (3H)CD binding, and their anticholinesterase activities and toxicities. Acetylcholinesterases are the primary targets for these OP compounds because of the irreversible nature of their inhibition, which results in building of acetylcholine concentrations that activate muscarinic and nicotinic receptors and desensitize them, thereby inhibiting respiration.

  4. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  5. Studies on a Novel Minor-groove Targeting Artificial Nuclease: Synthesis and DNA Binding Behavior

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nucleases play an important role in molecular biology, for example, in DNA sequencing. Synthetic polyamide conjugates can be considered as a novel tool for the selective inhibition of gene expressions and also as potential drugs in anticancer or antiviral chemotherapy. In this article, the synthesis of a novel minor-groove targeting artificial nuclease, an oligopyrrol-containing compound, has been reported. It was found that this novel compound can bind DNA in AT-rich minor groove with high affinity and site specificity. DNA binding behavior was determined by using UV-Vis and CD. It is indicated that compound 6 can enhance the Tm of DNA from 80. 4 C to 84. 4 ℃ and that it possesses a high binding constant value(Kb = 3.05×104 L/mol).

  6. Experimental conditions can obscure the second high-affinity site in LeuT.

    Science.gov (United States)

    Quick, Matthias; Shi, Lei; Zehnpfennig, Britta; Weinstein, Harel; Javitch, Jonathan A

    2012-01-15

    Neurotransmitter:Na(+) symporters (NSSs), the targets of antidepressants and psychostimulants, recapture neurotransmitters from the synapse in a Na(+)-dependent symport mechanism. The crystal structure of the NSS homolog LeuT from Aquifex aeolicus revealed one leucine substrate in an occluded, centrally located (S1) binding site next to two Na(+) ions. Computational studies combined with binding and flux experiments identified a second substrate (S2) site and a molecular mechanism of Na(+)-substrate symport that depends upon the allosteric interaction of substrate molecules in the two high-affinity sites. Here we show that the S2 site, which has not yet been identified by crystallographic approaches, can be blocked during preparation of detergent-solubilized LeuT, thereby obscuring its crucial role in Na(+)-coupled symport. This finding points to the need for caution in selecting experimental environments in which the properties and mechanistic features of membrane proteins can be delineated.

  7. Programmable oligomers targeting 5'-GGGG-3' in the minor groove of DNA and NF-kappaB binding inhibition.

    Science.gov (United States)

    Chenoweth, David M; Poposki, Julie A; Marques, Michael A; Dervan, Peter B

    2007-01-15

    A series of hairpin oligomers containing benzimidazole (Bi) and imidazopyridine (Ip) rings were synthesized and screened to target 5'-WGGGGW-3', a core sequence in the DNA-binding site of NF-kappaB, a prolific transcription factor important in biology and disease. Five Bi and Ip containing oligomers bound to the 5'-WGGGGW-3' site with high affinity. One of the oligomers (Im-Im-Im-Im-gamma-Py-Bi-Py-Bi-beta-Dp) was able to inhibit DNA binding by the transcription factor NF-kappaB.

  8. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment.

    Science.gov (United States)

    Levay, Agata; Brenneman, Randall; Hoinka, Jan; Sant, David; Cardone, Marco; Trinchieri, Giorgio; Przytycka, Teresa M; Berezhnoy, Alexey

    2015-07-13

    Oligonucleotide aptamers represent a novel platform for creating ligands with desired specificity, and they offer many potentially significant advantages over monoclonal antibodies in terms of feasibility, cost, and clinical applicability. However, the isolation of high-affinity aptamer ligands from random oligonucleotide pools has been challenging. Although high-throughput sequencing (HTS) promises to significantly facilitate systematic evolution of ligands by exponential enrichment (SELEX) analysis, the enormous datasets generated in the process pose new challenges for identifying those rare, high-affinity aptamers present in a given pool. We show that emulsion PCR preserves library diversity, preventing the loss of rare high-affinity aptamers that are difficult to amplify. We also demonstrate the importance of using reference targets to eliminate binding candidates with reduced specificity. Using a combination of bioinformatics and functional analyses, we show that the rate of amplification is more predictive than prevalence with respect to binding affinity and that the mutational landscape within a cluster of related aptamers can guide the identification of high-affinity aptamer ligands. Finally, we demonstrate the power of this selection process for identifying cross-species aptamers that can bind human receptors and cross-react with their murine orthologs.

  9. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets.

    Science.gov (United States)

    Sarma, Kavitha; Cifuentes-Rojas, Catherine; Ergun, Ayla; Del Rosario, Amanda; Jeon, Yesu; White, Forest; Sadreyev, Ruslan; Lee, Jeannie T

    2014-11-06

    X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function.

  10. (/sup 3/H)dihydroergotamine as a high-affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states

    Energy Technology Data Exchange (ETDEWEB)

    Hamblin, M.W.; Ariani, K.; Adriaenssens, P.I.; Ciaranello, R.D.

    1987-12-01

    (/sup 3/H)Dihydroergotamine (DE) labels a population of binding sites in rat brain membranes with an affinity of approximately 70 pM in both hippocampus (maximal binding at saturation (Bmax) = 340 fmol/mg of protein) and cerebral cortex (Bmax = 250 fmol/mg of protein). Specific binding typically comprises about 97% of total binding at the Kd of the radioligand when nonspecific binding is determined in the presence of 100 nM unlabeled DE. Association kinetics at 37 degrees C are consistent with a uniform association rate constant for all sites labeled. Specific binding is completely reversible with addition of excess unlabeled DE, but dissociation does not proceed with simple first-order kinetics, suggesting the presence of more than one discrete binding site. Competition studies with selective drugs reveal alpha adrenergic, 5-HT1A and 5-HT1B components of (/sup 3/H)DE specific binding. When phentolamine (500 nM) is included to block alpha receptors and DPAT (100 nM) or spiroxatrine (500 nM) is included to block 5-HT1A receptors, specific binding is exclusively to sites with drug affinities characteristic of 5-HT1B receptors. Under these 5-HT1B-selective conditions, (/sup 3/H)DE binding is about 90% specific, with a Kd of about 50 to 60 pM and a Bmax of 96 fmol/mg of protein in hippocampus and 77 fmol/mg of protein in cortex. (/sup 3/H)DE binding to 5-HT1B sites is very slowly dissociable, with a T1/2 of greater than 2 h at 37 degrees C. 5-HT1B antagonists and DE itself yield competition curves at (/sup 3/H)DE-labeled 5-HT1B sites that are adequately fit assuming a single site in nonlinear regression analysis. Addition of 100 microM guanylyl 5'-imidodiphosphate appears to convert nearly all 5-HT1B sites to those having low affinity for agonists while having a much smaller effect on the binding of (/sup 3/H)DE.

  11. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.

    Science.gov (United States)

    Mao, Yinfei; Liu, Jinquan; He, Dinggen; He, Xiaoxiao; Wang, Kemin; Shi, Hui; Wen, Li

    2015-10-01

    Owing to its diversified structures, high affinity, and specificity for binding a wide range of non-nucleic acid targets, aptamer is a useful molecular recognition tool for the design of various biosensors. Herein, we report a new signal-on electrochemical biosensing platform which is based on an aptamer/target binding-induced strand displacement and triple-helix forming. The biosensing platform is composed of a signal transduction probe (STP) modified with a methylene blue (MB) and a sulfhydryl group, a triplex-forming oligonucleotides probe (TFO) and a target specific aptamer probe (Apt). Through hybridization with the TFO probe and the Apt probe, the self-assembled STP on Au electrode via Au-S bonding keeps its rigid structure. The MB on the STP is distal to the Au electrode surface. It is eT off state. Target binding releases the Apt probe and liberates the end of the MB tagged STP to fold back and form a triplex-helix structure with TFO (STP/TFO/STP), allowing MB to approach the Au electrode surface and generating measurable electrochemical signals (eT ON). As test for the feasibility and universality of this signal-on electrochemical biosensing platform, two aptamers which bind to adenosine triphosphate (ATP) and human α-thrombin (Tmb), respectively, are selected as models. The detection limit of ATP was 7.2 nM, whereas the detection limit of Tmb was 0.86 nM.

  12. The dual aptamer approach: rational design of a high-affinity FAD aptamer.

    Science.gov (United States)

    Merkle, T; Holder, I T; Hartig, J S

    2016-01-14

    A design strategy for high-affinity aptamers of complex biomolecules is presented. We developed an RNA with FAD-binding properties by combining known ATP- and FMN-aptamers. Cooperative binding of FAD was shown by SPR spectroscopy and fluorescence assays. The strategy should be transferable to several other biomolecules.

  13. Triazoloquinazolinediones as novel high affinity ligands for the benzodiazepine site of GABA(A) receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Gidlöf, Ritha; Nielsen, Elsebet Østergaard

    2011-01-01

    Based on a pharmacophore model of the benzodiazepine-binding site of GABA(A) receptors, a series of 2-aryl-2,6-dihydro[1,2,4]triazolo[4,3-c]quinazoline-3,5-diones (structure type I) were designed, synthesized, and identified as high-affinity ligands of the binding site. For several compounds, K...

  14. Structural insights into a high affinity nanobody:antigen complex by homology modelling

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2017-01-01

    B binding were identified and used as input to the docking. Furthermore, residues likely involved in the RgpB epitope was identified based upon RgpB:RgpA alignment and analysis of residue surface accessibility. CDR residues and putitative RgpB epitope residues were used as input to an information-driven...... flexible docking approach using the HADDOCK server. Analysis of the VHH7:RgpB model demonstrated that the epitope was found in the immunoglobulin-like domain and residue pairs located at the molecular paratope:epitope interface important for complex stability was identified. Collectively, the VHH7 homology...... model and VHH7:RgpB docking supplies knowledge of the residues involved in the high affinity interaction. This information could prove valuable in the design of an antibody-drug conjugate for specific RgpB targeting....

  15. Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex.

    Science.gov (United States)

    Breusegem, Sophia Y; Clegg, Robert M; Loontiens, Frank G

    2002-02-01

    The binding of Hoechst 33258 and DAPI to five different (A/T)4 sequences in a stable DNA hairpin was studied exploiting the substantial increase in dye fluorescence upon binding. The two dyes have comparable affinities for the AATT site (e.g. association constant K(a)=5.5 x 10(8) M(-1) for DAPI), and their affinities decrease in the series AATT > TAAT approximately equal to ATAT > TATA approximately equal to TTAA. The extreme values of K(a) differ by a factor of 200 for Hoechst 33258 but only 30 for DAPI. The binding kinetics of Hoechst 33258 were measured by stopped-flow under pseudo-first order conditions with an (A/T)4 site in excess. The lower-resolution experiments can be well represented by single exponential processes, corresponding to a single-step binding mechanism. The calculated association-rate parameters for the five (A/T)4 sites are similar (2.46 x 10(8) M(-1) s(-1) to 0.86 x 10(8) M(-1) s(-1)) and nearly diffusion-controlled, while the dissociation-rate parameters vary from 0.42 s(-1) to 96 s(-1). Thus the association constants are kinetically controlled and are close to their equilibrium-determined values. However, when obtained with increased signal-to-noise ratio, the kinetic traces for Hoechst 33258 binding at the AATT site reveal two components. The concentration dependencies of the two time constants and amplitudes are consistent with two different kinetically equivalent two-step models. In the first model, fast bimolecular binding is followed by an isomerization of the initial complex. In the second model, two single-step associations form two complexes that mutually exclude each other. For both models the four reaction-rate parameters are calculated. Finally, specific dissociation kinetics, using poly[d(A-5BrU)], show that the kinetics are even more complex than either two-step model. We correlate our results with the different binding orientations and locations of Hoechst 33258 in the DNA minor groove found in several structural studies in

  16. High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-erbβ Leads to Its Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor.

    Science.gov (United States)

    Carter, Eric L; Gupta, Nirupama; Ragsdale, Stephen W

    2016-01-29

    Rev-erbα and Rev-erbβ are heme-binding nuclear receptors (NR) that repress the transcription of genes involved in regulating metabolism, inflammation, and the circadian clock. Previous gene expression and co-immunoprecipitation studies led to a model in which heme binding to Rev-erbα recruits nuclear receptor corepressor 1 (NCoR1) into an active repressor complex. However, in contradiction, biochemical and crystallographic studies have shown that heme decreases the affinity of the ligand-binding domain of Rev-erb NRs for NCoR1 peptides. One explanation for this discrepancy is that the ligand-binding domain and NCoR1 peptides used for in vitro studies cannot replicate the key features of the full-length proteins used in cellular studies. However, the combined in vitro and cellular results described here demonstrate that heme does not directly promote interactions between full-length Rev-erbβ (FLRev-erbβ) and an NCoR1 construct encompassing all three NR interaction domains. NCoR1 tightly binds both apo- and heme-replete FLRev-erbβ·DNA complexes; furthermore, heme, at high concentrations, destabilizes the FLRev-erbβ·NCoR1 complex. The interaction between FLRev-erbβ and NCoR1 as well as Rev-erbβ repression at the Bmal1 promoter appear to be modulated by another cellular factor(s), at least one of which is related to the ubiquitin-proteasome pathway. Our studies suggest that heme is involved in regulating the degradation of Rev-erbβ in a manner consistent with its role in circadian rhythm maintenance. Finally, the very slow rate constant (10(-6) s(-1)) of heme dissociation from Rev-erbβ rules out a prior proposal that Rev-erbβ acts as an intracellular heme sensor.

  17. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Lash, L Leanne; Naur, Peter

    2009-01-01

    The prevailing structural model for ligand activation of ionotropic glutamate receptors posits that agonist efficacy arises from the stability and magnitude of induced domain closure in the ligand-binding core structure. Here we describe an exception to the correlation between ligand efficacy...... and domain closure. A weakly efficacious partial agonist of very low potency for homomeric iGluR5 kainate receptors, 8,9-dideoxy-neodysiherbaine (MSVIII-19), induced a fully closed iGluR5 ligand-binding core. The degree of relative domain closure, ~30 degrees , was similar to that we resolved...... to inter-domain hydrogen bonds residues Glu441 and Ser721 in the iGluR5-S1S2 structure. The weaker interactions of MSVIII-19 with iGluR5 compared to DH, together with altered stability of the inter-domain interaction, may be responsible for the apparent uncoupling of domain closure and channel opening...

  18. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    Science.gov (United States)

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-08-08

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  19. Reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP, with E. coli F1-ATPase and its subunits: the roles of the high affinity binding site in the alpha subunit and the low affinity binding site in the beta subunit.

    Science.gov (United States)

    Matsuoka, I; Takeda, K; Futai, M; Tonomura, Y

    1982-11-01

    . The kinetic properties of the fluorescence change of DNS-ATP in the reaction with the reconstituted EF1-ATPase were quite similar to those of native EF1. Most of our findings are consistent with a simple mechanism that the high affinity catalytic site and low affinity regulatory site exist in the alpha subunit and beta subunit, respectively. However, the findings mentioned in (4) suggest that the binding of the alpha and beta subunit, which is mediated by the gamma subunit, induces conformational change(s) in the ATP binding site located probably in the alpha subunit, and that the conformational change(s) is essential to exert the full hydrolyzing activity.

  20. Observation of unphosphorylated STAT3 core protein binding to target dsDNA by PEMSA and X-ray crystallography.

    Science.gov (United States)

    Nkansah, Edwin; Shah, Rahi; Collie, Gavin W; Parkinson, Gary N; Palmer, Jonathan; Rahman, Khondaker M; Bui, Tam T; Drake, Alex F; Husby, Jarmila; Neidle, Stephen; Zinzalla, Giovanna; Thurston, David E; Wilderspin, Andrew F

    2013-04-02

    The STAT3 transcription factor plays a central role in a wide range of cancer types where it is over-expressed. Previously, phosphorylation of this protein was thought to be a prerequisite for direct binding to DNA. However, we have now shown complete binding of a purified unphosphorylated STAT3 (uSTAT3) core directly to M67 DNA, the high affinity STAT3 target DNA sequence, by a protein electrophoretic mobility shift assay (PEMSA). Binding to M67 DNA was inhibited by addition of increasing concentrations of a phosphotyrosyl peptide. X-ray crystallography demonstrates one mode of binding that is similar to that known for the STAT3 core phosphorylated at Y705.

  1. Insights into the structural determinants required for high-affinity binding of chiral cyclopropane-containing ligands to α4β2-nicotinic acetylcholine receptors: an integrated approach to behaviorally active nicotinic ligands.

    Science.gov (United States)

    Zhang, Han-Kun; Eaton, J Brek; Yu, Li-Fang; Nys, Mieke; Mazzolari, Angelica; van Elk, René; Smit, August B; Alexandrov, Vadim; Hanania, Taleen; Sabath, Emily; Fedolak, Allison; Brunner, Daniela; Lukas, Ronald J; Vistoli, Giulio; Ulens, Chris; Kozikowski, Alan P

    2012-09-27

    Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a cocrystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine a previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. To validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogues of compound 5. The most promising compound, 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral end points in the rodent studies.

  2. Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions.

    Science.gov (United States)

    Himmel, Mirko; Ritter, Anett; Rothemund, Sven; Pauling, Björg V; Rottner, Klemens; Gingras, Alexandre R; Ziegler, Wolfgang H

    2009-05-15

    In cell-extracellular matrix junctions (focal adhesions), the cytoskeletal protein talin is central to the connection of integrins to the actin cytoskeleton. Talin is thought to mediate this connection via its two integrin, (at least) three actin, and several vinculin binding sites. The binding sites are cryptic in the head-to-rod autoinhibited cytoplasmic form of the protein and require (stepwise) conformational activation. This activation process, however, remains poorly understood, and there are contradictory models with respect to the determinants of adhesion site localization. Here, we report turnover rates and protein-protein interactions in a range of talin rod domain constructs varying in helix bundle structure. We conclude that several bundles of the C terminus cooperate to regulate targeting and concomitantly tailor high affinity interactions of the talin rod in cell adhesions. Intrinsic control of ligand binding activities is essential for the coordination of adhesion site function of talin.

  3. Calcium binding to the low affinity sites in troponin C induces conformational changes in the high affinity domain. A possible route of information transfer in activation of muscle contraction.

    Science.gov (United States)

    Grabarek, Z; Leavis, P C; Gergely, J

    1986-01-15

    Residues 89-100 of troponin C (C89-100) and 96-116 of troponin I (I96-116) interact with each other in the troponin complex (Dalgarno, D.C., Grand, R.J.A., Levine, B.A. Moir, A., J.G., Scott, G.M.M., and Perry, S.V. (1982) FEBS Lett. 150, 54-58) and are necessary for the Ca2+ sensitivity of actomyosin ATPase (Syska, H., Wilkinson, J.M., Grand, R.J.A., and Perry, S.V. (1976) Biochem. J. 153, 375-387 and Grabarek, Z., Drabikowski, W., Leavis, P.C., Rosenfeld, S.S., and Gergely, J. (1981) J. Biol. Chem. 256, 13121-13127). We have studied Ca2+-induced changes in the region C89-100 by monitoring the fluorescence of troponin C (TnC) labeled at Cys-98 with 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Equilibrium titration of the labeled TnC with Ca2+ indicates that the probe is sensitive to binding to both classes of sites in free TnC as well as in its complex with TnI. When Mg2 X TnC is mixed with Ca2+ in a stopped flow apparatus, there is a rapid fluorescence increase related to Ca2+ binding to the unoccupied sites I and II followed by a slower increase (k = 9.9 s-1) that represents Mg2+-Ca2+ exchange at sites III and IV. In the TnC X TnI complex, the fast phase is much larger and the Mg2+-Ca2+ exchange at sites III and IV results in a small decrease rather than an increase in the fluorescence of the probe. The possibility is discussed that the fast change in the environment of Cys-98 upon Ca2+ binding to sites I and II may be instrumental in triggering activation of the thin filament by facilitating a contact between C89-100 and I96-116.

  4. Liposomal Tumor Targeting in Drug Delivery Utilizing MMP-2- and MMP-9-Binding Ligands

    Directory of Open Access Journals (Sweden)

    Oula Penate Medina

    2011-01-01

    Full Text Available Nanotechnology offers an alternative to conventional treatment options by enabling different drug delivery and controlled-release delivery strategies. Liposomes being especially biodegradable and in most cases essentially nontoxic offer a versatile platform for several different delivery approaches that can potentially enhance the delivery and targeting of therapies to tumors. Liposomes penetrate tumors spontaneously as a result of fenestrated blood vessels within tumors, leading to known enhanced permeability and subsequent drug retention effects. In addition, liposomes can be used to carry radioactive moieties, such as radiotracers, which can be bound at multiple locations within liposomes, making them attractive carriers for molecular imaging applications. Phage display is a technique that can deliver various high-affinity and selectivity peptides to different targets. In this study, gelatinase-binding peptides, found by phage display, were attached to liposomes by covalent peptide-PEG-PE anchor creating a targeted drug delivery vehicle. Gelatinases as extracellular targets for tumor targeting offer a viable alternative for tumor targeting. Our findings show that targeted drug delivery is more efficient than non-targeted drug delivery.

  5. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids.

    Science.gov (United States)

    Lyakhova, Tatyana A; Knight, Jefferson D

    2014-09-01

    Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.

  6. Devices and approaches for generating specific high-affinity nucleic acid aptamers

    Science.gov (United States)

    Szeto, Kylan; Craighead, Harold G.

    2014-09-01

    High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized in vitro to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.

  7. Supramolecular surface immobilization of knottin derivatives for dynamic display of high affinity binders

    NARCIS (Netherlands)

    Sankaran, S.; Ruiter, de M.V.; Cornelissen, J.J.L.M.; Jonkheijm, P.

    2015-01-01

    Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly

  8. Supramolecular surface immobilization of knottin derivatives for dynamic display of high affinity binders

    NARCIS (Netherlands)

    Sankaran, S.; de Ruiter, Mark Vincent; Cornelissen, Jeroen Johannes Lambertus Maria; Jonkheijm, Pascal

    2015-01-01

    Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly

  9. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype

    DEFF Research Database (Denmark)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte

    2002-01-01

    with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable......Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor...... Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding...

  10. High-Affinity, Small-Molecule Peptidomimetic Inhibitors of MLL1/WDR5 Protein-Protein Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Hacer; Townsend, Elizabeth C; Cao, Fang; Chen, Yong; Bernard, Denzil; Liu, Liu; Lei, Ming; Dou, Yali; Wang, Shaomeng [Michigan; (HHMI)

    2013-02-12

    Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase, and targeting the MLL1 enzymatic activity has been proposed as a novel therapeutic strategy for the treatment of acute leukemia harboring MLL1 fusion proteins. The MLL1/WDR5 protein–protein interaction is essential for MLL1 enzymatic activity. In the present study, we designed a large number of peptidomimetics to target the MLL1/WDR5 interaction based upon -CO-ARA-NH–, the minimum binding motif derived from MLL1. Our study led to the design of high-affinity peptidomimetics, which bind to WDR5 with Ki < 1 nM and function as potent antagonists of MLL1 activity in a fully reconstituted in vitro H3K4 methyltransferase assay. Determination of co-crystal structures of two potent peptidomimetics in complex with WDR5 establishes their structural basis for high-affinity binding to WDR5. Evaluation of one such peptidomimetic, MM-102, in bone marrow cells transduced with MLL1-AF9 fusion construct shows that the compound effectively decreases the expression of HoxA9 and Meis-1, two critical MLL1 target genes in MLL1 fusion protein mediated leukemogenesis. MM-102 also specifically inhibits cell growth and induces apoptosis in leukemia cells harboring MLL1 fusion proteins. Our study provides the first proof-of-concept for the design of small-molecule inhibitors of the WDR5/MLL1 protein–protein interaction as a novel therapeutic approach for acute leukemia harboring MLL1 fusion proteins.

  11. Programmable Oligomers Targeting 5′-GGGG-3′ in the Minor Groove of DNA and NF-κB Binding Inhibition

    Science.gov (United States)

    Chenoweth, David M.; Poposki, Julie A.; Marques, Michael A.; Dervan, Peter B.

    2009-01-01

    A series of hairpin oligomers containing benzimidazole (Bi) and imidazopyridine (Ip) rings were synthesized and screened to target 5′-WGGGGW-3′, a core sequence in the DNA binding site of NF-κB, a prolific transcription factor important in biology and disease. Five Bi and Ip containing oligomers bound to the 5′-WGGGGW-3′ site with high affinity. One of the oligomers (Im-Im-Im-Im-γ-PyBi-PyBi-β-Dp) was able to inhibit DNA binding by the transcription factor NF-κB. PMID:17095230

  12. [3H]ATPA: a high affinity ligand for GluR5 kainate receptors.

    Science.gov (United States)

    Hoo, K; Legutko, B; Rizkalla, G; Deverill, M; Hawes, C R; Ellis, G J; Stensbol, T B; Krogsgaard-Larsen, P; Skolnick, P; Bleakman, D

    1999-12-01

    The pharmacological properties of [3H]ATPA ((RS)-2-amino-3(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid) are described. ATPA is a tert-butyl analogue of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) that has been shown to possess high affinity for the GluR5 subunit of kainate receptors. [3H]ATPA exhibits saturable, high affinity binding to membranes expressing human GluR5 (GluR5) kainate receptors (Kd approximately 13 nM). No specific binding was observed in membranes expressing GluR2 and GluR6 receptors. Several compounds known to interact with the GluR5 kainate receptor inhibited [3H]ATPA binding with potencies similar to those obtained for competition of [3H]kainate binding to GluR5. Saturable, high affinity [3H]ATPA binding (Kd approximately 4 nM) was also observed in DRG neuron (DRG) membranes isolated from neonatal rats. The rank order potency of compounds to inhibit [3H]ATPA binding in rat DRG and GluR5 membranes were in agreement. These finding demonstrate that [3H]ATPA can be used as a radioligand to examine the pharmacological properties of GluR5 containing kainate receptors.

  13. HIGH AFFINITY ACYLATING ANTAGONISTS FOR MUSCARINIC RECEPTORS

    Science.gov (United States)

    Baumgold, Jesse; Karton, Yishai; Malka, Naftali; Jacobson, Kenneth A.

    2012-01-01

    Summary The muscarinic antagonists pirenzepine and telenzepine were derivitized as alkylamino derivatives at a site on the molecules corresponding to a region of bulk tolerance in receptor binding. The distal primary amino groups were coupled to the cross-linking reagent meta-phenylene diisothiocyanate, resulting in two isothiocyanate derivatives that were found to inhibit muscarinic receptors irreversibly and in a dose-dependent fashion. Preincubation of rat forebrain membranes with an isothiocyanate derivative followed by radioligand binding using [3H]N-methylscopolamine diminished the Bmax value, but did not affect the Kd value. The receptor binding site was not restored upon repeated washing, indicating that irreversible inhibition had occurred. IC50 values for the irreversible inhibition at rat forebrain muscarinic receptors were 0.15 nM and 0.19 nM, for derivatives of pirenzepine and telenzepine, respectively. The isothiocyanate derivative of pirenzepine was non-selective as an irreversible muscarinic inhibitor, and the corresponding derivative prepared from telenzepine was 5-fold selective for forebrain (mainly m1) vs. heart (m2) muscarinic receptors. PMID:1625525

  14. Isolation and cloning of the gene encoding high affinity phosphate transporter in rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High affinity phosphate transporter plays an important role in plant adapting to low phosphorus. Isolation of genes coding this kind of protein has attracted worldwide scholars to accomplish. We aimed to isolate the gene and transfer it to target plants for breeding.

  15. High-affinity accumulation of a maytansinoid in cells via weak tubulin interaction.

    Science.gov (United States)

    Goldmacher, Victor S; Audette, Charlene A; Guan, Yinghua; Sidhom, Eriene-Heidi; Shah, Jagesh V; Whiteman, Kathleen R; Kovtun, Yelena V

    2015-01-01

    The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4-6 × 10(7) copies). Efflux of 3[H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death.

  16. Development and characterization of high affinity leptins and leptin antagonists.

    Science.gov (United States)

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-02-11

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.

  17. Development and Characterization of High Affinity Leptins and Leptin Antagonists*

    Science.gov (United States)

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-01-01

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin. PMID:21119198

  18. High affinity melatonin receptors in the vertebrate brain: implications for the control of the endogenous oscillatory systems.

    Science.gov (United States)

    Fraschini, F; Stankov, B

    1994-01-01

    Currently, the melatonin receptor is depicted as a membrane-associated protein, linked to a guanine nucleotide-binding protein (G-protein), and thus the melatonin receptor represents a member of a receptor superfamily, acting through G-proteins in the first step of their signal-transduction pathways. Although on a number of occasions specific binding of radioactive melatonin has been demonstrated in a wide variety of tissues and organs, to date, high affinity G-protein-regulated melatonin binding sites, suggestive for a functional melatonin receptor, have been convincingly confirmed in the brain only. There is a significant species variation in the distribution of the melatonin receptor in the vertebrate brain. The limited number of studies prevents any definitive conclusion in terms of phylogeny, though generally speaking, the lower vertebrates' brains tend to express melatonin receptors with wider distribution. Two sites have been consistently found to express high density of melatonin receptors: the pars tuberalis of the adenohypophysis and the hypothalamic suprachiasmatic nuclei (SCN). It must be pointed out, however, that there are some exceptions. Binding in the human pars tuberalis has not been reported, and apparently, the sheep and the mustelids' suprachiasmatic nuclei do not express detectable binding. The function of melatonin in pars tuberalis is unclear, and the control of the synthesis (and release) of paracrine factors that act at site(s) distant from the melatonin target cells, have been suggested.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer's-Associated Aβ Oligomers.

    Directory of Open Access Journals (Sweden)

    Kyle C Wilcox

    Full Text Available Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs. AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer's dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs. This method gives a soluble membrane protein library (SMPL--a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer's model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can

  20. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yliniemelae, A.; Gynther, J. (Univ. of Kuopio (Finland)); Konschin, H.; Tylli, H. (Univ. of Helsinki (Finland)); Rouvinen, J. (Univ. of Joensuu (Finland))

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  1. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent.

    Science.gov (United States)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-21

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into

  2. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    Science.gov (United States)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into

  3. A high-affinity molybdate transporter in eukaryotes.

    Science.gov (United States)

    Tejada-Jiménez, Manuel; Llamas, Angel; Sanz-Luque, Emanuel; Galván, Aurora; Fernández, Emilio

    2007-12-11

    Molybdenum is an essential element for almost all living beings, which, in the form of a molybdopterin-cofactor, participates in the active site of enzymes involved in key reactions of carbon, nitrogen, and sulfur metabolism. This metal is taken up by cells in form of the oxyanion molybdate. Bacteria acquire molybdate by an ATP-binding-cassette (ABC) transport system in a widely studied process, but how eukaryotic cells take up molybdenum is unknown because molybdate transporters have not been identified so far. Here, we report a eukaryotic high-affinity molybdate transporter, encoded by the green alga Chlamydomonas reinhardtii gene MoT1. An antisense RNA strategy over the MoT1 gene showed that interference of the expression of this gene leads to the inhibition of molybdate transport activity and, in turn, of the Mo-containing enzyme nitrate reductase, indicating a function of MoT1 in molybdate transport. MOT1 functionality was also shown by heterologous expression in Saccharomyces cerevisiae. Molybdate uptake mediated by MOT1 showed a K(m) of approximately 6 nM, which is the range of the lowest K(m) values reported and was activated in the presence of nitrate. Analysis of deduced sequence from the putative protein coded by MoT1 showed motifs specifically conserved in similar proteins present in the databases, and defines a family of membrane proteins in both eukaryotes and prokaryotes probably involved in molybdate transport and distantly related to plant sulfate transporters SULTR. These findings represent an important step in the understanding of molybdate transport, a crucial process in eukaryotic cells.

  4. 苹果果实细胞质中依赖活体组织的ABA高亲和力特异结合蛋白%In Vivo Tissue-dependent Abscisic Acid Specific-binding Proteins with High Affinity in Cytosol of Developing Apple Fruits

    Institute of Scientific and Technical Information of China (English)

    张大鹏; 陈尚武

    2001-01-01

    The in vivo highly tissue-dependent abscisic acid (ABA) specific-binding sit es localized in cytosol were identified and characterized in the flesh of develo ping apple (Malus pumila L. cv. Starkrimon) fruits. ABA binding activity was scarcely detectable in the microsomes and the cytosolic fraction isolated from the freshly harvested fruits via an in vitro ABA binding incubation of the s ubcellular fractions. If, however, instead that the subcellular fractions were in vitro incubated in 3H-ABA binding medium, the flesh tissue discs we re directly in vivo incubated in 3H-ABA binding medium, a high ABA bin ding activity to the cytosolic fraction isolated from these tissue discs was detect ed. The in vivo ABA binding capacity of the cytosolic fraction was lost if the tissue discs had been pretreated with boiling water, indicating that the ABA bin ding needs a living state of tissue. The in vivo tissue-dependent binding si tes were shown to possess protein nature with both active serine residua and thiol-g roup of cysteine residua in their functional binding center. The ABA binding of the in vivo tissue-dependent ABA binding sites to the cytosolic fraction was shown to be saturable, reversible, and of high affinity. The scatchard plotting g ave evidence of two different classes of ABA binding proteins, one with a higher affinity (Kd=2.9 nmol/L) and the other with lower affinity (Kd=71.4 nmo l/L). Ph aseic acid, 2-trans-4-trans-ABA or cis-trans-(-)-ABA had substantia lly no affinity to the binding proteins, indicating their stereo-specificity to bind physiologically active ABA. The time course, pH- and temperature-dependence of the in vivo tissue-dependent binding proteins were determined. It is hyp othesized that the detected ABA-binding proteins may be putative ABA-receptors t hat mediate ABA signals during fruit development.%将苹果(Malus pumila L. cv. Starkrimon)果肉微粒体和细胞可溶组分在含有 3H-ABA的缓冲介质中分别温育,仅在细胞

  5. Structural Basis for High-Affinity Peptide Inhibition of Human Pin1

    Science.gov (United States)

    Zhang, Yan; Daum, Sebastian; Wildemann, Dirk; Zhou, Xiao Zhen; Verdecia, Mark A.; Bowman, Marianne E.; Lücke, Christian; Hunter, Tony; Lu, Kun-Ping; Fischer, Gunter; Noel, Joseph P.

    2009-01-01

    Human Pin1 is a key regulator of cell-cycle progression and plays growth-promoting roles in human cancers. High-affinity inhibitors of Pin1 may provide a unique opportunity for disrupting oncogenic pathways. Here we report two high-resolution X-ray crystal structures of human Pin1 bound to non-natural peptide inhibitors. The structures of the bound high-affinity peptides identify a type-I β-turn conformation for Pin1 prolyl peptide isomerase domain–peptide binding and an extensive molecular interface for high-affinity recognition. Moreover, these structures suggest chemical elements that may further improve the affinity and pharmacological properties of future peptide-based Pin inhibitors. Finally, an intramolecular hydrogen bond observed in both peptide complexes mimics the cyclic conformation of FK506 and rapamycin. Both FK506 and rapamycin are clinically important inhibitors of other peptidyl-prolyl cis-trans isomerases. This comparative discovery suggests that a cyclic peptide polyketide bridge, like that found in FK506 and rapamycin or a similar linkage, may significantly improve the binding affinity of structure-based Pin1 inhibitors. PMID:17518432

  6. Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells

    Directory of Open Access Journals (Sweden)

    Mirick Gary

    2009-04-01

    Full Text Available Abstract Background A variety of arginine-rich peptide sequences similar to those found in viral proteins have been conjugated to other molecules to facilitate their transport into the cytoplasm and nucleus of targeted cells. The selective high affinity ligand (SHAL (DvLPBaPPP2LLDo, which was developed to bind only to cells expressing HLA-DR10, has been conjugated to one of these peptide transduction domains, hexa-arginine, to assess the impact of the peptide on SHAL uptake and internalization by Raji cells, a B-cell lymphoma. Results An analog of the SHAL (DvLPBaPPP2LLDo containing a hexa-arginine peptide was created by adding six D-arginine residues sequentially to a lysine inserted in the SHAL's linker. SHAL binding, internalization and residualization by Raji cells expressing HLA-DR10 were examined using whole cell binding assays and confocal microscopy. Raji cells were observed to bind two fold more 111In-labeled hexa-arginine SHAL analog than Raji cells treated with the parent SHAL. Three fold more hexa-arginine SHAL remained associated with the Raji cells after washing, suggesting that the peptide also enhanced residualization of the 111In transported into cells. Confocal microscopy showed both SHALs localized in the cytoplasm of Raji cells, whereas a fraction of the hexa-arginine SHAL localized in the nucleus. Conclusion The incorporation of a hexa-D-arginine peptide into the linker of the SHAL (DvLPBaPPP2LLDo enhanced both the uptake and residualization of the SHAL analog by Raji cells. In contrast to the abundant cell surface binding observed with Lym-1 antibody, the majority of (DvLPBaPPP2LArg6AcLLDo and the parent SHAL were internalized. Some of the internalized hexa-arginine SHAL analog was also associated with the nucleus. These results demonstrate that several important SHAL properties, including uptake, internalization, retention and possibly intracellular distribution, can be enhanced or modified by conjugating the SHALs to a

  7. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5.

    Science.gov (United States)

    Ma, Changle; Hagstrom, Danielle; Polley, Soumi Guha; Subramani, Suresh

    2013-09-20

    In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1-110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.

  8. Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions.

    Science.gov (United States)

    Altschuler, Sarah E; Lewis, Karen A; Wuttke, Deborah S

    2013-01-01

    The quantitative evaluation of binding interactions between proteins and nucleic acids is highly sensitive to a variety of experimental conditions. Optimization of these conditions is critical for obtaining high quality, reproducible data, particularly in the context of very high affinity interactions. Here, we discuss the practical considerations involved in optimizing the apparent binding constant of an interaction as measured by two common quantitative assays, electrophoretic mobility shift assay and double-filter binding when measuring extremely tight protein/nucleic acid interactions with sub-nanomolar binding affinities. We include specific examples from two telomere end-binding protein systems, Schizo -saccharomyces pombe Pot1 and Saccharomyces cerevisiae Cdc13, to demonstrate potential experimental pitfalls and some useful strategies for optimization.

  9. Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions

    Directory of Open Access Journals (Sweden)

    Sarah E. Altschuler

    2013-09-01

    Full Text Available The quantitative evaluation of binding interactions between proteins and nucleic acids is highly sensitive to a variety of experimental conditions. Optimization of these conditions is critical for obtaining high quality, reproducible data, particularly in the context of very high affinity interactions. Here, we discuss the practical considerations involved in optimizing the apparent binding constant of an interaction as measured by two common quantitative assays, electrophoretic mobility shift assay and double-filter binding when measuring extremely tight protein/nucleic acid interactions with sub-nanomolar binding affinities. We include specific examples from two telomere end-binding protein systems, Schizosaccharomyces pombe Pot1 and Saccharomyces cerevisiae Cdc13, to demonstrate potential experimental pitfalls and some useful strategies for optimization.

  10. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    Science.gov (United States)

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  11. High affinity ligands for 'diazepam-insensitive' benzodiazepine receptors.

    Science.gov (United States)

    Wong, G; Skolnick, P

    1992-01-14

    Structurally diverse compounds have been shown to possess high affinities for benzodiazepine receptors in their 'diazepam-sensitive' (DS) conformations. In contrast, only the imidazobenzodiazepinone Ro 15-4513 has been shown to exhibit a high affinity for the 'diazepam-insensitive' (DI) conformation of benzodiazepine receptors. We examined a series of 1,4-diazepines containing one or more annelated ring systems for their affinities at DI and DS benzodiazepine receptors, several 1,4-diazepinone carboxylates including Ro 19-4603, Ro 16-6028 and Ro 15-3505 were found to possess high affinities (Ki approximately 2.6-20 nM) for DI. Nonetheless, among the ligands examined, Ro 15-4513 was the only substance with a DI/DS potency ratio approximately 1; other substances had ratios ranging from 13 to greater than 1000. Ligands with high to moderate affinities at DI were previously classified as partial agonists, antagonists, or partial inverse agonists at DS benzodiazepine receptors, but behaved as 'GABA neutral' (antagonist) substances at DI. The identification of several additional high affinity ligands at DI benzodiazepine receptors may be helpful in elucidating the pharmacological and physiological importance of these sites.

  12. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj;

    2006-01-01

    Immunoglobulin (Ig)E-sensitized persons with positive skin prick test, but no allergy symptoms, are classified as being asymptomatic skin sensitized (AS). The allergic type 1 disease is dependant on IgE binding to the high affinity IgE-receptor (FcepsilonRI) expressed on basophils and mast cells...

  13. Novel high-affinity and selective biaromatic 4-substituted ¿-hydroxybutyric acid (GHB) analogues as GHB ligands

    DEFF Research Database (Denmark)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte;

    2008-01-01

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites...

  14. Isolation of novel single-chain Cro proteins targeted for binding to the bcl-2 transcription initiation site by repertoire selection and subunit combinatorics.

    Science.gov (United States)

    Jonas, Kristina; Van Der Vries, Erhard; Nilsson, Mikael T I; Widersten, Mikael

    2005-11-01

    New designed DNA-binding proteins may be recruited to act as transcriptional regulators and could provide new therapeutic agents in the treatment of genetic disorders such as cancer. We have isolated tailored DNA-binding proteins selected for affinity to a region spanning the transcription initiation site of the human bcl-2 gene. The proteins were derived from a single-chain derivative of the lambda Cro protein (scCro), randomly mutated in its recognition helices to construct libraries of protein variants of distinct DNA-binding properties. By phage display-afforded affinity selections combined with recombination of shuffled subunits, protein variants were isolated, which displayed high affinity for the target bcl-2 sequence, as determined by electrophoretic mobility shift and biosensor assays. The proteins analyzed were moderately sequence-specific but provide a starting point for further maturation of desired function.

  15. A probabilistic approach to microRNA-target binding

    Energy Technology Data Exchange (ETDEWEB)

    Ogul, Hasan, E-mail: hogul@baskent.edu.tr [Department of Computer Engineering, Baskent University, Baglica TR-06810, Ankara (Turkey); Umu, Sinan U. [Department of Chemistry, Middle East Technical University, Cankaya TR-06800, Ankara (Turkey); Bioinformatics Program, Informatics Institute, Middle East Technical University, Cankaya TR-06800, Ankara (Turkey); Tuncel, Y. Yener [Bioinformatics Program, Informatics Institute, Middle East Technical University, Cankaya TR-06800, Ankara (Turkey); Akkaya, Mahinur S. [Department of Chemistry, Middle East Technical University, Cankaya TR-06800, Ankara (Turkey)

    2011-09-16

    Highlights: {yields} A new probabilistic model is introduced for microRNA-target binding. {yields} The new model significantly outperforms RNAHybrid and miRTif. {yields} The experiments can unveil the effects of the type and directions of distinct base pairings. -- Abstract: Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interactions of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set-up a probabilistic model to explain the binding preferences between a microRNA sequence and the sequence of a putative target. To this end, we introduce a new model of microRNA-target binding, which transforms an aligned duplex to a new sequence and defines the likelihood of this sequence using a Variable Length Markov Chain. It offers a complementary representation of microRNA-mRNA pairs for microRNA target prediction tools or other probabilistic frameworks of integrative gene regulation analysis. The performance of present model is evaluated by its ability to predict microRNA-target mRNA interaction given a mature microRNA sequence and a putative mRNA binding site. In regard to classification accuracy, it outperforms two recent methods based on thermodynamic stability and sequence complementarity. The experiments can also unveil the effects of base pairing types and non-seed region in duplex formation.

  16. A linker peptide with high affinity towards silica-containing materials.

    Science.gov (United States)

    Sunna, Anwar; Chi, Fei; Bergquist, Peter L

    2013-06-25

    A peptide sequence with affinity to silica-containing materials was fused to a truncated form of Streptococcus strain G148 Protein G. The resulting recombinant Linker-Protein G (LPG) was produced in Escherichia coli and purified to apparent homogeneity. It displayed high affinity towards two natural clinoptilolite zeolites. The LPG also displayed high binding affinity towards commercial-grade synthetic zeolite, silica and silica-containing materials. A commercial sample of the truncated Protein G and a basic protein, both without the linker, did not bind to natural or synthetic zeolites or silica. We conclude that the zeolite-binding affinity is mediated by the linker peptide sequence. As a consequence, these data may imply that the binding affinity is directed to the SiO2 component rather than to the atomic orientation on the zeolite crystal surface as previously assumed.

  17. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI)

    OpenAIRE

    1992-01-01

    It has been suggested that epidermal Langerhans cells (LC) bearing immunoglobulin E (IgE) may be involved in the genesis of atopic disease. The identity of the IgE receptor(s) on LC remained unclear, although it represents a crucial point in understanding cellular events linked to the binding of allergens to LC via IgE. In this report, we demonstrate that epidermal LC express the high affinity receptor for the Fc fragment of IgE (Fc epsilon RI) which has, so far, only been described on mast c...

  18. Global analysis of small molecule binding to related protein targets.

    Directory of Open Access Journals (Sweden)

    Felix A Kruger

    2012-01-01

    Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.

  19. Peptide array-based characterization and design of ZnO-high affinity peptides.

    Science.gov (United States)

    Okochi, Mina; Sugita, Tomoya; Furusawa, Seiji; Umetsu, Mitsuo; Adschiri, Tadafumi; Honda, Hiroyuki

    2010-08-15

    Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self-assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO-binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO-binding peptide, 125 spot-synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO-binding sites were found as 6-mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles.

  20. High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid

    Science.gov (United States)

    Vernhes, Emeline; Renouard, Madalena; Gilquin, Bernard; Cuniasse, Philippe; Durand, Dominique; England, Patrick; Hoos, Sylviane; Huet, Alexis; Conway, James F.; Glukhov, Anatoly; Ksenzenko, Vladimir; Jacquet, Eric; Nhiri, Naïma; Zinn-Justin, Sophie; Boulanger, Pascale

    2017-01-01

    Bacteriophage capsids constitute icosahedral shells of exceptional stability that protect the viral genome. Many capsids display on their surface decoration proteins whose structure and function remain largely unknown. The decoration protein pb10 of phage T5 binds at the centre of the 120 hexamers formed by the major capsid protein. Here we determined the 3D structure of pb10 and investigated its capsid-binding properties using NMR, SAXS, cryoEM and SPR. Pb10 consists of an α-helical capsid-binding domain and an Ig-like domain exposed to the solvent. It binds to the T5 capsid with a remarkably high affinity and its binding kinetics is characterized by a very slow dissociation rate. We propose that the conformational exchange events observed in the capsid-binding domain enable rearrangements upon binding that contribute to the quasi-irreversibility of the pb10-capsid interaction. Moreover we show that pb10 binding is a highly cooperative process, which favours immediate rebinding of newly dissociated pb10 to the 120 hexamers of the capsid protein. In extreme conditions, pb10 protects the phage from releasing its genome. We conclude that pb10 may function to reinforce the capsid thus favouring phage survival in harsh environments. PMID:28165000

  1. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor.

    Directory of Open Access Journals (Sweden)

    Bryan L Roth

    Full Text Available In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS-2-(ethylamino-2-(3-methoxyphenylcyclohexanone and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenylcyclohexanamine and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenylcyclohexyl]piperidine and 1-[1-(4-methoxyphenylcyclohexyl]piperidine, were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

  2. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Keryer-Bibens, Cecile, E-mail: cecile.keryer-bibens@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Legagneux, Vincent; Namanda-Vanderbeken, Allen [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Cosson, Bertrand [UPMC Universite de Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Developpement, Station Biologique de Roscoff, 29682 Roscoff (France); CNRS, UMR 7150, Station Biologique de Roscoff, 29682 Roscoff (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Paillard, Luc [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Poncet, Didier [Virologie Moleculaire et Structurale, UMR CNRS, 2472, INRA, 1157, 91198 Gif sur Yvette (France); Osborne, H. Beverley, E-mail: beverley.osborne@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France)

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  3. (/sup 3/H)pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Watson, M.; Roeske, W.R.; Yamamura, H.I.

    1982-11-01

    The specific binding of (/sup 3/H)pirenzepine was investigated in homogenates of rat cerebral cortex, cerebellar cortex, and heart. Specific binding of (/sup 3/H)pirenzepine in the cerebral cortex as defined by displacement with atropine sulfate (1..mu..M) was of high affinity (K/sub d/ = 4-10 nM, receptor density = 1.06 pmoles/mg protein), stereoselective, and competitive with drugs specific for the muscarinic receptor. In contrast, few (/sup 3/H)pirenzepine binding sites were demonstrated in cerebellar and heart homogenates.

  4. VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Barelle

    2015-09-01

    Full Text Available At 420 million years, the variable domain of New Antigen Receptors or VNARs are undoubtedly the oldest (and smallest antigen binding single domains identified in the vertebrate kingdom. Their role as an integral part of the adaptive immune system of sharks has been well established and has served to provide a greater understanding of the evolution of humoral immunity; their cellular components and processes as well as the underlying genetic organization and molecular control mechanisms. Intriguingly, unlike the variable domain of the camelid heavy chain antibodies or VHH, VNARs do not conform to all of the characteristic properties of classical antibodies with an ancestral origin that clearly distinguishes them from true immunoglobulin antibodies. However, this uniqueness of their origin only adds to their potential as next generation therapeutic biologics with their structural and functional attributes and commercial freedom all enhancing their profile and current success. In fact their small size, remarkable stability, molecular flexibility and solubility, together with their high affinity and selectivity for target, all reinforce the potential of these domains as drug candidates. The purpose of this review is to provide an overview of the existing basic biology of these unique domains, to highlight the drug-like properties of VNARs and describe current progress in their journey towards the clinic.

  5. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of [alpha]- and PPII-helices

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.; Robinette, Rebekah A.; Crowley, Paula J.; Michalek, Suzanne; Brady, L. Jeannine; Deivanayagam, Champion (Cornell); (UAB); (Florida)

    2010-08-18

    Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{sub 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.

  6. High affinity mouse-human chimeric Fab against Hepatitis B surface antigen

    Institute of Scientific and Technical Information of China (English)

    Biplab Bose; Navin Khanna; Subrat K Acharya; Subrata Sinha

    2005-01-01

    AIM: Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody.METHODS: We cloned the VH and VL genes of this mouse antibody; and fused them with CH1 domain of human IgG1 and CL domain of human kappa chain respectively. These chimeric genes were cloned into a phagemid vector. After initial screening using the phage display system, the chimeric Fab was expressed in soluble form in E. Coli.RESULTS: The chimeric Fab was purified from the bacterial periplasmic extract. We characterized the chimeric Fab using several in vitro techniques and it was observed that the chimeric molecule retained the high affinity and specificity of the original mouse monoclonal.This chimeric antibody fragment was further expressed in different strains of E> coli to increase the yield.CONCLUSION: We have generated a mouse-human chimeric Fab against HBsAg without any significant loss in binding and epitope specificity. This chimeric Fab fragment can be further modified to generate a fulllength chimeric antibody for therapeutic uses.

  7. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

    Science.gov (United States)

    Smith, Kayla J; Murray, Iain A; Tanos, Rachel; Tellew, John; Boitano, Anthony E; Bisson, William H; Kolluri, Siva K; Cooke, Michael P; Perdew, Gary H

    2011-07-01

    The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, "pure" or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a

  8. Analysis of high affinity self-association by fluorescence optical sedimentation velocity analytical ultracentrifugation of labeled proteins: opportunities and limitations.

    Directory of Open Access Journals (Sweden)

    Huaying Zhao

    Full Text Available Sedimentation velocity analytical ultracentrifugation (SV is a powerful first-principle technique for the study of protein interactions, and allows a rigorous characterization of binding stoichiometry and affinities. A recently introduced commercial fluorescence optical detection system (FDS permits analysis of high-affinity interactions by SV. However, for most proteins the attachment of an extrinsic fluorophore is an essential prerequisite for analysis by FDS-SV. Using the glutamate receptor GluA2 amino terminal domain as a model system for high-affinity homo-dimerization, we demonstrate how the experimental design and choice of fluorescent label can impact both the observed binding constants as well as the derived hydrodynamic parameter estimates for the monomer and dimer species. Specifically, FAM (5,6-carboxyfluorescein was found to create different populations of artificially high-affinity and low-affinity dimers, as indicated by both FDS-SV and the kinetics of dimer dissociation studied using a bench-top fluorescence spectrometer and Förster Resonance Energy Transfer. By contrast, Dylight488 labeled GluA2, as well as GluA2 expressed as an EGFP fusion protein, yielded results consistent with estimates for unlabeled GluA2. Our study suggests considerations for the choice of labeling strategies, and highlights experimental designs that exploit specific opportunities of FDS-SV for improving the reliability of the binding isotherm analysis of interacting systems.

  9. Dynein and dynactin leverage their bivalent character to form a high-affinity interaction.

    Directory of Open Access Journals (Sweden)

    Amanda E Siglin

    Full Text Available Cytoplasmic dynein and dynactin participate in retrograde transport of organelles, checkpoint signaling and cell division. The principal subunits that mediate this interaction are the dynein intermediate chain (IC and the dynactin p150(Glued; however, the interface and mechanism that regulates this interaction remains poorly defined. Herein, we use multiple methods to show the N-terminus of mammalian dynein IC, residues 10-44, is sufficient for binding p150(Glued. Consistent with this mapping, monoclonal antibodies that antagonize the dynein-dynactin interaction also bind to this region of the IC. Furthermore, double and triple alanine point mutations spanning residues 6 to 19 in the yeast IC homolog, Pac11, produce significant defects in spindle positioning. Using the same methods we show residues 381 to 530 of p150(Glued form a minimal fragment that binds to the dynein IC. Sedimentation equilibrium experiments indicate that these individual fragments are predominantly monomeric, but admixtures of the IC and p150(Glued fragments produce a 2:2 complex. This tetrameric complex is sensitive to salt, temperature and pH, suggesting that the binding is dominated by electrostatic interactions. Finally, circular dichroism (CD experiments indicate that the N-terminus of the IC is disordered and becomes ordered upon binding p150(Glued. Taken together, the data indicate that the dynein-dynactin interaction proceeds through a disorder-to-order transition, leveraging its bivalent-bivalent character to form a high affinity, but readily reversible interaction.

  10. A high-affinity, radioiodinatable neuropeptide FF analogue incorporating a photolabile p-(4-hydroxybenzoyl)phenylalanine.

    Science.gov (United States)

    Bray, Lauriane; Moulédous, Lionel; Tafani, Jean A M; Germanier, Maryse; Zajac, Jean-Marie

    2014-05-15

    A new radioiodinated photoaffinity compound, [(125)I]YE(Bpa)WSLAAPQRFNH2, derived from a peptide present in the rat neuropeptide FF (NPFF) precursor was synthesized, and its binding characteristics were investigated on a neuroblastoma clone, SH-SY5Y, stably expressing rat NPFF2 receptors tagged with the T7 epitope. The binding of the probe was saturable and revealed a high-affinity interaction (KD=0.24nM) with a single class of binding sites. It was also able to affinity label NPFF2 receptor in a specific and efficient manner given that 38% of the bound radioligand at saturating concentration formed a wash-resistant binding after ultraviolet (UV) irradiation. Photoaffinity labeling with [(125)I]YE(Bpa)WSLAAPQRFamide showed two molecular forms of NPFF2 receptor with apparent molecular weights of 140 and 95kDa in a 2:1 ratio. The comparison of the results between photoaffinity labeling and Western blot analysis suggests that all receptor forms bind the probe irreversibly with the same efficiency. On membranes of mouse olfactory bulb, only the high molecular weight form of NPFF2 receptor is observed. [(125)I]YE(Bpa)WSLAAPQRFamide is an excellent radioiodinated peptidic ligand for direct and selective labeling of NPFF2 receptors in vitro.

  11. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2017-07-19

    The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

  12. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein.

    Science.gov (United States)

    Salanti, Ali; Clausen, Thomas M; Agerbæk, Mette Ø; Al Nakouzi, Nader; Dahlbäck, Madeleine; Oo, Htoo Z; Lee, Sherry; Gustavsson, Tobias; Rich, Jamie R; Hedberg, Bradley J; Mao, Yang; Barington, Line; Pereira, Marina A; LoBello, Janine; Endo, Makoto; Fazli, Ladan; Soden, Jo; Wang, Chris K; Sander, Adam F; Dagil, Robert; Thrane, Susan; Holst, Peter J; Meng, Le; Favero, Francesco; Weiss, Glen J; Nielsen, Morten A; Freeth, Jim; Nielsen, Torsten O; Zaia, Joseph; Tran, Nhan L; Trent, Jeff; Babcook, John S; Theander, Thor G; Sorensen, Poul H; Daugaard, Mads

    2015-10-12

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.

  13. Selection of high affine peptide ligands for detection of Clostridium Tyrobutyricum spores.

    Science.gov (United States)

    Lavilla, María; De Luis, Ruth; Pérez, María Dolores; Calvo, Miguel; Sánchez, Lourdes

    2009-11-01

    Clostridium tyrobutyricum is the main agent responsible for "late blowing" in cheese, which causes severe economic losses. Nowadays, the reference method for its detection is the Most-Probable-Number (MPN); however, it is time consuming and non-specific. Thus, in order to check milk contamination with spores of C. tyrobutyricum, a more specific and rapid method would be required. The objective of this work was to obtain a ligand to establish the basis to develop a biomagnetic separation method for detection of C. tyrobutyricum spores. This study describes the selection of thirteen highly affine peptides to C. tyrobutyricum spores from a phage-display peptide library. In order to test the ability of the peptides attached to a solid support to bind the spores, the most frequent peptide was synthesised and used to coat paramagnetic beads.

  14. Cytisine derivatives as high affinity nAChR ligands: synthesis and comparative molecular field analysis.

    Science.gov (United States)

    Nicolotti, O; Canu Boido, C; Sparatore, F; Carotti, A

    2002-06-01

    A number of new N-substituted cytisine derivatives were prepared and tested, along with similar compounds already described by us and others, as high affinity neuronal acetylcholine receptor ligands. Structure-affinity relationships were discussed in the light of our recently proposed pharmacophore model for nicotinic receptor agonists. The most significant physicochemical interactions modulating the receptor-ligand binding were detected at the three dimensional (3D) level by means of comparative molecular field analysis (CoMFA). The best predictive PLS model was a single-field steric model showing good statistical figures: n = 17, Q2 = 0.717, s(ev) = 0.566, r2 = 0.942, s = 0.275.

  15. Expression of a Hybrid Human Superoxide Dismutase with a High Affinity for Heparin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A designed heparin-affinity of human Cu, Zn-SOD is described. The natural leader peptide of P.leiognathi Cu, Zn-SOD and a heparin-binding peptide containing a stretch of 7 Arg were fused to the N-terminal and the C-terminal of human Cu, Zn-SOD respectively. The resulted hybrid enzyme had not only a normal SOD activity but also a high affinity for heparin eluted on the heparin-Sepharose column at 0.4 mol/L NaCl. Some properties, such as the optimum pH, the thermostability and the half-life in the circulation of rats, were also analyzed.

  16. Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter

    Science.gov (United States)

    Choudhary, Parul; Armstrong, Emma J.; Jorgensen, Csilla C.; Piotrowski, Mary; Barthmes, Maria; Torella, Rubben; Johnston, Sarah E.; Maruyama, Yuya; Janiszewski, John S.; Storer, R. Ian; Skerratt, Sarah E.; Benn, Caroline L.

    2017-01-01

    Cholinergic hypofunction is associated with decreased attention and cognitive deficits in the central nervous system in addition to compromised motor function. Consequently, stimulation of cholinergic neurotransmission is a rational therapeutic approach for the potential treatment of a variety of neurological conditions. High affinity choline uptake (HACU) into acetylcholine (ACh)-synthesizing neurons is critically mediated by the sodium- and pH-dependent high-affinity choline transporter (CHT, encoded by the SLC5A7 gene). This transporter is comparatively well-characterized but otherwise unexplored as a potential drug target. We therefore sought to identify small molecules that would enable testing of the hypothesis that positive modulation of CHT mediated transport would enhance activity-dependent cholinergic signaling. We utilized existing and novel screening techniques for their ability to reveal both positive and negative modulation of CHT using literature tools. A screening campaign was initiated with a bespoke compound library comprising both the Pfizer Chemogenomic Library (CGL) of 2,753 molecules designed specifically to help enable the elucidation of new mechanisms in phenotypic screens and 887 compounds from a virtual screening campaign to select molecules with field-based similarities to reported negative and positive allosteric modulators. We identified a number of previously unknown active and structurally distinct molecules that could be used as tools to further explore CHT biology or as a starting point for further medicinal chemistry. PMID:28289374

  17. Low affinity and slow Na+-binding precedes high affinity aspartate binding in GltPh

    NARCIS (Netherlands)

    Hänelt, Inga; Jensen, Sonja; Wunnicke, Dorith; Slotboom, Dirk Jan

    2015-01-01

    GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters (EAATs) that take up the neurotransmitter glutamate. Each protomer in GltPh consis

  18. PREPARATION OF IMMUNOGEN AND PURIFICA¬TION OF HIGH AFFINITY AND SPECIFICITY FAB FRAGMENT OF ANTI-DIGOXIN POLYCLONAL ANTIBODIES

    Directory of Open Access Journals (Sweden)

    M. Pour-Amir

    2000-01-01

    Full Text Available In this study we produced and purified a high titer of specific and high affin¬ity Fab fragments of anti-digoxin antibody. Immunization of rabbits with a conju¬gate of the cardiac glycoside digoxin, coupled by a periodate oxidation method to the amino group of lysine in bovine serum albumin resulted in the production of this type of high titer digoxin-specific antibodies with exceptionally high affinity (109 L/mol and specificity in immune response. Increase in titer was found in steps of purification ending up with the highest titer for Fab fragment to be at 1.75 ug of purified Fab (for 50% binding of I25I-digoxin. High specificity for antigenic determinants of the steroid nucleus of digoxin was observed such that much less cross-reaction with digoxin (2.3% and no cross-reaction with ouabaine, estradiol, Cortisol, progesterone and testosterone were detected.

  19. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF

    Science.gov (United States)

    Edinger, Nufar; Lebendiker, Mario; Klein, Shoshana; Zigler, Maya; Langut, Yael; Levitzki, Alexander

    2016-01-01

    Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC. PMID:27598772

  20. Glycation of the high affinity NGF-receptor and RAGE leads to reduced ligand affinity.

    Science.gov (United States)

    Bennmann, Dorit; Kannicht, Christoph; Fisseau, Claudine; Jacobs, Kathleen; Navarette-Santos, Alexander; Hofmann, Britt; Horstkorte, Rüdiger

    2015-09-01

    AGEs are posttranslational modifications generated by irreversible non-enzymatic crosslinking reactions between sugars and proteins - a reaction referred to as glycation. Glycation, a feature of ageing, can lead to non-degradable and less functional proteins and enzymes and can additionally induce inflammation and further pathophysiological processes such as neurodegeneration. In this study we investigated the influence of glycation on the high affinity NGF-receptor TrkA and the AGE-receptor RAGE. We quantified the binding affinity of the TrkA-receptor and RAGE to their ligands by surface plasmon resonance (SPR) and compared these to the binding affinity after glycation. At the same time, we established a glycation procedure using SPR. We found that glycation of TrkA reduced the affinity to NGF by a factor of three, which could be shown to lead to a reduction of NGF-dependent neurite outgrowth in PC12 cells. Glycation of RAGE reduced binding affinity of AGEs by 10-fold.

  1. Small targeted cytotoxics from DNA-encoded chemical libraries.

    Science.gov (United States)

    Samain, Florent; Casi, Giulio

    2015-06-01

    Conventional chemotherapeutic drugs do not selectively localize to tumors, causing undesired toxicities to healthy organs, and precluding the escalation to therapeutically active regimens. The selective delivery at sites of disease of potent effector molecules represents a promising strategy for the treatment of cancer and other diseases. High affinity antibodies towards disease-associated antigens are currently the vehicles of choice for the targeted delivery of payloads. Low molecular weight ligands have the potential to overcome some of the intrinsic limitations associated with antibodies, and have recently been proposed for the development of a novel class of targeted therapeutics. However, the identification of binding molecules, which display high affinity properties and exquisite specificity against protein of therapeutic interest, remains a great challenge. DNA-encoded chemical library technology relies on small molecule libraries of unprecedented size to identify high affinity ligands towards specific target proteins, and could help in the development of next generation targeted cytotoxics.

  2. Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High Affinity Ligand for STING

    Science.gov (United States)

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J.

    2013-01-01

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2′-OH of GMP and 5′-phosphate of AMP, and the other between 3′-OH of AMP and 5′-phosphate of GMP. This molecule, termed 2′3′-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2′3′-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation. PMID:23747010

  3. (TH)205-501, a non-catechol dopaminergic agonist, labels selectively and with high affinity dopamine D2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Closse, A.; Frick, W.; Markstein, R.; Maurer, R.; Nordmann, R.

    1985-01-01

    (TH)205-501, a non dopaminergic agonist, is presented as a ligand with high affinity (Ksub(D) approx= 1 nM) and high selectivity for dopamine receptors. pKsubi values of dopaminergic agonists derived from competition isotherms in the (TH)205-501 binding assay correlate very well with their potency in the acetylcholine release assay, which is controlled by dopamine D2 receptors. There is however no correlation with their potency stimulating aldenylate cyclase, a process controlled by dopamine D1 receptors. Thus (TH)205-501 is the first agonist ligand selective for dopamine D2 receptors. (Author).

  4. Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1).

    Science.gov (United States)

    Wanichawan, Pimthanya; Hodne, Kjetil; Hafver, Tandekile Lubelwana; Lunde, Marianne; Martinsen, Marita; Louch, William Edward; Sejersted, Ole Mathias; Carlson, Cathrine Rein

    2016-08-01

    NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer(68)-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer(68)-PLM-NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1-PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer(68)-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser(68).

  5. Design and Investigation of a [(18)F]-Labeled Benzamide Derivative as a High Affinity Dual Sigma Receptor Subtype Radioligand for Prostate Tumor Imaging.

    Science.gov (United States)

    Yang, Dongzhi; Comeau, Anthony; Bowen, Wayne D; Mach, Robert H; Ross, Brian D; Hong, Hao; Van Dort, Marcian E

    2017-03-06

    High overexpression of sigma (σ) receptors (σ1 and σ2 subtypes) in a variety of human solid tumors has prompted the development of σ receptor-targeting radioligands, as imaging agents for tumor detection. A majority of these radioligands to date target the σ2 receptor, a potential marker of tumor proliferative status. The identification of approximately equal proportions of both σ receptor subtypes in prostate tumors suggests that a high affinity, dual σ receptor-targeting radioligand could potentially provide enhanced tumor targeting efficacy in prostate cancer. To accomplish this goal, we designed a series of ligands which bind to both σ receptor subtypes with high affinity. Ligand 3a in this series, displaying optimal dual σ receptor subtype affinity (σ1, 6.3 nM; σ2, 10.2 nM) was radiolabeled with fluorine-18 ((18)F) to give [(18)F]3a and evaluated as a σ receptor-targeting radioligand in the mouse PC-3 prostate tumor model. Cellular assays with PC-3 cells demonstrated that a major proportion of [(18)F]3a was localized to cell surface σ receptors, while ∼10% of [(18)F]3a was internalized within cells after incubation for 3.5 h. Serial PET imaging in mice bearing PC-3 tumors revealed that uptake of [(18)F]3a was 1.6 ± 0.8, 4.4 ± 0.3, and 3.6 ± 0.6% ID/g (% injection dose per gram) in σ receptor-positive prostate tumors at 15 min, 1.5 h, and 3.5 h postinjection, respectively (n = 3) resulting in clear tumor visualization. Blocking studies conducted with haloperidol (a nonselective inhibitor for both σ receptor subtypes) confirmed that the uptake of [(18)F]3a was σ receptor-mediated. Histology analysis confirmed similar expression of σ1 and σ2 in PC-3 tumors which was significantly greater than its expression in normal organs/tissues such as liver, kidney, and muscle. Metabolite studies revealed that >50% of radioactivity in PC-3 tumors at 30 min postinjection represented intact [(18)F]3a. Prominent σ receptor-specific uptake of [(18)F]3a in

  6. ZK91587: a novel synthetic antimineralocorticoid displays high affinity for corticosterone (type I) receptors in the rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto, W.; de Kloet, E.R.

    1988-01-01

    In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15..beta.., 16..beta..b-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of (/sup 3/H) ZK91587 to the total hippocampal coritcosteroid receptor sites with high affinity, and low capacity. When 100-fold excess RU28362 was included simultaneously with (/sup 3/H) ZK91587, the labelled steroid binds with the same affinity and capacity. Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) > cortisol (F); Type II: B > F >>> ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat. The steroid dissociates following a one slope pattern, indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like receptor.

  7. Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics

    Science.gov (United States)

    Aweda, Tolulope A.; Meares, Claude F.

    2011-01-01

    For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (KA >108 M−1; KD calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate. PMID:21964396

  8. The influence of drug distribution and drug-target binding on target occupancy: The rate-limiting step approximation.

    Science.gov (United States)

    de Witte, W E A; Vauquelin, G; van der Graaf, P H; de Lange, E C M

    2017-05-12

    The influence of drug-target binding kinetics on target occupancy can be influenced by drug distribution and diffusion around the target, often referred to as "rebinding" or "diffusion-limited binding". This gives rise to a decreased decline of the drug-target complex concentration as a result of a locally higher drug concentration that arises around the target, which leads to prolonged target exposure to the drug. This phenomenon has been approximated by the steady-state approximation, assuming a steady-state concentration around the target. Recently, a rate-limiting step approximation of drug distribution and drug-target binding has been published. However, a comparison between both approaches has not been made so far. In this study, the rate-limiting step approximation has been rewritten into the same mathematical format as the steady-state approximation in order to compare the performance of both approaches for the investigation of the influence of drug-target binding kinetics on target occupancy. While both approximations clearly indicated the importance of kon and high target concentrations, it was shown that the rate-limiting step approximation is more accurate than the steady-state approximation, especially when dissociation is fast compared to association and distribution out of the binding compartment. It is therefore concluded that the new rate-limiting step approximation is to be preferred for assessing the influence of binding kinetics on local target site concentrations and target occupancy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity.

    Directory of Open Access Journals (Sweden)

    Jenny Bostrom

    Full Text Available The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2 antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.

  10. Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9.

    Science.gov (United States)

    Heikkilä, Outi; Susi, Petri; Stanway, Glyn; Hyypiä, Timo

    2009-01-01

    Coxsackievirus A9 (CAV9), a member of the genus Enterovirus in the family Picornaviridae, possesses an integrin-binding arginine-glycine-aspartic acid (RGD) motif in the C terminus of VP1 capsid protein. CAV9 has been shown to utilize integrins alphaVbeta3 and alphaVbeta6 as primary receptors for cell attachment. While CAV9 RGD-mutants (RGE and RGDdel) are capable of infecting rhabdomyosarcoma (RD) cell line, they grow very poorly in an epithelial lung carcinoma cell line (A549). In this study, the relationships between CAV9 infectivity in A549 and RD cells, receptor expression and integrin binding were analysed. A549 cells were shown to express both integrins alphaVbeta3 and alphaVbeta6, whereas alphaVbeta6 expression was not detected on the RD cells. Native CAV9 but not RGE and RGDdel mutants bound efficiently to immobilized alphaVbeta3 and alphaVbeta6. Adhesion of CAV9 but not RGE/RGDdel to A549 cells was also significantly higher than to RD cells. In contrast, no affinity or adhesion of bacterially produced VP1 proteins to the integrins or to the cells was detected. Function-blocking antibodies against alphaV-integrins blocked CAV9 but not CAV9-RGDdel infectivity, indicating that the viruses use different internalization routes; this may explain the differential infection kinetics of CAV9 and RGDdel. In an affinity assay, soluble alphaVbeta6, but not alphaVbeta3, bound to immobilized CAV9. Similarly, only soluble alphaVbeta6 blocked virus infectivity. These data suggest that CAV9 binding to alphaVbeta6 is a high-affinity interaction, which may indicate its importance in clinical infections; this remains to be determined.

  11. High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in Drosophila

    NARCIS (Netherlands)

    Ramírez, Fidel; Lingg, Thomas; Toscano, Sarah; Lam, Kin Chung; Georgiev, Plamen; Chung, Ho-Ryun; Lajoie, Bryan R; de Wit, Elzo; Zhan, Ye; de Laat, Wouter; Dekker, Job; Manke, Thomas; Akhtar, Asifa

    2015-01-01

    Dosage compensation mechanisms provide a paradigm to study the contribution of chromosomal conformation toward targeting and spreading of epigenetic regulators over a specific chromosome. By using Hi-C and 4C analyses, we show that high-affinity sites (HAS), landing platforms of the male-specific le

  12. DNA condensation by high-affinity interaction with avidin.

    Science.gov (United States)

    Morpurgo, Margherita; Radu, Aurelian; Bayer, Edward A; Wilchek, Meir

    2004-01-01

    Avidin, the basic biotin-binding glycoprotein from chicken egg white, is known to interact with DNA, whereas streptavidin, its neutral non-glycosylated bacterial analog, does not. In the present study we investigated the DNA-binding properties of avidin. Its affinity for DNA in the presence and absence of biotin was compared with that of other positively charged molecules, namely the protein lysozyme, the cationic polymers polylysine and polyarginine and an avidin derivative with higher isoelectric point (pI approximately 11) in which most of the lysine residues were converted to homoarginines. Gel-shift assays, transmission electron microscopy and dynamic light scattering experiments demonstrated an unexpectedly strong interaction between avidin and DNA. The most pronounced gel-shift retardation occurred with the avidin-biotin complex, followed by avidin alone and then guanidylated avidin. Furthermore, ultrastructural and light-scattering studies showed that avidin assembles on the DNA molecule in an organized manner. The assembly leads to the formation of nanoparticles that are about 50-100 nm in size (DNA approximately 5 kb) and have a rod-like or toroidal shape. In these particles the DNA is highly condensed and one avidin is bound to each 18 +/- 4 DNA base pairs. The complexes are very stable even at high dilution ([DNA] =10 pM) and are not disrupted in the presence of buffers or salt (up to 200 mM NaCl). The other positively charged molecules also condense DNA and form particles with a globular shape. However, in this case, these particles disassemble by dilution or in the presence of low salt concentration. The results indicate that the interaction of avidin with DNA may also occur under physiological conditions, further enhanced by the presence of biotin. This DNA-binding property of avidin may thus shed light on a potentially new physiological role for the protein in its natural environment.

  13. High Affinity Dopamine D3 Receptor (D3R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D3R Knockout Mice.

    Science.gov (United States)

    Boateng, Comfort A; Bakare, Oluyomi M; Zhan, Jia; Banala, Ashwini K; Burzynski, Caitlin; Pommier, Elie; Keck, Thomas M; Donthamsetti, Prashant; Javitch, Jonathan A; Rais, Rana; Slusher, Barbara S; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-08-13

    The dopamine D3 receptor (D3R) is a promising target for the development of pharmacotherapeutics to treat substance use disorders. Several D3R-selective antagonists are effective in animal models of drug abuse, especially in models of relapse. Nevertheless, poor bioavailability, metabolic instability, and/or predicted toxicity have impeded success in translating these drug candidates to clinical use. Herein, we report a series of D3R-selective 4-phenylpiperazines with improved metabolic stability. A subset of these compounds was evaluated for D3R functional efficacy and off-target binding at selected 5-HT receptor subtypes, where significant overlap in SAR with D3R has been observed. Several high affinity D3R antagonists, including compounds 16 (Ki = 0.12 nM) and 32 (Ki = 0.35 nM), showed improved metabolic stability compared to the parent compound, PG648 (6). Notably, 16 and the classic D3R antagonist SB277011A (2) were effective in reducing self-administration of heroin in wild-type but not D3R knockout mice.

  14. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Renata Rosito Tonelli

    2013-01-01

    Full Text Available Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques.The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment, were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction.In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic

  15. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination.

    Directory of Open Access Journals (Sweden)

    Kaval Kaur

    Full Text Available Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE. Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.

  16. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination

    Science.gov (United States)

    Kaur, Kaval; Zheng, Nai-Ying; Smith, Kenneth; Huang, Min; Li, Lie; Pauli, Noel T.; Henry Dunand, Carole J.; Lee, Jane-Hwei; Morrissey, Michael; Wu, Yixuan; Joachims, Michelle L.; Munroe, Melissa E.; Lau, Denise; Qu, Xinyan; Krammer, Florian; Wrammert, Jens; Palese, Peter; Ahmed, Rafi; James, Judith A.; Wilson, Patrick C.

    2015-01-01

    Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus. PMID:25951191

  17. [The high-affinity IgE receptor: lessons from structural analysis].

    Science.gov (United States)

    Blank, Ulrich; Jouvin, Marie-Hélène; Guérin-Marchand, Claudine; Kinet, Jean-Pierre

    2003-01-01

    The high affinity receptor for IgE, FcERI, is at the core of the allergic reaction. This receptor is expressed mainly on mast cells and basophils. Interaction of an allergen with its specific IgE bound to FcERI triggers cell activation, which induces the release of numerous mediators that are responsible for allergic manifestations. The recent increase in the prevalence of allergic diseases in developed countries has resulted in renewed efforts towards the development of new drugs. One of these is a humanised antibody directed against the IgE ligand. This antibody recognises specifically free but not FcERI-bound IgE thus preventing ligand binding and subsequent cell activation. This antibody has shown some efficacy in clinical trials involving patients with asthma and allergic rhinitis. The recent elucidation of the tridimensional structure of the complex between IgE and FcERI provides unexpected information regarding the mechanism of assembly of the complex, which now can be used to design small chemical compounds capable of specifically inhibiting this interaction.

  18. High affinity germinal center B cells are actively selected into the plasma cell compartment.

    Science.gov (United States)

    Phan, Tri Giang; Paus, Didrik; Chan, Tyani D; Turner, Marian L; Nutt, Stephen L; Basten, Antony; Brink, Robert

    2006-10-30

    A hallmark of T cell-dependent immune responses is the progressive increase in the ability of serum antibodies to bind antigen and provide immune protection. Affinity maturation of the antibody response is thought to be connected with the preferential survival of germinal centre (GC) B cells that have acquired increased affinity for antigen via somatic hypermutation of their immunoglobulin genes. However, the mechanisms that drive affinity maturation remain obscure because of the difficulty in tracking the affinity-based selection of GC B cells and their differentiation into plasma cells. We describe a powerful new model that allows these processes to be followed as they occur in vivo. In contrast to evidence from in vitro systems, responding GC B cells do not undergo plasma cell differentiation stochastically. Rather, only GC B cells that have acquired high affinity for the immunizing antigen form plasma cells. Affinity maturation is therefore driven by a tightly controlled mechanism that ensures only antibodies with the greatest possibility of neutralizing foreign antigen are produced. Because the body can sustain only limited numbers of plasma cells, this "quality control" over plasma cell differentiation is likely critical for establishing effective humoral immunity.

  19. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Science.gov (United States)

    Izzo, Nicholas J; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A; Arancio, Ottavio; Mach, Robert H; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L; Catalano, Susan M

    2014-01-01

    Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  20. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Directory of Open Access Journals (Sweden)

    Nicholas J Izzo

    Full Text Available Amyloid beta (Abeta 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD. We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1 protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological

  1. The binding spectra of carp C3 isotypes against natural targets independent of the binding specificity of their thioester.

    Science.gov (United States)

    Ichiki, Satoko; Kato-Unoki, Yoko; Somamoto, Tomonori; Nakao, Miki

    2012-09-01

    The central component of complement, C3, plays a versatile role in innate immune defense of vertebrates and some invertebrates. A notable molecular characteristic of this component is an intra-chain thioester site that enables C3 to bind covalently to its target. It has been reported that the binding preference of the thioester to hydroxyl or amino groups is primarily defined by presence or absence of the catalytic histidine residue at position 1126 in human C3. In teleosts, a unique C3 (non-His type) has been found, in addition to the common His type C3. These distinct C3 isoforms may provide diversity in the target-binding attributable to the different binding specificities of their thioesters. In the present study, we examine the hypothesized correlation of the catalytic histidine with the binding spectra of two major C3 isotypes of carp towards various model and natural targets. The results reveal that non-His type C3, rather than His type C3, has a wider range of binding spectrum, despite the binding specificity of its thioester being limited to amino groups. It is therefore hypothesized that the binding spectra of C3 isotypes are not defined by the binding specificity of the thioester but is more affected by differences in microbe-associated molecular patterns that activate complement. Overall, the present data imply that non-His type C3 plays a significant role against bacterial infections in the fish defense system. Copyright © 2012. Published by Elsevier Ltd.

  2. Fast-onset lidocaine block of rat NaV1.4 channels suggests involvement of a second high-affinity open state.

    Science.gov (United States)

    Gingrich, Kevin J; Wagner, Larry E

    2016-06-01

    Local anesthetics (LAs) block resting, open, and inactivated states of voltage-gated Na(+) channels where inactivated states are thought to bind with highest affinity. However, reports of fast-onset block occurring over milliseconds hint at high-affinity block of open channels. Movement of voltage-sensor domain IV-segment 4 (DIVS4) has been associated with high affinity LA block termed voltage-sensor block (VSB) that also leads to a second open state. These observations point to a second high-affinity open state that may underlie fast-onset block. To test for this state, we analyzed the modulation of Na(+) currents by lidocaine and its quaternary derivative (QX222) from heterologously expressed (Xenopus laevis oocytes) rat skeletal muscle μ1 NaV1.4 (rSkM1) with β1 (WT-β1), and a mutant form (IFM-QQQ mutation in the III-IV interdomain, QQQ) lacking fast inactivation, in combination with Markov kinetic gating models. 100 μM lidocaine induced fast-onset (τonset≈2 ms), long-lived (τrecovery≈120 ms) block of WT-β1 macroscopic currents. Lidocaine blocked single-channel and macroscopic QQQ currents in agreement with our previously described mechanism of dual, open-channel block (DOB mechanism). A DOB kinetic model reproduced lidocaine effects on QQQ currents. The DOB model was extended to include trapping fast-inactivation and activation gates, and a second open state (OS2); the latter arising from DIVS4 translocation that precedes inactivation and exhibits high-affinity, lidocaine binding (apparent Kd=25 μM) that accords with VSB (DOB-S2VSB mechanism). The DOB-S2VSB kinetic model predicted fast-onset block of WT-β1. The findings support the involvement of a second, high-affinity, open state in lidocaine modulation of Na(+) channels.

  3. Neuroprotective effects of high affinity Σ1 receptor selective compounds.

    Science.gov (United States)

    Luedtke, Robert R; Perez, Evelyn; Yang, Shao-Hua; Liu, Ran; Vangveravong, Suwanna; Tu, Zhude; Mach, Robert H; Simpkins, James W

    2012-03-02

    We previously reported that the antipsychotic drug haloperidol, a multifunctional D2-like dopamine and sigma receptor subtype antagonist, has neuroprotective properties. In this study we further examined the association between neuroprotection and receptor antagonism by evaluating a panel of novel compounds with varying affinity at sigma and D2-like dopamine receptors. These compounds were evaluated using an in vitro cytotoxicity assay that utilizes a hippocampal-derived cell line, HT-22, in the presence or absence of varying concentrations (5 to 20 mM) of glutamate. While haloperidol was found to be a potent neuroprotective agent in this in vitro cell assay, the prototypic sigma 1 receptor agonist (+)-pentazocine was found not to be neuroprotective. Subsequently, the potency for the neuroprotection of HT-22 cells was evaluated for a) three SV series indoles which have nMolar affinity at D2-like receptors but varying affinity at sigma 1 receptor and b) two benzyl phenylacetamides sigma 1 receptor selective compounds which bind with low affinity at D2-like receptors but have nMolar affinity for the sigma 1 receptor. We observed that cytoprotection correlated with the affinity of the compounds for sigma 1 receptors. Based upon results from the HT-22 cell-based in vitro assay, two phenylacetamides, LS-127 and LS-137, were further evaluated in vivo using a transient middle cerebral artery occlusion (t-MCAO) model of stroke. At a dose of 100 μg/kg, both LS-127 and LS-137 attenuated infarct volume by approximately 50%. These studies provide further evidence that sigma 1 receptor selective compounds can provide neuroprotection in cytotoxic situations. These results also demonstrate that sigma 1 receptor selective benzyl phenylacetamides are candidate pharmacotherapeutic agents that could be used to minimize neuronal death after a stroke or head trauma.

  4. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  5. Structural characterization of a high affinity mononuclear site in the copper(II)-α-synuclein complex.

    Science.gov (United States)

    Bortolus, Marco; Bisaglia, Marco; Zoleo, Alfonso; Fittipaldi, Maria; Benfatto, Maurizio; Bubacco, Luigi; Maniero, Anna Lisa

    2010-12-29

    Human α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein. In this work, we investigated the high affinity binding mode of truncated aS (1-99) (aS99) with Cu(II), in a stoichiometric ratio, to elucidate the residues involved in the binding site and the role of copper ions in the protein oligomerization. We used Electron Paramagnetic Resonance spectroscopy on the Cu(II)-aS99 complex at pH 6.5, performing both multifrequency continuous wave experiments and pulsed experiments at X-band. The comparison of 9.5 and 95 GHz data showed that at this pH only one binding mode is present. To identify the nature of the ligands, we performed Electron Spin Echo Envelope Modulation, Hyperfine Sublevel Correlation Spectroscopy, and pulsed Davies Electron-Nuclear Double Resonance (Davies-ENDOR) experiments. We determined that the EPR parameters are typical of a type-II copper complex, in a slightly distorted square planar geometry. Combining the results from the different pulsed techniques, we obtained that the equatorial coordination is {N(Im), N(-), H(2)O, O}, where N(im) is the imino nitrogen of His50, N(-) a deprotonated amido backbone nitrogen that we attribute to His50, H(2)O an exchangeable water molecule, and O an unidentified oxygen ligand. Moreover, we propose that the free amino terminus (Met1) participates in the complex as an axial ligand. The MXAN analysis of the XAS k-edge absorption data allowed us to independently validate the structural features proposed on the basis of the magnetic parameters of the Cu(II)-aS99 complex and then to further refine the quality of the proposed structural model.

  6. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...

  7. Synthesis of tetravalent LacNAc-glycoclusters as high-affinity cross-linker against Erythrina cristagalli agglutinin.

    Science.gov (United States)

    Ogata, Makoto; Chuma, Yasushi; Yasumoto, Yoshinori; Onoda, Takashi; Umemura, Myco; Usui, Taichi; Park, Enoch Y

    2016-01-01

    Four kinds of tetravalent double-headed glycoclusters [(LacNAc)4-DHGs] were designed with linkers of varying lengths consisting of alkanedioic carboxyamido groups (C6, C12, C18 and C24) between two bi-antennary LacNAc-glycosides. These glycoclusters served as high-affinity cross-linking ligands for the LacNAc-binding lectin Erythrina cristagalli agglutinin (ECA). The binding activity and cross-linking between each ligand and ECA were characterized by a hemagglutination inhibition (HI) assay, isothermal titration calorimetry (ITC), a quantitative precipitation assay and dynamic light scattering (DLS). For the precipitation assay and DLS measurement, the synthesized (LacNAc)4-DHGs were found to be capable of binding and precipitating the ECA as multivalent ligands. ITC analysis indicated the binding of (LacNAc)4-DHGs was driven by a favorable enthalpy change. Furthermore, the entropy penalty from binding (LacNAc)4-DHGs clearly decreased in a spacer length-dependent manner. The binding affinities of flexible (LacNAc)4-DHGs (C18 and C24) with long spacers were found to be more favorable than those of the clusters having short spacers (C6 and C12). These results were supported by molecular dynamics simulations with explicit water molecules for the tetravalent glycoclusters with ECA. We concluded that the subtle modification in the epitope-presenting scaffolds exerts the significant effect in the recognition efficiency involved in the LacNAc moieties by ECA.

  8. A new class of fluorescent boronic acids that have extraordinarily high affinities for diols in aqueous solution at physiological pH.

    Science.gov (United States)

    Cheng, Yunfeng; Ni, Nanting; Yang, Wenqian; Wang, Binghe

    2010-12-03

    The boronic acid group is an important recognition moiety for sensor design. Herein, we report a series of isoquinolinylboronic acids that have extraordinarily high affinities for diol-containing compounds at physiological pH. In addition, 5- and 8-isoquinolinylboronic acids also showed fairly high binding affinities towards D-glucose (K(a)=42 and 46 M(-1), respectively). For the first time, weak but encouraging binding of cis-cyclohexanediol was found for these boronic acids. Such binding was coupled with significant fluorescence changes. Furthermore, 4- and 6-isoquinolinylboronic acids also showed the ability to complex methyl α-D-glucopyranose (K(a)=3 and 2 M(-1), respectively).

  9. Design of cyclic peptides that bind protein surfaces with antibody-like affinity.

    Science.gov (United States)

    Millward, Steven W; Fiacco, Stephen; Austin, Ryan J; Roberts, Richard W

    2007-09-21

    There is a pressing need for new molecular tools to target protein surfaces with high affinity and specificity. Here, we describe cyclic messenger RNA display with a trillion-member covalent peptide macrocycle library. Using this library, we have designed a number of high-affinity, redox-insensitive, cyclic peptides that target the signaling protein G alpha i1. In addition to cyclization, our library construction took advantage of an expanded genetic code, utilizing nonsense suppression to insert N-methylphenylalanine as a 21st amino acid. The designed macrocycles exhibit several intriguing features. First, the core motif seen in all of the selected variants is the same and shares an identical context with respect to the macrocyclic scaffold, consistent with the idea that selection simultaneously optimizes both the cyclization chemistry and the structural placement of the binding epitope. Second, detailed characterization of one molecule, cyclic G alpha i binding peptide (cycGiBP), demonstrates substantially enhanced proteolytic stability relative to that of the parent linear molecule. Third and perhaps most important, the cycGiBP peptide binds the target with very high affinity ( K i approximately 2.1 nM), similar to those of many of the best monoclonal antibodies and higher than that of the betagamma heterodimer, an endogenous G alpha i1 ligand. Overall the work provides a general route to design novel, low-molecular-weight, high-affinity ligands that target protein surfaces.

  10. Distinct binding properties of TIAR RRMs and linker region.

    Science.gov (United States)

    Kim, Henry S; Headey, Stephen J; Yoga, Yano M K; Scanlon, Martin J; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A

    2013-04-01

    The RNA-binding protein TIAR is an mRNA-binding protein that acts as a translational repressor, particularly important under conditions of cellular stress. It binds to target mRNA and DNA via its RNA recognition motif (RRM) domains and is involved in both splicing regulation and translational repression via the formation of "stress granules." TIAR has also been shown to bind ssDNA and play a role in the regulation of transcription. Here we show, using surface plasmon resonance and nuclear magnetic resonance spectroscopy, specific roles of individual TIAR domains for high-affinity binding to RNA and DNA targets. We confirm that RRM2 of TIAR is the major RNA- and DNA-binding domain. However, the strong nanomolar affinity binding to U-rich RNA and T-rich DNA depends on the presence of the six amino acid residues found in the linker region C-terminal to RRM2. On its own, RRM1 shows preferred binding to DNA over RNA. We further characterize the interaction between RRM2 with the C-terminal extension and an AU-rich target RNA sequence using NMR spectroscopy to identify the amino acid residues involved in binding. We demonstrate that TIAR RRM2, together with its C-terminal extension, is the major contributor for the high-affinity (nM) interactions of TIAR with target RNA sequences.

  11. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S.J.; Catterall, W.A.

    1982-11-01

    Specific binding of /sup 3/H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD . 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors.

  12. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter

    DEFF Research Database (Denmark)

    Plenge, Per; Shi, Lei; Beuming, Thijs;

    2012-01-01

    The serotonin transporter (SERT) controls synaptic serotonin levels and is the primary target for antidepressants, including selective serotonin reuptake inhibitors (e.g. (S)-citalopram) and tricyclic antidepressants (e.g. clomipramine). In addition to a high affinity binding site, SERT possesses...

  13. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets

    Science.gov (United States)

    Bandyopadhyay, Sanghamitra; Ghosh, Dip; Mitra, Ramkrishna; Zhao, Zhongming

    2015-01-01

    MicroRNA (miRNA) regulates gene expression by binding to specific sites in the 3'untranslated regions of its target genes. Machine learning based miRNA target prediction algorithms first extract a set of features from potential binding sites (PBSs) in the mRNA and then train a classifier to distinguish targets from non-targets. However, they do not consider whether the PBSs are functional or not, and consequently result in high false positive rates. This substantially affects the follow up functional validation by experiments. We present a novel machine learning based approach, MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets), for accurate prediction of true or functional miRNA binding sites. Multiple instance learning framework is adopted to handle the lack of information about the actual binding sites in the target mRNAs. Biologically validated 9531 interacting and 973 non-interacting miRNA-mRNA pairs are identified from Tarbase 6.0 and confirmed with PAR-CLIP dataset. It is found that MBSTAR achieves the highest number of binding sites overlapping with PAR-CLIP with maximum F-Score of 0.337. Compared to the other methods, MBSTAR also predicts target mRNAs with highest accuracy. The tool and genome wide predictions are available at http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm.

  14. Human Eosinophils Express the High Affinity IgE Receptor, FcεRI, in Bullous Pemphigoid

    Science.gov (United States)

    Messingham, Kelly N.; Holahan, Heather M.; Frydman, Alexandra S.; Fullenkamp, Colleen; Srikantha, Rupasree; Fairley, Janet A.

    2014-01-01

    Bullous pemphigoid (BP) is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen). Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1) To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2) To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16) with total IgE≥400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ) of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils. PMID:25255430

  15. Human eosinophils express the high affinity IgE receptor, FcεRI, in bullous pemphigoid.

    Directory of Open Access Journals (Sweden)

    Kelly N Messingham

    Full Text Available Bullous pemphigoid (BP is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen. Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1 To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2 To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16 with total IgE ≥ 400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils.

  16. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes.

    Directory of Open Access Journals (Sweden)

    Zaneta Odrowaz

    Full Text Available Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP-seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled.

  17. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    OpenAIRE

    Maryam Rakhshandehroo; Bianca Knoch; Michael Müller; Sander Kersten

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPAR alpha binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPAR alpha governs biologi...

  18. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots.

    Science.gov (United States)

    Rizzardo, Cecilia; Tomasi, Nicola; Monte, Rossella; Varanini, Zeno; Nocito, Fabio F; Cesco, Stefano; Pinton, Roberto

    2012-12-01

    Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.

  19. Ephrin A2 receptor targeting does not increase adenoviral pancreatic cancer transduction in vivo

    NARCIS (Netherlands)

    van Geer, M.A.; Bakker, C.T.; Koizumi, N.; Mizuguchi, H.; Wesseling, J.G.; Oude Elferink, R.P.J.; Bosma, P.J.

    2009-01-01

    AIM: To generate an adenoviral vector specifically targeting the EphA2 receptor (EphA2R) highly expressed on pancreatic cancer cells in vivo. METHODS: YSA, a small peptide ligand that binds the EphA2R with high affinity, was inserted into the HI loop of the adenovirus serotype 5 fiber knob. To furth

  20. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity.

    Science.gov (United States)

    Sharma, P; Postel, S; Sundberg, E J; Kranz, D M

    2013-12-01

    Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.

  1. A pharmacological profile of the high-affinity GluK5 kainate receptor.

    Science.gov (United States)

    Møllerud, Stine; Kastrup, Jette Sandholm; Pickering, Darryl S

    2016-10-05

    Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [(3)H]-kainate in receptor binding assays (Kd=6.9nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128kDa) and deglycosylated (111kDa) protein, which was identical to the band pattern of native rat brain GluK5. A pharmacological profile of the high-affinity kainate receptor GluK5 is described which is distinct from the profiles of other kainate receptors (GluK1-3). The 27 tested ligands generally show a preferential affinity to GluK1 over GluK5, the exceptions being: dihydrokainate, (S)-5-fluorowillardiine, (S)-glutamate and quisqualate, where the affinity is similar at GluK1 and GluK5. In contrast, quisqualate shows 40-fold higher affinity at GluK5 over GluK3 whereas (S)-1-(2'-amino-2'-caboxyethyl)thienol[3,4-d]pyrimidin-2,4-dione (NF1231), (RS)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2S,4R)-4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar disorder), selective GluK5 ligands could have therapeutic potential. The distinct pharmacological profile of GluK5 suggests that it would be possible to design ligands with selectivity towards GluK5.

  2. A bambusuril macrocycle that binds anions in water with high affinity and selectivity.

    Science.gov (United States)

    Yawer, Mirza Arfan; Havel, Vaclav; Sindelar, Vladimir

    2015-01-02

    Synthetic receptors that function in water are important for the qualitative and quantitative detection of anions, which may act as pollutants in the environment or play important roles in biological processes. Neutral receptors are particularly appealing because they are often more selective than positively charged receptors; however, their affinity towards anions in pure water is only in range of 1-10(3)  L mol(-1) . The anion-templated synthesis of a water-soluble bambusuril derivative is shown to be an outstanding receptor for various inorganic anions in pure water, with association constants of up to 10(7)  L mol(-1) . Furthermore, the macrocycle discriminates between anions with unprecedented selectivity (up to 500 000-fold). We anticipate that the combination of remarkable affinity and selectivity of this macrocycle will enable the efficient detection and isolation of diverse anions in aqueous solutions, which is not possible with current supramolecular systems.

  3. Monomeric TonB and the Ton box are required for the Formation of a High-Affinity Transporter-TonB Complex†

    Science.gov (United States)

    Freed, Daniel M.; Lukasik, Stephen M.; Sikora, Arthur; Mokdad, Audrey; Cafiso, David S.

    2013-01-01

    The energy-dependent uptake of trace nutrients by Gram-negative bacteria involves the coupling of an outer membrane transport protein to the transperiplasmic protein TonB. In the present study, a soluble construct of Escherichia coli TonB (residues 33–239) was used to determine the affinity of TonB to the outer membrane transporters BtuB, FecA and FhuA. Using fluorescence anisotropy, TonB(33–239) was found to bind with high-affinity (tens of nM) to both BtuB and FhuA; however, no high-affinity binding was observed to FecA. In BtuB, the high affinity binding of TonB(33–239) was eliminated by mutations in the Ton box, which yield transport-defective protein, or by the addition of a Colicin E3 fragment, which stabilizes the Ton box in a folded state. These results indicate that transport requires a high-affinity transporter-TonB interaction that is mediated by the Ton box. Characterization of TonB(33–239) using double electron-electron resonance (DEER) demonstrates that a significant population of TonB(33–239) exists as a dimer; moreover, interspin distances are in approximate agreement with interlocked dimers observed previously by crystallography for shorter TonB fragments. When bound to the outer membrane transporter, DEER shows that the TonB(33–239) dimer is converted to a monomeric form, suggesting that a dimer-monomer conversion takes place at the outer membrane during the TonB-dependent transport cycle. PMID:23517233

  4. Monomeric TonB and the Ton box are required for the formation of a high-affinity transporter-TonB complex.

    Science.gov (United States)

    Freed, Daniel M; Lukasik, Stephen M; Sikora, Arthur; Mokdad, Audrey; Cafiso, David S

    2013-04-16

    The energy-dependent uptake of trace nutrients by Gram-negative bacteria involves the coupling of an outer membrane transport protein to the transperiplasmic protein TonB. In this study, a soluble construct of Escherichia coli TonB (residues 33-239) was used to determine the affinity of TonB for outer membrane transporters BtuB, FecA, and FhuA. Using fluorescence anisotropy, TonB(33-239) was found to bind with high affinity (tens of nanomolar) to both BtuB and FhuA; however, no high-affinity binding to FecA was observed. In BtuB, the high-affinity binding of TonB(33-239) was eliminated by mutations in the Ton box, which yield transport-defective protein, or by the addition of a Colicin E3 fragment, which stabilizes the Ton box in a folded state. These results indicate that transport requires a high-affinity transporter-TonB interaction that is mediated by the Ton box. Characterization of TonB(33-239) using double electron-electron resonance (DEER) demonstrates that a significant population of TonB(33-239) exists as a dimer; moreover, interspin distances are in approximate agreement with interlocked dimers observed previously by crystallography for shorter TonB fragments. When the TonB(33-239) dimer is bound to the outer membrane transporter, DEER shows that the TonB(33-239) dimer is converted to a monomeric form, suggesting that a dimer-monomer conversion takes place at the outer membrane during the TonB-dependent transport cycle.

  5. Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin.

    Science.gov (United States)

    Brophy, Megan Brunjes; Nakashige, Toshiki G; Gaillard, Aleth; Nolan, Elizabeth M

    2013-11-27

    Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96-114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (Damo, S. M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103-105 to 104-106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity.

  6. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates*

    Science.gov (United States)

    Gao, Feng; Kight, Alicia D.; Henderson, Rory; Jayanthi, Srinivas; Patel, Parth; Murchison, Marissa; Sharma, Priyanka; Goforth, Robyn L.; Kumar, Thallapuranam Krishnaswamy Suresh; Henry, Ralph L.; Heyes, Colin D.

    2015-01-01

    Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP. PMID:25918165

  7. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.

    Science.gov (United States)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel; Nielsen, Morten; Buus, Søren; Jungersen, Gregers

    2016-02-01

    Affinity and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are important factors in presentation of peptides to cytotoxic T lymphocytes (CTLs). In silico prediction methods of peptide-MHC binding followed by experimental analysis of peptide-MHC interactions constitute an attractive protocol to select target peptides from the vast pool of viral proteome peptides. We have earlier reported the peptide binding motif of the porcine MHC-I molecules SLA-1*04:01 and SLA-2*04:01, identified by an ELISA affinity-based positional scanning combinatorial peptide library (PSCPL) approach. Here, we report the peptide binding motif of SLA-3*04:01 and combine two prediction methods and analysis of both peptide binding affinity and stability of peptide-MHC complexes to improve rational peptide selection. Using a peptide prediction strategy combining PSCPL binding matrices and in silico prediction algorithms (NetMHCpan), peptide ligands from a repository of 8900 peptides were predicted for binding to SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01 and validated by affinity and stability assays. From the pool of predicted peptides for SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01, a total of 71, 28, and 38% were binders with affinities below 500 nM, respectively. Comparison of peptide-SLA binding affinity and complex stability showed that peptides of high affinity generally, but not always, produce complexes of high stability. In conclusion, we demonstrate how state-of-the-art prediction and in vitro immunology tools in combination can be used for accurate selection of peptides for MHC class I binding, hence providing an expansion of the field of peptide-MHC analysis also to include pigs as a livestock experimental model.

  8. SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization.

    Science.gov (United States)

    Tan, Sze Y; Acquah, Caleb; Sidhu, Amandeep; Ongkudon, Clarence M; Yon, L S; Danquah, Michael K

    2016-11-01

    The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.

  9. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  10. Method for detecting binding efficiencies of synthetic oligonucleotides: Targeting bacteria and insects

    Science.gov (United States)

    Expanding applications of gene-based targeting biotechnology in functional genomics and the treatment of plants, animals, and microbes has synergized the need for new methods to measure binding efficiencies of these products to their genetic targets. The adaptation and innovative use of Cell–Penetra...

  11. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.

    Science.gov (United States)

    Burel, Sebastien A; Hart, Christopher E; Cauntay, Patrick; Hsiao, Jill; Machemer, Todd; Katz, Melanie; Watt, Andy; Bui, Huynh-Hoa; Younis, Husam; Sabripour, Mahyar; Freier, Susan M; Hung, Gene; Dan, Amy; Prakash, T P; Seth, Punit P; Swayze, Eric E; Bennett, C Frank; Crooke, Stanley T; Henry, Scott P

    2016-03-18

    High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons.

    Science.gov (United States)

    Cosgrove, Kathleen E; Meriney, Stephen D; Barrionuevo, Germán

    2011-12-01

    Stratum lacunosum-moleculare interneurons (L-Mi) in hippocampal area CA3 target the apical dendrite of pyramidal cells providing feedforward inhibition. Here we report that selective activation of group III metabotropic glutamate receptors (mGluRs) 4/8 with L(+)-2-amino-4-phosphnobytyric acid (L-AP4; 10 μM) decreased the probability of glutamate release from the mossy fiber (MF) terminals synapsing onto L-Mi. Consistent with this interpretation, application of L-AP4 in the presence of 3 mM strontium decreased the frequency of asynchronous MF EPSCs in L-Mi. Furthermore, the dose response curve showed that L-AP4 at 400 μM produced no further decrease in MF EPSC amplitude compared with 20 μM L-AP4, indicating the lack of mGluRs 7 at these MF terminals. We also found that one mechanism of mGluRs 4/8-mediated inhibition of release is linked to N-type voltage gated calcium channels at MF terminals. Application of the group III mGluR antagonist MSOP (100 μM) demonstrated that mGluRs 4/8 are neither tonically active nor activated by low and moderate frequencies of activity. However, trains of stimuli to the MF at 20 and 40 Hz delivered during the application of MSOP revealed a relief of inhibition of transmitter release and an increase in the overall probability of action potential firing in the postsynaptic L-Mi. Interestingly, the time to first action potential was significantly shorter in the presence of MSOP, indicating that mGluR 4/8 activation delays L-Mi firing in response to MF activity. Taken together, our data demonstrate that the timing and probability of action potentials in L-Mi evoked by MF synaptic input is regulated by the activation of presynaptic high affinity group III mGluRs.

  13. Targeting of Prostate Cancer with Hyaluronan-Binding Proteins

    Science.gov (United States)

    2005-06-01

    library of a human sarcoma cell line derived from chondrocytes as template. The cDNAs cording for the portion of aggrecan (993 bp) and the full-length...20. Okunieff P, Li M, Liu W, Sun J, Fenton B, Zhang L, Ding I.: Keratinocyte growth factors radioprotect bowel and bone marrow but not KHT sarcoma ...Triptolide Nanoparticle Aims: 1) To examine the effects of RGD/NGR-PA-TPL- lipo on primary and metastatic breast cancer; and 2) To examine the targeting of

  14. Structures of the Ultra-High-Affinity Protein-Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa.

    Science.gov (United States)

    Joshi, Amar; Grinter, Rhys; Josts, Inokentijs; Chen, Sabrina; Wojdyla, Justyna A; Lowe, Edward D; Kaminska, Renata; Sharp, Connor; McCaughey, Laura; Roszak, Aleksander W; Cogdell, Richard J; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2015-08-28

    How ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase-Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase-ImS2 and pyocin AP41 DNase-ImAP41. These structures represent divergent DNase-Im subfamilies and are important in extending our understanding of protein-protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase-Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase-Immunity pairs that appear to underpin the split of this family into two distinct groups.

  15. Structures of the Ultra-High-Affinity Protein–Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa

    Science.gov (United States)

    Joshi, Amar; Grinter, Rhys; Josts, Inokentijs; Chen, Sabrina; Wojdyla, Justyna A.; Lowe, Edward D.; Kaminska, Renata; Sharp, Connor; McCaughey, Laura; Roszak, Aleksander W.; Cogdell, Richard J.; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2015-01-01

    How ultra-high-affinity protein–protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase–Im interaction is a model system for the study of high-affinity protein–protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase–Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase–ImS2 and pyocin AP41 DNase–ImAP41. These structures represent divergent DNase–Im subfamilies and are important in extending our understanding of protein–protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase–Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase–Immunity pairs that appear to underpin the split of this family into two distinct groups. PMID:26215615

  16. Rational targeting of subclasses of intermolecular interactions: elimination of nonspecific binding for analyte sensing.

    Science.gov (United States)

    Lane, Jordan S; Richens, Joanna L; Vere, Kelly-Ann; O'Shea, Paul

    2014-08-12

    The ability to target and control intermolecular interactions is crucial in the development of several different technologies. Here we offer a tool to rationally design liquid media systems that can modulate specific intermolecular interactions. This has broad implications in deciphering the nature of intermolecular forces in complex solutions and offers insight into the forces that govern both specific and nonspecific binding in a given system. Nonspecific binding still continues to be a problem when dealing with analyte detection across a range of different detection technologies. Here, we exemplify the problem of nonspecific binding on model membrane systems and when dealing with low-abundance protein detection on commercially available SPR technology. A range of different soluble reagents that target specific subclasses of intermolecular interactions have been tested and optimized to virtually eliminate nonspecific binding while leaving specific interactions unperturbed. Thiocyanate ions are used to target nonpolar interactions, and small reagents such as glycylglycylglycine are used to modulate the dielectric constant, which targets charge-charge and dipole interactions. We show that with rational design and careful modulation these reagents offer a step forward in dissecting the intermolecular forces that govern binding, alongside offering nonspecific binding elimination in detection systems.

  17. High-affinity olfactory receptor for the death-associated odor cadaverine

    OpenAIRE

    2013-01-01

    Cadaverine and putrescine, two diamines emanating from decaying flesh, are strongly repulsive odors to humans but serve as innate attractive or social cues in other species. Here we show that zebrafish, a vertebrate model system, exhibit powerful and innate avoidance behavior to both diamines, and identify a high-affinity olfactory receptor for cadaverine.

  18. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective radiol

  19. N-Oxide analogs of WAY-100635 : new high affinity 5-HT1A receptor antagonists

    NARCIS (Netherlands)

    Marchais-Oberwinkler, S; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, HV

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective radiol

  20. High affinity, bioavailable 3-amino-1,4-benzodiazepine-based gamma-secretase inhibitors.

    Science.gov (United States)

    Owens, Andrew P; Nadin, Alan; Talbot, Adam C; Clarke, Earl E; Harrison, Timothy; Lewis, Huw D; Reilly, Michael; Wrigley, Jonathan D J; Castro, José L

    2003-11-17

    In this paper, we describe the development of a novel series of high affinity, orally bioavailable 3-amino-1,4 benzodiazepine-based gamma-secretase inhibitors for the potential treatment of Alzheimer's disease. We disclose structure-activity relationships based around the 1, 3 and 5 positions of the benzodiazepine core structure.

  1. High Affinity Iron Permease is Required for Virulence of Rhizopus oryzae

    Science.gov (United States)

    Rhizopus oryzae is the most common cause of mucormycosis. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to develop mucormycosis. The high affinity iron permease gene (rFTR1) is required for R. oryzae iron transport in iro...

  2. A single-molecule approach to explore binding, uptake and transport of cancer cell targeting nanotubes

    Science.gov (United States)

    Lamprecht, C.; Plochberger, B.; Ruprecht, V.; Wieser, S.; Rankl, C.; Heister, E.; Unterauer, B.; Brameshuber, M.; Danzberger, J.; Lukanov, P.; Flahaut, E.; Schütz, G.; Hinterdorfer, P.; Ebner, A.

    2014-03-01

    In the past decade carbon nanotubes (CNTs) have been widely studied as a potential drug-delivery system, especially with functionality for cellular targeting. Yet, little is known about the actual process of docking to cell receptors and transport dynamics after internalization. Here we performed single-particle studies of folic acid (FA) mediated CNT binding to human carcinoma cells and their transport inside the cytosol. In particular, we employed molecular recognition force spectroscopy, an atomic force microscopy based method, to visualize and quantify docking of FA functionalized CNTs to FA binding receptors in terms of binding probability and binding force. We then traced individual fluorescently labeled, FA functionalized CNTs after specific uptake, and created a dynamic ‘roadmap’ that clearly showed trajectories of directed diffusion and areas of nanotube confinement in the cytosol. Our results demonstrate the potential of a single-molecule approach for investigation of drug-delivery vehicles and their targeting capacity.

  3. Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies.

    Science.gov (United States)

    Lipovsek, Dasa; Lippow, Shaun M; Hackel, Benjamin J; Gregson, Melissa W; Cheng, Paul; Kapila, Atul; Wittrup, K Dane

    2007-05-11

    The 10th human fibronectin type III domain ((10)Fn3) is one of several protein scaffolds used to design and select families of proteins that bind with high affinity and specificity to macromolecular targets. To date, the highest affinity (10)Fn3 variants have been selected by mRNA display of libraries generated by randomizing all three complementarity-determining region -like loops of the (10)Fn3 scaffold. The sub-nanomolar affinities of such antibody mimics have been attributed to the extremely large size of the library accessible by mRNA display (10(12) unique sequences). Here we describe the selection and affinity maturation of (10)Fn3-based antibody mimics with dissociation constants as low as 350 pM selected from significantly smaller libraries (10(7)-10(9) different sequences), which were constructed by randomizing only 14 (10)Fn3 residues. The finding that two adjacent loops in human (10)Fn3 provide a large enough variable surface area to select high-affinity antibody mimics is significant because a smaller deviation from wild-type (10)Fn3 sequence is associated with a higher stability of selected antibody mimics. Our results also demonstrate the utility of an affinity-maturation strategy that led to a 340-fold improvement in affinity by maximizing sampling of sequence space close to the original selected antibody mimic. A striking feature of the highest affinity antibody mimics selected against lysozyme is a pair of cysteines on adjacent loops, in positions 28 and 77, which are critical for the affinity of the (10)Fn3 variant for its target and are close enough to form a disulfide bond. The selection of this cysteine pair is structurally analogous to the natural evolution of disulfide bonds found in new antigen receptors of cartilaginous fish and in camelid heavy-chain variable domains. We propose that future library designs incorporating such an interloop disulfide will further facilitate the selection of high-affinity, highly stable antibody mimics from

  4. A soluble form of the high affinity IgE receptor, Fc-epsilon-RI, circulates in human serum.

    Directory of Open Access Journals (Sweden)

    Eleonora Dehlink

    Full Text Available Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI, the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ∼40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum.

  5. Identification of Soft Matter Binding Peptide Ligands Using Phage Display.

    Science.gov (United States)

    Günay, Kemal Arda; Klok, Harm-Anton

    2015-10-21

    Phage display is a powerful tool for the selection of highly affine, short peptide ligands. While originally primarily used for the identification of ligands to proteins, the scope of this technique has significantly expanded over the past two decades. Phage display nowadays is also increasingly applied to identify ligands that selectively bind with high affinity to a broad range of other substrates including natural and biological polymers as well as a variety of low-molecular-weight organic molecules. Such peptides are of interest for various reasons. The ability to selectively and with high affinity bind to the substrate of interest allows the conjugation or immobilization of, e.g., nanoparticles or biomolecules, or generally, facilitates interactions at materials interfaces. On the other hand, presentation of peptide ligands that selectively bind to low-molecular-weight organic materials is of interest for the development of sensor surfaces. The aim of this article is to highlight the opportunities provided by phage display for the identification of peptide ligands that bind to synthetic or natural polymer substrates or to small organic molecules. The article will first provide an overview of the different peptide ligands that have been identified by phage display that bind to these "soft matter" targets. The second part of the article will discuss the different characterization techniques that allow the determination of the affinity of the identified ligands to the respective substrates.

  6. Binding Sites of miR-1273 Family on the mRNA of Target Genes

    Directory of Open Access Journals (Sweden)

    Anatoly Ivashchenko

    2014-01-01

    Full Text Available This study examined binding sites of 2,578 miRNAs in the mRNAs of 12,175 human genes using the MirTarget program. It found that the miRNAs of miR-1273 family have between 33 and 1,074 mRNA target genes, with a free hybridization energy of 90% or more of its maximum value. The miR-1273 family consists of miR-1273a, miR-1273c, miR-1273d, miR-1273e, miR-1273f, miR-1273g-3p, miR-1273g-5p, miR-1273h-3p, and miR-1273h-5p. Unique miRNAs (miR-1273e, miR-1273f, and miR-1273g-3p have more than 400 target genes. We established 99 mRNA nucleotide sequences that contain arranged binding sites for the miR-1273 family. High conservation of each miRNA binding site in the mRNA of the target genes was found. The arranged binding sites of the miR-1273 family are located in the 5′UTR, CDS, or 3′UTR of many mRNAs. Five repeating sites containing some of the miR-1273 family’s binding sites were found in the 3′UTR of several target genes. The oligonucleotide sequences of miR-1273 binding sites located in CDSs code for homologous amino acid sequences in the proteins of target genes. The biological role of unique miRNAs was also discussed.

  7. Sertraline and its metabolite desmethylsertraline, but not bupropion or its three major metabolites, have high affinity for P-glycoprotein.

    Science.gov (United States)

    Wang, Jun-Sheng; Zhu, Hao-Jie; Gibson, Bryan Bradford; Markowitz, John Seth; Donovan, Jennifer Lyn; DeVane, Carl Lindsay

    2008-02-01

    The ATP-binding cassette (ABC) transporter protein subfamily B1 line (ABCB1) transporter P-glycoprotein (P-gp) plays an important role in the blood-brain barrier limiting a broad spectrum of substrates from entering the central nervous system. In the present study, the transport activity of P-gp for sertraline, desmethylsertraline, bupropion, and the major metabolites of bupropion, threo-amino alcohol (TB), erythro-amino alcohol (EB), and hydroxy metabolite (HB) was studied using an ATPase assay in expressed human P-gp membranes by measuring concentrations of inorganic P(i) in expressed human P-gp membranes. Verapamil was included as a positive control. The Michaelis-Menten equation was used for characterizing the kinetic data. Sertraline and desmethylsertraline showed high affinity for P-gp. The V(max)/K(m) values of sertraline (1.6 min(-1) x 10(-3)) and desmethylsertraline (1.4 min(-1) x 10(-3)) were comparable with that of verapamil (1.7 min(-1) x 10(-3)). Bupropion and its three metabolites showed very weak affinity for P-gp, with V(max)/K(m) values lower than 0.01 min(-1) x 10(-3). The results of the present study indicate that sertraline and desmethylsertraline have high affinity for P-gp, whereas bupropion and its three major metabolites TB, EB, and HB have very weak affinity for P-gp. These findings may help to explain observed drug-drug interactions among antidepressants.

  8. Computational design of nanoparticle drug delivery systems for selective targeting.

    Science.gov (United States)

    Duncan, Gregg A; Bevan, Michael A

    2015-10-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.

  9. Michael Acceptor Approach to the Design of New Salvinorin A-based High Affinity Ligands for the Kappa-Opioid Receptor

    Science.gov (United States)

    Polepally, Prabhakar R.; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D.; Roth, Bryan L.; Zjawiony, Jordan K.

    2014-01-01

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand–receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure–activity relationships, and previous salvinorin A–KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR. PMID:25193297

  10. Michael acceptor approach to the design of new salvinorin A-based high affinity ligands for the kappa-opioid receptor.

    Science.gov (United States)

    Polepally, Prabhakar R; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D; Roth, Bryan L; Zjawiony, Jordan K

    2014-10-06

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand-receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure-activity relationships, and previous salvinorin A-KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR.

  11. Selection and design of high affinity DNA ligands for mutant single-chain derivatives of the bacteriophage 434 repressor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Single-chain repressor RRTRES is a derivative of bacteriophage 434 repressor, which contains covalently dimerized DNA-binding domains (amino acids 1-69) of the phage 434 repressor. In this single-chain molecule, the wild type domain R is connected to the mutant domain RTRES by a recombinant linker in a head-to-tail arrangement. The DNA-contacting amino acids of RTRES at the -1, 1, 2, and 5 positions of the a3 helix are T, R, E, S respectively. By using a randomized DNA pool containing the central sequence -CATACAAGAAAGNNNNNNTTT-, a cyclic, in vitro DNA-binding site selection was performed. The selected population was cloned and the individual members were characterized by determining their binding affinities to RRTRES. The results showed that the optimal operators contained the TTAC or TTCC sequences in the underlined positions as above, and that the Kd values were in the 1×10-12 mol/L-1×10-11mol/L concentration range. Since the affinity of the natural 434 repressor to its natural operator sites is in the 1×10-9 mol/L range, the observed binding affinity increase is remarkable. It was also found that binding affinity was strongly affected by the flanking bases of the optimal tetramer binding sites, especially by the base at the 5′ position. We constructed a new homodimeric single-chain repressor RTRESRTRES and its DNA-binding specificity was tested by using a series of new operators designed according to the recog-nition properties previously determined for the RTRES domain. These operators containing the con-sensus sequence GTAAGAAARNTTACN or GGAAGAAARNTTCCN (R is A or G) were recognized by RTRESRTRES specifically, and with high binding affinity. Thus, by using a combination of random selection and rational design principles, we have discovered novel, high affinity protein-DNA inter-actions with new specificity. This method can potentially be used to obtain new binding specificity for other DNA-binding proteins.

  12. Identification of ligands that target the HCV-E2 binding site on CD81

    Science.gov (United States)

    Olaby, Reem Al; Azzazy, Hassan M.; Harris, Rodney; Chromy, Brett; Vielmetter, Jost; Balhorn, Rod

    2013-04-01

    Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

  13. Identification of ligands that target the HCV-E2 binding site on CD81.

    Science.gov (United States)

    Olaby, Reem Al; Azzazy, Hassan M; Harris, Rodney; Chromy, Brett; Vielmetter, Jost; Balhorn, Rod

    2013-04-01

    Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

  14. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets.

    Science.gov (United States)

    Hogan, Gregory J; Brown, Patrick O; Herschlag, Daniel

    2015-01-01

    Reprogramming of a gene's expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100-500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1) Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2) In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa) in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae) suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3) The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA) cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4) Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron transport

  15. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets.

    Directory of Open Access Journals (Sweden)

    Gregory J Hogan

    Full Text Available Reprogramming of a gene's expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100-500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1 Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2 In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3 The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4 Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron

  16. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    Science.gov (United States)

    Dowall, S. D.; Graham, V. A.; Corbin-Lickfett, K.; Empig, C.; Schlunegger, K.; Bruce, C. B.; Easterbrook, L.; Hewson, R.

    2015-01-01

    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus. PMID:25815346

  17. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    Directory of Open Access Journals (Sweden)

    S. D. Dowall

    2015-01-01

    Full Text Available Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus.

  18. Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. PMP targeting is evolutionarily conserved.

    Science.gov (United States)

    Halbach, André; Lorenzen, Stephan; Landgraf, Christiane; Volkmer-Engert, Rudolf; Erdmann, Ralf; Rottensteiner, Hanspeter

    2005-06-01

    We predicted in human peroxisomal membrane proteins (PMPs) the binding sites for PEX19, a key player in the topogenesis of PMPs, by virtue of an algorithm developed for yeast PMPs. The best scoring PEX19-binding site was found in the adrenoleukodystrophy protein (ALDP). The identified site was indeed bound by human PEX19 and was also recognized by the orthologous yeast PEX19 protein. Likewise, both human and yeast PEX19 bound with comparable affinities to the PEX19-binding site of the yeast PMP Pex13p. Interestingly, the identified PEX19-binding site of ALDP coincided with its previously determined targeting motif. We corroborated the requirement of the ALDP PEX19-binding site for peroxisomal targeting in human fibroblasts and showed that the minimal ALDP fragment targets correctly also in yeast, again in a PEX19-binding site-dependent manner. Furthermore, the human PEX19-binding site of ALDP proved interchangeable with that of yeast Pex13p in an in vivo targeting assay. Finally, we showed in vitro that most of the predicted binding sequences of human PMPs represent true binding sites for human PEX19, indicating that human PMPs harbor common PEX19-binding sites that do resemble those of yeast. Our data clearly revealed a role for PEX19-binding sites as PMP-targeting motifs across species, thereby demonstrating the evolutionary conservation of PMP signal sequences from yeast to man.

  19. Signatures of RNA binding proteins globally coupled to effective microRNA target sites

    DEFF Research Database (Denmark)

    Jacobsen, Anders; Wen, Jiayu; Marks, Debora S

    2010-01-01

    may be modulated by other mRNA sequence elements such as binding sites for the hundreds of RNA binding proteins (RNA-BPs) expressed in any cell, and this aspect has not been systematically explored. Across a panel of published experiments, we systematically investigated to what extent sequence motifs...... proteins. This is the first systematic investigation of 3' UTR motifs that globally couple to regulation by miRNAs and may potentially antagonize or cooperate with miRNA/siRNA regulation. Our results suggest that binding sites of miRNAs and RNA-BPs should be considered in combination when interpreting......MicroRNAs (miRNAs) and small interfering RNAs (siRNAs), bound to Argonaute proteins (RISC), destabilize mRNAs through base-pairing with the mRNA. However, the gene expression changes after perturbations of these small RNAs are only partially explained by predicted miRNA/siRNA targeting. Targeting...

  20. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library.

    Science.gov (United States)

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2016-11-01

    Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase.

  1. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes.

    Science.gov (United States)

    Wensveen, Felix M; van Gisbergen, Klaas P J M; Eldering, Eric

    2012-09-01

    Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses.

  2. Cubilin, a High Affinity Receptor for Fibroblast Growth Factor 8, Is Required for Cell Survival in the Developing Vertebrate Head*

    Science.gov (United States)

    Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P.; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E.; Kozyraki, Renata

    2013-01-01

    Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity. PMID:23592779

  3. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head.

    Science.gov (United States)

    Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E; Kozyraki, Renata

    2013-06-07

    Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.

  4. Design and synthesis of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile (citalopram) analogues as novel probes for the serotonin transporter S1 and S2 binding sites

    DEFF Research Database (Denmark)

    Banala, Ashwini K; Zhang, Peng; Plenge, Per

    2013-01-01

    The serotonin transporter (SERT) is the primary target for antidepressant drugs. The existence of a high affinity primary orthosteric binding site (S1) and a low affinity secondary site (S2) has been described, and their relation to antidepressant pharmacology has been debated. Herein, structural...

  5. Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus.

    Science.gov (United States)

    Mifsud, Karen R; Reul, Johannes M H M

    2016-10-04

    A stressful event results in secretion of glucocorticoid hormones, which bind to mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) in the hippocampus to regulate cognitive and affective responses to the challenge. MRs are already highly occupied by low glucocorticoid levels under baseline conditions, whereas GRs only become substantially occupied by stress- or circadian-driven glucocorticoid levels. Currently, however, the binding of MRs and GRs to glucocorticoid-responsive elements (GREs) within hippocampal glucocorticoid target genes under such physiological conditions in vivo is unknown. We found that forced swim (FS) stress evoked increased hippocampal RNA expression levels of the glucocorticoid-responsive genes FK506-binding protein 5 (Fkbp5), Period 1 (Per1), and serum- and glucocorticoid-inducible kinase 1 (Sgk1). Chromatin immunoprecipitation (ChIP) analysis showed that this stressor caused substantial gene-dependent increases in GR binding and surprisingly, also MR binding to GREs within these genes. Different acute challenges, including novelty, restraint, and FS stress, produced distinct glucocorticoid responses but resulted in largely similar MR and GR binding to GREs. Sequential and tandem ChIP analyses showed that, after FS stress, MRs and GRs bind concomitantly to the same GRE sites within Fkbp5 and Per1 but not Sgk1 Thus, after stress, MRs and GRs seem to bind to GREs as homo- and/or heterodimers in a gene-dependent manner. MR binding to GREs at baseline seems to be restricted, whereas after stress, GR binding may facilitate cobinding of MR. This study reveals that the interaction of MRs and GRs with GREs within the genome constitutes an additional level of complexity in hippocampal glucocorticoid action beyond expectancies based on ligand-receptor interactions.

  6. Prenatal exposure to methylmercury alters development of adrenergic receptor binding sites in peripheral sympathetic target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Slotkin, T.A.; Orband, L.; Cowdery, T.; Kavlock, R.J.; Bartolome, J.

    1987-01-01

    In order to assess the impact of prenatal exposure to methylmercury on sympathetic neurotransmission, effects on development of adrenergic receptor binding sites in peripheral tissues was evaluated. In the liver, methylmercury produced a dose-dependent increase in alpha/sub 1/, alpha/sub 2/, and beta-receptor binding of radioliganda throughout the first 5 weeks of postnatal life. Similarly, renal alpha-receptor subtypes showed increased binding capabilities, but binding to alpha-receptor sites was reduced. At least some of the changes in receptors appear to be of functional significance, as physiological reactivity to adrenergic stimulation is altered in the same directions in these two tissues. The actions of methylmercury displayed tissue specificity in that the same receptor populations were largely unaffected in other tissues (lung, heart). These results suggest that methylmercury exposure in utero alters adrenergic responses through targeted effects on postsynaptic receptor populations in specific tissues.

  7. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging.

    Science.gov (United States)

    Maute, Roy L; Gordon, Sydney R; Mayer, Aaron T; McCracken, Melissa N; Natarajan, Arutselvan; Ring, Nan Guo; Kimura, Richard; Tsai, Jonathan M; Manglik, Aashish; Kruse, Andrew C; Gambhir, Sanjiv S; Weissman, Irving L; Ring, Aaron M

    2015-11-24

    Signaling through the immune checkpoint programmed cell death protein-1 (PD-1) enables tumor progression by dampening antitumor immune responses. Therapeutic blockade of the signaling axis between PD-1 and its ligand programmed cell death ligand-1 (PD-L1) with monoclonal antibodies has shown remarkable clinical success in the treatment of cancer. However, antibodies have inherent limitations that can curtail their efficacy in this setting, including poor tissue/tumor penetrance and detrimental Fc-effector functions that deplete immune cells. To determine if PD-1:PD-L1-directed immunotherapy could be improved with smaller, nonantibody therapeutics, we used directed evolution by yeast-surface display to engineer the PD-1 ectodomain as a high-affinity (110 pM) competitive antagonist of PD-L1. In contrast to anti-PD-L1 monoclonal antibodies, high-affinity PD-1 demonstrated superior tumor penetration without inducing depletion of peripheral effector T cells. Consistent with these advantages, in syngeneic CT26 tumor models, high-affinity PD-1 was effective in treating both small (50 mm(3)) and large tumors (150 mm(3)), whereas the activity of anti-PD-L1 antibodies was completely abrogated against large tumors. Furthermore, we found that high-affinity PD-1 could be radiolabeled and applied as a PET imaging tracer to efficiently distinguish between PD-L1-positive and PD-L1-negative tumors in living mice, providing an alternative to invasive biopsy and histological analysis. These results thus highlight the favorable pharmacology of small, nonantibody therapeutics for enhanced cancer immunotherapy and immune diagnostics.

  8. Nuclear Choline Acetyltransferase Activates Transcription of a High-affinity Choline Transporter*

    OpenAIRE

    Matsuo, Akinori; Bellier, Jean-Pierre; Nishimura, Masaki; YASUHARA, Osamu; Saito, Naoaki; Kimura, Hiroshi

    2010-01-01

    Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter ...

  9. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice.

    Directory of Open Access Journals (Sweden)

    Daisuke Kawabata

    Full Text Available A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.

  10. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat

    2016-03-01

    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  11. Characterization of a genetically reconstituted high-affinity system for serotonin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A.S.S.; Lam, D.M.K. (Baylor College of Medicine, Woodlands, TX (USA) Baylor College of Medicine, Houston, TX (USA)); Frnka, J.V.; Chen, D. (Baylor College of Medicine, Woodlands, TX (USA))

    1989-12-01

    By transfecting mouse fibroblast L-M cells with human genomic DNA, the authors have established and identified several clonal cell lines that stably express a high-affinity serotonin (5-HT)-uptake mechanism absent in untransfected host cells. One such cell line, L-S1, possesses features of 5-({sup 3}H)HT uptake similar to those previously characterized in the central nervous system and blood platelets: (i) specificity for 5-HT; (ii) antagonism by imipramine, a known inhibitor of high-affinity 5-HT uptake; (iii) both Na{sup +} and temperature dependence; (iv) kinetic saturability; and (v) high affinity for 5-HT. This cell line can be used to compare the relative efficacies of known blockers of 5-HT uptake and thereby offers a rapid and reliable assay system for testing novel inhibitors of this system. Since L-S1 contains stably integrated human DNA in its genome, they postulate that the observed 5-HT-uptake system resulted from the expression of human gene(s) coding for the 5-HT transporter. Thus, cell lines such as L-S1 may represent novel means for screening and developing therapeutic agents specific for neutrotransmitter-uptake systems as well as substrate for the cloning and elucidation of the genes encoding the various neurotransmitter transporters.

  12. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  13. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  14. Selective Targeting of G-Quadruplex Structures by a Benzothiazole-Based Binding Motif.

    Science.gov (United States)

    Buchholz, Ina; Karg, Beatrice; Dickerhoff, Jonathan; Sievers-Engler, Adrian; Lämmerhofer, Michael; Weisz, Klaus

    2017-03-09

    A benzothiazole derivative was identified as potent ligand for DNA G-quadruplex structures. Fluorescence titrations revealed selective binding to quadruplexes of different topologies including parallel, antiparallel and (3+1) hybrid structures. The parallel c-MYC sequence was found to constitute the preferred target with dissociation constants in the micromolar range. Binding of the benzothiazole-based ligand to c-MYC was structurally and thermodynamically characterized in detail by employing a comprehensive set of spectroscopic and calorimetric techniques. Job plot analyses and mass spectral data indicate non-cooperative ligand binding to form 1:1 and 2:1 complex stoichiometries. Whereas stacking interactions are suggested by optical methods, NMR chemical shift perturbations also indicate significant rearrangements of both 5'- and 3'-flanking sequences upon ligand binding. Additional isothermal calorimetry studies yield a thermodynamic profile of the ligand-quadruplex association and reveal enthalpic contributions to be the major driving force for binding. The structural and thermodynamic information obtained in the present work provides the basis for the rational development of benzothiazole derivatives as promising quadruplex binding agents.

  15. Influence of target concentration and background binding on in vitro selection of affinity reagents.

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    Full Text Available Nucleic acid-based aptamers possess many useful features that make them a promising alternative to antibodies and other affinity reagents, including well-established chemical synthesis, reversible folding, thermal stability and low cost. However, the selection process typically used to generate aptamers (SELEX often requires significant resources and can fail to yield aptamers with sufficient affinity and specificity. A number of seminal theoretical models and numerical simulations have been reported in the literature offering insights into experimental factors that govern the effectiveness of the selection process. Though useful, these previous models have not considered the full spectrum of experimental factors or the potential impact of tuning these parameters at each round over the course of a multi-round selection process. We have developed an improved mathematical model to address this important question, and report that both target concentration and the degree of non-specific background binding are critical determinants of SELEX efficiency. Although smaller target concentrations should theoretically offer superior selection outcome, we show that the level of background binding dramatically affect the target concentration that will yield maximum enrichment at each round of selection. Thus, our model enables experimentalists to determine appropriate target concentrations as a means for protocol optimization. Finally, we perform a comparative analysis of two different selection methods over multiple rounds of selection, and show that methods with inherently lower background binding offer dramatic advantages in selection efficiency.

  16. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    Science.gov (United States)

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  17. Characterization of the target DNA sequence for the DNA-binding domain of zinc finger protein 191

    Institute of Scientific and Technical Information of China (English)

    Haoyue Wang; Ruilin Sun; Guoxiang Liu; Minghui Yao; Jian Fei; Hebai Shen

    2008-01-01

    Studies on the DNA-binding properties of transcription factors are important in searching for the downstream genes regulated by these factors. In the present study, we report on the DNA-binding property of a Cys2His2-type transcription factor, zinc finger protein 191 (Zfp191), which has been newly found to play a significant role in mice.By constructing a fusion protein containing the DNA-binding domain of Zfp191,we characterized target DNA by determining the protein's binding specificity and dependence on zinc.The data showed that the DNA-binding domain of Zfp191can specifically bind to the TCAT repeat motif and that there is a cooperative effect among the target DNA's multiple binding sites.Furthermore,the binding reaction is dependent on zinc.This work provides a foundation for further studies on the role of Zfp191 in gene regulation and development.

  18. Simultaneous antagonism of interleukin-5, granulocyte-macrophage colony-stimulating factor, and interleukin-3 stimulation of human eosinophils by targetting the common cytokine binding site of their receptors.

    Science.gov (United States)

    Sun, Q; Jones, K; McClure, B; Cambareri, B; Zacharakis, B; Iversen, P O; Stomski, F; Woodcock, J M; Bagley, C J; D'Andrea, R; Lopez, A F

    1999-09-15

    Human interleukin-5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 are eosinophilopoietic cytokines implicated in allergy in general and in the inflammation of the airways specifically as seen in asthma. All 3 cytokines function through cell surface receptors that comprise a ligand-specific alpha chain and a shared subunit (beta(c)). Although binding of IL-5, GM-CSF, and IL-3 to their respective receptor alpha chains is the first step in receptor activation, it is the recruitment of beta(c) that allows high-affinity binding and signal transduction to proceed. Thus, beta(c) is a valid yet untested target for antiasthma drugs with the added advantage of potentially allowing antagonism of all 3 eosinophil-acting cytokines with a single compound. We show here the first development of such an agent in the form of a monoclonal antibody (MoAb), BION-1, raised against the isolated membrane proximal domain of beta(c). BION-1 blocked eosinophil production, survival, and activation stimulated by IL-5 as well as by GM-CSF and IL-3. Studies of the mechanism of this antagonism showed that BION-1 prevented the high-affinity binding of (125)I-IL-5, (125)I-GM-CSF, and (125)I-IL-3 to purified human eosinophils and that it bound to the major cytokine binding site of beta(c). Interestingly, epitope analysis using several beta(c) mutants showed that BION-1 interacted with residues different from those used by IL-5, GM-CSF, and IL-3. Furthermore, coimmunoprecipitation experiments showed that BION-1 prevented ligand-induced receptor dimerization and phosphorylation of beta(c), suggesting that ligand contact with beta(c) is a prerequisite for recruitment of beta(c), receptor dimerization, and consequent activation. These results demonstrate the feasibility of simultaneously inhibiting IL-5, GM-CSF, and IL-3 function with a single agent and that BION-1 represents a new tool and lead compound with which to identify and generate further agents for the treatment

  19. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA

    DEFF Research Database (Denmark)

    Kedde, Martijn; Strasser, Markus J; Boldajipour, Bijan

    2007-01-01

    MicroRNAs (miRNAs) are inhibitors of gene expression capable of controlling processes in normal development and cancer. In mammals, miRNAs use a seed sequence of 6-8 nucleotides (nt) to associate with 3' untranslated regions (3'UTRs) of mRNAs and inhibit their expression. Intriguingly, occasionally...... not only the miRNA-targeting site but also sequences in its vicinity are highly conserved throughout evolution. We therefore hypothesized that conserved regions in mRNAs may serve as docking platforms for modulators of miRNA activity. Here we demonstrate that the expression of dead end 1 (Dnd1......), an evolutionary conserved RNA-binding protein (RBP), counteracts the function of several miRNAs in human cells and in primordial germ cells of zebrafish by binding mRNAs and prohibiting miRNAs from associating with their target sites. These effects of Dnd1 are mediated through uridine-rich regions present...

  20. Analysis of mebendazole binding to its target biomolecule by laser flash photolysis.

    Science.gov (United States)

    Jornet, Dolors; Bosca, Francisco; Andreu, Jose M; Domingo, Luis R; Tormos, Rosa; Miranda, Miguel A

    2016-02-01

    Mebendazole (MBZ) and related anticancer benzimidazoles act binding the β-subunit of Tubulin (TU) before dimerization with α-TU with subsequent blocking microtubule formation. Laser flash photolysis (LFP) is a new tool to investigate drug-albumin interactions and to determine binding parameters such as affinity constant or population of binding sites. The aim of this study was to evaluate the interactions between the nonfluorescent mebendazole (MBZ) and its target biomolecule TU using this technique. Before analyzing the MBZ@TU complex it was needed to determine the photophysical properties of MBZ triplet excited state ((3)MBZ(⁎)) in different media. Hence, (3)MBZ(⁎) showed a transient absorption spectrum with maxima at 520 and 375 nm and a lifetime much longer in acetonitrile (12.5 μs) than in water (260 ns). The binding of MBZ to TU produces a greater increase of the lifetime of (3)MBZ(⁎) (25 μs). This fact and the strong electron acceptor capability observed for (3)MBZ* evidence that MBZ must not be located close to any electron donor amino acid of TU such as its tryptophan or cysteine residues. Adding increasing amounts of MBZ to aqueous TU was determined the MBZ-TU binding constant (2.0 ± 0.5 × 10(5)M(-1) at 298K) which decreased with increasing temperature. The LFP technique has proven to be a powerful tool to analyze the binding of drug-TU systems when the drug has a detectable triplet excited state. Results indicate that LFP could be the technique of choice to study the interactions of non-fluorescent drugs with their target biomolecules.

  1. Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance

    Directory of Open Access Journals (Sweden)

    Xiaohong eTian

    2015-03-01

    Full Text Available Androgen receptor (AR plays a critical role in the development and progression of prostate cancer (PCa. Current clinically used antiandrogens such as flutamide, bicalutamide, and newly approved enzalutamide mainly target the hormone binding pocket (HBP of AR. However, over time, drug resistance invariably develops and switches these antiandrogens from antagonist to agonist of the AR. Accumulated evidence indicates that AR mutation is an important cause for the drug resistance. This review will give an overview of the mutation based resistance of the current clinically used antiandrogens and the rational drug design to overcome the resistance, provides a promising strategy for the development of the new generation of antiandrogens targeting HBP.

  2. Characterization of EPPIN's semenogelin I binding site: a contraceptive drug target.

    Science.gov (United States)

    Silva, Erick J R; Hamil, Katherine G; Richardson, Richard T; O'Rand, Michael G

    2012-09-01

    Epididymal protease inhibitor (EPPIN) is found on the surface of spermatozoa and works as a central hub for a sperm surface protein complex (EPPIN protein complex [EPC]) that inhibits sperm motility on the binding of semenogelin I (SEMG1) during ejaculation. Here, we identify EPPIN's amino acids involved in the interactions within the EPC and demonstrate that EPPIN's sequence C102-P133 contains the major binding site for SEMG1. Within the same region, the sequence F117-P133 binds the EPC-associated protein lactotransferrin (LTF). We show that residues Cys102, Tyr107, and Phe117 in the EPPIN C-terminus are required for SEMG1 binding. Additionally, residues Tyr107 and Phe117 are critically involved in the interaction between EPPIN and LTF. Our findings demonstrate that EPPIN is a key player in the protein-protein interactions within the EPC. Target identification is an important step toward the development of a novel male contraceptive, and the functionality of EPPIN's residues Cys102, Tyr107, and Phe117 offers novel opportunities for contraceptive compounds that inhibit sperm motility by targeting this region of the molecule.

  3. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.

    Science.gov (United States)

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J

    2016-06-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity.

  4. G196 epitope tag system: a novel monoclonal antibody, G196, recognizes the small, soluble peptide DLVPR with high affinity

    Science.gov (United States)

    Tatsumi, Kasumi; Sakashita, Gyosuke; Nariai, Yuko; Okazaki, Kosuke; Kato, Hiroaki; Obayashi, Eiji; Yoshida, Hisashi; Sugiyama, Kanako; Park, Sam-Yong; Sekine, Joji; Urano, Takeshi

    2017-01-01

    The recognition specificity of monoclonal antibodies (mAbs) has made mAbs among the most frequently used tools in both basic science research and in clinical diagnosis and therapies. Precise determination of the epitope allows the development of epitope tag systems to be used with recombinant proteins for various purposes. Here we describe a new family of tag derived from the epitope recognized by a highly specific mAb G196. The minimal epitope was identified as the five amino acid sequence Asp-Leu-Val-Pro-Arg. Permutation analysis was used to characterize the binding requirements of mAb G196, and the variable regions of the mAb G196 were identified and structurally analyzed by X-ray crystallography. Isothermal titration calorimetry revealed the high affinity (Kd = 1.25 nM) of the mAb G196/G196-epitope peptide interaction, and G196-tag was used to detect several recombinant cytosolic and nuclear proteins in human and yeast cells. mAb G196 is valuable for developing a new peptide tagging system for cell biology and biochemistry research. PMID:28266535

  5. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron.

    Science.gov (United States)

    Miethke, Marcus; Monteferrante, Carmine G; Marahiel, Mohamed A; van Dijl, Jan Maarten

    2013-10-01

    Efficient uptake of iron is of critical importance for growth and viability of microbial cells. Nevertheless, several mechanisms for iron uptake are not yet clearly defined. Here we report that the widely conserved transporter EfeUOB employs an unprecedented dual-mode mechanism for acquisition of ferrous (Fe[II]) and ferric (Fe[III]) iron in the bacterium Bacillus subtilis. We show that the binding protein EfeO and the permease EfeU form a minimal complex for ferric iron uptake. The third component EfeB is a hemoprotein that oxidizes ferrous iron to ferric iron for uptake by EfeUO. Accordingly, EfeB promotes growth under microaerobic conditions where ferrous iron is more abundant. Notably, EfeB also fulfills a vital role in cell envelope stress protection by eliminating reactive oxygen species that accumulate in the presence of ferrous iron. In conclusion, the EfeUOB system contributes to the high-affinity uptake of iron that is available in two different oxidation states. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  7. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    Science.gov (United States)

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  8. AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae.

    Science.gov (United States)

    Aouida, Mustapha; Leduc, Anick; Poulin, Richard; Ramotar, Dindial

    2005-06-24

    Polyamines play essential functions in many aspects of cell biology. Plasma membrane transport systems for the specific uptake of polyamines exist in most eukaryotic cells but have been very recently identified at the molecular level only in the parasite Leishmania. We now report that the high affinity polyamine permease in Saccharomyces cerevisiae is identical to Agp2p, a member of the yeast amino acid transporter family that was previously identified as a carnitine transporter. Deletion of AGP2 dramatically reduces the initial velocity of spermidine and putrescine uptake and confers strong resistance to the toxicity of exogenous polyamines, and transformation with an AGP2 expression vector restored polyamine transport in agp2delta mutants. Yeast mutants deficient in polyamine biosynthesis required >10-fold higher concentrations of exogenous putrescine to restore cell proliferation upon deletion of the AGP2 gene. Disruption of END3, a gene required for an early step of endocytosis, increased the abundance of Agp2p, an effect that was paralleled by a marked up-regulation of spermidine transport velocity. Thus, AGP2 encodes the first eukaryotic permease that preferentially uses spermidine over putrescine as a high affinity substrate and plays a central role in the uptake of polyamines in yeast.

  9. Genetic evidence of a high-affinity cyanuric acid transport system in Pseudomonas sp. ADP.

    Science.gov (United States)

    Platero, Ana I; Santero, Eduardo; Govantes, Fernando

    2014-03-01

    The Pseudomonas sp. ADP plasmid pADP-1 encodes the activities involved in the hydrolytic degradation of the s-triazine herbicide atrazine. Here, we explore the presence of a specific transport system for the central intermediate of the atrazine utilization pathway, cyanuric acid, in Pseudomonas sp. ADP. Growth in fed-batch cultures containing limiting cyanuric acid concentrations is consistent with high-affinity transport of this substrate. Acquisition of the ability to grow at low cyanuric acid concentrations upon conjugal transfer of pADP1 to the nondegrading host Pseudomonas putida KT2442 suggests that all activities required for this phenotype are encoded in this plasmid. Co-expression of the pADP1-borne atzDEF and atzTUVW genes, encoding the cyanuric acid utilization pathway and the subunits of an ABC-type solute transport system, in P. putida KT2442 was sufficient to promote growth at cyanuric acid concentrations as low as 50 μM in batch culture. Taken together, our results strongly suggest that the atzTUVW gene products are involved in high-affinity transport of cyanuric acid.

  10. Effect of repeated nicotine exposure on high-affinity nicotinic acetylcholine receptor density in spontaneously hypertensive rats.

    Science.gov (United States)

    Hohnadel, Elizabeth J; Hernandez, Caterina M; Gearhart, Debra A; Terry, Alvin V

    Spontaneously hypertensive rats (SHRs) are often used as a model of attention deficit hyperactivity disorder (ADHD) and to investigate the effects of hypertension on cognitive function. Further, they appear to have reduced numbers of central nicotinic acetylcholine receptors (nAChRs) and, therefore, may be useful to model certain aspects of Alzheimer's disease (AD) and other forms of dementia given that a decrease in nAChRs is thought to contribute to cognitive decline in these disorders. In the present study, based on reports that chronic nicotine exposure increases nAChRs in several mammalian models, we tested the hypothesis that repeated exposures to a relatively low dose of the alkaloid would ameliorate the receptor deficits in SHR. Thus, young-adult SHRs and age-matched Wistar-Kyoto (WKY) control rats were treated with either saline or nicotine twice a day for 14 days (total daily dose = 0.7 mg/kg nicotine base) and then sacrificed. Quantitative receptor autoradiography with [125I]-IPH, an epibatidine analog, revealed: (1) that high-affinity nAChRs were higher in saline-treated WKY (control) rats compared to saline-treated SHRs in 18 of the 19 brain region measured, although statistically different only in the mediodorsal thalamic nuclei, (2) that nicotine significantly increased nAChR binding in WKY rats in six brain areas including cortical regions and the anterior thalamic nucleus, (3) that there were no cases where nicotine significantly increased nAChR binding in SHRs. These results indicate that subjects deficient in nAChRs may be less sensitive to nAChR upregulation with nicotine than normal subjects and require higher doses or longer periods of exposure.

  11. Escherichia coli genome-wide promoter analysis: Identification of additional AtoC binding target elements

    Directory of Open Access Journals (Sweden)

    Kolisis Fragiskos N

    2011-05-01

    Full Text Available Abstract Background Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of E. coli activates the expression of atoDAEB operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction. Transcriptome and phenotypic analyses suggested that atoSC is also involved in several other cellular activities, although we have recently reported a palindromic repeat within the atoDAEB promoter as the single, cis-regulatory binding site of the AtoC response regulator. In this work, we used a computational approach to explore the presence of yet unidentified AtoC binding sites within other parts of the E. coli genome. Results Through the implementation of a computational de novo motif detection workflow, a set of candidate motifs was generated, representing putative AtoC binding targets within the E. coli genome. In order to assess the biological relevance of the motifs and to select for experimental validation of those sequences related robustly with distinct cellular functions, we implemented a novel approach that applies Gene Ontology Term Analysis to the motif hits and selected those that were qualified through this procedure. The computational results were validated using Chromatin Immunoprecipitation assays to assess the in vivo binding of AtoC to the predicted sites. This process verified twenty-two additional AtoC binding sites, located not only within intergenic regions, but also within gene-encoding sequences. Conclusions This study, by tracing a number of putative AtoC binding sites, has indicated an AtoC-related cross-regulatory function. This highlights the significance of computational genome-wide approaches in elucidating complex patterns of bacterial cell regulation.

  12. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation.

    Science.gov (United States)

    Palanichamy, Jayanth Kumar; Tran, Tiffany M; Howard, Jonathan M; Contreras, Jorge R; Fernando, Thilini R; Sterne-Weiler, Timothy; Katzman, Sol; Toloue, Masoud; Yan, Weihong; Basso, Giuseppe; Pigazzi, Martina; Sanford, Jeremy R; Rao, Dinesh S

    2016-04-01

    Posttranscriptional control of gene expression is important for defining both normal and pathological cellular phenotypes. In vitro, RNA-binding proteins (RBPs) have recently been shown to play important roles in posttranscriptional regulation; however, the contribution of RBPs to cell specification is not well understood. Here, we determined that the RBP insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is specifically overexpressed in mixed lineage leukemia-rearranged (MLL-rearranged) B-acute lymphoblastic leukemia (B-ALL), which constitutes a subtype of this malignancy associated with poor prognosis and high risk of relapse. IGF2BP3 was required for the survival of B-ALL cell lines, as knockdown led to decreased proliferation and increased apoptosis. Enforced expression of IGF2BP3 provided murine BM cells with a strong survival advantage, led to proliferation of hematopoietic stem and progenitor cells, and skewed hematopoietic development to the B cell/myeloid lineage. Cross-link immunoprecipitation and high throughput sequencing uncovered the IGF2BP3-regulated transcriptome, which includes oncogenes MYC and CDK6 as direct targets. IGF2BP3 regulated transcripts via targeting elements within 3' untranslated regions (3'UTR), and enforced IGF2BP3 expression in mice resulted in enhanced expression of Myc and Cdk6 in BM. Together, our data suggest that IGF2BP3-mediated targeting of oncogenic transcripts may represent a critical pathogenetic mechanism in MLL-rearranged B-ALL and support IGF2BP3 and its cognate RNA-binding partners as potential therapeutic targets in this disease.

  13. Reptilian MPR 300 is also the IGF-IIR: cloning, sequencing and functional characterization of the IGF-II binding domain.

    Science.gov (United States)

    Sivaramakrishna, Yadavalli; Amancha, Praveen Kumar; Siva Kumar, Nadimpalli

    2009-06-01

    The mammalian cation-independent mannose 6-phosphate/insulin-like growth factor (IGF)-II receptor binds IGF-II with high affinity. Ligands transported by the MPR 300/IGF-IIR include IGF-II and mannose 6-phosphate-modified proteins. By targeting IGF-II to lysosomal degradation, it plays a key role in the maintenance of correct IGF-II levels in the circulation and in target tissues. Although, from our studies we found homologous receptor in calotes but its functional significance was not known. We present here the first report on the calotes MPR 300/IGF-IIR binds IGF-II with K(d) of 12.02 nM; these findings provide new and strong evidence that MPR 300/IGF-IIR in Calotes versicolor binds IGFII with high affinity.

  14. Modelling of binding free energy of targeted nanocarriers to cell surface

    Science.gov (United States)

    Liu, Jin; Ayyaswamy, Portonovo S.; Eckmann, David M.; Radhakrishnan, Ravi

    2014-03-01

    We have developed a numerical model based on Metropolis Monte Carlo and the weighted histogram analysis method that enables the calculation of the absolute binding free energy between functionalized nanocarriers (NC) and endothelial cell (EC) surfaces. The binding affinities are calculated according to the free energy landscapes. The model predictions quantitatively agree with the analogous measurements of specific antibody coated NCs (100 nm in diameter) to intracellular adhesion molecule-1 (ICAM-1) expressing EC surface in in vitro cell culture experiments. The model also enables an investigation of the effects of a broad range of parameters that include antibody surface coverage of NC, glycocalyx in both in vivo and in vitro conditions, shear flow and NC size. Using our model we explore the effects of shear flow and reproduce the shear-enhanced binding observed in equilibrium measurements in collagen-coated tube. Furthermore, our results indicate that the bond stiffness, representing the specific antibody-antigen interaction, significantly impacts the binding affinities. The predictive success of our computational protocol represents a sound quantitative approach for model driven design and optimization of functionalized NC in targeted vascular drug delivery.

  15. TR-FRET binding assay targeting unactivated form of Bruton's tyrosine kinase.

    Science.gov (United States)

    Asami, Tokiko; Kawahata, Wataru; Sawa, Masaaki

    2015-01-01

    Bruton's Tyrosine Kinase (BTK) is one of the crucial kinases for the B cell maturation and mast cell activation, and specific inhibitors of BTK are considered to be attractive targets in drug discovery research. In this Letter, we have designed and synthesized a new fluorescent probe for TR-FRET-based high-throughput screening, to identify compounds that preferentially bind to an inactive conformation of BTK which has a unique structural feature. A set of kinase-focused compound library was screened using this assay method, and compound 31 was successfully identified as a potent inhibitor which preferentially bind to the inactive conformation of BTK. These results suggest that this screening method has a great potential for the discovery of novel selective BTK inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Tityus gamma toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane.

    Science.gov (United States)

    Barhanin, J; Ildefonse, M; Rougier, O; Sampaio, S V; Giglio, J R; Lazdunski, M

    1984-01-01

    Toxin gamma from the venom of Tityus serrulatus scorpion produces a partial block of the surface Na+ channel in frog muscle. This block occurs with no change in the voltage-dependence or in the kinetics of the remaining surface Na+ current. The partial blockade of Na+ channel activity occurs with no change in tubular Na+ currents nor in twitch tension. The maximum effect of the toxin is attained at concentrations as low as 3 X 10(-10) M. Hyperpolarization to potentials more negative than the resting potential (E = -90 mV) reduces or abolishes the effect of the toxin. Radioiodinated toxin gamma binds to frog muscle membranes with a very high affinity corresponding to a dissociation constant of about 1 X 10(-11) M. Data obtained with both rabbit and frog muscle indicate that toxin gamma is specific for Na+ channels in surface membranes. Toxin gamma does not seem to bind to Na+ channels in T-tubule membranes. The biochemical data are in good agreement with electrophysiological studies and data on contraction. There is one Tityus gamma toxin binding site per tetrodotoxin binding site in surface membranes. Competition experiments have confirmed that Tityus gamma toxin binds to a new toxin receptor site on the Na+ channel structure. This site is the same that the toxin II from Centruroides suffusus binding site, but this toxin has 100 times less affinity for the Na+ channel than Tityus gamma toxin.

  17. Structure of IL-22 Bound to Its High-Affinity IL-22R1 Chain

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.C.; Logsdon, N.J.; Walter, M.R. (UAB)

    2008-09-29

    IL-22 is an IL-10 family cytokine that initiates innate immune responses against bacterial pathogens and contributes to immune disease. IL-22 biological activity is initiated by binding to a cell-surface complex composed of IL-22R1 and IL-10R2 receptor chains and further regulated by interactions with a soluble binding protein, IL-22BP, which shares sequence similarity with an extracellular region of IL-22R1 (sIL-22R1). IL-22R1 also pairs with the IL-20R2 chain to induce IL-20 and IL-24 signaling. To define the molecular basis of these diverse interactions, we have determined the structure of the IL-22/sIL-22R1 complex. The structure, combined with homology modeling and surface plasmon resonance studies, defines the molecular basis for the distinct affinities and specificities of IL-22 and IL-10 receptor chains that regulate cellular targeting and signal transduction to elicit effective immune responses.

  18. Liposomal nanotransporter for targeted binding based on nucleic acid anchor system.

    Science.gov (United States)

    Nejdl, Lukas; Merlos Rodrigo, Miguel Angel; Kudr, Jiri; Ruttkay-Nedecky, Branislav; Konecna, Marie; Kopel, Pavel; Zitka, Ondrej; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2014-02-01

    Microfluidic techniques have been developed intensively in recent years due to lower reagent consumption, faster analysis, and possibility of the integration of several analytical detectors into one chip. Electrochemical detectors are preferred in microfluidic systems, whereas liposomes can be used for amplification of the electrochemical signals. The aim of this study was to design a nanodevice for targeted anchoring of liposome as transport device. In this study, liposome with encapsulated Zn(II) was prepared. Further, gold nanoparticles were anchored onto the liposome surface allowing binding of thiol moiety-modified molecules (DNA). For targeted capturing of the transport device, DNA loops were used. DNA loops were represented by paramagnetic microparticles with oligo(DT)25 chain, on which a connecting DNA was bound. Capturing of transport device was subsequently done by hybridization to the loop. The individual steps were analyzed by electrochemistry and UV/Vis spectrometry. For detection of Zn(II) encapsulated in liposome, a microfluidic system was used. The study succeeded in demonstrating that liposome is suitable for the transport of Zn(II) and nucleic acids. Such transporter may be used for targeted binding using DNA anchor system.

  19. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface.

    Science.gov (United States)

    Michaud, Morgane; Maréchal-Drouard, Laurence; Duchêne, Anne-Marie

    2014-05-01

    Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex.

  20. Direct binding targets of the stringent response alarmone (p)ppGpp.

    Science.gov (United States)

    Kanjee, Usheer; Ogata, Koji; Houry, Walid A

    2012-09-01

    The Escherichia coli stringent response, mediated by the alarmone ppGpp, is responsible for the reorganization of cellular transcription upon nutritional starvation and other stresses. These transcriptional changes occur mainly as a result of the direct effects of ppGpp and its partner transcription factor DksA on RNA polymerase. An often overlooked feature of the stringent response is the direct targeting of other proteins by ppGpp. Here we review the literature on proteins that are known to bind ppGpp and, based on sequence homology, X-ray crystal structures and in silico docking, we propose new potential protein binding targets for ppGpp. These proteins were found to fall into five main categories: (i) cellular GTPases, (ii) proteins involved in nucleotide metabolism, (iii) proteins involved in lipid metabolism, (iv) general metabolic proteins and (v) PLP-dependent basic aliphatic amino acid decarboxylases. Bioinformatic rationale is provided for expanding the role of ppGpp in regulating the activities of the cellular GTPases. Proteins involved in nucleotide and lipid metabolism and general metabolic proteins provide an interesting set of structurally varied stringent response targets. While the inhibition of some PLP-dependent decarboxylases by ppGpp suggests the existence of cross-talk between the acid stress and stringent response systems.

  1. Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein

    Directory of Open Access Journals (Sweden)

    Jeroen R.P.M. Strating

    2015-02-01

    Full Text Available Itraconazole (ITZ is a well-known antifungal agent that also has anticancer activity. In this study, we identify ITZ as a broad-spectrum inhibitor of enteroviruses (e.g., poliovirus, coxsackievirus, enterovirus-71, rhinovirus. We demonstrate that ITZ inhibits viral RNA replication by targeting oxysterol-binding protein (OSBP and OSBP-related protein 4 (ORP4. Consistently, OSW-1, a specific OSBP/ORP4 antagonist, also inhibits enterovirus replication. Knockdown of OSBP inhibits virus replication, whereas overexpression of OSBP or ORP4 counteracts the antiviral effects of ITZ and OSW-1. ITZ binds OSBP and inhibits its function, i.e., shuttling of cholesterol and phosphatidylinositol-4-phosphate between membranes, thereby likely perturbing the virus-induced membrane alterations essential for viral replication organelle formation. ITZ also inhibits hepatitis C virus replication, which also relies on OSBP. Together, these data implicate OSBP/ORP4 as molecular targets of ITZ and point to an essential role of OSBP/ORP4-mediated lipid exchange in virus replication that can be targeted by antiviral drugs.

  2. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.

    Science.gov (United States)

    Straub, Daniel; Ludewig, Uwe; Neuhäuser, Benjamin

    2014-11-01

    Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.

  3. Neomycin-neomycin dimer: an all-carbohydrate scaffold with high affinity for AT-rich DNA duplexes.

    Science.gov (United States)

    Kumar, Sunil; Xue, Liang; Arya, Dev P

    2011-05-18

    A dimeric neomycin-neomycin conjugate 3 with a flexible linker, 2,2'-(ethylenedioxy)bis(ethylamine), has been synthesized and characterized. Dimer 3 can selectively bind to AT-rich DNA duplexes with high affinity. Biophysical studies have been performed between 3 and different nucleic acids with varying base composition and conformation by using ITC (isothermal calorimetry), CD (circular dichroism), FID (fluorescent intercalator displacement), and UV (ultraviolet) thermal denaturation experiments. A few conclusions can be drawn from this study: (1) FID assay with 3 and polynucleotides demonstrates the preference of 3 toward AT-rich sequences over GC-rich sequences. (2) FID assay and UV thermal denaturation experiments show that 3 has a higher affinity for the poly(dA)·poly(dT) DNA duplex than for the poly(dA)·2poly(dT) DNA triplex. Contrary to neomycin, 3 destabilizes poly(dA)·2poly(dT) triplex but stabilizes poly(dA)·poly(dT) duplex, suggesting the major groove as the binding site. (3) UV thermal denaturation studies and ITC experiments show that 3 stabilizes continuous AT-tract DNA better than DNA duplexes with alternating AT bases. (4) CD and FID titration studies show a DNA binding site size of 10-12 base pairs/drug, depending upon the structure/sequence of the duplex for AT-rich DNA duplexes. (5) FID and ITC titration between 3 and an intramolecular DNA duplex [d(5'-A(12)-x-T(12)-3'), x = hexaethylene glycol linker] results in a binding stoichiometry of 1:1 with a binding constant ∼10(8) M(-1) at 100 mM KCl. (6) FID assay using 3 and 512 hairpin DNA sequences that vary in their AT base content and placement also show a higher binding selectivity of 3 toward continuous AT-rich than toward DNA duplexes with alternate AT base pairs. (7) Salt-dependent studies indicate the formation of three ion pairs during binding of the DNA duplex d[5'-A(12)-x-T(12)-3'] and 3. (8) ITC-derived binding constants between 3 and DNA duplexes have the following order: AT

  4. In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor.

    Science.gov (United States)

    Ma, Lixin; Yu, Ping; Veerendra, Bhadrasetty; Rold, Tammy L; Retzloff, Lauren; Prasanphanich, Adam; Sieckman, Gary; Hoffman, Timothy J; Volkert, Wynn A; Smith, Charles J

    2007-01-01

    Gastrin-releasing peptide (GRP) receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN), a 14-amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H(2)N-glycylglycylglycine-BBN[7-14]NH(2) peptide with the following general sequence: H(2)N-G-G-G-Q-W-A-V-G-H-L-M-(NH(2)). This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H(2)N-G-G-G-BBN[7-14]NH(2) in dimethylformamide (DMF). In vitro competitive binding assays, using (125)I-Tyr(4)-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 +/- 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.

  5. In Vitro and In Vivo Evaluation of Alexa Fluor 680-Bombesin[7–14]NH2 Peptide Conjugate, a High-Affinity Fluorescent Probe with High Selectivity for the Gastrin-Releasing Peptide Receptor

    Directory of Open Access Journals (Sweden)

    Lixin Ma

    2007-05-01

    Full Text Available Gastrin-releasing peptide (GRP receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN, a 14–amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H2N-glycylglycylglycine-BBN[7–14]NH2 peptide with the following general sequence: H2N-G-G-G-Q-W-A-V-G-H-L-M-(NH2. This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7–14]NH2 conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H2N-G-G-G-BBN[7–14]NH2 in dimethylformamide (DMF. In vitro competitive binding assays, using 125I-Tyr4-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 ± 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7–14]NH2 in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.

  6. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  7. Kaiso directs the transcriptional corepressor MTG16 to the Kaiso binding site in target promoters.

    Directory of Open Access Journals (Sweden)

    Caitlyn W Barrett

    Full Text Available Myeloid translocation genes (MTGs are transcriptional corepressors originally identified in acute myelogenous leukemia that have recently been linked to epithelial malignancy with non-synonymous mutations identified in both MTG8 and MTG16 in colon, breast, and lung carcinoma in addition to functioning as negative regulators of WNT and Notch signaling. A yeast two-hybrid approach was used to discover novel MTG binding partners. This screen identified the Zinc fingers, C2H2 and BTB domain containing (ZBTB family members ZBTB4 and ZBTB38 as MTG16 interacting proteins. ZBTB4 is downregulated in breast cancer and modulates p53 responses. Because ZBTB33 (Kaiso, like MTG16, modulates Wnt signaling at the level of TCF4, and its deletion suppresses intestinal tumorigenesis in the Apc(Min mouse, we determined that Kaiso also interacted with MTG16 to modulate transcription. The zinc finger domains of Kaiso as well as ZBTB4 and ZBTB38 bound MTG16 and the association with Kaiso was confirmed using co-immunoprecipitation. MTG family members were required to efficiently repress both a heterologous reporter construct containing Kaiso binding sites (4×KBS and the known Kaiso target, Matrix metalloproteinase-7 (MMP-7/Matrilysin. Moreover, chromatin immunoprecipitation studies placed MTG16 in a complex occupying the Kaiso binding site on the MMP-7 promoter. The presence of MTG16 in this complex, and its contributions to transcriptional repression both required Kaiso binding to its binding site on DNA, establishing MTG16-Kaiso binding as functionally relevant in Kaiso-dependent transcriptional repression. Examination of a large multi-stage CRC expression array dataset revealed patterns of Kaiso, MTG16, and MMP-7 expression supporting the hypothesis that loss of either Kaiso or MTG16 can de-regulate a target promoter such as that of MMP-7. These findings provide new insights into the mechanisms of transcriptional control by ZBTB family members and broaden the scope

  8. De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis.

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Hamza

    Full Text Available BACKGROUND: The pathophysiology of obesity and type 2 diabetes mellitus is associated with abnormalities in endocrine signaling in adipose tissue and one of the key signaling affectors operative in these disorders is the nuclear hormone transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma. PPARgamma has pleiotropic functions affecting a wide range of fundamental biological processes including the regulation of genes that modulate insulin sensitivity, adipocyte differentiation, inflammation and atherosclerosis. To date, only a limited number of direct targets for PPARgamma have been identified through research using the well established pre-adipogenic cell line, 3T3-L1. In order to obtain a genome-wide view of PPARgamma binding sites, we applied the pair end-tagging technology (ChIP-PET to map PPARgamma binding sites in 3T3-L1 preadipocyte cells. METHODOLOGY/PRINCIPAL FINDINGS: Coupling gene expression profile analysis with ChIP-PET, we identified in a genome-wide manner over 7700 DNA binding sites of the transcription factor PPARgamma and its heterodimeric partner RXR during the course of adipocyte differentiation. Our validation studies prove that the identified sites are bona fide binding sites for both PPARgamma and RXR and that they are functionally capable of driving PPARgamma specific transcription. Our results strongly indicate that PPARgamma is the predominant heterodimerization partner for RXR during late stages of adipocyte differentiation. Additionally, we find that PPARgamma/RXR association is enriched within the proximity of the 5' region of the transcription start site and this association is significantly associated with transcriptional up-regulation of genes involved in fatty acid and lipid metabolism confirming the role of PPARgamma as the master transcriptional regulator of adipogenesis. Evolutionary conservation analysis of these binding sites is greater when adjacent to up-regulated genes than down

  9. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death.

    Science.gov (United States)

    Norholm, Morten H H; Nour-Eldin, Hussam H; Brodersen, Peter; Mundy, John; Halkier, Barbara A

    2006-04-17

    We report the biochemical characterization in Xenopus oocytes of the Arabidopsis thaliana membrane protein, STP13, as a high affinity, hexose-specific H(+)-symporter. Studies with kinase activators suggest that it is negatively regulated by phosphorylation. STP13 promoter GFP reporter lines show GFP expression only in the vascular tissue in emerging petals under non-stressed conditions. Quantitative PCR and the pSTP13-GFP plants show induction of STP13 in programmed cell death (PCD) obtained by treatments with the fungal toxin fumonisin B1 and the pathogen Pseudomonas syringae. A role for STP13 in PCD is supported by microarray data from e.g. plants undergoing senescence and a strong correlation between STP13 transcripts and the PCD phenotype in different accelerated cell death (acd11) mutants.

  10. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil.

    Science.gov (United States)

    Tomatsu, Hajime; Takano, Junpei; Takahashi, Hideki; Watanabe-Takahashi, Akiko; Shibagaki, Nakako; Fujiwara, Toru

    2007-11-20

    Molybdenum (Mo) is a trace element essential for living organisms, however no molybdate transporter has been identified in eukaryotes. Here, we report the identification of a molybdate transporter, MOT1, from Arabidopsis thaliana. MOT1 is expressed in both roots and shoots, and the MOT1 protein is localized, in part, to plasma membranes and to vesicles. MOT1 is required for efficient uptake and translocation of molybdate and for normal growth under conditions of limited molybdate supply. Kinetics studies in yeast revealed that the K(m) value of MOT1 for molybdate is approximately 20 nM. Furthermore, Mo uptake by MOT1 in yeast was not affected by coexistent sulfate, and MOT1 did not complement a sulfate transporter-deficient yeast mutant strain. These data confirmed that MOT1 is specific for molybdate and that the high affinity of MOT1 allows plants to obtain scarce Mo from soil.

  11. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor

    DEFF Research Database (Denmark)

    Rao, C N; Castronovo, V; Schmitt, M C;

    1989-01-01

    The high-affinity cellular receptor for the basement membrane component laminin is differentially expressed during tumor invasion and metastasis. A cDNA clone encoding the murine laminin receptor was isolated and identified on the basis of sequence homology to the human laminin receptor [Wewer et...... al. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 7137-7141]. Primer extension experiments demonstrated that the clone contained the complete 5' sequence of the murine laminin receptor mRNA. RNA blot data demonstrated a single-sized laminin receptor mRNA, approximately 1400 bases long, in human, mouse......, and rat. The nascent laminin receptor predicted from the cDNA sequence is 295 amino acids long, with a molecular weight of 33,000, and contains one intradisulfide bridge, a short putative transmembrane domain, and an extracellular carboxy-terminal region which has abundant glutamic acid residues...

  12. Effects of anticonvulsants in vivo on high affinity choline uptake in vitro in mouse hippocampal synaptosomes.

    Science.gov (United States)

    Miller, J. A.; Richter, J. A.

    1985-01-01

    The effects of several anticonvulsant drugs on sodium-dependent high affinity choline uptake (HACU) in mouse hippocampal synaptosomes was investigated. HACU was measured in vitro after in vivo administration of the drug to mice. HACU was inhibited by drugs which have in common the ability to facilitate gamma-aminobutyric acid (GABA) transmission, pentobarbitone, phenobarbitone, barbitone, diazepam, chloridiazepoxide, and valproic acid. Dose-response relationships were determined for these drugs and the drugs' potencies at inhibiting HACU correlated well with their anticonvulsant potencies. Clonazepam, ethosuximide, carbamazepine, and barbituric acid had no effect on HACU in the doses used while phenytoin and trimethadione stimulated HACU. These results suggest that certain anticonvulsants may elicit a part of their anticonvulsant activity by modulating cholinergic neurones. This effect may be mediated through a GABA mechanism. PMID:3978310

  13. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Katz, D.M.; Kimelberg, H.K.

    1985-07-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; (/sup 3/H)-5-HT). At concentrations in the range of 0.01 to 0.7 microM (/sup 3/H)-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM (/sup 3/H)-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of (/sup 3/H)-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of (/sup 3/H)-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate (/sup 3/H)-5-HT up to 44-fold at an external (/sup 3/H)-5-HT concentration of 10(-7) M. Inhibition of (/sup 3/H)-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of (/sup 3/H)-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on (/sup 3/H)-5-HT uptake.

  14. Production and Identification of High Affinity Monoclonal Antibodies Against Pesticide Carbofuran

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To produce high-affinity monoclonal antibodies against pesticide carbofuran, and the develop immunochemical assays for people's health and environmental protection, the hapten 4-[[(2,3-dihydro-2,2-dimethyl-7-benzofuranyloxy) carbonyl]-amino]-butanoic acid (BFNB) of carbofuran was synthesized and Balb/c mice were immunized by the hapten-carrier (BFNB-bovine serum albumin, BFNB-BSA) conjugates. The splenocytes of immunized mice were fused with Sp2/0 cells and the cultural supernatants of hybridoma cells were screened by the indirect enzyme-linked immunoabsorbent assay (ELISA), based on BFNB-ovoalbumin conjugates (BFNB-OVA). Purified monoclonal antibody (McAb) was obtained from fluids of ascites, deposited by octanoic acid and ammonium sulfate. The affinity and the specificity of McAb were characterized by ELISA or indirect competitive ELISA. A hybridoma cell line (5D3) secreting anti-carbofuran McAb had been established. The titer of culture medium and ascites was up to 1:2.048 × 103 and 1:1.024 × 106, respectively, and the subtype of the McAb was IgG1. The affinity constant of the McAb was about 2.54 × 109 L mol-1, with an IC50 value of 1.18 ng mL-1 and a detection limit of 0.01 ng mL-1. Cross-reactivity studies showed that the McAb was quiet specific for carbofuran, as among the four analogous compounds, they were all hardly recognized (4.59 × 10-4% for 2,3-dihydro-2,2-dimethyl-7-benzofuranol and less than 3.0 × 10-4% for others). The prepared McAb had a very high affinity and specificity,and it could be used to develop ELISA for rapid determination of carbofuran.

  15. Bacteriophage lambda terminase: alterations of the high-affinity ATPase affect viral DNA packaging.

    Science.gov (United States)

    Dhar, Alok; Feiss, Michael

    2005-03-18

    DNA packaging by large DNA viruses such as the tailed bacteriophages and the herpesviruses involves DNA translocation into a preformed protein shell, called the prohead. Translocation is driven by an ATP hydrolysis-powered DNA packaging motor. The bacteriophages encode a heterodimeric viral DNA packaging protein, called terminase. The terminases have an ATPase center located in the N terminus of the large subunit implicated in DNA translocation. In previous work with phage lambda, lethal mutations that changed ATP-reactive residues 46 and 84 of gpA, the large terminase subunit, were studied. These mutant enzymes retained the terminase endonuclease and helicase activities, but had severe defects in virion assembly, and lacked the terminase high-affinity ATPase activity. Surprisingly, in the work described here, we found that enzymes with the conservative gpA changes Y46F and Y46A had only mild packaging defects. These mild defects contrast with their profound virion assembly defects. Thus, these mutant enzymes have, in addition to the mild DNA packaging defects, a severe post-DNA packaging defect. In contrast, the gpA K84A enzyme had similar virion assembly and DNA packaging defects. The DNA packaging energy budget, i.e. DNA packaged/ATP hydrolyzed, was unchanged for the mutant enzymes, indicating that DNA translocation is tightly coupled to ATP hydrolysis. A model is proposed in which gpA residues 46 and 84 are important for terminase's high-affinity ATPase activity. Assembly of the translocation complex remodels this ATPase so that residues 46 and 84 are not crucial for the activated translocation ATPase. Changing gpA residues 46 and 84 primarily affects assembly, rather than the activity, of the translocation complex.

  16. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs

    Directory of Open Access Journals (Sweden)

    Accardo A

    2014-03-01

    Full Text Available Antonella Accardo,1 Luigi Aloj,2 Michela Aurilio,2 Giancarlo Morelli,1 Diego Tesauro11Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB, Department of Pharmacy and Istituto di Biostrutture e Bioimmagini - Consiglio Nazionale delle Ricerche (IBB CNR, University of Naples “Federico II”, 2Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione “G. Pascale”, Napoli, ItalyAbstract: Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs; and G-protein coupled receptors (GPCRs. Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors.Keywords: receptors binding peptides, drug delivery

  17. Strategy to target the substrate binding site of SET domain protein methyltransferases.

    Science.gov (United States)

    Nguyen, Kong T; Li, Fengling; Poda, Gennadiy; Smil, David; Vedadi, Masoud; Schapira, Matthieu

    2013-03-25

    Protein methyltransferases (PMTs) are a novel gene family of therapeutic relevance involved in chromatin-mediated signaling and other biological mechanisms. Most PMTs are organized around the structurally conserved SET domain that catalyzes the methylation of a substrate lysine. A few potent chemical inhibitors compete with the protein substrate, and all are anchored in the channel recruiting the methyl-accepting lysine. We propose a novel strategy to design focused chemical libraries targeting the substrate binding site, where a limited number of warheads each occupying the lysine-channel of multiple enzymes would be decorated by different substituents. A variety of sequence and structure-based approaches used to analyze the diversity of the lysine channel of SET domain PMTs support the relevance of this strategy. We show that chemical fragments derived from published inhibitors are valid warheads that can be used in the design of novel focused libraries targeting other PMTs.

  18. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site.

    Science.gov (United States)

    Kanekiyo, Masaru; Bu, Wei; Joyce, M Gordon; Meng, Geng; Whittle, James R R; Baxa, Ulrich; Yamamoto, Takuya; Narpala, Sandeep; Todd, John-Paul; Rao, Srinivas S; McDermott, Adrian B; Koup, Richard A; Rossmann, Michael G; Mascola, John R; Graham, Barney S; Cohen, Jeffrey I; Nabel, Gary J

    2015-08-27

    Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.

  19. RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures

    Indian Academy of Sciences (India)

    Gopinatha Suresh Kumar

    2012-07-01

    Studies on RNA targeting by small molecules to specifically control certain cellular functions is an area of remarkable current interest. For this purpose, a basic understanding of the molecular aspects of the interaction of small molecules with various RNA structures is essential. Alkaloids are a group of natural products with potential therapeutic utility, and very recently, their interaction with many RNA structures have been reported. Especially noteworthy are the protoberberines and aristolochia alkaloids distributed widely in many botanical families. Many of the alkaloids of these group exhibit excellent binding affinity to many RNA structures that may be exploited to develop RNA targeted therapeutics. This review attempts to present the current status on the understanding of the interaction of these alkaloids with various RNA structures, mainly highlighting the biophysical aspects.

  20. Developments for the minimally invasive treatment of tumours by targeted magnetic heating

    Science.gov (United States)

    Hilger, Ingrid; Dietmar, Elke; Linß, Werner; Streck, Sibylle; Kaiser, Werner A.

    2006-09-01

    Purpose. Among the different minimally invasive methods for the treatment of tumours under investigation, the accumulation of magnetic material at the target region and the exposure to an alternating magnetic field comprises a highly selective approach. In the present study, we assessed if magnetic heating of tumour cells in vitro is feasible after binding of high-affinity magnetic nanoparticles to the tumour specific protein Her-2/neu, which is known to be expressed in 30% of breast cancers. Material and methods. Antibodies against the Her-2/neu protein (high-affinity probe) or non-specific gamma immunoglobulins (non-affinity probe, control) were coupled to the dextran shell of magnetic nanoparticles (mean total particle diameter, 150 nm). After incubation of Her-2/neu overexpressing SK-BR-3 tumour cells with the high-affinity probe, non-affinity probe or buffer, cell labelling was verified by electron microscopy. The iron content in cells was determined by atomic absorption spectroscopy. Moreover, cells were exposed to an alternating magnetic field (amplitude, 11 kA m-1 frequency, 410 kHz) for 2.8 min. Temperatures were measured using thermocouples. Results. A distinct cell labelling was observed by electron microscopy after incubation of cells with the high-affinity probe as compared to controls. Magnetic nanoparticles were found to be localized at the cell surface as well as in granules inside the cytoplasm. The iron content of high-affinity labelled cells (e.g. 76 µg/5 × 107 cells) was distinctly higher than in control cells (e.g. up to 25 µg/5 × 107 cells). During magnetic heating, temperature increases of up to approximately 8 °C were observed in relation to high-affinity labelled cells as compared to 1-2 °C in controls. Conclusion. Our results show that targeted magnetic heating of tumour cells seems to be feasible. Further investigations should focus on the corresponding relationships in the in vivo situation.

  1. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application.

    Science.gov (United States)

    Gao, Shunxiang; Hu, Bo; Zheng, Xin; Cao, Ying; Liu, Dejing; Sun, Mingjuan; Jiao, Binghua; Wang, Lianghua

    2016-05-15

    Gonyautoxin 1/4 (GTX1/4) are potent marine neurotoxins with significant public health impact. However, the ethical issues and technical defects associated with the currently applied detection methods for paralytic shellfish toxin GTX1/4 are pressing further studies to develop suitable alternatives in a regulatory monitoring system. This work describes the first successful selection, optimization, and characterization of an aptamer that bind with high affinity and specificity to GTX1/4. Compared to the typical MB-SELEX, GO-SELEX, an advanced screening technology, has significant advantages for small molecular aptamer development. Furthermore, we truncated GTX1/4 aptamer and obtained the aptamer core sequence with a higher Kd of 17.7 nM. The aptamer GO18-T-d was then used to construct a label-free and real-time optical BLI aptasensor for the detection of GTX1/4. The aptasensor showed a broad detection range from 0.2 to 200 ng/mL GTX1/4 (linear range from 0.2 to 90 ng/mL), with a low detection limit of 50 pg/mL. Moreover, the aptasensor exhibited a high degree of specificity for GTX1/4 and no cross reactivity to other marine toxins. The aptasensor was then applied to the detection of GTX1/4 in spiked shellfish samples and showed a good reproducibility and stability. We believe that this novel aptasensor offers a promising alternative to traditional analytical methods for the rapid detection of the marine biotoxin GTX1/4. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain.

    Science.gov (United States)

    Odolczyk, Norbert; Fritsch, Janine; Norez, Caroline; Servel, Nathalie; da Cunha, Melanie Faria; Bitam, Sara; Kupniewska, Anna; Wiszniewski, Ludovic; Colas, Julien; Tarnowski, Krzysztof; Tondelier, Danielle; Roldan, Ariel; Saussereau, Emilie L; Melin-Heschel, Patricia; Wieczorek, Grzegorz; Lukacs, Gergely L; Dadlez, Michal; Faure, Grazyna; Herrmann, Harald; Ollero, Mario; Becq, Frédéric; Zielenkiewicz, Piotr; Edelman, Aleksander

    2013-10-01

    The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein-protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date.

  3. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  4. [Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver and cisplatin].

    Science.gov (United States)

    Skvortsov, A N; Zatulovskiĭ, E A; Puchkova, L V

    2012-01-01

    It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.

  5. Tityus serrulatus venom contains two classes of toxins. Tityus gamma toxin is a new tool with a very high affinity for studying the Na+ channel.

    Science.gov (United States)

    Barhanin, J; Giglio, J R; Léopold, P; Schmid, A; Sampaio, S V; Lazdunski, M

    1982-11-10

    The interaction of TiTx gamma, the major toxin in the venom of the scorpion Tityus serrulatus, with its receptor in excitable membranes was studied with the use of 125I-TiTx gamma. This derivative retains biological activity, and its specific binding to both brain synaptosomes and electroplaque membranes from Electrophorus electricus is characterized by a dissociation constant equal to that of the native toxin-receptor complex, about 2 to 5 pM. This very high affinity results mainly from a very slow rate of dissociation, equivalent to a half-life longer than 10 h at 4 degrees C. There is a 1:1 stoichiometry between TiTx gamma binding and tetrodotoxin binding to the membranes, but neither tetrodotoxin nor any of 7 other neurotoxins that are representative of 4 different classes of effectors of the Na+ channel interfere with TiTx gamma binding. Similarly, local anesthetics and other molecules that affect other types of ionic channels or neurotransmitter receptors have no effect on TiTx gamma binding. However, toxin II from Centruroides suffusus suffusus does compete with TiTx gamma, though its affinity for the receptor is much lower. Since the Centruroides toxin II is known to affect Na+ channel function, these two scorpion toxins must be put into a fifth class of Na+ channel effectors.

  6. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    Directory of Open Access Journals (Sweden)

    Stöcklein Walter

    2007-08-01

    Full Text Available Abstract Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method.

  7. Computational design of an endo-1,4-[beta]-xylanase ligand binding site

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Andrew; Kaufmann, Kristian W.; Fortenberry, Carie; Harp, Joel M.; Mizoue, Laura S.; Meiler, Jens (Vanderbilt)

    2012-09-05

    The field of computational protein design has experienced important recent success. However, the de novo computational design of high-affinity protein-ligand interfaces is still largely an open challenge. Using the Rosetta program, we attempted the in silico design of a high-affinity protein interface to a small peptide ligand. We chose the thermophilic endo-1,4-{beta}-xylanase from Nonomuraea flexuosa as the protein scaffold on which to perform our designs. Over the course of the study, 12 proteins derived from this scaffold were produced and assayed for binding to the target ligand. Unfortunately, none of the designed proteins displayed evidence of high-affinity binding. Structural characterization of four designed proteins revealed that although the predicted structure of the protein model was highly accurate, this structural accuracy did not translate into accurate prediction of binding affinity. Crystallographic analyses indicate that the lack of binding affinity is possibly due to unaccounted for protein dynamics in the 'thumb' region of our design scaffold intrinsic to the family 11 {beta}-xylanase fold. Further computational analysis revealed two specific, single amino acid substitutions responsible for an observed change in backbone conformation, and decreased dynamic stability of the catalytic cleft. These findings offer new insight into the dynamic and structural determinants of the {beta}-xylanase proteins.

  8. Targeted protein footprinting: where different transcription factors bind to RNA polymerase.

    Science.gov (United States)

    Traviglia, S L; Datwyler, S A; Yan, D; Ishihama, A; Meares, C F

    1999-11-30

    Gene transcription is regulated through the interactions of RNA polymerase (RNAP) with transcription factors, such as the bacterial sigma proteins. We have devised a new strategy that relies on targeted protein footprinting to make an extensive survey of proximity to the protein surface. This involves attaching cutting reagents randomly to lysine residues on the surface of a protein such as sigma. The lysine-labeled sigma protein is then used to cleave the polypeptide backbones of the RNAP proteins at exposed residues adjacent to the sigma binding site. We used targeted protein footprinting to compare the areas near which sigma(70), sigma(54), sigma(38), sigma(E), NusA, GreA, and omega bind to the protein subunits of Escherichia coli RNAP. The sigma proteins and NusA cut sites in similar regions of the two large RNAP subunits, beta and beta', outlining a common surface. GreA cuts a larger set of sites, whereas omega shows no overlap with the others, cutting only the beta' subunit at a unique location.

  9. Role of intrinsic DNA binding specificity in defining target genes of the mammalian transcription factor PDX1

    Science.gov (United States)

    Liberzon, Arthur; Ridner, Gabriela; Walker, Michael D.

    2004-01-01

    PDX1 is a homeodomain transcription factor essential for pancreatic development and mature beta cell function. Homeodomain proteins typically recognize short TAAT DNA motifs in vitro: this binding displays paradoxically low specificity and affinity, given the extremely high specificity of action of these proteins in vivo. To better understand how PDX1 selects target genes in vivo, we have examined the interaction of PDX1 with natural and artificial binding sites. Comparison of PDX1 binding sites in several target promoters revealed an evolutionarily conserved pattern of nucleotides flanking the TAAT core. Using competitive in vitro DNA binding assays, we defined three groups of binding sites displaying high, intermediate and low affinity. Transfection experiments revealed a striking correlation between the ability of each sequence to activate transcription in cultured beta cells, and its ability to bind PDX1 in vitro. Site selection from a pool of oligonucleotides (sequence NNNTAATNNN) revealed a non-random preference for particular nucleotides at the flanking locations, resembling natural PDX1 binding sites. Taken together, the data indicate that the intrinsic DNA binding specificity of PDX1, in particular the bases adjacent to TAAT, plays an important role in determining the spectrum of target genes. PMID:14704343

  10. Design and synthesis of threading intercalators to target DNA.

    Science.gov (United States)

    Howell, Lesley A; Gulam, Rosul; Mueller, Anja; O'Connell, Maria A; Searcey, Mark

    2010-12-01

    Threading intercalators are high affinity DNA binding agents that bind by inserting a chromophore into the duplex and locating one group in each groove. The first threading intercalators that can be conjugated to acids, sulfonic acids and peptides to target them to duplex DNA are described, based upon the well studied acridine-3- or 4-carboxamides. Cellular uptake of the parent acridine is rapid and it can be visualized in the nucleus of cells. Both the parent compounds and their conjugates maintain antitumor activity.

  11. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    NARCIS (Netherlands)

    Witte, W.E.; Wong, Y.C.; Nederpelt, I.; Heitman, L.H.; Danhof, M.; Graaf, van der P.H.; Gilissen, R.A.; de, Lange E.C.

    2016-01-01

    INTRODUCTION Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target

  12. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells.

    Science.gov (United States)

    Merlot, Angelica M; Sahni, Sumit; Lane, Darius J R; Fordham, Ashleigh M; Pantarat, Namfon; Hibbs, David E; Richardson, Vera; Doddareddy, Munikumar R; Ong, Jennifer A; Huang, Michael L H; Richardson, Des R; Kalinowski, Danuta S

    2015-04-30

    Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 µM (B(max):1.20±0.04 × 10⁷ molecules/cell; K(d):33±3 µM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (B(max):2.90±0.12 × 10⁷ molecules/cell; K(d):65±6 µM), becoming saturated at 100 µM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy.

  13. The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein.

    Science.gov (United States)

    Kozyraki, R; Fyfe, J; Kristiansen, M; Gerdes, C; Jacobsen, C; Cui, S; Christensen, E I; Aminoff, M; de la Chapelle, A; Krahe, R; Verroust, P J; Moestrup, S K

    1999-06-01

    Cubilin is the intestinal receptor for the endocytosis of intrinsic factor-vitamin B12. However, several lines of evidence, including a high expression in kidney and yolk sac, indicate it may have additional functions. We isolated apolipoprotein A-I (apoA-I), the main protein of high-density lipoprotein (HDL), using cubilin affinity chromatography. Surface plasmon resonance analysis demonstrated a high-affinity binding of apoA-I and HDL to cubilin, and cubilin-expressing yolk sac cells showed efficient 125I-HDL endocytosis that could be inhibited by IgG antibodies against apoA-I and cubilin. The physiological relevance of the cubilin-apoA-I interaction was further emphasized by urinary apoA-I loss in some known cases of functional cubilin deficiency. Therefore, cubilin is a receptor in epithelial apoA-I/HDL metabolism.

  14. Enzyme-amplified protein micorarray and a fluidic renewable surface fluorescence immunoassay for botulinum neurotoxin detection using high-affinity recombinant antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Warner, Marvin G.; Dockendorff, Brian P.; Anheier, Norman C.; Lou, Jianlong; Marks, James D.; Smith, Leonard A.; Feldhaus, Michael J.; Grate, Jay W.; Bruckner-Lea, Cindy J.

    2006-06-16

    With the use of high-affinity recombinant monoclonal antibodies against the receptor binding domain of botulinum neurotoxin A (BoNT/A), two separate immunoassay platforms were developed for either the sensitive or the rapid detection of BoNT/A. An enzyme-linked immunosorbent assay (ELISA) microarray was developed for the specific and sensitive detection of BoNT in buffer and clinical fluids. This assay has the sensitivity to detect BoNT in diverse samples down to 14 fM (1.4 pg/mL). Using the recombinant monoclonal antibodies, a renewable surface microcolumn sensor was developed for the rapid detection of BoNT/A in an automated fluidic system. While the ELISA microarray assay, because of its sensitivity, offers an alternative to the mouse bioassay, the renewable surface assay has potential as a rapid screening assay for the analysis of complex environmental samples.

  15. Programmed Death-1 Culls Peripheral Accumulation of High-Affinity Autoreactive CD4 T Cells to Protect against Autoimmunity

    Directory of Open Access Journals (Sweden)

    Tony T. Jiang

    2016-11-01

    Full Text Available Self-reactive CD4 T cells are incompletely deleted during thymic development, and their peripheral seeding highlights the need for additional safeguards to avert autoimmunity. Here, we show an essential role for the coinhibitory molecule programmed death-1 (PD-1 in silencing the activation of high-affinity autoreactive CD4 T cells. Each wave of self-reactive CD4 T cells that escapes thymic deletion autonomously upregulates PD-1 to maintain self-tolerance. By tracking the progeny derived from individual autoreactive CD4 T cell clones, we demonstrate that self-reactive cells with the greatest autoimmune threat and highest self-antigen affinity express the most PD-1. Reciprocally, PD-1 deprivation unleashes high-affinity self-reactive CD4 T cells in target tissues to exacerbate neuronal inflammation and autoimmune diabetes. Reliance on PD-1 to actively maintain self-tolerance may explain why exploiting this pathway by cancerous cells and invasive microbes efficiently subverts protective immunity, and why autoimmune side effects can develop after PD-1-neutralizing checkpoint therapies.

  16. Gene Structure and Expression of the High-affinity Nitrate Transport System in Rice Roots

    Institute of Scientific and Technical Information of China (English)

    Chao Cai; Jun-Yi Wang; Yong-Guan Zhu; Qi-Rong Shen; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2008-01-01

    Rice has a preference for uptake of ammonium over nitrate and can use ammonium-N efficiently. Consequently, transporters mediating ammonium uptake have been extensively studied, but nitrate transporters have been largely ignored. Recently,some reports have shown that rice also has high capacity to acquire nitrate from growth medium, so understanding the nitrate transport system in rice roots is very important for improving N use efficiency in rice. The present study identified four putative NRT2 and two putative NAR2 genes that encode components of the high-affinity nitrate transport system (HATS) in the rice (Oryza sativa L. subsp, japonica cv. Nipponbare) genome. OsNRT2.1 and OsNRT2.2 share an identical coding region sequence, and their deduced proteins are closely related to those from monocotyledonous plants. The two NAR2 proteins are closely related to those from mono-cotyledonous plants as well. However, OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 proteins. Relative quantitative reverse tranecdption-polymerase chain reaction analysis showed that all of the six genes were rapidly upregulated and then downregulated in the roots of N-starved rice plants after they were re-supplied with 0.2 mM nitrate, but the response to nitrate differed among gene members.The results from phylogenetic tree, gene structure and expression analysis implied the divergent roles for the individual members of the rice NRT2 and NAR2 families. High-affinity nitrate influx rates associated with nitrate induction in rice roots were investigated and were found to be regulated by external pH. Compared with the nitrate influx rates at pH 6.5, alkaline pH (pH 8.0) inhibited nitrate Influx, and acidic pH (pH 5.0) enhanced the nitrate influx In I h nitrate induced roots, but did not significantly affect that in 4 to 8 h nitrate induced roots.

  17. Autoantigenic targets of B-cell receptors derived from chronic lymphocytic leukemias bind to and induce proliferation of leukemic cells.

    Science.gov (United States)

    Zwick, Carsten; Fadle, Natalie; Regitz, Evi; Kemele, Maria; Stilgenbauer, Stephan; Bühler, Andreas; Pfreundschuh, Michael; Preuss, Klaus-Dieter

    2013-06-06

    Antigenic targets of the B-cell receptor (BCR) derived from malignant cells in chronic lymphocytic leukemia (CLL) might play a role in the pathogenesis of this neoplasm. We screened human tissue-derived protein macroarrays with antigen-binding fragments derived from 47 consecutive cases of CLL. An autoantigenic target was identified for 12/47 (25.5%) of the cases, with 3 autoantigens being the target of the BCRs from 2 patients each. Recombinantly expressed autoantigens bound specifically to the CLL cells from which the BCR used for the identification of the respective autoantigen was derived. Moreover, binding of the autoantigen to the respective leukemic cells induced a specific activation and proliferation of these cells. In conclusion, autoantigens are frequent targets of CLL-BCRs. Their specific binding to and induction of proliferation in the respective leukemic cells provide the most convincing evidence to date for the long-time hypothesized role of autoantigens in the pathogenesis of CLL.

  18. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors

    Science.gov (United States)

    Yang, Kyung-Ae; Barbu, Mihaela; Halim, Marlin; Pallavi, Payal; Kim, Benjamin; Kolpashchikov, Dmitry M.; Pecic, Stevan; Taylor, Steven; Worgall, Tilla S.; Stojanovic, Milan N.

    2014-11-01

    Oligonucleotide-based receptors or aptamers can interact with small molecules, but the ability to achieve high-affinity and specificity of these interactions depends strongly on functional groups or epitopes displayed by the binding targets. Some classes of targets are particularly challenging: for example, monosaccharides have scarce functionalities and no aptamers have been reported to recognize, let alone distinguish from each other, glucose and other hexoses. Here we report aptamers that differentiate low-epitope targets such as glucose, fructose or galactose by forming ternary complexes with high-epitope organic receptors for monosaccharides. In a follow-up example, we expand this method to isolate high-affinity oligonucleotides against aromatic amino acids complexed in situ with a nonspecific organometallic receptor. The method is general and enables broad clinical use of aptamers for the detection of small molecules in mix-and-measure assays, as demonstrated by monitoring postprandial waves of phenylalanine in human subjects.

  19. Ligand Binding in the Extracellular Vestibule of the Neurotransmitter Transporter Homologue LeuT.

    Science.gov (United States)

    Grouleff, Julie; Koldsø, Heidi; Miao, Yinglong; Schiøtt, Birgit

    2017-03-15

    The human monoamine transporters (MATs) facilitate the reuptake of monoamine neurotransmitters from the synaptic cleft. MATs are linked to a number of neurological diseases and are the targets of both therapeutic and illicit drugs. Until recently, no high-resolution structures of the human MATs existed, and therefore, studies of this transporter family have relied on investigations of the homologues bacterial transporters such as the leucine transporter LeuT, which has been crystallized in several conformational states. A two-substrate transport mechanism has been suggested for this transporter family, which entails that high-affinity binding of a second substrate in an extracellular site is necessary for the substrate in the central binding site to be transported. Compelling evidence for this mechanism has been presented, however, a number of equally compelling accounts suggest that the transporters function through a mechanism involving only a single substrate and a single high-affinity site. To shed light on this apparent contradiction, we have performed extensive molecular dynamics simulations of LeuT in the outward-occluded conformation with either one or two substrates bound to the transporter. We have also calculated the substrate binding affinity in each of the two proposed binding sites through rigorous free energy simulations. Results show that substrate binding is unstable in the extracellular vestibule and the substrate binding affinity within the suggested extracellular site is very low (0.2 and 3.3 M for the two dominant binding modes) compared to the central substrate binding site (14 nM). This suggests that for LeuT in the outward-occluded conformation only a single high-affinity substrate binding site exists.

  20. Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants.

    Science.gov (United States)

    Reis, C R; van der Sloot, A M; Natoni, A; Szegezdi, E; Setroikromo, R; Meijer, M; Sjollema, K; Stricher, F; Cool, R H; Samali, A; Serrano, L; Quax, W J

    2010-10-21

    The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment.

  1. Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors.

    Directory of Open Access Journals (Sweden)

    Eleni eKonsolaki

    2016-04-01

    Full Text Available In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. Α deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-, which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioural signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviours, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm and extend the hypothesis that β2-/- animals exhibit age-related cognitive impairments, manifested in both spatial learning and recognition memory tasks. In addition, we reveal deficits in spontaneous behaviour and habituation processes earlier in life. To our knowledge, this is the first study to perform an extensive behavioural examination of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioural changes to global dementia due to the combined effect of the neuropathology and aging.

  2. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  3. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin.

    Science.gov (United States)

    Shulman, Ziv; Shinder, Vera; Klein, Eugenia; Grabovsky, Valentin; Yeger, Orna; Geron, Erez; Montresor, Alessio; Bolomini-Vittori, Matteo; Feigelson, Sara W; Kirchhausen, Tomas; Laudanna, Carlo; Shakhar, Guy; Alon, Ronen

    2009-03-20

    Endothelial chemokines are instrumental for integrin-mediated lymphocyte adhesion and transendothelial migration (TEM). By dissecting how chemokines trigger lymphocyte integrins to support shear-resistant motility on and across cytokine-stimulated endothelial barriers, we found a critical role for high-affinity (HA) LFA-1 integrin in lymphocyte crawling on activated endothelium. Endothelial-presented chemokines triggered HA-LFA-1 and adhesive filopodia at numerous submicron dots scattered underneath crawling lymphocytes. Shear forces applied to endothelial-bound lymphocytes dramatically enhanced filopodia density underneath crawling lymphocytes. A fraction of the adhesive filopodia invaded the endothelial cells prior to and during TEM and extended large subluminal leading edge containing dots of HA-LFA-1 occupied by subluminal ICAM-1. Memory T cells generated more frequent invasive filopodia and transmigrated more rapidly than their naive counterparts. We propose that shear forces exerted on HA-LFA-1 trigger adhesive and invasive filopodia at apical endothelial surfaces and thereby promote lymphocyte crawling and probing for TEM sites.

  4. High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion.

    Science.gov (United States)

    Anderson, Cyrus A; Jones, Amanda R; Briggs, Ellen M; Novitsky, Eric J; Kuykendall, Darrell W; Sottos, Nancy R; Zimmerman, Steven C

    2013-05-15

    Adhesion phenomena are essential to many biological processes and to synthetic adhesives and manufactured coatings and composites. Supramolecular interactions are often implicated in various adhesion mechanisms. Recently, supramolecular building blocks, such as synthetic DNA base-pair mimics, have drawn attention in the context of molecular recognition, self-assembly, and supramolecular polymers. These reversible, hydrogen-bonding interactions have been studied extensively for their adhesive capabilities at the nano- and microscale, however, much less is known about their utility for practical adhesion in macroscopic systems. Herein, we report the preparation and evaluation of supramolecular coupling agents based on high-affinity, high-fidelity quadruple hydrogen-bonding units (e.g., DAN·DeUG, Kassoc = 10(8) M(-1) in chloroform). Macroscopic adhesion between polystyrene films and glass surfaces modified with 2,7-diamidonaphthyridine (DAN) and ureido-7-deazaguanine (DeUG) units was evaluated by mechanical testing. Structure-property relationships indicate that the designed supramolecular interaction at the nanoscale plays a key role in the observed macroscopic adhesive response. Experiments probing reversible adhesion or self-healing properties of bulk samples indicate that significant recovery of initial strength can be realized after failure but that the designed noncovalent interaction does not lead to healing during the process of adhesion loss.

  5. Conformation-Dependent High-Affinity Potent Ricin-Neutralizing Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Wei-Gang Hu

    2013-01-01

    Full Text Available Ricin is a potential biothreat agent with no approved antidote available for ricin poisoning. The aim of this study was to develop potent antibody-based antiricin antidotes. Four strong ricin resistant hybridoma clones secreting antiricin monoclonal antibodies (mAbs were developed. All four mAbs are bound to conformational epitopes of ricin toxin B (RTB with high affinity (KD values from 2.55 to 36.27 nM. RTB not only triggers cellular uptake of ricin, but also facilitates transport of the ricin toxin A (RTA from the endoplasmic reticulum to the cytosol, where RTA exerts its toxic activity. The four mAbs were found to have potent ricin-neutralizing capacities and synergistic effects among them as determined by an in vitro neutralization assay. In vivo protection assay demonstrated that all four mAbs had strong efficacy against ricin challenges. D9 was found to be exceptionally effective. Intraperitoneal (i.p. administration of D9, at a dose of 5 μg, 6 weeks before or 6 hours after an i.p. challenge with 5 × LD50 of ricin was able to protect or rescue 100% of the mice, indicating that mAb D9 is an excellent candidate to be developed as a potent antidote against ricin poisoning for both prophylactic and therapeutic purposes.

  6. Molecular evolutionary analysis of the high-affinity K+ transporter gene family in angiosperms.

    Science.gov (United States)

    Yang, P; Hua, C; Zhou, F; Zhang, B-J; Cai, X-N; Chen, Q-Z; Wang, R-L

    2016-07-15

    The high-affinity K(+) transporter (HKT) family comprises a group of multifunctional cation transporters widely distributed in organisms ranging from Bacteria to Eukarya. In angiosperms, the HKT family consists primarily of nine types, whose evolutionary relationships are not fully understood. The available sequences from 31 plant species were used to perform a comprehensive evolutionary analysis, including an examination of selection pressure and estimating phylogenetic tree and gene duplication events. Our results show that a gene duplication in the HKT1;5/HKT1;4 cluster might have led to the divergence of the HKT1;5 and HKT1;4 subfamilies. Additionally, maximum likelihood analysis revealed that the HKT family has undergone a strong purifying selection. An analysis of the amino acids provided strong statistical evidence for a functional divergence between subfamilies 1 and 2. Our study was the first to provide evidence of this functional divergence between these two subfamilies. Analysis of co-evolution in HKT identified 25 co-evolved groups. These findings expanded our understanding of the evolutionary mechanisms driving functional diversification of HKT proteins.

  7. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production.

    Science.gov (United States)

    Abraham, Michal; Weiss, Ido D; Wald, Hanna; Wald, Ori; Nagler, Arnon; Beider, Katia; Eizenberg, Orly; Peled, Amnon

    2013-10-01

    Platelets are the terminal differentiation product of megakaryocytes (MKs). Cytokines, such as thrombopoietin (TPO), are known to influence different steps in MK development; however, the complex differentiation and platelet localization processes are not fully understood. MKs express the receptor CXCR4 and have been shown to migrate in response to CXCL12 and to increase their platelet production. In this study, we studied the role of CXCR4 in platelet production with the high affinity CXCR4 antagonist, BKT140. Single and sequential administration of BKT140 significantly increased the number of MKs and haematopoietic progenitors (HPCs) within the bone marrow (BM). Increased megakaryopoiesis was associated with increased platelet production. Single and sequential administration of BKT140 also increased the number of HPCs in the blood. In a model of 5-fluorouracil-induced thrombocytopenia, BKT140 significantly reduced the severity and duration of thrombocytopenia and cytopenia when administered before and after chemotherapy. Our results demonstrated that the CXCR4 antagonist, BKT140, mediated unique beneficial effects by stimulating megakaryopoiesis and platelet production. These results provide evidence for the possible therapeutic use of BKT140 for modulating platelet numbers in thrombocytopenic conditions. © 2013 John Wiley & Sons Ltd.

  8. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins

    Directory of Open Access Journals (Sweden)

    Sergi Puig

    2014-01-01

    Full Text Available Copper (Cu is an essential micronutrient for all eukaryotes because it participates as a redox active cofactor in multiple biological processes, including mitochondrial respiration, photosynthesis, oxidative stress protection, and iron (Fe transport. In eukaryotic cells, Cu transport toward the cytoplasm is mediated by the conserved CTR/COPT family of high-affinity Cu transport proteins. This outlook paper reviews the contribution of our research group to the characterization of the function played by the Arabidopsis thaliana COPT1–6 family of proteins in plant Cu homeostasis. Our studies indicate that the different tissue specificity, Cu-regulated expression, and subcellular localization dictate COPT-specialized contribution to plant Cu transport and distribution. By characterizing lack-of-function Arabidopsis mutant lines, we conclude that COPT1 mediates root Cu acquisition, COPT6 facilitates shoot Cu distribution, and COPT5 mobilizes Cu from storage organelles. Furthermore, our work with copt2 mutant and COPT-overexpressing plants has also uncovered Cu connections with Fe homeostasis and the circadian clock, respectively. Future studies on the interaction between COPT transporters and other components of the Cu homeostasis network will improve our knowledge of plant Cu acquisition, distribution, regulation, and utilization by Cu-proteins.

  9. PREPARATION AND CHARACTERISTICS OF ANIONIC POLYACRYLAMIDES CONTAINING DIRECT DYE WITH A HIGH AFFINITY FOR CELLULOSE

    Directory of Open Access Journals (Sweden)

    Shingo Yokota

    2009-05-01

    Full Text Available Direct dye with a high affinity for cellulose substrate was utilized as a cellulose anchor to promote retention of paper strengthening additives under various conditions associated with the wet end of a paper machine. Direct Red 28 (DR was covalently linked to anionic polyacrylamide (A-PAM via a condensation reaction using water-soluble carbodiimide. The DR-conjugated A-PAM (DR-A-PAM demonstrated good retention efficiency, resulting in strength enhancement of handsheets. Anionic trash showed no interference with the performance of DR-A-PAM in the wet end, while the additive performance was sensitive to calcium ions. Surface plasmon resonance analysis gave useful information on the cellulose-anchoring ability of DR-A-PAM. Dye molecules were irreversibly adsorbed onto the cellulose substrate under aqueous conditions, while A-PAM possessed no significant affinity for cellulose. These results suggest that anionic DR moieties in DR-A-PAM molecules served as a cellulose-anchor, possibly due to multiple CH-π interaction between hydrophobic face of cellulose substrate and π-conjugated system of dye molecules. Such a unique interaction of direct dye and cellulose provides a new insight into the wet end system, and does not depend on conventional electrostatic attraction.

  10. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    Science.gov (United States)

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients.

  11. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    Science.gov (United States)

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  12. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  13. Binding and NMR structural studies on indoloquinoline-oligonucleotide conjugates targeting duplex DNA.

    Science.gov (United States)

    Eick, Andrea; Riechert-Krause, Fanny; Weisz, Klaus

    2012-06-20

    An 11-phenyl-indolo[3,2-b]quinoline (PIQ) was tethered through an aminoalkyl linker to the 5'-end of four pyrimidine oligonucleotides with T/C scrambled sequences at their two 5'-terminal positions. Binding to different double-helical DNA targets formed parallel triple helices with a PIQ-mediated stabilization that strongly depends on pH and the terminal base triad at the 5'-triplex-duplex junction. The most effective stabilization was observed with a TAT triplet at the 5'-junction under low pH conditions, pointing to a protonated ligand with a high triplex binding affinity and unfavorable charge repulsions in the case of a terminal C(+)GC triplet at the junction. The latter preference of the PIQ ligand for TAT over CGC is alleviated yet still preserved at higher pH. Intercalation of PIQ at the 5'-triplex-duplex junction as suggested by the triplex melting experiments was confirmed by homonuclear and heteronuclear NMR structural studies on a specifically isotope-labeled triplex. The NMR analysis revealed two coexisting species that only differ by a 180° rotation of the indoloquinoline within the intercalation pocket. NOE-derived molecular models indicate extensive stacking interactions of the indoloquinoline moiety with the TAT base triplet and CG base pair at the junction and a phenyl substituent that is positioned in the major groove and oriented almost perpendicular to the plane of the indoloquinoline.

  14. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site.

    Science.gov (United States)

    Bordes, F; Cambon, E; Dossat-Létisse, V; André, I; Croux, C; Nicaud, J M; Marty, A

    2009-07-06

    Lip2p lipase from Yarrowia lipolytica was shown to be an efficient catalyst for the resolution of 2-bromo-arylacetic acid esters, an important class of chemical intermediates in the pharmaceutical industry. Enantioselectivity of this lipase was improved by site-directed mutagenesis targeted to the substrate binding site. To guide mutagenesis experiments, the three-dimensional model of this lipase was built by homology modelling techniques by using the structures of lipases from Rhizomucor miehei and Thermomyces lanuginosa as templates. On the basis of this structural model, five amino acid residues (T88, V94, D97, V232, V285) that form the hydrophobic substrate binding site of the lipase were selected for site-directed mutagenesis. Position 232 was identified as crucial for the discrimination between enantiomers. Variant V232A displayed an enantioselectivity enhanced by one order of magnitude, whereas variant V232L exhibited a selectivity inversion. To further explore the diversity, position 232 was systematically replaced by the 19 possible amino acids. Screening of this library led to the identification of the V232S variant, which has a tremendously increased E value compared to the parental enzyme for the resolution of 2-bromo-phenylacetic acid ethyl ester (58-fold) and 2-bromo-o-tolylacetic acid ethyl ester (16-fold). In addition to the gain in enantioselectivity, a remarkable increase in velocity was observed (eightfold increase) for both substrates.

  15. Development of New Drugs for an Old Target — The Penicillin Binding Proteins

    Directory of Open Access Journals (Sweden)

    André Luxen

    2012-10-01

    Full Text Available The widespread use of β-lactam antibiotics has led to the worldwide appearance of drug-resistant strains. Bacteria have developed resistance to β-lactams by two main mechanisms: the production of β-lactamases, sometimes accompanied by a decrease of outer membrane permeability, and the production of low-affinity, drug resistant Penicillin Binding Proteins (PBPs. PBPs remain attractive targets for developing new antibiotic agents because they catalyse the last steps of the biosynthesis of peptidoglycan, which is unique to bacteria, and lies outside the cytoplasmic membrane. Here we summarize the “current state of the art” of non-β-lactam inhibitors of PBPs, which have being developed in an attempt to counter the emergence of β-lactam resistance. These molecules are not susceptible to hydrolysis by β-lactamases and thus present a real alternative to β-lactams. We present transition state analogs such as boronic acids, which can covalently bind to the active serine residue in the catalytic site. Molecules containing ring structures different from the β-lactam-ring like lactivicin are able to acylate the active serine residue. High throughput screening methods, in combination with virtual screening methods and structure based design, have allowed the development of new molecules. Some of these novel inhibitors are active against major pathogens, including methicillin-resistant Staphylococcus aureus (MRSA and thus open avenues new for the discovery of novel antibiotics.

  16. High affinity of anti-GBM antibodies from Goodpasture and transplanted Alport patients to alpha3(IV)NC1 collagen.

    Science.gov (United States)

    Rutgers, A; Meyers, K E; Canziani, G; Kalluri, R; Lin, J; Madaio, M P

    2000-07-01

    Anti-glomerular basement membrane (anti-GBM) antibody-mediated diseases are characterized by rapidly progressive glomerulonephritis (RPGN) that often results in irreversible loss of renal function and renal failure. Although many factors contribute to the fulminant nature and treatment resistance of this disease, we questioned whether high affinity autoantibody-alpha3(IV) collagen interactions lead to persistent antibody deposition, thereby perpetuating inflammation. To address this hypothesis, the binding kinetics of human anti-GBM antibodies (Ab) to alpha3(IV)NC1 were evaluated using an optical biosensor interaction analysis. Polyclonal anti-GBM Abs were purified by alpha3(IV)NC1 affinity chromatography from the sera of patients with anti-GBM AB-mediated diseases, including individuals with Goodpasture syndrome (GS), idiopathic RPGN (N = 7), and Alport syndrome (AL) following kidney transplantation (N = 4). The affinity-binding characteristics of the autoantibodies were determined using a biosensor analysis system, with immobilized bovine alpha3(IV)NC1 dimers. All of the autoantibody preparations bound to alpha3(IV)NC1, whereas none bound to alpha1(IV)NC1 (control). Purified, normal serum IgG did not bind to either antigen. Estimated dissociation constants (Kd) for the purified autoantibodies were 1.39E-04 +/- 7.30E-05 s-l (GS) and 8. 90E-05 +/- 2.80E-05 s-l (AL). Their estimated association constants (Ka) were 2.67E+04 +/- 1.8E+04 (M-ls-l) and 2.76E+04 +/- 1. 70E+04(M-ls-l) for GS and AL patients, respectively. By comparison with other Ab interactions, these Abs demonstrated high affinity, with relatively high on (binding) rates and slow off (dissociation) rates. The results suggest that anti-GBM Abs bind rapidly and remain tightly bound to the GBM in vivo. This property likely contributes to both the fulminant nature of this disease and its resistance to therapy, because persistent glomerular Ab deposition has the potential to produce continuous inflammation

  17. Myostatin as a therapeutic target in Amyotrophic lateral sclerosis.

    Science.gov (United States)

    Walsh, Frank S; Rutkowski, Julia Lynn

    2012-11-01

    Amyotrophic Lateral Sclerosis is a devastating neurological disease that is inevitably fatal after 3-5years duration. Treatment options are minimal and as such new therapeutic modalities are required. In this review, we discuss the role of the myostatin pathway as a modulator of skeletal muscle mass and therapeutic approaches using biological based therapies. Both monoclonal antibodies to myostatin and a soluble receptor decoy to its high affinity receptor have been used in clinical trials of neuromuscular diseases and while there have been efficacy signals with the latter approach there have also been safety issues. Our approach is to target the high affinity receptor-binding site on myostatin and to develop a next generation set of therapeutic reagents built on a novel protein scaffold. This is the natural single domain VNAR found in sharks which is extremely versatile and has the ability to develop products with superior properties compared to existing therapeutics.

  18. Binding of LL-37 to model biomembranes: insight into target vs host cell recognition.

    Science.gov (United States)

    Sood, Rohit; Domanov, Yegor; Pietiäinen, Milla; Kontinen, Vesa P; Kinnunen, Paavo K J

    2008-04-01

    Pursuing the molecular mechanisms of the concentration dependent cytotoxic and hemolytic effects of the human antimicrobial peptide LL-37 on cells, we investigated the interactions of this peptide with lipids using different model membranes, together with fluorescence spectroscopy for the Trp-containing mutant LL-37(F27W). Minimum concentrations inhibiting bacterial growth and lipid interactions assessed by dynamic light scattering and monolayer penetration revealed the mutant to retain the characteristics of native LL-37. Although both LL-37 and the mutant intercalated effectively into zwitterionic phosphatidylcholine membranes the presence of acidic phospholipids caused augmented membrane binding. Interestingly, strongly attenuated intercalation of LL-37 into membranes containing both cholesterol and sphingomyelin (both at X=0.3) was observed. Accordingly, the distinction between target and host cells by LL-37 is likely to derive from i) acidic phospholipids causing enhanced association with the former cells as well as ii) from attenuated interactions with the outer surface of the plasma membrane of the peptide secreting host, imposed by its high content of cholesterol and sphingomyelin. Our results further suggest that LL-37 may exert its antimicrobial effects by compromising the membrane barrier properties of the target microbes by a mechanism involving cytotoxic oligomers, similarly to other peptides forming amyloid-like fibers in the presence of acidic phospholipids.

  19. Phage display screen for peptides that bind Bcl-2 protein.

    Science.gov (United States)

    Park, Hye-Yeon; Kim, Joungmok; Cho, June-Haeng; Moon, Ji Young; Lee, Su-Jae; Yoon, Moon-Young

    2011-01-01

    Bcl-2 family proteins are key regulators of apoptosis associated with human disease, including cancer. Bcl-2 protein has been found to be overexpressed in many cancer cells. Therefore, Bcl-2 protein is a potential diagnostic target for cancer detection. In the present study, the authors have identified several Bcl-2 binding peptides with high affinity (picomolar range) from a 5-round M13 phage display library screening. These peptides can be used to develop novel diagnostic probes or potent inhibitors with diverse polyvalencies.

  20. The physiological significance of HKT1, a Na{sup +} - coupled high affinity K{sup +} transporter in `Triticum aestivum`

    Energy Technology Data Exchange (ETDEWEB)

    Box, S.; Schachtman, D.P. [University of Adelaide, SA (Australia). Department of Botany

    1997-12-31

    Full text: Several mechanisms for high affinity K{sup +} uptake by higher plants have been proposed:-an ATP-energised K:+ pump, a K{sup +}/H{sup +} antiport and a H{sup +}coupled carrier. Recently, a Na{sup +}--coupled high affinity K{sup +} transporter, HKT1, was isolated from wheat roots. Whilst Na{sup +}K{sup +} symports have been described in charophyte algae, the cloning of HKT1 from wheat is the first, evidence that this type d transport mechanism may function in higher plants. Is the activity of HKT1 an important mechanism involved in K{sup +} acquisition by wheat? The aim of this study was to assess the physiological significance of Na{sup +}- coupled high affinity K{sup +} uptake in T. aestivum. To determine whether HKT1 plays a significant role in wheat growth, we measured the dry weights and ion content of plants grown in a range of [K{sup +}], with and without Na{sup +}. To directly assess the activity of Na{sup +}- coupled K{sup +} transport, {sup 86}Rb{sup +} and {sup 22}Na{sup +} flux analyses were performed on the elongation zones and whole roots of intact seedlings, expressing a high affinity K{sup +} uptake system. The results of these growth and tracer flux studies will be discussed in relation to the expression of the gene encoding HKT1 in T. aestivum

  1. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter

    DEFF Research Database (Denmark)

    Zhang, Peng; Jørgensen, Trine Nygaard; Løland, Claus Juul

    2013-01-01

    A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino)prop...

  2. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casas, C; Aldea, M; Espinet, C; Gallego, C; Gil, R; Herrero, E

    1997-06-15

    High-affinity iron uptake in Saccharomyces cerevisiae involves the extracytoplasmic reduction of ferric ions by FRE1 and FRE2 reductases. Ferrous ions are then transported across the plasma membrane through the FET3 oxidase-FTR1 permease complex. Expression of the high-affinity iron uptake genes is induced upon iron deprivation. We demonstrate that AFT1 is differentially involved in such regulation. Aft1 protein is required for maintaining detectable non-induced level of FET3 expression and for induction of FRE2 in iron starvation conditions. On the contrary, FRE1 mRNA induction is normal in the absence of Aft1, although the existence of AFT1 point mutations causing constitutive expression of FRE1 (Yamaguchi-Iwai et al., EMBO J. 14: 1231-1239, 1995) indicates that Aft1 may also participate in FRE1 expression in a dispensable way. The alterations in the basal levels of expression of the high-affinity iron uptake genes may explain why the AFT1 mutant is unable to grow on respirable carbon sources. Overexpression of AFT1 leads to growth arrest of the G1 stage of the cell cycle. Aft1 is a transcriptional activator that would be part of the different transcriptional complexes interacting with the promoter of the high-affinity iron uptake genes. Aft1 displays phosphorylation modifications depending on the growth stage of the cells, and it might link induction of genes for iron uptake to other metabolically dominant requirement for cell growth.

  3. High-affinity prorenin binding to cardiac man-6-P/IGF-II receptors precedes proteolytic activation to renin

    NARCIS (Netherlands)

    J.J. Saris (Jasper); F.H.M. Derkx (Frans); R.J.A. de Bruin (René); D.H. Dekkers (Dick); J.M.J. Lamers (Jos); P.R. Saxena (Pramod Ranjan); M.A.D.H. Schalekamp (Maarten); A.H.J. Danser (Jan)

    2001-01-01

    textabstractMannose-6-phosphate (man-6-P)/insulin-like growth factor-II (man-6-P/IgF-II) receptors are involved in the activation of recombinant human prorenin by cardiomyocytes. To investigate the kinetics of this process, the nature of activation, the existence of other prorenin

  4. Arg-425 of the citrate transporter CitP is responsible for high affinity binding of di- and tricarboxylatese

    NARCIS (Netherlands)

    Bandell, M; Lolkema, JS

    2000-01-01

    The citrate transporter of Leuconostoc mesenteroides (CitP) catalyzes exchange of divalent anionic citrate from the medium for monovalent anionic lactate, which is an end product of citrate degradation. The exchange generates a membrane potential and thus metabolic energy for the cell. The mechanism

  5. Arg-425 of the Citrate Transporter CitP Is Responsible for High Affinity Binding of Di- and Tricarboxylates

    NARCIS (Netherlands)

    Bandell, Michael; Lolkema, Juke S.

    2000-01-01

    The citrate transporter of Leuconostoc mesenteroides (CitP) catalyzes exchange of divalent anionic citrate from the medium for monovalent anionic lactate, which is an end product of citrate degradation. The exchange generates a membrane potential and thus metabolic energy for the cell. The mechanism

  6. A molecular defect in two families with hemolytic poikilocytic anemia: reduction of high affinity membrane binding sites for ankyrin.

    OpenAIRE

    Agre, P; Orringer, E P; Chui, D H; Bennett, V

    1981-01-01

    Patients from two families with chronic hemolytic anemia have been studied. The erythrocytes are very fragile and appear microcytic with a great variety of shapes. Clinical evaluation failed to identify traditionally recognized causes of hemolysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed no significant abnormality of the major polypeptide bands. Erythrocytes spectrin-ankyrin and ankyrin-membrane interactions were analyzed with 125I-labeled spectrin, 125I-la...

  7. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors.

    Science.gov (United States)

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging.

  8. In silico analysis of high affinity potassium transporter (HKT) isoforms in different plants.

    Science.gov (United States)

    Zamani Babgohari, Mahbobeh; Ebrahimie, Esmaeil; Niazi, Ali

    2014-01-01

    High affinity potassium transporters (HKTs) are located in the plasma membrane of the vessels and have significant influence on salt tolerance in some plants. They exclude Na(+) from the parenchyma cells to reduce Na(+) concentration. Despite many studies, the underlying regulatory mechanisms and the exact functions of HKTs within different genomic backgrounds are relatively unknown. In this study, various bioinformatics techniques, including promoter analysis, identification of HKT-surrounding genes, and construction of gene networks, were applied to investigate the HKT regulatory mechanism. Promoter analysis showed that rice HKTs carry ABA response elements. Additionally, jasmonic acid response elements were detected on promoter region of TmHKT1;5. In silico synteny highlighted several unknown and new loci near rice, Arabidopsis thaliana and Physcomitrella patent HKTs, which may play a significant role in salt stress tolerance in concert with HKTs. Gene network prediction unravelled that crosstalk between jasmonate and ethylene reduces AtHKT1;1 expression. Furthermore, antiporter and transferase proteins were found in AtHKT1;1 gene network. Interestingly, regulatory elements on the promoter region of HKT in wild genotype (TmHKT1;5) were more frequent and variable than the ones in cultivated wheat (TaHKT1;5) which provides the possibility of rapid response and better understanding of environmental conditions for wild genotype. Detecting ABA and jasmonic acid response elements on promoter regions of HKTs provide valuable clues on underlying regulatory mechanisms of HKTs. In silico synteny and pathway discovery indicated several candidates which act in concert with HKTs in stress condition. We highlighted different arrangement of regulatory elements on promoter region of wild wheat (TmHKT1;5) compared to bread wheat (TaHKT1;5) in this study.

  9. The P2’ residue is a key determinant of mesotrypsin specificity: Engineering a high-affinity inhibitor with anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Salameh, M.A.; Soares, A.; Hockla, A.; Radisky, D. C.; Radisky, E. S.

    2011-11-15

    PRSS3/mesotrypsin is an atypical isoform of trypsin, the up-regulation of which has been implicated in promoting tumor progression. Mesotrypsin inhibitors could potentially provide valuable research tools and novel therapeutics, but small-molecule trypsin inhibitors have low affinity and little selectivity, whereas protein trypsin inhibitors bind poorly and are rapidly degraded by mesotrypsin. In the present study, we use mutagenesis of a mesotrypsin substrate, APPI (amyloid precursor protein Kunitz protease inhibitor domain), and of a poor mesotrypsin inhibitor, BPTI (bovine pancreatic trypsin inhibitor), to dissect mesotrypsin specificity at the key P'{sub 2} position. We find that bulky and charged residues strongly disfavor binding, whereas acidic residues facilitate catalysis. Crystal structures of mesotrypsin complexes with BPTI variants provide structural insights into mesotrypsin specificity and inhibition. Through optimization of the P{sub 1} and P'{sub 2} residues of BPTI, we generate a stable high-affinity mesotrypsin inhibitor with an equilibrium binding constant K{sub i} of 5.9 nM, a >2000-fold improvement in affinity over native BPTI. Using this engineered inhibitor, we demonstrate the efficacy of pharmacological inhibition of mesotrypsin in assays of breast cancer cell malignant growth and pancreatic cancer cell invasion. Although further improvements in inhibitor selectivity will be important before clinical potential can be realized, the results of the present study support the feasibility of engineering protein protease inhibitors of mesotrypsin and highlight their therapeutic potential.

  10. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity.

    Science.gov (United States)

    Ni, M; Dehesh, K; Tepperman, J M; Quail, P H

    1996-06-01

    GT-2 is a novel DNA binding protein that interacts with a triplet functionally defined, positively acting GT-box motifs (GT1-bx, GT2-bx, and GT3-bx) in the rice phytochrome A gene (PHYA) promoter. Data from a transient transfection assay used here show that recombinant GT-2 enhanced transcription from both homologous and heterologous GT-box-containing promoters, thereby indicating that this protein can function as a transcriptional activator in vivo. Previously, we have shown that GT-2 contains separate DNA binding determinants in its N- and C-terminal halves, with binding site preferences for the GT3-bx and GT2-bx promoter motifs, respectively. Here, we demonstrate that the minimal DNA binding domains reside within dual 90-amino acid polypeptide segments encompassing duplicated sequences, termed trihelix regions, in each half of the molecule, plus 15 additional immediately adjacent amino acids downstream. These minimal binding domains retained considerable target sequence selectivity for the different GT-box motifs, but this selectivity was enhanced by a separate polypeptide segment farther downstream on the C-terminal side of each trihelix region. Therefore, the data indicate that the twin DNA binding domains of GT-2 each consist of a general GT-box recognition core with intrinsic differential binding activity toward closely related target motifs and a modified sequence conferring higher resolution reciprocal selectivity between these motifs.

  11. Taking Advantage: High Affinity B cells in the Germinal Center Have Lower Death Rates, But Similar Rates of Division Compared to Low Affinity Cells1

    OpenAIRE

    2009-01-01

    B lymphocytes producing high affinity antibodies (Abs) are critical for protection from extracellular pathogens, such as bacteria and parasites. The process by which high affinity B cells are selected during the immune response has never been elucidated. Though it has been shown that high affinity cells directly outcompete low affinity cells in the germinal center (GC)2, whether there are also intrinsic differences between these cells has not been addressed. It could be that higher affinity c...

  12. Structures of the ultra-high-affinity protein–protein complexes of pyocins S2 and AP41 and their cognate immunity proteins from pseudomonas aeruginosa

    OpenAIRE

    Joshi, Amar; Grinter, Rhys; Josts, Inokentijs; Chen, Sabrina; Wojdyla, Justyna; Lowe, Edward; Kaminska, Renata; Sharp, Connor; McCaughey, Laura; Roszak, Aleksander; Cogdell, Richard; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2015-01-01

    How ultra-high-affinity protein–protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase–Im interaction is a model system for the study of high-affinity protein–protein interactions. However, despit...

  13. A novel fibronectin binding motif in MSCRAMMs targets F3 modules.

    Directory of Open Access Journals (Sweden)

    Sabitha Prabhakaran

    Full Text Available BACKGROUND: BBK32 is a surface expressed lipoprotein and fibronectin (Fn-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21-205 of the lipoprotein. METHODOLOGY/PRINCIPAL FINDINGS: Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence. CONCLUSIONS/SIGNIFICANCE: We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities.

  14. A Comparative Reverse Docking Strategy to Identify Potential Antineoplastic Targets of Tea Functional Components and Binding Mode

    Directory of Open Access Journals (Sweden)

    Rong Zheng

    2011-08-01

    Full Text Available The main functional components of green tea, such as epigallocatechin gallate (EGCG, epigallocatechin (EGC, epicatechin gallate (ECG and epicatechin (EC, are found to have a broad antineoplastic activity. The discovery of their targets plays an important role in revealing the antineoplastic mechanism. Therefore, to identify potential target proteins for tea polyphenols, we have taken a comparative virtual screening approach using two reverse docking systems, one based on Autodock software and the other on Tarfisdock. Two separate in silico workflows were implemented to derive a set of target proteins related to human diseases and ranked by the binding energy score. Several conventional clinically important proteins with anti-tumor effects are screened out from the PDTD protein database as the potential receptors by both procedures. To further analyze the validity of docking results, we study the binding mode of EGCG and the potential target protein Leukotriene A4 hydrolase in detail. We indicate that interactions mediated by electrostatic and hydrogen bond play a key role in ligand binding. EGCG binds to the enzyme with certain orientation and conformation that is suitable for nucleophilic attacks by several electrical residues inside the enzyme’s activity cavity. This study provides useful information for studying the antitumor mechanism of tea’s functional components. The comparative reverse docking strategy presented generates a tractable set of antineoplastic proteins for future experimental validation as drug targets against tumors.

  15. Anti-tumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding

    Science.gov (United States)

    Dings, Ruud P.M.; Miller, Michelle C.; Nesmelova, Irina; Astorgues-Xerri, Lucile; Kumar, Nigam; Serova, Maria; Chen, Xuimei; Raymond, Eric; Hoye, Thomas R.; Mayo, Kevin H.

    2012-01-01

    Calix[4]arene compound 0118 is an angiostatic agent that inhibits tumor growth in mice. Although 0118 is a topomimetic of galectin-1-targeting angiostatic amphipathic peptide anginex, we had yet to prove that 0118 targets galectin-1. Galectin-1 is involved in pathological disorders like tumor endothelial cell adhesion and migration and therefore presents a relevant target for therapeutic intervention against cancer. Here, 15N-1H HSQC NMR spectroscopy demonstrates that 0118 indeed targets galectin-1 at a site away from the lectin’s carbohydrate binding site, and thereby attenuates lactose binding to the lectin. Flow cytometry and agglutination assays show that 0118 attenuates binding of galectin-1 to cell surface glycans, and the inhibition of cell proliferation by 0118 is found to be correlated with the cellular expression of the lectin. In general, our data indicate that 0118 targets galectin-1 as an allosteric inhibitor of glycan/carbohydrate binding. This work contributes to the clinical development of anti-tumor calixarene compound 0118. PMID:22575017

  16. Analyzing radioligand binding data.

    Science.gov (United States)

    Motulsky, Harvey; Neubig, Richard

    2002-08-01

    Radioligand binding experiments are easy to perform, and provide useful data in many fields. They can be used to study receptor regulation, discover new drugs by screening for compounds that compete with high affinity for radioligand binding to a particular receptor, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling, via measurements of agonist binding and its regulation by ions, nucleotides, and other allosteric modulators. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  17. The Interaction of Arp2/3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments

    Science.gov (United States)

    Dyche Mullins, R.; Heuser, John A.; Pollard, Thomas D.

    1998-05-01

    The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μ M. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.

  18. Discovery of high affinity ligands for β2-adrenergic receptor through pharmacophore-based high-throughput virtual screening and docking.

    Science.gov (United States)

    Yakar, Ruya; Akten, Ebru Demet

    2014-09-01

    Novel high affinity compounds for human β2-adrenergic receptor (β2-AR) were searched among the clean drug-like subset of ZINC database consisting of 9,928,465 molecules that satisfy the Lipinski's rule of five. The screening protocol consisted of a high-throughput pharmacophore screening followed by an extensive amount of docking and rescoring. The pharmacophore model was composed of key features shared by all five inactive states of β2-AR in complex with inverse agonists and antagonists. To test the discriminatory power of the pharmacophore model, a small-scale screening was initially performed on a database consisting of 117 compounds of which 53 antagonists were taken as active inhibitors and 64 agonists as inactive inhibitors. Accordingly, 7.3% of the ZINC database subset (729,413 compounds) satisfied the pharmacophore requirements, along with 44 antagonists and 17 agonists. Afterwards, all these hit compounds were docked to the inactive apo form of the receptor using various docking and scoring protocols. Following each docking experiment, the best pose was further evaluated based on the existence of key residues for antagonist binding in its vicinity. After final evaluations based on the human intestinal absorption (HIA) and the blood brain barrier (BBB) penetration properties, 62 hit compounds have been clustered based on their structural similarity and as a result four scaffolds were revealed. Two of these scaffolds were also observed in three high affinity compounds with experimentally known Ki values. Moreover, novel chemical compounds with distinct structures have been determined as potential β2-AR drug candidates.

  19. In Silico Characterization of the Binding Affinity of Dendrimers to Penicillin-Binding Proteins (PBPs): Can PBPs be Potential Targets for Antibacterial Dendrimers?

    Science.gov (United States)

    Ahmed, Shaimaa; Vepuri, Suresh B; Ramesh, Muthusamy; Kalhapure, Rahul; Suleman, Nadia; Govender, Thirumala

    2016-04-01

    We have shown that novel silver salts of poly (propyl ether) imine (PETIM) dendron and dendrimers developed in our group exhibit preferential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus. This led us to examine whether molecular modeling methods could be used to identify the key structural design principles for a bioactive lead molecule, explore the mechanism of binding with biological targets, and explain their preferential antibacterial activity. The current article reports the conformational landscape as well as mechanism of binding of generation 1 PETIM dendron and dendrimers to penicillin-binding proteins (PBPs) in order to understand the antibacterial activity profiles of their silver salts. Molecular dynamics at different simulation protocols and conformational analysis were performed to elaborate on the conformational features of the studied dendrimers, as well as to create the initial structure for further binding studies. The results showed that for all compounds, there were no significant conformational changes due to variation in simulation conditions. Molecular docking calculations were performed to investigate the binding theme between the studied dendrimers and PBPs. Interestingly, in significant accordance with the experimental data, dendron and dendrimer with aliphatic cores were found to show higher activity against S. aureus than the dendrimer with an aromatic core. The latter showed higher activity against MRSA. The findings from this computational and molecular modeling report together with the experimental results serve as a road map toward designing more potent antibacterial dendrimers against resistant bacterial strains.

  20. The Target of β-Expansin EXPB1 in Maize Cell Walls from Binding and Solid-State NMR Studies.

    Science.gov (United States)

    Wang, Tuo; Chen, Yuning; Tabuchi, Akira; Cosgrove, Daniel J; Hong, Mei

    2016-12-01

    The wall-loosening actions of β-expansins are known primarily from studies of EXPB1 extracted from maize (Zea mays) pollen. EXPB1 selectively loosens cell walls (CWs) of grasses, but its specific binding target is unknown. We characterized EXPB1 binding to sequentially extracted maize CWs, finding that the protein primarily binds glucuronoarabinoxylan (GAX), the major matrix polysaccharide in grass CWs. This binding is strongly reduced by salts, indicating that it is predominantly electrostatic in nature. For direct molecular evidence of EXPB1 binding, we conducted solid-state nuclear magnetic resonance experiments using paramagnetic relaxation enhancement (PRE), which is sensitive to distances between unpaired electrons and nuclei. By mixing (13)C-enriched maize CWs with EXPB1 functionalized with a Mn(2+) tag, we measured Mn(2+)-induced PRE Strong (1)H and (13)C PREs were observed for the carboxyls of GAX, followed by more moderate PREs for carboxyl groups in homogalacturonan and rhamnogalacturonan-I, indicating that EXPB1 preferentially binds GAX In contrast, no PRE was observed for cellulose, indicating very weak interaction of EXPB1 with cellulose. Dynamics experiments show that EXPB1 changes GAX mobility in a complex manner: the rigid fraction of GAX became more rigid upon EXPB1 binding while the dynamic fraction became more mobile. Combining these data with previous results, we propose that EXPB1 loosens grass CWs by disrupting noncovalent junctions between highly substituted GAX and GAX of low substitution, which binds cellulose. This study provides molecular evidence of β-expansin's target in grass CWs and demonstrates a new strategy for investigating ligand binding for proteins that are difficult to express heterologously.

  1. Specific /sup 3/H-DMCM binding to a non-benzodiazepine binding site after silver ion treatment of rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Honore, T.; Nielsen, M.; Braestrup, C.

    1984-11-26

    Specific binding of the BZ-receptor ligand /sup 3/H-DMCM to rat cortical membranes was dramatically enhanced by preincubation of the homogenate with 0.1 mM silver (Ag/sup +/) nitrate. The binding was completely inhibited by midazolam. Nevertheless, the pharmacological specificity of the Ag/sup +/-enhanced /sup 3/H-DMCM binding was different from that of BZ-receptors. Furthermore, the B/sub max/ value, the regional distribution and the molecular target size determined by radiation inactivation analysis of the Ag/sup +/-enhanced binding site were different from those of BZ-receptors. The results indicate that Ag/sup +/-enhanced /sup 3/H-DMCM binding represent a high affinity metal complex formation between /sup 3/H-DMCM and an unknown brain specific protein of approximately 100,000 daltons molecular weight. 11 references, 3 figures, 4 tables.

  2. Twins in spirit part II: DOTATATE and high-affinity DOTATATE - the clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Brogsitter, Claudia; Zoephel, Klaus; Hartmann, Holger; Kotzerke, Joerg [Technische Universitaet Dresden, Department of Nuclear Medicine, Dresden (Germany); Schottelius, Margret; Wester, Hans-Juergen [Technische Universitaet Muenchen, Pharmaceutical Radiochemistry and Department of Nuclear Medicine, Muenchen (Germany)

    2014-06-15

    Over recent decades interest in diagnosis and treatment of neuroendocrine tumours (NET) has steadily grown. The basis for diagnosis and therapy of NET with radiolabelled somatostatin (hsst) analogues is the variable overexpression of hsst receptors (hsst1-5 receptors). We hypothesized that radiometal derivatives of DOTA-iodo-Tyr{sup 3}-octreotide analogues might be excellent candidates for somatostatin receptor imaging. We therefore explored the diagnostic potential of {sup 68}Ga-DOTA-iodo-Tyr{sup 3}-octreotate [{sup 68}Ga-DOTA,3-iodo-Tyr{sup 3},Thr{sup 8}]octreotide ({sup 68}Ga-HA-DOTATATE; HA, high-affinity) compared to the established {sup 68}Ga-DOTA-Tyr{sup 3}-octreotate ({sup 68}Ga-DOTATATE) in vivo. The study included 23 patients with known somatostatin receptor-positive metastases from NETs, thyroid cancer or glomus tumours who were investigated with both {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE. A patient-based and a lesion-based comparative analysis was carried out of normal tissue distribution and lesion detectability in a qualitative and a semiquantitative manner. {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE showed comparable uptake in the liver (SUV{sub mean} 8.9 ± 2.2 vs. 9.3 ± 2.5, n.s.), renal cortex (SUV{sub mean} 13.3 ± 3.9 vs. 14.5 ± 3.7, n.s.) and spleen (SUV{sub mean} 24.0 ± 6.7 vs. 22.9 ± 7.3, n.s.). A somewhat higher pituitary uptake was found with {sup 68}Ga-HA-DOTATATE (SUV{sub mean} 6.3 ± 1.8 vs. 5.4 ± 2.1, p < 0.05). On a lesion-by-lesion basis a total of 344 lesions were detected. {sup 68}Ga-HA-DOTATATE demonstrated 328 lesions (95.3 % of total lesions seen), and {sup 68}Ga-DOTATATE demonstrated 332 lesions (96.4 %). The mean SUV{sub max} of all lesions was not significantly different between {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE (17.8 ± 11.4 vs. 16.7 ± 10.7, n.s.). Our analysis demonstrated very good concordance between {sup 68}Ga-HA-DOTATATE and {sup 68}Ga-DOTATATE PET data. As the availability and use of {sup

  3. Inhibition of the high affinity choline transporter enhances hyperalgesia in a rat model of chronic pancreatitis.

    Science.gov (United States)

    Luo, Dan; Chen, Lei; Yu, Baoping

    2017-06-17

    The mechanisms underlying chronic and persistent pain associated with chronic pancreatitis (CP) are not completely understood. The cholinergic system is one of the major neural pathways of the pancreas. Meanwhile, this system plays an important role in chronic pain. We hypothesized that the high affinity choline transporter CHT1, which is a main determinant of cholinergic signaling capacity, is involved in regulating pain associated with CP. CP was induced by intraductal injection of 2% trinitrobenzene sulfonic acid (TNBS) in Sprague-Dawley rats. Pathological examination was used to evaluate the inflammation of pancreas and hyperalgesia was assessed by measuring the number of withdrawal events evoked by application of the von Frey filaments. CHT1 expression in pancreas-specific dorsal root ganglia (DRGs) was assessed through immunohistochemistry and western blotting. We also intraperitoneally injected the rats with hemicholinium-3 (HC-3, a specific inhibitor of CHT1). Then we observed its effects on the visceral hyperalgesia induced by CP, and on the acetylcholine (ACh) levels in the DRGs through using an acetylcholine/acetylcholinesterase assay kit. Signs of CP were observed 21 days after TNBS injection. Rats subjected to TNBS infusions had increased sensitivity to mechanical stimulation of the abdomen. CHT1-immunoreactive cells were increased in the DRGs from rats with CP compared to naive or sham rats. Western blots indicated that CHT1 expression was significantly up-regulated in TNBS-treated rats when compared to naive or sham-operated rats at all time points following surgery. In the TNBS group, CHT1 expression was higher on day 28 than on day 7 or day 14, but there was no statistical difference in CHT1 expression on day 28 vs. day 21. Treatment with HC-3 (60 μg/kg, 80 μg/kg, or 100 μg/kg) markedly enhanced the mechanical hyperalgesia and reduced ACh levels in a dose-dependent manner in rats with CP. We report for the first time that CHT1 may be involved

  4. Receptor-binding domain as a target for developing SARS vaccines.

    Science.gov (United States)

    Zhu, Xiaojie; Liu, Qi; Du, Lanying; Lu, Lu; Jiang, Shibo

    2013-08-01

    A decade ago, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a global pandemic with a mortality rate of 10%. Reports of recent outbreaks of a SARS-like disease caused by Middle East respiratory syndrome coronavirus (MERS-CoV) have raised serious concerns of a possible reemergence of SARS-CoV, either by laboratory escape or the presence of a natural reservoir. Therefore, the development of effective and safe SARS vaccines is still needed. Based on our previous studies, we believe that the receptor-binding domain (RBD) in the S1 subunit of the SARS-CoV spike (S) protein is the most important target for developing a SARS vaccine. In particular, RBD of S protein contains the critical neutralizing domain (CND), which is able to induce highly potent neutralizing antibody response and cross-protection against divergent SARS-CoV strains. Furthermore, a RBD-based subunit vaccine is expected to be safer than other vaccines that may induce Th2-type immunopathology. This review will discuss key advances in the development of RBD-based SARS vaccines and the possibility of using a similar strategy to develop vaccines against MERS-CoV.

  5. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding