WorldWideScience

Sample records for high yield heterologous

  1. High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jon M Kuchenreuther

    Full Text Available BACKGROUND: The realization of hydrogenase-based technologies for renewable H(2 production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases. PRINCIPAL FINDINGS: In this report, we describe an improved Escherichia coli-based expression system capable of producing 8-30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA (CpI from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H(2 evolution with rates comparable to those of enzymes isolated from their respective native organisms. SIGNIFICANCE: The production system we describe will facilitate basic hydrogenase investigations as well as the development of new technologies that utilize these prolific H(2-producing enzymes. These methods can also be extended for producing and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments.

  2. Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant selenoprotein synthesis.

    Science.gov (United States)

    Rengby, Olle; Johansson, Linda; Carlson, Lars A; Serini, Elena; Vlamis-Gardikas, Alexios; Kårsnäs, Per; Arnér, Elias S J

    2004-09-01

    The production of heterologous selenoproteins in Escherichia coli necessitates the design of a secondary structure in the mRNA forming a selenocysteine insertion sequence (SECIS) element compatible with SelB, the elongation factor for selenocysteine insertion at a predefined UGA codon. SelB competes with release factor 2 (RF2) catalyzing translational termination at UGA. Stoichiometry between mRNA, the SelB elongation factor, and RF2 is thereby important, whereas other expression conditions affecting the yield of recombinant selenoproteins have been poorly assessed. Here we expressed the rat selenoprotein thioredoxin reductase, with titrated levels of the selenoprotein mRNA under diverse growth conditions, with or without cotransformation of the accessory bacterial selA, selB, and selC genes. Titration of the selenoprotein mRNA with a pBAD promoter was performed in both TOP10 and BW27783 cells, which unexpectedly could not improve yield or specific activity compared to that achieved in our prior studies. Guided by principal component analysis, we instead discovered that the most efficient bacterial selenoprotein production conditions were obtained with the high-transcription T7lac-driven pET vector system in presence of the selA, selB, and selC genes, with induction of production at late exponential phase. About 40 mg of rat thioredoxin reductase with 50% selenocysteine content could thereby be produced per liter bacterial culture. These findings clearly illustrate the ability of E. coli to upregulate the selenocysteine incorporation machinery on demand and that this is furthermore strongly augmented in late exponential phase. This study also demonstrates that E. coli can indeed be utilized as cell factories for highly efficient production of heterologous selenoproteins such as rat thioredoxin reductase.

  3. Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed α-amylases

    NARCIS (Netherlands)

    Cao, Haojie; van Heel, Auke J; Ahmed, Hifza; Mols, Maarten; Kuipers, Oscar P

    2017-01-01

    BACKGROUND: Bacillus subtilis is widely used as a cell factory for numerous heterologous proteins of commercial value and medical interest. To explore the possibility of further enhancing the secretion potential of this model bacterium, a library of engineered strains with modified cell surface

  4. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield.

    Science.gov (United States)

    Tata, Sandeep Kumar; Jung, Jihye; Kim, Yoon-Ha; Choi, Jun Young; Jung, Ji-Yul; Lee, In-Jung; Shin, Jeong Sheop; Ryu, Stephen Beungtae

    2016-01-01

    Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy. © 2015 Korea Research Institute of Bioscience & Biotechnology. Plant Biotechnology Journal published by John Wiley & Sons Ltd and Society for Experimental Biology, Association of Applied Biologists.

  5. Heterologous expression of VHb can improve the yield and quality of biocontrol fungus Paecilomyces lilacinus, during submerged fermentation.

    Science.gov (United States)

    Zhang, Shumeng; Wang, Jieping; Wei, Yale; Tang, Qing; Ali, Maria Kanwal; He, Jin

    2014-10-10

    Paecilomyces lilacinus is an egg-parasitic fungus which is effective against plant-parasitic nematodes and it has been successfully commercialized for the control of many plant-parasitic nematodes. However, during the large-scale industrial fermentation process of the filamentous fungus, the dissolved oxygen supply is a limiting factor, which influences yield, product quality and production cost. To solve this problem, we intended to heterologously express VHb in P. lilacinus ACSS. After optimizing the vgb gene, we fused it with a selection marker gene nptII, a promoter PgpdA and a terminator TtrpC. The complete expression cassette PgpdA-nptII-vgb-TtrpC was transferred into P. lilacinus ACSS by Agrobacterium tumefaciens-mediated transformation. Consequently, we successfully screened an applicable fungus strain PNVT8 which efficiently expressed VHb. The submerged fermentation experiments demonstrated that the expression of VHb not only increased the production traits of P. lilacinus such as biomass and spore production, but also improved the beneficial product quality and application value, due to the secretion of more protease and chitinase. It can be speculated that the recombinant strain harboring vgb gene will have a growth advantage over the original strain under anaerobic conditions in soil and therefore will possess higher biocontrol efficiency against plant-parasitic nematodes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Specific yield, High Plains aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000...

  7. High-Level Production of Heterologous Protein by Engineered Yeasts Grown in Cottage Cheese Whey

    Science.gov (United States)

    Maullu, Carlo; Lampis, Giorgio; Desogus, Alessandra; Ingianni, Angela; Rossolini, Gian Maria; Pompei, Raffaello

    1999-01-01

    Cottage cheese whey is a cheese industry by-product still rich in proteins and lactose. Its recycling is seldom cost-effective. In this work we show that the lactose-utilizing yeast Kluyveromyces lactis, engineered for production of recombinant human lysozyme, can be grown in cottage cheese whey, resulting in high-level production of the heterologous protein (125 μg/ml). PMID:10347071

  8. High-Level Production of Heterologous Protein by Engineered Yeasts Grown in Cottage Cheese Whey

    OpenAIRE

    Maullu, Carlo; Lampis, Giorgio; Desogus, Alessandra; Ingianni, Angela; Rossolini, Gian Maria; Pompei, Raffaello

    1999-01-01

    Cottage cheese whey is a cheese industry by-product still rich in proteins and lactose. Its recycling is seldom cost-effective. In this work we show that the lactose-utilizing yeast Kluyveromyces lactis, engineered for production of recombinant human lysozyme, can be grown in cottage cheese whey, resulting in high-level production of the heterologous protein (125 μg/ml).

  9. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    Science.gov (United States)

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.

  10. A novel culture method for high level production of heterologous protein in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nagashima, T; Yamamoto, Y; Gomi, K; Kitamoto, K; Kumagai, C

    1994-07-01

    A high level production system for heterologous protein by cold culture of yeast transformants at 15 degrees C was developed. The yeast transformants, carrying a plasmid containing cDNA for Aspergillus oryzae alpha-amylase (Taka-amylase A) or human lysozyme synthetic DNA, were cultivated in a selective medium for 1 or 2 days until full growth at 30 degrees C. The yeast cells were harvested by centrifugation from the culture fluid and then were transferred to YPD medium. These inoculated broths were incubated for 2 days at 15 degrees C and then for another 2 days at 30 degrees C. By the cold culture method described above, higher amounts of Taka-amylase A (28.6 mg/liter) and human lysozyme (6.1 mg/liter) were produced by the yeast transformants compared to those by conventional methods. Heterologous protein productions using YEp, YCp, and YIp types of yeast expression vectors with ADH1 or GAPDH promoter by the cold culture method showed effective productivity of about 2-fold compared to those by the conventional method of culture at 30 degrees C. The high level production of heterologous protein by this method was not specific to the S. cerevisiae strains examined.

  11. Malignant phyllodes tumor of the breast with heterologous high-grade angiosarcoma

    Directory of Open Access Journals (Sweden)

    Ghassan Tranesh

    2017-03-01

    Full Text Available Phyllodes tumors (PTs account for <3% of fibroepithelial breast lesions and for 0.3% to 1.0% of primary breast tumors. They occur predominantly in middle-aged women (mean age range, 40–50 years. PTs can be categorized into benign, borderline, and malignant; the first 2 categories are distinguished only by degree of cellular atypia and mitotic activity. Malignant PTs are more frequent among persons of Hispanic ethnicity, especially those born in Central America or South America. Heterologous sarcomatous elements may be present in malignant PTs, predominantly liposarcoma and rarely fibrosarcoma, rhabdomyosarcoma, leiomyosarcoma, osteosarcoma, and chondrosarcoma. Breast angiosarcoma (BA is a rare heterologous, sarcomatous element that may arise secondary to malignant PT. We report a 47-year-old woman with no history of previous surgery or radiation therapy who presented to the emergency department with a painful right breast mass. She admittedly noticed the right breast mass for many years; however, recently it increased in size. Mammography and ultrasonography identified a partially cystic mass. Core needle biopsy showed dense hyalinized fibrous tissue with old blood clots, suggestive of infarcted fibroadenoma. The patient received antibiotics and analgesics; however, she reported intractable pain and a worsening skin rash of her right breast. Chest computed tomography and magnetic resonance imaging showed a doubling in mass size, with pectoralis major muscle involvement. Incisional biopsy showed malignant PT with heterologous high-grade angiosarcoma. The diagnosis of angiosarcoma was confirmed through immunoreactivity for CD31, FLI1, and ERG immunostains.

  12. High Yielding Microbubble Production Method

    Directory of Open Access Journals (Sweden)

    Joe Fiabane

    2016-01-01

    Full Text Available Microfluidic approaches to microbubble production are generally disadvantaged by low yield and high susceptibility to (microchannel blockages. This paper presents an alternative method of producing microbubbles of 2.6 μm mean diameter at concentrations in excess of 30 × 106 mL−1. In this method, the nitrogen gas flowing inside the liquid jet is disintegrated into spray of microbubble when air surrounding this coflowing nitrogen gas-liquid jet passes through a 100 μm orifice at high velocity. Resulting microbubble foam has the polydispersity index of 16%. Moreover, a ratio of mean microbubble diameter to channel width ratio was found to be less than 0.025, which substantially alleviates the occurrence of blockages during production.

  13. LCR/MEL: A versatile system for high-level expression of heterologous proteins in erythroid cells.

    NARCIS (Netherlands)

    M. Needham; C. Gooding; K. Hudson; M. Antoniou (Michael); F.G. Grosveld (Frank); M. Hollis

    1992-01-01

    textabstractWe have used the human globin locus control region (LCR) to assemble an expression system capable of high-level, integration position-independent expression of heterologous genes and cDNAs in murine erythroleukaemia (MEL) cells. The cDNAs are inserted between the human beta-globin

  14. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    Science.gov (United States)

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. High yield fabrication of fluorescent nanodiamonds

    Science.gov (United States)

    Boudou, Jean-Paul; Curmi, Patrick; Jelezko, Fedor; Wrachtrup, Joerg; Aubert, Pascal; Sennour, Mohamed; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties. PMID:19451687

  16. High quantum yield III-V photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Erne, B.H.

    1995-09-01

    The morphological and electrochemical aspects of the (photo)anodic etching of the n-type 3-5 semiconductors GaP, GaAs, and InP are examined. The etched surfaces are characterized experimentally by electrochemical and other methods. Particular attention is paid to the anodic photocurrent quantum yield. The processes investigated lead to a large enhancement of the quantum yield or give a quantum yield in excess of unity, hence the title of the thesis. The quantum yield of a photoanode is determined by processes both in the bulk and at the surface of the semiconductor. The competition between charge separation and recombination in the bulk of the semiconductor determines the fraction of the photogenerated holes which reaches the surface, and surface processes determine the fraction of those holes which contributes to current in the external circuit. Chapter 2 examines the increased effective absorption due to surface roughness and the increase in the diffusion length of holes associated with photocurrent flow, two effects which can cause charge separation to compete more effectively with bulk recombination. Chapter 3 considers the influence of the wavelength of the light used for photoanodic etching on the morphology. Chapter 4 demonstrates that porous etching may lead to an enormous enhancement of the photoresponse. The influence of surface (electro)chemistry on the quantum yield is investigated for n-type InP electrodes by means of optoelectrical impedance spectroscopy. Even in indifferent electrolyte, InP photoanodes have remarkably high quantum yields in excess of unity, due to electron injection by dissolution intermediates (Chapter 5). Interaction with a chemical etchant can increase the quantum yield even further (Chapter 6). The main conclusions of the thesis are summarized in Chapter 7. 52 figs., 180 refs., 1 appendix

  17. Methods for high yield production of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  18. Establishing a high throughput method for medium optimization – a case study using Streptomyces lividans as host for production of heterologous protein

    DEFF Research Database (Denmark)

    Rattleff, Stig; Thykaer, Jette; Lantz, Anna Eliasson

    2012-01-01

    composition can have great effect on the cellular performance, in particular on heterologous protein production. It is a parameter that can be adjusted regardless of GMO concerns or knowledge of genomic sequence. Optimizing medium composition can be labor intensive opening up for introducing automation......Actinomycetes are widely known for production of antibiotics, though as hosts for heterologous protein expression they show great potential which should be further developed. Streptomyces lividans is especially interesting due to very low endogenous protease activity and the capability to secrete....... In this study a potential high throughput method was tested for optimizing medium composition, with respect to nitrogen, to improve heterologous protein production in S. lividans, using mRFP as a model protein. A large number of nitrogen sources were tested in an initial, highly automated, screen. Subsequently...

  19. High-Yield Functional Molecular Electronic Devices.

    Science.gov (United States)

    Jeong, Hyunhak; Kim, Dongku; Xiang, Dong; Lee, Takhee

    2017-07-25

    An ultimate goal of molecular electronics, which seeks to incorporate molecular components into electronic circuit units, is to generate functional molecular electronic devices using individual or ensemble molecules to fulfill the increasing technical demands of the miniaturization of traditional silicon-based electronics. This review article presents a summary of recent efforts to pursue this ultimate aim, covering the development of reliable device platforms for high-yield ensemble molecular junctions and their utilization in functional molecular electronic devices, in which distinctive electronic functionalities are observed due to the functional molecules. In addition, other aspects pertaining to the practical application of molecular devices such as manufacturing compatibility with existing complementary metal-oxide-semiconductor technology, their integration, and flexible device applications are also discussed. These advances may contribute to a deeper understanding of charge transport characteristics through functional molecular junctions and provide a desirable roadmap for future practical molecular electronics applications.

  20. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter

    Directory of Open Access Journals (Sweden)

    D’Urzo Nunzia

    2013-02-01

    Full Text Available Abstract Background In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. Results Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA. The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds than those obtained using the available plasmids based on the P2 constitutive promoter. Conclusion Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio and B. megaterium (from Mobitec, we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus.

  1. Combining high biodiversity with high yields in tropical agroforests

    Science.gov (United States)

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H.; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-01-01

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland. PMID:21536873

  2. A simple, highly efficient method for heterologous expression in mammalian primary neurons using cationic lipid-mediated mRNA transfection

    Directory of Open Access Journals (Sweden)

    Damian J Williams

    2010-11-01

    Full Text Available Expression of heterologous proteins in adult mammalian neurons is a valuable technique for the study of neuronal function. The postmitotic nature of mature neurons prevents effective DNA transfection using simple, cationic lipid-based methods. Adequate heterologous protein expression is often only achievable using complex techniques that, in many cases, are associated with substantial toxicity. Here, a simple method for high efficiency transfection of mammalian primary neurons using in vitro-transcribed mRNA and the cationic lipid transfection reagent Lipofectamine 2000 is described. Optimal transfection conditions were established in adult mouse dissociated dorsal root ganglion (DRG neurons using a 96-well based luciferase activity assay. Using these conditions, a transfection efficiency of 25% was achieved in DRG neurons transfected with EGFP mRNA. High transfection efficiencies were also obtained in dissociated rat superior cervical ganglion (SCG neurons and mouse cortical and hippocampal cultures. Endogenous Ca2+ currents in EGFP mRNA-transfected SCG neurons were not significantly different from untransfected neurons, which suggested that this technique is well suited for heterologous expression in patch clamp recording experiments. Functional expression of a cannabinoid receptor (CB1R, a G protein inwardly-rectifying K+ channel (GIRK4 and a dominant-negative G protein α-subunit mutant (GoA G203T indicate that the levels of heterologous protein expression attainable using mRNA transfection are suitable for most functional protein studies. This study demonstrates that mRNA transfection is a straightforward and effective method for heterologous expression in neurons and is likely to have many applications in neuroscience research.

  3. Combining high biodiversity with high yields in tropical agroforests

    OpenAIRE

    Clough, Y; Barkmann, J.; Juhrbandt, J.; Kessler, M.; Wanger, T.C.; Anshary, A.; Buchori, D.; Cicuzza, D.; Darras, K; Putra, D. D.; S. Erasmi; Pitopang, R.; Schmidt, C; Schulze, C H; Seidel, D

    2011-01-01

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substan...

  4. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  5. High expression of heterologous proteins by Saccharomyces cerevisiae grown on ethanol

    NARCIS (Netherlands)

    Laar, Antonius Martinus Johannes van de

    2006-01-01

    The production of recombinant proteins is of great importance for industrial applications in fields such as pharmaceutical ingredients and industrial enzymes. One of these products are camelid antibody fragments, produced by Saccharomyces cerevisiae in high cell density fed batch fermentation

  6. The heterologous expression strategies of antimicrobial peptides in microbial systems.

    Science.gov (United States)

    Deng, Ting; Ge, Haoran; He, Huahua; Liu, Yao; Zhai, Chao; Feng, Liang; Yi, Li

    2017-12-01

    Antimicrobial peptides (AMPs) consist of molecules acting on the defense systems of numerous organisms toward tumor and multiple pathogens, such as bacteria, fungi, viruses, and parasites. Compared to traditional antibiotics, AMPs are more stable and have lower propensity for developing resistance through functioning in the innate immune system, thus having important applications in the fields of medicine, food and so on. However, despite of their high economic values, the low yield and the cumbersome extraction process in AMPs production are problems that limit their industrial application and scientific research. To conquer these obstacles, optimized heterologous expression technologies were developed that could provide effective ways to increase the yield of AMPs. In this review, the research progress on heterologous expression of AMPs using Escherichia coli, Bacillus subtilis, Pichia pastoris and Saccharomyces cerevisiae as host cells was mainly summarized, which might guide the expression strategies of AMPs in these cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation.

    Science.gov (United States)

    Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2011-03-07

    The design and synthesis of functional chemical derivatives of small organic molecules is usually a key step for the intricate production of a variety of bioconjugates. In this respect, the derivatization site at which the spacer arm is introduced in immunizing conjugates constitutes a highly critical parameter for the generation of high-affinity and selective antibodies. However, due to the usual complexity of the required synthetic procedures, the appropriate comparison of alternative tethering positions has often been neglected. In the present study, meticulous strategies were followed to prepare synthetic derivatives of pyraclostrobin with the same linkers located at diverse rationally-chosen sites. Activity appraisal of antibodies and bioconjugates was carried out by bidimensional competitive direct and indirect immunoassays, and a superior performance of two of the three synthesized haptens was found. Finally, a detailed analysis of the conformations of the target molecule and the synthesized haptens in aqueous solution was done using computer assisted molecular modeling techniques. This study suggested that the lower titers and affinities of one set of antibodies are most probably due to conformational effects of the spacer arm in the immunizing bioconjugate.

  8. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1.

    Science.gov (United States)

    Quyen, Dinh Thi; Giang Le, Thi Thu; Nguyen, Thi Thao; Oh, Tae-Kwang; Lee, Jung-Kee

    2005-01-01

    The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222

  9. Willow yield is highly dependent on clone and site

    DEFF Research Database (Denmark)

    Ugilt Larsen, Søren; Jørgensen, Uffe; Lærke, Poul Erik

    2014-01-01

    , differing considerably in soil type, climatic conditions and management. Compared to the best clone, the yield was up to 36 % lower for other clones across sites and up to 51 % lower within sites. Tordis was superior to other clones with dry matter yields between 5.2 and 10.2 Mg ha−1 year−1 during the first...... to the best site, yield level was up to 51 % lower on other sites across all clones, probably due to combined effects of differences in soil type, climate and management. Thus, willow yield depends both on the use of high-yielding clones and on the combined site effects of soil, climate, and management.......Use of high-yielding genotypes is one of the means to achieve high yield and profitability in willow (Salix spp.) short rotation coppice. This study investigated the performance of eight willow clones (Inger, Klara, Linnea, Resolution, Stina, Terra Nova, Tora, Tordis) on five Danish sites...

  10. Methanol-inducible promoter of thermotolerant methylotrophic yeast Ogataea thermomethanolica BCC16875 potential for production of heterologous protein at high temperatures.

    Science.gov (United States)

    Promdonkoy, Peerada; Tirasophon, Witoon; Roongsawang, Niran; Eurwilaichitr, Lily; Tanapongpipat, Sutipa

    2014-08-01

    Methanol-utilizing metabolism is generally found in methylotrophic yeasts. Several potential promoters regulating enzymes in this pathway have been extensively studied, especially alcohol oxidase. Here, we characterized the alcohol oxidase gene promoter from thermotolerant Ogataea thermomethanolica (OthAOX). This promoter can be induced by methanol, and was shown to regulate expression of phytase up to 45 °C. The pattern of heterologous phytase N-glycosylation depends on the induction temperature. Unlike the AOX promoter from Pichia pastoris, this OthAOX initially turns on the expression of the heterologous protein at the de-repression stage in the presence of glycerol. Full induction of protein is observed when methanol is present. With this methanol-inducible promoter, target protein can be initially produced prior to the induction phase, which would help shorten the time for protein production. Being able to drive protein expression at various temperatures prompts this newly identified AOX promoter to be potential tool for heterologous protein production in high temperature conditions.

  11. High yield DNA fragmentation using cyclical hydrodynamic shearing

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Spang, Peter; Roeser, Tina; Nieto, Benjamin; Guasch, Francesc; Corbera, Antoni Homs; van den Berg, Albert; Carlen, Edwin

    2013-01-01

    We report a new DNA fragmentation technique that significantly simplifies conventional hydrodynamic shearing fragmentation by eliminating the need for sample recirculation while maintaining high fragmentation yield and low fragment length variation, and therefore, reduces instrument complexity and

  12. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Directory of Open Access Journals (Sweden)

    Charles Nfon

    Full Text Available There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI. In addition, heterologous cell mediated immunity (CMI was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  13. [Study on High-yield Cultivation Measures for Arctii Fructus].

    Science.gov (United States)

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  14. HETEROLOGOUS IMMUNITY BETWEEN VIRUSES

    Science.gov (United States)

    Welsh, Raymond M.; Che, Jenny; Brehm, Michael A.; Selin, Liisa K.

    2010-01-01

    Summary Immune memory responses to previously encountered pathogens can sometimes alter the immune response to and the course of infection of an unrelated pathogen by a process known as heterologous immunity. This response can lead to enhanced or diminished protective immunity and altered immunopathology. Here we discuss the nature of T-cell cross-reactivity and describe matrices of epitopes from different viruses eliciting cross-reactive CD8+ T-cell responses. We examine the parameters of heterologous immunity mediated by these cross-reactive T cells during viral infections in mice and humans. We show that heterologous immunity can disrupt T-cell memory pools, alter the complexity of the T-cell repertoire, change patterns of T-cell immunodominance, lead to the selection of viral epitope-escape variants, alter the pathogenesis of viral infections, and, by virtue of the private specificity of T-cell repertoires within individuals, contribute to dramatic variations in viral disease. We propose that heterologous immunity is an important factor in resistance to and variations of human viral infections and that issues of heterologous immunity should be considered in the design of vaccines. PMID:20536568

  15. High yielding synthesis of N-ethyl dehydroamino acids.

    Science.gov (United States)

    Monteiro, Luís S; Suárez, Ana S

    2012-10-01

    Recently we reported the use of a sequence of alkylation and dehydration methodologies to obtain N-ethyl-α, β-dehydroamino acid derivatives. The application of this N-alkylation procedure to several methyl esters of β,β-dibromo and β-bromo, β-substituted dehydroamino acids protected with standard amine protecting groups was subsequently reported. The corresponding N-ethyl, β-bromo dehydroamino acid derivatives were obtained in fair to high yields and some were used as substrates in Suzuki cross-coupling reactions to give N-ethyl, β,β-disubstituted dehydroalanine derivatives. Herein, we further explore N-ethylation of β-halo dehydroamino acid derivatives using triethyloxonium tetrafluoroborate as alkylating agent, but substituting N,N-diisopropylethylamine for potassium tert-butoxide as auxiliary base. In these conditions, for all β-halo dehydroamino acid derivatives, reactions were complete and the N-ethylated derivative could be isolated in high yield. This method was also applied for N-ethylation of non-halogenated dehydroamino acids. Again, with all compounds the reactions were complete and the N-ethyl dehydroamino acid derivatives could be isolated in high yields. Some of these N-ethyl dehydroamino acid methyl ester derivatives were converted in high yields to their corresponding acids and coupled to an amino acid methyl ester to give N-ethyl dehydrodipeptide derivatives in good yields. Thus, this method constitutes a general procedure for high yielding synthesis of N-ethylated dehydroamino acids, which can be further applied in peptide synthesis.

  16. Heterologous vaccine effects

    NARCIS (Netherlands)

    Saadatian-Elahi, M.; Aaby, P.; Shann, F.; Netea, M.G.; Levy, O.; Louis, J.; Picot, V.; Greenberg, M.; Warren, W.

    2016-01-01

    The heterologous or non-specific effects (NSEs) of vaccines, at times defined as "off-target effects" suggest that they can affect the immune response to organisms other than their pathogen-specific intended purpose. These NSEs have been the subject of clinical, immunological and epidemiological

  17. Executive Summary High-Yield Scenario Workshop Series Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Park Ovard; Thomas H. Ulrich; David J. Muth Jr.; J. Richard Hess; Steven Thomas; Bryce Stokes

    2009-12-01

    To get a collective sense of the impact of research and development (R&D) on biomass resource availability, and to determine the feasibility that yields higher than baseline assumptions used for past assessments could be achieved to support U.S. energy independence, an alternate “High-Yield Scenario” (HYS) concept was presented to industry experts at a series of workshops held in December 2009. The workshops explored future production of corn/agricultural crop residues, herbaceous energy crops (HECs), and woody energy crops (WECs). This executive summary reports the findings of that workshop.

  18. Natural and Heterologous Production of Bacteriocins

    Science.gov (United States)

    Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, and their use as natural and nontoxic food preservatives has been the source of considerable interest for the research community. In addition, bacteriocins have been investigated for their potential use in human and veterinary applications and in the animal production field. In the native bacterial strain, most bacteriocins are synthesized as biologically inactive precursors, with N-terminal extensions, that are cleaved concomitantly during export of the bacteriocin by dedicated ABC transporters, or the general secretory pathway (GSP) or Sec-dependent pathway. However, a few bacteriocins are synthesized without an N-terminal extension, and others are circularized through a head-to-tail peptide bond, complicating the elucidation of their processing and transport across the cytoplasmic membrane. The high cost of synthetic bacteriocin synthesis and their low yields from many natural producers recommends the exploration of recombinant microbial systems for the heterologous production of bacteriocins. Other advantages of such systems include production of bacteriocins in safer hosts, increased bacteriocin production, control of bacteriocin gene expression, production of food ingredients with antimicrobial activity, construction of multibacteriocinogenic strains with a wider antagonistic spectrum, a better adaptation of the selected hosts to food environments, and providing antagonistic properties to lactic acid bacteria (LAB) used as starter, protective, or probiotic cultures. The recombinant production of bacteriocins mostly relies on the use of expression vectors that replicate in Gram-negative bacteria, Gram-positive bacteria, and yeasts, whereas the production of bacteriocins in heterologous LAB hosts may be essentially based on the expression of native biosynthetic genes, by exchanging or replacing leader peptides and/or dedicated processing and secretion systems (ABC transporters

  19. Development of high-yield influenza A virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Nidom, Chairul A; Ghedin, Elodie; Macken, Catherine A; Fitch, Adam; Imai, Masaki; Maher, Eileen A; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-09-02

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin-Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development.

  20. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield

    Science.gov (United States)

    Yang, Peng; Liu, Wenjing; Cheng, Xuelian; Wang, Jing; Qi, Qingsheng

    2016-01-01

    ABSTRACT 5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production. Many engineered metabolic pathways have been constructed; however, the production yields are still low. In this study, several 5-aminolevulinic acid synthases (ALASs) from different sources were evaluated and compared with respect to their ALA production capacities in an engineered Corynebacterium glutamicum CgS1 strain that can accumulate succinyl-coenzyme A (CoA). A codon-optimized ALAS from Rhodobacter capsulatus SB1003 displayed the best potential. Recombinant strain CgS1/pEC-SB produced 7.6 g/liter ALA using a mineral salt medium in a fed-batch fermentation mode. Employing two-stage fermentation, 12.46 g/liter ALA was produced within 17 h, with a productivity of 0.73 g/liter/h, in recombinant C. glutamicum. Through overexpression of the heterologous nonspecific ALA exporter RhtA from Escherichia coli, the titer was further increased to 14.7 g/liter. This indicated that strain CgS1/pEC-SB-rhtA holds attractive industrial application potential for the future. IMPORTANCE In this study, a two-stage fermentation strategy was used for production of the value-added nonprotein amino acid 5-aminolevulinic acid from glucose and glycine in a generally recognized as safe (GRAS) host, Corynebacterium glutamicum. The ALA titer represented the highest in the literature, to our knowledge. This high production capacity, combined with the potential easy downstream processes, made the recombinant strain an attractive candidate for industrial use in the future. PMID:26921424

  1. Development of high-yield influenza B virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  2. High-yield secretion of multiple client proteins in Aspergillus.

    Science.gov (United States)

    Segato, Fernando; Damásio, André R L; Gonçalves, Thiago A; de Lucas, Rosymar C; Squina, Fabio M; Decker, Stephen R; Prade, Rolf A

    2012-07-15

    Production of pure and high-yield client proteins is an important technology that addresses the need for industrial applications of enzymes as well as scientific experiments in protein chemistry and crystallization. Fungi are utilized in industrial protein production because of their ability to secrete large quantities of proteins. In this study, we engineered a high-expression-secretion vector, pEXPYR that directs proteins towards the extracellular medium in two Aspergillii host strains, examine the effect of maltose-induced over-expression and protein secretion as well as time and pH-dependent protein stability in the medium. We describe five client proteins representing a core set of hemicellulose degrading enzymes that accumulated up to 50-100 mg/L of protein. Using a recyclable genetic marker that allows serial insertion of multiple genes, simultaneous hyper-secretion of three client proteins in a single host strain was accomplished. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. High-Yield Secretion of Multiple Client Proteins in Aspergillus

    Energy Technology Data Exchange (ETDEWEB)

    Segato, F.; Damasio, A. R. L.; Goncalves, T. A.; de Lucas, R. C.; Squina, F. M.; Decker, S. R.; Prade, R. A.

    2012-07-15

    Production of pure and high-yield client proteins is an important technology that addresses the need for industrial applications of enzymes as well as scientific experiments in protein chemistry and crystallization. Fungi are utilized in industrial protein production because of their ability to secrete large quantities of proteins. In this study, we engineered a high-expression-secretion vector, pEXPYR that directs proteins towards the extracellular medium in two Aspergillii host strains, examine the effect of maltose-induced over-expression and protein secretion as well as time and pH-dependent protein stability in the medium. We describe five client proteins representing a core set of hemicellulose degrading enzymes that accumulated up to 50-100 mg/L of protein. Using a recyclable genetic marker that allows serial insertion of multiple genes, simultaneous hyper-secretion of three client proteins in a single host strain was accomplished.

  4. High yield production of extracellular recombinant levansucrase by Bacillus megaterium.

    Science.gov (United States)

    Korneli, Claudia; Biedendieck, Rebekka; David, Florian; Jahn, Dieter; Wittmann, Christoph

    2013-04-01

    In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH 6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg L(-1)) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U mL(-1) on fructose and 17.2 U mL(-1) on glycerol). This was further increased in high cell density fed-batch processes up to 55 U mL(-1), reflecting a levansucrase concentration of 0.52 g L(-1). This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.

  5. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  6. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  7. A high throughput DNA extraction method with high yield and quality.

    Science.gov (United States)

    Xin, Zhanguo; Chen, Junping

    2012-07-28

    Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome), and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L.) Moench] leaves and dry seeds with high yield, high quality, and affordable cost. We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  8. Film quantum yields of EUV& ultra-high PAG photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  9. Maximize rhamnolipid production with low foaming and high yield.

    Science.gov (United States)

    Sodagari, Maysam; Invally, Krutika; Ju, Lu-Kwang

    2018-03-01

    Rhamnolipids are well-known microbial surfactants with many potential applications. Their production cost, however, remains high due to the severe foaming tendency in aerobic fermentation and the relatively low productivity and yield. In this study, we assessed the boundaries set by these constraints after optimization of basic parameters such as dissolved oxygen concentration (DO), pH and carbon sources. DO 10% and pH 5.5-5.7 were found optimal; cell growth and/or rhamnolipid production were slower at lower DO (5%) or pH (5.0) while foaming became hard to control at higher DO (30%) or pH (6.0 and 6.5). Although the Pseudomonas aeruginosa strain used was selected for its high rhamnolipid production from glycerol as substrate, soybean oil was still found to be a better substrate that increased specific rhamnolipid productivity to 25.8mg/g cells-h from the glycerol-supported maximum of 8.9mg/g cells-h. In addition, the foam volume was approximately halved by using soybean oil instead of glycerol as substrate. Analysis by liquid chromatography coupled with mass spectrometry revealed that rhamnolipid compositions from the two carbon sources were also very different, with primarily (82%) monorhamnolipids from soybean oil and more (64%) dirhamnolipids from glycerol. The optimized fermentation produced 42g/l rhamnolipids at a yield of approximately 47% and a volumetric productivity of 220mg/l-h. These values are among the highest reported. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Diagnostics of Shiva Nova produced high yield thermonuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.; Banner, D.L.; Boyle, M.J.; Campbell, E.M.; Coleman, L.W.; Koppel, L.N.; Kornblum, H.N. Jr.; Rienecker, F.; Severyn, J.R.; Slivinsky, V.W.

    1978-01-01

    Experiments with the Shiva Nova laser facility which produce yield levels of scientific breakeven and above will result in neutron, x-ray and particle fluxes which will require specific attention to the survivability of diagnostic instrumentation. These yield levels will also allow the utilization of new diagnotics techniques which can provide detailed information on the state of the imploded fuel and pusher shells.

  11. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.

    Science.gov (United States)

    Beneyton, Thomas; Thomas, Stéphane; Griffiths, Andrew D; Nicaud, Jean-Marc; Drevelle, Antoine; Rossignol, Tristan

    2017-01-31

    Droplet-based microfluidics is becoming an increasingly attractive alternative to microtiter plate techniques for enzymatic high-throughput screening (HTS), especially for exploring large diversities with lower time and cost footprint. In this case, the assayed enzyme has to be accessible to the substrate within the water-in-oil droplet by being ideally extracellular or displayed at the cell surface. However, most of the enzymes screened to date are expressed within the cytoplasm of Escherichia coli cells, which means that a lysis step must take place inside the droplets for enzyme activity to be assayed. Here, we take advantage of the excellent secretion abilities of the yeast Yarrowia lipolytica to describe a highly efficient expression system particularly suitable for the droplet-based microfluidic HTS. Five hydrolytic genes from Aspergillus niger genome were chosen and the corresponding five Yarrowia lipolytica producing strains were constructed. Each enzyme (endo-β-1,4-xylanase B and C; 1,4-β-cellobiohydrolase A; endoglucanase A; aspartic protease) was successfully overexpressed and secreted in an active form in the crude supernatant. A droplet-based microfluidic HTS system was developed to (a) encapsulate single yeast cells; (b) grow yeast in droplets; (c) inject the relevant enzymatic substrate; (d) incubate droplets on chip; (e) detect enzymatic activity; and (f) sort droplets based on enzymatic activity. Combining this integrated microfluidic platform with gene expression in Y. lipolytica results in remarkably low variability in the enzymatic activity at the single cell level within a given monoclonal population (Yarrowia lipolytica was used to express fungal genes encoding hydrolytic enzymes of interest. We developed a successful droplet-based microfluidic platform for the high-throughput screening (10(5) strains/h) of Y. lipolytica based on enzyme secretion and activity. This approach provides highly efficient tools for the HTS of recombinant enzymatic

  12. Systems metabolic engineering of Escherichia coli for the heterologous production of high value molecules-a veteran at new shores.

    Science.gov (United States)

    Becker, Judith; Wittmann, Christoph

    2016-12-01

    For more than fifty years, Escherichia coli has represented a remarkable success story in industrial biotechnology. Traditionally known as a producer of l-amino acids, E. coli has also entered the precious market of high-value molecules and is becoming a flexible, efficient production platform for various therapeutics, pre-biotics, nutraceuticals and pigments. This tremendous progress is enabled by systems metabolic engineering concepts that integrate systems biology and synthetic biology into the design and engineering of powerful E. coli cell factories. Copyright © 2016. Published by Elsevier Ltd.

  13. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus

    Directory of Open Access Journals (Sweden)

    Anna Stachyra

    2014-01-01

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause huge economic losses in the poultry industry because of high mortality rate in infected flocks and trade restrictions. Protective antibodies, directed mainly against hemagglutinin (HA, are the primary means of protection against influenza outbreaks. A recombinant DNA vaccine based on the sequence of H5 HA from the H5N1/A/swan/Poland/305-135V08/2006 strain of HPAIV was prepared. Sequence manipulation included deletion of the proteolytic cleavage site to improve protein stability, codon usage optimization to improve translation and stability of RNA in host cells, and cloning into a commercially available vector to enable expression in animal cells. Naked plasmid DNA was complexed with a liposomal carrier and the immunization followed the prime–boost strategy. The immunogenic potential of the DNA vaccine was first proved in broilers in near-to-field conditions resembling a commercial farm. Next, the protective activity of the vaccine was confirmed in SPF layer-type chickens. Experimental infections (challenge experiments indicated that 100% of vaccinated chickens were protected against H5N1 of the same clade and that 70% of them were protected against H5N1 influenza virus of a different clade. Moreover, the DNA vaccine significantly limited (or even eliminated transmission of the virus to contact control chickens. Two intramuscular doses of DNA vaccine encoding H5 HA induced a strong protective response in immunized chicken. The effective protection lasted for a minimum 8 weeks after the second dose of the vaccine and was not limited to the homologous H5N1 virus. In addition, the vaccine reduced shedding of the virus.

  14. Ovarian cysts in high-yielding dairy cows.

    Science.gov (United States)

    Braw-Tal, R; Pen, S; Roth, Z

    2009-09-15

    We examined the hormonal and morphologic changes associated with ovarian cyst formation in high-yielding dairy cows. Follicle fluid was aspirated from 90 cysts and 15 preovulatory and 18 subordinate follicles and used for hormonal determination. Pieces of cystic wall were subjected to morphologic and immunohistochemical evaluation. Cysts were characterized by low concentrations of insulin, insulin-like growth factor-I (IGF-I), and glucose and high activity of IGF binding proteins (IGFBPs). Insulin and IGF-I levels were (mean+/-SEM) 205+/-22 pg/mL and 146+/-42 ng/mL in preovulatory follicles and 3+/-1 pg/mL and 61+/-6 ng/mL in cysts, respectively (Pcysts than in preovulatory follicles. Cysts were classified into three types according to their estradiol-to-progesterone (E/P) ratio. Type 1 cysts (n=23) exhibited the highest E/P ratio (10.8+/-2.3), partial loss of granulosa cells, and severe morphologic changes in the theca interna. Expression of P(450) side-chain cleavage and P(450) 17 alpha-hydroxylase was noted in theca cells and expression of inhibin-alpha in granulosa cells. Type 2 cysts (n=35) had a low E/P ratio (0.07+/-0.02), and patches of luteal-like tissue in the cystic wall. Type 3 cysts (n=32) had an E/P ratio of 0.91+/-0.17, and no recognizable granulosa or theca cells. In summary, intrafollicular steroid levels as expressed by E/P ratio, together with IGF-I and insulin levels and morphologic changes in the follicular wall, may serve as accurate cyst-classification parameters. Because IGF-I and/or insulin play an essential role in the final stage of follicle development, it can be speculated that abnormal levels of these metabolic hormones might lead to follicle dysfunction, resulting in follicular regression or cyst formation.

  15. Nutritional status of high yielding crossbred cow around parturition

    Directory of Open Access Journals (Sweden)

    Mohammad Yousuf

    2016-03-01

    Materials and methods: Nutritional status of cows around the peri-parturient period was investigated for six months in dairy farm. Seven to eight months' pregnant cows were selected for this study. Blood samples from 24 randomly selected cows were collected at stage-1, -2 and -3. The serum was stored at -20C until analyzing glucose, total protein (TP, albumin (Alb, triglycerides (Tg, cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, calcium (Ca, magnesium (Mg and phosphorus (P. Results: An increasing trend of glucose level was evidenced (P=0.07 during stage-1. Instead, higher levels of TP were found during stage-3 as compared to the stage-1 and -2. The Alb levels differed significantly (P<0.01 among different stages. A significantly increased (P<0.01 cholesterol, Tg, and HDL were found after parturition (stage-2 and -3 than before parturition (stage-1. LDL was significantly (P=0.02 increased during stage-2 and -3. A significantly higher level of Ca (P<0.01, Mg (P<0.01 and P (P=0.03 were present during stage-1. Glucose, TP, cholesterol and Tg were significantly higher (P<0.01 in cows two months after parturition, while Alb was found to be the highest (P<0.01 in cows immediately after parturition. An increasing trend of LDL (P=0.07 and HDL (P=0.07 were found in the cows two months after parturition. However, Ca levels were significantly (P=0.04 higher in cows two months after parturition. Conclusion: The results indicate that there is alteration of biochemical levels among the study population at three different stages, and these data may be helpful in using the necessary nutrients to the the high yielding cows around their parturition. [J Adv Vet Anim Res 2016; 3(1.000: 68-74

  16. The Radioactive Waste Management course: 14 High-yield editions

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A.; Gallego, E.; Marco, M. L.; Falcon, S.

    2003-07-01

    The doctorate course on Radioactive Waste Management was initiated in February 1988, by initiative of the Chair of Nuclear Technology, under the sponsoring of the national radioactive waste management company (ENRESA), in a fruitful collaboration between the Institute Artigas of the Technical School of Industrial Engineering and the Institute of Formation on Energy of the research centre CIEMAT. The course is also offered as a post-graduate through both institutes. After completion of fourteen consecutive editions in 2002, the course constituted a landmark in the field of nuclear education in Spain. The last edition offered, along 35 lessons published in two books, the general aspects of generation, treatment and conditioning of radioactive wastes, the basic Safety and Radiological Protection criteria, the detailed technical questions of the management of both low-intermediate.activity and the high-activity level, together with the wastes generated during decommissioning and dismantling of installations, as well as the general and institutional aspects. Experts in each field, belonging either to ENRESA, CIEMAT, the Nuclear Safety Council, the UPM and the industry, present such wide programme. A technical visit to the low and intermediate radioactive waste repository of El Cabril was also offered to the participants as part of the course, as in previous years the visit to the dismantling workers of Vandellos I NPP. More than 500 engineers and graduates in different science branches have participated in the course along 14 years, with both students and professionals belonging to ENRESA, the Nuclear Safety Council, CIEMAT and other research centers, hospitals, civil protection at different levels, service and engineering companies related with the radioactive waste management. Altogether, it is possible to say, as the title is expressed, that the course has given in these 14 years a high-production yield. (Author)

  17. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli

    Science.gov (United States)

    George, Kevin W.; Thompson, Mitchell G.; Kang, Aram; Baidoo, Edward; Wang, George; Chan, Leanne Jade G.; Adams, Paul D.; Petzold, Christopher J.; Keasling, Jay D.; Soon Lee, Taek

    2015-01-01

    Branched five carbon (C5) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulation by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Finally, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol. PMID:26052683

  18. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  19. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  20. Heterologous expression of the msp2 gene from Marasmius scorodonius.

    Science.gov (United States)

    Zelena, Kateryna; Zorn, Holger; Nimtz, Manfred; Berger, Ralf Günter

    2009-05-01

    For the heterologous expression of the msp2 gene from the edible mushroom Marasmius scorodonius in Escherichia coli the cDNA encoding the extracellular Msp2 peroxidase was cloned into the pBAD III expression plasmid. Expression of the protein with or without signal peptide was investigated in E. coli strains TOP10 and LMG194. Different PCR products were amplified for expression of the native target protein or a protein with a signal peptide. Omitting the native stop codon and adding six His-residues resulted in a fusion protein amenable to immune detection and purification by immobilised metal affinity chromatography. In E. coli the recombinant protein was produced in high yield as insoluble inclusion bodies. The influence of different parameters on MsP2 refolding was investigated. Active enzyme was obtained by glutathione-mediated oxidation in a medium containing urea, Ca(2+), and hemin.

  1. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  2. CG FARRAPO: a sudangrass cultivar with high biomass and grain yields

    Directory of Open Access Journals (Sweden)

    Emilio Ghisleni Arenhardt

    2016-07-01

    Full Text Available The new sudangrass cultivar [Sorghum sudanense (Piper Stapf.] was developed by the method of selection of individual plants with progeny testing. The most important traits are high biomass yield with high grain yield.

  3. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China

    NARCIS (Netherlands)

    Jing, Q.; Bouman, B.A.M.; Hengsdijk, H.; Keulen, van H.; Cao, W.

    2007-01-01

    In Jiangsu province, Southeast China, high irrigated rice yields (6-8000 kg ha(-1)) are supported by high nitrogen (N) fertilizer inputs (260-300 kg N ha(-1)) and low fertilizer N use efficiencies (recoveries of 30-35%). Improvement of fertilizer N use efficiency can increase farmers' profitability

  4. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  5. Evaluation of high yielding mutants of Hordeumvulgare cultivar Izgrev

    Directory of Open Access Journals (Sweden)

    B. Dyulgerova

    2017-06-01

    Full Text Available Abstract. Seeds of Hordeum vulgare L. cultivar Izgrev were treated with different concentrations of sodium azide to induce genetic variability for the selection of genotypes with improved traits. After passing through different stages of selection, 18 promising mutants were selected for further studies. Eighteen mutants and their parent and national standard cultivar Veslets were evaluated in Complete Block Design with four replications. The research was conducted in 2013 – 2014 and 2014 – 2015 growing seasons in the experimental field of the Institute of Agriculture Karnobat, Southeastern Bulgaria. The characters studied included days to heading, plant height, lodging, peduncle length, spike length, awn length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight and grain yield. Wide variation among mutant lines was observed for different traits. Mutant lines M4/16 and M 3/14 produced significantly greater grain yield than the parent and standard cultivar. Positive changes in lodging tolerance, grain number per spike, grain weight per spike, 1000 grains weightwere also observed. This study showed positive effects in the use of mutation in inducing improvement for grain yield and some yield related traits.

  6. combining high seed number and weight to improve seed yield ...

    African Journals Online (AJOL)

    ACSS

    ABSTRACT. Increasing seed size and seed weight is an important trait for trade, yield component and adaptation of chickpea. (Cicer arietinum). ..... between photosynthesis and seed number at phloem isolated nodes in soybean. Crop. Science39: 1769-1775. Carlson, J.B. 1973. Morphology. pp. 17-95. In: Wilcox, J.R. (Ed.).

  7. Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species

    Directory of Open Access Journals (Sweden)

    Townsend Henrik J

    2005-11-01

    Full Text Available Abstract High-density oligonucleotide (oligo arrays are a powerful tool for transcript profiling. Arrays based on GeneChip® technology are amongst the most widely used, although GeneChip® arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip® array is available, using a GeneChip® array designed for Arabidopsis thaliana (L. Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip® array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip® array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available http://affymetrix.arabidopsis.info/xspecies/ and may be used to facilitate transcriptomic analyses of a wide range of plant and animal

  8. Sustainable heterologous production of terpene hydrocarbons in cyanobacteria.

    Science.gov (United States)

    Formighieri, Cinzia; Melis, Anastasios

    2016-12-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (k cat = 4 s-1 or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in Synechocystis for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO2 to terpene hydrocarbons conversion process.

  9. Differences in rumen fermentation characteristics between low-yield and high-yield dairy cows in early lactation.

    Science.gov (United States)

    Sofyan, Ahmad; Mitsumori, Makoto; Ohmori, Hideyuki; Uyeno, Yutaka; Hasunuma, Toshiya; Akiyama, Kiyoshi; Yamamoto, Hiroshi; Yokokawa, Hiroaki; Yamaguchi, Tsuneko; Shinkai, Takumi; Hirako, Makoto; Kushibiki, Shiro

    2017-07-01

    Relationship between rumen fermentation parameters, blood biochemical profiles and milk production traits in different yielding dairy cows during early lactation was investigated. Twelve dairy cows were divided into two groups based on their milk yield, that is low-yield (LY) and high-yield (HY) groups. Rumen fluid and blood were collected at 3 weeks prepartum and 4, 8 and 12 weeks postpartum. Results showed that proportions of acetate, propionate to total short chain fatty acids and acetate : propionate ratio were changed (P cholesterol, beta-hydroxybutyric acid (BHBA) and glutamic oxaloacetic transaminase in the HY group were higher (P milk yield and milk compositions were differently clustered between groups. These parameters showed similar direction with dry matter intake in the HY group and adverse direction in the LY group. Linear regression analysis indicated that butyrate was positively correlated with BHBA (P cows in the HY group seem to accommodate appropriately to negative energy balance in early lactation through rumen fermentation. © 2016 Japanese Society of Animal Science.

  10. Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought.

    Science.gov (United States)

    Shamsudin, Noraziyah Abd Aziz; Swamy, B P Mallikarjuna; Ratnam, Wickneswari; Sta Cruz, Ma Teressa; Sandhu, Nitika; Raman, Anitha K; Kumar, Arvind

    2016-12-01

    With the objective of improving the grain yield (GY) of the Malaysian high quality rice cultivar MRQ74 under reproductive stage drought stress (RS), three drought yield QTLs, viz. qDTY 2.2, qDTY 3.1 , and qDTY 12.1 were pyramided by marker assisted breeding (MAB). Foreground selection using QTL specific markers, recombinant selection using flanking markers, and background selections were performed in every generation. BC1F3 derived pyramided lines (PLs) with different combinations of qDTY 2.2, qDTY 3.1 , and qDTY 12.1 were evaluated under both RS and non-stress (NS) during the dry season (DS) of 2013 and 2014 at IRRI. The GY reductions in RS trials compared to NS trials ranged from 79 to 99 %. Plant height (PH) was reduced and days to flowering (DTF) was delayed under RS. Eleven BC1F5 MRQ74 PLs with yield advantages of 1009 to 3473 kg ha(-1) under RS and with yields equivalent to MRQ74 under NS trials were identified as promising drought tolerance PLs. Five best PLs, IR 98010-126-708-1-4, IR 98010-126-708-1-3, IR 98010-126-708-1-5, IR 99616-44-94-1-1, and IR 99616-44-94-1-2 with a yield advantage of more than 1000 kg ha(-1) under RS and with yield potential equivalent to that of MRQ74 under NS were selected. The effect of three drought grain yield QTLs under RS in MRQ74 was validated. Under NS, PLs with two qDTY combinations (qDTY 2.2 + qDTY 12.1 ) performed better than PLs with other qDTY combinations, indicating the presence of a positive interaction between qDTY 2.2 and qDTY 12.1 in the MRQ74 background. Drought tolerant MRQ74 PLs with a yield advantage of more than 1000 kg ha(-1) under RS were developed. Differential yield advantages of different combinations of the qDTYs indicate a differential synergistic relationship among qDTYs.

  11. Native promoter strategy for high-yielding synthesis and engineering of fungal secondary metabolites.

    Science.gov (United States)

    Kakule, Thomas B; Jadulco, Raquel C; Koch, Michael; Janso, Jeffrey E; Barrows, Louis R; Schmidt, Eric W

    2015-05-15

    Strategies are needed for the robust production of cryptic, silenced, or engineered secondary metabolites in fungi. The filamentous fungus Fusarium heterosporum natively synthesizes the polyketide equisetin at >2 g L(-1) in a controllable manner. We hypothesized that this production level was achieved by regulatory elements in the equisetin pathway, leading to the prediction that the same regulatory elements would be useful in producing other secondary metabolites. This was tested by using the native eqxS promoter and eqxR regulator in F. heterosporum, synthesizing heterologous natural products in yields of ∼1 g L(-1). As proof of concept for the practical application, we resurrected an extinct pathway from an endophytic fungus with an initial yield of >800 mg L(-1), leading to the practical synthesis of a selective antituberculosis agent. Finally, the method enabled new insights into the function of polyketide synthases in filamentous fungi. These results demonstrate a strategy for optimally employing native regulators for the robust synthesis of secondary metabolites.

  12. Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering

    DEFF Research Database (Denmark)

    Liu, Zihe; Liu, Lifang; Osterlund, Tobias

    2014-01-01

    The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae...... engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could...

  13. Frequency of cardiac arrhythmias in high and low- yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Afshin Jafari Dehkordi

    2014-06-01

    Full Text Available Electrocardiography (ECG may be used to recognize cardiac disorders. Levels of milk production may change the serum electrolytes which its imbalance has a role in cardiac arrhythmia. Fifty high yielding and fifty low yielding Holstein dairy cows were used in this study. Electrocardiography was recorded by base-apex lead and blood samples were collected from jugular vein for measurement of serum elements such as sodium, potassium, calcium, phosphorous, iron and magnesium. Cardiac dysrhythmias were detected more frequent in low yielding Holstein cows (62.00% compared to high yielding Holstein cows (46.00%. The cardiac dysrhythmias that were observed in low yielding Holstein cows included sinus arrhythmia (34.70%, wandering pacemaker (22.45 %, bradycardia (18.37%, tachycardia (10.20%, atrial premature beat (2.04%, sinoatrial block (2.04%, atrial fibrillation (8.16% and atrial tachycardia (2.04%. The cardiac dysrhythmias were observed in high yielding Holstein cows including, sinus arrhythmia (86.95% and wandering pacemaker (13.05%. Also, notched P wave was observed to be 30% and 14% in high- and low- yielding Holstein cows respectively. The serum calcium concentration of low yielding Holstein cows was significantly lower than that of high yielding Holstein cows. There was not any detectable significant difference in other serum elements between high- and low- yielding Holstein cows. Based on the result of present study, could be concluded that low serum concentration of calcium results to more frequent dysrhythmias in low yielding Holstein cows.

  14. Improved completion practices yield high productivity wells. [Louisiana Gulf Coast

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, D.A.

    1981-04-01

    In the mid-1960's, a special in-house task force was assembled in response to a number of sand ups and casing failures in Shell's production complex at the mouth of the Mississippi River. This task force developed concepts and techniques for better completions. The techniques have been modified and adjusted to specific situations, but the concepts remain the fundamental backbone of Shell's high success ratio and excellent response from completions in the shallow unconsolidated sands in the Louisiana Gulf Coast. Five major steps leading to high performance producers are identified as the following: clean fluids, adequate perforation, effective perforation cleanup, efficient gravel pack, and proper initiation of production.

  15. Effects of codon optimization on the mRNA levels of heterologous genes in filamentous fungi.

    Science.gov (United States)

    Tanaka, Mizuki; Tokuoka, Masafumi; Gomi, Katsuya

    2014-05-01

    Filamentous fungi, particularly Aspergillus species, have recently attracted attention as host organisms for recombinant protein production. Because the secretory yields of heterologous proteins are generally low compared with those of homologous proteins or proteins from closely related fungal species, several strategies to produce substantial amounts of recombinant proteins have been conducted. Codon optimization is a powerful tool for improving the production levels of heterologous proteins. Although codon optimization is generally believed to improve the translation efficiency of heterologous genes without affecting their mRNA levels, several studies have indicated that codon optimization causes an increase in the steady-state mRNA levels of heterologous genes in filamentous fungi. However, the mechanism that determines the low mRNA levels when native heterologous genes are expressed was poorly understood. We recently showed that the transcripts of heterologous genes are polyadenylated prematurely within the coding region and that the heterologous gene transcripts can be stabilized significantly by codon optimization, which is probably attributable to the prevention of premature polyadenylation in Aspergillus oryzae. In this review, we describe the detailed mechanism of premature polyadenylation and the rapid degradation of mRNA transcripts derived from heterologous genes in filamentous fungi.

  16. High school student physics research experience yields positive results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  17. High-yield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice.

    Science.gov (United States)

    Zhang, Chao; Ku, Zhiqiang; Liu, Qingwei; Wang, Xiaoli; Chen, Tan; Ye, Xiaohua; Li, Dapeng; Jin, Xia; Huang, Zhong

    2015-05-11

    Enterovirus 71 (EV71) is one of the major causative pathogens of hand, foot and mouth disease (HFMD), which is highly prevalent in the Asia-Pacific regions. Severe HFMD cases with neurological complications and even death are often associated with EV71 infections. However, no licensed EV71 vaccine is currently available. Recombinant virus-like particles (VLPs) of EV71 have been produced and shown to be a promising vaccine candidate in preclinical studies. However, the performance of current recombinant expression systems for EV71 VLP production remains unsatisfactory with regard to VLP yield and manufacturing procedure, and thus hinders further product development. In this study, we evaluated the expression of EV71 VLPs in Pichia pastoris and determined their protective efficacy in mouse models of EV71 infections. We showed that EV71 VLPs could be produced at high levels up to 4.9% of total soluble protein in transgenic P. pastoris yeast co-expressing P1 and 3CD proteins of EV71. The resulting yeast-produced VLPs potently induced neutralizing antibodies against homologous and heterologous EV71 strains in mice. More importantly, maternal immunization with VLPs protected neonatal mice in both intraperitoneal and oral challenge experiments. Collectively, these results demonstrated the success of simple, high-yield production of EV71 VLPs in transgenic P. pastoris, thus lifting the major roadblock in commercial development of VLP-based EV71 vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  19. High confinement, high yield Si3N4 waveguides for nonlinear optical application

    CERN Document Server

    Epping, Jörn P; Mateman, Richard; Leinse, Arne; Heideman, René G; van Rees, Albert; van der Slot, Peter J M; Lee, Chris J; Boller, Klaus-J

    2014-01-01

    In this paper we present a novel fabrication technique for silicon nitride (Si3N4) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si3N4. Using this technique no stress-induced cracks in the Si3N4 layer were observed resulting in a high yield of devices on the wafer. The propagation losses of the obtained waveguides were measured to be as low as 0.4 dB/cm at a wavelength of around 1550 nm.

  20. Heterologous Infection During Chagas' Disease

    Science.gov (United States)

    Sibona, G. J.; Condat, C. A.; Cossi Isasi, S.

    2007-05-01

    Human populations are often infected with more than one parasite strain. This is frequently the case with ChagasŠ disease, which is endemic to large regions of Latin America. In the present work we study the dynamics of the heterologous infection for this disease, using a model for the interaction between the trypanosoma cruzi parasite and the immune system. We find the dependence of the nature of the post-acute stage on the parameters characterizing the inoculated infectious strains.

  1. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail: pmarashi@aut.ac.ir; Fatmesari, D. Haghshenas

    2016-12-01

    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  2. Mass yield in high-energy proton-uranium collisions from a complete, microcanonical statistical decay

    Energy Technology Data Exchange (ETDEWEB)

    Abul-Magd, A.Y.; Gross, D.H.E.; Xu Shuyan; Zheng Yuming

    1986-11-01

    The mass-yield of fragments produced in the statistical decay of /sup 238/U/sup */ is compared to the yield from high energy p-U collisions. The distributions of the initial excitation energy are calculated using a Glauber approximation. The mass yield shows good agreement with the data. Intermediate-mass fragment production, the fission peak, and the 'Au-finger' show up in the calculation. No separate mechanisms producing these different features have to be invoked.

  3. Water use and grain yield in drought-tolerant corn in the Texas High Plains

    Science.gov (United States)

    Drought is an important factor limiting corn (Zea mays L.) yields in the Texas High Plains, and adoption of drought-tolerant (DT) hybrids could be a management tool under water shortage. We conducted a 3-yr field study to investigate grain yield, evapotranspiration (ET), and water use efficiency (WU...

  4. 31 CFR 356.21 - How are awards at the high yield or discount rate calculated?

    Science.gov (United States)

    2010-07-01

    ... discount rate calculated? 356.21 Section 356.21 Money and Finance: Treasury Regulations Relating to Money... high yield or discount rate calculated? (a) Awards to submitters. We generally prorate bids at the highest accepted yield or discount rate under § 356.20(a)(2) of this part. For example, if 80.15% is the...

  5. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    Salinity is one the biggest constraint to obtain crop potential yield throughout paddy fields in some part of the coastal line of rice cultivated area in Iran. In order to find resistant varieties and study the reaction of some newly released high yielding varieties to different levels of salinity of irrigation water an experiment was ...

  6. SELECTION RESPONSE FOR INCREASED GRAIN YIELD IN TWO HIGH OIL MAIZE SYNTHETICS

    Directory of Open Access Journals (Sweden)

    Made J. Mejaya

    2016-10-01

    Full Text Available Selection for increased oil level in maize showed the increase was associated with decrease in starch concentration, kernel weight, and grain yield. The study was conducted with the objectives: (1 to evaluate response to six cycles for increased grain yield in the high oil maize Alexho Elite (AE: 60-90 g kg-1 oil concentration and Ultra High Oil (UHO: 100-140 g kg-1 oil concentration using inbred tester B73; (2 to measure responses to selection for increased grain yield with changes in yield components; and (3 to determine a suitable tester. Previously the two synthetics had been selected for oil concentration. After six cycles, the six genotypes i.e. AE C0, AE C3, AE C6, UHO C0, UHO C3, and UHO C6 were testcrossed to B73, LH185, and LH202 inbreds (40 g kg-1 oil concentration to a total of 18 testcrosses. Two field experiments were used to evaluate selection in AE and UHO testcrosses. The study showed selection using inbred tester B73 in AE and UHO was effective in increasing grain yield of AE testcrosses without changing (i.e. decreasing oil and protein concentrations. AE testcrosses produced higher grain yield and greater selection response for grain yield than UHO testcrosses. LH185 was best for grain yield in AE and UHO testcrosses. Increase in grain yield in most of the testcrosses was associated with increases in starch concentration, kernel weight, kernel number, and grain weight.

  7. Selection Criteria for Combining High Yield and Striga Resistance in Sorghum

    Directory of Open Access Journals (Sweden)

    Showemimo, FA.

    2003-01-01

    Full Text Available Ten genetically diverse but homozygote sorghum cultivars that are adapted to northern Guinea savanna zone of Nigeria were grown in Striga sick-field for two years. Agronomic traits of maturity, Striga resistance traits and actual grain yield were quantitatively heritable. Correlation coefficients computed among these traits revealed that grain yield was positively correlated with plant vigour, stem girth, root weight, shoot weight and plant height, while Striga count was negative and highly significantly correlated (r= -0.86 with grain yield. Correlated response indicated that selecting for bigger stem girth, high root, good plant vigour and shoot weight, and taller plants under Striga infestation will lead to a corresponding increase of 1.1%, 1.4%, 2.7%, 7.8% and 14.9% respectively on grain yield, while a 52.4% reduction in grain yield is observed by selecting Striga encouraging traits.

  8. High field MRI in the diagnosis of multiple sclerosis: high field-high yield?

    Energy Technology Data Exchange (ETDEWEB)

    Wattjes, Mike P.; Barkhof, Frederik [VU University Medical Center, MS Center Amsterdam, Department of Radiology, Amsterdam (Netherlands)

    2009-05-15

    Following the approval of the U.S. Food and Drug Administration (FDA), high field magnetic resonance imaging (MRI) has been increasingly incorporated into the clinical setting. Especially in the field of neuroimaging, the number of high field MRI applications has been increased dramatically. Taking advantage on increased signal-to-noise ratio (SNR) and chemical shift, higher magnetic field strengths offer new perspectives particularly in brain imaging and also challenges in terms of several technical and physical consequences. Over the past few years, many applications of high field MRI in patients with suspected and definite multiple sclerosis (MS) have been reported including conventional and quantitative MRI methods. Conventional pulse sequences at 3 T offers higher lesion detection rates when compared to 1.5 T, particularly in anatomic regions which are important for the diagnosis of patients with MS. MR spectroscopy at 3 T is characterized by an improved spectral resolution due to increased chemical shift allowing a better quantification of metabolites. It detects significant axonal damage already in patients presenting with clinically isolated syndromes and can quantify metabolites of special interest such as glutamate which is technically difficult to quantify at lower field strengths. Furthermore, the higher susceptibility and SNR offer advantages in the field of functional MRI and diffusion tensor imaging. The recently introduced new generation of ultra-high field systems beyond 3 T allows scanning in submillimeter resolution and gives new insights into in vivo MS pathology on MRI. The objectives of this article are to review the current knowledge and level of evidence concerning the application of high field MRI in MS and to give some ideas of research perspectives in the future. (orig.)

  9. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches.

    Science.gov (United States)

    Kumar, Arvind; Dixit, Shalabh; Ram, T; Yadaw, R B; Mishra, K K; Mandal, N P

    2014-11-01

    The increased occurrence and severity of drought stress have led to a high yield decline in rice in recent years in drought-affected areas. Drought research at the International Rice Research Institute (IRRI) over the past decade has concentrated on direct selection for grain yield under drought. This approach has led to the successful development and release of 17 high-yielding drought-tolerant rice varieties in South Asia, Southeast Asia, and Africa. In addition to this, 14 quantitative trait loci (QTLs) showing a large effect against high-yielding drought-susceptible popular varieties were identified using grain yield as a selection criterion. Six of these (qDTY 1.1 , qDTY 2.2 , qDTY 3.1 , qDTY 3.2 , qDTY 6.1 , and qDTY 12.1 ) showed an effect against two or more high-yielding genetic backgrounds in both the lowland and upland ecosystem, indicating their usefulness in increasing the grain yield of rice under drought. The yield of popular rice varieties IR64 and Vandana has been successfully improved through a well-planned marker-assisted backcross breeding approach, and QTL introgression in several other popular varieties is in progress. The identification of large-effect QTLs for grain yield under drought and the higher yield increase under drought obtained through the use of these QTLs (which has not been reported in other cereals) indicate that rice, because of its continuous cultivation in two diverse ecosystems (upland, drought tolerant, and lowland, drought susceptible), has benefited from the existence of larger genetic variability than in other cereals. This can be successfully exploited using marker-assisted breeding. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis

    Directory of Open Access Journals (Sweden)

    Ganghua Li

    2014-08-01

    Full Text Available Improvement of yield in rice (Oryza sativa L. is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars (53 in 2007 and 48 in 2008 were grown in Taoyuan, Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107 (a large-panicle type and Xieyou 107 (a heavy-panicle type, were planted in Taoyuan, Yunnan province and Nanjing, Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes. Growth duration (GD, leaf area index (LAI, panicles per m2 (PN, and spikelets per m2 (SM were significantly and positively correlated with grain yield (GY over all years. Sequential path analysis identified PN and panicle weight (PW as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height (PH, days from heading to maturity (HM, and grain weight (GW were stable traits that showed little variation across sites or years, whereas GD (mainly the pre-heading period, PHP and PN varied significantly across locations. To achieve a yield of 15 t ha− 1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m− 2, and a GW of 29–31 mg.

  11. Potentialities of high yield and managerial techniques of annual-working bamboo groves of Phyllostachys pubescens

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.L.

    1983-01-01

    Studies over 20 years have demonstrated that bamboo groves that are worked annually have nearly twice the yield of those worked every other year. Such groves have a higher stand density and a high leaf area index. 5 references.

  12. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield

    Directory of Open Access Journals (Sweden)

    Nahuel R. Peralta

    2016-10-01

    Full Text Available A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted on yield monitor data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties (Clay, Dickinson, Rice, Saline, and Washington of Kansas (total of 457 ha. Three basic tests were conducted on the data: (1 spatial dependence on each of the yield and vegetation indices (VIs using Moran’s I test; (2 model selection for the relationship between imagery data and actual yield using ordinary least square regression (OLS and spatial econometric (SPL models; and (3 model validation for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test for both yield and VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge simple ratio, near infrared = NIR and green-NDVI = NDVIG was tested positive and statistically significant for most of the fields (p < 0.05, except for one. Inclusion of spatial adjustment to model improved the model fit on most fields as compared to OLS models, with the spatial adjustment coefficient significant for half of the fields studied. When selected models were used for prediction to validate dataset, a striking similarity (RMSE = 0.02 was obtained between predicted and observed yield within a field. Yield maps could assist implementing more effective site-specific management tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite imagery data can be reasonably used to forecast yield via utilization of models that include spatial adjustment to

  13. Microbial Carbon Substrate Utilization Differences among High- and Average-Yield Soybean Areas

    Directory of Open Access Journals (Sweden)

    Taylor C. Adams

    2017-05-01

    Full Text Available Since soybean (Glycine max L. (Merr. yields greater than 6719 kg ha−1 have only recently and infrequently been achieved, little is known about the soil microbiological environment related to high-yield soybean production. Soil microbiological properties are often overlooked when assessing agronomic practices for optimal production. Therefore, a greater understanding is needed regarding how soil biological properties may differ between high- and average-yielding areas within fields. The objectives of this study were to (i evaluate the effects of region on soil microbial carbon substrate utilization differences between high- (HY and average-yield (AY areas and (ii assess the effect of yield area on selected microbiological property differences. Replicate soil samples were collected from the 0–10 cm depth from yield-contest-entered fields in close proximity that had both a HY and an AY area. Samples were collected immediately prior to or just after soybean harvest in 2014 and 2015 from each of seven geographic regions within Arkansas. Averaged across yield area, community-level carbon substrate utilization and Shannon’s and Simpson’s functional diversity and evenness were greater (p < 0.05 in Region 7 than all other regions. Averaged across regions, Shannon’s functional diversity and evenness were greater (p < 0.05 in HY than in AY areas. Principal component analysis demonstrated that a greater variety of carbon substrates were used in HY than AY areas. These results may help producers understand the soil microbiological environment in their own fields that contribute to or hinder achieving high-yielding soybeans; however, additional parameters may need to be assessed for a more comprehensive understanding of the soil environment that is associated with high-yielding soybean.

  14. Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Yang, Jungwoo; Kim, Kyoung Heon

    2017-07-01

    To reduce the distillation costs of cellulosic ethanol, it is necessary to produce high sugar titers in the enzymatic saccharification step. To obtain high sugar titers, high biomass loadings of lignocellulose are necessary. In this study, to overcome the low saccharification yields and the low operability of high biomass loadings, a fed-batch saccharification process was developed using an enzyme reactor that was designed and built in-house. After optimizing the cellulase and biomass feeding profiles and the agitation speed, 132.6 g/L glucose and 76.0% theoretical maximum glucose were obtained from the 60 h saccharification of maleic acid-pretreated rice straw at a 30% (w/v) solids loading with 15 filter paper units (FPU) of Cellic CTec2/g glucan. This study demonstrated that through the proper optimization of fed-batch saccharification, both high sugar titers and high saccharification yields are possible, even with using the high solids loading (i.e., ≥30%) with the moderate enzyme loading (i.e., high solids saccharification process in cellulosic fuel and chemical production.

  15. Enhanced electron yield from a laser-plasma accelerator using high-Z gas jet targets

    CERN Document Server

    Mirzaie, Mohammad; Li, Song; Sokollik, Thomas; He, Fei; Cheng, Ya; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    An investigation of the multi-hundred MeV electron beam yield (charge) form helium, nitrogen, neon and argon gas jet plasmas in a laser-plasma wakefield acceleration experiment was carried out. The charge measurement has been made via imaging the electron beam intensity profile on a fluorescent screen into a 14-bit charge coupled device (CCD) which was cross-calibrated with nondestructive electronics-based method. Within given laser and plasma parameters, we found that laser-driven low Z- gas jet targets generate high-quality and well-collimated electron beams with reasonable yields at the level of 10-100 pC. On the other hand, filamentary electron beams which were observed from high-Z gas jets at higher densities reached much higher yield. Evidences for cluster formation were clearly observed in high-Z gases, especially in the argon gas jet target where we received the highest yield of ~ 3 nC

  16. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Directory of Open Access Journals (Sweden)

    Nathaniel B Lyman

    Full Text Available Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  17. Enhancing heterologous protection in pigs vaccinated with chimeric porcine reproductive and respiratory syndrome virus containing the full-length sequences of shuffled structural genes of multiple heterologous strains.

    Science.gov (United States)

    Tian, Debin; Cao, Dianjun; Lynn Heffron, C; Yugo, Danielle M; Rogers, Adam J; Overend, Christopher; Matzinger, Shannon R; Subramaniam, Sakthivel; Opriessnig, Tanja; LeRoith, Tanya; Meng, Xiang-Jin

    2017-04-25

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of arguably the most economically important global swine disease. The extensive genetic variation of PRRSV strains is a major obstacle for heterologous protection of current vaccines. Previously, we constructed a panel of chimeric viruses containing only the ectodomain sequences of DNA-shuffled structural genes of different PRRSV strains in the backbone of a commercial vaccine, and found that one chimeric virus had an improved cross-protection efficacy. In this present study, to further enhance the cross-protective efficacy against heterologous strains, we constructed a novel chimeric virus VR2385-S3456 containing the full-length sequences of shuffled structural genes (ORFs 3-6) from 6 heterologous PRRSV strains in the backbone of PRRSV strain VR2385. We showed that the chimeric virus VR2385-S3456 induced a high level of neutralizing antibodies in pigs against two heterologous strains. A subsequent vaccination and challenge study in 48 pigs revealed that the chimeric virus VR2385-S3456 conferred an enhanced cross-protection when challenged with heterologous virus strain NADC20 or a contemporary heterologous strain RFLP 1-7-4. The results suggest that the chimera VR2385-S3456 may be a good PRRSV vaccine candidate for further development to confer heterologous protection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. High-biomass C4 grasses-Filling the yield gap.

    Science.gov (United States)

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C4 grasses could help fill the yield gap. High-biomass C4 grasses exhibit high yield due to C4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  20. Identification of potentially high yielding irradiated cassava ‘Gajah’ genotype with different geographic coordinates

    Science.gov (United States)

    Subekti, I.; Khumaida, N.; Ardie, SW

    2017-01-01

    Cassava is one of the main and important carbohydrate producing crops in Indonesia. Thus cassava production and its tuber quality need to be improved. ‘Gajah’ genotype is a local genotypes cassava from East Kalimantan, has high potential yield (> 60 ton Ha-1). However, the harvest time of this genotype is quite long (>= 12 months). The objective of this research was to identify the high yielding cassava mutants from the gamma rays irradiated ‘Gajah’ genotype at M1V3 population and potential yield at different location. Several putative cassava mutants (12 mutants) were planted in Cikabayan Experimental Field, IPB from March 2015 to March 2016 and the yields compared with the same genotype grown at different location by seeing its coordinates to observe the potential yield. Our result showed that the fresh tuber weight per plant of some putative mutants could reach more than 8 kg (yield potential of 64 ton Ha-1). The harvested tubers also had sweet flavor, although the tubers of some putative mutants were bitter. Based on previous research study, the different geographic coordinate has resulted variability on fresh tuber yield. It seems that it needs to observe the stability of ‘Gajah’- irradiated mutants in several location in Java Island.

  1. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.

    Science.gov (United States)

    Takeuchi, Koh; Arthanari, Haribabu; Shimada, Ichio; Wagner, Gerhard

    2015-12-01

    Detection of (15)N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached (15)N nuclei (TROSY (15)NH) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow (15)N transverse relaxation and compensating for the inherently low (15)N sensitivity. The (15)N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY (15)NH component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a (15)N-detected 2D (1)H-(15)N TROSY-HSQC ((15)N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τc ~ 40 ns). Unlike for (1)H detected TROSY, deuteration is not mandatory to benefit (15)N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording (15)N TROSY of proteins expressed in H2O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D2O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of (15)NH-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  2. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    African Journals Online (AJOL)

    Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in this study. Based on the ...

  4. Metabolic characterization of high- and low-yielding strains of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Christensen, Bjarke; Thykær, Jette; Nielsen, Jens

    2000-01-01

    A recently developed method for analyzing metabolic networks using C-13-labels was employed for investigating the metabolism of a high- and a low-yielding strain of Penicillium chrysogenum. Under penicillin-producing conditions, the flux through the pentose phosphate (PP) pathway in the high...

  5. Grain yield and quality responses of tropical hybrid rice to high night-time temperature

    NARCIS (Netherlands)

    Shi, W.; Yin, X.; Struik, P.C.; Xie, F.; Schmidt, R.C.; Jagadish, K.S.V.

    2016-01-01

    High temperature has a pronounced effect on grain yield and quality in rice. Climate change has increased night temperature more than day temperature in many parts of the world. How rice responds to high night-time temperature (HNT) is largely unknown. This study presents the first effort to assess

  6. Highly Luminescent Carbon-​Nanoparticle-​Based Materials: Factors Influencing Photoluminescence Quantum Yield

    NARCIS (Netherlands)

    Qu, S.; Shen, D.; Liu, X.; Jing, P.; Zhang, L.; Ji, W.; Zhao, H.; Fan, X.; Zhang, H.

    2014-01-01

    Unravelling the factors influencing photoluminescence (PL) quantum yield of the carbon nanoparticles (CNPs) is the prerequisite for prepg. highly luminescent CNP-​based materials. In this work, an easy and effective method is reported for prepg. highly luminescent CNP-​based materials. Water-​sol.

  7. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    Science.gov (United States)

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  8. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice.

    Science.gov (United States)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P; Lovell, John T; Moyers, Brook T; Baraoidan, Marietta; Naredo, Maria Elizabeth B; McNally, Kenneth L; Poland, Jesse; Bush, Daniel R; Leung, Hei; Leach, Jan E; McKay, John K

    2017-02-21

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.

  9. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae...... of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples...... of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were...

  10. Genetic Linkage Map of a High Yielding FELDA Deli×Yangambi Oil Palm Cross

    Science.gov (United States)

    Seng, Tzer-Ying; Mohamed Saad, Siti Hawa; Chin, Cheuk-Weng; Ting, Ngoot-Chin; Harminder Singh, Rajinder Singh; Qamaruz Zaman, Faridah; Tan, Soon-Guan; Syed Alwee, Sharifah Shahrul Rabiah

    2011-01-01

    Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi origin. The cross out-yielded the average by 8–21% in four trials all of which yielded comparably to the best current commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain - from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16 linkage groups each. The number of markers per group ranged from 8–47 in the former and 12–40 in the latter. The integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage group was 15–57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from 77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population and also being expanded to include yield related QTLs. PMID:22069457

  11. Expression of heterologous genes in Schizophyllum commune is often hampered by the formation of truncated transcripts

    NARCIS (Netherlands)

    Schuren, FHJ; Wessels, JGH

    GPD regulatory sequences were used to express a phleomycin resistance gene (Sh ble) in Schizophyllum commune, resulting in high numbers of phleomycin-resistant transformants. Attempts to express heterologous genes coding for hygromycin B phosphotransferase (hph), aminoglycoside phosphotransferase

  12. Expression of heterologous genes in Schizophyllum commune is often hampered by the formation of truncated transcripts

    NARCIS (Netherlands)

    Schuren, F.H.J.; Wessels, J.G.H.

    1998-01-01

    GPD regulatory sequences were used to express a phleomycin resistance gene (Sh ble) in Schizophyllum commune, resulting in high numbers of phleomycin-resistant transformants. Attempts to express heterologous genes coding for hygromycin B phosphotransferase (hph), aminoglycoside phosphotransferase

  13. Transcriptional analysis of heterologous gene expression using the endogenous sD promoter from Bacillus halodurans

    CSIR Research Space (South Africa)

    Crampton, Michael C

    2010-07-01

    Full Text Available This presentation focused on the transcriptional analysis of heterologous gene expression using the endogenous sD promoter from Bacillus halodurans. It concludes to a successful implementation of a high throughput mRNA sandwich hybridisation...

  14. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  15. High yield and high quality DNA from vegetative and sexual tissues ...

    African Journals Online (AJOL)

    Pines are considered to be difficult for DNA extraction. However, from one species to the other there is variation in phenolic profiles and seed size that might affect final DNA yields and quality. Two DNA extraction protocols (CTAB and SDS based) were compared for their ability to produce DNA on leaves, gametophyte and ...

  16. Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol

    Science.gov (United States)

    Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.

    2017-04-01

    Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.

  17. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2009-06-01

    Full Text Available Abstract Background Working at high solids (substrate concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown. Results The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, describing a linear correlation from 5 to 30% initial total solids content (w/w. Insufficient mixing has previously been shown not to be involved in the effect. Hydrolysis experiments with filter paper showed that neither lignin content nor hemicellulose-derived inhibitors appear to be responsible for the decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in simultaneous saccharification and fermentation at the increased concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose is causing the decrease in yield. Conclusion Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing yields at increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high conversions at high solids concentrations, understanding of the mechanisms involved in high-solids product inhibition

  18. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose

    Science.gov (United States)

    Kristensen, Jan B; Felby, Claus; Jørgensen, Henning

    2009-01-01

    Background Working at high solids (substrate) concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown. Results The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, describing a linear correlation from 5 to 30% initial total solids content (w/w). Insufficient mixing has previously been shown not to be involved in the effect. Hydrolysis experiments with filter paper showed that neither lignin content nor hemicellulose-derived inhibitors appear to be responsible for the decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in simultaneous saccharification and fermentation) at the increased concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose is causing the decrease in yield. Conclusion Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing yields at increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high conversions at high solids concentrations, understanding of the mechanisms involved in high-solids product inhibition and adsorption inhibition

  19. Improved forage strategies for high-yielding dairy cows in Vietnam : report of a workshop

    NARCIS (Netherlands)

    Wouters, A.P.; Lee, van der J.

    2013-01-01

    This report presents results of the workshop "Improved forage strategies for high-yielding dairy cows in Vietnam" which was held with Vietnamese stakeholders on January 17-18, 2013 in Ho Chi Minh City as part of the project "Forage and Grass Production for Dairy Development in Vietnam" funded by the

  20. CULTIVAR RELEASE - FAEM Carlasul: new white oat cultivar with high grain yield

    Directory of Open Access Journals (Sweden)

    Antônio Costa de Oliveira

    2012-01-01

    Full Text Available The white oat cultivar FAEM Carlasul was developed at the Plant Genomics and Breeding Center, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, as a result of the cross between UFRGS 10 and 90SAT-28 (Coronado2/Cortez3/Pendek/ME 1563. It is characterized by high yield and grain quality.

  1. Barbarasul: a high-yielding and lodging-resistant white oat cultivar

    Directory of Open Access Journals (Sweden)

    Fernando Irajá Félix de Carvalho

    2009-01-01

    Full Text Available The white-oat cultivar Barbarasul was developed by the Universidade Federal de Pelotas. It resulted from across between UPF18 and CTC5. It is adapted to the southern region of Brazil, with excellent grain yield potential, shortstature and high lodging tolerance.

  2. Assessment of growth and yield of some high-and low- cyanide ...

    African Journals Online (AJOL)

    ENGR C.J

    2014-01-29

    Jan 29, 2014 ... 2Department of Crop Production Technology, Federal College of Agriculture, P. M. B. 7008, Ishiagu, Ebonyi State, .... Growth and yield characters of twenty five high-cyanide cassava genotypes in 2004 and 2005 cropping seasons. ..... International Center for Tropical Agriculture (CIAT), Cali Colombia,.

  3. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  4. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2012-07-17

    Jul 17, 2012 ... activity, bacteria of Bacillus are generally of poor cellulase and amylase activities. Furthermore, there are few reports about the strain of Bacillus of multienzyme complex. In this study, using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, we reported our recent attempt to ...

  5. CRSM-38, a new high yielding coupled with CLCuV tolerance cotton ...

    African Journals Online (AJOL)

    Yomi

    2012-03-06

    Mar 6, 2012 ... CRSM-38 is a high yielding and leaf curl virus tolerant cotton variety, developed in Pakistan. Hybridization and subsequent pedigree method's selection work was carried out under natural field conditions at Cotton Research Station, Multan during the year 2001 and 2002 by using a virus tolerant.

  6. Surrogate models for identifying robust, high yield regions of parameter space for ICF implosion simulations

    Science.gov (United States)

    Humbird, Kelli; Peterson, J. Luc; Brandon, Scott; Field, John; Nora, Ryan; Spears, Brian

    2016-10-01

    Next-generation supercomputer architecture and in-transit data analysis have been used to create a large collection of 2-D ICF capsule implosion simulations. The database includes metrics for approximately 60,000 implosions, with x-ray images and detailed physics parameters available for over 20,000 simulations. To map and explore this large database, surrogate models for numerous quantities of interest are built using supervised machine learning algorithms. Response surfaces constructed using the predictive capabilities of the surrogates allow for continuous exploration of parameter space without requiring additional simulations. High performing regions of the input space are identified to guide the design of future experiments. In particular, a model for the yield built using a random forest regression algorithm has a cross validation score of 94.3% and is consistently conservative for high yield predictions. The model is used to search for robust volumes of parameter space where high yields are expected, even given variations in other input parameters. Surrogates for additional quantities of interest relevant to ignition are used to further characterize the high yield regions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697277.

  7. Adaption of Saccharomyces cerevisiae expressing a heterologous protein

    DEFF Research Database (Denmark)

    Krogh, Astrid Mørkeberg; Beck, Vibe; Højlund Christensen, Lars

    2008-01-01

    Production of the heterologous protein, bovine aprotinin, in Saccharomyces cerevisiae was shown to affect the metabolism of the host cell to various extent depending on the strain genotype. Strains with different genotypes, industrial and laboroatory, respectively, were investigated. The maximal...... specific growth rate of the strains was reduced by 54% and 33%, respectively, upon the introduction of the gene encoding aprotinin. Growing the strains in sequential shake flask cultivations for 250 generations led to an increased maximal specific growth rate and a decrease in the yield of aprotinin...

  8. Observation of yielding and strain hardening in a titanium alloy having high oxygen content

    Energy Technology Data Exchange (ETDEWEB)

    Geng, F., E-mail: iamgengfang@gmail.com [Institute for Materials Research, Tohoku University, Sendai 850-8577 (Japan); Niinomi, M.; Nakai, M. [Institute for Materials Research, Tohoku University, Sendai 850-8577 (Japan)

    2011-06-25

    Highlights: {yields} TNTZ with high oxygen content indicates special mechanical properties. {yields} The phenomenon was explained by the interaction between oxygen atoms and dislocations. {yields} The deformation behavior changes with the addition of oxygen in TNTZ. {yields} There is a specific compositional area of oxygen in TNTZ exhibits good property. - Abstract: Plastic deformation behavior and its relation to tensile properties were investigated in an attractive {beta}-type titanium alloy (Ti-29Nb-13Ta-4.6Zr) with the oxygen content of 0.1-0.7 mass% subjected to hot rolling and solution treatment after hot rolling. Hereafter, Ti-29Nb-13Ta-4.6Zr is abbreviated to TNTZ. With the increase of oxygen content, the tensile strength and 0.2% proof stress of all the samples increase, however, their elongation indicates special change, which is contradictory to that reported conventionally. The elongation firstly decreases and then increases with the increase in the oxygen content. Therefore, TNTZ with high strength and high ductility due to the addition of high oxygen content (0.7 mass%) is obtained. Remarkable yielding phenomenon and strain hardening are observed in TNTZ, which can be explained by the interaction between oxygen atoms and a lot of screw and edge dislocations leading to the easy activation of the multiple slip systems. The deformation behavior changes with the addition of oxygen in TNTZ. The plastic deformation mode changes from the deformation-induced martensite transformation to slip mechanism. It is realized that there is a specific compositional area of oxygen in which the TNTZ exhibits strain hardening and high strength, and appropriate Young's modulus value.

  9. Natural products from filamentous fungi and production by heterologous expression.

    Science.gov (United States)

    Alberti, Fabrizio; Foster, Gary D; Bailey, Andy M

    2017-01-01

    Filamentous fungi represent an incredibly rich and rather overlooked reservoir of natural products, which often show potent bioactivity and find applications in different fields. Increasing the naturally low yields of bioactive metabolites within their host producers can be problematic, and yield improvement is further hampered by such fungi often being genetic intractable or having demanding culturing conditions. Additionally, total synthesis does not always represent a cost-effective approach for producing bioactive fungal-inspired metabolites, especially when pursuing assembly of compounds with complex chemistry. This review aims at providing insights into heterologous production of secondary metabolites from filamentous fungi, which has been established as a potent system for the biosynthesis of bioactive compounds. Numerous advantages are associated with this technique, such as the availability of tools that allow enhanced production yields and directing biosynthesis towards analogues of the naturally occurring metabolite. Furthermore, a choice of hosts is available for heterologous expression, going from model unicellular organisms to well-characterised filamentous fungi, which has also been shown to allow the study of biosynthesis of complex secondary metabolites. Looking to the future, fungi are likely to continue to play a substantial role as sources of new pharmaceuticals and agrochemicals-either as producers of novel natural products or indeed as platforms to generate new compounds through synthetic biology.

  10. Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy

    Science.gov (United States)

    Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  11. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  12. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    Science.gov (United States)

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvet samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. The results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.

  13. Differential Metabolite Profiles during Fruit Development in High-Yielding Oil Palm Mesocarp

    Science.gov (United States)

    Teh, Huey Fang; Neoh, Bee Keat; Hong, May Ping Li; Low, Jaime Yoke Sum; Ng, Theresa Lee Mei; Ithnin, Nalisha; Thang, Yin Mee; Mohamed, Mohaimi; Chew, Fook Tim; Yusof, Hirzun Mohd.; Kulaveerasingam, Harikrishna; Appleton, David R.

    2013-01-01

    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes. PMID:23593468

  14. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  15. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Directory of Open Access Journals (Sweden)

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.

  16. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

    Science.gov (United States)

    Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

  17. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  18. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.

    Science.gov (United States)

    Navarro, Pilar; Savoie, Jean-Michel

    2015-01-01

    To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  19. Progresses in DNA-based heterologous prime-boost immunization strategies.

    Science.gov (United States)

    Jackson, Ronald J; Boyle, David B; Ranasinghe, Charani

    2014-01-01

    Although recombinant DNA and recombinant viral vectors expressing HIV antigens have yielded positive outcomes in animal models, these vaccines have not been effectively translated to humans. Despite this, there is still a high level of optimism that poxviral-based vaccine strategies could offer the best hope for developing an effective vaccine against not only HIV-1 but also other chronic diseases where good-quality T and B cell immunity is needed for protection. In this chapter we discuss step by step (1) how recombinant poxviral vectors co-expressing HIV antigens and promising mucosal/systemic adjuvants (e.g., IL-13Rα2) are constructed, (2) how these vectors can be used in alternative heterologous prime-boost immunization strategies, (3) how systemic and mucosal samples are prepared for analysis, followed by (4) two immunological assays: multicolor intracellular cytokine staining and tetramer/homing maker analysis that are used to evaluate effective systemic and mucosal T cell immunity.

  20. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    During germination of barley seeds, mobilization of protein is essential and cysteine proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins. Cysteine proteases exist as pro-enzyme and is activated through reduction of the active...... site cysteines and by removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. A cDNA clone of the barley key cysteine endoprotease...... B2 (HvEPB2) was ligated into the Pichia pastoris expression vector pPICZ Aα and electrotransformed into Pichia pastoris strain KM71H. Heterologous protein production was induced with 2% MeOH and maximum yield were obtained after 4 days where the supernatant was harvested. Purification of HvEPB2 from...

  1. Synthesis and characterization of poly (dihydroxybiphenyl borate) with high char yield for high-performance thermosetting resins

    Science.gov (United States)

    Wang, Shujuan; Xing, Xiaolong; Li, Jian; Jing, Xinli

    2018-01-01

    The objective of the current work is to synthesize novel boron-containing polymers with excellent thermal resistance, and reveal the structure and the reason for the high char yield. Thus, poly (dihydroxybiphenyl borate) (PDDB) with a more rigid molecular chain, was successfully synthesized using 4,4‧-dihydroxybiphenyl and boric acid. Structural characterizations of the prepared PDDB were performed via NMR, FTIR, XPS, and XRD analyses. The results reveal that PDDB consists of aromatic, Phsbnd Osbnd B and Bsbnd Osbnd B structures as well as a small number of boron hydroxyl and phenolic hydroxyl groups. PDDB shows good solubility in strong polar solvents, which is of great importance for the modification of thermosetting resins. TGA combined with DSC were employed to evaluate the thermal properties of PDDB, and increases in the glass transition temperature (Tg) and char yield were observed with increased boron content. Tg and char yield of PDDB (800 °C, nitrogen atmosphere) reached up to 219 °C and 66.5%, respectively. PDDB was extensively characterized during pyrolysis to reveal the high char yield of PDDB. As briefly discussed, the boron oxide and boron carbide that formed during pyrolysis play a crucial role in the high char yield of PDDB, which reduces the release of volatile carbon dioxide and carbon. This research suggests that PDDB has great potential as a novel modified agent for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  2. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    Science.gov (United States)

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  3. Surface studies and implanted helium measurements following NOVA high-yield DT experiments

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M.A.; Hudson, G.B.

    1997-02-18

    This paper presents the results of three March 6, 1996 direct-drive high-yield DT NOVA experiments and provides `proof-of-principal` results for the quantitative measurement of energetic He ions. Semiconductor quality Si wafers and an amorphous carbon wafer were exposed to NOVA high-yield implosions. Surface damage was sub-micron in general, although the surface ablation was slightly greater for the carbon wafer than for the Si wafers. Melting of a thin ({approx} 0.1{mu}) layer of Si was evident from microscopic investigation. Electron microscopy indicated melted blobs of many different metals (e.g. Al, Au, Ta, Fe alloys, Cu and even Cd) on the surfaces. The yield measured by determining the numbers of atoms of implanted {sup 4}He and {sup 3}He indicate the number of DT fusions to be 9.1({plus_minus}2.3) X 10{sup 12} and DD fusions to be 4.8({plus_minus}1.0) x 10{sup 10}, respectively. The helium DT fusion yield is slightly lower than that of the Cu activation measurement, which was 1.3({plus_minus}0.l) x 10{sup 13} DT fusions.

  4. Adaptability and stability of corn hybrids grown for high grain yield

    Directory of Open Access Journals (Sweden)

    Paulo Roberto da Silva

    2014-04-01

    Full Text Available The objective of the present study was to evaluate the adaptability and stability of corn hybrids for grain yield in environments with high crop management standards. Ten corn hybrids were evaluated for grain yield in 48 environments, consisting of 12 locations over a period of four years inSouth Brazil. A complete experimental, random block design with two repetitions was used. Adaptability and stability were analyzed according to the bi-segmented discontinuous model with measurement errors in the variables. The behavior of hybrids was studied as a function of the average yield in the inferior and/or superior environments, the estimates of the parameters of the equation, and the quality of the fit. The 30F36 hybrid behaved better in the superior environments and it is indicated for farmers who adopt the highest technological standards for crop management, whereas the 30F53 hybrid was classified as close to ideal; that is, it is indicated for cultivation under various environmental conditions. The 30R50 and 32R48 hybrids are appropriate only for average environments. There is a very good phenotypic stability in simple hybrids associated with high potential yield.

  5. Development of bioprocess for high density cultivation yield of the probiotic Bacillus coagulans and its spores

    Directory of Open Access Journals (Sweden)

    Kavita R. Pandey

    2016-09-01

    Full Text Available Bacillus coagulans is a spore forming lactic acid bacterium. Spore forming bacteria, have been extensively studied and commercialized as probiotics. Probiotics are produced by fermentation technology. There is a limitation to biomass produced by conventional modes of fermentation. With the great demand generated by range of probiotic products, biomass is becoming very valuable for several pharmaceutical, dairy and probiotic companies. Thus, there is a need to develop high cell density cultivation processes for enhanced biomass accumulation. The bioprocess development was carried out in 6.6 L bench top lab scale fermentor. Four different cultivation strategies were employed to develop a bioprocess for higher growth and sporulation efficiencies of probiotic B. coagulans. Batch fermentation of B. coagulans yielded 18 g L-1 biomass (as against 8.0 g L-1 productivity in shake flask with 60% spore efficiency. Fed-batch cultivation was carried out for glucose, which yielded 25 g L-1 of biomass. C/N ratio was very crucial in achieving higher spore titres. Maximum biomass yield recorded was 30 g L-1, corresponding to 3.8 × 1011 cells mL-1 with 81% of cells in sporulated stage. The yield represents increment of 85 times the productivity and 158 times the spore titres relative to the highest reported values for high density cultivation of B. coagulans.

  6. Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy).

    Science.gov (United States)

    Perego, Alessia; Sanna, Mattia; Giussani, Andrea; Chiodini, Marcello Ermido; Fumagalli, Mattia; Pilu, Salvatore Roberto; Bindi, Marco; Moriondo, Marco; Acutis, Marco

    2014-11-15

    The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030-2060 and 2070-2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha(-1)), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245-565 mm y(-1)). With respect to the current hybrid, the ideotype will require less irrigation water (-13%, p<0.01) and it resulted in significantly higher yield under water stress condition (+15%, p<0.01) and optimal water supply (+2%, p<0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha(-1) will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    Science.gov (United States)

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. © 2013 CSIRO. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. High Precision and High Yield Fabrication of Dense Nanoparticle Arrays onto DNA Origami at Statistically Independent Binding Sites †

    Science.gov (United States)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph Tyler; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2015-01-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. PMID:25311051

  9. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent......, human insulin precursor was only improved slightly and this only by high level over-expression of HSF1-R206S, supporting our previous findings that the production of this protein in S. cerevisiae is not limited by secretion. Our results provide an effective strategy to improve protein secretion...

  10. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  11. Fluoro-Julia Olefination as a Mild, High-Yielding Route to α-Fluoro Acrylonitriles†

    Science.gov (United States)

    del Solar, Maria; Ghosh, Arun K.; Zajc, Barbara

    2009-01-01

    Synthesis of a novel, stable reagent (1,3-benzothiazol-2-ylsulfonyl)fluoroacetonitrile from readily available ethyl α-(1,3-benzothiazol-2-ylsulfanyl)- α-fluoroacetate is reported. Aldehydes undergo condensations with (1,3-benzothiazol-2-ylsulfonyl)fluoroacetonitrile in the presence of DBU leading to α-fluoro acrylonitriles in high yields and with good Z-stereoselectivity. Lowering of reaction temperature increases the Z selectivity. PMID:18841918

  12. Fluoro-Julia olefination as a mild, high-yielding route to alpha-fluoro acrylonitriles.

    Science.gov (United States)

    del Solar, Maria; Ghosh, Arun K; Zajc, Barbara

    2008-11-07

    Synthesis of a novel, stable reagent (1,3-benzothiazol-2-ylsulfonyl)fluoroacetonitrile from readily synthesized ethyl alpha-(1,3-benzothiazol-2-ylsulfanyl)-alpha-fluoroacetate is reported. Aldehydes undergo condensations with (1,3-benzothiazol-2-ylsulfonyl)fluoroacetonitrile in the presence of DBU leading to alpha-fluoro acrylonitriles in high yields and with good Z-stereoselectivity. Lowering of reaction temperature increases the Z selectivity.

  13. Construction high-yield candidate influenza vaccine viruses in Vero cells by reassortment.

    Science.gov (United States)

    Yu, Wei; Yang, Fan; Yang, Jinghui; Ma, Lei; Cun, Yina; Song, Shaohui; Liao, Guoyang

    2016-11-01

    Usage of influenza vaccine is the best choice measure for preventing and conclusion of influenza virus infection. Although it has been used of chicken embryo to produce influenza vaccine, following with WHO recommended vaccine strain, there were uncontrollable factors and its deficiencies, specially, during an influenza pandemic in the world. The Vero cells are used for vaccine production of a few strains including influenza virus, because of its homology with human, recommended by WHO. However, as known most of the influenza viruses strains could not culture by Vero cells. It was used two high-yield influenza viruses adapted in Vero cells as donor viruses, such as A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B), to construct high-yield wild influenza virus in Vero cells under antibody selection pressure. After reassortment and passages, it obtained the new Vaccine strains with A/Tianjin/15/2009Va (H1N1), A/Fujian/196/2009Va (H3N2) and B/Chongqing/1384/2010Va (B), which was not only completely keeping their original antigenic (HA and NA), but also grown well in Vero cells with high-yield. All results of gene analysis and HA, HI shown that this reassortment method could be used to find new direction to product the influenza vaccine. J. Med. Virol. 88:1914-1921, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available High fluorescence quantum yield graphene quantum dots (GQDs have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications.

  15. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study

    Science.gov (United States)

    Jiang, Dan; Chen, Yunping; Li, Na; Li, Wen; Wang, Zhenguo; Zhu, Jingli; Zhang, Hong; Liu, Bin; Xu, Shan

    2015-01-01

    High fluorescence quantum yield graphene quantum dots (GQDs) have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm) and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL) GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications. PMID:26709828

  16. Combined use of fluorescent dyes and flow cytometry to quantify the physiological state of Pichia pastoris during the production of heterologous proteins in high-cell-density fed-batch cultures.

    Science.gov (United States)

    Hyka, Petr; Züllig, Thomas; Ruth, Claudia; Looser, Verena; Meier, Christian; Klein, Joachim; Melzoch, Karel; Meyer, Hans-Peter; Glieder, Anton; Kovar, Karin

    2010-07-01

    Matching both the construction of a recombinant strain and the process design with the characteristics of the target protein has the potential to significantly enhance bioprocess performance, robustness, and reproducibility. The factors affecting the physiological state of recombinant Pichia pastoris Mut(+) (methanol utilization-positive) strains and their cell membranes were quantified at the individual cell level using a combination of staining with fluorescent dyes and flow cytometric enumeration. Cell vitalities were found to range from 5 to 95% under various process conditions in high-cell-density fed-batch cultures, with strains producing either porcine trypsinogen or horseradish peroxidase extracellularly. Impaired cell vitality was observed to be the combined effect of production of recombinant protein, low pH, and high cell density. Vitality improved when any one of these stress factors was excluded. At a pH value of 4, which is commonly applied to counter proteolysis, recombinant strains exhibited severe physiological stress, whereas strains without heterologous genes were not affected. Physiologically compromised cells were also found to be increasingly sensitive to methanol when it accumulated in the culture broth. The magnitude of the response varied when different reporters were combined with either the native AOX1 promoter or its d6* variant, which differ in both strength and regulation. Finally, the quantitative assessment of the physiology of individual cells enables the implementation of innovative concepts in bioprocess development. Such concepts are in contrast to the frequently used paradigm, which always assumes a uniform cell population, because differentiation between the individual cells is not possible with methods commonly used.

  17. Economics of fertility in high-yielding dairy cows on confined TMR systems.

    Science.gov (United States)

    Cabrera, V E

    2014-05-01

    The objective of this review paper was to summarise the latest findings in dairy cattle reproductive economics with an emphasis on high yielding, confined total mixed ration systems. The economic gain increases as the reproductive efficiency improves. These increments follow the law of diminishing returns, but are still positive even at high reproductive performance. Reproductive improvement results in higher milk productivity and, therefore, higher milk income over feed cost, more calf sales and lower culling and breeding expenses. Most high-yielding herds in the United States use a combination of timed artificial insemination (TAI) and oestrous detection (OD) reproductive programme. The ratio of achievable pregnancies between OD and TAI determines the economic value difference between both and their combinations. Nonetheless, complex interactions between reproductive programme, herd relative milk yield, and type of reproductive programme are reported. For example, higher herd relative milk yield would favour programme relying more on TAI. In addition, improved reproductive efficiency produces extra replacements. The availability of additional replacements could allow more aggressive culling policies (e.g. less services for non-pregnant cows) to balance on-farm supply and demand of replacements. Balancing heifer replacement availability in an efficient reproductive programme brings additional economic benefits. New technologies such as the use of earlier chemical tests for pregnancy diagnosis could be economically effective depending on the goals and characteristics of the farm. Opportunities for individual cow reproductive management within defined reproductive programme exist. These decisions would be based on economic metrics derived from the value of a cow such as the value of a new pregnancy, the cost of a pregnancy loss, or the cost of an extra day open.

  18. High yield polycarbosilane precursors to stoichiometric SiC. Synthesis, pyrolysis and application

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, L.V.; Wu, H.J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemistry; Whitmarsh, C.W.; Sherwood, W. [Starfire Systems, Inc., Glenville, NY (United States); Lewis, R.; Maciel, G. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1994-12-31

    The synthesis and properties of two polycarbosilanes that have essentially a ``SiH{sub 2}CH{sub 2}`` composition is described. One of these polymers is a highly branched hydridopolycarbosilane (HPCS) derived from Grignard coupling of Cl{sub 3}SiCH{sub 2}Cl followed by LiAlH{sub 4} reduction. This synthesis is amenable to large scale production and the authors are exploring applications of HPCS as a source of SiC coatings and its allyl-derivative, AHPCS, as a matrix source for SiC and C-fiber reinforced composites. These polymers thermoset on heating at 200--400 C (or at 100 C with a catalyst) and give near stoichiometric SiC with low O content in ca. 80% yield on pyrolysis to 1,000 C. The second method involves ring-opening polymerization of 1,1,3,3-tetrachlorodisilacyclobutane and yields a high molecular weight, linear polymer that can be reduced to [SiH{sub 2}CH{sub 2}]{sub n} (PSE), the monosilicon analog of polyethylene. In contrast to high density polyethylene which melts at 135 C, PSE is a liquid at room temperature which crystallizes at ca. 5 C. On pyrolysis to 1,000 C, PSE gives stoichiometric, nanocrystalline, SiC in virtually quantitative yield. The polymer-to-ceramic conversion was examined for PSE by using TGA, mass spec., solid state NMR, and IR methods yielding information regarding the cross-linking and structural evolution processes. The results of these studies of the polymer-to-ceramic conversion process and their efforts to employ the AHPCS polymer as a source of SiC matrices are described.

  19. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. The NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.

  20. Once-daily milking effects in high-yielding Alpine dairy goats.

    Science.gov (United States)

    Komara, M; Boutinaud, M; Ben Chedly, H; Guinard-Flament, J; Marnet, P G

    2009-11-01

    Two experiments were conducted to determine the milk loss of high-yielding Alpine goats resulting from once-daily milking (ODM) and its relationship to udder cisternal size. We investigated the effects of application of this management strategy on milk yield, composition, and technological parameters: lipolysis, fat globule size, and cheese yield. In a second experiment, we investigated the effect of repeated periods of ODM management during lactation. Goats at the beginning of both experiments were at 25 d in milk on average and were previously milked twice daily (twice-daily milking; TDM). In experiment 1, which was conducted for 2 periods (P) of 9 wk (P1, P2), 48 goats were grouped (1, 2, 3, and 4) according to milk yield, parity, and somatic cell count (SCC). Over the 2 periods, goats from group 1 were managed with TDM and those from group 2 were managed with ODM. In group 3, goats were assigned to TDM during P1 and ODM during P2, conversely, those in group 4 were assigned to ODM in P1 and TDM in P2. During P1, the 12 goats from group 3 underwent 2 distinct morning machine milkings to measure milk repartition (cisternal and alveolar) in the udder based on the "atosiban method." On P1 plus the P2 period of 18 wk, milk loss caused by ODM (compared with TDM) was 16%. In our condition of 24-h milk accumulation, there was no correlation between milk loss and udder cisternal size. Milk fat content, fat globule size, or apparent laboratory cheese yield was not modified by ODM, but milk protein content (+2.7 g/kg), casein (+1.8 g/kg), milk soluble protein concentration (+1.0 g/kg), and SCC increased, whereas lipolysis decreased (-0.3 mEq/100 g of oleic acid). In experiment 2, which was conducted for 4 periods (P1, P2, P3, P4) of 5 wk each, 8 goats, blocked into 2 homogenous groups (5 and 6), were used to study the effects of a double inversion of milking frequency (TDM or ODM) for 20 wk of lactation. Milk loss was 17% and ODM did not modify milk fat or protein contents

  1. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method....

  2. High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    Science.gov (United States)

    Zhang, Y.-H. Percival; Evans, Barbara R.; Mielenz, Jonathan R.; Hopkins, Robert C.; Adams, Michael W.W.

    2007-01-01

    Background The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. Methodology/Principal Findings Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C6H10O5 (l)+7 H2O (l)→12 H2 (g)+6 CO2 (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. Conclusions Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H2/glucose) of anaerobic fermentations. Significance The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H2), and a high energy-density carrier starch (14.8 H2-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy. PMID:17520015

  3. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway.

    Directory of Open Access Journals (Sweden)

    Y-H Percival Zhang

    Full Text Available BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6H(10O(5 (l+7 H(2O (l-->12 H(2 (g+6 CO(2 (g. The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30 degrees C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2/glucose of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30 degrees C and atmospheric pressure, high hydrogen yields, likely low production costs ($ approximately 2/kg H(2, and a high energy-density carrier starch (14.8 H(2-based mass%, provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy.

  4. Research Advances in High-Yielding Cultivation and Physiology of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2012-09-01

    Full Text Available In 1996, China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types. Today, approximately 80 super rice varieties have been released and some of them show high grain yields of 12–21 t/hm2 in field experiments. The main reasons for the high yields of super rice varieties, compared with those of conventional varieties, can be summarized as follows: more spikelets per panicle and larger sink size (number of spikelets per square meter; larger leaf area index, longer duration of green leaf, greater photosynthetic rate, higher lodging resistance, greater dry matter accumulation before the heading stage, greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period; and larger root system and greater root activity. However, there are two main problems in super rice production: poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets, and low and unstable seed-setting rate. Here, we review recent research advances in the crop physiology of super rice, focusing on biological features, formation of yield components, and population quality. Finally, we suggest further research on crop physiology of super rice.

  5. Designing microorganisms for heterologous biosynthesis of cannabinoids.

    Science.gov (United States)

    Carvalho, Ângela; Hansen, Esben Halkjær; Kayser, Oliver; Carlsen, Simon; Stehle, Felix

    2017-06-01

    During the last decade, the use of medical Cannabis has expanded globally and legislation is getting more liberal in many countries, facilitating the research on cannabinoids. The unique interaction of cannabinoids with the human endocannabinoid system makes these compounds an interesting target to be studied as therapeutic agents for the treatment of several medical conditions. However, currently there are important limitations in the study, production and use of cannabinoids as pharmaceutical drugs. Besides the main constituent tetrahydrocannabinolic acid, the structurally related compound cannabidiol is of high interest as drug candidate. From the more than 100 known cannabinoids reported, most can only be extracted in very low amounts and their pharmacological profile has not been determined. Today, cannabinoids are isolated from the strictly regulated Cannabis plant, and the supply of compounds with sufficient quality is a major problem. Biotechnological production could be an attractive alternative mode of production. Herein, we explore the potential use of synthetic biology as an alternative strategy for synthesis of cannabinoids in heterologous hosts. We summarize the current knowledge surrounding cannabinoids biosynthesis and present a comprehensive description of the key steps of the genuine and artificial pathway, systems biotechnology needs and platform optimization. © FEMS 2017.

  6. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Directory of Open Access Journals (Sweden)

    Guan-fu FU

    2008-09-01

    Full Text Available By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05 respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  7. Variation in Yield Responses to Elevated CO₂ and a Brief High Temperature Treatment in Quinoa.

    Science.gov (United States)

    Bunce, James A

    2017-07-05

    Intraspecific variation in crop responses to global climate change conditions would provide opportunities to adapt crops to future climates. These experiments explored intraspecific variation in response to elevated CO₂ and to high temperature during anthesis in Chenopodium quinoa Wild. Three cultivars of quinoa were grown to maturity at 400 ("ambient") and 600 ("elevated") μmol·mol(-1) CO₂ concentrations at 20/14 °C day/night ("control") temperatures, with or without exposure to day/night temperatures of 35/29 °C ("high" temperatures) for seven days during anthesis. At control temperatures, the elevated CO₂ concentration increased the total aboveground dry mass at maturity similarly in all cultivars, but by only about 10%. A large down-regulation of photosynthesis at elevated CO₂ occurred during grain filling. In contrast to shoot mass, the increase in seed dry mass at elevated CO₂ ranged from 12% to 44% among cultivars at the control temperature. At ambient CO₂, the week-long high temperature treatment greatly decreased (0.30 × control) or increased (1.70 × control) seed yield, depending on the cultivar. At elevated CO₂, the high temperature treatment increased seed yield moderately in all cultivars. These quinoa cultivars had a wide range of responses to both elevated CO₂ and to high temperatures during anthesis, and much more variation in harvest index responses to elevated CO₂ than other crops that have been examined.

  8. Optimization of Escherichia coli cultivation methods for high yield neuropeptide Y receptor type 2 production.

    Science.gov (United States)

    Berger, Christian; Montag, Cindy; Berndt, Sandra; Huster, Daniel

    2011-03-01

    The recombinant expression of human G protein-coupled receptors usually yields low production levels using commonly available cultivation protocols. Here, we describe the development of a high yield production protocol for the human neuropeptide Y receptor type 2 (Y2R), which provides the determination of expression levels in a time, media composition, and process parameter dependent manner. Protein was produced by Escherichia coli in a defined medium composition suitable for isotopic labeling required for investigations by nuclear magnetic resonance spectroscopy. The Y2 receptor was fused to a C-terminal 8x histidine tag by means of the pET vector system for easy one-step purification via affinity chromatography, yielding a purity of 95-99% for every condition tested, which was determined by SDS-PAGE and Western blot analysis. The Y2 receptor was expressed as inclusion body aggregates in complex media and minimal media, using different carbon sources. We investigated the influences of media composition, temperature, pH, and set specific growth rate on cell behavior, biomass wet weight specific and culture volume specific amounts of the target protein, which had been identified by inclusion body preparation, solubilization, followed by purification and spectrometric determination of the protein concentration. The developed process control strategy led to very high reproducibility of cell growth and protein concentrations with a maximum yield of 800 μg purified Y2 receptor per gram wet biomass when glycerol was used as carbon source in the mineral salt medium composition (at 38 °C, pH 7.0, and a set specific growth rate of 0.14 g/(gh)). The maximum biomass specific amount of purified Y2 receptor enabled the production of 35 mg Y2R per liter culture medium at an optical density (600 nm) of 25. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster.

    Directory of Open Access Journals (Sweden)

    Oksana Bilyk

    Full Text Available Transformation-associated recombination (TAR in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the "capture" vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties.

  10. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  11. Wafer scale fabrication of carbon nanotube thin film transistors with high yield

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Boyuan; Liang, Xuelei, E-mail: liangxl@pku.edu.cn, E-mail: ssxie@iphy.ac.cn; Yan, Qiuping; Zhang, Han; Xia, Jiye; Dong, Guodong; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xie, Sishen, E-mail: liangxl@pku.edu.cn, E-mail: ssxie@iphy.ac.cn [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-07-21

    Carbon nanotube thin film transistors (CNT-TFTs) are promising candidates for future high performance and low cost macro-electronics. However, most of the reported CNT-TFTs are fabricated in small quantities on a relatively small size substrate. The yield of large scale fabrication and the performance uniformity of devices on large size substrates should be improved before the CNT-TFTs reach real products. In this paper, 25 200 devices, with various geometries (channel width and channel length), were fabricated on 4-in. size ridged and flexible substrates. Almost 100% device yield were obtained on a rigid substrate with high out-put current (>8 μA/μm), high on/off current ratio (>10{sup 5}), and high mobility (>30 cm{sup 2}/V·s). More importantly, uniform performance in 4-in. area was achieved, and the fabrication process can be scaled up. The results give us more confidence for the real application of the CNT-TFT technology in the near future.

  12. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders.

    Science.gov (United States)

    Yavarna, Tarunashree; Al-Dewik, Nader; Al-Mureikhi, Mariam; Ali, Rehab; Al-Mesaifri, Fatma; Mahmoud, Laila; Shahbeck, Noora; Lakhani, Shenela; AlMulla, Mariam; Nawaz, Zafar; Vitazka, Patrik; Alkuraya, Fowzan S; Ben-Omran, Tawfeg

    2015-09-01

    Clinical exome sequencing (CES) has become an increasingly popular diagnostic tool in patients with heterogeneous genetic disorders, especially in those with neurocognitive phenotypes. Utility of CES in consanguineous populations has not yet been determined on a large scale. A clinical cohort of 149 probands from Qatar with suspected Mendelian, mainly neurocognitive phenotypes, underwent CES from July 2012 to June 2014. Intellectual disability and global developmental delay were the most common clinical presentations but our cohort displayed other phenotypes, such as epilepsy, dysmorphism, microcephaly and other structural brain anomalies and autism. A pathogenic or likely pathogenic mutation, including pathogenic CNVs, was identified in 89 probands for a diagnostic yield of 60%. Consanguinity and positive family history predicted a higher diagnostic yield. In 5% (7/149) of cases, CES implicated novel candidate disease genes (MANF, GJA9, GLG1, COL15A1, SLC35F5, MAGE4, NEUROG1). CES uncovered two coexisting genetic disorders in 4% (6/149) and actionable incidental findings in 2% (3/149) of cases. Average time to diagnosis was reduced from 27 to 5 months. CES, which already has the highest diagnostic yield among all available diagnostic tools in the setting of Mendelian disorders, appears to be particularly helpful diagnostically in the highly consanguineous Middle Eastern population.

  13. Photosynthesis of the flag leaf blade and its sheath in high-yielding hybrid rice 'Liangyoupeijiu'.

    Science.gov (United States)

    Guo, Zhao-Wu; Li, He-Song; Wang, Ruo-Zhong; Xiao, Lang-Tao

    2007-12-01

    Using high-yielding hybrid rice 'Liangyoupeijiu' (LYP9) and hybrid rice 'Shanyou 63' (SY63) as the experimental materials and using (14)C radio-autography, the photosynthetic capacities and distribution of photosynthates in flag leaf blades and sheaths of LYP9 were studied. The results showed that net photosynthetic rates (Pn) of the flag leaf blades and sheaths of LYP9 were much higher than those of SY63; the light transmissivity rates (LT) measured at the medium height of the flag leaf sheaths and the penultimate leaf sheaths were also significantly higher than those of SY63. The incipient activities, total activities and activation percentages of Rubisco in the flag leaf blade and sheath of LYP9 were all higher than those of SY63. The photosynthate transport rate in the sheaths of LYP9, and the quantity of photosynthate transported to the spikes and transformed to economic yield of LYP9 were all higher than those of SY63. The photosynthates produced by the sheaths were mainly transported to spike to make a certain contribution (about 15%) to yield.

  14. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    Science.gov (United States)

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.

  15. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    Science.gov (United States)

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial

  16. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.

    Science.gov (United States)

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A

    2015-11-01

    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change. © 2015 John Wiley & Sons Ltd.

  17. Registration of a High Yielding Malt Barley Variety HB1454 for the ...

    African Journals Online (AJOL)

    else

    Registration of a High Yielding Malt Barley Variety. HB1454 for the Potential Highlands of Ethiopia. Berhane Lakew and Wondimu Fekadu. EIAR, Holetta Research Center, P O Box- 2003, Addis Ababa. አህፅርኦት. ኤች ቢ1454 የተባሇው ባሇሁሇት መስመር የብቅል ገብስ ዝርያ የተመዘገበበት ስም EH 1847/F4.2P.5.2). ሲሆን በሆሇታ ...

  18. Engineering of High Yield Production of L-serine in Escherichia coli

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre

    2016-01-01

    L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E. coli MG1655 was prevented.......3 g/L. The production strain was therefore evolved by random mutagenesis to achieve increased tolerance towards serine. Additionally, overexpression of eamA, a cysteine/homoserine transporter was demonstrated to increase serine tolerance from 1.6 g/L to 25 g/L. During fed batch fermentation...

  19. RNA isolation from loquat and other recalcitrant woody plants with high quality and yield.

    Science.gov (United States)

    Morante-Carriel, Jaime; Sellés-Marchart, Susana; Martínez-Márquez, Ascensión; Martínez-Esteso, María José; Luque, Ignacio; Bru-Martínez, Roque

    2014-05-01

    RNA isolation is difficult in plants that contain large amounts of polysaccharides and polyphenol compounds. To date, no commercial kit has been developed for the isolation of high-quality RNA from tissues with these characteristics, especially for fruit. The common protocols for RNA isolation are tedious and usually result in poor yields when applied to recalcitrant plant tissues. Here an efficient RNA isolation protocol based on cetyltrimethylammonium bromide (CTAB) and two successive precipitations with 10 M lithium chloride (LiCl) was developed specifically for loquat fruits, but it was proved to work efficiently in other tissues of loquat and woody plants. The RNA isolated by this improved protocol was not only of high purity and integrity (A260/A280 ratios ranged from 1.90 to 2.04 and A260/A230 ratios were>2.0) but also of high yield (up to 720 μg on average [coefficient of variation=21%] total RNA per gram fresh tissue). The protocol was tested on loquat fruit (different stages of development, postharvest, ripening, and bruising), leaf, root, flower, stem, and bud; quince fruit and root; grapevine cells in liquid culture; and rose petals. The RNA obtained with this method is amenable to enzymatic treatments and can be efficiently applied for research on gene characterization, expression, and function. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. High-scale yield of nano hydroxyapatite through combination of mechanical activation and chemical dispersion.

    Science.gov (United States)

    Gao, Xueling; Dai, Chunchu; Liu, Weiwei; Liu, Yumei; Shen, Ru; Zheng, Xiaotong; Duan, Ke; Weng, Jie; Qu, Shuxin

    2017-06-01

    The aim of this study is to develop a simple, convenient and effective approach to synthesize nano-sized hydroxyapatite (nano-HA) at high-scale yield. Nano-HA was wet synthesized in the presence or absence of alendronate sodium (ALN), one of bisphosphonates for anti-osteoporotic. Then aged and washed nano-HA precipitate was directly treated by mechanical activation combined with the chemical dispersion of ALN to prevent the agglomeration of nano-HA. ALN acted not only as a chemical dispersant but also as an orthopedic drug. In vitro release showed that ALN was released slowly from nano-HA. Transmission electron microscopy (TEM) revealed that nano-HA with size less than 100 nm appeared as single particle after being treated by mechanical activation combined with the dispersion of ALN (AMA-HA and MA-HA). High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) confirmed that as-prepared nanoparticles were HA with low crystallinity and crystallite size. Fourier transform infrared spectroscopy (FTIR) indicated that the phosphonate groups in ALN were introduced to bond with the Ca2+ of HA to impede the growth of HA crystal. Zeta potential illustrated that the absolute value of surface negative charge of nano-HA increased significantly with the addition of ALN, which inhibited the agglomeration of nano-HA. The present approach makes it feasible to produce nano-HA at high-scale yield, which provide the possibility to construct bone graft.

  1. The effect of dha omega-3 feeding in the high yielding holstein herd

    Directory of Open Access Journals (Sweden)

    Juraj Karcol

    2017-01-01

    Full Text Available The aim of this study was to analyse the effect of supplementary feeding of DHA (Docosahexaenoic Acid rich algae product (Algae STM Alltech Inc. on production of milk, fat and protein as well as on reproduction of high yielding Holstein dairy herd. Field trial was set up on Top 10 dairy farm in western part of Slovakia, under commercial conditions. The data of high yielding dairy cows, separated in two groups of 30 (control and 29 (trial animals, were recorded for period of 3 subsequent months from October to December 2015. Animals were fed once a day Total Mixed Ration based diet with different feed mixture composition in trial group (+100 g Algae STM Alltech Inc. per cow and day. Performance data were collected in accordance with official milk recording system of Breeding Services of Slovak Republic s. e. and milk samples were collected once per month according to the A4 standard methodology. The control group showed higher level of milk production compared to trial. Our study indicated that the feeding of algae caused milk fat depression and generally lower protein content in milk. Significant impact of algae feeding was found also for the level of urea in milk. In addition, the supplementary feeding of DHA may represent effective strategy to increase the percentage of pregnancies per inseminations in lactating dairy cows.

  2. Yield gains of coffee plants from phosphorus fertilization may not be generalized for high density planting

    Directory of Open Access Journals (Sweden)

    Samuel Vasconcelos Valadares

    2014-06-01

    Full Text Available Inconclusive responses of the adult coffee plant to phosphorus fertilization have been reported in the literature, especially when dealing with application of this nutrient in high density planting systems. Thus, this study was carried out for the purpose of assessing the response of adult coffee plants at high planting density in full production (in regard to yield and their biennial cycle/stability to the addition of different sources and application rates of P in the Zona da Mata region of Minas Gerais, Brazil. The experiment with coffee plants of the Catucaí Amarelo 6/30 variety was carried out over four growing seasons. Treatments were arranged in a full factorial design [(4 × 3 + 1] consisting of four P sources (monoammonium phosphate, simple superphosphate, natural reactive rock phosphate from Algeria (Djebel-Onk, and FH 550®, three P rates (100, 200, and 400 kg ha-1 year-1 of P2O5, and an additional treatment without application of the nutrient (0 kg ha-¹ year-¹. A randomized block experimental design was used with three replicates. The four seasons were evaluated as subplots in a split plot experiment. The P contents in soil and leaves increased with increased rates of P application. However, there was no effect from P application on the yield and its biennial cycle/stability regardless of the source used over the four seasons assessed.

  3. OPERATIONAL CHALLENGES IN MIXING AND TRANSFER OF HIGH YIELD STRESS SLUDGE WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, T.; Bhatt, P.

    2009-12-07

    The ability to mobilize and transport non-Newtonian waste is essential to advance the closure of highly radioactive storage tanks. Recent waste removal operations from Tank 12H at the Savannah River Site (SRS) encountered sludge mixtures with a yield stress too high to pump. The waste removal equipment for Tank 12H was designed to mobilize and transport a diluted slurry mixture through an underground 550m long (1800 ft) 0.075m diameter (3 inch) pipeline. The transfer pump was positioned in a well casing submerged in the sludge slurry. The design allowed for mobilized sludge to enter the pump suction while keeping out larger tank debris. Data from a similar tank with known rheological properties were used to size the equipment. However, after installation and startup, field data from Tank 12H confirmed the yield stress of the slurry to exceed 40 Pa, whereas the system is designed for 10 Pa. A revision to the removal strategy was required, which involved metered dilution, blending, and mixing to ensure effective and safe transfer performance. The strategy resulted in the removal of over 255,000 kgs of insoluble solids with four discrete transfer evolutions for a total transfer volume of 2400 m{sup 3} (634,000 gallons) of sludge slurry.

  4. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation.

    Science.gov (United States)

    Cunniff, Jennifer; Purdy, Sarah J; Barraclough, Tim J P; Castle, March; Maddison, Anne L; Jones, Laurence E; Shield, Ian F; Gregory, Andrew S; Karp, Angela

    2015-09-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation.

  5. Construction of a Shuttle Vector for Heterologous Expression of a Novel Fungal α-Amylase Gene in Aspergillus oryzae.

    Science.gov (United States)

    Yin, Yanchen; Mao, Youzhi; Yin, Xiaolie; Gao, Bei; Wei, Dongzhi

    2015-07-01

    The filamentous fungus Aspergillus oryzae is a well-known expression host used to express homologous and heterologous proteins in a number of industrial applications. To facilitate higher yields of proteins of interest, we constructed the pAsOP vector to express heterologous proteins in A. oryzae. pAsOP carries a selectable marker, pyrG, derived from Aspergillus nidulans, and a strong promoter and a terminator of the amyB gene derived from A. oryzae. pAsOP transformed A. oryzae efficiently via the PEG-CaCl2-mediated transformation method. As proof of concept, green fluorescent protein (GFP) was successfully expressed in A. oryzae transformed by pAsOP-GFP. Additionally, we identified a novel fungal α-amylase (PcAmy) gene from Penicillium sp. and cloned the gene into the vector. After transformation by pAsOPPcAmy, the α-amylase PcAmy from Penicillium sp. was successfully expressed in a heterologous host system for the first time. The α-amylase activity in the A. oryzae transformant was increased by 62.3% compared with the untransformed A. oryzae control. The PcAmy protein produced in the system had an optimum pH of 5.0 and optimum temperature of 30°C. As a cold-adapted enzyme, PcAmy shows potential value in industrial applications because of its high catalytic activity at low temperature. Furthermore, the expression vector reported in this study provides promising utility for further scientific research and biotechnological applications.

  6. Heterologous Protein Expression by Lactococcus lactis

    NARCIS (Netherlands)

    Villatoro-Hernández, J.; Kuipers, O.P.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.

    2012-01-01

    This chapter describes the use of Lactococcus lactis as a safe and efficient cell factory to produce heterologous proteins of medical interest. The relevance of the use of this lactic acid bacterium (LAB) is that it is a noncolonizing, nonpathogenic microorganism that can be delivered in vivo at a

  7. Combined strategies for the improvement of heterologous ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... The N-terminal histidine-tag brought convenience to purification. The molecular weight of His6-YlLip2 was about 38 ... Lip2 with an N-terminal of histidine-tag; PTM1, Pichia trace metals. pharmaceuticals and energy ... disadvantage to the purification process of YlLip2. In contrast, heterologous expression of ...

  8. Heterologous transporter expression for improved fatty alcohol secretion in yeast

    DEFF Research Database (Denmark)

    Hu, Yating; Zhu, Zhiwei; Nielsen, Jens

    2017-01-01

    The yeast Saccharomyces cerevisiae is an attractive host for industrial scale production of biofuels including fatty alcohols due to its robustness and tolerance towards harsh fermentation conditions. Many metabolic engineering strategies have been applied to generate high fatty alcohol production...... strains. However, impaired growth caused by fatty alcohol accumulation and high cost of extraction are factors limiting large-scale production. Here, we demonstrate that the use of heterologous transporters is a promising strategy to increase fatty alcohol production. Among several plant and mammalian...

  9. High-Yield Synthesis of Helical Carbon Nanofibers Using Iron Oxide Fine Powder as a Catalyst

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Suda

    2015-01-01

    Full Text Available Carbon nanocoil (CNC, which is synthesized by a catalytic chemical vapor deposition (CCVD method, has a coil diameter of 300–900 nm and a length of several tens of μm. Although it is very small, CNC is predicted to have a high mechanical strength and hence is expected to have a use in nanodevices such as electromagnetic wave absorbers and field emitters. For nanodevice applications, it is necessary to synthesize CNC in high yield and purity. In this study, we improved the conditions of catalytic layer formation and CCVD. Using optimized CVD conditions, a CNC layer with a thickness of >40 μm was grown from a SnO2/Fe2O3/SnO2 catalyst on a substrate, and its purity increased to 81% ± 2%.

  10. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  11. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  12. Functionally Active Fc Mutant Antibodies Recognizing Cancer Antigens Generated Rapidly at High Yields

    Directory of Open Access Journals (Sweden)

    Kristina M. Ilieva

    2017-09-01

    Full Text Available Monoclonal antibodies find broad application as therapy for various types of cancer by employing multiple mechanisms of action against tumors. Manipulating the Fc-mediated functions of antibodies that engage immune effector cells, such as NK cells, represents a strategy to influence effector cell activation and to enhance antibody potency and potentially efficacy. We developed a novel approach to generate and ascertain the functional attributes of Fc mutant monoclonal antibodies. This entailed coupling single expression vector (pVitro1 antibody cloning, using polymerase incomplete primer extension (PIPE polymerase chain reaction, together with simultaneous Fc region point mutagenesis and high yield transient expression in human mammalian cells. Employing this, we engineered wild type, low (N297Q, NQ, and high (S239D/I332E, DE FcR-binding Fc mutant monoclonal antibody panels recognizing two cancer antigens, HER2/neu and chondroitin sulfate proteoglycan 4. Antibodies were generated with universal mutagenic primers applicable to any IgG1 pVitro1 constructs, with high mutagenesis and transfection efficiency, in small culture volumes, at high yields and within 12 days from design to purified material. Antibody variants conserved their Fab-mediated recognition of target antigens and their direct anti-proliferative effects against cancer cells. Fc mutations had a significant impact on antibody interactions with Fc receptors (FcRs on human NK cells, and consequently on the potency of NK cell activation, quantified by immune complex-mediated calcium mobilization and by antibody-dependent cellular cytotoxicity (ADCC of tumor cells. This strategy for manipulation and testing of Fc region engagement with cognate FcRs can facilitate the design of antibodies with defined effector functions and potentially enhanced efficacy against tumor cells.

  13. Variation in Yield Responses to Elevated CO2 and a Brief High Temperature Treatment in Quinoa

    Science.gov (United States)

    Bunce, James A.

    2017-01-01

    Intraspecific variation in crop responses to global climate change conditions would provide opportunities to adapt crops to future climates. These experiments explored intraspecific variation in response to elevated CO2 and to high temperature during anthesis in Chenopodium quinoa Wild. Three cultivars of quinoa were grown to maturity at 400 (“ambient”) and 600 (“elevated”) μmol·mol−1 CO2 concentrations at 20/14 °C day/night (“control”) temperatures, with or without exposure to day/night temperatures of 35/29 °C (“high” temperatures) for seven days during anthesis. At control temperatures, the elevated CO2 concentration increased the total aboveground dry mass at maturity similarly in all cultivars, but by only about 10%. A large down-regulation of photosynthesis at elevated CO2 occurred during grain filling. In contrast to shoot mass, the increase in seed dry mass at elevated CO2 ranged from 12% to 44% among cultivars at the control temperature. At ambient CO2, the week-long high temperature treatment greatly decreased (0.30 × control) or increased (1.70 × control) seed yield, depending on the cultivar. At elevated CO2, the high temperature treatment increased seed yield moderately in all cultivars. These quinoa cultivars had a wide range of responses to both elevated CO2 and to high temperatures during anthesis, and much more variation in harvest index responses to elevated CO2 than other crops that have been examined. PMID:28678208

  14. Variation in Yield Responses to Elevated CO2 and a Brief High Temperature Treatment in Quinoa

    Directory of Open Access Journals (Sweden)

    James A. Bunce

    2017-07-01

    Full Text Available Intraspecific variation in crop responses to global climate change conditions would provide opportunities to adapt crops to future climates. These experiments explored intraspecific variation in response to elevated CO2 and to high temperature during anthesis in Chenopodium quinoa Wild. Three cultivars of quinoa were grown to maturity at 400 (“ambient” and 600 (“elevated” μmol·mol−1 CO2 concentrations at 20/14 °C day/night (“control” temperatures, with or without exposure to day/night temperatures of 35/29 °C (“high” temperatures for seven days during anthesis. At control temperatures, the elevated CO2 concentration increased the total aboveground dry mass at maturity similarly in all cultivars, but by only about 10%. A large down-regulation of photosynthesis at elevated CO2 occurred during grain filling. In contrast to shoot mass, the increase in seed dry mass at elevated CO2 ranged from 12% to 44% among cultivars at the control temperature. At ambient CO2, the week-long high temperature treatment greatly decreased (0.30 × control or increased (1.70 × control seed yield, depending on the cultivar. At elevated CO2, the high temperature treatment increased seed yield moderately in all cultivars. These quinoa cultivars had a wide range of responses to both elevated CO2 and to high temperatures during anthesis, and much more variation in harvest index responses to elevated CO2 than other crops that have been examined.

  15. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis.

    Science.gov (United States)

    Liu, Jianming; Wang, Zhihao; Kandasamy, Vijayalakshmi; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2017-11-01

    When modifying the metabolism of living organisms with the aim of achieving biosynthesis of useful compounds, it is essential to ensure that it is possible to achieve overall redox balance. We propose a generalized strategy for this, based on fine-tuning of respiration. The strategy was applied on metabolically engineered Lactococcus lactis strains to optimize the production of acetoin and (R,R)-2,3-butanediol (R-BDO). In the absence of an external electron acceptor, a surplus of two NADH per acetoin molecule is produced. We found that a fully activated respiration was able to efficiently regenerate NAD+, and a high titer of 371mM (32g/L) of acetoin was obtained with a yield of 82% of the theoretical maximum. Subsequently, we extended the metabolic pathway from acetoin to R-BDO by introducing the butanediol dehydrogenase gene from Bacillus subtilis. Since one mole of NADH is consumed when acetoin is converted into R-BDO per mole, only the excess of NADH needs to be oxidized via respiration. Either by fine-tuning the respiration capacity or by using a dual-phase fermentation approach involving a switch from fully respiratory to non-respiratory conditions, we obtained 361mM (32g/L) R-BDO with a yield of 81% or 365mM (33g/L) with a yield of 82%, respectively. These results demonstrate the great potential in using finely-tuned respiration machineries for bio-production. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. High-yield extraction of Escherichia coli RNA from human whole blood.

    Science.gov (United States)

    Brennecke, Johannes; Kraut, Simone; Zwadlo, Klara; Gandi, Senthil Kumar; Pritchard, David; Templeton, Kate; Bachmann, Till

    2017-03-01

    Studies of bacterial transcriptomics during bloodstream infections are limited to-date because unbiased extraction of bacterial mRNA from whole blood in sufficient quantity and quality has proved challenging. Problems include the high excess of human cells, the presence of PCR inhibitors and the short intrinsic half-life of bacterial mRNA. This study aims to provide a framework for the choice of the most suitable sample preparation method. Escherichia coli cells were spiked into human whole blood and the bacterial gene expression was stabilized with RNAprotect either immediately or after lysis of the red blood cells with Triton X-100, saponin, ammonium chloride or the commercial MolYsis buffer CM. RNA yield, purity and integrity were assessed by absorbance measurements at 260 and 280 nm, real-time PCR and capillary electrophoresis. For low cell numbers, the best mRNA yields were obtained by adding the commercial RNAprotect reagent directly to the sample without prior lyses of the human blood cells. Using this protocol, significant amounts of human RNA were co-purified, however, this had a beneficial impact on the yields of bacterial mRNA. Among the tested lysis agents, Triton X-100 was the most effective and reduced the human RNA background by three to four orders of magnitude. For most applications, lysis of the human blood cells is not required. However, co-purified human RNA may interfere with some downstream processes such as RNA sequencing. In this case, blood cell lysis with Triton X-100 is desirable.

  17. Future consequences of decreasing marginal production efficiency in the high-yielding dairy cow.

    Science.gov (United States)

    Moallem, U

    2016-04-01

    The objectives were to examine the gross and marginal production efficiencies in high-yielding dairy cows and the future consequences on dairy industry profitability. Data from 2 experiments were used in across-treatments analysis (n=82 mid-lactation multiparous Israeli-Holstein dairy cows). Milk yields, body weights (BW), and dry matter intakes (DMI) were recorded daily. In both experiments, cows were fed a diet containing 16.5 to 16.6% crude protein and net energy for lactation (NEL) at 1.61 Mcal/kg of dry matter (DM). The means of milk yield, BW, DMI, NEL intake, and energy required for maintenance were calculated individually over the whole study, and used to calculate gross and marginal efficiencies. Data were analyzed in 2 ways: (1) simple correlation between variables; and (2) cows were divided into 3 subgroups, designated low, moderate, and high DMI (LDMI, MDMI, and HDMI), according to actual DMI per day: ≤ 26 kg (n=27); >26 through 28.2 kg (n=28); and >28.2 kg (n=27). The phenotypic Pearson correlations among variables were analyzed, and the GLM procedure was used to test differences between subgroups. The relationships between milk and fat-corrected milk yields and the corresponding gross efficiencies were positive, whereas BW and gross production efficiency were negatively correlated. The marginal production efficiency from DM and energy consumed decreased with increasing DMI. The difference between BW gain as predicted by the National Research Council model (2001) and the present measurements increased with increasing DMI (r=0.68). The average calculated energy balances were 1.38, 2.28, and 4.20 Mcal/d (standard error of the mean=0.64) in the LDMI, MDMI, and HDMI groups, respectively. The marginal efficiency for milk yields from DMI or energy consumed was highest in LDMI, intermediate in MDMI, and lowest in HDMI. The predicted BW gains for the whole study period were 22.9, 37.9, and 75.8 kg for the LDMI, MDMI, and HDMI groups, respectively. The

  18. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013

  19. Mixed models for selection of Jatropha progenies with high adaptability and yield stability in Brazilian regions.

    Science.gov (United States)

    Teodoro, P E; Bhering, L L; Costa, R D; Rocha, R B; Laviola, B G

    2016-08-19

    The aim of this study was to estimate genetic parameters via mixed models and simultaneously to select Jatropha progenies grown in three regions of Brazil that meet high adaptability and stability. From a previous phenotypic selection, three progeny tests were installed in 2008 in the municipalities of Planaltina-DF (Midwest), Nova Porteirinha-MG (Southeast), and Pelotas-RS (South). We evaluated 18 families of half-sib in a randomized block design with three replications. Genetic parameters were estimated using restricted maximum likelihood/best linear unbiased prediction. Selection was based on the harmonic mean of the relative performance of genetic values method in three strategies considering: 1) performance in each environment (with interaction effect); 2) performance in each environment (with interaction effect); and 3) simultaneous selection for grain yield, stability and adaptability. Accuracy obtained (91%) reveals excellent experimental quality and consequently safety and credibility in the selection of superior progenies for grain yield. The gain with the selection of the best five progenies was more than 20%, regardless of the selection strategy. Thus, based on the three selection strategies used in this study, the progenies 4, 11, and 3 (selected in all environments and the mean environment and by adaptability and phenotypic stability methods) are the most suitable for growing in the three regions evaluated.

  20. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells

    Science.gov (United States)

    Amoroso, Mackenzie W.; Croft, Gist F.; Williams, Damian J.; O’Keeffe, Sean; Carrasco, Monica A.; Davis, Anne R.; Roybon, Laurent; Oakley, Derek H.; Maniatis, Tom; Henderson, Christopher E.; Wichterle, Hynek

    2013-01-01

    Human pluripotent stem cells are a promising source of differentiated cells for developmental studies, cell transplantation, disease modeling, and drug testing. However, their widespread use even for intensely studied cell types like spinal motor neurons is hindered by the long duration and low yields of existing protocols for in vitro differentiation and by the molecular heterogeneity of the populations generated. We report a combination of small molecules that within 3 weeks induce motor neurons at up to 50% abundance and with defined subtype identities of relevance to neurodegenerative disease. Despite their accelerated differentiation, motor neurons expressed combinations of HB9, ISL1 and column-specific markers that mirror those observed in vivo in human fetal spinal cord. They also exhibited spontaneous and induced activity, and projected axons towards muscles when grafted into developing chick spinal cord. Strikingly, this novel protocol preferentially generates motor neurons expressing markers of limb-innervating lateral motor column motor neurons (FOXP1+/LHX3−). Access to high-yield cultures of human limb-innervating motor neuron subtypes will facilitate in-depth study of motor neuron subtype-specific properties, disease modeling, and development of large-scale cell-based screening assays. PMID:23303937

  1. Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin's lymphoma.

    Science.gov (United States)

    Bendandi, M; Marillonnet, S; Kandzia, R; Thieme, F; Nickstadt, A; Herz, S; Fröde, R; Inogés, S; Lòpez-Dìaz de Cerio, A; Soria, E; Villanueva, H; Vancanneyt, G; McCormick, A; Tusé, D; Lenz, J; Butler-Ransohoff, J-E; Klimyuk, V; Gleba, Y

    2010-12-01

    Animal and clinical studies with plant-produced single-chain variable fragment lymphoma vaccines have demonstrated specific immunogenicity and safety. However, the expression levels of such fragments were highly variable and required complex engineering of the linkers. Moreover, the downstream processing could not be built around standard methods like protein A affinity capture. We report a novel vaccine manufacturing process, magnifection, devoid of the above-mentioned shortcomings and allowing consistent and efficient expression in plants of whole immunoglobulins (Igs). Full idiotype (Id)-containing IgG molecules of 20 lymphoma patients and 2 mouse lymphoma models were expressed at levels between 0.5 and 4.8 g/kg of leaf biomass. Protein A affinity capture purification yielded antigens of pharmaceutical purity. Several patient Igs produced in plants showed specific cross-reactivity with sera derived from the same patients immunized with hybridoma-produced Id vaccine. Mice vaccinated with plant- or hybridoma-produced Igs showed comparable protection levels in tumor challenge studies. This manufacturing process is reliable and robust, the manufacturing time from biopsy to vaccine is antibodies in plants, providing 50- to 1000-fold higher yields than alternative plant expression methods.

  2. The yield of high-detail radiographic skeletal surveys in suspected infant abuse.

    Science.gov (United States)

    Barber, Ignasi; Perez-Rossello, Jeannette M; Wilson, Celeste R; Kleinman, Paul K

    2015-01-01

    Skeletal surveys are routinely performed in cases of suspected child abuse, but there are limited data regarding the yield of high-detail skeletal surveys in infants. To determine the diagnostic yield of high-detail radiographic skeletal surveys in suspected infant abuse. We reviewed the high-detail American College of Radiology standardized skeletal surveys performed for suspected abuse in 567 infants (median: 4.4 months, SD 3.47; range: 4 days-12 months) at a large urban children's hospital between 2005 and 2013. Skeletal survey images, radiology reports and medical records were reviewed. A skeletal survey was considered positive when it showed at least one unsuspected fracture. In 313 of 567 infants (55%), 1,029 definite fractures were found. Twenty-one percent (119/567) of the patients had a positive skeletal survey with a total of 789 (77%) unsuspected fractures. Long-bone fractures were the most common injuries, present in 145 children (26%). The skull was the site of fracture in 138 infants (24%); rib cage in 77 (14%), clavicle in 24 (4.2%) and uncommon fractures (including spine, scapula, hands and feet and pelvis) were noted in 26 infants (4.6%). Of the 425 infants with neuroimaging, 154 (36%) had intracranial injury. No significant correlation between positive skeletal survey and associated intracranial injury was found. Scapular fractures and complex skull fractures showed a statistically significant correlation with intracranial injury (P = 0.029, P = 0.007, respectively). Previously unsuspected fractures are noted on skeletal surveys in 20% of cases of suspected infant abuse. These data may be helpful in the design and optimization of global skeletal imaging in this vulnerable population.

  3. The yield of high-detail radiographic skeletal surveys in suspected infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Ignasi [Hospital Vall d' Hebron, Universitat Autonoma de Barcelona, Pediatric Radiology Department, Barcelona (Spain); Perez-Rossello, Jeannette M.; Kleinman, Paul K. [Boston Children' s Hospital, Radiology Department, Boston, MA (United States); Wilson, Celeste R. [Boston Children' s Hospital, Division of General Pediatrics, Boston, MA (United States)

    2014-07-06

    Skeletal surveys are routinely performed in cases of suspected child abuse, but there are limited data regarding the yield of high-detail skeletal surveys in infants. To determine the diagnostic yield of high-detail radiographic skeletal surveys in suspected infant abuse. We reviewed the high-detail American College of Radiology standardized skeletal surveys performed for suspected abuse in 567 infants (median: 4.4 months, SD 3.47; range: 4 days-12 months) at a large urban children's hospital between 2005 and 2013. Skeletal survey images, radiology reports and medical records were reviewed. A skeletal survey was considered positive when it showed at least one unsuspected fracture. In 313 of 567 infants (55%), 1,029 definite fractures were found. Twenty-one percent (119/567) of the patients had a positive skeletal survey with a total of 789 (77%) unsuspected fractures. Long-bone fractures were the most common injuries, present in 145 children (26%). The skull was the site of fracture in 138 infants (24%); rib cage in 77 (14%), clavicle in 24 (4.2%) and uncommon fractures (including spine, scapula, hands and feet and pelvis) were noted in 26 infants (4.6%). Of the 425 infants with neuroimaging, 154 (36%) had intracranial injury. No significant correlation between positive skeletal survey and associated intracranial injury was found. Scapular fractures and complex skull fractures showed a statistically significant correlation with intracranial injury (P = 0.029, P = 0.007, respectively). Previously unsuspected fractures are noted on skeletal surveys in 20% of cases of suspected infant abuse. These data may be helpful in the design and optimization of global skeletal imaging in this vulnerable population. (orig.)

  4. Heterologous expression of leader-less pga gene in Pichia pastoris: intracellular production of prokaryotic enzyme.

    Science.gov (United States)

    Maresová, Helena; Marková, Zdena; Valesová, Renáta; Sklenár, Jan; Kyslík, Pavel

    2010-02-03

    Penicillin G acylase of Escherichia coli (PGAEc) is a commercially valuable enzyme for which efficient bacterial expression systems have been developed. The enzyme is used as a catalyst for the hydrolytic production of beta-lactam nuclei or for the synthesis of semi-synthetic penicillins such as ampicillin, amoxicillin and cephalexin. To become a mature, periplasmic enzyme, the inactive prepropeptide of PGA has to undergo complex processing that begins in the cytoplasm (autocatalytic cleavage), continues at crossing the cytoplasmic membrane (signal sequence removing), and it is completed in the periplasm. Since there are reports on impressive cytosolic expression of bacterial proteins in Pichia, we have cloned the leader-less gene encoding PGAEc in this host and studied yeast production capacity and enzyme authenticity. Leader-less pga gene encoding PGAEcunder the control of AOX1 promoter was cloned in Pichia pastoris X-33. The intracellular overproduction of heterologous PGAEc(hPGAEc) was evaluated in a stirred 10 litre bioreactor in high-cell density, fed batch cultures using different profiles of transient phases. Under optimal conditions, the average volumetric activity of 25900 U l-1 was reached. The hPGAEc was purified, characterized and compared with the wild-type PGAEc. The alpha-subunit of the hPGAEc formed in the cytosol was processed aberrantly resulting in two forms with C- terminuses extended to the spacer peptide. The enzyme exhibited modified traits: the activity of the purified enzyme was reduced to 49%, the ratios of hydrolytic activities with cephalexin, phenylacetamide or 6-nitro-3-phenylacetylamidobenzoic acid (NIPAB) to penicillin G increased and the enzyme showed a better synthesis/hydrolysis ratio for the synthesis of cephalexin. Presented results provide useful data regarding fermentation strategy, intracellular biosynthetic potential, and consequences of the heterologous expression of PGAEc in P. pastoris X-33. Aberrant processing of the

  5. Heterologous expression of leader-less pga gene in Pichia pastoris: intracellular production of prokaryotic enzyme

    Directory of Open Access Journals (Sweden)

    Kyslík Pavel

    2010-02-01

    Full Text Available Abstract Background Penicillin G acylase of Escherichia coli (PGAEc is a commercially valuable enzyme for which efficient bacterial expression systems have been developed. The enzyme is used as a catalyst for the hydrolytic production of β-lactam nuclei or for the synthesis of semi-synthetic penicillins such as ampicillin, amoxicillin and cephalexin. To become a mature, periplasmic enzyme, the inactive prepropeptide of PGA has to undergo complex processing that begins in the cytoplasm (autocatalytic cleavage, continues at crossing the cytoplasmic membrane (signal sequence removing, and it is completed in the periplasm. Since there are reports on impressive cytosolic expression of bacterial proteins in Pichia, we have cloned the leader-less gene encoding PGAEc in this host and studied yeast production capacity and enzyme authenticity. Results Leader-less pga gene encoding PGAEcunder the control of AOX1 promoter was cloned in Pichia pastoris X-33. The intracellular overproduction of heterologous PGAEc(hPGAEc was evaluated in a stirred 10 litre bioreactor in high-cell density, fed batch cultures using different profiles of transient phases. Under optimal conditions, the average volumetric activity of 25900 U l-1 was reached. The hPGAEc was purified, characterized and compared with the wild-type PGAEc. The α-subunit of the hPGAEc formed in the cytosol was processed aberrantly resulting in two forms with C- terminuses extended to the spacer peptide. The enzyme exhibited modified traits: the activity of the purified enzyme was reduced to 49%, the ratios of hydrolytic activities with cephalexin, phenylacetamide or 6-nitro-3-phenylacetylamidobenzoic acid (NIPAB to penicillin G increased and the enzyme showed a better synthesis/hydrolysis ratio for the synthesis of cephalexin. Conclusions Presented results provide useful data regarding fermentation strategy, intracellular biosynthetic potential, and consequences of the heterologous expression of PGAEc

  6. Modulating Endoplasmic Reticulum-Golgi Cargo Receptors for Improving Secretion of Carrier-Fused Heterologous Proteins in the Filamentous Fungus Aspergillus oryzae

    Science.gov (United States)

    Hoang, Huy-Dung; Maruyama, Jun-ichi

    2014-01-01

    Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi. PMID:25362068

  7. High-Yield Synthesis of Silver Nanoparticles by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    Y. D. Sosa

    2010-01-01

    Full Text Available Silver nanoparticles were precipitated at 70°C in a reverse microemulsion containing a high concentration of 0.5 M silver nitrate aqueous solution, toluene as organic phase, and a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, w/w. Nanoparticles were characterized by X-ray diffraction, atomic absorption spectroscopy, and high-resolution transmission electron microscopy. In spite of the high-water/surfactant molar ratio and concentration of silver nitrate solution used in this study, characterizations demonstrated that nanoparticles were silver crystals (purity >99% with 8.6–8.8 nm in average diameter and 2.9–4.7 nm in standard deviation. It is proposed that slow dosing rate of aqueous solution of precipitating agent and the small molecular volume of toluene attenuated both particle aggregation and polydispersity widening. Experimental yield of silver nanoparticles obtained in this study was much higher than theoretical yields calculated from available data in the literature on preparation of silver nanoparticles in reverse microemulsions.

  8. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  9. BRS FC402: high-yielding common bean cultivar with carioca grain, resistance to anthracnose and fusarium wilt

    Directory of Open Access Journals (Sweden)

    Leonardo Cunha Melo

    2016-12-01

    Full Text Available BRS FC402 is a common bean cultivar of the carioca-grain group with commercial grain quality, suitable for cultivation in 21 Brazilian states. Cultivar has a normal cycle (85-94 days, high yield potential (4479 kg ha-1, 10.1% higher mean yield than the controls (2462 kg ha-1 and resistance to fusarium wilt and anthracnose.

  10. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    Science.gov (United States)

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2017-06-21

    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to

  11. Molecular signature of high yield (growth influenza a virus reassortants prepared as candidate vaccine seeds.

    Directory of Open Access Journals (Sweden)

    Manojkumar Ramanunninair

    Full Text Available BACKGROUND: Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8, to provide the high yield reassortant (HYR viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA and neuraminidase (NA genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo. METHODOLOGY: The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2 and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry. RESULTS: Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA. SIGNIFICANCE: In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.

  12. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon.

    Science.gov (United States)

    Liu, Yanming; Quan, Xie; Fan, Xinfei; Wang, Hua; Chen, Shuo

    2015-06-01

    H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH 1-4 and >80.0% at pH 7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0 mmol L(-1) (2.5 h) and corresponding H2O2 production rates of 395.7-110.2 mmol h(-1)  g(-1) at pH 1-7 and -0.5 V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp(3)-C and defects, large surface area and fast mass transfer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Scalable and High-Yield Strategy for the Synthesis of Sequence-Defined Macromolecules.

    Science.gov (United States)

    Solleder, Susanne C; Zengel, Deniz; Wetzel, Katharina S; Meier, Michael A R

    2016-01-18

    The efficient synthesis of a sequence-defined decamer, its characterization, and its straightforward dimerization through self-metathesis are described. For this purpose, a monoprotected AB monomer was designed and used to synthesize a decamer bearing ten different and selectable side chains by iterative Passerini three-component reaction (P-3CR) and subsequent deprotection. The highly efficient procedure provided excellent yields and allows for the multigram-scale synthesis of such perfectly defined macromolecules. An olefin was introduced at the end of the synthesis, allowing the self-metathesis reaction of the resulting decamer to provide a sequence-defined 20-mer with a molecular weight of 7046.40 g mol(-1). The obtained oligomers were carefully characterized by NMR and IR spectroscopy, GPC and GPC coupled to ESI-MS, and mass spectrometry (FAB and orbitrap ESI-MS). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-yield self-limiting single-nanowire assembly with dielectrophoresis.

    Science.gov (United States)

    Freer, Erik M; Grachev, Oleg; Duan, Xiangfeng; Martin, Samuel; Stumbo, David P

    2010-07-01

    Single-crystal nanowire transistors and other nanowire-based devices could have applications in large-area and flexible electronics if conventional top-down fabrication techniques can be integrated with high-precision bottom-up nanowire assembly. Here, we extend dielectrophoretic nanowire assembly to achieve a 98.5% yield of single nanowires assembled over 16,000 patterned electrode sites with submicrometre alignment precision. The balancing of surface, hydrodynamic and dielectrophoretic forces makes the self-assembly process controllable, and a hydrodynamic force component makes it self-limiting. Our approach represents a methodology to quantify nanowire assembly, and makes single nanowire assembly possible over an area limited only by the ability to reproduce process conditions uniformly.

  15. Novel fully-BODIPY functionalized cyclotetraphosphazene photosensitizers having high singlet oxygen quantum yields

    Science.gov (United States)

    Şenkuytu, Elif; Eçik, Esra Tanrıverdi

    2017-07-01

    Novel fully-BODIPY functionalized dendrimeric cyclotetraphosphazenes (FBCP 1 and 2) have been synthesized and characterized by 1H, 13C and 31P NMR spectroscopies. The photophysical and photochemical properties of FBCP 1 and 2 are investigated in dichloromethane solution. The effectiveness of singlet oxygen generation was measured for FBCP 1 and 2 by UV-Vis spectra monitoring of the solution of 1,3-diphenylisobenzofuran (DPBF), which is a well-known trapping molecule used in detection of singlet oxygen. FBCP 1 and 2 show high molar extinction coefficients in the NIR region, good singlet oxygen quantum yields and appropriate photo degradation. The data presented in the work indicate that the dendrimeric cyclotetraphosphazenes are effective singlet oxygen photosensitizers that might be used for various areas of applications such as photodynamic therapy and photocatalysis.

  16. Improvement of production of high-yield poplar varieties seedlings by mycorrhiza application

    Directory of Open Access Journals (Sweden)

    Galić Zoran A.

    2007-01-01

    Full Text Available Research related to the effects of treatment by mycorrhiza preparations Ectovit, Rhodovit (preparations Symbio-m Ltd., Czech Rep. and their combination on growth of four high-yield poplar clones of Populus deltoides and one variety of Populus x euramericana are presented in this paper. In order to make more accurate assessment of mycorrhiza effect, soil characteristics such as morphology, texture and chemical composition were determined. The study results indicate that mycorrhized cuttings had the same or the better survival in all the study clones compared to the control. The application of the preparation Ectovit and Rhodovit resulted averagely in the first class planting stock of all the study clones. The combination of the preparations Ectovit and Rhodovit produced averagely the first class planting stock only of the clone Populus x euramericana.

  17. High-yield Synthesis of Multiwalled Carbon Nanotube by Mechanothermal Method

    Directory of Open Access Journals (Sweden)

    Manafi SA

    2009-01-01

    Full Text Available Abstract This study reports on the mechanothermal synthesis of multiwalled carbon nanotube (MWCNTs from elemental graphite powder. Initially, high ultra-active graphite powder can be obtained by mechanical milling under argon atmosphere. Finally, the mechanical activation product is heat-treated at 1350°C for 2–4 h under argon gas flow. After heat-treatment, active graphite powders were successfully changed into MWCNTs with high purity. The XRD analyses showed that in the duration 150 h of milling, all the raw materials were changed to the desired materials. From the broadening of the diffraction lines in the XRD patterns, it was concluded that the graphite crystallites were nanosized, and raising the milling duration resulted in the fineness of the particles and the increase of the strain. The structure and morphology of MWCNTs were investigated using scanning electron microscopy (SEM and high-resolution transmission electron microscopy (HRTEM. The yield of MWCNTs was estimated through SEM and TEM observations of the as-prepared samples was to be about 90%. Indeed, mechanothermal method is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanotubes (CNTs. As a matter of fact, the method of mechanothermal guarantees the production of MWCNTs suitable for different applications.

  18. High-yield Synthesis of Multiwalled Carbon Nanotube by Mechanothermal Method

    Science.gov (United States)

    Manafi, S. A.; Amin, M. H.; Rahimipour, M. R.; Salahi, E.; Kazemzadeh, A.

    2009-04-01

    This study reports on the mechanothermal synthesis of multiwalled carbon nanotube (MWCNTs) from elemental graphite powder. Initially, high ultra-active graphite powder can be obtained by mechanical milling under argon atmosphere. Finally, the mechanical activation product is heat-treated at 1350°C for 2-4 h under argon gas flow. After heat-treatment, active graphite powders were successfully changed into MWCNTs with high purity. The XRD analyses showed that in the duration 150 h of milling, all the raw materials were changed to the desired materials. From the broadening of the diffraction lines in the XRD patterns, it was concluded that the graphite crystallites were nanosized, and raising the milling duration resulted in the fineness of the particles and the increase of the strain. The structure and morphology of MWCNTs were investigated using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The yield of MWCNTs was estimated through SEM and TEM observations of the as-prepared samples was to be about 90%. Indeed, mechanothermal method is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanotubes (CNTs). As a matter of fact, the method of mechanothermal guarantees the production of MWCNTs suitable for different applications.

  19. A High Yield and Cost-efficient Expression System of Human Granzymes in Mammalian Cells.

    Science.gov (United States)

    Dotiwala, Farokh; Fellay, Isabelle; Filgueira, Luis; Martinvalet, Denis; Lieberman, Judy; Walch, Michael

    2015-06-10

    When cytotoxic T lymphocytes (CTL) or natural killer (NK) cells recognize tumor cells or cells infected with intracellular pathogens, they release their cytotoxic granule content to eliminate the target cells and the intracellular pathogen. Death of the host cells and intracellular pathogens is triggered by the granule serine proteases, granzymes (Gzms), delivered into the host cell cytosol by the pore forming protein perforin (PFN) and into bacterial pathogens by the prokaryotic membrane disrupting protein granulysin (GNLY). To investigate the molecular mechanisms of target cell death mediated by the Gzms in experimental in-vitro settings, protein expression and purification systems that produce high amounts of active enzymes are necessary. Mammalian secreted protein expression systems imply the potential to produce correctly folded, fully functional protein that bears posttranslational modification, such as glycosylation. Therefore, we used a cost-efficient calcium precipitation method for transient transfection of HEK293T cells with human Gzms cloned into the expression plasmid pHLsec. Gzm purification from the culture supernatant was achieved by immobilized nickel affinity chromatography using the C-terminal polyhistidine tag provided by the vector. The insertion of an enterokinase site at the N-terminus of the protein allowed the generation of active protease that was finally purified by cation exchange chromatography. The system was tested by producing high levels of cytotoxic human Gzm A, B and M and should be capable to produce virtually every enzyme in the human body in high yields.

  20. Does high yield spread dampen economic growth? : the case of US-Japan

    Directory of Open Access Journals (Sweden)

    Yutaka Kurihara

    2014-04-01

    Full Text Available This article focuses on the relationship between the United States' and Japan's yield spread of interest rates and economic growth in Japan. The yield spread is defined in this article as the difference between the Japanese government bond yield minus the US government bond yield. Some studies have tackled this issue and found a negative relationship between the yield spread and economic growth; however, recent studies have shown no or a weak relationship. This problem has not yet consensus in spite of its importance. As the Japanese interest rate has been quite low since the adoption of the zero interest rate policy at the end of 1990s, the situation may change the results. The empirical results show that reliability of yield spread as a leading indicator of output growth exists in Japan; however, term structure of interest rate is not related to economic growth.

  1. Single-step, high yield synthesis of gold nanoworms and their surface enhanced Raman scattering properties

    Science.gov (United States)

    Ahmed, Waqqar; van Ruitenbeek, Jan M.

    Rod-shaped gold nanoparticles have attracted enormous attention owing to their interesting optical properties arising from the surface plasmon resonances. Slight deviation from the rod morphology can markedly change the optical properties. For-example, worm-shaped gold nanoparticles can have more than two plasmon peaks. Furthermore, they show much higher local field enhancements as compared to their rod-shaped counterparts. We have devised a simple seedless, high-yield protocol for the synthesis of gold nanoworms (NWs). NWs were grown simply by reducing HAuCl4 with ascorbic acid in a high pH reaction medium, and in the presence of growth directional agents, cetyltrimethylammonium bromide and AgNO3. In contrast to the seed-mediated growth of gold nanorods where a seed grows into a rod, NWs grow by oriental attachment of nanoparticles. By varying different reaction parameters we were able to control the length of NWs from a few nanometers to micrometers. Furthermore, the aspect ratio can also be tuned over a wide range. Gold NWs show excellent surface enhanced Raman scattering (SERS) properties. Ultra-low concentrations of various target molecules were detected using NWs based SERS substrates.

  2. Breeding of a high yielding chamomile variety (Matricaria recutita L. with improved traits for machine harvesting

    Directory of Open Access Journals (Sweden)

    Albrecht, Sebastian

    2016-07-01

    Full Text Available A more productive variety of chamomile (Matricaria recutita L., which is more efficient in machine processing with consistent quality traits, will benefit the viability of german products in the global market. Breeding of an enhanced chamomile variety is part of a german multi-network project called KAMEL whose research aims on Matricaria recutita L., Valeriana officinalis L. and Melissa officinalis L. The agronomic and qualitative improvement of these speciality crops are the basis for further economic prosperity of medicinal and aromatic plant cultivation in Germany. The main breeding goals of a new variety of chamomile are the increase of blossom product yield (Matricariae flos to 6 dt/ha in up to three harvest stages through a homogenous flower horizon (pick height, an even flowering time, large flower heads and a high regeneration rate after each harvest stage. The upgrade of the content of essential oil content to a minimum of 0.8 % with its compostion according to Ph. Eur. and a chamazulene content of min. 25 % are further objectives of the breeding process. In addition to these quality traits, high tolerances against common fungal diseases are of particular interest. Development of an innovative chamomile variety is realized over nine years in three stages (2010 - 2019.

  3. Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging.

    Science.gov (United States)

    Ding, Hui; Wei, Ji-Shi; Zhong, Ning; Gao, Qing-Yu; Xiong, Huan-Ming

    2017-11-07

    Carbon dots (CDs) are a new class of photoluminescent (PL), biocompatible, environment-friendly, and low-cost carbon nanomaterials. Synthesis of highly efficient red-emitting carbon dots (R-CDs) on a gram scale is a great challenge at present, which heavily restricts the wide applications of CDs in the bioimaging field. Herein, R-CDs with a high quantum yield (QY) of 53% are produced on a gram scale by heating a formamide solution of citric acid and ethylenediamine. The as-prepared R-CDs have an average size of 4.1 nm and a nitrogen content of about 30%, with an excitation-independent emission at 627 nm. After detailed characterizations, such strong red fluorescence is ascribed to the contribution from the nitrogen- and oxygen-related surface states and the nitrogen-derived structures in the R-CD cores. Our R-CDs show good photostability and low cytotoxicity, and thus they are excellent red fluorescence probes for bioimaging both in vitro and in vivo.

  4. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-08-01

    Full Text Available Laccases are a class of multi-copper oxidases with industrial potential. In this study, eight laccases (Lac1–8 from Cerrena sp. strain HYB07, a white-rot fungus with high laccase yields, were analyzed. The laccases showed moderate identities to each other as well as with other fungal laccases and were predicted to have high redox potentials except for Lac6. Selected laccase isozymes were heterologously expressed in the yeast Pichia pastoris, and different enzymatic properties were observed. Transcription of the eight laccase genes was differentially regulated during submerged and solid state fermentation, as shown by quantitative real-time polymerase chain reaction and validated reference genes. During 6-day submerged fermentation, Lac7 and 2 were successively the predominantly expressed laccase gene, accounting for over 95% of all laccase transcripts. Interestingly, accompanying Lac7 downregulation, Lac2 transcription was drastically upregulated on days 3 and 5 to 9958-fold of the level on day 1. Consistent with high mRNA abundance, Lac2 and 7, but not other laccases, were identified in the fermentation broth by LC-MS/MS. In solid state fermentation, less dramatic differences in transcript abundance were observed, and Lac3, 7 and 8 were more highly expressed than other laccase genes. Elucidating the properties and expression profiles of the laccase gene family will facilitate understanding, production and commercialization of the fungal strain and its laccases.

  6. Induction of embryogenic callus and plantlet regeneration from young leaves of high yielding mature oil palm

    Directory of Open Access Journals (Sweden)

    Yeedum, I.

    2004-09-01

    Full Text Available Callus induction and plantlet regeneration from young leaves of high-yielding mature oil palm were carried out using 10-year and 20-year-old trees from Thepa Research Station, Faculty of Natural Resources,Prince of Songkla University, Hat Yai, and Trang Agricultural College, respectively. Culture media used in this experiment were Murashige and Skoog (1962 and Oil Palm supplemented with various concentrations of α-naphthaleneacetic acid (NAA or 2,4- dichlorophenoxy acetic acid (2,4-D or dicamba (Di and antioxidants.Young leaves from 6th to 11st frond were excised, sterilized, cut into 5x5 mm pieces and cultured in the dark at 26±4ºC or 28±0.5ºC for 3 months. The results revealed that MS medium with 200 mg/l ascorbic acid (As and 1 mg/l Di (MS-AsDi gave the highest callus induction percentage (7.93 after culture for 3 months at 28±0.5ºC. Leaf segments from 6th - 8th frond yielded callus forming percentage at 10% (averaged from 1, 2.5 and 5 mg/l Di containing MS medium. Ascorbic acid as an antioxidant at concentration of 200 mg/l supplemented in MS medium in the presence of 2.5 mg/l Di produced the highest callus induction percentage (11.2 and number of nodules (7.06. A high percentage of embryogenic callus formation (66.67 was obtained when the calli were transferred to the same medium component supplemented with 0.5 mg/l Di and 1,000 mg/l casein hydrolysate (CH (MS-AsDiCH. Haustorial-staged embryos were observed to be isolated as an individual embryo and germinated on MS medium without plant growth regulator (MS-free. Development of root could be classified into two distinct types, fibrous and tap root.

  7. Semi-dwarf tef lines for high seed yield and lodging tolerance in ...

    African Journals Online (AJOL)

    The grain of tef is not only nutritious but also gluten-free, the cause for celiac disease, which affects humans world wide. The objective of this study was to evaluate the morpho-agronomic performance of newly developed semi-dwarf tef genotypes for grain yield and yield related agronomic traits under diverse environmental ...

  8. semi-dwarf tef lines for high seed yield and lodging tolerance in ...

    African Journals Online (AJOL)

    ACSS

    The grain of tef is not only nutritious but also gluten-free, the cause for celiac disease, which affects humans world wide. The objective of this study was to evaluate the morpho-agronomic performance of newly developed semi-dwarf tef genotypes for grain yield and yield related agronomic traits under diverse environmental ...

  9. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, K; Tidemand, L D; Winther, Jakob R.

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter......, compared to a yield of 0.40 g/g in S. cerevisiae. Overexpression of PEP4 led to the secretion of active proteinase A in both S. kluyveri and S. cerevisiae. The yield of active proteinase A during growth on glucose was found to be 3.6-fold higher in S. kluyveri than in the S. cerevisiae reference strain........ As a reference, S. cerevisiae CEN.PK 113-5D was transformed with the same plasmid and the two strains were characterised in batch cultivations on glucose. The glucose metabolism was found to be less fermentative in S. kluyveri than in S. cerevisiae. The yield of ethanol on glucose was 0.11 g/g in S. kluyveri...

  10. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Tidemand, L.D.; Winther, J.R.

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter......, compared to a yield of 0.40 g/g in S. cerevisiae. Overexpression of PEP4 led to the secretion of active proteinase A in both S. kluyveri and S. cerevisiae. The yield of active proteinase A during growth on glucose was found to be 3.6-fold higher in S. kluyveri than in the S. cerevisiae reference strain........ As a reference. S. cerevisiae CEN.PK 113-5D was transformed with the same plasmid and the two strains were characterised in batch cultivations on glucose. The glucose metabolism was found to be less fermentative in S. kluyveri than in S. cerevisiae. The yield of ethanol on glucose was 0.11 g/g in S. kluyveri...

  11. Heterologous microsatellite primer pairs informative for the whole genus Arachis

    Directory of Open Access Journals (Sweden)

    Andrea Akemi Hoshino

    2006-01-01

    Full Text Available The genus Arachis currently comprises 69 described species, some of which have potential and real value as human and animal foods. These Arachis species have been collected and maintained in germplasm banks to provide material that can be used as sources of genes in breeding programs and for the selection of new cultivars. One of the principal objectives of germplasm conservation is the evaluation of genetic variability, which is best conducted using molecular markers. We investigated the use of heterologous primers to amplify microsatellite loci that could be used to evaluate genetic variability in Arachis germplasm. Fifteen microsatellite primer pairs were tested in 76 accessions of 34 species from the nine Arachis sections. The data indicated that heterologous primers were very useful in Arachis since they had high transferability among the species (91% and allowed the amplification of very polymorphic putative loci, which allowed both the characterization of most accessions and to make inferences about the mating systems of some species analyzed. Our data also revealed that the germplasm analyzed showed high variability, even when represented by few accessions.

  12. Non-food/feed seeds as biofactories for the high-yield production of recombinant pharmaceuticals.

    Science.gov (United States)

    Morandini, Francesca; Avesani, Linda; Bortesi, Luisa; Van Droogenbroeck, Bart; De Wilde, Kirsten; Arcalis, Elsa; Bazzoni, Flavia; Santi, Luca; Brozzetti, Annalisa; Falorni, Alberto; Stoger, Eva; Depicker, Ann; Pezzotti, Mario

    2011-10-01

    We describe an attractive cloning system for the seed-specific expression of recombinant proteins using three non-food/feed crops. A vector designed for direct subcloning by Gateway® recombination was developed and tested in Arabidopsis, tobacco and petunia plants for the production of a chimeric form (GAD67/65) of the 65 kDa isoform of glutamic acid decarboxylase (GAD65). GAD65 is one of the major human autoantigens involved in type 1 diabetes (T1D). The murine anti-inflammatory cytokine interleukin-10 (IL-10) was expressed with the described system in Arabidopsis and tobacco, whereas proinsulin, another T1D major autoantigen, was expressed in Arabidopsis. The cost-effective production of these proteins in plants could allow the development of T1D prevention strategies based on the induction of immunological tolerance. The best yields were achieved in Arabidopsis seeds, where GAD67/65 reached 7.7% of total soluble protein (TSP), the highest levels ever reported for this protein in plants. IL-10 and proinsulin reached 0.70% and 0.007% of TSP, respectively, consistent with levels previously reported in other plants or tissues. This versatile cloning vector could be suitable for the high-throughput evaluation of expression levels and stability of many valuable and difficult to produce proteins. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb(2+)) with trivalent antimony (Sb(3+)) to synthesize stable and brightly luminescent Cs3Sb2Br9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs3Sb2X9) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  14. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy

    Directory of Open Access Journals (Sweden)

    Sissi Dolci

    2017-10-01

    Full Text Available Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks. Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.

  15. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  16. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield.

    Science.gov (United States)

    Anazi, S; Maddirevula, S; Faqeih, E; Alsedairy, H; Alzahrani, F; Shamseldin, H E; Patel, N; Hashem, M; Ibrahim, N; Abdulwahab, F; Ewida, N; Alsaif, H S; Al Sharif, H; Alamoudi, W; Kentab, A; Bashiri, F A; Alnaser, M; AlWadei, A H; Alfadhel, M; Eyaid, W; Hashem, A; Al Asmari, A; Saleh, M M; AlSaman, A; Alhasan, K A; Alsughayir, M; Al Shammari, M; Mahmoud, A; Al-Hassnan, Z N; Al-Husain, M; Osama Khalil, R; Abd El Meguid, N; Masri, A; Ali, R; Ben-Omran, T; El Fishway, P; Hashish, A; Ercan Sencicek, A; State, M; Alazami, A M; Salih, M A; Altassan, N; Arold, S T; Abouelhoda, M; Wakil, S M; Monies, D; Shaheen, R; Alkuraya, F S

    2017-04-01

    Intellectual disability (ID) is a measurable phenotypic consequence of genetic and environmental factors. In this study, we prospectively assessed the diagnostic yield of genomic tools (molecular karyotyping, multi-gene panel and exome sequencing) in a cohort of 337 ID subjects as a first-tier test and compared it with a standard clinical evaluation performed in parallel. Standard clinical evaluation suggested a diagnosis in 16% of cases (54/337) but only 70% of these (38/54) were subsequently confirmed. On the other hand, the genomic approach revealed a likely diagnosis in 58% (n=196). These included copy number variants in 14% (n=54, 15% are novel), and point mutations revealed by multi-gene panel and exome sequencing in the remaining 43% (1% were found to have Fragile-X). The identified point mutations were mostly recessive (n=117, 81%), consistent with the high consanguinity of the study cohort, but also X-linked (n=8, 6%) and de novo dominant (n=19, 13%). When applied directly on all cases with negative molecular karyotyping, the diagnostic yield of exome sequencing was 60% (77/129). Exome sequencing also identified likely pathogenic variants in three novel candidate genes (DENND5A, NEMF and DNHD1) each of which harbored independent homozygous mutations in patients with overlapping phenotypes. In addition, exome sequencing revealed de novo and recessive variants in 32 genes (MAMDC2, TUBAL3, CPNE6, KLHL24, USP2, PIP5K1A, UBE4A, TP53TG5, ATOH1, C16ORF90, SLC39A14, TRERF1, RGL1, CDH11, SYDE2, HIRA, FEZF2, PROCA1, PIANP, PLK2, QRFPR, AP3B2, NUDT2, UFC1, BTN3A2, TADA1, ARFGEF3, FAM160B1, ZMYM5, SLC45A1, ARHGAP33 and CAPS2), which we highlight as potential candidates on the basis of several lines of evidence, and one of these genes (SLC39A14) was biallelically inactivated in a potentially treatable form of hypermanganesemia and neurodegeneration. Finally, likely causal variants in previously published candidate genes were identified (ASTN1, HELZ, THOC6, WDR45B, ADRA

  17. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.

    Science.gov (United States)

    Wang, Junzhong; Manga, Kiran Kumar; Bao, Qiaoliang; Loh, Kian Ping

    2011-06-15

    High-yield production of few-layer graphene flakes from graphite is important for the scalable synthesis and industrial application of graphene. However, high-yield exfoliation of graphite to form graphene sheets without using any oxidation process or super-strong acid is challenging. Here we demonstrate a solution route inspired by the lithium rechargeable battery for the high-yield (>70%) exfoliation of graphite into highly conductive few-layer graphene flakes (average thickness graphene sheets with the aid of sonication. The dispersible graphene can be ink-brushed to form highly conformal coatings of conductive films (15 ohm/square at a graphene loading of <1 mg/cm(2)) on commercial paper. © 2011 American Chemical Society

  18. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.

    Science.gov (United States)

    Tetali, Sailaja; Zaka, Mujtaba; Schönfelder, Ronny; Bachmatiuk, Alicja; Börrnert, Felix; Ibrahim, Imad; Lin, Jarrn H; Cuniberti, Gianaurelio; Warner, Jamie H; Büchner, Bernd; Rümmeli, Mark H

    2009-12-22

    The use of mixed catalysts for the high-yield production of single-walled carbon nanotubes is well-known. The mechanisms behind the improved yield are poorly understood. In this study, we systematically explore different catalyst combinations from Ni, Co, and Mo for the synthesis of carbon nanotubes via laser evaporation. Our findings reveal that the mixing of catalysts alters the catalyst cluster size distribution, maximizing the clusters' potential to form a hemispherical cap at nucleation and, hence, form a single-walled carbon nanotube. This process significantly improves the single-walled carbon nanotube yields.

  19. Air-insufflated high-definition dacryoendoscopy yields significantly better image quality than conventional dacryoendoscopy.

    Science.gov (United States)

    Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa

    2017-01-01

    To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.

  20. High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

    Science.gov (United States)

    Longo, Giulia; La-Placa, Maria-Grazia; Sessolo, Michele; Bolink, Henk J

    2017-10-09

    One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  2. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    . Compared to batch cultures, the fed-batch technology generated the magnitude of the increase in cell yields (5 fold) and final antibody concentrations (4-8 fold). The majority of the increase in final antibody concentration was functions of the increased cell density and the prolonged culture time....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  3. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Science.gov (United States)

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  4. High-yield synthesis and electrochemical and photovoltaic properties of indene-C{sub 70} bisadduct

    Energy Technology Data Exchange (ETDEWEB)

    He, Youjun; Zhao, Guangjin; Peng, Bo; Li, Yongfang [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-10-08

    [6, 6]-Phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 60}BM) is the widely used acceptor material in polymer solar cells (PSCs). Nevertheless, the low LUMO energy level and weak absorption in visible region are its two weak points. For enhancing the solar light harvest, the soluble C{sub 70} derivative PC{sub 70}BM has been used as acceptor instead of PC{sub 60}BM in high efficiency PSCs in recent years. But, the LUMO level of PC{sub 70}BM is the same as that of PC{sub 60}BM, which is too low for the PSCs based on the polymer donors with higher HOMO level, such as poly (3-hexylthiophene) (P3HT). Here, a new soluble C{sub 70} derivative, indene-C{sub 70} bisadduct (IC{sub 70}BA), is synthesized with high yield of 58% by a one-pot reaction of indene and C{sub 70} at 180 C for 72 h. The electrochemical properties and electronic energy levels of the fullerene derivatives are measured by cyclic voltammetry. The LUMO energy level of IC{sub 70}BA is 0.19 eV higher than that of PC{sub 70}BM. The PSC based on P3HT with IC{sub 70}BA as acceptor shows a higher V{sub oc} of 0.84 V and higher power conversion efficiency (PCE) of 5.64%, while the PSC based on P3HT/PC{sub 60}BM and P3HT/PC{sub 70}BM displays V{sub oc} of 0.59 V and 0.58 V, and PCE of 3.55% and 3.96%, respectively, under the illumination of AM1.5G, 100 mW cm{sup -2}. The results indicate that IC{sub 70}BA is an excellent acceptor for the P3HT-based PSCs and could be a promising new acceptor instead of PC{sub 70}BM for the high performance PSCs based on narrow bandgap conjugated polymer donor. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy.

    Science.gov (United States)

    Basso Basset, Francesco; Bietti, Sergio; Reindl, Marcus; Esposito, Luca; Fedorov, Alexey; Huber, Daniel; Rastelli, Armando; Bonera, Emiliano; Trotta, Rinaldo; Sanguinetti, Stefano

    2018-01-10

    Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route toward quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared with previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.

  6. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    Science.gov (United States)

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  7. A multi-region assessment of population rates of cardiac catheterization and yield of high-risk coronary artery disease

    Directory of Open Access Journals (Sweden)

    Clement Fiona M

    2011-11-01

    Full Text Available Abstract Background There is variation in cardiac catheterization utilization across jurisdictions. Previous work from Alberta, Canada, showed no evidence of a plateau in the yield of high-risk disease at cardiac catheterization rates as high as 600 per 100,000 population suggesting that the optimal rate is higher. This work aims 1 To determine if a previously demonstrated linear relationship between the yield of high-risk coronary disease and cardiac catheterization rates persists with contemporary data and 2 to explore whether the linear relationship exists in other jurisdictions. Methods Detailed clinical information on all patients undergoing cardiac catheterization in 3 Canadian provinces was available through the Alberta Provincial Project for Outcomes Assessment in Coronary Heart (APPROACH disease and partner initiatives in British Columbia and Nova Scotia. Population rates of catheterization and high-risk coronary disease detection for each health region in these three provinces, and age-adjusted rates produced using direct standardization. A mixed effects regression analysis was performed to assess the relationship between catheterization rate and high-risk coronary disease detection. Results In the contemporary Alberta data, we found a linear relationship between the population catheterization rate and the high-risk yield. Although the yield was slightly less in time period 2 (2002-2006 than in time period 1(1995-2001, there was no statistical evidence of a plateau. The linear relationship between catheterization rate and high-risk yield was similarly demonstrated in British Columbia and Nova Scotia and appears to extend, without a plateau in yield, to rates over 800 procedures per 100,000 population. Conclusions Our study demonstrates a consistent finding, over time and across jurisdictions, of linearly increasing detection of high-risk CAD as population rates of cardiac catheterization increase. This internationally-relevant finding

  8. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guzman de Villoria, R; Hart, A J; Steiner, S A III; Wardle, B L [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Figueredo, S L; Slocum, A H, E-mail: rguzman@mit.ed [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-10-07

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al{sub 2}O{sub 3} catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of {approx}1 mm are achieved at substrate speeds up to 2.4 mm s{sup -1}. Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.

  9. High diagnostic yield of syndromic intellectual disability by targeted next-generation sequencing.

    Science.gov (United States)

    Martínez, Francisco; Caro-Llopis, Alfonso; Roselló, Mónica; Oltra, Silvestre; Mayo, Sonia; Monfort, Sandra; Orellana, Carmen

    2017-02-01

    Intellectual disability is a very complex condition where more than 600 genes have been reported. Due to this extraordinary heterogeneity, a large proportion of patients remain without a specific diagnosis and genetic counselling. The need for new methodological strategies in order to detect a greater number of mutations in multiple genes is therefore crucial. In this work, we screened a large panel of 1256 genes (646 pathogenic, 610 candidate) by next-generation sequencing to determine the molecular aetiology of syndromic intellectual disability. A total of 92 patients, negative for previous genetic analyses, were studied together with their parents. Clinically relevant variants were validated by conventional sequencing. A definitive diagnosis was achieved in 29 families by testing the 646 known pathogenic genes. Mutations were found in 25 different genes, where only the genes KMT2D, KMT2A and MED13L were found mutated in more than one patient. A preponderance of de novo mutations was noted even among the X linked conditions. Additionally, seven de novo probably pathogenic mutations were found in the candidate genes AGO1, JARID2, SIN3B, FBXO11, MAP3K7, HDAC2 and SMARCC2. Altogether, this means a diagnostic yield of 39% of the cases (95% CI 30% to 49%). The developed panel proved to be efficient and suitable for the genetic diagnosis of syndromic intellectual disability in a clinical setting. Next-generation sequencing has the potential for high-throughput identification of genetic variations, although the challenges of an adequate clinical interpretation of these variants and the knowledge on further unknown genes causing intellectual disability remain to be solved. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus

    2015-01-01

    knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays....

  11. High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate.

    Science.gov (United States)

    Zhang, Min; Gu, Lei; Cheng, Chao; Zhu, Junru; Wu, Hao; Ma, Jiangfeng; Dong, Weiliang; Kong, Xiangping; Jiang, Min; Ouyang, Pingkai

    2017-08-01

    Chicory is an agricultural plant with considerable potential as a carbohydrate substrate for low-cost production of biochemicals. In this work, the production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate was investigated. The bioconversion process initially suffered from the leakage of fructose to the phosphoketolase pathway, resulting in a low mannitol yield. When inulin hydrolysate was supplemented with glucose as a substrate for mannitol production in combination with aeration induction and nicotinic acid induced redox modulation strategies, the mannitol yield greatly improved. Under these conditions, significant improvement in the glucose consumption rate, intracellular NADH levels and mannitol dehydrogenase specific activity were observed, with mannitol production increasing from 64.6 to 88.1 g/L and overall yield increase from 0.69 to 0.94 g/g. This work demonstrated an efficient method for the production of mannitol from inulin hydrolysate with a high overall yield.

  12. Studies on heterologous immunity in schistosomiasis

    Science.gov (United States)

    Preston, J. M.; Nelson, G. S.; Saeed, A. A.

    1972-01-01

    Previous studies have shown that when cattle are exposed to cercariae of Schistosoma mansoni they develop considerable resistance to subsequent challenge with S. mattheei. The present study showed that when sheep are immunized with S. mansoni cercariae they too develop a marked resistance to subsequent challenge with S. mattheei. A small proportion of the immunizing cercariae reached maturity and a few viable S. mansoni eggs were found in the faeces of the sheep. The results of this experiment provide further evidence that heterologous immunity may be of significance in limiting the severity of schistosomiasis in both man and domestic animals in areas where animal and human schistosomes occur together. PMID:4540678

  13. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.

    Science.gov (United States)

    Purchase, R L; de Groot, H J M

    2015-06-06

    propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis.

  14. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

    Science.gov (United States)

    Purchase, R. L.; de Groot, H. J. M.

    2015-01-01

    . We propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis. PMID:26052428

  15. Silencing mechansim of C5 transgenic plums is stable under challenge inoculation with heterologous viruses

    Science.gov (United States)

    Transgenic C5 'HoneySweet' is a clone of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP). This transgenic plum displays post-transcriptional gene silencing (PTGS) which makes it highly resistant to PPV infection. To test the effect of heterologous viruses on the ...

  16. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-01-01

    reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion...... yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n , wherein n = 10 or 20]. The yields of the (SP)n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum...... yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts...

  17. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Arnold, E-mail: aburger@fisk.edu [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Rowe, Emmanuel; Groza, Michael; Morales Figueroa, Kristle [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Cherepy, Nerine J.; Beck, Patrick R.; Hunter, Steven; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-10-05

    We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent light yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.

  18. Whole lactation production responses in high-yielding dairy cows using high-quality grass/clover silage.

    Science.gov (United States)

    Patel, Mikaela; Wredle, Ewa; Spörndly, Eva; Bertilsson, Jan

    2017-07-01

    Limiting the use of purchased concentrate for livestock and replacing it with home-grown forage without compromising milk production can offer benefits in both organic and conventional dairy systems. A full lactation trial was conducted with 92 cows over two years comparing three diets, each differing in the mean forage proportion over the lactation, 500 (500F), 600 (600F) and 700 (700F) g kg-1 dry matter (DM) respectively. The diets were designed to represent common conventional feeding, current regulations for organic production and more extreme high-forage-based production respectively. The aims were to determine the effects of forage proportion in the diet on milk production and feed utilisation. Compared with 500F, daily milk yield did not differ in 600F but was lower in 700F (31.3, 31.1 and 29.2 kg energy-corrected milk respectively). Daily dry matter intake (DMI) was similar between treatments (20.3, 20.4 and 19.9 kg in 500F, 600F and 700F respectively). Increasing the forage proportion from 500 to 600 g kg-1 DM did not have any adverse effects on milk production or DMI. Thus it is possible to produce the same quantity of milk with less concentrate and reduce the use of potential human feeds in dairy production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp.

    Science.gov (United States)

    Manda, B M Krishna; Blok, Kornelis; Patel, Martin K

    2012-11-15

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO(2)) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO(2) coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10-35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13GJ/ton paper) and GHG emission reduction by 75% (0.6 tonCO(2)eq./ton paper). Micro TiO(2) coated CTMP paper offered NREU savings by 25% (3GJ/ton paper) and savings of GHG emissions by 10% (0.1 tonCO(2)eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the nanoparticles are serious, then the

  20. semi-dwarf tef lines for high seed yield and lodging tolerance in ...

    African Journals Online (AJOL)

    ACSS

    genetic advance (20.2 cm) and heritability estimates (86.7%) were obtained for plant height indicating that selection for this trait can be made easily. Grain yield showed significant and positive genotypic association with plant height, whole culm and second culm internode length, second culm internode diameter, number of ...

  1. Highly productive forage legume stands show no positive biodiversity effect on yield and N2-fixation

    DEFF Research Database (Denmark)

    Dhamala, Nawa Raj; Eriksen, Jørgen; Carlsson, Georg

    2017-01-01

    . Methodology N fixation, dry matter (DM) and nitrogen (N) yields were quantified in a field experiment for red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) pure stands and mixtures using the isotope dilution method. Results All three forage legume species...

  2. Nuclear Engineering of Microalgae for High Yield Secretion of Recombinant Proteins

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel

    to the glycomodules, accumulation of a fusion protein was dramatically increased by up to 12 folds, with the maximum yield of 15 mg L-1. Characterization of the secreted Venus showed the presence of glycosylations and increased resistance to proteolytic degradation. The results from this thesis demonstrate...

  3. High-yield preparation of polystyrene/silica clusters of controlled morphology

    OpenAIRE

    Désert, Anthony; Chaduc, Isabelle; Fouilloux, Sarah; Taveau, Jean-Christophe; Lambert, Olivier; Lansalot, Muriel; Bourgeat-Lami, Elodie; Thill, Antoine; Spalla, Olivier; Ravaine, Serge; Duguet, Etienne

    2012-01-01

    3 pages; International audience; Large amounts of regular tetrapods and hexapods made of a central silica core and four or six polystyrene satellite nodules were prepared with yields over 80% from 55 nm and 85 nm silica seeds, respectively. The robustness of the process is supported by extensive statistical analyses and large-field transmission electron microscopy images.

  4. Predicting yields of high priced trimmed beef cuts by means of ...

    African Journals Online (AJOL)

    The total and individual trimmed meat yield of six hind quarter cuts and one fore quarter cut were estimated for 200 carcasses from animals of mixed origin with regard to breed, sex and feeding regimen. The linear models included carcass weight and visual assessment of fatness and conformation by means of seven fat and ...

  5. High-yield production of Streptavidin with native C-terminal in ...

    African Journals Online (AJOL)

    To increase the production yield of functional recombinant streptavidin in Escherichia coli, the effects of host strains and culture conditions on expression of streptavidin with native C terminal (CNSA, amino acid residues 13 to 159) were investigated. Results show that the CNSA, encoded by the CNSA gene, was produced ...

  6. High Diagnostic Yield of Dedicated Pulmonary Screening before Hematopoietic Cell Transplantation in Children

    NARCIS (Netherlands)

    Versluijs, Anne Birgitta; van der Ent, Korstiaan; Boelens, Jaap J.; Wolfs, Tom; de Jong, Pim; Bierings, Marc B.

    2015-01-01

    Pulmonary complications are an important cause for treatment-related morbidity and mortality in hematopoietic cell transplantation (HCT) in children. The aim of this study was to investigate the yield of our pre-HCT pulmonary screening program. We also describe our management guidelines based on

  7. Studies on heterologous immunity in schistosomiasis*

    Science.gov (United States)

    Amin, M. A.; Nelson, G. S.; Saoud, M. F. A.

    1968-01-01

    Previous studies on heterologous immunity in mice have indicated that Schistosoma bovis and S. mattheei could be used to limit the severity of infection resulting from subsequent challenge by S. mansoni. These observations have now been extended to study the immunizing effect in rhesus monkeys of both S. mattheei and S. bovis. The bovine schistosomes were shown to be relatively non-pathogenic in rhesus monkeys. Immunization with 1000-2000 cercariae resulted in a marked reduction in the pathogenic effect of subsequent challenge with S. mansoni. This effect was demonstrated by a decrease in the worm load and tissue egg densities in 10 immunized monkeys as compared with 5 control animals. There was no correlation between fluorescent antibody titres and the intensity of infection or the degree of acquired immunity. There was a cross-reaction between S. mansoni and the bovine schistosomes. It is suggested that natural heterologous immunity (zooprophylaxis) may be of considerable epidemiological importance in determining the severity of schistosomiasis in man. PMID:4970323

  8. Studies on heterologous immunity in schistosomiasis

    Science.gov (United States)

    Massoud, J.; Nelson, G. S.

    1972-01-01

    Experiments were carried out in mice, cattle, and sheep to investigate the possibility that heterologous immune reactions may occur between the schistosomes prevalent in man and domestic animals in Iran. Immunization with Ornithobilharzia turkestanicum from cattle produced a considerable degree of immunity in mice against challenge with Schistosoma bovis, S. haematobium, and S. mansoni. The results of immunizing cattle with O. turkestanicum, S. bovis, and S. haematobium were even more striking; there was a reduction of 30-40% in the number of adult worms and a proportionally greater reduction in the tissue egg counts. Sheep developed a less marked immunity. Supplementary experiments on homologous immunity showed that mice developed a considerable degree of immunity against S. bovis. The results of the heterologous immunity experiments with S. haematobium and S. bovis are of particular interest as both parasites often occur in the same area and are often transmitted by the same snail host, man and cattle being exposed to the cercariae of both species simultaneously. The reciprocal immunity produced by these infections may be mutually beneficial in limiting the severity of schistosomiasis in man and domestic animals in the endemic areas. PMID:4540679

  9. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    Science.gov (United States)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  10. Short communication: Estimating lactation curves for highly inhomogeneous milk yield data of an F2 population (Charolais × German Holstein).

    Science.gov (United States)

    Melzer, N; Trißl, S; Nürnberg, G

    2017-11-01

    Fitting of lactation curves is a common tool to obtain the entire milk yield as well as to estimate the main curve characteristic (such as day of peak milk yield) for a lactation. These models are primarily designed for dairy cattle, but have been applied to nondairy cattle breeds and also for other species. In this study we considered milk yield data of 197 F2 crossbred cows of Charolais and German Holstein (founder breeds) for the first and the beginning of the second lactation. The F2 cows showed a high variability regarding the length of lactation, which varied between 7 and 406 d in milk for the first lactation. Thus, the data also show high variation regarding the daily and overall milk yield. To obtain complete lactation curves, we evaluated the lactation models of Ali-Schaeffer and Wilmink. To compare the 2 lactation models, we evaluated the goodness of fit using 6 evaluation criteria. The results show that the model of Ali-Schaeffer performs better on these highly inhomogeneous data, in contrast to the model of Wilmink. We discuss our findings from a statistical point of view and present possible biological reasons for the high variability regarding milk yield within the F2 population. Hence our findings may be helpful when milk yield data of crosses between dairy and beef cows (dual purpose) are investigated, whose lactation curves may not show the typical characteristics of dairy cattle. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  11. Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering.

    Science.gov (United States)

    Liu, Zihe; Liu, Lifang; Österlund, Tobias; Hou, Jin; Huang, Mingtao; Fagerberg, Linn; Petranovic, Dina; Uhlén, Mathias; Nielsen, Jens

    2014-09-01

    The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. A chimeric affinity tag for efficient expression and chromatographic purification of heterologous proteins from plants

    Directory of Open Access Journals (Sweden)

    Frank eSainsbury

    2016-02-01

    Full Text Available The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to rapidly purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues.

  13. Anisotropic yielding of rocks at high temperatures and pressures; Annual Progress Report, 1988-1989

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A.K.; Russell, J.E.; Carter, N.L.

    1989-11-30

    The experimental results we have obtained on Four-Mile gneiss have demonstrated that the yield behavior of quartzo-feldspathic rocks containing only a small percentage (10%) of mica can be markedly anisotropic, provided the mica minerals exhibit a strong crystallographic preferred orientation. Samples of gneiss oriented such that resolved shear stresses on the foliation plane are large are considerably weaker than granites of similar grain size and composition, and this weakness is attributed to enhanced nucleation of microcracks in quartz and feldspar adjacent to mica grains that are suitably oriented for slip. We expect the yield behavior of rocks containing a higher proportion of phyllosilicates to be influenced by the strongly anisotropic nature of these minerals as well, although the strengths, temperature and pressure dependencies, and flow-controlling mechanisms in such rocks may be significantly different.

  14. Gallium loading of gold seed for high yield of patterned GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, J. P.; Chia, A. C. E.; LaPierre, R. R., E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-08-25

    A method is presented for maximizing the yield and crystal phase purity of vertically aligned Au-assisted GaAs nanowires grown with an SiO{sub x} selective area epitaxy mask on GaAs (111)B substrates. The nanowires were grown by the vapor-liquid-solid (VLS) method in a gas source molecular beam epitaxy system. During annealing, Au VLS seeds will alloy with the underlying GaAs substrate and collect beneath the SiO{sub x} mask layer. This behavior is detrimental to obtaining vertically aligned, epitaxial nanowire growth. To circumvent this issue, Au droplets were pre-filled with Ga assuring vertical yields in excess of 99%.

  15. High yield direct 76Br-bromination of monoclonal antibodies using chloramine-T.

    Science.gov (United States)

    Sundin, J; Tolmachev, V; Koziorowski, J; Carlsson, J; Lundqvist, H; Welt, S; Larson, S; Sundin, A

    1999-11-01

    Monoclonal antibody (MAb) A33 was labeled with the positron emitter 76Br (T(1/2) = 16.2 h). Direct labeling was done using the conventional chloramine-T method. After optimization of the labeling conditions, a maximum yield (mean +/- max error) of 77 +/- 2% was obtained at pH 6.8. In vitro binding of 76Br-A33 to SW1222 colonic cancer cells showed that the immunoreactivity was retained. Also, the MAbs 38S1 and 3S193 and the peptide hEGF were 76Br-labeled, resulting in labeling yields (mean +/- max error) of 75 +/- 3%, 63 +/- 4%, and 73 +/- 0.1%, respectively. We conclude that antibodies and peptides can be labeled conveniently with 76Br for the purpose of whole-body tumour imaging by positron emission tomography.

  16. Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield

    Science.gov (United States)

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat (Triticum aestivum L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect s...

  17. The effect of high-sugar grass on predicted nitrogen excretion and milk yield simulated using a dynamic model

    NARCIS (Netherlands)

    Ellis, J.L.; Dijkstra, J.; Bannink, A.; Parsons, A.J.; Rasmussen, S.; Edwards, G.R.; Kebreab, E.; France, J.

    2011-01-01

    High-sugar grass varieties have received considerable attention for their potential to reduce nitrogen (N) excretion and increase milk yield in cattle. However, considerable variation exists in the magnitude of response in published results. The purpose of this study is to explain the variation in

  18. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties

    NARCIS (Netherlands)

    Nordin, Joel Z.; Lee, Yi; Vader, Pieter; Mäger, Imre; Johansson, Henrik J.; Heusermann, Wolf; Wiklander, Oscar P B; Hällbrink, Mattias; Seow, Yiqi; Bultema, Jarred J.; Gilthorpe, Jonathan; Davies, Tim; Fairchild, Paul J.; Gbrielsson, Susanne; Meisner-Kober, Nicole C.; Lehtiö, Janne; Smith, C. I Edvard; Wood, Matthew J A; Andaloussi, Samir E L

    2015-01-01

    Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and

  19. Yields in high density, short rotation intensive culture (SRIC)—plantations of Eucalyptus and Other Hardwood Species

    Science.gov (United States)

    R.M. Sachs; C.B. Low

    1983-01-01

    Initial high density (17,200 trees ha-1, 6961 trees a-1) plantations of Eucalyptus grandis yielded up to 22 oven dry tons (ODT) ha-l yr-I (10 ta-1 yr-1) on an approximate 6 month rotation. Border effects could not be eliminated from the small sized plots used...

  20. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Science.gov (United States)

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  1. Effects of Biomass Feedstock on the Yield and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter A.; Glarborg, Peter

    This study investigated the effect of feedstock on the yield, nanostructure and reactivity of soot. Woody and herbaceous biomass were pyrolyzed at high heating rates and temperatures of 1250 and 1400°C in a drop tube furnace. The collected solid residues were structurally characterized by electron...

  2. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  3. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ramos-Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-09-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n , wherein n = 10 or 20]. The yields of the (SP)n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Temperature-dependent yield criterion for high strength steel sheets under warm-forming conditions

    Directory of Open Access Journals (Sweden)

    Cai Zhengyang

    2015-01-01

    Full Text Available In this paper, uniaxial and biaxial tensile tests with cruciform specimens were conducted to investigate the deformation behaviour of dual phase steel sheet with a tensile strength of 590 MPa (DP590 under evaluated warm-forming temperatures (20–190 ∘C. Detailed analyses were then carried out to obtain the corresponding experimental yield loci. For the purpose of describing the temperature-dependent yield behaviour of DP590 appropriately, the Yld2000–2d yield function with temperature-dependent exponent was proposed. The identification procedures of the introduced parameters were then proposed based on Levenberg-Marquardt optimization algorithm. Afterwards, the proposed model was implemented into ABAQUS as user subroutine VUMAT with NICE (Next Increment Corrects Error explicit integration scheme. The numerical simulations of biaxial tensile tests were then conducted to confirm the validity of the proposed model. It could be concluded that the flexibility and accuracy of the proposed model guarantee the applicability in warm-forming applications.

  5. High-precision location and yield of North Korea's 2013 nuclear test

    Science.gov (United States)

    Zhang, Miao; Wen, Lianxing

    2013-06-01

    Using North Korea's 2009 nuclear test as reference and satellite imagery, we show that the location and yield of North Korea's 2013 nuclear test can be quickly and accurately determined based on seismic data. North Korea's 2013 nuclear test site is pinpointed by deriving relative location of North Korea's 2009 and 2013 nuclear tests and using the previously determined location of the 2009 nuclear test, while its yield is estimated based on the relative amplitude ratios of the Lg waves recorded for both events, the previously determined Lg-magnitude of 2009 nuclear test and burial depth inferred from satellite imagery. North Korea's 2013 test site is determined to be located at (41°17'26.88″N, 129°4'34.68″E), about 345 m south and 453 m west of its 2009 nuclear test site, with a geographic precision of 94 m. Its yield is estimated to be 12.2 ± 3.8 kt.

  6. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Exploiting the synergy between fluid catalytic cracking and visbreaking to increase the high-value product yields

    Energy Technology Data Exchange (ETDEWEB)

    Stratiev, D.; Stratiev, G. [Lukoil Neftochim Bourgas AD, Bourgas (Bulgaria); Minkov, D. [Univ. Assen Zlatorov, Bourgas (Bulgaria)

    2003-09-01

    An investigation was carried out to test the feasibility of processing a 360-510 C visbreaker fraction in the fluid catalytic cracking unit, in order to maximize high-value product yields. It was found that in a commercial visbreaker unit with a soaker, the viscosity of visbreaker residue (>200 C) and the conversion of the visbreaker feedstock - vacuum residue (>482 C) - correlated directly with vacuum residue viscosity. Depending on the conversion in the visbreaker, the yield of 360-510 C cut varied in the range 16-24% on feed. Characterization of this fraction showed no difference in quality with conversion and a high level of gasoline precursors - 68%. Cracking experiments with a heavy vacuum gas oil, distilled from Russian Export Blend crude oil (73% gasoline precursors) and with an 80% Russian Export Blend heavy vacuum gas oil / 20% visbreaker 360-510 C cut blend using a commercial equilibrium catalyst in a laboratory MAT unit exhibited almost the same yield patterns. Therefore, addition of 25% of the visbreaker 360-510 C cut to the FCC feed does not negatively affect the FCC yield pattern. Deriving the 360-510 C fraction from the visbreaker and processing it in the FCC unit could increase the crude oil conversion by 2.8%. The yield of high value LPG and gasoline could increase by 0.8% and 2.6% of the crude oil respectively whilst reducing yields of fuel oil and FCC LCO by 3.7% and 0.6% respectively. Characterization of the 200-360 C visbreaker cut showed that this material is more suitable as a component for transportation diesel than FCC LCO because of the lower aromatics content, 41% versus 72% of FCC LCO and higher cetane index - 42 versus 21 of FCC LCO. (orig.)

  8. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    Science.gov (United States)

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  9. Exploiting the Rotational Dynamics of Asymmetric Top Molecules to make Angle Resolved, Molecular Frame Ion Yield and High Harmonic Measurements

    Science.gov (United States)

    Makhija, Varun; Ren, Xiaoming; Tross, Jan; Mondal, Sudipta; Le, Anh-Thu; Trallero, Carlos; Kumarappan, Vinod; JRM HHG-Alignment Collaboration

    2013-05-01

    We extract the angle-dependent ionization rate of ethylene in an intense femtosecond laser pulse from the rotational revivals of the yield of the singly-charged molecular ion. By fitting the measured delay-dependent ion yield to the molecular axis distribution calculated using a rigid rotor code for asymmetric top molecules, we show that the dependence of the ionization rate on two Euler angles can be on obtained. Additionally we explore the possibility of extracting molecular frame information from similar pump-probe measurements of high harmonic generation. Office of Basic Energy Sciences, U.S. Department of Energy.

  10. Productivity, Profitability and Resource Use Efficiency: A Comparative Analysis between Conventional and High Yielding Rice in Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Yahia Bapari

    2016-10-01

    Full Text Available The study was analyzed the determinants, costs and benefits and resources allocation of both conventional and high yielding rice cultivation over the Rajbari district of Bangladesh. Data were accumulated from 300 regular rice growers of conventional and high yielding varieties and random sampling technique was applied for selecting the respondents from the study area from which information was collected through pre-tested questionnaire. Cobb – Douglas production function and gross margin were mainly used to determine the productivities and profits of both rice and the marginal value of the product was highly recommended to derive the optimal use of the resources. Results obtained by applying ordinary least square method showed that the most important factors of production in the study area were irrigation, labor, fertilizer and insecticide costs whose elasticities were 0.904, 0.048, 0.045 and 0.044 respectively and insignificant factors were seed and ploughing costs whose elasticities were – 0.009 and 0.030 respectively for high yielding rice. On the other hand, irrigation, insecticide, seed and ploughing costs of elasticities 0.880, 0.589, 0.116 and – 0.127 respectively were the important factors and minor role playing factors were labor and fertilizer costs whose elasticities were 0.098 and 0.077 respectively for conventional yielding rice. The core message from productivity analysis was that the irrigation was key variable which played a positive and vital role in producing rice of both varieties. All variables (resources were economically misallocated in the production activities of both varieties along the study area but high yielding rice was more profitable than conventional one. Results also showed that the farmers of the study area produced rice of both varieties in the inefficient range of production. Continuous supply of electricity, flexible credit and improving the existing resources were the prime policy recommendations of

  11. Effects of Lignocellulosic Compounds on the Yield, Nanostructure and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Broström, Markus; Kling, Jens

    Gasification offers the utilization of biomass to a wide variety of applications such as heat, electricity, chemicals and transport fuels in an efficient and sustainable manner. High soot yields in the high-temperature entrained flow gasification lead to intensive gas cleaning and can cause...... reactor. The specific objectives of this study were to: (1) obtain knowledge about lignocellulosic compounds and monolignols influence on the yield, nanostructure, composition, and reactivity of soot during high-temperature gasification, (2) understand the influence of Soxhlet extraction on the soot...... reactivity and characteristics, and (3) determine the reaction conditions and fuel composition which minimize soot formation leading to the efficient operation of high-temperature gasification process....

  12. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    National Research Council Canada - National Science Library

    Ukkonen, Kaisa; Vasala, Antti; Ojamo, Heikki; Neubauer, Peter

    2011-01-01

    ...®) and high-aeration shake flask (Ultra Yield Flask™). The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli...

  13. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    Science.gov (United States)

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  14. Vineyard Yield Estimation Based on the Analysis of High Resolution Images Obtained with Artificial Illumination at Night

    Directory of Open Access Journals (Sweden)

    Davinia Font

    2015-04-01

    Full Text Available This paper presents a method for vineyard yield estimation based on the analysis of high-resolution images obtained with artificial illumination at night. First, this paper assesses different pixel-based segmentation methods in order to detect reddish grapes: threshold based, Mahalanobis distance, Bayesian classifier, linear color model segmentation and histogram segmentation, in order to obtain the best estimation of the area of the clusters of grapes in this illumination conditions. The color spaces tested were the original RGB and the Hue-Saturation-Value (HSV. The best segmentation method in the case of a non-occluded reddish table-grape variety was the threshold segmentation applied to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by morphological filtering. Secondly, after segmentation, two procedures for yield estimation based on a previous calibration procedure have been proposed: (1 the number of pixels corresponding to a cluster of grapes is computed and converted directly into a yield estimate; and (2 the area of a cluster of grapes is converted into a volume by means of a solid of revolution, and this volume is converted into a yield estimate; the yield errors obtained were 16% and −17%, respectively.

  15. Effect of sowing date on yield and quality of high moisture ear and grain production for maize

    Directory of Open Access Journals (Sweden)

    Zlatko Svečnjak

    2007-12-01

    Full Text Available High moisture ear and grain production of maize (Zea mays L. hasadvantages in comparison with dry grain production because longer maturity hybrids might be grown and there are no grain drying costs. A two year study was carried out at the Faculty of Agriculture experimental field Maksimir to evaluate the effect of delayed sowing dates on yield and quality of high moisture ear and grain production when compared to optimum sowing date. Maize hybrids belonging to the maturity groups FAO 200 (PR39K38 and 300 (PR38P05 were sown at optimum (early May and two delayed sowing dates (middle May and early June and grown under intensive cropping system.When compared to optimum sowing date, grain and ear yield significantly decreased with delayed sowing dates despite the fact that grown hybrids reached physiological maturity before the first autumn frosts. These yield reductions at delayed sowing dates were mainly associated with fewer grains per ear, and partly due to lighter 1000-grain weights. Both hybrids resulted in similar ear yield; however, a longer maturity hybrid (PR38P05 had larger grain yields than a shorter-maturity hybrid (PR39K38 because the latter hadsignificantly smaller shelling index (82,1 % than the former one (87,0 %. Sowing date and growing conditions showed no significant effect on grain protein and oil contents. Hybrids also had similar grain protein content, whereas PR38P05 had absolutely small, but significantly higher grain oil content than PR39K38. Thus, delayed sowing of the maize hybrids of FAO 200 - 300 maturity groups might occur into early June with no effect on grain quality, but with significant yield losses when compared to optimum sowing date.

  16. A novel bioreactor and culture method drives high yields of platelets from stem cells.

    Science.gov (United States)

    Avanzi, Mauro P; Oluwadara, Oluwasijibomi E; Cushing, Melissa M; Mitchell, Maxwell L; Fischer, Stephen; Mitchell, W Beau

    2016-01-01

    Platelet (PLT) transfusion is the primary treatment for thrombocytopenia. PLTs are obtained exclusively from volunteer donors, and the PLT product has only a 5-day shelf life, which can limit supply and result in PLT shortages. PLTs derived from stem cells could help to fill this clinical need. However, current culture methods yield far too few PLTs for clinical application. To address this need, a defined, serum-free culture method was designed using a novel bioreactor to increase the yield of PLTs from stem cell-derived megakaryocytes. CD34 cells isolated from umbilical cord blood were expanded with a variety of reagents and on a nanofiber membrane using serum-free medium. These cells were then differentiated into megakaryocytic lineage by culturing with thrombopoietin and stem cell factor in serum-free conditions. Polyploidy was induced by addition of Rho kinase inhibitor or actin polymerization inhibitor to the CD41 cells. A novel bioreactor was developed that recapitulated aspects of the marrow vascular niche. Polyploid megakaryocytes that were subjected to flow in the bioreactor extended proPLTs and shed PLTs, as confirmed by light microscopy, fluorescence imaging, and flow cytometry. CD34 cells were expanded 100-fold. CD41 cells were expanded 100-fold. Up to 100 PLTs per input megakaryocyte were produced from the bioreactor, for an overall yield of 10(6) PLTs per input CD34 cell. The PLTs externalized P-selectin after activation. Functional PLTs can be produced ex vivo on a clinically relevant scale using serum-free culture conditions with a novel stepwise approach and an innovative bioreactor. © 2015 AABB.

  17. Towards the development of systems for high-yield production of microbial lipases.

    Science.gov (United States)

    Turki, Saoussen

    2013-10-01

    Microbial lipases are a versatile and attractive class of biocatalysts for a wide variety of applications. Lipases can be produced by bacteria, yeasts or filamentous fungi. Nevertheless, they are often not optimal for direct use in industrial conditions due to low yields, low specific activities and a limited spectrum of activities. Improvements in the productivity of lipases have been made by genetic manipulation of the cell factory production hosts and by optimizing production media and conditions. Advances in protein engineering technology, ranging from directed evolution to rational design, have also been able to tailor lipases to particular applications. This review describes various approaches used to improve lipase production and applications.

  18. High-Yield Method for Dispersing Simian Kidneys for Cell Cultures

    Science.gov (United States)

    de Oca, H. Montes; Probst, P.; Grubbs, R.

    1971-01-01

    A technique for dispersion of animal tissue cells is described. The proposed technique is based on the concomitant use of trypsin and disodium ethylenediamine tetraacetate (EDTA). The use of the two dispersing agents (trypsin and disodium EDTA) markedly enhances cell yield as compared with the standard cell dispersion methods. Moreover, significant reduction in the amount of time required for complete tissue dispersal, presence of a very low number of nonviable cells, less cell clumping, and more uniform monolayer formation upon cultivation compare favorably with the results usually obtained with the standard trypsinization technique. Images PMID:4993235

  19. High-yield production and transfer of graphene flakes obtained by anodic bonding

    OpenAIRE

    Moldt, Thomas; Eckmann, Axel; Klar, Philipp; Morozov, Sergey V.; Zhukov, Alexander A.; Novoselov, Kostya S.; CASIRAGHI, cinzia

    2011-01-01

    We report large-yield production of graphene flakes on glass by anodic bonding. Under optimum conditions, we counted several tens of flakes with lateral size around 20-30 {\\mu}m and few tens of flakes with larger size. 60-70% of the flakes have negligible D peak. We show that it is possible to easily transfer the flakes by wedging technique. The transfer on silicon does not damage graphene and lowers the doping. The charge mobility of the transferred flakes on silicon is of the order of 6000 ...

  20. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression

    Directory of Open Access Journals (Sweden)

    Fernando eAleman

    2014-09-01

    Full Text Available Potassium (K+ is an essential macronutrient required for plant growth, development and high yield production of crops. Members of group I of the KT/HAK/KUP family of transporters, such as HAK5, are key components for K+ acquisition by plant roots at low external K+ concentrations. Certain abiotic stress conditions such as salinity or Cs+-polluted soils may jeopardize plant K+ nutrition because HAK5-mediated K+ transport is inhibited by Na+ and Cs+. Here, by screening in yeast a randomly-mutated collection of AtHAK5 transporters, a new mutation in AtHAK5 sequence is identified that greatly increases Na+ tolerance. The single point mutation F130S, affecting an amino acid residue conserved in HAK5 transporters from several species, confers high salt tolerance, as well as Cs+ tolerance. This mutation increases more than 100-fold the affinity of AtHAK5 for K+ and reduces the Ki values for Na+ and Cs+, suggesting that the F130 residue may contribute to the structure of the pore region involved in K+ binding. In addition, this mutation increases the Vmax for K+. All this changes occur without increasing the amount of the AtHAK5 protein in yeast and support the idea that this residue is contributing to shape the selectivity filter of the AtHAK5 transporter.

  1. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  2. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    Science.gov (United States)

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen

    2017-05-01

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ~50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.

  3. High yield lipase-catalyzed synthesis of Engkabang fat esters for the cosmetic industry.

    Science.gov (United States)

    Abd Rahman, Nur Fariza; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar

    2011-02-01

    Engkabang fat esters were produced via alcoholysis reaction between Engkabang fat and oleyl alcohol, catalyzed by Lipozyme RM IM. The reaction was carried out in a 500 ml Stirred tank reactor using heptane and hexane as solvents. Response surface methodology (RSM) based on a four-factor-five-level Central composite design (CCD) was applied to evaluate the effects of synthesis parameters, namely temperature, substrate molar ratio (oleyl alcohol: Engkabang fat), enzyme amount and impeller speed. The optimum yields of 96.2% and 91.4% were obtained for heptane and hexane at the optimum temperature of 53.9°C, impeller speeds of 309.5 and 309.0 rpm, enzyme amounts of 4.82 and 5.65 g and substrate molar ratios of 2.94 and 3.39:1, respectively. The actual yields obtained compared well with the predicted values of 100.0% and 91.5%, respectively. Meanwhile, the properties of the esters show that they are suitable to be used as ingredient for cosmetic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. High-yield Escherichia coli-based cell-free expression of human proteins

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Erich; Wuethrich, Kurt, E-mail: wuthrich@mol.biol.ethz.ch [ETH Zurich, Institute of Molecular Biology and Biophysics (Switzerland)

    2012-05-15

    Production of sufficient amounts of human proteins is a frequent bottleneck in structural biology. Here we describe an Escherichia coli-based cell-free system which yields mg-quantities of human proteins in N-terminal fusion constructs with the GB1 domain, which show significantly increased translation efficiency. A newly generated E. coli BL21 (DE3) RIPL-Star strain was used, which contains a variant RNase E with reduced activity and an excess of rare-codon tRNAs, and is devoid of lon and ompT protease activity. In the implementation of the expression system we used freshly in-house prepared cell extract. Batch-mode cell-free expression with this setup was up to twofold more economical than continuous-exchange expression, with yields of 0.2-0.9 mg of purified protein per mL of reaction mixture. Native folding of the proteins thus obtained is documented with 2D [{sup 15}N,{sup 1}H]-HSQC NMR.

  5. Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton

    Directory of Open Access Journals (Sweden)

    Ting-ting Xie

    2016-01-01

    Full Text Available Cotton produces more biomass and economic yield when cluster planting pattern (three plants per hole than in a traditional planting pattern (one plant per hole, even at similar plant densities, indicating that individual plant growth is promoted by cluster planting. The causal factors for this improved growth induced by cluster planting pattern, the light interception, canopy microclimate and photosynthetic rate of cotton were investigated in an arid region of China. The results indicated that the leaf area index and light interception were higher in cluster planting, and significantly different from those in traditional planting during the middle and late growth stages. Cotton canopy humidity at different growth stages was increased but canopy temperatures were reduced by cluster planting. In the later growth stage of cluster planting, the leaf chlorophyll content was higher and the leaf net photosynthetic rate and canopy photosynthetic rate were significantly increased in comparing with traditional planting pattern. We concluded that differences in canopy light interception and photosynthetic rate were the primary factors responsible for increased biomass production and economic yield in cluster planting compared with the traditional planting of cotton.

  6. Selection of strawberry cultivars with tolerance to Tetranychus urticae (Acari: Tetranychidae) and high yield under different managements.

    Science.gov (United States)

    Costa, A F; Teodoro, P E; Bhering, L L; Fornazier, M J; Andrade, J S; Martins, D S; Zanuncio Junior, J S

    2017-04-28

    Tetranychus urticae Koch (Acari: Tetranychidae) is considered the main pest of strawberry. Several factors can favor its development, among them the genotype susceptibility and cropping system. The aims of this study were to evaluate the agronomic performance of strawberry cultivars under different managements and to identify strawberry cultivars that meet tolerance to T. urticae and high fruit yield. Thirteen cultivars of strawberry ('Albion', 'Aleluia', 'Aromas', 'Camarosa', 'Camino Real', 'Campinas', 'Diamante', 'Dover', 'Festival', 'Seascape', 'Toyonoka', 'Tudla', and 'Ventana') under three managements (open field, low tunnel, and high tunnel) were evaluated. The T. urticae attack to different cultivars was influenced by managements, being low tunnel the one that provided higher infestations in the most evaluated cultivars. 'Camarosa' was the cultivar with the lower incidence of pest and 'Dover' had the higher infestation. The genotype most suitable for growing under different managements is the 'Festival' genotype, since it meets tolerance to T. urticae, high fruit yield, and phenotypic stability.

  7. Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars.

    Directory of Open Access Journals (Sweden)

    Kacper Piotr Kaminski

    Full Text Available BACKGROUND: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP independent mechanism under special conditions. Nonetheless, glucose-6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. PRINCIPAL FINDING: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM and normal levels of transcripts for other enzymes involved in starch metabolism in comparison with medium and low yielding cultivars as determined by DeepSAGE transcriptome profiling. The decrease in PGM activity in Kuras was confirmed by measuring the enzyme activity from potato tuber extracts. Contrary to expectations, this combination lead to a higher level of intracellular glucose-1-phosphate (G1P in Kuras suggesting that G1P is directly imported into plastids and can be quantitatively important for starch synthesis under normal conditions in high yielding cultivars. SIGNIFICANCE: This could open entirely new possibilities for metabolic engineering of the starch metabolism in potato via the so far uncharacterized G1P transporter. The perspectives are to increase yield and space efficiency of this important crop. In the light of the increasing demands imposed on agriculture to support a growing global population this presents an exciting new possibility.

  8. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    Science.gov (United States)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air

  9. Engineering high yields of secondary metabolites in Rubia cell cultures through transformation with rol genes.

    Science.gov (United States)

    Bulgakov, Victor P; Shkryl, Yuri N; Veremeichik, Galina N

    2010-01-01

    Among the different methods currently used to improve yields of secondary metabolites in cultured plant cells, the method involving transformation by rol genes represents an example of relatively new technology. These genes, isolated from plasmids of the plant pathogen Agrobacterium rhizogenes, are potential activators of secondary metabolism in transformed cells from the Solanaceae, Araliaceae, Rubiaceae, Vitaceae, and Rosaceae families. In some cases, the activator effect of individual rol genes was sufficient to overcome the inability of cultured plant cells to produce large amounts of secondary metabolites. Stimulation of production characteristics of cultured plant cells mediated by the rol genes was shown to be remarkably stable over long-term cultivation. In this chapter, we describe transformation of Rubia cordifolia L. cells with the rol genes as an example of metabolic engineering of secondary metabolites.

  10. Use of Niobium High Strength Steels with 450 MPA Yield Strength for Construction

    Science.gov (United States)

    Silvestre, Leonardo; Langenberg, Peter; Amaral, Thiago; Carboni, Marcelo; Meira, Marcos; Jordão, Alexandre

    This paper presents an actual case of a new industrial building at CBMM's plant in Araxá, Brazil as an example of lean design using microalloyed steels. The structure consists mostly of microalloyed ASTM A572 steel grades 65 and 50 instead of the conventional carbon manganese ASTM A36 steel. The application of grade 65 with more than 450 MPa of yield strength is an innovative solution for this type of construction in South America. A complete welding evaluation performed on the low carbon, niobium microalloyed grade 65 steel showed the welding properties and benefits. Niobium's effect of increasing strength and toughness simultaneously resulted in relevant savings in total steel consumption for the project. The paper also quantifies the expected savings in costs, energy and carbon dioxide emissions.

  11. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    glucose release with low formation of by-products. Under these conditions, the cellulose and hemicellulose sugar recovery was 94 % and 70 %, respectively. The efficiency of the enzymatic hydrolysis of cellulose under these conditions was 91 %. On the other hand, the release of pentose sugars was higher......The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response...... when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars....

  12. High-yield production and transfer of graphene flakes obtained by anodic bonding.

    Science.gov (United States)

    Moldt, Thomas; Eckmann, Axel; Klar, Philipp; Morozov, Sergey V; Zhukov, Alexander A; Novoselov, Kostya S; Casiraghi, Cinzia

    2011-10-25

    We report large-yield production of graphene flakes on glass by anodic bonding. Under optimum conditions, we counted several tens of flakes with lateral size around 20-30 μm and a few tens of flakes with larger size. About 60-70% of the flakes have a negligible D peak. We show that it is possible to easily transfer the flakes by the wedging technique. The transfer on silicon does not damage graphene and lowers the doping. The charge mobility of the transferred flakes on silicon is on the order of 6000 cm(2)/V s (at a carrier concentration of 10(12) cm(-2)), which is typical for devices prepared on this substrate with exfoliated graphene.

  13. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    Science.gov (United States)

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  14. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue, E-mail: euy-tokyo@umin.ac.jp [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang, E-mail: liaogy@21cn.com [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  15. Patch clamping on plane glass-fabrication of hourglass aperture and high-yield ion channel recording.

    Science.gov (United States)

    Chen, Chang-Yu; Tu, Ting-Yuan; Chen, Chang-Hung; Jong, De-Shien; Wo, Andrew M

    2009-08-21

    Planar patch-clamp has revolutionized ion-channel measurement by eliminating laborious manipulation from the traditional micropipette approach and enabling high throughput. However, low yield in gigaseal formation and/or relatively high cost due to microfabricated processes are two main drawbacks. This paper presents patch clamping on glass substrate-an economical solution without sacrificing gigaseal yield rate. Two-stage CO(2) laser drilling methodology was used to generate an hourglass, funnel-like aperture of a specified diameter with smooth and debris-free surfaces on 150 microm borosilicate cover glass. For 1-3 microm apertures as patch-clamp chips, seal resistance was tested on human embryonic kidney, Chinese hamster ovary, and Jurkat T lymphoma cells with a gigaseal success rate of 62.5%, 43.6% and 66.7% respectively. Results also demonstrated both whole-cell and single channel recording on endogenously expressed ion channels to confirm the capability of different patch configurations.

  16. Rapid Transient Production in Plants by Replicating and Non-Replicating Vectors Yields High Quality Functional Anti-HIV Antibody

    OpenAIRE

    Frank Sainsbury; Markus Sack; Johannes Stadlmann; Heribert Quendler; Rainer Fischer; Lomonossoff, George P.

    2010-01-01

    Background The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product. Meth...

  17. A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine

    Directory of Open Access Journals (Sweden)

    Yujiao Yang

    2017-03-01

    Full Text Available A purified inactivated vaccine (PIV using the Zika virus (ZIKV Puerto Rico strain PRVABC59 showed efficacy in monkeys, and is currently in a phase I clinical trial. High-yield manufacture of this PIV is essential for its development and vaccine access. Here we report an infectious cDNA clone-launched platform to maximize its yield. A single NS1 protein substitution (K265E was identified to increase ZIKV replication on Vero cells (a cell line approved for vaccine production for both Cambodian FSS13025 and Puerto Rico PRVABC59 strains. The NS1 mutation did not affect viral RNA synthesis, but significantly increased virion assembly through an increased interaction between NS1 and NS2A (a known regulator of flavivirus assembly. The NS1 mutant virus retained wild-type virulence in the A129 mouse model, but decreased its competence to infect Aedes aegypti mosquitoes. To further increase virus yield, we constructed an infectious cDNA clone of the clinical trial PIV strain PRVABC59 containing three viral replication-enhancing mutations (NS1 K265E, prM H83R, and NS3 S356F. The mutant cDNA clone produced >25-fold more ZIKV than the wild-type parent on Vero cells. This cDNA clone-launched manufacture platform has the advantages of higher virus yield, shortened manufacture time, and minimized chance of contamination.

  18. A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine.

    Science.gov (United States)

    Yang, Yujiao; Shan, Chao; Zou, Jing; Muruato, Antonio E; Bruno, Diniz Nunes; de Almeida Medeiros Daniele, Barbosa; Vasconcelos, Pedro F C; Rossi, Shannan L; Weaver, Scott C; Xie, Xuping; Shi, Pei-Yong

    2017-03-01

    A purified inactivated vaccine (PIV) using the Zika virus (ZIKV) Puerto Rico strain PRVABC59 showed efficacy in monkeys, and is currently in a phase I clinical trial. High-yield manufacture of this PIV is essential for its development and vaccine access. Here we report an infectious cDNA clone-launched platform to maximize its yield. A single NS1 protein substitution (K265E) was identified to increase ZIKV replication on Vero cells (a cell line approved for vaccine production) for both Cambodian FSS13025 and Puerto Rico PRVABC59 strains. The NS1 mutation did not affect viral RNA synthesis, but significantly increased virion assembly through an increased interaction between NS1 and NS2A (a known regulator of flavivirus assembly). The NS1 mutant virus retained wild-type virulence in the A129 mouse model, but decreased its competence to infect Aedes aegypti mosquitoes. To further increase virus yield, we constructed an infectious cDNA clone of the clinical trial PIV strain PRVABC59 containing three viral replication-enhancing mutations (NS1 K265E, prM H83R, and NS3 S356F). The mutant cDNA clone produced >25-fold more ZIKV than the wild-type parent on Vero cells. This cDNA clone-launched manufacture platform has the advantages of higher virus yield, shortened manufacture time, and minimized chance of contamination. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Understanding scaling of ignition metrics for high-yield implosions on the NIF

    Science.gov (United States)

    Springer, Paul; Hurricane, Omar; Hammer, J. H.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Edwards, M. J.; Field, J. E.; Gaffney, J.; Grim, G. P.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Munro, D. H.; Nora, R. C.; Patel, P. K.; Peterson, L.; Spears, B.

    2016-10-01

    The self-heating condition for an imploding hotspot requires understanding the balance between mechanical work, heating via fusion reactions, and the radiative and conduction losses. A 3D cognizant Lawson ignition threshold metric is derived based on net fusion hotspot heating achieved when hotspot rho-r and ion temperature exceed critical values that depend on the temperature-dependent loss mechanisms. Key to understanding and scaling such analysis is an accurate determination of hotspot density and pressure, which are generally inferred using the yield, the thermal temperature, and other experimental data. 3D flow and its effect on neutron spectra can lead to overestimation of the temperature, and underestimation of hotspot rho-r, energy, and ignition margin. In this work, we analyze these effects in NIF data, and propose new methods to avoid them. These simple, analytical methods are tested using the largest 2D ICF simulation dataset ever produced. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  20. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis

    DEFF Research Database (Denmark)

    Liu, Jianming; Wang, Zhihao; Kandasamy, Vijayalakshmi

    2017-01-01

    When modifying the metabolism of living organisms with the aim of achieving biosynthesis of useful compounds, it is essential to ensure that it is possible to achieve overall redox balance. We propose a generalized strategy for this, based on fine-tuning of respiration. The strategy was applied...... on metabolically engineered Lactococcus lactis strains to optimize the production of acetoin and (R,R)−2,3-butanediol (R-BDO). In the absence of an external electron acceptor, a surplus of two NADH per acetoin molecule is produced. We found that a fully activated respiration was able to efficiently regenerate NAD...... is converted into R-BDO per mole, only the excess of NADH needs to be oxidized via respiration. Either by fine-tuning the respiration capacity or by using a dual-phase fermentation approach involving a switch from fully respiratory to non-respiratory conditions, we obtained 361 mM (32 g/L) R-BDO with a yield...

  1. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice

    Directory of Open Access Journals (Sweden)

    Yi-Chien Wu

    2016-01-01

    Full Text Available Typical japonica type rice is sensitive to high temperature. Pon-Lai rice is a special japonica type with adaptation to the subtropical climate in Taiwan. Facing climate change, rising temperatures would damage the yield and quality of rice production. This research was conducted using Pon-Lai rice in the field of a subtropical climate. We conducted 2 experiments, including a year-round experiment and collection of samples from different districts for building different temperature conditions. We analyzed the correlation between rising temperature and rice yield or quality. In our results, the critical period of temperature effect is 0–15 days after heading (H15. The threshold of high temperature damage in yield and appearance quality was 25–27 °C. Grain weight decreased about 2–6%, while the temperature of H15 was raised 1 °C above the thresholds. Perfect grain ratio and chalky grain ratio decreased and increased, respectively, while the temperature of H15 was raised above the thresholds. However, the high temperature in H15 affected the physicochemical characteristics. In addition, we found positive correlation between grain length to width ratio and perfect grain ratio. Grain length to width ratio could be an index of temperature effects for grain quality. In our study, when the temperature was below 30 °C, a rising temperature of H15 could damage rice yield and appearance quality, and change grain shape. Our results could provide reference for dealing with the warming future in other temperate rice-cultivated countries.

  2. Optimization of Auto-induction Conditions for the Heterologous Expression of a Maltogenic Amylase in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zahra Goudarzi

    2016-03-01

    Full Text Available Background and Objectives: Auto-induction is usually employed to achieve high cell density and overproduction of proteins with a simple and low-cost operation. The efficiency of heterologous protein expression in Escherichia coli is determined by different parameters. Interactions between these parameters usually complicate the identification of those that contribute more to the improvement of protein expression. As optimal implementation of the auto-induction considerably relies on both the composition of the auto-induction medium and induction conditions, the present study focused on the optimization of related culture parameters through response surface methodology. Materials and Methods: In the first step, the optimum culture temperature and auto-induction duration were determined with the aim of achieving the highest specific activity. Then the culture composition was optimized through response surface methodology considering the concentration of carbon sources, glucose and lactose, as the variables for the simultaneous maximizing of the Maltogenic Amylase volumetric yield and specific activity. Results and Conclusion: Expression of recombinant Maltogenic Amylase under optimum conditions in the shake-flask cultures of Escherichia coli harboring pET 28a increased by 1.7 folds in comparison with an un-optimized auto-induction culture. The Maltogenic Amylase specific activity and volumetric yield were found to be 34.93 U mg-1 and 390.78 U ml-1 at optimum conditions, respectively.

  3. Freezing point of milk in a herd of high yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Slavica Golc Teger

    2005-04-01

    Full Text Available Factors affecting the freezing point of milk in a herd of 200 Black and White cows with the average milk yield of 8 386 kg in the lactation and 8 328 kg in the standard lactation were examinated. Over the period of one year (2002 and based upon 1 773 individual monthly collected milk samples with the average contents of 3.91% fat, 3.26% protein, 4.54% lactose, 33.4 mg/100 ml urea and 331000 somatic cells per ml in milk were determined. The average freezing point of milk (n = 1 680 was estimated to be –0.527 ºC, with a range from -0.562 ºC to -0.423 ºC. In 210 (12.5% samples was higher than -0.515 ºC. The lowest freezing point (-0.532 ºC was found in the samples collected in the first month after calving and highest (-0.522 ºC in the samples of 12th month of lactation. The differences between the freezing point of milk after the first and the second calving (-0.530 ºC; P < 0.05 and those after the fifth calving (-0.523 ºC; P < 0.05 were also significant. The samples collected in month from January to April (-0.538 ºC to -0.532 ºC were significantly lower in comparison to samples collected in May and June (-0.517 ºC and -0.519 ºC. The following statistically significant correlation coefficients between cows' properties, milk composition and the freezing point of milk were found: month of lactation r = 0.233 (P < 0.001; lactation number r = 0.196 (P < 0.001; age of cows (years r = 0.231 (P < 0.001; month of the year r = 0.0253 (P < 0.001; milk yield per milking day r = -0.106 (P < 0.001; fat corrected milk content (FCM per milking day r = -0.234 (P < 0.001; lactose % r = -0.530 (P < 0.001; fat % r = -0.351 (P < 0.001; protein % r = 0.058 (P < 0.05; urea mg/100 mL r = 0.091 (P < 0.001 and somatic cell count r = 0.154 (P < 0.001. The sum of effects (month of the year, lactation lenght and fat, protein and lactose content of milk was found to account for about 70% variability of the total depression of milk freezing point (R2 = 0.698.

  4. Embedded pitch adapters: A high-yield interconnection solution for strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullán, M., E-mail: miguel.ullan@imb-cnm.csic.es [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Fleta, C.; Fernandez-Tejero, J.; Quirion, D. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Díez, S.; Gregor, I.M.; Lohwasser, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); and others

    2016-09-21

    A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected.

  5. Ultrahigh Yield Strength Rhenium for High-Performance Combustion Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The state-of-the-art material system for high-performance radiation-cooled liquid rocket engines is iridium/rhenium manufactured by chemical vapor deposition (CVD)....

  6. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    Directory of Open Access Journals (Sweden)

    Hong Jae Yim

    2016-03-01

    Full Text Available When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50.

  7. Effects of Fluctuating Environments on the Selection of High Yielding Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J. R.; Tillett, D. M.

    1987-02-27

    Microalgae have the potential of producing biomass with a high content of lipids at high productivities using seawater or saline ground water resources. Microalgal lipids are similar to vegetable oils and suitable for processing to liquid fuels. Engineering cost analysis studies have concluded that, at a favorable site, microalgae cultivation for fuel production could be economically viable. The major uncertainties involve the microalgae themselves: biomass and lipid productivity and culture stability.

  8. Taurus Littrow Pyroclastic Deposit: High-Yield Feedstock for Lunar Oxygen

    Science.gov (United States)

    Allen, Carlton C.

    2015-01-01

    Future human habitation of the Moon will likely require the use of locally derived materials because of the high cost of transportation from Earth. Oxygen, extracted from oxides and silicates, is a potentially abundant lunar resource vital for life support and spacecraft propulsion. The anticipated costs of supplying all oxygen needs for a lunar base from Earth are high enough to warrant serious study of oxygen production from local resources.

  9. Reassortment of high-yield influenza viruses in vero cells and safety assessment as candidate vaccine strains.

    Science.gov (United States)

    Zhou, Jian; Yang, Fan; Yang, Jinghui; Ma, Lei; Cun, Yina; Song, Shaohui; Liao, Guoyang

    2017-01-02

    Vaccination is the practiced and accessible measure for preventing influenza infection. Because chicken embryos used for vaccine production have various insufficiencies, more efficient methods are needed. African green monkey kidney (Vero) cells are recommended by the World Health Organization (WHO) as a safe substitute for influenza vaccine production for humans. However, the influenza virus usually had low-yield in Vero cells, which limits the usage of Vero cellular vaccines. This study used 2 high-yield influenza viruses in Vero cells: A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B) as donor viruses. It used 3 wild strain viruses to reassort new adaptation viruses, including: A/Tianjin/15/2009(H1N1), A/Fujian/196/2009(H3N2), and B/Chongqing/1384/2010(B). These three new viruses could maintain the characteristic of high-yield in Vero cells. Furthermore, they could keep the immunogenic characteristics of the original wild influenza viruses. Importantly, these viruses were shown as safe in chicken embryo and guinea pigs assessment systems. These results provide an alternative method to produce influenza vaccine based on Vero cells.

  10. High-yield production of a chimeric glycoprotein based on permuted E1 and E2 HCV envelope ectodomains.

    Science.gov (United States)

    Tello, Daniel; Rodríguez-Rodríguez, Mar; Yélamos, Belén; Gómez-Gutiérrez, Julián; Peterson, Darrell L; Gavilanes, Francisco

    2015-03-01

    In this report it is described for the first time the expression and purification of large quantities of a soluble and correctly folded chimeric recombinant protein, E2661E1340, containing the permuted Hepatitis C virus (HCV) glycoprotein ectodomains E1 (amino acids 192-340) and E2 (amino acids 384-661). Using the baculovirus/insect cell expression system, 8mg of secreted protein were purified from 1L of culture media, a yield 4 times higher than the described for its counterpart E1341E2661. This permuted chimeric protein is glycosylated and possesses a high tendency to self-associate. The fluorescence emission spectrum indicates that Trp residues occupy a relatively low hydrophobic environment. The secondary structure was determined by deconvolution of the far-UV circular dichroism spectrum yielding 13% α-helix structure, 49% extended structure and 38% non-ordered structure. E2661E1340 binds to antibodies present in human sera from HCV-positive patients, a binding that is blocked at different levels by a rabbit anti-E2661 antibody. All these structural and antigenic features of E2661E1340 are very similar to those described for E1340E2661, Thus, this high-yield isolated chimeric protein may be a valuable tool to study the first steps of the HCV infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Waveform optimization for enhancing high-harmonic yield by synthesizing two or three-color laser fields.

    Science.gov (United States)

    Jin, Cheng; Wang, Guoli; Wei, Hui; Le, Anh-Thu; Lin, C. D.

    2014-05-01

    High-order harmonics (HH) extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. We show that HH yield can be enhanced by one to two orders of magnitude if the laser's waveform is optimized by synthesizing two- or three-color fields compared to a sinusoidal wave without an increase in the total laser power. The optimization procedure carried out by genetic algorithm is designed to take into account of macroscopic propagation effects. The HH thus generated are also favorably phase-matched so that radiation is efficiently built up in the gas medium. In addition, we demonstrate the generation of a single-attosecond pulse by synthesizing three incommensurate lasers while the harmonic yield is optimized as well. Our results, combined with the emerging intense high-repetition MHz lasers, promise to increase harmonic yields by several orders to make HH feasible in the near future as general bright tabletop light sources. Supported by U.S. DOE.

  12. Three new shuttle vectors for heterologous expression in Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Qinghua Cao

    2016-01-01

    Conclusions: These results indicated that these expression vectors are useful tools for gene expression in Z. mobilis and this could provide a solid foundation for further studies of heterologous gene expression in Z. mobilis.

  13. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  14. Transcriptome Analysis Suggests That Starch Synthesis May Proceed via Multiple Metabolic Routes in High Yielding Potato Cultivars

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Høgh Petersen, Annabeth; Sønderkær, Mads

    2012-01-01

    new possibilities for metabolic engineering of the starch metabolism in potato via the so far uncharacterized G1P transporter. The perspectives are to increase yield and space efficiency of this important crop. In the light of the increasing demands imposed on agriculture to support a growing global......Background: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP...... independent mechanism under special conditions. Nonetheless, glucose 6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. Principal Finding: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM) and normal...

  15. Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China

    Directory of Open Access Journals (Sweden)

    Lilian Wu

    2016-07-01

    Full Text Available Selecting rice varieties with a high nitrogen (N use efficiency (NUE is the best approach to reduce N fertilizer application in rice production and is one of the objectives of the Green Super Rice (GSR Project in China. However, the performance of elite candidate GSR varieties under low N supply remains unclear. In the present study, differences in the grain yield and NUE of thirteen and fourteen candidate varieties with two controls were determined at a N rate of 100 kg ha-1 in field experiments in 2014 and 2015, respectively. The grain yield for all of the rice varieties ranged from 8.67 to 11.09 t ha-1, except for a japonica rice variety YG29, which had a grain yield of 6.42 t ha-1. HY549 and YY4949 produced the highest grain yield, reflecting a higher biomass production and harvest index in 2014 and 2015, respectively. Total N uptake at maturity (TNPM ranged from 144 to 210 kg ha-1, while the nitrogen use efficiency for grain production (NUEg ranged from 35.2 to 62.0 kg kg-1. Both TNPM and NUEg showed a significant quadratic correlation with grain yield, indicating that it is possible to obtain high grain yield and NUEg with the reduction of TNPM. The correlation between N-related parameters and yield-related traits suggests that promoting pre-heading growth could increase TNPM, while high biomass accumulation during the grain filling period and large panicles are important for a higher NUEg. In addition, there were significant and negative correlations between the NUEg and N concentrations in leaf, stem and grain tissues at maturity. Further improvements in NUEg require a reduction in the stem N concentration but not the leaf N concentration. The daily grain yield was the only parameter that significantly and positively correlated with both TNPM and NUEg. This study determined variations in the grain yield and NUE of elite candidate GSR rice varieties and provided plant traits that could be used as selection criteria in breeding N

  16. Development of an FPW Biosensor with Low Insertion Loss and High Fabrication Yield for Detection of Carcinoembryonic Antigen

    Science.gov (United States)

    Lan, Je-Wei; Huang, I-Yu; Lin, Yu-Cheng; Lin, Chang-Yu; Chen, Jian-Lin; Hsieh, Chia-Hsu

    2016-01-01

    In the last two decades, various flexural plate-wave (FPW)-based biosensors with low phase velocity, low operation frequency, high sensitivity, and short response time, have been developed. However, conventional FPW transducers have low fabrication yield because controlling the thickness of silicon/isolation/metal/piezoelectric multilayer floating thin-plate is difficult. Additionally, conventional FPW devices usually have high insertion loss because of wave energy dissipation to the silicon substrate or outside area of the output interdigital transducers (IDTs). These two disadvantages hinder the application of FPW devices. To reduce the high insertion loss of FPW devices, we designed two focus-type IDTs (fan-shaped and circular, respectively) that can effectively confine the launched wave energy, and adopted a focus-type silicon-grooved reflective grating structure (RGS) that can reduce the wave propagation loss. To accurately control the thickness of the silicon thin-plate and substantially improve the fabrication yield of FPW transducers, a 60 °C/27 °C two-step anisotropic wet etching process was developed. Compared with conventional FPW devices (with parallel-type IDTs and without RGS), the proposed FPW devices have lower insertion loss (36.04 dB) and higher fabrication yield (63.88%). Furthermore, by using cystamine-based self-assembled monolayer (SAM) nanotechnology, we used the improved FPW device to develop a novel FPW-based carcinoembryonic antigen (CEA) biosensor for detection of colorectal cancer, and this FPW-CEA biosensor has a low detection limit (5 ng/mL), short response time (<10 min), high sensitivity (60.16–70.06 cm2/g), and high sensing linearity (R-square = 0.859–0.980). PMID:27834798

  17. Influence of a High-Pressure Comminution Technology on Concentrate Yields in Copper Ore Flotation Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2014-10-01

    Full Text Available The article concerns the issues of flotation process effectiveness in relationship to the operating conditions of a high-pressure comminution process course. Experimental programme covering a flotation laboratory batch tests was a verification technique of a high-pressure crushing operations course. The most favorable values of flotation concentrate weight recoveries were obtained for the pressing force 6 kN and 4% of the feed moisture. It was also determined the model of the concentrate weight recovery as a function of pressing force in the press and feed moisture content. This model was the basis for the optimization of effects of copper ore flotation processes preceded in high-pressure crushing operation in roller presses.

  18. Electropolymerized Star-Shaped Benzotrithiophenes Yield π-Conjugated Hierarchical Networks with High Areal Capacitance

    KAUST Repository

    Ringk, Andreas

    2016-03-30

    High-surface-area π-conjugated polymeric networks have the potential to lend outstanding capacitance to supercapacitors because of the pronounced faradaic processes that take place across the dense intimate interface between active material and electrolytes. In this report, we describe how benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT) and tris-EDOT-benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (TEBTT) can serve as 2D (trivalent) building blocks in the development of electropolymerized hierarchical π-conjugated frameworks with particularly high areal capacitance. In comparing electropolymerized networks of BTT, TEBTT, and their copolymers with EDOT, we show that P(TEBTT/EDOT)-based frameworks can achieve higher areal capacitance (e.g., as high as 443.8 mF cm-2 at 1 mA cm-2) than those achieved by their respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm-2 (at 1 mA cm-2) and PEDOT: 12.1 mF cm-2 (at 1 mA cm-2)). For example, P(TEBTT/EDOT)-based frameworks synthesized in a 1:1 monomer-to-comonomer ratio show a ca. 35x capacitance improvement over PEDOT. The high areal capacitance measured for P(TEBTT/EDOT) copolymers can be explained by the open, highly porous hierarchical morphologies formed during the electropolymerization step. With >70% capacitance retention over 1,000 cycles (up to 89% achieved), both PTEBTT- and P(TEBTT/EDOT)-based frameworks are resilient to repeated electrochemical cycling and can be considered promising systems for high life cycle capacitive electrode applications.

  19. Heterologous production of fungal secondary metabolites in Aspergilli

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    Fungal natural products comprise a wide range of compounds. Some are medically attractive as drugs and drug leads, some are used as food additives, while others are harmful mycotoxins. In recent years the genome sequence of several fungi has become available providing genetic information of a lar...... pathway discovery. Heterologous expression of the biosynthetic pathway in model systems or cell factories facilitates product discovery, elucidation, and production. This review summarizes the recent strategies for heterologous expression of fungal biosynthetic pathways in Aspergilli....

  20. Critical parameters in cost-effective alkaline extraction for high protein yield from leaves

    NARCIS (Netherlands)

    Zhang, C.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Leaves are potential resources for feed or food, but their applications are limited due to a high proportion of insoluble protein and inefficient processing. To overcome these problems, parameters of alkaline extraction were evaluated using green tea residue (GTR). Protein extraction could be

  1. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... in the experiment include: Dasht, Khazar, Kadous, Nemat, Neda,. Fajr, Shafagh and Sahel. To obtain the accurate result and exclude any unwanted and interfering variable in the environment and to minimize their effects, the experiment was conducted in a highly controlled greenhouse. The greenhouse ...

  2. High yield synthesis of high specific activity R-(-)-[[sup 11]C]epinephrine for routine PET studies in humans

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, P.K.; Gildersleeve, D.L.; Jewett, D.M.; Toorongian, S.A.; Kilbourn, M.R.; Schwaiger, M.; Wieland, D.M. (Michigan Univ., Ann Arbor, MI (United States). Div. of Nuclear Medicine)

    1993-11-01

    R-(-)-[[sup 11]C]Epinephrine ([[sup 11]C]EPI) has been synthesized from R-(-)-norepinephrine by direct methylation with [[sup 11]C]methyl iodide or [[sup 11]C]methyl triflate. The total synthesis time including HPLC purification was 35-40 min. The radiochemical yields (EOB) were 5-10% for [[sup 11]C]methyl iodide and 15-25% for [[sup 11]C]methyl triflate. Radiochemical purity was >98%; optical purity determined by radio-chiral HPLC was > 97%. The [[sup 11]C]methyl triflate technique produces R-(-)-[[sup 11]C]epinephrine in quantities (80-170 mCi) sufficient for multiple positron emission tomography studies in humans. The two synthetic methods are generally applicable to the production of other N-[[sup 11]C]methyl phenolamines and N-[[sup 11]C]methyl catecholamines. (Author).

  3. Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles

    Directory of Open Access Journals (Sweden)

    A.Z. Noah

    2017-03-01

    Full Text Available Zinc oxide nanoparticles (ZnO-NPs and modified calcium carbonate (nano-CaCO3 nanoparticles were successfully prepared and added to polystyrene-butadiene rubber copolymer (PSBR matrix to prepare PSBR nanocomposites. The prepared nanomaterials (ZnO-NPs & nano-CaCO3 were characterized using scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction (XRD. Furthermore, the prepared polymer nanocomposites and oil base mud were used for drilling in high pressure high temperature (HPHT wells. The consequence of using polymer nanocomposites based on different loading of ZnO-NPs and nano-CaCO3 on the rheological properties of oil base mud was evaluated and enhanced the yield point at high pressure high temperature wells (HPHT. The using of the polymer with different percentage from (0.5 in all percent the obtained results is very promising; this means that the increase of polymer is reasonable for the increase of apparent viscosity, plastic viscosity and yield point at high temperature. Correspondingly, polymer nanocomposites displayed rise of apparent viscosity, plastic viscosity, and yield point, decreased in fluid loss and increased in electrical stability at high pressure high temperature wells.

  4. Growth and Yield Responses of Green Pepper (Capsicum annum L. to Manure Rates under Field and High Tunnel Conditions

    Directory of Open Access Journals (Sweden)

    Ima-obong I. DOMINIC

    2017-03-01

    Full Text Available The present study was conducted to determine growth and yield responses of green pepper to varying manure rates under field and high tunnel conditions. Experiment 1 was a pot experiment to evaluate three rates (0.5 and 10 t/ha of poultry manure (PM on green pepper production under high tunnel and open field conditions. Experiment 2 was to determine the performance of green pepper as influenced by different manure rates (0, 5 and 10 t/ha of PM, 300 kg/ha of NPK, 5 t/ha of PM + 200 kg of NPK and 10 t/ha of PM + 100 kg of NPK on the field. High tunnel produced about 3.1 fruits/plant that weighted 102.8 g, which was significantly higher than open field experiment in which 1.7 fruits/plant, with a medium weight of 32.3 g were noted. High tunnel enhanced successful production of green pepper during rainy season, whereas the open field production during the same season was near failure. Application of 10 t/ha of PM produced significantly larger fruits in the pot experiment. Good fertilizer effects on growth and yield components were recorded for the field study. Plant height, number of leaves and branches, number and weight of harvested fruit followed similar trend in 5 and 10 t/ha of PM which gave statistically similar results, and provided the best performance during the experiment. Application of 5 t/ha of PM produced the highest total fruits yield.

  5. Genomics approaches to unlock the high yield potential of cassava, a tropical model plant

    Directory of Open Access Journals (Sweden)

    Shengkui ZHANG,Ping'an MA,Haiyan WANG,Cheng LU,Xin CHEN,Zhiqiang XIA,Meiling ZOU,Xinchen ZHOU,Wenquan WANG

    2014-12-01

    Full Text Available Cassava, a tropical food, feed and biofuel crop, has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition, which makes it highly suitable as a model plant for tropical crops. However, the understanding of the metabolism and genomics of this important crop is limited. The recent breakthroughs in the genomics of cassava, including whole-genome sequencing and transcriptome analysis, as well as advances in the biology of photosynthesis, starch biosynthesis, adaptation to drought and high temperature, and resistance to virus and bacterial diseases, are reviewed here. Many of the new developments have come from comparative analyses between a wild ancestor and existing cultivars. Finally, the current challenges and future potential of cassava as a model plant are discussed.

  6. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity

    Science.gov (United States)

    Salvat, Regina S.; Parker, Andrew S.; Kirsch, Jack R.; Brooks, Seth A.

    2017-01-01

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide–MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 109 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening. PMID:28607051

  7. Fabrication of high yield horizontally aligned single wall carbon nanotubes for molecular electronics

    OpenAIRE

    Ibrahim, Imad

    2014-01-01

    The extraordinary properties of the single wall carbon nanotubes (SWCNTs) have stimulated an enormous amount of research towards the realization of SWCNT-based products for different applications ranging form nanocomposites to nanoelectronics. Their high charge mobility, exceedingly good current-carrying capacities and ability to be either semiconducting or metallic render them ideal building blocks for nanoelectronics. For nanoelectronic applications, either individual or parallel aligned SW...

  8. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

    Science.gov (United States)

    Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E

    2017-06-27

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

  9. Registration of a high yielding malt barley variety HB1454 for the ...

    African Journals Online (AJOL)

    HB1454 (Reg. No. EH 1847/F4.2P.5.2) is a two - rowed, hulled, malting barley developed at Holetta Research Center (HRC). HB 1454 was tested in a multi location variety trial as EH 1847/F4.2P.5.2 from 2005- 2007 along with twelve genotypes advanced from the local crossing program. It was released in 2011 for its high ...

  10. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    Science.gov (United States)

    2013-07-01

    around 2 ms and 12 ms in this figure, and during the discharge period, the current was continuous without any pulse . Once a discharge generated in...electron avalanches [10]. Fig. 1. High pressure ozone generator. (a) Top view (b) Side view Fig. 2. Barrier discharge device. Table 1... discharge N. Osawa P1 P, UY. Yoshioka UP2 P, R. Hanaoka P1 P 1 Center for Electric, Optic and Energy applications, Department of Electric and

  11. High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus

    Science.gov (United States)

    Papazi, Aikaterini; Andronis, Efthimios; Ioannidis, Nikolaos E.; Chaniotakis, Nikolaos; Kotzabasis, Kiriakos

    2012-01-01

    Hydrogen is a highly promising energy source with important social and economic implications. The ability of green algae to produce photosynthetic hydrogen under anaerobic conditions has been known for years. However, until today the yield of production has been very low, limiting an industrial scale use. In the present paper, 73 years after the first report on H2-production from green algae, we present a combinational biological system where the biodegradation procedure of one meta-substituted dichlorophenol (m-dcp) is the key element for maintaining continuous and high rate H2-production (>100 times higher than previously reported) in chloroplasts and mitochondria of the green alga Scenedesmus obliquus. In particular, we report that reduced m-dcps (biodegradation intermediates) mimic endogenous electron and proton carriers in chloroplasts and mitochondria, inhibit Photosystem II (PSII) activity (and therefore O2 production) and enhance Photosystem I (PSI) and hydrogenase activity. In addition, we show that there are some indications for hydrogen production from sources other than chloroplasts in Scenedesmus obliquus. The regulation of these multistage and highly evolved redox pathways leads to high yields of hydrogen production and paves the way for an efficient application to industrial scale use, utilizing simple energy sources and one meta-substituted dichlorophenol as regulating elements. PMID:23145057

  12. Tuning of ZIF-Derived Carbon with High Activity, Nitrogen Functionality, and Yield - A Case for Superior CO2 Capture.

    Science.gov (United States)

    Gadipelli, Srinivas; Guo, Zheng Xiao

    2015-06-22

    A highly effective and facile synthesis route is developed to create and tailor metal-decorated and nitrogen-functionalized active microporous carbon materials from ZIF-8. Clear metal- and pyrrolic-N-induced enhancements of the cyclic CO2 uptake capacities and binding energies are achieved, particularly at a much lower carbonization temperature of 700 °C than those often reported (1000 °C). The high-temperature carbonization can enhance the porosity but only at the expense of considerable losses of sample yield and metal and N functional sites. The findings are comparatively discussed with carbons derived from metal-organic frameworks (MOFs) reported previously. Furthermore, the porosity of the MOF-derived carbon is critically dependent on the structure of the precursor MOF and the crystal growth. The current strategy offers a new and effective route for the creation and tuning of highly active and functionalized carbon structures in high yields and with low energy consumption. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    Science.gov (United States)

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  14. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem.

    Science.gov (United States)

    Rishad, K S; Rebello, Sharrel; Shabanamol, P S; Jisha, M S

    2017-04-01

    The multifaceted role of chitinase in medicine, agriculture, environmental remediation and various other industries greatly demands the isolation of high yielding chitinase producing microorganisms with improved properties. The current study aimed to investigate the isolation, characterization and biocontrol prospective of chitinase producing bacterial strains autochthonous to the extreme conditions of mangrove ecosystems. Among the 51 bacterial isolates screened, Bacillus pumilus MCB-7 with highest chitinase production potential was identified and confirmed by 16S rDNA typing. Chitinase enzyme of MCB-7 was purified; the chitin degradation was evaluated by SEM and LC-MS. Unlike previously reported B.pumilus isolates, MCB-7 exhibited highest chitinase activity of 3.36U/mL, active even at high salt concentrations and temperature up to 60°C. The crude as well as purified enzyme showed significant antimycotic activity against agricultural pathogens such as Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Ceratorhiza hydrophila and Fusarium oxysporum. The enzyme also exhibited biopesticidal role against larvae of Scirpophaga incertulas (Walker). [Lep.: Pyralidae], a serious agricultural pest of rice. The high chitinolytic and antimycotic potential of MCB-7 increases the prospects of the isolate as an excellent biocontrol agent. To the best of our knowledge, this is the first report of high chitinase yielding Bacillus pumilus strain from mangrove ecosystem with a biocontrol role against phytopathogenic fungi and insect larval pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 in Escherichia coli.

    Science.gov (United States)

    Feng, Xingjun; Xu, Wenshan; Qu, Pei; Li, Xiaochong; Xing, Liwei; Liu, Di; Jiao, Jian; Wang, Jue; Li, Zhongqiu; Liu, Chunlong

    2015-01-01

    The antimicrobial peptide fowlicidin-2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin-2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin-2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin-2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET-32a(+), which features fusion protein thioredoxin at the N-terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria-Bertani (LB) medium. After isopropyl-β-D-thiogalactopyranoside (IPTG) induction, the fowlicidin-2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse-phase high-performance liquid chromatography (RP-HPLC), ∼6.0 mg of fowlicidin-2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram-positive and Gram-negative bacteria, and even drug-resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large-scale production. © 2015 American Institute of Chemical Engineers.

  16. High yield hydrogen production in a single-chamber membrane-less microbial electrolysis cell.

    Science.gov (United States)

    Ye, Yejie; Wang, Liyong; Chen, Yingwen; Zhu, Shemin; Shen, Shubao

    2010-01-01

    The single-chamber membrane-less MEC exerted much better hydrogen production performance while given higher applied voltages than it did at lower. High applied voltages that could shorten the reaction time and the exposure of anode to air for at least 30 min between cycles can significantly suppress methanogen and increase hydrogen production. At an applied voltage of 1.0 V, a hydrogen production rate of 1.02 m(3)/m(3)/day with a current density of 5.7 A/m(2) was achieved. Cathodic hydrogen recovery and coulombic efficiency were 63.4% and 69.3% respectively. The hydrogen concentration of mixture gas produced of 98.4% was obtained at 1.0 V, which was the best result of reports. The reasons that such a high hydrogen concentration can be achieved were probably the high electrochemical activity and hydrogen production capability of the active microorganisms. Increase in substrate concentrations could not improve MEC's performance, but increased the reaction times. Further, reactor configuration and operation factors optimisation should be considered to increase current density, hydrogen production rate and hydrogen recovery.

  17. High yield combustion synthesis of nanomagnesia and its application for fluoride removal.

    Science.gov (United States)

    Maliyekkal, Shihabudheen M; Anshup; Antony, K R; Pradeep, T

    2010-04-15

    We describe a novel combustion synthesis for the preparation of Nanomagnesia (NM) and its application in water purification. The synthesis is based on the self-propagated combustion of the magnesium nitrate trapped in cellulose fibers. Various characterization studies confirmed that NM formed is crystalline with high phase purity, and the particle size varied in the range of 3-7nm. The fluoride scavenging potential of this material was tested as a function of pH, contact time and adsorbent dose. The result showed that fluoride adsorption by NM is highly favorable and the capacity does not vary in the pH range usually encountered in groundwater. The effects of various co-existing ions usually found in drinking water, on fluoride removal were also investigated. Phosphate was the greatest competitor for fluoride followed by bicarbonate. The presence of other ions studied did not affect the fluoride adsorption capacity of NM significantly. The adsorption kinetics followed pseudo-second-order equation and the equilibrium data are well predicted by Frendlich equation. Our experimental evidence shows that fluoride removal happened through isomorphic substitution of fluoride in brucite. A batch household defluoridation unit was developed using precipitation-sedimentation-filtration techniques, addressing the problems of high fluoride concentration as well as the problem of alkaline pH of the magnesia treated water. The method of synthesis reported here is advantageous from the perspectives of small size of the nanoparticle, cost-effective recovery of the material and improvement in the fluoride adsorption capacity. Copyright 2010 Elsevier B.V. All rights reserved.

  18. High yield of synchronous lesions in referred patients with large lateral spreading colorectal tumors.

    Science.gov (United States)

    Bick, Benjamin L; Ponugoti, Prasanna L; Rex, Douglas K

    2017-01-01

    There are few data on the prevalence of synchronous colorectal lesions in patients who have large lateral spreading tumors (LLSTs). We sought to describe the rate of synchronous lesions found in patients who underwent endoscopic resection of large sessile adenomas and serrated lesions. This is a retrospective assessment of a prospectively created database of 728 consecutive patients with resected LLSTs who underwent complete clearing of the colon during 2 colonoscopies by a single expert endoscopist. The 728 patients with resected LLSTs and complete clearing had 4578 synchronous lesions, including 584 patients (80.2%) with at least 1 synchronous conventional adenoma, 132 (18.1%) with at least 1 synchronous conventional adenoma ≥ 20 mm in size, 294 (40.4%) with at least 1 synchronous advanced conventional adenoma, and 6 patients with a synchronous lesion with cancer. Patients with an index large sessile conventional adenoma compared with those with an index large serrated lesion had on average more synchronous conventional adenomas (4.8 vs 2.9, P = .001) and fewer synchronous serrated lesions (1.4 vs 4.5, P < .001). Of the 97 patients with a serrated class index lesion, 28 (28.9%) met criteria for serrated polyposis. There is a very high prevalence of synchronous lesions, including other large and advanced synchronous lesions, in patients with flat or sessile conventional adenomas and serrated colorectal polyps. Patients with LLSTs in the colon need detailed clearing of the rest of the colon. Patients referred for endoscopic resection of serrated lesions ≥ 20 mm have a very high prevalence of serrated polyposis. This study has potential implications for further stratification of high-risk patient groups in postpolypectomy surveillance guidelines. Copyright © 2017. Published by Elsevier Inc.

  19. High-yield synthesis of brookite TiO.sub.2 nanoparticles

    Science.gov (United States)

    Huber, Dale L [Albuquerque, NM; Monson, Todd C [Albuquerque, NM

    2011-05-17

    A method for forming non-agglomerated brookite TiO.sub.2 nanoparticles without the use of expensive organic surfactants or high temperature processing. Embodiments of this invention use titanium isopropoxide as the titanium precursor and isopropanol as both the solvent and ligand for ligand-stabilized brookite-phase titania. Isopropanol molecules serve as the ligands interacting with the titania surfaces that stabilize the titania nanoparticles. The isopropanol ligands can be exchanged with other alcohols and other ligands during or after the nanoparticle formation reaction.

  20. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant...... archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae...

  1. Nuclear Engineering of Microalgae for High Yield Secretion of Recombinant Proteins

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel

    Photosynthetic microorganism like microalgae and cyanobacteria are considered as emerging biotechnology platforms for production of recombinant proteins and other high-value biomolecules with a wide range of applications. Moreover, microalgae offer significant advantages compared with other...... the potential of microalgae as a cell factory for secretion of recombinant proteins. The second research project presented in this thesis aimed to establish a new robust method to allow in vivo measurements of metabolic enzyme activities in cyanobacteria, with a hope that the method would facilitate further...

  2. High-yield isolation of extracellular vesicles using aqueous two-phase system

    Science.gov (United States)

    Shin, Hyunwoo; Han, Chungmin; Labuz, Joseph M.; Kim, Jiyoon; Kim, Jongmin; Cho, Siwoo; Gho, Yong Song; Takayama, Shuichi; Park, Jaesung

    2015-01-01

    Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (~70%) in a short time (~15 min). Consequently, it can significantly increase the diagnostic applicability of EVs. PMID:26271727

  3. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

    OpenAIRE

    Carolin M. Sutter-Fella Yanbo Li Matin Amani Joel W. Ager III Francesca M. Toma; Eli Yablonovitch Ian D. Sharp and Ali Javey

    2016-01-01

    Hybrid organic–inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low cost solution processability. Here we present a two step low pressure vapor assisted solution process to grow high quality homogeneous CH3NH3PbI3–xBrx perovskite films over the full band gap range of 1.6–2.3 eV. Photoluminescence light in versus light out charac...

  4. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    Science.gov (United States)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  5. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    Directory of Open Access Journals (Sweden)

    Shubin Zhang

    Full Text Available This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC. In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  6. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor

    Science.gov (United States)

    Zhang, Shubin; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance. PMID:29121067

  7. Simple room-temperature preparation of high-yield large-area graphene oxide.

    Science.gov (United States)

    Huang, N M; Lim, H N; Chia, C H; Yarmo, M A; Muhamad, M R

    2011-01-01

    Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer's method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm(2), respectively. The simplified Hummer's method provides a facile approach for the preparation of large-area GO.

  8. High biohydrogen yielding Clostridium sp. DMHC-10 isolated from sludge of distillery waste treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Kamalaskar, Leena B.; Dhakephalkar, P.K.; Meher, K.K.; Ranade, D.R. [Microbial Sciences Division, Agharkar Research Institute, G.G. Agarkar Road, Pune 411004 (India)

    2010-10-15

    A mesophilic high hydrogen producing strain DMHC-10 was isolated from a lab scale anaerobic reactor being operated on distillery wastewater for hydrogen production. DMHC-10 was identified as Clostridium sp. on the basis of 16S rRNA gene sequencing. Various medium components (carbon and nitrogen sources) and environmental factors (initial pH, temperature of incubation) were optimized for hydrogen production by Clostridium sp. DMHC-10. The strain, in late exponential growth phase, showed maximum hydrogen production (3.35 mol-H{sub 2} mol{sup -1} glucose utilized) at 37 C, pH 5.0 in a medium supplemented with organic nitrogen source. Butyric acid to acetic acid ratio was ca. 2.3. Hydrogen production declined when organic nitrogen was replaced with inorganic nitrogen. (author)

  9. Simple room-temperature preparation of high-yield large-area graphene oxide

    Science.gov (United States)

    Huang, NM; Lim, HN; Chia, CH; Yarmo, MA; Muhamad, MR

    2011-01-01

    Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer’s method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm2, respectively. The simplified Hummer’s method provides a facile approach for the preparation of large-area GO. PMID:22267928

  10. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective.

    Science.gov (United States)

    Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng

    2016-10-01

    The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies

    Science.gov (United States)

    Van Blarcom, Thomas; Melton, Zea; Cheung, Wai Ling; Wagstrom, Chris; McDonough, Dan; Valle Oseguera, Cendy; Ding, Sheng; Rossi, Andrea; Potluri, Shobha; Sundar, Purnima; Sirota, Marina; Yan, Yu; Jones, Jeffrey; Roe-Zurz, Zygy; Srivatsa Srinivasan, Surabhi; Zhai, Wenwu; Pons, Jaume; Rajpal, Arvind; Chaparro-Riggers, Javier

    2018-01-01

    ABSTRACT The commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly. Here, we describe the design of a synthetic human antibody library based on common light chains to generate antibodies with biochemical and biophysical properties that are indistinguishable to traditional therapeutic monoclonal antibodies. We used this library to generate diverse panels of well-behaved, high affinity antibodies toward a variety of epitopes across multiple antigens, including mouse 4-1BB, a therapeutically important T cell costimulatory receptor. Over 200 BsIgG toward 4-1BB were generated using an automated purification method we developed that enables milligram-scale production of BsIgG. This approach allowed us to identify antibodies with a wide range of agonistic activity that are being used to further investigate the therapeutic potential of antibodies targeting one or more epitopes of 4-1BB. PMID:29227213

  12. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.

    Science.gov (United States)

    Wang, L; Chen, Y; Ye, Y; Lu, B; Zhu, S; Shen, S

    2011-01-01

    As an ideal fuel due to the advantages of no pollution, high combustion heat and abundant sources, hydrogen gas can be produced from organic matter through the electrohydrogenesis process in microbial electrolysis cells. But in many MECs, platinum is often used as catalyst, which limits the practical applications of MECs. To reduce the cost of the MECs, Ni-based alloy cathodes were developed by electrodepositing. In this paper hydrogen production using Ni-W-P cathode was studied for the first time in a single-chamber membrane-free MEC. At an applied voltage of 0.9 V, MECs with Ni-W-P cathodes obtained a hydrogen production rate of 1.09 m3/m3/day with an cathodic hydrogen recovery of 74%, a Coulombic efficiency of 56% and an electrical energy efficiency relative to electrical input of 139%, which was the best result of reports in this study. The Ni-W-P cathode demonstrated a better electrocatalytic activity than the Ni-Ce-P cathode and achieved a comparable performance to the Pt cathode in terms of hydrogen production rate, Coulombic efficiency, cathodic hydrogen recovery and electrical energy efficiency at 0.9 V.

  13. Heterologous expression of membrane proteins: choosing the appropriate host.

    Directory of Open Access Journals (Sweden)

    Florent Bernaudat

    Full Text Available BACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals, functions (transporters, receptors, enzymes and topologies (between 0 and 13 transmembrane segments. The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.

  14. Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways

    DEFF Research Database (Denmark)

    Vavitsas, Konstantinos; Rue, Emil Østergaard; Stefánsdóttir, Lára Kristín

    2017-01-01

    BACKGROUND: There are an increasing number of studies regarding genetic manipulation of cyanobacteria to produce commercially interesting compounds. The majority of these works study the expression and optimization of a selected heterologous pathway, largely ignoring the wholeness and complexity......, counteracting the effects of the heterologous pathway. However, the amino acid concentrations of the dhurrin-producing strain show an unexpected profile, where the perturbation levels were high in seemingly unrelated metabolites. CONCLUSIONS: There is a wealth of information that can be derived by combining...... targeted metabolite identification and computer modelling as a frame of understanding. Here we present an example of how strain engineering approaches can be coupled to 'traditional' metabolic engineering with systems biology, resulting in novel and more efficient manipulation strategies....

  15. Heterologous production of non-ribosomal peptide LLD-ACV in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; Chen, Xiao; Huang, Le

    2009-01-01

    Non-ribosomal peptides (NRPs) are a diverse family of secondary metabolites with a broad range of biological activities. We started to develop an eukaryotic microbial platform based on the yeast Saccharomyces cerevisiae for heterologous production of NRPs using δ-(l-α-aminoadipyl)–l-cysteinyl–d-v......Non-ribosomal peptides (NRPs) are a diverse family of secondary metabolites with a broad range of biological activities. We started to develop an eukaryotic microbial platform based on the yeast Saccharomyces cerevisiae for heterologous production of NRPs using δ......-(l-α-aminoadipyl)–l-cysteinyl–d-valine (ACV) as a model NRP. The Penicillium chrysogenum gene pcbAB encoding ACV synthetase was expressed in S. cerevisiae from a high-copy plasmid together with phosphopantetheinyl transferase (PPTase) encoding genes from Aspergillus nidulans, P. chrysogenum and Bacillus subtilis, and in all the three cases...

  16. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    Energy Technology Data Exchange (ETDEWEB)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, Georg C.; Wang, F.; Schnrer, Anna; Sun, Chuanxin

    2015-07-22

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane

  17. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice.

    Science.gov (United States)

    Su, J; Hu, C; Yan, X; Jin, Y; Chen, Z; Guan, Q; Wang, Y; Zhong, D; Jansson, C; Wang, F; Schnürer, A; Sun, C

    2015-07-30

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  18. The effect of high-sugar grass on predicted nitrogen excretion and milk yield simulated using a dynamic model.

    Science.gov (United States)

    Ellis, J L; Dijkstra, J; Bannink, A; Parsons, A J; Rasmussen, S; Edwards, G R; Kebreab, E; France, J

    2011-06-01

    High-sugar grass varieties have received considerable attention for their potential to reduce nitrogen (N) excretion and increase milk yield in cattle. However, considerable variation exists in the magnitude of response in published results. The purpose of this study is to explain the variation in response using a dynamic mechanistic model to predict observed N and milk yield results from the literature, and from simulated data. Examined effects were (1) water-soluble carbohydrate [WSC; g/kg of dry matter (DM)] increase; (2) change in crude protein (CP) and neutral detergent fiber (NDF) content of the plant with WSC increase; and (3) the level of N fertilization. The database for evaluation of model N and milk yield predictions consisted of 4 published studies with 28 treatment means for which high-sugar grasses were being evaluated. Water-soluble carbohydrate content of the diets ranged from 95 to 248 g/kg of DM, CP content ranged from 115 to 263 g/kg of DM, and the NDF content ranged from 400 to 568 g/kg of DM. Urine N, milk N, and total N excretion were predicted well by the model and followed the directional pattern of observed values within each study. Simulation results showed that the N utilization ratio increased as the WSC content of the diet increased, but to varying degrees depending on the grass scenario examined. The greatest benefit in terms of N utilization ratio and urine N levels were seen when the WSC content of grass increased at the expense of CP, followed by a 50:50 CP and NDF mix, followed by a trade for NDF. Simulated milk yield decreased slightly when WSC increased at the expense of CP, increased slightly when it increased at the expense of a CP and NDF mix, and increased most when WSC increased at the expense of NDF. Results were amplified slightly under conditions of low-N fertilization and in the absence of grain feeding. Overall, modeling is useful as an explanatory tool. The variation from results in the literature with high-WSC grass

  19. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  20. Optimal barn characteristics for high-yielding Holstein cows as derived by a new heat-stress model.

    Science.gov (United States)

    Shoshani, E; Hetzroni, A

    2013-01-01

    Meticulous planning is required to minimize heat-stress conditions in barns. The objective of this study was to determine optimum barn characteristics for high-yielding dairy cows under Israeli (Mediterranean) summer ambient conditions, by using a new stress model that takes ambient temperature, relative humidity and wind velocity into account. During the summers of 2004 and 2005, three meteorological stations were alternately installed in 39 barns: two stations inside the barn at the prevailing downwind direction, and a third station outside the upwind end of the barn. Ambient temperature, relative humidity, wind speed and direction were measured and recorded every 10 min for 3 to 5 consecutive days at each barn in turn. The data were collected at different geographical and climatic conditions. Therefore, the data collected by an outside station were used as covariates. A heat-stress model was used to determine the threshold temperature (THRT) at which a cow begins to increase its respiratory rate; THRT was the response variable in the statistical model. The THRT model takes in account assumed values of a cow's physiological characteristics: daily milk yield of 45 kg, containing 3.5% fat, and 3 mm fur depth. The independent variables were: orientation, barn type, roof slope, roof ridge, marginal height, roof type (fixed or sliding) and barn width. Results showed that the optimal barn for high-yielding cows is the loose-housing type, oriented with its long axis perpendicular to the prevailing wind direction. Advantageous to the design would be an open ridge or pagoda with marginal height of over 4.7 m for north-south orientation and over 5 m for east-west orientation, roof slope over 11%, and barn width between 43 and 51 m for north-south orientation but lower than 42 m for east-west orientation. A sliding roof was also found to be an excellent solution when outside yards are banned by environmental regulations.

  1. Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora, and stress indicators of broilers.

    Science.gov (United States)

    Cengiz, Özcan; Köksal, Bekir H; Tatlı, Onur; Sevim, Ömer; Ahsan, Umair; Üner, Aykut G; Ulutaş, Pınar A; Beyaz, Devrim; Büyükyörük, Sadık; Yakan, Akın; Önol, Ahmet G

    2015-10-01

    A study was carried out to evaluate the effect of dietary probiotic supplementation and stocking density on the performance, relative carcass yield, gut microflora, and stress markers of broilers. One-day-old Ross 308 male broiler chickens (n = 480) were allocated to 4 experimental groups for 42 d. Each treatment had 8 replicates of 15 chicks each. Two groups were subjected to a high stocking density (HSD) of 20 birds/m² and the other 2 groups were kept at low stocking density (LSD) of 10 birds/m². A basal diet supplemented with probiotic 1 and 0.5 g/kg of diet (in starter and finisher diets, respectively) was fed to 2 treatments, one with HSD and the other with LSD, thereby making a 2 × 2 factorial arrangement. There was no interaction between stocking density (LSD and HSD) and dietary probiotic (supplemented and unsupplemented) for all the variables. Feed intake and weight gain were significantly low and feed conversion ratio was poor in broilers at HSD. Dietary probiotic significantly enhanced the feed intake and weight gain in starter phase only. Dietary probiotic supplementation had no effect (P > 0.05) on total aerobs, Salmonella sp., and Lactobacilli populations in the intestines of broilers. However, HSD reduced the Lactobacilli population only (P < 0.05). Relative breast yields were significantly higher in broilers reared at LSD than HSD. Thigh meat yield was higher in broilers in HSD group compared to LSD. Dietary probiotic did not affect the relative carcass yield and weight of lymphoid organs. Serum malondialdehyde, corticosterone, nitric oxide, and plasma heterophil:lymphocyte ratio were not affected either by stocking density or dietary probiotic supplementation. In conclusion, HSD negatively affected the performance and intestinal Lactobacilli population of broilers only, whereas probiotic supplementation enhanced the performance of broilers during the starter phase only. Total aerobes, Salmonella, Lactobacilli carcass yield, and stress indicators

  2. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    Science.gov (United States)

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  3. High yield derivation of enriched glutamatergic neurons from suspension-cultured mouse ESCs for neurotoxicology research

    Directory of Open Access Journals (Sweden)

    Hubbard Kyle S

    2012-10-01

    . Conclusions These findings demonstrate a cost-effective, scalable and flexible method to produce a highly enriched glutamatergic neuron population. The functional characterization of pathophysiological responses to neurotropic toxins and the compatibility with multi-well plating formats were used to demonstrate the suitability of ESNs as a discovery platform for molecular mechanisms of action, moderate-throughput analytical approaches and diagnostic screening. Furthermore, for the first time we demonstrate a cell-based model that is sensitive to all seven BoNT serotypes with EC50 values comparable to those reported in primary neuron populations. These data providing compelling evidence that ESNs offer a neuromimetic platform suitable for the evaluation of molecular mechanisms of neurotoxicity.

  4. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    Science.gov (United States)

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly. Copyright © 2016. Published by Elsevier Inc.

  5. A High-Yield Synthesis of Chalcopyrite CuInS2 Nanoparticles with Exceptional Size Control

    Directory of Open Access Journals (Sweden)

    Chivin Sun

    2009-01-01

    Full Text Available We report high-yield and efficient size-controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposing molecular single source precursors (SSPs via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100°C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100°C to 200°C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%. The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuInS2 nanoparticles.

  6. Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding

    Science.gov (United States)

    Liu, Dongsheng; Li, Qingliang; Emi, Toshihiko

    2011-05-01

    Key parameters for a thermomechanically controlled processing and accelerated cooling process (TMCP-AcC) were determined for integrated mass production to produce extra high-yield-strength microalloyed low carbon SiMnCrNiCu steel plates for offshore structure and bulk shipbuilding. Confocal scanning microscopy was used to make in-situ observations on the austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate the flow stress behavior, static recrystallization (SRX) of austenite, and decomposition behavior of the TMCP conditioned austenite during continuous cooling. The Kocks-Mecking model was employed to describe the constitutive behavior, while the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach was used to predict the SRX kinetics. The effects of hot rolling schedule and AcC on microstructure and properties were investigated by test-scale rolling trials. The bridging between the laboratory observations and the process parameter determination to optimize the mass production was made by integrated industrial production trials on a set of a 5-m heavy plate mill equipped with an accelerated cooling system. Successful production of 60- and 50-mm-thick plates with yield strength in excess of 460 MPa and excellent toughness at low temperature (213 K (-60 °C)) in the parent metal and the simulated coarse-grained heat affected zone (CGHAZ) provides a useful integrated database for developing advanced high-strength steel plates via TMCP-AcC.

  7. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase.

    Science.gov (United States)

    Wang, Xiumei; Qin, Xiaoli; Li, Daoming; Yang, Bo; Wang, Yonghua

    2017-07-01

    This study reported a novel immobilized MAS1 lipase from marine Streptomyces sp. strain W007 for synthesizing high-yield biodiesel from waste cooking oils (WCO) with one-step addition of methanol in a solvent-free system. Immobilized MAS1 lipase was selected for the transesterification reactions with one-step addition of methanol due to its much more higher biodiesel yield (89.50%) when compared with the other three commercial immobilized lipases (lipase retained approximately 70% of its initial activity after being used for four batch cycles. Finally, the obtained biodiesel was further characterized using FT-IR, 1 H and 13 C NMR spectroscopy. These findings indicated that immobilized MAS1 lipase is a promising catalyst for biodiesel production from WCO with one-step addition of methanol under high methanol concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Determination of NABE in urine of high-yield dairy cows in early lactation in conditions of moderate heat stress

    Directory of Open Access Journals (Sweden)

    Fratrić Natalija

    2010-01-01

    Full Text Available The work presents the results of investigations of the effect of moderate heat stress on the acidobasal status in high-yield dairy cows in early lactation. Improving performance in high-yield dairy cows increases their inclination toward metabolic disorders. The most likely to be affected is the acid-base balance, in particular when cows are exposed to heat stress. Investigations so far have shown that the taking of urine samples and their analysis is the best and fastest way to diagnose disorders in the acid-base balance. Investigations were carried out on 7 clinically healthy cows of the Holstein- Friesian breed in the phase of early lactation, 30 to 40 days (on days 30, 33 and 40 following calving during the summer period, during the month of July, when there were significant variations in daily and nightly temperatures. The cows were in the second and fourth lactation, the annual milk yield was 8000 L milk per cow. The average daily milk production in the early phase of lactation ranged from 35 to 40 L. The cows were fed mixed rations (TMR twice daily. Lucerne hay in limited quantities was given to the cows prior to the mixed feed ration. The ration for this animal category was optimized on the grounds of the daily milk production. The balance of cations and anions in the feed ration stood at 95 mEq/kg DM. The results clearly demonstrate the cows' response to moderate heat stress through the defense parameters in urine (urine pH, NABE (net-acid-base-excretion, acids, bases, ammonium ion (NH4. The determination of the kidney NABE yields more correct data than the urine pH on acidotic conditions. The results of examinations of the urine pH do not show any digressions from physiological values and are approximately the same in all cows during the investigated periods. Normal NABE values are from 100-200 mmol/L. Burdening with acid products results in a NABE range from 0-100mmol/L, and metabolic acidosis results in NAB<0 mmol/L. NABE in the cows

  9. Fast, high-yield synthesis of amphiphilic Ag nanoclusters and the sensing of Hg(2+) in environmental samples.

    Science.gov (United States)

    Xia, Nan; Yang, Jie; Wu, Zhikun

    2015-06-14

    We report the high-yield (74%) synthesis of Ag30(Capt)18 (abbreviated as Ag30) in a very time-saving fashion (half an hour). The cluster composition was determined by high-resolution mass spectrometry combined with TG analysis, and the structure was probed by 1D and 2D NMR. Interestingly, the nanoclusters can dissolve in water and methanol, as well as in most organic solvents such as ethanol, acetone, acetonitrile, dichloromethane and ethyl acetate with the assistance of acetic acid. Such a good solubility in a range of various polar solvents was not reported previously in nanoclusters' research and is important for applications. An important result from this work is that Ag30 can sense a low concentration of Hg(2+) in environmental samples (including lake water and soil solution), indicating that Ag30 can be a potential colorimetric probe for Hg(2+). The sensing mechanism was revealed to be related to the anti-galvanic reduction process.

  10. Freestanding carbon nanodots/poly (vinyl alcohol) films with high photoluminescent quantum yield realized by inverted-pyramid structure

    Science.gov (United States)

    Pang, Linna; Ba, Lixiang; Pan, Wei; Shen, Wenzhong

    2017-02-01

    Carbon nanodots (C-dots) have attracted great attention for their biocompatibility and strong tunable photoluminescence (PL). However, aggregation-induced PL quenching blocks their practical application in solid-state optoelectronics. Here, we report a luminescent C-dots freestanding film with a substantially enhanced high quantum yield (QY) of 72.3%. A facile template method, rather than complicate lithography and etching technique is proposed to fabricate the C-dots composite films with large-area (8 inch × 8 inch) ordered micro-scale inverted-pyramid patterns on the surface. The control experiment and theoretical analysis demonstrate the key success to QY enhancement lies in the separation of C-dots and the pattern of surface inverted-pyramid structure. This work realizes the QY enhancement simply by geometrical optics, not the chemical treatment of luminescent particles. It provides a general approach to fabricate large-area freestanding luminescent composite film with high QY.

  11. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, F.; Wang, Y. L.; Yang, Y. Z., E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-11-23

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation light source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.

  12. Effect of a single injection of cabergoline at dry off on udder characteristics in high-yielding dairy cows.

    Science.gov (United States)

    Bertulat, S; Isaka, N; de Prado, A; Lopez, A; Hetreau, T; Heuwieser, W

    2017-04-01

    In recent years, relationships between high milk yield at dry off, higher prevalence for new intramammary infections, and stress were evaluated. Considering increasing milk yield, dry off methods need to be refined to ensure udder health and animal welfare, especially in high-yielding dairy cows. The present work evaluated the effect of a single cabergoline injection (Velactis, Ceva Santé Animale, Libourne, France) at dry off on udder pressure, milk leakage, and signs of udder pain after dry off. A total of 234 high-yielding (≥16 kg of milk/d) dairy cows was enrolled 7 d before and followed up until 14 d after dry off. Cows were dried off without preparation (i.e., no feed change or intermittent milking before dry off) and treated with a single i.m. injection of 5.6 mg of cabergoline (n = 115) or placebo (n = 119) after last milking. Udder characteristics were measured 4 d before (i.e., before and after milking) and 1, 2, 3, 7, 10, and 14 d after dry off. Udder pressure was evaluated utilizing a hand-held dynamometer. Milk leakage and signs of udder pain were noted as binary variables. Whereas udder pressure baseline values after last milking did not differ between treatment groups (0.541 ± 0.15 kg), cabergoline significantly reduced udder pressure in primiparous but not in multiparous cows after dry off. Differences between cabergoline- and placebo-treated primiparous cows could be evaluated until 3 d after dry off. The first day after dry off, udder pressure in placebo- and cabergoline-treated cows increased by 115% and 42.3%, respectively. Whereas pressure values in placebo cows were highest on the first day after dry off (1.16 ± 0.61 kg) and slowly decreased afterward, udder pressure in cows treated with cabergoline had a slower increase and peak only 2 d after dry off (0.94 ± 0.44 kg). Furthermore, cabergoline caused a reduction of milk leakage, a known factor for new intramammary infections. Only 11.3% of cows treated with cabergoline showed milk

  13. A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus.

    Science.gov (United States)

    Karaffa, Levente; Díaz, Rafael; Papp, Benedek; Fekete, Erzsébet; Sándor, Erzsébet; Kubicek, Christian P

    2015-10-01

    Itaconic acid (IA), an unsaturated dicarboxylic acid with a high potential as a platform for chemicals derived from sugars, is industrially produced by large-scale submerged fermentation by Aspergillus terreus. Although the biochemical pathway and the physiology leading to IA is almost the same as that leading to citric acid production in Aspergillus niger, published data for the volumetric (g L(-1)) and the specific yield (mol/mol carbon source) of IA are significantly lower than for citric acid. Citric acid is known to accumulate to high levels only when a number of nutritional parameters are carefully adjusted, of which the concentration of the carbon source and that of manganese ions in the medium are particularly important. We have therefore investigated whether a variation in these two parameters may enhance IA production and yield by A. terreus. We show that manganese ion concentrations parameters are varied in citric acid production by A. niger, thus showing that the physiology of both processes is widely identical. Consequently, applying the fermentation technology established for citric acid production by A. niger citric acid production to A. terreus should lead to high yields of IA, too.

  14. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Davison, Steffi A; den Haan, Riaan; van Zyl, Willem Heber

    2016-09-01

    Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.

  15. Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942

    NARCIS (Netherlands)

    Geerts, D.; Bovy, A.; de Vrieze, G.; Borrias, M.; Weisbeek, P.

    1995-01-01

    High-level, inducible expression of heterologous genes in the cyanobacterium Synechococcus sp. strain PCC 7942 was obtained using the Escherichia coli trc promoter and lacI repressor. The petE gene of Anabaena sp. strain PCC 7937 encoding plastocyanin precursor protein and the E. coli uidA gene

  16. Neonatal BCG vaccination influences cytokine responses to Toll-like receptor ligands and heterologous antigens.

    Science.gov (United States)

    Freyne, B; Donath, S; Germano, S; Gardiner, K; Casalaz, D; Robins-Browne, R M; Amenyogbe, N; Messina, N L; Netea, M G; Flanagan, K L; Kollmann, T; Curtis, N

    2018-02-03

    Bacille Calmette-Guérin (BCG) vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain but long-term modulation of the innate immune response (trained immunity) may be involved. Whole blood, collected 7 days post randomisation from 212 neonates enrolled in a randomised trial of neonatal BCG vaccination, was stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. BCG-vaccinated infants had increased production of IL-6 in unstimulated samples and decreased production of IL-1ra, IL-6, and IL-10 and the chemokines MIP-1α, MIP-1β, MCP-1 following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterised by decreased anti-inflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine if there is an association between these findings and the beneficial non-specific (heterologous) effects of BCG vaccine on all-cause mortality.

  17. Kinetic behaviour of recombinant Fusarium solani lipases using monomolecular films: Effect of the heterologous expression.

    Science.gov (United States)

    Jallouli, Raida; Bouali, Madiha; Gargouri, Youssef; Bezzine, Sofiane

    2017-01-01

    Two lipases from Fusarium solani, FSL and FSL2, were efficiently expressed in Pichia pastoris. To check the influence of the expression on interfacial properties of FSL and to study kinetic properties of FSL2, interfacial parameters of FSL2, native FSL, untagged recombinant and tagged recombinant forms of FSL were compared using the monomolecular film technique. Kinetic study on the dependence of the stereoselectivity of these lipases on the surface pressure was performed using three dicaprin isomers spread in the form of monomolecular films at the air-water interface. The FSL2 seems to have an important penetration power with a preference for adjacent ester groups and the heterologous expression accompanied or not with the N-His-tag extension on the FSL were found to modify the pressure preference and increase the catalytic hydrolysis rate of three dicaprin isomers. The heterologous expression was found to preserve the FSL regioselectivity without affecting its stereospecificity at high and low surface pressure. The evaluation of the recombinant expression Effects on Catalysis (REC), the N-Tag Effects on Catalysis (TEC), and the N-Tag and Recombinant expression Effects on Catalysis (TREC) showed that the heterologous expression was more efficient than the presence of the N-terminal tag extension on the FSL. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens.

    Science.gov (United States)

    Bach, Søren Spanner; King, Brian Christopher; Zhan, Xin; Simonsen, Henrik Toft; Hamberger, Björn

    2014-01-01

    Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as streamlining of large scale Agrobacterium infiltration and upregulation of the upstream pathways, transient in planta heterologous expression quickly reaches limitations when used for production of terpenoids. Stable integration of transgenes into the nuclear genome of the moss Physcomitrella patens has already been widely recognized as a viable alternative for industrial-scale production of biopharmaceuticals. For expression of terpenoid biosynthetic genes, and reconstruction of heterologous pathways, Physcomitrella has unique attributes that makes it a very promising biotechnological host. These features include a high native tolerance to terpenoids, a simple endogenous terpenoid profile, convenient genome editing using homologous recombination, and cultivation techniques that allow up-scaling from single cells in microtiter plates to industrial photo-bioreactors. Beyond its use for functional characterization of terpenoid biosynthetic genes, engineered Physcomitrella can be a green biotechnological platform for production of terpenoids. Here, we describe two complementary and simple procedures for stable nuclear transformation of Physcomitrella with terpenoid biosynthetic genes, selection and cultivation of transgenic lines, and metabolite analysis of terpenoids produced in transgenic moss lines. We also provide tools for metabolic engineering through genome editing using homologous recombination.

  19. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    Science.gov (United States)

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Effect of microbiological fertilizer and soil additive on yield of buckwheat (Fagopyrum esculentum Moenchunder high altitude conditions

    Directory of Open Access Journals (Sweden)

    Oljača Snežana

    2012-01-01

    Full Text Available Effect of microbiological fertilizer (Slavol and soil additives (zeolite and hydrogel on buckwheat (Fagopyrum esculentum Moench yield was investigated in this paper. Trial was set up in the village of Radijevići, Serbia in agroecological conditions of mountain Zlatar (altitude 1,065 m during a two-year period 2009 and 2010. A randomized complete block design with four replications was set up. In organic cropping system three combinations of microbiological fertilizer (Slavol with zeolite and hydrogel were used prior to sowing. Different combinations of the microbiological fertilizer and the soil additives gave positive results especially in the second year of the trial. The best combination in organic cropping system was Slavol+hydrogel with foliar application of the microbiological fertilizer, which resulted in the greatest yield of buckwheat and this treatment can be recommended to producers. Buckwheat performed very well under limited conditions of acidic soil on high altitude in organic cropping system and it can be recommended as a very suitable crop for organic producers.

  1. Zhongdanyaozhi No. 1 and Zhongdanyaozhi No. 2 Are Hybrid Cultivars of Salvia miltiorrhiza with High Yield and Active Compounds Content.

    Directory of Open Access Journals (Sweden)

    Meng Chen

    Full Text Available Salvia miltiorrhiza Bunge is an important medicinal plant used for the treatment of cardiovascular disease. Intraspecific hybridization between a male sterile line and inbred lines was followed by 39 F1 crossings. Cultivars "Zhongdanyaozhi No. 1" (ZD1 and "Zhongdanyaozhi No. 2" (ZD2 were obtained. In 2012 and 2013 tests in Beijing, the two cultivars were compared with three widely accepted types, SDCK, SXCK and HNCK from Shandong, Shanxi and Henan provinces. The yield of ZD1 and ZD2 exceeded the three CKs by more than 48.2% and 39.2%, respectively; the composition of the two hybrid cultivars was similar to the control, although the content of some compounds varied to some extent. The content of salvianolic acid B and tanshinone II A of both ZD1 and ZD2 could measure up the requirement of Chinese Pharmacopoeia. The former showed no obvious advantage than the three CKs, while the later's tanshinone II A was 29.6% higher than the three CKs. Taken together, ZD1 is a high yielding and thick-root-type cultivar which is suitable for decoction pieces; while ZD2 is suitable for component especially lipophilic component extraction. ZD1 and ZD2 reported here are the first cultivars obtained by the hybridization of S. miltiorrhiza.

  2. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase.

    Science.gov (United States)

    Seo, Dong-Ho; Jung, Jong-Hyun; Ha, Suk-Jin; Cho, Hyun-Kug; Jung, Dong-Hyun; Kim, Tae-Jip; Baek, Nam-In; Yoo, Sang-Ho; Park, Cheon-Seok

    2012-06-01

    α-Arbutin (α-Ab) is a powerful skin whitening agent that blocks epidermal melanin biosynthesis by inhibiting the enzymatic oxidation of tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA). α-Ab was effectively synthesized from hydroquinone (HQ) by enzymatic biotransformation using amylosucrase (ASase). The ASase gene from Deinococcus geothermalis (DGAS) was expressed and efficiently purified from Escherichia coli using a constitutive expression system. The expressed DGAS was functional and performed a glycosyltransferase reaction using sucrose as a donor and HQ as an acceptor. The presence of a single HQ bioconversion product was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The HQ bioconversion product was isolated by silica gel open column chromatography and its chemical structure determined by 1H and 13C nuclear magnetic resonance (NMR). The product was determined to be hydroquinone-O-α-D-glucopyranoside with a glucose molecule linked to HQ through an α-glycosidic bond. However, the production yield of the transfer reaction was significantly low (1.3%) due to the instability of HQ in the reaction mixture. The instability of HQ was considerably improved by antioxidant agents, particularly ascorbic acid, implying that HQ is labile to oxidation. A maximum yield of HQ transfer product of 90% was obtained at a 10:1 molar ratio of donor (sucrose) and acceptor (HQ) molecules in the presence of 0.2 mM ascorbic acid.

  3. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.

    Science.gov (United States)

    Wu, Liqiong; Li, Weiwei; Li, Peng; Liao, Shutian; Qiu, Shengqiang; Chen, Mingliang; Guo, Yufen; Li, Qi; Zhu, Chao; Liu, Liwei

    2014-04-09

    A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (flakes enables them to disperse effectively, which contributes to the film-forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High quantum yield graphene quantum dots decorated TiO{sub 2} nanotubes for enhancing photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: qal67@163.com; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-07-01

    Highlights: • High concentration yellow GQDs and TiO{sub 2} nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO{sub 2} nanotube. • The catalytic performance of GQDs/TiO{sub 2} depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO{sub 2} was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO{sub 2} nanotubes (GQDs/TiO{sub 2} NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO{sub 2} NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO{sub 2} nanotubes (TiO{sub 2} NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO{sub 2} NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO{sub 2} NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO{sub 2} composite.

  5. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody.

    Science.gov (United States)

    Sainsbury, Frank; Sack, Markus; Stadlmann, Johannes; Quendler, Heribert; Fischer, Rainer; Lomonossoff, George P

    2010-11-12

    The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product. To assess the quality of antibodies transiently expressed to high levels in plants, we have expressed and characterised the human anti-HIV monoclonal antibody, 2G12, using both replicating and non-replicating systems based on deleted versions of Cowpea mosaic virus (CPMV) RNA-2. The highest yield (approximately 100 mg/kg wet weight leaf tissue) of affinity purified 2G12 was obtained when the non-replicating CPMV-HT system was used and the antibody was retained in the endoplasmic reticulum (ER). Glycan analysis by mass-spectrometry showed that the glycosylation pattern was determined exclusively by whether the antibody was retained in the ER and did not depend on whether a replicating or non-replicating system was used. Characterisation of the binding and neutralisation properties of all the purified 2G12 variants from plants showed that these were generally similar to those of the Chinese hamster ovary (CHO) cell-produced 2G12. Overall, the results demonstrate that replicating and non-replicating CPMV-based vectors are able to direct the production of a recombinant IgG similar in activity to the CHO-produced control. Thus, a complex recombinant protein was produced with no apparent effect on its biochemical properties using either high-level expression or viral replication. The speed with which a recombinant pharmaceutical with excellent biochemical characteristics can be produced transiently in plants makes CPMV-based expression vectors an attractive option for biopharmaceutical development

  6. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody.

    Directory of Open Access Journals (Sweden)

    Frank Sainsbury

    2010-11-01

    Full Text Available The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product.To assess the quality of antibodies transiently expressed to high levels in plants, we have expressed and characterised the human anti-HIV monoclonal antibody, 2G12, using both replicating and non-replicating systems based on deleted versions of Cowpea mosaic virus (CPMV RNA-2. The highest yield (approximately 100 mg/kg wet weight leaf tissue of affinity purified 2G12 was obtained when the non-replicating CPMV-HT system was used and the antibody was retained in the endoplasmic reticulum (ER. Glycan analysis by mass-spectrometry showed that the glycosylation pattern was determined exclusively by whether the antibody was retained in the ER and did not depend on whether a replicating or non-replicating system was used. Characterisation of the binding and neutralisation properties of all the purified 2G12 variants from plants showed that these were generally similar to those of the Chinese hamster ovary (CHO cell-produced 2G12.Overall, the results demonstrate that replicating and non-replicating CPMV-based vectors are able to direct the production of a recombinant IgG similar in activity to the CHO-produced control. Thus, a complex recombinant protein was produced with no apparent effect on its biochemical properties using either high-level expression or viral replication. The speed with which a recombinant pharmaceutical with excellent biochemical characteristics can be produced transiently in plants makes CPMV-based expression vectors an attractive option for

  7. Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows.

    Science.gov (United States)

    Leroy, J L M R; Van Soom, A; Opsomer, G; Goovaerts, I G F; Bols, P E J

    2008-10-01

    Dairy cow fertility has been declining during since the mid-80s and this has given rise to numerous scientific studies in which important parts of the pathogenesis are elucidated. Reduced oocyte and embryo quality are acknowledged as major factors in the widely described low conception rates and in the high prevalence of early embryonic mortality. Apart from the importance of the negative energy balance (NEB) and the associated endocrine and metabolic consequences, there is a growing attention towards the effect of the milk yield promoting diets which are rich in energy and protein. Starch-rich diets can improve the energy status and thus the ovarian activity in the early postpartum period but the oocyte and embryo quality can suffer from such insulinogenic diets. Supplementation of dietary fat has a similar dual effect with a beneficial stimulation of the ovarian steroid production while the oocyte and the embryo display an altered energy metabolism and excessive lipid accumulation. High-protein diets can elevate the ammonia and urea concentrations in the blood, leading to changed intrafollicular, oviductal and uterine environments. Oocytes and embryos are highly sensitive to such changes in their microenvironment, possibly leading to a disturbed maturation, fertilization or early cleavage. Several nutrition-linked mechanisms, through which oocyte and/or embryo quality can be affected in modern dairy cows, well after the period of NEB, are proposed and comprehensively reviewed in the present report.

  8. Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils

    DEFF Research Database (Denmark)

    Agyei Frimpong, Kwame; Amoakwah, Emmanuel; Osei, Benjamin A

    2016-01-01

    imposed on two highly weathered, acidic soils from the coastal savanna and tropical rainforest agroecological zones of Ghana, respectively, to elucidate their effect on yield of lettuce. The study showed that application of biochar solely or in combination with cow dung increased soil pH, total organic...... improve soil chemical properties and lettuce yield if applied solely or in combination with cow dung....

  9. Evaluation of non-reciprocal heterologous immunity between unrelated viruses.

    Science.gov (United States)

    Che, Jenny W; Selin, Liisa K; Welsh, Raymond M

    2015-08-01

    Heterologous immunity refers to the phenomenon whereby a history of an immune response against one pathogen can provide a level of immunity to a second unrelated pathogen. Previous investigations have shown that heterologous immunity is not necessarily reciprocal, such as in the case of vaccinia virus (VACV). Replication of VACV is reduced in mice immune to a variety of pathogens, while VACV fails to induce immunity to several of the same pathogens, including lymphocytic choriomeningitis virus (LCMV). Here we examine the lack of reciprocity of heterologous immunity between VACV and LCMV and find that they induce qualitatively different memory CD8 T cells. However, depending on the repertoire of an individual host, VACV can provide protection against LCMV simply by experimentally amplifying the quantity of T cells cross-reactive with the two viruses. Thus, one cause for lack of reciprocity is differences in the frequencies of cross-reactive T cells in immune hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Simulation of the electron collection efficiency of a PMT based on the MCP coated with high secondary yield material

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin, E-mail: chenlin@opt.cn [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Graduate School of Chinese Academy of Sciences (CAS), Beijing 100049 (China); Xi' an Jiaotong University, Xi' an 710049 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China); Tian, Jinshou [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China); Zhao, Tianchi [Institute of High Energy Physics (IHEP) of CAS, Beijing 100049 (China); Liu, Chunliang [Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Hulin; Wei, Yonglin; Sai, Xiaofeng [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Chen, Ping [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Graduate School of Chinese Academy of Sciences (CAS), Beijing 100049 (China); Wang, Xing; Lu, Yu [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Hui, Dandan [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Graduate School of Chinese Academy of Sciences (CAS), Beijing 100049 (China)

    2016-11-01

    Owning to the serious loss of photoelectrons striking at the input electrode of traditional microchannel plate (MCP), photoelectron collection efficiency (CE) of photomultiplier tubes based on MCP (MCP-PMTs) fluctuates around the MCP open area fraction and cannot make a breakthrough. Depositing a thin film of high secondary electron yield material on the MCP is proposed as an effective approach to improve the CE. The available simulation and experimental data to validate it, however, is sparse. In our work, a three-dimensional small area MCP model is developed in CST Studio Suite to evaluate the collection efficiencies of PMTs based on the traditional MCP and the coated one, respectively. Results predict that CE of the PMT based on the coated MCP has a significant increase and a better uniformity, which is expected to reach 100%.

  11. Impact of ovarian and uterine conditions on some diagnostic tests output of endometritis in postpartum high-yielding dairy cows.

    Science.gov (United States)

    Senosy, W; Uchiza, M; Tameoka, N; Izaike, Y; Osawa, T

    2011-10-01

    The effect of ovarian predominating structures and uterine condition on the result of some diagnostic tools for the evaluation of endometritis was studied in postpartum (pp) Holstein-Friesian dairy cows (n = 58). Endometrial cytology (EC) and the evaluation of vaginal mucus by vaginoscopy or Metricheck were performed weekly from week 3 to 7 pp. The ovarian studies involved the predominating structures including cystic follicles with plasma progesterone (P(4) ; more or 23 mm), corpus luteum (CL), pre-ovulatory follicles (10-23 mm) and small follicles (follicular cysts with low progesterone (P(4) ovarian structures and uterine condition in early pp high-yielding dairy cows. © 2011 Blackwell Verlag GmbH.

  12. Continuous high-yield production of vertically aligned carbon nanotubes on 2D and 3D substrates.

    Science.gov (United States)

    Guzmán de Villoria, Roberto; Hart, A John; Wardle, Brian L

    2011-06-28

    Vertically aligned carbon nanotubes (VACNTs) have certain advantages over bulk CNT powders and randomly oriented CNT mats for applications in flexible electronic devices, filtration membranes, biosensors and multifunctional aerospace materials. Here, a machine and a process to synthesize VACNTs in a continuous manner are presented showing uniform growth on 2D and 3D substrates, including alumina fibers, silicon wafer pieces, and stainless steel foils. Aligned multiwalled carbon nanotubes (MWNT) are synthesized at substrate feed rates of up to 6.8 cm/min, and the CNTs reach up to 60 μm in length depending on residence time in the reactor. In addition to the aligned morphology indicative of high yield growth, transmission electron microscopy and Raman spectroscopy reveal that the CNTs are of comparable quality to CNTs grown via a similar batch process. A significant reduction in time, reaction products, gases, and energy is demonstrated relative to batch processing, paving the way for industrial production of VACNTs.

  13. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2017-12-18

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Heterologous DNA Uptake in Cultured Symbiodinium spp. Aided by Agrobacterium tumefaciens

    Science.gov (United States)

    Voigt, Boris; Menzel, Diedrik; Baluška, František; Villanueva, Marco A.

    2015-01-01

    Plant-targeted pCB302 plasmids containing sequences encoding gfp fusions with a microtubule-binding domain; gfp with the fimbrin actin-binding domain 2; and gfp with AtRACK1C from Arabidopsis thaliana, all harbored in Agrobacterium tumefaciens, were used to assay heterologous expression on three different clades of the photosynthetic dinoflagellate, Symbiodinium. Accessibility to the resistant cell wall and through the plasma membrane of these dinoflagellates was gained after brief but vigorous shaking in the presence of glass beads and polyethylene glycol. A resistance gene to the herbicide Basta allowed appropriate selection of the cells expressing the hybrid proteins, which showed a characteristic green fluorescence, although they appeared to lose their photosynthetic pigments and did not further divide. Cell GFP expression frequency measured as green fluorescence emission yielded 839 per every 106 cells for Symbiodinium kawagutii, followed by 640 and 460 per every 106 cells for Symbiodinium microadriaticum and Symbiodinium sp. Mf11, respectively. Genomic PCR with specific primers amplified the AtRACK1C and gfp sequences after selection in all clades, thus revealing their presence in the cells. RT-PCR from RNA of S. kawagutii co-incubated with A. tumefaciens harboring each of the three vectors with their respective constructs, amplified products corresponding to the heterologous gfp sequence while no products were obtained from three distinct negative controls. The reported procedure shows that mild abrasion followed by co-incubation with A. tumefaciens harboring heterologous plasmids with CaMV35S and nos promoters can lead to expression of the encoded proteins into the Symbiodinium cells in culture. Despite the obvious drawbacks of the procedure, this is an important first step towards a stable transformation of Symbiodinium. PMID:26167858

  15. The Potential of Lr19 and Bdv2 Translocations to Improve Yield and Disease Resistance in the High Rainfall Wheat Zones of Australia

    Directory of Open Access Journals (Sweden)

    Garry Rosewarne

    2015-02-01

    Full Text Available Chromosomal translocations in wheat derived from alien species are a valuable source of genetic diversity that have provided increases in resistance to various diseases and improved tolerance to abiotic stresses in wheat. These alien genomic segments can also affect multiple traits, with a concomitant ability to alter yield potential in either a positive or negative fashion. The aim of this work was to characterize the effects on yield of two types of translocations, namely T4-derived translocations from Thinopyrum ponticum, carrying the leaf rust resistance gene Lr19, and the TC14 translocation from Th. intermedium, carrying the barley yellow dwarf virus resistance gene Bdv2, in Australian adapted genetic backgrounds and under Australian conditions. A large range of germplasm was developed by crossing donor sources of the translocations into 24 Australian adapted varieties producing 340 genotypes. Yield trials were conducted in 14 environments to identify effects on yield and yield components. The T4 translocations had a positive effect on yield in one high yielding environment, but negatively affected yield in low-yielding environments. The TC14 translocation was generally benign, however, it was associated with a negative impact on yield and reduced height in two genetic backgrounds. The translocation was also associated with a delayed maturity in several backgrounds. The T4 translocations results were consistent with previously published data, whilst this is the first time that such an investigation has been undertaken on the TC14 translocation. Our data suggests a limited role for each of these translocations in Australia. The T4 translocations may be useful in high yielding environments, such as under irrigation in NSW and in the more productive high rainfall regions of south-eastern Australia. Traits associated with the TC14 translocation, such as BYDV resistance and delayed maturity, would make this translocation useful in BYDV

  16. High yield purification and characterization of engineered human P450 1A2 and generation of immuno-inhibitor antibodies.

    Science.gov (United States)

    Louërat-Oriou, B; Flinois, J P; Beaune, P H; Pompon, D

    1999-02-01

    P450 S12, an engineered human P450 1A2 containing the 88-first amino-acids of the P450 1A1, demonstrates particularly high expression level in yeast while exhibiting catalytic properties very similar to the moderately expressed natural human P450 1A2. To facilitate P450 purification by nickel chelate chromatography, C-terminal extensions including histidine tags were tested. The -G(H)4 extension was found to be particularly efficient for permitting high expression levels without any catalytic alteration. This engineered P450 was purified to electrophoretic homogeneity (18 nmol/mg of protein) at a very high yield (87%) without any detectable formation of P420. P450 S12 activities were reconstituted in the presence of yeast and Arabidopsis thaliana (ATR1) NADPH-P450 reductases. The plant reductase supported better ethoxyresorufin-, methoxyresorufin- and phenacetin-O-dealkylase activities than the yeast reductase in reconstituted systems. Interestingly, polyclonal antibodies raised against purified P450 S12 selectively recognized in Western blot and fully immuno-inhibited the natural or recombinant P450 1A2 with very limited or no cross-reaction with P450 1A1 and other isoenzymes.

  17. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    Science.gov (United States)

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI2 (TOP-PbI2) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  18. Preparation of carbon-encapsulated iron nanoparticles in high yield by DC arc discharge and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Cui, Lan; Lin, Kui [Center of Analysis, Tianjin University, Tianjin 300072 (China); Jin, Feng-min; Wang, Bin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Shi, Shu-xiu [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Yang, De-an [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Hui [Center of Analysis, Tianjin University, Tianjin 300072 (China); He, Fei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Chen, Xiao-ping [Center of Analysis, Tianjin University, Tianjin 300072 (China); Cui, Shen, E-mail: cuishen@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2013-03-15

    Highlights: ► CEINPs with core–shell structure and high Fe content were prepared in high yield by DC arc discharge. ► The anode II with a mass ratio of total iron to carbon 8:1 was used in DC arc discharge. ► The possible process of formation of CEINPs is briefly discussed. ► The uniformity of composition of anode is very important for the formation of CEINPs. ► The MEF and MMF of iron element may also play an important role in the formation of CEINPs. -- Abstract: Carbon-encapsulated iron nanoparticles (CEINPs) were prepared by DC arc discharge under nitrogen atmosphere of high temperature. The products were characterized by transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscope, and X-ray photoelectron spectroscope (XPS), and their magnetic properties were measured by physical property measurement system (PPMS). The product B{sub I}, obtained from the anode I, contains the nanoparticles of iron and iron carbide, and carbon coating with imperfect and disordered layer structure. The product B{sub II}, obtained from the anode II, mainly consists of CEINPs, whose cores mainly consist of iron and iron carbide and shells contain about 3–7 graphitic layers. The iron contents in the products B{sub I} and B{sub II} are 44.8 and 82.6 wt.%, respectively. The products B{sub I} and B{sub II} have similar phase composition which includes carbon, iron, iron carbide, ferrous and ferric oxide, iron nitride, and carbon nitride. The saturation magnetization (Ms) of the products B{sub I} and B{sub II} are 29.35 and 88.66 emu/g and their coercivity (Hc) are 220 and 240 Oe, respectively. The total yields of all the products formed in the arc discharge chamber from anodes I and II, except for the cylinder-shaped deposits formed on the top of the cathode, are 25.8 and 22.3 wt.%, respectively. The possible process of formation of CEINPs is briefly discussed on

  19. High yield production and refolding of the double-knot toxin, an activator of TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Chanhyung Bae

    Full Text Available A unique peptide toxin, named double-knot toxin (DkTx, was recently purified from the venom of the tarantula Ornithoctonus huwena and was found to stably activate TRPV1 channels by targeting the outer pore domain. DkTx has been shown to consist of two inhibitory cysteine-knot (ICK motifs, referred to as K1 and K2, each containing six cysteine residues. Beyond this initial characterization, however, the structural and functional details about DkTx remains elusive in large part due to the lack of a high yielding methodology for the synthesis and folding of this cysteine-rich peptide. Here, we overcome this obstacle by generating pure DkTx in quantities sufficient for structural and functional analyses. Our methodology entails expression of DkTx in E. coli followed by oxidative folding of the isolated linear peptide. Upon screening of various oxidative conditions for optimizing the folding yield of the toxin, we observed that detergents were required for efficient folding of the linear peptide. Our synthetic DkTx co-eluted with the native toxin on HPLC, and irreversibly activated TRPV1 in a manner identical to native DkTx. Interestingly, we find that DkTx has two interconvertible conformations present in a 1∶6 ratio at equilibrium. Kinetic analysis of DkTx folding suggests that the K1 and K2 domains influence each other during the folding process. Moreover, the CD spectra of the toxins shows that the secondary structures of K1 and K2 remains intact even after separating the two knots. These findings provide a starting point for detailed studies on the structural and functional characterization of DkTx and utilization of this toxin as a tool to explore the elusive mechanisms underlying the polymodal gating of TRPV1.

  20. Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.).

    Science.gov (United States)

    Priya, P; Venkatachalam, P; Thulaseedharan, A

    2007-10-01

    In Hevea tree, rubber elongation factor (REF) is a key gene involved in rubber biosynthesis. Since the immaturity period for Hevea is 6 years, identification of molecular marker for latex yield potential will be beneficial for early selection of high yielding clones. The main objective of this research is to study the expression pattern of the REF gene in contrasting latex yield rubber clones (high and low yielding) by Northern blot as well as RT-PCR analysis. Accumulation of REF mRNA transcripts was significantly higher in latex cells compared to other cells of seedlings and mature Hevea trees. Northern results revealed that the level of REF gene expression in latex cells of high yielding rubber clones was significantly higher than in low yielders. According to RT-PCR results, the abundance of REF mRNA transcripts in latex cells was fivefold higher in the RRII105 clone, one of the most high yielding rubber clones. It is evident from the results that both tapping and ethephon treatment had a direct effect on induction of REF gene expression. Results demonstrate a positive correlation between REF gene expression pattern and latex yield.

  1. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass.

    Science.gov (United States)

    Matano, Yuki; Hasunuma, Tomohisa; Kondo, Akihiko

    2012-03-01

    Economically feasible processes for industrial cellulosic ethanol production requires increasing the final ethanol titer during fermentation due to the high energy demands of the subsequent ethanol distillation. In the present study, high-yield ethanol production was achieved by short-term liquefaction and fermentation of lignocellulose biomass in a novel drum-type rotary fermentation system using a yeast strain developed for cell-surface display of fungal endoglucanase, cellobiohydrolase, and β-glucosidase. In the presence of 10 FPU/g-biomass cellulase added, the recombinant cellulolytic strain produced 1.4-fold higher ethanol (89% of theoretical yield) from high-solid (200 g-dry weight/L) rice straw within 72 h of fermentation than wild type strain. Cell-surface engineering successfully reduced the amount of commercial enzyme required for the fermentation of cellulose. This study demonstrates that cellulases displayed on the yeast cell surface are capable of hydrolyzing cellulose that was not hydrolyzed by commercial cellulases, leading to increased sugar utilization for improved ethanol production. Copyright © 2012. Published by Elsevier Ltd.

  2. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae.

    Science.gov (United States)

    Molbaek, Karen; Scharff-Poulsen, Peter; Helix-Nielsen, Claus; Klaerke, Dan A; Pedersen, Per Amstrup

    2015-02-07

    The hERG potassium channel is essential for repolarization of the cardiac action potential. Due to this vital function, absence of unintended and potentially life-threatening interactions with hERG is required for approval of new drugs. The structure of hERG is therefore one of the most sought-after. To provide purified hERG for structural studies and new hERG biomimetic platforms for detection of undesirable interactions, we have developed a hERG expression platform generating unprecedented amounts of purified and functional hERG channels. Full-length hERG, with or without a C-terminally fused green fluorescent protein (GFP) His 8-tag was produced from a codon-optimized hERG cDNA in Saccharomyces cerevisiae. Both constructs complemented the high potassium requirement of a knock-out Saccharomyces cerevisiae strain, indicating correct tetramer assembly in vivo. Functionality was further demonstrated by Astemizole binding to membrane embedded hERG-GFP-His 8 with a stoichiometry corresponding to tetramer assembly. The 156 kDa hERG-GFP protein accumulated to a membrane density of 1.6%. Fluorescence size exclusion chromatography of hERG-GFP-His 8 solubilized in Fos-Choline-12 supplemented with cholesteryl-hemisuccinate and Astemizole resulted in a monodisperse elution profile demonstrating a high quality of the hERG channels. hERG-GFP-His 8 purified by Ni-affinity chromatography maintained the ability to bind Astemizole with the correct stoichiometry indicating that the native, tetrameric structure was preserved. To our knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays.

  3. Chromophore composition of a heterologously expressed BLUF-domain.

    NARCIS (Netherlands)

    Laan, W.W.J.; Bednarz, T.; Heberle, J.; Hellingwerf, K.J.

    2004-01-01

    Upon heterologous expression of the BLUF (for: Blue-Light sensing Using Flavin) domain from AppA, a transcriptional anti-repressor from Rhodobacter sphaeroides, in Escherichia coli, photoactive holo-protein is formed through non-covalent binding of a flavin. Whereas it is generally assumed that FAD

  4. Evidence of homologous and heterologous effects after unilateral leg training in youth.

    Science.gov (United States)

    Ben Othman, Aymen; Behm, David G; Chaouachi, Anis

    2017-10-25

    The positive effects of unilateral training on contralateral muscles (cross education) has been demonstrated with adults for over a century. There is limited evidence for cross education of heterologous muscles. Cross education has not been demonstrated with children. It was the objective of this study to investigate cross-education training in children examining ipsilateral and contralateral homologous and heterologous muscles. Forty-eight male children (aged 10-13 years) were assessed for unilateral, ipsilateral and contralateral lower limb strength, power and endurance (1-repetition maximum (RM) leg press, knee extensors (KE) and flexors (KF) maximum voluntary isometric contractions (MVIC), countermovement jump, muscle endurance test (leg press repetitions with 60% 1RM)), and upper body unilateral MVIC elbow flexors (EF) and handgrip strength. An 8-week training program involved 2 unilateral leg press resistance-training groups (high load/low repetitions: 4-8 sets of 5RM, and low load/high repetitions: 1-2 sets of 20RM) and control (untrained) group. All muscles exhibited improvements of 6.1% to 89.1%. The trained limb exhibited greater adaptations than the untrained limb for leg press 1RM (40.3% vs. 25.2%; p = 0.005), and 60% 1RM leg press (104.1% vs. 73.4%; p = 0.0001). The high load/low repetition training induced (p load/high repetition with KE, KF, EF MVIC and leg press 1RM. This is the first study to demonstrate cross-education effects with children and that the effects of unilateral training involve both contralateral homologous and heterologous muscles with the greatest strength-training responses from high-load/low-repetition training.

  5. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    Directory of Open Access Journals (Sweden)

    Ukkonen Kaisa

    2011-12-01

    Full Text Available Abstract This report describes the combined use of an enzyme-based glucose release system (EnBase® and high-aeration shake flask (Ultra Yield Flask™. The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved.

  6. Modelling predicts that tolerance to drought during reproductive development will be required for high yield potential and stability of wheat in Europe

    Science.gov (United States)

    Semenov, Mikhail A.; Stratonovitch, Pierre; Paul, Matthew J.

    2017-04-01

    Short periods of extreme weather, such as a spell of high temperature or drought during a sensitive stage of development, could result in substantial yield losses due to reduction in grain number and grain size. In a modelling study (Stratonovitch & Semenov 2015), heat tolerance around flowering in wheat was identified as a key trait for increased yield potential in Europe under climate change. Ji et all (Ji et al. 2010) demonstrated cultivar specific responses of yield to drought stress around flowering in wheat. They hypothesised that carbohydrate supply to anthers may be the key in maintaining pollen fertility and grain number in wheat. It was shown in (Nuccio et al. 2015) that genetically modified varieties of maize that increase the concentration of sucrose in ear spikelets, performed better under non-drought and drought conditions in field experiments. The objective of this modelling study was to assess potential benefits of tolerance to drought during reproductive development for wheat yield potential and yield stability across Europe. We used the Sirius wheat model to optimise wheat ideotypes for 2050 (HadGEM2, RCP8.5) climate scenarios at selected European sites. Eight cultivar parameters were optimised to maximise mean yields, including parameters controlling phenology, canopy growth and water limitation. At those sites where water could be limited, ideotypes sensitive to drought produced substantially lower mean yields and higher yield variability compare with tolerant ideotypes. Therefore, tolerance to drought during reproductive development is likely to be required for wheat cultivars optimised for the future climate in Europe in order to achieve high yield potential and yield stability.

  7. Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Stefan; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems, Heidenhofstraße 2, 79110 Freiburg (Germany); Johnson, Noah J. J.; Pichaandi, Jothirmayanantham; Veggel, Frank C. J. M. van [Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6 (Canada)

    2015-11-21

    Colloidal upconverter nanocrystals (UCNCs) that convert near-infrared photons to higher energies are promising for applications ranging from life sciences to solar energy harvesting. However, practical applications of UCNCs are hindered by their low upconversion quantum yield (UCQY) and the high irradiances necessary to produce relevant upconversion luminescence. Achieving high UCQY under practically relevant irradiance remains a major challenge. The UCQY is severely limited due to non-radiative surface quenching processes. We present a rate equation model for migration of the excitation energy to show that surface quenching does not only affect the lanthanide ions directly at the surface but also many other lanthanide ions quite far away from the surface. The average migration path length is on the order of several nanometers and depends on the doping as well as the irradiance of the excitation. Using Er{sup 3+}-doped β-NaYF{sub 4} UCNCs, we show that very isotropic and thick (∼10 nm) β-NaLuF{sub 4} inert shells dramatically reduce the surface-related quenching processes, resulting in much brighter upconversion luminescence at simultaneously considerably lower irradiances. For these UCNCs embedded in poly(methyl methacrylate), we determined an internal UCQY of 2.0% ± 0.2% using an irradiance of only 0.43 ± 0.03 W/cm{sup 2} at 1523 nm. Normalized to the irradiance, this UCQY is 120× higher than the highest values of comparable nanomaterials in the literature. Our findings demonstrate the important role of isotropic and thick shells in achieving high UCQY at low irradiances from UCNCs. Additionally, we measured the additional short-circuit current due to upconversion in silicon solar cell devices as a proof of concept and to support our findings determined using optical measurements.

  8. Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells

    Science.gov (United States)

    Fischer, Stefan; Johnson, Noah J. J.; Pichaandi, Jothirmayanantham; Goldschmidt, Jan Christoph; van Veggel, Frank C. J. M.

    2015-11-01

    Colloidal upconverter nanocrystals (UCNCs) that convert near-infrared photons to higher energies are promising for applications ranging from life sciences to solar energy harvesting. However, practical applications of UCNCs are hindered by their low upconversion quantum yield (UCQY) and the high irradiances necessary to produce relevant upconversion luminescence. Achieving high UCQY under practically relevant irradiance remains a major challenge. The UCQY is severely limited due to non-radiative surface quenching processes. We present a rate equation model for migration of the excitation energy to show that surface quenching does not only affect the lanthanide ions directly at the surface but also many other lanthanide ions quite far away from the surface. The average migration path length is on the order of several nanometers and depends on the doping as well as the irradiance of the excitation. Using Er3+-doped β-NaYF4 UCNCs, we show that very isotropic and thick (˜10 nm) β-NaLuF4 inert shells dramatically reduce the surface-related quenching processes, resulting in much brighter upconversion luminescence at simultaneously considerably lower irradiances. For these UCNCs embedded in poly(methyl methacrylate), we determined an internal UCQY of 2.0% ± 0.2% using an irradiance of only 0.43 ± 0.03 W/cm2 at 1523 nm. Normalized to the irradiance, this UCQY is 120× higher than the highest values of comparable nanomaterials in the literature. Our findings demonstrate the important role of isotropic and thick shells in achieving high UCQY at low irradiances from UCNCs. Additionally, we measured the additional short-circuit current due to upconversion in silicon solar cell devices as a proof of concept and to support our findings determined using optical measurements.

  9. Driving Down HB-LED Costs. Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, William [Veeco Process Equipment, Inc., Plainview, NY (United States)

    2012-04-30

    The overall objective of this multi-faceted program is to develop epitaxial growth systems that meet a goal of 75% (4X) cost reduction in the epitaxy phase of HB-LED manufacture. A 75% reduction in yielded epitaxy cost is necessary in order to achieve the cost goals for widespread penetration of HB-LED's into back-lighting units (BLU) for LCD panels and ultimately for solid-state lighting (SSL). To do this, the program will address significant improvements in overall equipment Cost of Ownership, or CoO. CoO is a model that includes all costs associated with the epitaxy portion of production. These aspects include cost of yield, capital cost, operational costs, and maintenance costs. We divide the program into three phases where later phases will incorporate the gains of prior phases. Phase one activities are enabling technologies. In collaboration with Sandia National Laboratories we develop a Fluent-compatible chemistry predictive model and a set of mid-infrared and near-ultraviolet pyrometer monitoring tools. Where previously the modeling of the reactor dynamics were studied within FLUENT alone, here, FLUENT and Chemkin are integrated into a comprehensive model of fluid dynamics and the most advanced transport equations developed for Chemkin. Specifically, the Chemkin model offered the key reaction terms for gas-phase nucleation, a key consideration in the optimization of the MOCVD process. This new predictive model is used to design new MOCVD reactors with optimized growth conditions and the newly developed pyrometers are used monitor and control the MOCVD process temperature to within 0.5°C run-to-run and within each wafer. This portion of the grant is in collaboration with partners at Sandia National Laboratories. Phase two activities are continuous improvement projects which extend the current reactor platform along the lines of improved operational efficiency, improved systems control for throughput, and carrier modifications for increased yield

  10. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb by Transcriptomic Analysis.

    Directory of Open Access Journals (Sweden)

    Qinghua Liu

    Full Text Available Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS and (--alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9, phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (--alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase

  11. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb) by Transcriptomic Analysis.

    Science.gov (United States)

    Liu, Qinghua; Zhou, Zhichun; Wei, Yongcheng; Shen, Danyu; Feng, Zhongping; Hong, Shanping

    2015-01-01

    Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen

  12. Improved semen collection method for wild felids: urethral catheterization yields high sperm quality in African lions (Panthera leo).

    Science.gov (United States)

    Lueders, I; Luther, I; Scheepers, G; van der Horst, G

    2012-08-01

    For wild and domestic felids, electroejaculation (EE) is the most common semen collection method. However, the equipment is expensive, there is a risk of urine contamination and animals usually show strong muscular contraction despite general anesthesia. Accordingly, we tested the feasibility of a different approach using urethral catheterization (UC) in seven African lions, previously described for domestic cats only. After general anesthesia with the α2-agonist medetomidine (which also stimulates semen release into the urethra) and ketamine, a transrectal ultrasound was performed to locate the prostate. A commercial dog urinary catheter (2.6 or 3.3 mm in diameter) was advanced approximately 30 cm into the urethra to allow semen collection into the lumen of the catheter by capillary forces. After retraction, sperm volumes between of 422.86 ± 296.07 μl yielded motility of 88.83 ± 13.27% (mean ± SD) with a mean sperm concentration of 1.94 × 10(9)/ml. Here we describe a simple, field friendly and effective method to attain highly concentrated semen samples with excellent motility in lions and potentially other wild felid species as an alternative to electroejaculation. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Development of crossbreeding high-yield-potential strains for commercial cultivation in the medicinal mushroom Wolfiporia cocos (Higher Basidiomycetes).

    Science.gov (United States)

    Xiang, Xiaozhao; Wang, Xiaoxia; Bian, Yinbing; Xu, Zhangyi

    2016-07-01

    Wolfiporia cocos is a well-known medicinal mushroom, and its dried sclerotia has been widely used as a traditional medicine in China, Japan, and other Asian countries for centuries. However, long-term asexual reproduction of the breeding system in W. cocos results in a current universal degeneration of cultivated strains. To develop a W. cocos breeding program that will benefit commercial cultivation, we previously developed an optimum method for indoor induction of W. cocos fruiting bodies and clarified the nature of preponderant binuclear sexual basidiospores. In this paper, we first show that the majority of W. cocos single-spore isolates cannot form sclerotium in field cultivation. We then investigated the possibility of breeding new strains by crossbreeding. Three types of mating reactions were observed in both intra-strain pairings and inter-strain pairings, and a total of fifty-five hybrids were selected by antagonistic testing and allele-specific polymerase chain reaction (PCR). Field cultivation of hybrids demonstrated that some hybrids can form sclerotium via two cultivated methods. Two new high-yield strains were identified. This report will stimulate new thinking on W. cocos and promote further extensive studies on crossbreeding in W. cocos, a new topic related to the development of more efficient protocols for the discrimination of hybrids in W. cocos.

  14. Facile Synthesis of pH-sensitive Germanium Nanocrystals with High Quantum Yield for Intracellular Acidic Compartment Imaging.

    Science.gov (United States)

    Li, Feng; Wang, Jing; Sun, Shuqing; Wang, Hai; Tang, Zhiyong; Nie, Guangjun

    2015-04-24

    A green-light emitting germanium nanocrystal-based biosensor to monitor lysosomal pH changes is developed. The Ge nanocrystals are synthesized in an aqueous solution with a significantly enhanced photoluminescence quantum yield of 26%. This synthesis involves a facile solution based route which avoided the use of toxic or environmentally unfriendly agents. Importantly, the photoluminescence intensity of the synthesized Ge nanocrystals is particularly sensitive to changes in pH between 5 and 6. When incubated with cultured cells, the nanocrystals are internalized and subsequently translocated via the lysosomal pathway, and the Ge nanocrystals' fluorescence are greatly enhanced, even when the lysosomal pH is only slightly increased. These results reveal that the Ge nanocrystals possess high pH sensitivity compared to a commercially available dye, LysoSensor Green DND-189. The fluorescent properties of the Ge nanocrystals are demonstrated to be dependent on both the crystal form and their surface chemistry. The superior fluorescence properties and bioapplicability of the Ge nanocrystals makes them a promising intracellular bioimaging probe for monitoring various pH-sensitive processes in cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Directed breeding of an Arthrobacter mutant for high-yield production of cyclic adenosine monophosphate by N + ion implantation

    Science.gov (United States)

    Song, He; Chen, Xiaochun; Cao, Jiaming; Fang, Ting; Bai, Jianxin; Xiong, Jian; Ying, Hanjie

    2010-08-01

    To obtain a cyclic adenosine monophosphate (cAMP) high-yield production strain, Arthrobacter NG-1 was mutated by N + ion implantation with an energy level of 10 keV and dose of 7×10 15 ions/cm 2. Combined with directed screening methods, a xanthine-defective and 8-azaguanine (8-AG)-resistant mutant Arthrobacter A302 was selected. The concentration of cAMP produced by this mutant was 41.7% higher than that of the original strain and reached 9.78 g/L. Through ten-generation investigation, the capability of cAMP production of A302 was found to be stable. Compared with the original strain, the special activities of key enzymes in A302, which influenced the cAMP biosynthesis, was analyzed. IMP dehydrogenase activity was defective, whereas PRPP amidotransferase, sAMP synthetase and adenylate cyclase activities were increased by 61.5%, 147% and 21.7%, respecitively, which might explain the mutagenesis mechanism by N + ions implantation under the enzymatic level.

  16. N, S co-doped carbon dots with high quantum yield: tunable fluorescence in liquid/solid and extensible applications

    Science.gov (United States)

    Yang, Mei; Meng, Xinlei; Li, Baoyan; Ge, Shusheng; Lu, Yun

    2017-06-01

    A set of the highly fluorescent N, S co-doped carbon dots (NSCDs) were prepared through one-step hydrothermal synthesis at different temperature with citric acid as the carbon source and cysteamine as the N, S source. The NSCDs synthesized at 200 °C show significant quantum yield (81%) due to its optimal structure. The structure of the NSCDs changed with varying degrees of carbonization/aromatization and different content of multifunctional groups of C=O, -NH2, -OH, -SH, and N, S-aromatic heterocycte under different preparation temperatures, thus exhibiting tunable fluorescence. Especially, the obtained NSCDs exhibited a blue fluorescence in solution state and changed from strong blue to yellowish-green in its solid state under UV light as a result of the increase in preparation temperature. The as-prepared NSCDs can be used in selective detection of complex anions such as Cr2O7 2- and Fe(CN)6 3-, cell imaging, and preparation of fluorescent composite films.

  17. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale.

    Science.gov (United States)

    Abad-Franch, Fernando; Zamora-Perea, Elvira; Ferraz, Gonçalo; Padilla-Torres, Samael D; Luz, Sérgio L B

    2015-04-01

    Mosquito-borne pathogens pose major public health challenges worldwide. With vaccines or effective drugs still unavailable for most such pathogens, disease prevention heavily relies on vector control. To date, however, mosquito control has proven difficult, with low breeding-site coverage during control campaigns identified as a major drawback. A novel tactic exploits the egg-laying behavior of mosquitoes to have them disseminate tiny particles of a potent larvicide, pyriproxyfen (PPF), from resting to breeding sites, thus improving coverage. This approach has yielded promising results at small spatial scales, but its wider applicability remains unclear. We conducted a four-month trial within a 20-month study to investigate mosquito-driven dissemination of PPF dust-particles from 100 'dissemination stations' (DSs) deployed in a 7-ha sub-area to surveillance dwellings and sentinel breeding sites (SBSs) distributed over an urban neighborhood of about 50 ha. We assessed the impact of the trial by measuring juvenile mosquito mortality and adult mosquito emergence in each SBS-month. Using data from 1,075 dwelling-months, 2,988 SBS-months, and 29,922 individual mosquitoes, we show that mosquito-disseminated PPF yielded high coverage of dwellings (up to 100%) and SBSs (up to 94.3%). Juvenile mosquito mortality in SBSs (about 4% at baseline) increased by over one order of magnitude during PPF dissemination (about 75%). This led to a >10-fold decrease of adult mosquito emergence from SBSs, from approximately 1,000-3,000 adults/month before to about 100 adults/month during PPF dissemination. By expanding breeding-site coverage and boosting juvenile mosquito mortality, a strategy based on mosquito-disseminated PPF has potential to substantially enhance mosquito control. Sharp declines in adult mosquito emergence can lower vector/host ratios, reducing the risk of disease outbreaks. This approach is a very promising complement to current and novel mosquito control strategies

  18. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale.

    Directory of Open Access Journals (Sweden)

    Fernando Abad-Franch

    2015-04-01

    Full Text Available Mosquito-borne pathogens pose major public health challenges worldwide. With vaccines or effective drugs still unavailable for most such pathogens, disease prevention heavily relies on vector control. To date, however, mosquito control has proven difficult, with low breeding-site coverage during control campaigns identified as a major drawback. A novel tactic exploits the egg-laying behavior of mosquitoes to have them disseminate tiny particles of a potent larvicide, pyriproxyfen (PPF, from resting to breeding sites, thus improving coverage. This approach has yielded promising results at small spatial scales, but its wider applicability remains unclear.We conducted a four-month trial within a 20-month study to investigate mosquito-driven dissemination of PPF dust-particles from 100 'dissemination stations' (DSs deployed in a 7-ha sub-area to surveillance dwellings and sentinel breeding sites (SBSs distributed over an urban neighborhood of about 50 ha. We assessed the impact of the trial by measuring juvenile mosquito mortality and adult mosquito emergence in each SBS-month. Using data from 1,075 dwelling-months, 2,988 SBS-months, and 29,922 individual mosquitoes, we show that mosquito-disseminated PPF yielded high coverage of dwellings (up to 100% and SBSs (up to 94.3%. Juvenile mosquito mortality in SBSs (about 4% at baseline increased by over one order of magnitude during PPF dissemination (about 75%. This led to a >10-fold decrease of adult mosquito emergence from SBSs, from approximately 1,000-3,000 adults/month before to about 100 adults/month during PPF dissemination.By expanding breeding-site coverage and boosting juvenile mosquito mortality, a strategy based on mosquito-disseminated PPF has potential to substantially enhance mosquito control. Sharp declines in adult mosquito emergence can lower vector/host ratios, reducing the risk of disease outbreaks. This approach is a very promising complement to current and novel mosquito control

  19. Development of a high-yielding bioprocess for 11-α hydroxylation of canrenone under conditions of oxygen-enriched air supply.

    Science.gov (United States)

    Contente, Martina Letizia; Guidi, Benedetta; Serra, Immacolata; De Vitis, Valerio; Romano, Diego; Pinto, Andrea; Lenna, Roberto; de Souza Oliveira, Ricardo Pinheiro; Molinari, Francesco

    2016-12-01

    A high yielding bioprocess for 11-α hydroxylation of canrenone (1a) using Aspergillus ochraceus ATCC 18500 was developed. The optimization of the biotransformation involved both fermentation (for achieving highly active mycelium of A. ochraceus) and biotransformation with the aim to obtain 11-α hydroxylation with high selectivity and yield. A medium based on sucrose as C-source resulted particularly suitable for conversion of canrenone into the corresponding 11-hydroxy derivative, whereas the use of O2-enriched air and dimethyl sulfoxide (DMSO) as a co-solvent for increasing substrate solubility played a crucial role for obtaining high yields (>95%) of the desired product in high chemical purity starting from 30mM (10.2g/L) of substrate. The structure of the hydroxylated product was confirmed by a combination of two-dimensional NMR proton-proton correlation techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  1. Preovulatory follicular status and diet affect the insulin and glucose content of follicles in high-yielding dairy cows.

    Science.gov (United States)

    Landau, S; Braw-Tal, R; Kaim, M; Bor, A; Bruckental, I

    2000-12-29

    Insulin and glucose may be limiting factors for ovarian function in dairy cows genetically selected for high milk yield. The effects of nutrition on the intrafollicular content of insulin and glucose were investigated in Israeli Holstein dairy cattle fed a basic total mixed ration and producing 34-39kg of milk daily. In experiment 1, carried out in 11 oestrus-synchronised cows, little variation in insulin concentration was found in plasma sampled during the luteal phase, but high variation was found in plasma sampled during the follicular phase. Therefore, in order to prevent confounding the effects of diet and of phase in cycle in the following experiments, experimental diets were fed during the luteal phase of synchronised oestrus cycles. In experiment 2, designed as Latin-Square, six cows received sequentially diets containing 17.1 (control) or 19.7% of crude protein, using two sources of supplementary protein, i.e. soyabean meal (SBM) and corn gluten meal (CGM), differing in ruminal degradability and leucine content. When dry matter intake was used as covariant, plasma insulin on day 16 was 29.5 and 26.4% higher in cows fed diets containing SBM and CGM than in the control (Pmorning of day 17, they were administered PGF(2alpha) and the content of 26 largest follicles was aspirated by using the transvaginal ovum pick-up technique. Follicles were sorted into two classes (preovulatory and subordinate) according to oestradiol concentration and the progesterone:oestradiol ratio in follicular fluid (FF). Higher concentrations of insulin (0.282 versus 0.127ng/ml, Peffects did not reach significance in subordinate follicles. The finding that preovulatory follicular status is associated with increased intrafollicular insulin and glucose suggests that insulin is involved in follicular maturation. The nutritional effect on intrafollicular glucose and insulin may have practical implications to optimise feeding in dairy cows during phases of the oestrus cycle.

  2. CULTIVAR RELEASE - BRS Notável: a medium-early-maturing, disease-resistant Carioca common bean cultivar with high yield potential

    Directory of Open Access Journals (Sweden)

    Sheila Cristina Prucoli Posse

    2012-09-01

    Full Text Available BRS Notável is a common bean cultivar with carioca grain, suitable for cultivation in 20 Brazilian states. It is a mediumearly-maturing cultivar, with an average yield of 2,261 kg ha-1, 8.5% higher than the controls, a high yield potential (4,472 kg ha-1, lodging tolerance and resistance to anthracnose, fusarium wilt, common bacterial blight, and curtobacterium wilt.

  3. Efficient selection of a high-yield line by using somaclonal variation in Japanese butterbur (Petasites japonicus)

    National Research Council Canada - National Science Library

    Iwamoto, Yuzuri; Nakasone, Wataru; Ezura, Hiroshi

    2007-01-01

    To induce somaclonal variations related to plant yield, adventitious buds were directly regenerated from immature flowerheads of a selected line A of the 'Aichi Wase Fuki' of Japanese butterbur (Petasites japonicus...

  4. Microvawe pyrolysis of biomass: control of process parameters for high pyrolysis oil yields and enhanced oil quality

    OpenAIRE

    Robinson, John; Dodds, Chris; Stavrinides, Alexander; Kingman, Sam; Katrib, Juliano; Wu, Zhiheng; Medrano, Jose; Overend, Ralph

    2015-01-01

    The oil yield and quality of pyrolysis oil from microwave heating of biomass was established by studying the behaviour of Larch in microwave processing. This is the first study in biomass pyrolysis to use a microwave processing technique and methodology that is fundamentally scalable, from which the basis of design for a continuous processing system can be derived to maximise oil yield and quality. It is shown systematically that sample size is a vital parameter that has been overlooked by pr...

  5. Heterologous expression and purification of an active human TRPV3 ion channel

    DEFF Research Database (Denmark)

    Kol, Stefan; Braun, Christian; Thiel, Gerhard

    2013-01-01

    retains its current inducing activity, as shown by electrophysiology experiments. The ability to produce the TRPV3 channel heterologously will aid future functional and structural studies. TRPV3 and TRPV3 bind by molecular sieving (1, 2) TRPV3 and TRPV3 bind by blue native page (1, 2, 3)...... selected a suitable detergent and buffer system using analytical size‐exclusion chromatography and a thermal stability assay. We demonstrate that the recombinant purified protein contains high α‐helical content and migrates as dimers and tetramers on native PAGE. Furthermore, the purified channel also...

  6. High-yield synthesis of single-crystal short Eu 2O 3 nanorods through a facile sol-gel template approach

    Science.gov (United States)

    Zhang, Lixin; Jiu, Hongfang; Luo, Jia; Chen, Qianwang

    2007-12-01

    High-yield Eu 2O 3 short nanorods have been prepared by a facile sol-gel method with polystyrene/polyelectrolyte (PS/PE) microreactor as template in an aqueous solution of europium nitrate in the presence of ammonia and urea. The properties of Eu 2O 3 nanorods were characterized by powder X-ray diffraction, thermogravimetric analysis, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, field emission scanning electron microscopy (FESEM), and photoluminescence spectroscopy. The particle sizes measured from TEM and FESEM are about 200 nm×500 nm ( W× L). A possible mechanism for the formation of such high-yield oxide nanorods is discussed.

  7. yield indicators

    African Journals Online (AJOL)

    YIELD INDICATORS. P. NTAWURUHUNGA, P.R. RUBAIHAYOI, J.B.A. WHYTE, A.G.O. DIXONZ and use. osnzu1. International Institute of Tropical Agriculture, East and Southern Africa, Centre, PO. Box 7878, l Kampala ... most important sources of food energy in several ... efficiency in selecting and identifying cassava.

  8. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion.

    Science.gov (United States)

    Lee, Danna; Lloyd, Natoiya D R; Pretorius, Isak S; Borneman, Anthony R

    2016-03-04

    Raspberry ketone is the primary aroma compound found in raspberries and naturally derived raspberry ketone is a valuable flavoring agent. The economic incentives for the production of raspberry ketone, combined with the very poor yields from plant tissue, therefore make this compound an excellent target for heterologous production in synthetically engineered microbial strains. A de novo pathway for the production of raspberry ketone was assembled using four heterologous genes, encoding phenylalanine/tyrosine ammonia lyase, cinnamate-4-hydroxlase, coumarate-CoA ligase and benzalacetone synthase, in an industrial strain of Saccharomyces cerevisiae. Synthetic protein fusions were also explored as a means of increasing yields of the final product. The highest raspberry ketone concentration achieved in minimal media exceeded 7.5 mg/L when strains were fed with 3 mM p-coumaric acid; or 2.8 mg/L for complete de novo synthesis, both of which utilized a coumarate-CoA ligase, benzalacetone synthase synthetic fusion protein that increased yields over fivefold compared to the native enzymes. In addition, this strain was shown to be able to produce significant amounts of raspberry ketone in wine, with a raspberry ketone titer of 3.5 mg/L achieved after aerobic fermentation of Chardonnay juice or 0.68 mg/L under anaerobic winemaking conditions. We have shown that it is possible to produce sensorially-relevant quantities of raspberry ketone in an industrial heterologous host. This paves the way for further pathway optimization to provide an economical alternative to raspberry ketone derived from plant sources.

  9. Glucose concentration and blood acid-basis status in high-yielding dairy cows during heat stress

    Directory of Open Access Journals (Sweden)

    Vujanac Ivan

    2011-01-01

    Full Text Available The objective of this work was to examine the effect of heat stress on glucose and pH values in blood of high-yielding dairy cows in the early stage of lactation, as well as to determine whether the changes in these parameters are interdependent under such conditions. An experiment was performed on high-yielding dairy cows during the summer and the spring periods. Forty cows were selected, twenty each for the two periods under investigation. In the course of the experiment, the temperature humidity index (THI was determined for the entire period of investigations, and then also the average daily THI, nightmorning THI (average value of hourly THI measured from 22h on the previous day until 10h of the current day, as well as the day-night THI (average value of hourly THI measured during the period from 10h to 22h of the current day. The pH and glucose concentration were determined in blood samples taken in the morning and afternoon of days 30, 60, and 90 of lactation during the spring and summer periods of the investigations. Based on the results for the THI, it was established that the animals were not exposed to the effect of extreme heat stress during the spring period of investigations, while they were periodically exposed to moderate but also extreme heat stress during the summer, in particular in the afternoon hours. It can be concluded from the results obtained for the blood pH that the cows were in respiratory alkalosis during the summer in the morning and afternoon hours on day 30, in the afternoon hours of days 60 and 90 of lactation, as well as in the afternoon on day 90 of lactation during the spring period of investigations. During the summer period, there were no statistically significant differences between the pH value determined in the morning and afternoon hours on day 30 of lactation, while the pH value was significantly higher in the afternoon hours than in the morning hours on days 60 and 90 of lactation. There were no

  10. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980-2014 in Northern China.

    Science.gov (United States)

    Zhang, Xin; Bol, Roland; Rahn, Clive; Xiao, Guangmin; Meng, Fanqiao; Wu, Wenliang

    2017-10-15

    Global population increase will require rapid increase of food production from existing agricultural land by 2050, which will inevitably mean the increase of agricultural productivity. Due to agricultural sustainable intensification since the 1990s, crop production in Huantai County of northern China has risen to 15tha-1yr-1 for the annual wheat-maize rotation system. We examined the temporal dynamics of nitrogen (N) budget, N losses, and N use efficiency (NUE) during the 35years (1980-2014) in Huantai. The results revealed that atmospheric N deposition increased 220% while reactive N losses decreased by 21.5% from 1980s to 2010s. During 1980-2002, annual N partial factor productivity (PFPN), apparent NUE and N recovery efficiency (REN) increased from 20.3 to 40.7kggrainkg-1Nfert, from 36.5% to 71.0%, and from 32.4% to 57.7%, respectively; meanwhile, reactive N losses intensity, land use intensity and N use intensity decreased by 69.8%, 53.4%, 50.0%, respectively, but without further significant changes after 2002. Overall increases in NUE and decreases in N losses were largely due to the introduction of optimized fertilization practice, mechanization and increased incorporation of crop straw in Huantai. Straw incorporation was also significant in soil N stock accrual and fertility improvement. By 2030, northern China may reach the lowest end of PFPN values in developed countries (>45kggrainkg-1Nfert). These agricultural sustainable intensification practices will be critical in maintaining high grain yields and associated decreases in environmental pollution, although water use efficiency in the region still needs to be improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Relationship between the pre- and postpartum body condition scores and periparturient indices and fertility in high-yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Stefańska Barbara

    2016-03-01

    Full Text Available Introduction: The aim of this study was to investigate the relationship between body condition score (BCS determined on the dry-off day, calving day, and in the first month of lactation, its changes during the dry period and early lactation, and periparturient indices and fertility in high-producing dairy cows. Material and Methods: The experiment was conducted in two herds: A and B, located in Western Poland. The studies were conducted on 116 and 108 Polish Holstein-Friesian dairy cows respectively, with an average milk yield of >10 000 kg/305-day lactation. The experiment included the dry period (-56 d to the calving day, the calving day, and early lactation (from +1 to +56 d. The experimental factor was BCS (0 to 5-point scale. The BCS was performed by one person on day -56, on parturition day (in the first 12 h after calving and on day 30 of lactation. Results: A decrease in BCS (≥-0.25 in herd A during the dry period accelerated the planned calving period by 7.3 d. In the group of cows with BCS 3.50 in the first month of lactation (30 d resulted in the extension of uterine involution period (56 d. Improvement of BCS during the dry period shortened the anoestrus (60 d in herd A and the period of insemination service (60 d in herd B. However, in this group (IM BCS ≥ 0.25 of cows the day of the highest artificial insemination index (2.50 in herd B was analysed. Conclusion: The body condition on the dry-off day and at calving, as well as its deterioration in the first month of lactation, have a considerable effect on fertility indices in dairy cows, thus confirming the advisability of its regular monitoring during routine operations connected with the management of a dairy cattle herd.

  12. High yield production of influenza virus in Madin Darby canine kidney (MDCK cells with stable knockdown of IRF7.

    Directory of Open Access Journals (Sweden)

    Itsuki Hamamoto

    Full Text Available Influenza is a serious public health problem that causes a contagious respiratory disease. Vaccination is the most effective strategy to reduce transmission and prevent influenza. In recent years, cell-based vaccines have been developed with continuous cell lines such as Madin-Darby canine kidney (MDCK and Vero. However, wild-type influenza and egg-based vaccine seed viruses will not grow efficiently in these cell lines. Therefore, improvement of virus growth is strongly required for development of vaccine seed viruses and cell-based influenza vaccine production. The aim of our research is to develop novel MDCK cells supporting highly efficient propagation of influenza virus in order to expand the capacity of vaccine production. In this study, we screened a human siRNA library that involves 78 target molecules relating to three major type I interferon (IFN pathways to identify genes that when knocked down by siRNA lead to enhanced production of influenza virus A/Puerto Rico/8/1934 in A549 cells. The siRNAs targeting 23 candidate genes were selected to undergo a second screening pass in MDCK cells. We examined the effects of knockdown of target genes on the viral production using newly designed siRNAs based on sequence analyses. Knockdown of the expression of a canine gene corresponding to human IRF7 by siRNA increased the efficiency of viral production in MDCK cells through an unknown process that includes the mechanisms other than inhibition of IFN-α/β induction. Furthermore, the viral yield greatly increased in MDCK cells stably transduced with the lentiviral vector for expression of short hairpin RNA against IRF7 compared with that in control MDCK cells. Therefore, we propose that modified MDCK cells with lower expression level of IRF7 could be useful not only for increasing the capacity of vaccine production but also facilitating the process of seed virus isolation from clinical specimens for manufacturing of vaccines.

  13. High-Yield Synthesis of Uniform Ag Nanowires with High Aspect Ratios by Introducing the Long-Chain PVP in an Improved Polyol Process

    Directory of Open Access Journals (Sweden)

    Jie-Jun Zhu

    2011-01-01

    Full Text Available Polyvinyl pyrrolidone (PVP with different molecular weights was used as capping agent to synthesize silver nanowires through a polyol process. The results indicated that the yields and aspect ratios of silver nanowires were controlled by the chain length of PVP and increased with increasing the molecular weight (MW of PVP. When the long-chain PVP-K90 (MW = 800,000 was used, the product was uniform in size and was dominated by nanowires with high aspect ratios. The growth mechanism of the nanowires was studied. It is proposed that the chemical adsorption of Ag+ on the PVP chains at the initial stage promotes the growth of Ag nanowires.

  14. Complete Draft Genome Sequence of Escherichia coli KRX, a Strain for Efficient Cloning and High-Yield Expression of Proteins under Control of the T7 RNA Polymerase

    OpenAIRE

    Schwarzhans, Jan-Philipp; Wibberg, Daniel; Winkler, Anika; Kalinowski, Jörn; Friehs, Karl

    2017-01-01

    ABSTRACT Escherichia coli KRX is a strain offering both a high transformation efficiency and the possibility to produce the target protein to high yields in one host, avoiding additional cloning steps. Here, the draft genome sequence of E. coli KRX is presented and provides the genetic basis for additional biotechnological applications.

  15. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (bath) with a hollow-fiber membrane bioreactor.

    Science.gov (United States)

    Yu, Steve S-F; Chen, Kelvin H-C; Tseng, Mandy Y-H; Wang, Yane-Shih; Tseng, Chiu-Feng; Chen, Yu-Ju; Huang, Ded-Shih; Chan, Sunney I

    2003-10-01

    In order to obtain particulate methane monooxygenase (pMMO)-enriched membranes from Methylococcus capsulatus (Bath) with high activity and in high yields, we devised a method to process cell growth in a fermentor adapted with a hollow-fiber bioreactor that allows easy control and quantitative adjustment of the copper ion concentration in NMS medium over the time course of cell culture. This technical improvement in the method for culturing bacterial cells allowed us to study the effects of copper ion concentration in the growth medium on the copper content in the membranes, as well as the specific activity of the enzyme. The optimal copper concentration in the growth medium was found to be 30 to 35 micro M. Under these conditions, the pMMO is highly expressed, accounting for 80% of the total cytoplasmic membrane proteins and having a specific activity as high as 88.9 nmol of propylene oxide/min/mg of protein with NADH as the reductant. The copper stoichiometry is approximately 13 atoms per pMMO molecule. Analysis of other metal contents provided no evidence of zinc, and only traces of iron were present in the pMMO-enriched membranes. Further purification by membrane solubilization in dodecyl beta-D-maltoside followed by fractionation of the protein-detergent complexes according to molecular size by gel filtration chromatography resulted in a good yield of the pMMO-detergent complex and a high level of homogeneity. The pMMO-detergent complex isolated in this way had a molecular mass of 220 kDa and consisted of an alphabetagamma protein monomer encapsulated in a micelle consisting of ca. 240 detergent molecules. The enzyme is a copper protein containing 13.6 mol of copper/mol of pMMO and essentially no iron (ratio of copper to iron, 80:1). Both the detergent-solubilized membranes and the purified pMMO-detergent complex exhibited reasonable, if not excellent, specific activity. Finally, our ability to control the level of expression of the pMMO allowed us to clarify

  16. Heterologous production of peptides in plants: fusion proteins and beyond.

    Science.gov (United States)

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  17. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress.

    Science.gov (United States)

    Cheng, Jun; Lu, Hongxiang; Huang, Yun; Li, Ke; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2016-03-01

    In order to produce biodiesel from microalgae cultured with abundant seawater, Chlorella sp. was mutated with (137)Se-γ ray irradiation and domesticated with f/2 seawater culture medium (salinity=3 wt.%) under 15 vol.% CO2 stress. Biomass yield of the mutant increased by 25% compared with wild species and lipid content increased to 54.9%. When nitrogen and phosphorus concentrations in the initial substrate increased, the increased propagation speed of the mutant resulted in decreased cell diameter by 26.6% and decreased cell wall thickness by 69.7%. The dramatically increased biomass yield of the mutant with sufficient initial substrate and relative nitrogen starvation in the later growth period with continuous 15 vol.% CO2 led to an increased lipid yield of 1.0 g/L. The long-chain unsaturated fatty acids increased, whereas short-chain saturated fatty acids decreased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Short-term heterologous immunity after severe influenza A outbreaks

    OpenAIRE

    Towers, Sherry; Feng, Zhilan; Hupert, Nathaniel

    2010-01-01

    Conventional wisdom holds that influenza A and B are such genetically dissimilar viruses that infection with one cannot confer cross-immunity to the other. However, our examination of the records of the past 25 influenza seasons in the U.S. reveals that almost every time there is an early and severe influenza A outbreak, the annual influenza B epidemic is almost entirely suppressed (and is never suppressed otherwise). Temporary broad-spectrum (aka "heterologous") immunity in the aftermath of ...

  19. Murine intestinal antibody response to heterologous rotavirus infection.

    OpenAIRE

    Merchant, A A; Groene, W S; Cheng, E H; Shaw, R D

    1991-01-01

    Rotavirus is the most important worldwide cause of severe gastroenteritis. Extensive efforts have been devoted to the design of a vaccine that will prevent disease, but development of a more effective vaccine strategy may require progress in the understanding of the mucosal immune response to replicating viral antigens. In this article, we report the characterization of the intestinal antibody response of a murine model to heterologous infection with the rhesus rotavirus vaccine strain. We ha...

  20. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms.

    Science.gov (United States)

    Vogt, Cédric M; Schraner, Elisabeth M; Aguilar, Claudio; Eichwald, Catherine

    2016-08-11

    Numerous strategies have been developed for the display of heterologous proteins in the surface of live bacterial carriers, which can be used as vaccines, immune-modulators, cancer therapy or bioremediation. Bacterial biofilms have emerged as an interesting approach for the expression of proteins of interest. Bacillus subtilis is a well-described, endospore-forming organism that is able to form biofilms and also used as a probiotic, thus making it a suitable candidate for the display of heterologous proteins within the biofilm. Here, we describe the use of TasA, an important structural component of the biofilms formed by B. subtilis, as a genetic tool for the display of heterologous proteins. We first engineered the fusion protein TasA-mCherry and showed that was widely deployed within the B. subtilis biofilms. A significant enhancement of the expression of TasA-mCherry within the biofilm was obtained when depleting both tasA and sinR genes. We subsequently engineered fusion proteins of TasA to antigenic peptides of the E. granulosus parasite, paramyosin and tropomyosin. Our results show that the antigens were well expressed within the biofilm as denoted by macrostructure complementation and by the detection of the fusion protein in both immunoblot and immunohistochemistry. In addition, we show that the recombinant endospores of B. subtilis preserve their biophysical and morphological properties. In this work we provide strong evidence pointing that TasA is a suitable candidate for the display of heterologous peptides, such as antigens, cytokines, enzymes or antibodies, in the B. subtilis biofilms. Finally, our data portray that the recombinant endospores preserve their morphological and biophysical properties and could be an excellent tool to facilitate the transport and the administration.

  1. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  2. Unsolved Puzzles Surrounding HCV Immunity: Heterologous Immunity Adds Another Dimension

    Science.gov (United States)

    Gupta, Nancy; Li, Wen; Vedi, Satish; Kumar, Rakesh

    2017-01-01

    Chronic infection with hepatitis C virus (HCV) afflicts 3% of the world’s population and can lead to serious and late-stage liver diseases. Developing a vaccine for HCV is challenging because the correlates of protection are uncertain and traditional vaccine approaches do not work. Studies of natural immunity to HCV in humans have resulted in many enigmas. Human beings are not immunologically naïve because they are continually exposed to various environmental microbes and antigens, creating large populations of memory T cells. Heterologous immunity occurs when this pool of memory T cells cross-react against a new pathogen in an individual. Such heterologous immunity could influence the outcome when an individual is infected by a pathogen. We have recently made an unexpected finding that adenoviruses, a common environmental pathogen and an experimental vaccine vector, can induce robust cross-reactive immune responses against multiple antigens of HCV. Our unique finding of previously uncharacterized heterologous immunity against HCV opens new avenues to understand HCV pathogenesis and develop effective vaccines. PMID:28749434

  3. Heterologous expression of biologically active chicken granulocyte ...

    African Journals Online (AJOL)

    After being screened by yeast peptone dextrose (YPD) containing high concentrations of Zeocin and direct PCR, the positive clone was cultured in flask with buffered minimal methanol (BMMY) and expression induced by methanol. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot ...

  4. Heterologous expression of lcc1 gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme

    Directory of Open Access Journals (Sweden)

    Buonocore Vincenzo

    2006-10-01

    Full Text Available Abstract Background Fungal laccases are useful enzymes for industrial applications; they exhibit broad substrate specificity and thus are able to oxidize a variety of xenobiotic compounds including chlorinated phenolics, synthetic dyes, pesticides and polycyclic aromatic hydrocarbons. Unfortunately, the biotechnological exploitation of laccases can be hampered by the difficulties concerning the enzyme production by the native hosts. Results In order to obtain a simple and efficient source of laccase, the lcc1 cDNA isolated from the white-rot fungus Trametes trogii has been successfully expressed in the methylotrophic yeast Pichia pastoris under the control of the methanol induced alcohol oxidase promoter PAOX1. The recombinant Lcc1 was produced as a secreted protein with the native N-terminal prepropeptide for signal trafficking, and thus easily recovered from the culture medium. At the 1-liter scale, as calculated on the basis of the specific activity, the recombinant protein was produced at a yield of 17 mg/l. The highest production level obtained in fed-batch culture was 2520 U/l, corresponding to a specific productivity of 31.5 U/g biomass. The purified recombinant laccase exhibited a behaviour similar to the main laccase produced by T. trogii. Lcc1 showed high activity in the presence of organic solvents and a high decolourization capacity towards azo, triarylmethane, indigo carmine and anthraquinonic dyes, that could be significantly enhanced in the presence of the redox mediators 1-hydroxybenzotriazole and violuric acid. Conclusion Heterologous expression of T. trogii laccase lcc1 in the methylotrophic yeast P. pastoris was successfully achieved. The biochemical and kinetic characterization of the recombinant protein suggests potential technological applications for this enzyme.

  5. Considerations When Deploying Canopy Temperature to Select High Yielding Wheat Breeding Lines under Drought and Heat Stress

    Directory of Open Access Journals (Sweden)

    R. Esten Mason

    2014-04-01

    Full Text Available Developing cultivars with improved adaptation to drought and heat stressed environments is a priority for plant breeders. Canopy temperature (CT is a useful tool for phenotypic selection of tolerant genotypes, as it integrates many physiological responses into a single low-cost measurement. The objective of this study was to determine the ability of CT to predict grain yield within the flow of a wheat breeding program and assess its utility as a tool for indirect selection. CT was measured in both heat and drought stressed field experiments in northwest Mexico on 18 breeding trials totaling 504 spring wheat lines from the International Maize and Wheat Improvement Center (CIMMYT Irrigated Bread Wheat program. In the heat treatment, CT was significantly correlated with yield (r = −0.26 across all trials, with a maximum coefficient of determination within the individual trials of R2 = 0.36. In the drought treatment, a significant correlation across all trials was only observed when days to heading or plant height was used as a covariate. However, the coefficient of determination within individual trials had a maximum of R2 = 0.54, indicating that genetic background may impact the ability of CT to predict yield. Overall a negative slope in the heat treatment indicated that a cooler canopy provided a yield benefit under stress, and implementing selection strategies for CT may have potential for breeding tolerant genotypes.

  6. Diagnostic Yield of Chromosomal Microarray Analysis in a Cohort of Patients with Autism Spectrum Disorders from a Highly Consanguineous Population

    Science.gov (United States)

    Al-Mamari, Watfa; Al-Saegh, Abeer; Al-Kindy, Adila; Bruwer, Zandre; Al-Murshedi, Fathiya; Al-Thihli, Khalid

    2015-01-01

    Autism Spectrum Disorders are a complicated group of disorders characterized with heterogeneous genetic etiologies. The genetic investigations for this group of disorders have expanded considerably over the past decade. In our study we designed a tired approach and studied the diagnostic yield of chromosomal microarray analysis on patients…

  7. Identification of cocoa trees combining high yield potential and resistance to diseases in segregating progenies In Ecuador

    Science.gov (United States)

    Diseases and low yielding planting material are the main factors limiting production of “fine” or “flavour” cocoa in Ecuador. This makes it necessary to develop modern varieties capable of overcoming these limitations. During the 1960s and 1970s INIAP tested several progenies from selected crosses...

  8. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    Science.gov (United States)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  9. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. southern high plains

    Science.gov (United States)

    Wheat breeding has improved drought tolerance over the years. However, our knowledge on drought tolerance in relation to the canopy temperature (CT) and grain yield is limited. A three-season wheat field study ending 2012, 2015, and 2016 was conducted at Bushland, Texas to investigate the relationsh...

  10. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions

    Science.gov (United States)

    Ren, Baizhao; Liu, Wei; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2017-04-01

    Plant density has been recognized as a major factor determining the grain yield. The photosynthetic performance changes as the density increases. The main objective of this research was to evaluate responses of photosynthetic performance and chloroplast ultrastructure to planting densities in two summer maize ( Zea mays L.) hybrids Denghai661 (DH661) and Nongda108 (ND108). DH661 was planted at densities of 30,000, 45,000, 60,000, 75,000, 90,000, 105,000, 120,000, or 135,000 plants ha-1. ND108 was planted at densities of 30,000, 45,000, 60,000, 75,000, or 90,000 plants ha-1. Research variables included leaf area, grain yield, chlorophyll content, leaf gas exchange parameters, number of chloroplasts, and chloroplast ultrastructure. As plant density increased, chlorophyll a and b content significantly decreased; carotenoids initially decreased and then increased; the net photosynthetic rate during each growth period significantly decreased; the membrane structure of mesophyll cells was gradually damaged; the number of chloroplasts significantly decreased; the external form of chloroplasts shifted from long and oval to elliptical or circular; the number of grana significantly decreased, while the number of grana lamellae increased; grana gradually became hypogenetic and eventually dissolved; plot yield increased; and yield per plant significantly decreased. The yield per plant of DH661 at 135,000 plants ha-1 and that of ND108 at 90,000 plants ha-1 decreased by 65.8 and 42.5%, respectively, compared with those at 30,000 plants ha-1.

  11. Effects of Controlled-Release Fertilizer on Leaf Area Index and Fruit Yield in High-Density Soilless Tomato Culture Using Low Node-Order Pinching

    Science.gov (United States)

    Kinoshita, Takafumi; Yano, Takayoshi; Sugiura, Makoto; Nagasaki, Yuji

    2014-01-01

    To further development of a simplified fertigation system using controlled-release fertilizers (CRF), we investigated the effects of differing levels of fertilizers and plant density on leaf area index (LAI), fruit yields, and nutrient use in soilless tomato cultures with low node-order pinching and high plant density during spring-summer (SS), summer-fall (SF), and fall-winter (FW) seasons. Plants were treated with 1 of 3 levels of CRF in a closed system, or with liquid fertilizer (LF) with constant electrical conductivity (EC) in a drip-draining system. Two plant densities were examined for each fertilizer treatment. In CRF treatments, LAI at pinching increased linearly with increasing nutrient supply for all cropping seasons. In SS, both light interception by plant canopy at pinching and total marketable fruit yield increased linearly with increasing LAI up to 6 m2·m−2; the maximization point was not reached for any of the treatments. In FW, both light interception and yield were maximized at an LAI of approximately 4. These results suggest that maximizing the LAI in SS and FW to the saturation point for light interception is important for increasing yield. In SF, however, the yield maximized at an LAI of approximately 3, although the light interception linearly increased with increasing LAI, up to 4.5. According to our results, the optimal LAI at pinching may be 6 in SS, 3 in SF, and 4 in FW. In comparing LAI values with similar fruit yield, we found that nutrient supply was 32−46% lower with the CRF method than with LF. In conclusion, CRF application in a closed system enables growers to achieve a desirable LAI to maximize fruit yield with a regulated amount of nutrient supply per unit area. Further, the CRF method greatly reduced nutrient use without decreasing fruit yield at similar LAIs, as compared to the LF method. PMID:25402478

  12. Effects of controlled-release fertilizer on leaf area index and fruit yield in high-density soilless tomato culture using low node-order pinching.

    Directory of Open Access Journals (Sweden)

    Takafumi Kinoshita

    Full Text Available To further development of a simplified fertigation system using controlled-release fertilizers (CRF, we investigated the effects of differing levels of fertilizers and plant density on leaf area index (LAI, fruit yields, and nutrient use in soilless tomato cultures with low node-order pinching and high plant density during spring-summer (SS, summer-fall (SF, and fall-winter (FW seasons. Plants were treated with 1 of 3 levels of CRF in a closed system, or with liquid fertilizer (LF with constant electrical conductivity (EC in a drip-draining system. Two plant densities were examined for each fertilizer treatment. In CRF treatments, LAI at pinching increased linearly with increasing nutrient supply for all cropping seasons. In SS, both light interception by plant canopy at pinching and total marketable fruit yield increased linearly with increasing LAI up to 6 m(2 · m(-2; the maximization point was not reached for any of the treatments. In FW, both light interception and yield were maximized at an LAI of approximately 4. These results suggest that maximizing the LAI in SS and FW to the saturation point for light interception is important for increasing yield. In SF, however, the yield maximized at an LAI of approximately 3, although the light interception linearly increased with increasing LAI, up to 4.5. According to our results, the optimal LAI at pinching may be 6 in SS, 3 in SF, and 4 in FW. In comparing LAI values with similar fruit yield, we found that nutrient supply was 32-46% lower with the CRF method than with LF. In conclusion, CRF application in a closed system enables growers to achieve a desirable LAI to maximize fruit yield with a regulated amount of nutrient supply per unit area. Further, the CRF method greatly reduced nutrient use without decreasing fruit yield at similar LAIs, as compared to the LF method.

  13. Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases

    Directory of Open Access Journals (Sweden)

    Rui Miao

    2017-12-01

    Full Text Available Isobutanol is a flammable compound that can be used as a biofuel due to its high energy density and suitable physical and chemical properties. In this study, we examined the capacity of engineered strains of Synechocystis PCC 6803 containing the α-ketoisovalerate decarboxylase from Lactococcus lactis and different heterologous and endogenous alcohol dehydrogenases (ADH for isobutanol production. A strain expressing an introduced kivd without any additional copy of ADH produced 3 mg L−1 OD750−1 isobutanol in 6 days. After the cultures were supplemented with external addition of isobutyraldehyde, the substrate for ADH, 60.8 mg L−1 isobutanol was produced after 24 h when OD750 was 0.8. The in vivo activities of four different ADHs, two heterologous and two putative endogenous in Synechocystis, were examined and the Synechocystis endogenous ADH encoded by slr1192 showed the highest efficiency for isobutanol production. Furthermore, the strain overexpressing the isobutanol pathway on a self-replicating vector with the strong Ptrc promoter showed significantly higher gene expression and isobutanol production compared to the corresponding strains expressing the same operon introduced on the genome. Hence, this study demonstrates that Synechocystis endogenous AHDs have a high capacity for isobutanol production, and identifies kivd encoded α-ketoisovalerate decarboxylase as one of the likely bottlenecks for further isobutanol production.

  14. Dedifferentiated Leiomyosarcoma of the Uterus with Heterologous Elements: A Potential Diagnostic Pitfall

    Science.gov (United States)

    Rawish, Kojo R.; Fadare, Oluwole

    2012-01-01

    Dedifferentiation is a phenomenon that is well characterized in a variety of tumors and is defined by the occurrence of a high-grade or undifferentiated tumor, typically unrecognizable regarding its line of differentiation, from a low-grade/borderline neoplasm. This phenomenon has previously been described in 2 uterine leiomyosarcomas, but both were devoid of heterologous elements. The authors describe herein a case of a dedifferentiated leiomyosarcoma of the uterus with osteoid heterologous elements, believed to be the first such reported case. The original tumor was a high-grade leiomyosarcoma with large low-grade and leiomyoma-like areas and whose constituent cells displayed intense nuclear immunoreactivity for both estrogen receptor (ER) and progesterone receptor (PR) in approximately 30% of cells. The tumor recurred six months after its resection as an undifferentiated sarcoma that was negative for smooth muscle markers, but which remained positive for ER and PR. Osteoid production was only identified in the recurrent tumor and was significant in extent therein. This case highlights the immunophenotypic changes that may occur in dedifferentiated leiomyosarcomas, and this possibility should be a consideration when an apparently undifferentiated sarcoma is identified in a patient with a history of uterine leiomyosarcoma. In our case, the expression of ER and PR provided significant supportive evidence of the uterine origin of the recurrent tumor. PMID:23119198

  15. Dedifferentiated Leiomyosarcoma of the Uterus with Heterologous Elements: A Potential Diagnostic Pitfall

    Directory of Open Access Journals (Sweden)

    Kojo R. Rawish

    2012-01-01

    Full Text Available Dedifferentiation is a phenomenon that is well characterized in a variety of tumors and is defined by the occurrence of a high-grade or undifferentiated tumor, typically unrecognizable regarding its line of differentiation, from a low-grade/borderline neoplasm. This phenomenon has previously been described in 2 uterine leiomyosarcomas, but both were devoid of heterologous elements. The authors describe herein a case of a dedifferentiated leiomyosarcoma of the uterus with osteoid heterologous elements, believed to be the first such reported case. The original tumor was a high-grade leiomyosarcoma with large low-grade and leiomyoma-like areas and whose constituent cells displayed intense nuclear immunoreactivity for both estrogen receptor (ER and progesterone receptor (PR in approximately 30% of cells. The tumor recurred six months after its resection as an undifferentiated sarcoma that was negative for smooth muscle markers, but which remained positive for ER and PR. Osteoid production was only identified in the recurrent tumor and was significant in extent therein. This case highlights the immunophenotypic changes that may occur in dedifferentiated leiomyosarcomas, and this possibility should be a consideration when an apparently undifferentiated sarcoma is identified in a patient with a history of uterine leiomyosarcoma. In our case, the expression of ER and PR provided significant supportive evidence of the uterine origin of the recurrent tumor.

  16. Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor.

    Science.gov (United States)

    Beuker, Janina; Steier, Anke; Wittgens, Andreas; Rosenau, Frank; Henkel, Marius; Hausmann, Rudolf

    2016-03-01

    Heterologeous production of rhamnolipids in Pseudomonas putida is characterized by advantages of a non-pathogenic host and avoidance of the native quorum sensing regulation in Pseudomonas aeruginosa. Yet, downstream processing is a major problem in rhamnolipid production and increases in complexity at low rhamnolipid titers and when using chemical foam control. This leaves the necessity of a simple concentrating and purification method. Foam fractionation is an elegant method for in situ product removal when producing microbial surfactants. However, up to now in situ foam fractionation is nearly exclusively reported for the production of surfactin with Bacillus subtilis. So far no cultivation integrated foam fractionation process for rhamnolipid production has been reported. This is probably due to excessive bacterial foam enrichment in that system. In this article a simple integrated foam fractionation process is reported for heterologous rhamnolipid production in a bioreactor with easily manageable bacterial foam enrichments. Rhamnolipids were highly concentrated in the foam during the cultivation process with enrichment factors up to 200. The described process was evaluated at different pH, media compositions and temperatures. Foam fractionation processes were characterized by calculating procedural parameter including rhamnolipid and bacterial enrichment, rhamnolipid recovery, YX/S, YP/X, and specific as well as volumetric productivities. Comparing foam fractionation parameters of the rhamnolipid process with the surfactin process a high effectiveness of the integrated foam fractionation for rhamnolipid production was demonstrated.

  17. Heterologous Gene Expression of N-Terminally Truncated Variants of LipPks1 Suggests a Functionally Critical Structural Motif in the N-terminus of Modular Polyketide Synthase

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Bailey, Constance B.; Fujii, Tatsu A.

    2017-01-01

    Streptomyces-derived, Well-characterized modular, polyketide synthase (PKS). Using this enzyme as a model, we experimentally investigated the effects of alternative TSSs using a heterologous host, Streptomyces venezuelae. One of the TSSs employed boosted the protein level by 59-fold and the product yield by 23...

  18. Growth, livability, feed consumption, and carcass composition of the Athens Canadian Random Bred 1955 meat-type chicken versus the 2012 high-yielding Cobb 500 broiler

    National Research Council Canada - National Science Library

    Collins, K E; Kiepper, B H; Ritz, C W; McLendon, B L; Wilson, J L

    2014-01-01

    A flock of the Athens Canadian Random Bred (ACRB), a 1955 meat-type chicken control strain, was raised alongside a flock of 2012 Cobb 500 fast feathering high-yielding broilers to determine selection changes over the past 57 yr...

  19. Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat

    DEFF Research Database (Denmark)

    Zhang, Xiaxiang; Cai, Jian; Wollenweber, Bernd

    2013-01-01

    Spring wheat plants were subjected to water deficit and/or high temperature episodes at spikelet initiation, anthesis or both stages. The stresses modified the early dough stage and maturity, shortened the kernel desiccation period and caused grain yield loss. Plants subjected to stress...

  20. High quantum yield Ag2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy.

    Science.gov (United States)

    Zhao, Dong-Hui; Yang, Jie; Xia, Rui-Xue; Yao, Ming-Hao; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2018-01-11

    A high quantum yield (4.3%) hybrid nanogel system based on engineered polypeptides and Ag2S quantum dots has been developed as a multifunctional diagnostic and therapeutic agent for targeted second near-infrared fluorescence, photoacoustic imaging, and photothermal therapy.

  1. Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    This study presents the effect of biomass origin on the yield, nanostructure and reactivity of soot. Soot was produced from wood and herbaceous biomass pyrolysis at high heating rates and at temperatures of 1250 and 1400 °C in a drop tube furnace. The structure of solid residues was characterized...

  2. High Yields of 2,3-Butanediol and Mannitol in Lactococcus lactis through Engineering of NAD+ Cofactor Recycling ▿ †

    Science.gov (United States)

    Gaspar, Paula; Neves, Ana Rute; Gasson, Michael J.; Shearman, Claire A.; Santos, Helena

    2011-01-01

    Manipulation of NADH-dependent steps, and particularly disruption of the las-located lactate dehydrogenase (ldh) gene in Lactococcus lactis, is common to engineering strategies envisaging the accumulation of reduced end products other than lactate. Reverse transcription-PCR experiments revealed that three out of the four genes assigned to lactate dehydrogenase in the genome of L. lactis, i.e., the ldh, ldhB, and ldhX genes, were expressed in the parental strain MG1363. Given that genetic redundancy is often a major cause of metabolic instability in engineered strains, we set out to develop a genetically stable lactococcal host tuned for the production of reduced compounds. Therefore, the ldhB and ldhX genes were sequentially deleted in L. lactis FI10089, a strain with a deletion of the ldh gene. The single, double, and triple mutants, FI10089, FI10089ΔldhB, and FI10089ΔldhBΔldhX, showed similar growth profiles and displayed mixed-acid fermentation, ethanol being the main reduced end product. Hence, the alcohol dehydrogenase-encoding gene, the adhE gene, was inactivated in FI10089, but the resulting strain reverted to homolactic fermentation due to induction of the ldhB gene. The three lactate dehydrogenase-deficient mutants were selected as a background for the production of mannitol and 2,3-butanediol. Pathways for the biosynthesis of these compounds were overexpressed under the control of a nisin promoter, and the constructs were analyzed with respect to growth parameters and product yields under anaerobiosis. Glucose was efficiently channeled to mannitol (maximal yield, 42%) or to 2,3-butanediol (maximal yield, 67%). The theoretical yield for 2,3-butanediol was achieved. We show that FI10089ΔldhB is a valuable basis for engineering strategies aiming at the production of reduced compounds. PMID:21841021

  3. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    Science.gov (United States)

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y.-H. Percival

    2015-01-01

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production. PMID:25848015

  4. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing.

    Science.gov (United States)

    Liu, Nianxi; Li, Mu; Hu, Xiangbao; Ma, Qibin; Mu, Yinghui; Tan, Zhiyuan; Xia, Qiuju; Zhang, Gengyun; Nian, Hai

    2017-06-19

    One of the overarching goals of soybean breeding is to develop lines that combine increased yield with improved quality characteristics. High-density-marker QTL mapping can serve as an effective strategy to identify novel genomic information to facilitate crop improvement. In this study, we genotyped a recombinant inbred line (RIL) population (Zhonghuang 24 × Huaxia 3) using a restriction-site associated DNA sequencing (RAD-seq) approach. A high-density soybean genetic map was constructed and used to identify several QTLs that were shown to influence six yield-related and two quality traits. A total of 47,472 single-nucleotide polymorphisms (SNPs) were detected for the RILs that were integrated into 2639 recombination bin units, with an average distance of 1.00 cM between adjacent markers. Forty seven QTLs for yield-related traits and 13 QTLs for grain quality traits were found to be distributed on 16 chromosomes in the 2 year studies. Among them, 18 QTLs were stable, and were identified in both analyses. Twenty six QTLs were identified for the first time, with a single QTL (qNN19a) in a 56 kb region explaining 32.56% of phenotypic variation, and an additional 10 of these were novel, stable QTLs. Moreover, 8 QTL hotpots on four different chromosomes were identified for the correlated traits. With RAD-sequencing, some novel QTLs and important QTL clusters for both yield-related and quality traits were identified based on a new, high-density bin linkage map. Three predicted genes were selected as candidates that likely have a direct or indirect influence on both yield and quality in soybean. Our findings will be helpful for understanding common genetic control mechanisms of co-localized traits and to select cultivars for further analysis to predictably modulate soybean yield and quality simultaneously.

  5. Comparison of mucosal and systemic humoral immune responses and subsequent protection in mice orally inoculated with a homologous or a heterologous rotavirus.

    Science.gov (United States)

    Feng, N; Burns, J W; Bracy, L; Greenberg, H B

    1994-12-01

    Rotaviruses are the single most important cause of severe diarrhea in young children worldwide, and vaccination is probably the most effective way to control the disease. Most current live virus vaccine candidates are based on the host range-restricted attenuation of heterologous animal rotaviruses in humans. The protective efficacy of these vaccine candidates has been variable. To better understand the nature of the heterologous rotavirus-induced active immune response, we compared the differences in the mucosal and systemic immune responses generated by heterologous (nonmurine) and homologous (murine) rotaviruses as well as the ability of these infections to produce subsequent protective immunity in a mouse model. Sucking mice were orally inoculated with a heterologous simian or bovine rotavirus (strain RRV or NCDV) or a homologous murine rotavirus (wild-type or tissue culture-adapted) strain EHP at various doses. Six weeks later, mice were challenged with a virulent murine rotavirus (wild-type strain ECW) and the shedding of viral antigen in feces was quantitated. Levels of rotavirus-specific serum immunoglobulin G (IgG) and fecal IgA prior to challenge were measured and correlated with subsequent viral shedding or protection. Heterologous rotavirus-induced active protection was highly dependent on the strain and dose of the virus tested. Mice inoculated with a high dose (10(7) PFU per mouse) of RRV were completely protected, while the protection was diminished in animals inoculated with NCDV or lower doses of RRV. The ability of a heterologous rotavirus to stimulate a detectable intestinal IgA response correlated with the ability of the virus to generate protective immunity. Serum IgG titer did not correlate with protection. Homologous rotavirus infection, on the other hand, was much more efficient at inducing both mucosal and systemic immune responses as well as protection regardless of the virulence of the virus strain or the size of the immunizing dose.

  6. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  7. H + CH{sub 2}CO {yields} CH{sub 3} + CO at high temperature : a high pressure chemical activation reaction with positive barrier.

    Energy Technology Data Exchange (ETDEWEB)

    Hranisavljevic, J.; Kumaran, S. S.; Michael, J. V.

    1997-12-08

    The Laser Photolysis-Shock Tube (LP-ST) technique coupled with H-atom atomic resonance absorption spectrometry (ARAS) has been used to study reaction, H + CH{sub 2}CO {r_arrow} CH{sub 3} + CO, over the temperature range, 863-1400 K. The results can be represented by the Arrhenius expression, k = (4.85 {+-} 0.70) x 10{sup {minus}11} exp({minus}2328 {+-} 155 K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The present data have been combined with the earlier low temperature flash photolysis-resonance fluorescence measurements to yield a joint three parameter expression, k = 5.44 x 10{sup {minus}14} T{sup 0.8513} exp({minus}1429 K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. This is a chemical activation process that proceeds through vibrationally excited acetyl radicals. However, due to the presence of a low lying forward dissociation channel to CH{sub 3} + CO, the present results refer to the high pressure limiting rate constants. Hence, transition state theory with Eckart tunneling is used to explain the data.

  8. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    Directory of Open Access Journals (Sweden)

    Wenjing Law

    2015-04-01

    Full Text Available Monoamines, such as 5-HT and tyramine (TA, paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for

  9. Heterologous Expression and Characterization of a Thermostable Exo-β-D-Glucosaminidase from Aspergillus oryzae.

    Science.gov (United States)

    Wu, Dingxin; Wang, Linchun; Li, Yuwei; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-02-01

    An exo-β-D-glucosaminidase (AorCsxA) from Aspergillus oryzae FL402 was heterologously expressed and purified. The deduced amino acid sequence indicated that AorCsxA belonged to glycoside hydrolase family 2. AorCsxA digested colloid chitosan into glucosamine but not into chitosan oligosaccharides, demonstrating exo-β-D-glucosaminidase (CsxA) activity. AorCsxA exhibited optimal activity at pH 5.5 and 50°C; however, the enzyme expressed in Pichia pastoris (PpAorCsxA) showed much stronger thermostability at 50°C than that expressed in Escherichia coli (EcAorCsxA), which may be related to glycosylation. AorCsxA activity was inhibited by EDTA and most of the tested metal ions. A single amino acid mutation (F769W) in AorCsxA significantly enhanced the specific activity and hydrolysis velocity as revealed by comparison of Vmax and kcat values with those of the wild-type enzyme. The three-dimensional structure suggested the tightened pocket at the active site of F769W enabled efficient substrate binding. The AorCsxA gene was heterologously expressed in P. pastoris, and one transformant was found to produce 222 U/ml activity during the high-cell-density fermentation. This AorCsxA-overexpressing P. pastoris strain is feasible for large-scale production of AorCsxA.

  10. [Site-specific integration of heterologous gene into Bacillus thuringiensis chromosome and its expression].

    Science.gov (United States)

    Liu, Ping; Xia, Liqiu; Hu, Shengbiao; Yan, Li; Ding, Xuezhi; Zhang, Youming; Yu, Ziniu

    2008-05-01

    To efficiently construct resistance gene-free Bacillius thuringiensis engineered strain that can stably express heterologous gene. We amplified the trigger factor gene located in chromosome of XBU001 strain as homologous arms and constructed an integrative plasmid pKTF12 on the basis of plasmid pKSV7, a temperature sensitive plasmid. We also constructed a recombinant strain KCTF12 containing cry1Ac gene in its chromosome via the integrative plasmid pKTF12. Site-specific integration of cry1Ac into XBU001 chromosome did not affect its normal growth. The cry1Ac gene could stably express and form bipyramid crystals in KCTF12. When compared with HTX42 harboring a high-copy number plasmid, the recombinant strain KCTF12 has the merit of advanced sporulation and an increase in spore number. The Site-specific integration proved to be a good approach to construct resistance gene-free Bacillius thuringiensis engineered strain that can stably express the heterologous gene.

  11. Heterologous Synapsis and Crossover Suppression in Heterozygotes for a Pericentric Inversion in the Zebra Finch.

    Science.gov (United States)

    del Priore, Lucía; Pigozzi, María I

    2015-01-01

    In the zebra finch, 2 alternative morphs regarding centromere position were described for chromosome 6. This polymorphism was interpreted to be the result of a pericentric inversion, but other causes of the centromere repositioning were not ruled out. We used immunofluorescence localization to examine the distribution of MLH1 foci on synaptonemal complexes to test the prediction that pericentric inversions cause synaptic irregularities and/or crossover suppression in heterozygotes. We found complete suppression of crossing over in the region involved in the rearrangement in male and female heterozygotes. In contrast, the same region showed high levels of crossing over in homozygotes for the acrocentric form of this chromosome. No inversion loops or synaptic irregularities were detected along bivalent 6 in heterozygotes suggesting that heterologous pairing is achieved during zygotene or early pachytene. Altogether these findings strongly indicate that the polymorphic chromosome 6 originated by a pericentric inversion. Since inversions are common rearrangements in karyotypic evolution in birds, it seems likely that early heterologous pairing could help to fix these rearrangements, preventing crossing overs in heterozygotes and their deleterious effects on fertility. © 2015 S. Karger AG, Basel.

  12. The Effect of High Concentrations of Glufosinate Ammonium on the Yield Components of Transgenic Spring Wheat (Triticum aestivum L. Constitutively Expressing the bar Gene

    Directory of Open Access Journals (Sweden)

    Zoltán Áy

    2012-01-01

    Full Text Available We present an experiment done on a bar+ wheat line treated with 14 different concentrations of glufosinate ammonium—an effective component of nonselective herbicides—during seed germination in a closed experimental system. Yield components as number of spikes per plant, number of grains per spike, thousand kernel weight, and yield per plant were thoroughly analysed and statistically evaluated after harvesting. We found that a concentration of glufosinate ammonium 5000 times the lethal dose was not enough to inhibit the germination of transgenic plants expressing the bar gene. Extremely high concentrations of glufosinate ammonium caused a bushy phenotype, significantly lower numbers of grains per spike, and thousand kernel weights. Concerning the productivity, we observed that concentrations of glufosinate ammonium 64 times the lethal dose did not lead to yield depression. Our results draw attention to the possibilities implied in the transgenic approaches.

  13. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    Science.gov (United States)

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  14. High-yield production of a chimeric glycoprotein based on permuted E1 and E2 HCV envelope ectodomains

    OpenAIRE

    Tello, Daniel; Rodríguez-Rodríguez, Mar; Yélamos, Belén; Gómez-Gutiérrez, Julián; Peterson, Darrell L.; Gavilanes, Francisco

    2015-01-01

    In this report it is described for the first time the expression and purification of large quantities of a oluble and correctly folded chimeric recombinant protein, E2661E1340, containing the permuted Hepatitis C virus (HCV) glycoprotein ectodomains E1 (amino acids 192-340) and E2 (amino acids 384-661). Using the baculovirus/insect cell expression system, 8mg of secreted protein were purified from 1L of culture media, a yield 4 times higher than the described for its counterpart E1341E2661. T...

  15. Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Thomsen, Rasmus Peter; Ogaki, Ryosuke

    2015-01-01

    further assembled the Cdots into nanocomplexes with hyaluronic acid for potential use as theranostic carriers. After confirming that the Cdot nanocomplexes exhibited negligible cytotoxicity with H1299 lung cancer cells, in vitro bioimaging of the Cdots and nanocomplexes was carried out. Doxorubicin (Dox...... in biomedical applications. Oligoethylenimine (OEI)–β-cyclodextrin (βCD) Cdots were synthesised using a simple and fast heating method in phosphoric acid. The synthesised Cdots showed strong green fluorescence under UV excitation with a 30% quantum yield and exhibited superior stability over a wide pH range. We...

  16. [Identification of heterologous antitoxin in sera of patients with diphtheria].

    Science.gov (United States)

    Gal'vidis, I A; Burkin, M A; Sviridov, V V

    2008-01-01

    Using immobilized diphtheria toxin and peroxidase conjugate of monoclonal antibodies to light chains of equine immunoglobulin a method of quantification of equine antibodies against diphtheria in sera of patients after serotherapy was developed. The sensitivity of indirect enzyme-linked immunosorbent assay was 0.0005 IU/ml, and coefficient of variation did not exceed 10%. It was shown that in patients with toxic diphtheria heterologous antitoxin is eliminated within 4-6 weeks. Level of anti-diphtheria immunoglobulin under the similar severity of disease and dosage of antitoxin can vary in wide ranges and depends from individual's characteristics.

  17. A GENERAL-METHOD FOR THE CONSECUTIVE INTEGRATION OF SINGLE COPIES OF A HETEROLOGOUS GENE AT MULTIPLE LOCATIONS IN THE BACILLUS-SUBTILIS CHROMOSOME BY REPLACEMENT RECOMBINATION

    NARCIS (Netherlands)

    KIEL, JAKW; TENBERGE, AM; BORGER, P; VENEMA, G

    1995-01-01

    We have devised a two-step procedure by which multiple copies of a heterologous gene can be consecutively integrated into the Bacillus subtilis 168 chromosome without the simultaneous integration of markers (antibiotic resistance). The procedure employs the high level of transformability of B.

  18. Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: Response surface methodology.

    Science.gov (United States)

    Chen, You Wei; Lee, Hwei Voon; Abd Hamid, Sharifah Bee

    2017-12-15

    For the first time, a highly efficient Cr(NO3)3 catalysis system was proposed for optimization the yield and crystallinity of nanocellulose end product. A five-level three-factor central composite design coupled with response surface methodology was employed to elucidate parameters interactions between three design factors, namely reaction temperature (x1), reaction time (x2) and concentration of Cr(NO3)3 (x3) over a broad range of process conditions and determine the effect on crystallinity index and product yield. The developed models predicted the maximum nanocellulose yield of 87% at optimum process conditions of 70.6°C, 1.48h, and 0.48M Cr(NO3)3. At these conditions, the obtained nanocellulose presented high crystallinity index (75.3%), spider-web-like interconnected network morphology with the average width of 31.2±14.3nm. In addition, the yielded nanocellulose rendered a higher thermal stability than that of original cellulosic source and expected to be widely used as reinforcement agent in bio-nanocomposites materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Past crops yield dynamics reconstruction from tree-ring chronologies in the forest-steppe zone based on low- and high-frequency components

    Science.gov (United States)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.

    2017-12-01

    Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees (Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring wi