WorldWideScience

Sample records for high yield combustion

  1. High yield combustion synthesis of nanomagnesia and its application for fluoride removal.

    Science.gov (United States)

    Maliyekkal, Shihabudheen M; Anshup; Antony, K R; Pradeep, T

    2010-04-15

    We describe a novel combustion synthesis for the preparation of Nanomagnesia (NM) and its application in water purification. The synthesis is based on the self-propagated combustion of the magnesium nitrate trapped in cellulose fibers. Various characterization studies confirmed that NM formed is crystalline with high phase purity, and the particle size varied in the range of 3-7nm. The fluoride scavenging potential of this material was tested as a function of pH, contact time and adsorbent dose. The result showed that fluoride adsorption by NM is highly favorable and the capacity does not vary in the pH range usually encountered in groundwater. The effects of various co-existing ions usually found in drinking water, on fluoride removal were also investigated. Phosphate was the greatest competitor for fluoride followed by bicarbonate. The presence of other ions studied did not affect the fluoride adsorption capacity of NM significantly. The adsorption kinetics followed pseudo-second-order equation and the equilibrium data are well predicted by Frendlich equation. Our experimental evidence shows that fluoride removal happened through isomorphic substitution of fluoride in brucite. A batch household defluoridation unit was developed using precipitation-sedimentation-filtration techniques, addressing the problems of high fluoride concentration as well as the problem of alkaline pH of the magnesia treated water. The method of synthesis reported here is advantageous from the perspectives of small size of the nanoparticle, cost-effective recovery of the material and improvement in the fluoride adsorption capacity. Copyright 2010 Elsevier B.V. All rights reserved.

  2. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  3. Ultrahigh Yield Strength Rhenium for High-Performance Combustion Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The state-of-the-art material system for high-performance radiation-cooled liquid rocket engines is iridium/rhenium manufactured by chemical vapor deposition (CVD)....

  4. High Gravity (g) Combustion

    Science.gov (United States)

    2006-02-01

    required thrust-to-weight ratio goals. Shorter residence times in the combustion chamber may reduce the NOx emissions, but the CO and UHC emissions then...Emissions analyzing equipment is available to detect CO, CO2, NOx, O2, and total unburned hydrocarbons ( UHC ) at the combustor exit plane. Emissions... UHC ) emissions along with the CO data, as seen in Fig. 24, shows that Configuration 1 had much higher UHC levels. The reactions from hydrocarbons to

  5. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  6. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  7. Specific yield, High Plains aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000...

  8. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  9. A highly combustible composite solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonetaka, K.; Iketani, Y.; Nisino, A.; Takeuti, Y.

    1983-07-12

    To increase the combustibility, the briqueted solid fuel is coated with an auxiliary fuel which is characterized by high flamability. The composition ofthe basic fuel includes a solid fuel with a high combustion temperature and seeming density (mineral coal, activated charcoal, coke, graphite and a carbonized product), a desulfurizing agent (CaCO3 or MgO), a combustion promotor (Ca(CO3)2, KNO3, sodium acetate, iron oxalate) and forming additives (bentonite, clay or talc) or a binder (pitch, tar, methylcellulose or cement). The auxiliary fuel has the very same composition, but is characterized by a low ignition temperature and density (for instance, due to the addition of sawdust). The obtained two layer composite fuel is characterized by improved ignitibility and combustibility.

  10. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  11. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  12. Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields.

    Science.gov (United States)

    Kiesel, Andreas; Nunn, Christopher; Iqbal, Yasir; Van der Weijde, Tim; Wagner, Moritz; Özgüven, Mensure; Tarakanov, Ivan; Kalinina, Olena; Trindade, Luisa M; Clifton-Brown, John; Lewandowski, Iris

    2017-01-01

    for combustion is accompanied by high energy losses through yield reduction over winter. The pre-winter harvest applied in the biogas utilization pathway avoids these yield losses and largely compensates for the conversion-related energy losses of anaerobic digestion.

  13. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    OpenAIRE

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion chamber. It destroys the thermal boundary layer wall increasing heat transfer and could lead to compromised performance, and ultimately to destruction of the engine and mission loss. The main object...

  14. Combustion Characteristics of Polyethylene and Coal Powder at High Temperature

    Institute of Scientific and Technical Information of China (English)

    LONG Shi-gang; CAO Feng; WANG Si-wei; SUN Liu-heng; PANG Jian-ming; SUN Yu-ping

    2008-01-01

    To study the combustion characteristics of the polyethylene (PE) particle and coal powder at blast temperature of the blast furnace, the contents of CO and CO2 of off-gas during the combustion of PE particle and coal powder at the 1 200 ℃ and 1 250 ℃ were measured using carbon monoxide and carbon dioxide infrared analyzer, and then the corresponding combustion ratio was calculated. The results showed that when the temperature is high, the combustion speed of PE and coal powder is high and the corresponding combustion ratio is high. Whereas, the combustion speed and ratio of PE are much higher than those of coal powder.

  15. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    Decomposition of water into highly combustible hydroxyl gas used in internal ... of alternative sources of energy that produce less amounts of carbon dioxide. ... The by-product obtained from combustion of this gas is water vapour and oxygen ...

  16. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion

    Science.gov (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul

    2015-01-01

    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  17. Evaluation of biomass combustion based energy systems by cumulative energy demand and energy yield coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.; Oser, M.

    2004-07-01

    This final report prepared for the International Energy Agency (IEA) Bioenergy Task 32 presents a method for a comparison of different energy systems with respect to the overall energy yield during their life cycles. For this purpose, the Cumulative Energy Demand (CED) based on primary energy and the Energy Yield Factor (EYC) are introduced and determined for the following scenarios: Log wood, wood chips, and wood pellets for residential heating and - except for log wood - also for district heating. As an alternative to heat production, power production via combustion and use of the electricity for decentralised heat pumps is also looked at. The evaluation and comparison of both the EYC for all fuels and the EYC{sub N}R for the non-renewable part enables a ranking of energy systems without a subjective weighing of non-renewable and renewable fuels to be made. For a sustainable energy supply, it is proposed to implement renewable energy systems in future which achieve an energy yield EYC{sub N}R of at least greater than 2 but favourably greater than 5. The evaluation of the different scenarios presented is proposed as the future basis for the choice of the most efficient energy systems based on biomass combustion.

  18. Fluidized bed combustion of high ash Singareni coal

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M.K.; Biswas, R.R.; Mukherjee, S.K.; Talapatra, P.C.; Roy, R.U.; Rao, S.K.; Sen, M.M.

    1986-04-01

    Fluid bed combustion is comparatively a new technology for efficient combustion of high ash coals, which constitute the bulk of Indian coal resources. A 2-tonne equivalent steam per hour fluid bed combustion boiler was installed at the CPRI for experimentation with Indian coals and this paper discusses the salient features of tests conducted in the unit with minus 6 mm high ash Singareni coal of Andhra Pradesh. Data on combustion, heat transfer and heat utilization characteristics of the boiler under varying operating conditions show that high ash Singareni coal slacks can be burnt efficiently with high thermal efficiency, combustion efficiency and heat transfer rates from bed to surface in direct contact in a fluid bed combustion boiler. 3 refs., 5 figs., 4 tabs.

  19. DNS of High Pressure Supercritical Combustion

    Science.gov (United States)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  20. Use of filtered combustion light and backlit high-speed images in combustion stability studies

    Science.gov (United States)

    Pomeroy, B.; Wierman, M.; Anderson, W. E.

    2013-03-01

    The measurement of the heat release is a key part of characterizing the combustion instability, but it is extremely difficult to directly measure in a rocket combustion chamber due to high temperatures and pressures, as well as the complexity of the turbulent reacting flowfield, which can often have more than one phase. Measuring the light emission from excited species during a combustion is a nonintrusive method to approximate a global heat release in combustion chambers. CH∗ and OH∗ are the most often measured species. This paper outlines methods of using a filtered combustion light to obtain a better understanding of the physical mechanisms active in the combustion instability, and to provide partial validation data for predictive models of the combustion instability. Methods that are discussed include Rayleigh index, phase-angle plots, a proper orthogonal decomposition (POD), and a simultaneous imaging of combustion light and backlit flow structures. The methods are applied to an experiment that studies the effects of imposed transverse oscillations on a gas-centered, swirl-coaxial injector element.

  1. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  2. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  3. High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube.

    Science.gov (United States)

    Qiu, Chong; Khalizov, Alexei F; Hogan, Brian; Petersen, Eric L; Zhang, Renyi

    2014-06-03

    Carbonaceous particles produced from combustion of fossil fuels have strong impacts on air quality and climate, yet quantitative relationships between particle characteristics and combustion conditions remain inadequately understood. We have used a shock tube to study the formation and properties of diesel combustion soot, including particle size distributions, effective density, elemental carbon (EC) mass fraction, mass-mobility scaling exponent, hygroscopicity, and light absorption and scattering. These properties are found to be strongly dependent on the combustion temperature and fuel equivalence ratio. Whereas combustion at higher temperatures (∼2000 K) yields fractal particles of a larger size and high EC content (90 wt %), at lower temperatures (∼1400 K) smaller particles of a higher organic content (up to 65 wt %) are produced. Single scattering albedo of soot particles depends largely on their organic content, increasing drastically from 0.3 to 0.8 when the particle EC mass fraction decreases from 0.9 to 0.3. The mass absorption cross-section of diesel soot increases with combustion temperature, being the highest for particles with a higher EC content. Our results reveal that combustion conditions, especially the temperature, may have significant impacts on the direct and indirect climate forcing of atmospheric soot aerosols.

  4. PREOVULATORY FOLLICLE DEVELOPMENT IN HIGH YIELDING COWS

    Directory of Open Access Journals (Sweden)

    Radovan Tomášek

    2013-06-01

    Full Text Available The aim of the study was to examine the development of preovulatory follicles in pregnant and non-pregnant high yielding cows. The treatment by supergestran and oestrophan was used to synchronize the estrous cycle. Ovaries were monitored by transrectal ultrasonography. The linear increase of preovulatory follicles was observed in pregnant (P < 0,001 and non-pregnant (P < 0,001 cows during 8 days before ovulation. In conclusion, preovulatory follicles in pregnant and non-pregnant high yielding cows developed similarly.

  5. Low-Cost, High-Performance Combustion Chamber

    Science.gov (United States)

    Fortini, Arthur J.

    2015-01-01

    Ultramet designed and fabricated a lightweight, high-temperature combustion chamber for use with cryogenic LOX/CH4 propellants that can deliver a specific impulse of approx.355 seconds. This increase over the current 320-second baseline of nitrogen tetroxide/monomethylhydrazine (NTO/MMH) will result in a propellant mass decrease of 55 lb for a typical lunar mission. The material system was based on Ultramet's proven oxide-iridium/rhenium architecture, which has been hot-fire tested with stoichiometric oxygen/hydrogen for hours. Instead of rhenium, however, the structural material was a niobium or tantalum alloy that has excellent yield strength at both ambient and elevated temperatures. Phase I demonstrated alloys with yield strength-to-weight ratios more than three times that of rhenium, which will significantly reduce chamber weight. The starting materials were also two orders of magnitude less expensive than rhenium and were less expensive than the C103 niobium alloy commonly used in low-performance engines. Phase II focused on the design, fabrication, and hot-fire testing of a 12-lbf thrust class chamber with LOX/CH4, and a 100-lbf chamber for LOX/CH4. A 5-lbf chamber for NTO/MMH also was designed and fabricated.

  6. High Impact Technology Compact Combustion (HITCC) Compact Core Technologies

    Science.gov (United States)

    2016-01-01

    the CO and CO2 net reaction rates from the FGM. This, in turn, provides another benefit . That is, the source term in YC is not just now dependent on...AFRL-RQ-WP-TR-2016-0010 HIGH IMPACT TECHNOLOGY COMPACT COMBUSTION (HITCC) COMPACT CORE TECHNOLOGIES Andrew W. Caswell Combustion...information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings. *Disseminated

  7. Methods for high yield production of terpenes

    Science.gov (United States)

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  8. Methods for high yield production of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  9. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  10. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  11. Degradation of permeability resistance of high strength concrete after combustion

    Institute of Scientific and Technical Information of China (English)

    Min LI; Hongtao KAO; Chunxiang QIAN

    2008-01-01

    To evaluate the remaining durability of con-crete materials after combustion, the permeability of high strength concrete (HSC) after combustion was studied. The transport behavior of chloride ion, water and air in concrete after combustion and the effect of temperature, strength grade, and aggregation on the permeability of HSC after combustion are investigated by chloride ion permeability coefficient (Dc), water permeability coef-ficient (Dw) and air permeability coefficient (Da). The experiment results show that all three permeability coeffi-cients commendably reflect changes of permeability. The permeability coefficient increases with the evaluation tem-perature. After the same temperature, the permeability coefficient of HSC is lower than that of normal strength concrete (NSC). However, the degree of degradation of permeability coefficient of HSC is greater than that of NSC. The permeability resistance of HSC containing limestone is better than that of HSC containing basalt. Combining changes of compressive strength and per-meability, the remaining durability of concrete materials after combustion is appropriately evaluated.

  12. Combustion and Plasma Synthesis of High-Temperature Materials

    Science.gov (United States)

    Munir, Z. A.; Holt, J. B.

    1997-04-01

    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  13. Catalytic combustion over high temperature stable metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1996-12-31

    This thesis presents a study of the catalytic effects of two interesting high temperature stable metal oxides - magnesium oxide and manganese substituted barium hexa-aluminate (BMA) - both of which can be used in the development of new monolithic catalysts for such applications. In the first part of the thesis, the development of catalytic combustion for gas turbine applications is reviewed, with special attention to alternative fuels such as low-BTU gas, e.g. produced in an air blown gasifier. When catalytic combustion is applied for such a fuel, the primary advantage is the possibility of decreasing the conversion of fuel nitrogen to NO{sub x}, and achieving flame stability. In the experimental work, MgO was shown to have a significant activity for the catalytic combustion of methane, lowering the temperature needed to achieve 10 percent conversion by 270 deg C compared with homogeneous combustion.The reaction kinetics for methane combustion over MgO was also studied. It was shown that the heterogeneous catalytic reactions were dominant but that the catalytically initiated homogeneous gas phase reactions were also important, specially at high temperatures. MgO and BMA were compared. The latter showed a higher catalytic activity, even when the differences in activity decreased with increasing calcination temperature. For BMA, CO{sub 2} was the only product detected, but for MgO significant amounts of CO and C{sub 2}-hydrocarbons were formed. BMA needed a much lower temperature to achieve total conversion of other fuels, e.g. CO and hydrogen, compared to the temperature for total conversion of methane. This shows that BMA-like catalysts are interesting for combustion of fuel mixtures with high CO and H{sub 2} content, e.g. gas produced from gasification of biomass. 74 refs

  14. Computational modeling of high pressure combustion mechanism in scram accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.Y. [Pusan Nat. Univ. (Korea); Lee, B.J. [Pusan Nat. Univ. (Korea); Agency for Defense Development, Taejon (Korea); Jeung, I.S. [Pusan Nat. Univ. (Korea); Seoul National Univ. (Korea). Dept. of Aerospace Engineering

    2000-11-01

    A computational study was carried out to analyze a high-pressure combustion in scram accelerator. Fluid dynamic modeling was based on RANS equations for reactive flows, which were solved in a fully coupled manner using a fully implicit-upwind TVD scheme. For the accurate simulation of high-pressure combustion in ram accelerator, 9-species, 25-step fully detailed reaction mechanism was incorporated with the existing CFD code previously used for the ram accelerator studies. The mechanism is based on GRI-Mech. 2.11 that includes pressure-dependent reaction rate formulations indispensable for the correct prediction of induction time in high-pressure environment. A real gas equation of state was also included to account for molecular interactions and real gas effects of high-pressure gases. The present combustion modeling is compared with previous 8-step and 19-step mechanisms with ideal gas assumption. The result shows that mixture ignition characteristics are very sensitive to the combustion mechanisms, and different mechanism results in different reactive flow-field characteristics that have a significant relevance to the operation mode and the performance of scram accelerator. (orig.)

  15. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a ...... of bioenergy....

  16. High-Speed Visualisation of Combustion in Modern Gasoline Engines

    Science.gov (United States)

    Sauter, W.; Nauwerck, A.; Han, K.-M.; Pfeil, J.; Velji, A.; Spicher, U.

    2006-07-01

    Today research and development in the field of gasoline engines have to face a double challenge: on the one hand, fuel consumption has to be reduced, while on the other hand, ever more stringent emission standards have to be fulfilled. The development of engines with its complexity of in-cylinder processes requires modern development tools to exploit the full potential in order to reduce fuel consumption. Especially optical, non-intrusive measurement techniques will help to get a better understanding of the processes. With the presented high-speed visualisation system the electromagnetic radiation from combustion in the UV range is collected by an endoscope and transmitted to a visualisation system by 10, 000 optical fibres. The signal is projected to 1, 920 photomultipliers, which convert the optical into electric signals with a maximum temporal resolution of 200 kHz. This paper shows the systematic application of flame diagnostics in modern combustion systems. For this purpose, a single-cylinder SI engine has been modified for a spray guided combustion strategy as well as for HCCI. The characteristics of flame propagation in both combustion modes were recorded and correlated with thermodynamic analyses. In case of the spray guided GDI engine, high pressure fuel injection was applied and evaluated.

  17. Combining high biodiversity with high yields in tropical agroforests

    Science.gov (United States)

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H.; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-01-01

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland. PMID:21536873

  18. CARS Diagnostics of High Pressure Combustion.

    Science.gov (United States)

    1982-11-01

    single pulse spontaneous Raman scattering. Furthermore. in this ture increases, the band broadens as the rotational population distri- sooting flame , laser... sooting flame with height above the burner. S cm- the fine structure shown in Fig. 2 is lost, but the spectra Recently, the feasibility of CARS for...under adverse conditions, measurements in a highly important in such devices as gas turbines, internal sooting flame will be described (Ref. 3). BOXCARS

  19. Toxic Combustion Product Yields as a Function of Equivalence Ratio and Flame Retardants in Under-Ventilated Fires: Bench-Large-Scale Comparisons

    Directory of Open Access Journals (Sweden)

    David A. Purser

    2016-09-01

    Full Text Available In large-scale compartment fires; combustion product yields vary with combustion conditions mainly in relation to the fuel:air equivalence ratio (Φ and the effects of gas-phase flame retardants. Yields of products of inefficient combustion; including the major toxic products CO; HCN and organic irritants; increase considerably as combustion changes from well-ventilated (Φ < 1 to under-ventilated (Φ = 1–3. It is therefore essential that bench-scale toxicity tests reproduce this behaviour across the Φ range. Yield data from repeat compartment fire tests for any specific fuel show some variation on either side of a best-fit curve for CO yield as a function of Φ. In order to quantify the extent to which data from the steady state tube furnace (SSTF [1]; ISO TS19700 [2] represents compartment fire yields; the range and average deviations of SSTF data for CO yields from the compartment fire best-fit curve were compared to those for direct compartment fire measurements for six different polymeric fuels with textile and non-textile applications and for generic post-flashover fire CO yield data. The average yields; range and standard deviations of the SSTF data around the best-fit compartment fire curves were found to be close to those for the compartment fire data. It is concluded that SSTF data are as good a predictor of compartment fire yields as are repeat compartment fire test data.

  20. LES/FMDF of High Speed Spray Combustion

    Science.gov (United States)

    Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    High speed evaporating and combusting sprays are computed with the hybrid two-phase large eddy simulation (LES)/filtered mass density function (FMDF) methodology. In this methodology, the resolved fluid velocity is obtained by solving the filtered form of the compressible Navier-Stokes equations with high-order finite difference schemes. The scalar (temperature and species mass fractions) field is obtained by solving the FMDF transport equation with a Lagrangian stochastic method. The spray is simulated with the Lagrangian droplets together with stochastic breakup and finite rate heat and mass transfer models. The liquid volume fraction is included in the LES/FMDF for denser spray regions. Simulations of high speed evaporating sprays with and without combustion for a range of gas and spray conditions indicate that the two-phase LES/FMDF results are consistent and compare well with the experimental results for global spray variables such as the spray penetration and flame lift-off lengths. The gas velocity and turbulence generated by the spray are found to be very significant in all simulated cases. A broad spectrum of droplet sizes is also found to be generated by the complex and coupled effects of the gas flow turbulence, droplet breakup, evaporation and combustion.

  1. A high-order immersed boundary method for high-fidelity turbulent combustion simulations

    Science.gov (United States)

    Minamoto, Yuki; Aoki, Kozo; Osawa, Kosuke; Shi, Tuo; Prodan, Alexandru; Tanahashi, Mamoru

    2016-11-01

    Direct numerical simulations (DNS) have played important roles in the research of turbulent combustion. With the recent advancement in high-performance computing, DNS of slightly complicated configurations such as V-, various jet and swirl flames have been performed, and such DNS will further our understanding on the physics of turbulent combustion. Since these configurations include walls that do not necessarily conform with the preferred mesh coordinates for combustion DNS, most of these simulations use presumed profiles for inflow/near-wall flows as boundary conditions. A high-order immersed boundary method suited for parallel computation is one way to improve these simulations. The present research implements such a boundary technique in a combustion DNS code, and simulations are performed to confirm its accuracy and performance. This work was partly supported by Council for Science, Technology and Innovation, Cross-ministerial Strategic Innovation Promotion Program (SIP), "Innovative Combustion Technology" (Funding agency: JST).

  2. Low Odor, High Yield Kraft Pulping

    Energy Technology Data Exchange (ETDEWEB)

    W.T. McKean

    2000-12-15

    In laboratory cooks pure oxygen was profiled into the circulation line of a batch digester during two periods of the cooking cycle: The first injection occurred during the heating steps for the purpose of in-situ generation of polysulfide. This chip treatment was studied to explore stabilization against alkaline induced carbohydrate peeling and to increase pulp yield. Under optimum conditions small amounts of polysulfide were produced with yield increase of about 0.5% These increases fell below earlier reports suggesting that unknown differences in liquor composition may influence the relative amounts of polysulfide and thiosulfate generated during the oxidation. Consequently, further studies are required to understand the factors that influence the ratios of those two sulfur species.

  3. Integrated process for high conversion and high yield protein PEGylation.

    Science.gov (United States)

    Pfister, David; Morbidelli, Massimo

    2016-08-01

    Over the past decades, PEGylation has become a powerful technique to increase the in vivo circulation half-life of therapeutic proteins while maintaining their activity. The development of new therapeutic proteins is likely to require further improvement of the PEGylation methods to reach even better selectivity and yield for reduced costs. The intensification of the PEGylation process was investigated through the integration of a chromatographic step in order to increase yield and conversion for the production of mono-PEGylated protein. Lysozyme was used as a model protein to demonstrate the feasibility of such approach. In the integrated reaction/separation process, chromatography was used as fractionation technique in order to isolate and recycle the unreacted protein from the PEGylated products. This allows operating the reactor with short reaction times so as to minimize the production of multi-PEGylated proteins (i.e., conjugated to more than one polymer). That is, the reaction is stopped before the desired product (i.e., the mono-PEGylated protein) can further react, thus leading to limited conversion but high yield. The recycling of the unreacted protein was then considered to drive the protein overall conversion to completion. This approach has great potential to improve processes whose yield is limited by the further reaction of the product leading to undesirable by-products. Biotechnol. Bioeng. 2016;113: 1711-1718. © 2016 Wiley Periodicals, Inc.

  4. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  5. Suspension Combustion of Wood: Influence of Pyrolysis Conditions on Char Yield, Morphology, and Reactivity

    DEFF Research Database (Denmark)

    Dall'Ora, Michelangelo; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    Chars from pine and beech wood were produced by fast pyrolysis in an entrained flow reactor and by slow pyrolysis in a thermogravimetric analyzer. The influence of pyrolysis temperature, heating rate and particle size on char yield and morphology was investigated. The applied pyrolysis temperatur...

  6. Spectroscopy and kinetics of combustion gases at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)

    1993-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  7. Effects of high combustion chamber pressure on rocket noise environment

    Science.gov (United States)

    Pao, S. P.

    1972-01-01

    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  8. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  9. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  10. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection

    Science.gov (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.

    2016-03-01

    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  11. Comparison of Diesel Spray Combustion in Different High-temperature, High-pressure Facilities

    DEFF Research Database (Denmark)

    Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles

    2010-01-01

    Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD mode...

  12. High pressure intensification of cassava resistant starch (RS3) yields

    OpenAIRE

    2015-01-01

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly in...

  13. High-biomass sorghum yield estimate with aerial imagery

    Science.gov (United States)

    Sui, Ruixiu; Hartley, Brandon E.; Gibson, John M.; Yang, Chenghai; Thomasson, J. Alex; Searcy, Stephen W.

    2011-01-01

    To reach the goals laid out by the U.S. Government for displacing fossil fuels with biofuels, high-biomass sorghum is well-suited to achieving this goal because it requires less water per unit dry biomass and can produce very high biomass yields. In order to make biofuels economically competitive with fossil fuels it is essential to maximize production efficiency throughout the system. The goal of this study was to use remote sensing technologies to optimize the yield and harvest logistics of high-biomass sorghum with respect to production costs based on spatial variability within and among fields. Specific objectives were to compare yield to aerial multispectral imagery and develop predictive relationships. A 19.2-ha high-biomass sorghum field was selected as a study site and aerial multispectral images were acquired with a four-camera imaging system on July 17, 2009. Sorghum plant samples were collected at predetermined geographic coordinates to determine biomass yield. Aerial images were processed to find relationships between image reflectance and yield of the biomass sorghum. Results showed that sorghum biomass yield in early August was closely related (R2 = 0.76) to spectral reflectance. However, in the late season the correlations between the biomass yield and spectral reflectance were not as positive as in the early season. The eventual outcome of this work could lead to predicted-yield maps based on remotely sensed images, which could be used in developing field management practices to optimize yield and harvest logistics.

  14. Harvester development for new high yielding SRC crops and markets

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, Mark

    2005-07-01

    This report describes the development of harvesting equipment for short rotation cultivation (SRC) crops produced in the UK that can produce fuel to a required specification in a single pass at a cost that is profitable for the grower while minimising the cost of the product. Details are given of the manufacture and installation of new components for large crop harvesting, and production of fuel suitable for co-firing in a coal combustion system using pulverised fuel and fuel suitable for gasification. The development of the drive chain to cope with the higher yielding crops, field tests on SRC crops, and determination of the most economic harvesting system are discussed along with the remanufacture of the chipping drum, and production of market chip samples. Harvesting guidance and an economic analysis of harvesting systems are presented.

  15. Willow yield is highly dependent on clone and site

    DEFF Research Database (Denmark)

    Ugilt Larsen, Søren; Jørgensen, Uffe; Lærke, Poul Erik

    2014-01-01

    Use of high-yielding genotypes is one of the means to achieve high yield and profitability in willow (Salix spp.) short rotation coppice. This study investigated the performance of eight willow clones (Inger, Klara, Linnea, Resolution, Stina, Terra Nova, Tora, Tordis) on five Danish sites......, differing considerably in soil type, climatic conditions and management. Compared to the best clone, the yield was up to 36 % lower for other clones across sites and up to 51 % lower within sites. Tordis was superior to other clones with dry matter yields between 5.2 and 10.2 Mg ha−1 year−1 during the first...... 3-year harvest rotation, and it consistently ranked as the highest yielding clone on four of the five sites and not significantly lower than the highest yielding clone on the fifth site. The ranking of the other clones was more dependent on site with significant interaction between clone and site...

  16. Nutritive Equilibrium in Rice Plant Populations for High Yield

    Institute of Scientific and Technical Information of China (English)

    WANGBOLUN; LIUXINAN; 等

    1999-01-01

    The effects of nitrogen,phosphorus and potassium application level,seed rate and transplanting density on the growth and development of rice plants were studied to find out nutrient status in high-yielding rice plants and to increase grain yield by adequate fertilization.There was an equilibrium relationship among nutrient elements for high-yielding rice plant populations.The equilibrium index of nutrient amount ,content and distribution in high-yielding rice plants should be generally greater than-2 but less than 2.The optimum nutritive proportion of nitrogen:phosphorus:potassium assimilated by the plants was about 10:2:9 at the ripening stage.But the content and the proportion varied with the growth stages,Therefore,the nutrient in rice plant populations should be in a dynamic equilibrium.So as to achieve high yield.

  17. High yield, single droplet electrode arrays for nanoscale printed electronics.

    Science.gov (United States)

    Caironi, Mario; Gili, Enrico; Sakanoue, Tomo; Cheng, Xiaoyang; Sirringhaus, Henning

    2010-03-23

    In this work we demonstrate two building blocks of a scalable manufacturing technology for nanoscale electronic devices based on direct-write printing: an architecture for high-yield printing of electrode gaps with 100 nm dimension and a low-temperature silver complex ink for integration of organic materials with high conductivity metal interconnects. We use single printed droplets that are made to dewet slowly from each other to allow reliable, high yield patterning even in the presence of certain surface defects.

  18. Novel Salt-Assisted Combustion Synthesis of High Surface Area Ceria Nanopowders by An Ethylene Glycol-Nitrate Combustion Process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel salt-assisted combustion process with ethylene glycol as a fuel and nitrate as an oxidant to synthesize high surface area ceria nanopowders was reported. The effects of various tunable conditions, such as fuel-to-oxidant ratio, type of salts, and amount of added salts, on the characteristics of the as-prepared powders were investigated by X-ray diffraction, transmission electron microscopy and BET surface area measurement. A mechanism scheme was proposed to illustrate the possible formation processes of well-dispersed ceria nanoparticles in the salt-assisted combustion synthesis. It was verified that the simple introduction of leachable inert inorganic salts as an excellent agglomeration inhibitor into the redox mixture precursor leads to the formation of well-dispersed ceria particles with particle size in the range of 4~6 nm and a drastic increase in the surface area. The presence of KCl results in an over ten-fold increment in specific surface area from 14.10 m2·g-1 for the produced ceria powders via the conventional combustion synthesis process to 156.74 m2·g-1 for the product by the salt-assisted combustion synthesis process at the same molar ratio of ethylene glycol-nitrate.

  19. High yield DNA fragmentation using cyclical hydrodynamic shearing

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Spang, Peter; Roeser, Tina; Nieto, Benjamin; Guasch, Francesc; Corbera, Antoni Homs; van den Berg, Albert; Carlen, Edwin

    2013-01-01

    We report a new DNA fragmentation technique that significantly simplifies conventional hydrodynamic shearing fragmentation by eliminating the need for sample recirculation while maintaining high fragmentation yield and low fragment length variation, and therefore, reduces instrument complexity and c

  20. High yield DNA fragmentation using cyclical hydrodynamic shearing

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Spang, Peter; Roeser, Tina; Nieto, Benjamin; Guasch, Francesc; Corbera, Antoni Homs; van den Berg, Albert; Carlen, Edwin

    2013-01-01

    We report a new DNA fragmentation technique that significantly simplifies conventional hydrodynamic shearing fragmentation by eliminating the need for sample recirculation while maintaining high fragmentation yield and low fragment length variation, and therefore, reduces instrument complexity and

  1. Investigation of wood combustion in the high-enthalpy oxidizer flow

    Science.gov (United States)

    Reshetnikov, S. M.; Zyryanov, I. A.; Budin, A. G.; Pozolotin, A. P.

    2017-01-01

    The experimental data of wood combustion in the high-enthalpy oxidizer flowresearch is presented. Combustion laws of two wood species (pine and birch) in a hybrid rocket engine (HRE) are obtained. Heat flows from the flame to the condensed phase surface are defined. The prospects of the wood use in the HRE (based on thrust characteristics) are shown.

  2. Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

    CERN Document Server

    Coclite, A; De Palma, P; Pascazio, G

    2015-01-01

    The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined ...

  3. [Study on High-yield Cultivation Measures for Arctii Fructus].

    Science.gov (United States)

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  4. High pressure intensification of cassava resistant starch (RS3) yields.

    Science.gov (United States)

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.

  5. An Experimental Study on High Temperature and Low Oxygen Air Combustion

    Institute of Scientific and Technical Information of China (English)

    W.B.Kim; D.H.Chung; 等

    2000-01-01

    High temperature preheated and diluted air combustion has been confirmed as the technolgy,mainly applied to industrial furnaces and kilns,to realize higher thermal efficiency and lower emissions.The purpose of this study was to investigate fundamental aspects of the above-mentioned combustion experimentally and to compare with those in ordinary hydrocarbon combustion with room temperature air.The test items were exhaust gas components of CO,NOx,flame shape and raidcal components of CH,OH and C2,which were measured with gas analyser,camera and ICCD(Intersified Charged-Coupled Device) camera.Many phenomena as results appeared in combustion with the oxidizer,low oxygen concentation and extremely high temperature air,such as expansion of the flammable limits,increased flame propagation speed,it looked so strange as compared with those in existing combustion technology,we confirmed that such extraordinary phenomena were believable through the hot-test experiment.

  6. BRS Pampeira: new irrigated rice cultivar with high yield potential

    Directory of Open Access Journals (Sweden)

    Ariano Martins de Magalhães Júnior

    2016-12-01

    Full Text Available BRS Pampeira is a rice cultivar developed by Embrapa, recommended for irrigated cultivation in Brazil. It shows modern architecture, with high tillering and tolerance to lodging. It stands out for its high yield potential, medium cycle and good grain quality.

  7. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  8. Nonstop Selection for High and Stable Crop Yield by Two Prognostic Equations to Reduce Yield Losses

    Directory of Open Access Journals (Sweden)

    Dionysia A. Fasoula

    2012-09-01

    Full Text Available Yield losses occurring at the field level, whether due to plant diseases or abiotic stresses, reveal reduced stability of the crop yield potential. The paper argues that the stability of crop yield potential is a trait with a clear genetic component, which can be successfully selected for at the single-plant level and incorporated into high-yielding cultivars. Two novel selection equations with prognostic power are presented, capable to objectively phenotype and evaluate individual plants in real field conditions in the absence of the masking effects of interplant competition and soil heterogeneity. The equations predict performance at the crop stand through the key concept of coefficient of homeostasis and are equally useful for early generation selection and for nonstop selection within finished cultivars in order to continuously incorporate the adaptive (genetic or epigenetic responses of plants. Exploitation of adaptive responses acquires particular importance in view of the climate change effects on crop productivity and the changing biotic or abiotic micro-environments. Cotton is used as a case study to highlight the potential of nonstop selection for increasing crop yield and for the gradual build-up of disease resistance. In addition, the paper envisions and proposes the formation of international networks of researchers focusing on specific diseases as, for example, the cereal root-rot or the cotton Verticillium wilt that will concurrently use the proposed strategy in their respective environments to select for resistant genotypes, while gaining a deeper understanding of the nature of the genetic or epigenetic changes at the phenotypic and genomic levels.

  9. Facile Preparation of Highly Conductive Metal Oxides by Self-Combustion for Solution-Processed Thermoelectric Generators.

    Science.gov (United States)

    Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-03-01

    Highly conductive indium zinc oxide (IZO) thin films were successfully fabricated via a self-combustion reaction for application in solution-processed thermoelectric devices. Self-combustion efficiently facilitates the conversion of soluble precursors into metal oxides by lowering the required annealing temperature of oxide films, which leads to considerable enhancement of the electrical conductivity of IZO thin films. Such enhanced electrical conductivity induced by exothermic heat from a combustion reaction consequently yields high performance IZO thermoelectric films. In addition, the effect of the composition ratio of In to Zn precursors on the electrical and thermoelectric properties of the IZO thin films was investigated. IZO thin films with a composition ratio of In:Zn = 6:2 at the low annealing temperature of 350 °C showed an enhanced electrical conductivity, Seebeck coefficient, and power factor of 327 S cm(-1), 50.6 μV K(-1), and 83.8 μW m(-1) K(-2), respectively. Moreover, the IZO thin film prepared at an even lower temperature of 300 °C retained a large power factor of 78.7 μW m(-1) K(-2) with an electrical conductivity of 168 S cm(-1). Using the combustive IZO precursor, a thermoelectric generator consisting of 15 legs was fabricated by a printing process. The thermoelectric array generated a thermoelectric voltage of 4.95 mV at a low temperature difference (5 °C). We suggest that the highly conductive IZO thin films by self-combustion may be utilized for fabricating n-type flexible printed thermoelectric devices.

  10. Spectroscopy and Kinetics of Combustion Gases at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Bowman, Craig [Stanford Univ., CA (United States)

    2016-02-01

    This report describes our research program that involves two complementary activities: (1) development and application of cw laser absorption methods for the measurement of concentration time-histories and fundamental spectroscopic parameters for species of interest in combustion; and (2) shock tube studies of reaction kinetics relevant to combustion. This first part of this report covers research during the final three-year support period, i.e. March 2012 – November 2015. The later part of this report summarizes research conducted over multiple-year periods between March 1988 to March 2012. Publications supported by DOE for each period are summarized at the end of that report section.

  11. Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine

    Science.gov (United States)

    Schoenman, L.

    1981-01-01

    The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

  12. Simulation of DSB yield for high LET radiation.

    Science.gov (United States)

    Friedrich, T; Durante, M; Scholz, M

    2015-09-01

    A simulation approach for the calculation of the LET-dependent yield of double-strand breaks (DSB) is presented. The model considers DSB formed as two close-lying single-strand breaks (SSB), whose formation is mediated by both intra-track processes (single electrons) or at local doses larger than about 1000 Gy in particle tracks also by electron inter-track processes (two independent electron tracks). A Monte Carlo algorithm and an analytical formula for the DSB yield are presented. The approach predicts that the DSB yield is enhanced after charged particle irradiation of high LET compared with X-ray or gamma radiation. It is used as an inherent part of the local effect model, which is applied to estimate the relative biological effectiveness of high LET radiation.

  13. Low-Cost, High-Performance Combustion Chamber for LOX/CH4 Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultramet will design and fabricate a lightweight, high temperature 5-lbf combustion chamber for use with cryogenic liquid oxygen/methane (LOX/CH4) propellant that...

  14. Abnormal combustion caused by lubricating oil in high BMEP gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Yasueda, Shinji [Kyushu Univ. (Japan). GDEC Gas and Diesel Engine; Takasaki, Koji; Tajima, Hiroshi [Kyushu Univ. (Japan). Lab. of Engine and Combustion (ECO)

    2013-05-15

    In recent years, abnormal combustion with high peak firing pressure has been experienced on gas engines with high brake mean effective pressures. The abnormality is detected not as pre-ignition but as knocking. Research, including visualisation tests on a single-cylinder engine, has confirmed the phenomenon to be pre-ignition caused by the auto-ignition of in-cylinder lubricant, causing cyclical variations of peak firing pressure on premix combustion gas engines. (orig.)

  15. Executive Summary High-Yield Scenario Workshop Series Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Park Ovard; Thomas H. Ulrich; David J. Muth Jr.; J. Richard Hess; Steven Thomas; Bryce Stokes

    2009-12-01

    To get a collective sense of the impact of research and development (R&D) on biomass resource availability, and to determine the feasibility that yields higher than baseline assumptions used for past assessments could be achieved to support U.S. energy independence, an alternate “High-Yield Scenario” (HYS) concept was presented to industry experts at a series of workshops held in December 2009. The workshops explored future production of corn/agricultural crop residues, herbaceous energy crops (HECs), and woody energy crops (WECs). This executive summary reports the findings of that workshop.

  16. High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    D' Agostini, M.D.

    2000-06-02

    This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

  17. Combustion performance of flame-ignited high-speed train seats via full-scale tests

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2015-10-01

    Full Text Available Determining the combustion characteristics of combustibles in high-speed trains is the foundation of evaluating the fire hazard on high-speed trains scientifically, and establishing effective active and passive fire precautions. In this study, the double seats in the compartments of CRH1 high-speed trains were used as the main research object. Under different test conditions, including the power of ignition sources and ventilation rates, full-scale furniture calorimeter tests were conducted to study important fire combustion characteristics such as the ignition characteristics of seats, heat release rate, mass loss rate, total heat release, temperature variation, and smoke release rate. The relationships among these parameters were analyzed and summarized into combustion behavior and characteristics, thus providing fundamental data and reference for the development of fire precautions and safety design of high-speed trains. The results in this test are as follows: (i The double seats of high-speed trains are relatively easy to ignite and susceptible to the fire ground environment. (ii The combustion temperature in the test apparatus exceeded 600 °C in only 2 min for the larger ignition source. (iii The heat release rate exceeded 800 kW. (iv The total heat release resulted mainly from flame combustion. (v The final mass loss rate was ∼30%. (vi The lowest light transmittance was <25%. (vii The change process of temperature with time has the same trend as the change process of heat release rate. (viii Suppressing flame combustion and controlling the smoke generated from the seat materials themselves played key roles in retarding the combustion of high-speed train seats.

  18. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  19. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    Science.gov (United States)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  20. Stereotypical behaviour at high yielding dairy cows farms - "tongue rolling"

    OpenAIRE

    Prodanović Radiša; Kirovski Danijela; Vujanac Ivan; Nešić Ksenija; Janevski Aleksandar; Marić Jovan; Kukrić Vladimir

    2013-01-01

    The objective of this work was to determine if there was a connection between stereotypical behaviour of high yielding dairy cows breeds and values of biochemical blood parameters. The investigation was carried out in august at loose-housing type of farms, in 30 heads of cattle from four groups: drying (15 to 7 days before calving), puerperium (up to 40 days after calving, early lactation (up to 120 days after calving) and late lactation (200 to 300 days af...

  1. High temperature corrosion investigation in an oxyfuel combustion test rig

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Bjurman, M.; Hjörnhede, A

    2014-01-01

    (perhaps carburized) zone was used as a measure of corrosion rates. The lowest alloyed steel had the highest corrosion rate, and the other austenitic and nickel alloys had much lower corrosion rates. Precipitates in the alloy adjacent the corrosion front were revealed for both Sanicro 28 and C‐276. However...... constructed by Brandenburg Technical University to gain understanding into oxyfuel firing. Two air‐cooled corrosion probes were exposed in this oxyfuel combustion chamber where the fuel was lignite. Gas composition was measured at the location of testing. Various alloys from a 2½ Cr steel, austenitic steels...

  2. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    Science.gov (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  3. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  4. Development of high-yield influenza A virus vaccine viruses

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J.S.; Nidom, Chairul A.; Ghedin, Elodie; Macken, Catherine A.; Fitch, Adam; Imai, Masaki; Maher, Eileen A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin–Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development. PMID:26334134

  5. Laser heating challenges of high yield MagLIF targets

    Science.gov (United States)

    Slutz, Stephen; Sefkow, Adam; Vesey, Roger

    2014-10-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept is predicted by numerical simulation to produce fusion yields of about 100 kJ, when driven by 25 MA from the existing Z accelerator [S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)] and much higher yields with future accelerators delivering higher currents [Slutz and Vesey PRL 108, 025003 (2012)]. The fuel must be heated before compression to obtain significant fusion yields due to the relatively slow implosion velocities (~ 100 km/s) of magnetically driven liners. Lasers provide a convenient means to accomplish this pre-compressional heating of the fusion fuel, but there are challenges. The laser must penetrate a foil covering the laser entrance hole and deposit 20-30 kJ within the ~1 cm length of the liner in fuel at 6-12 mg/cc. Such high densities could result in beam scattering due to refraction and laser plasma interactions. Numerical simulations of the laser heating process are presented, which indicate that energies as high as 30 kJ could be deposited in the fuel by using two laser pulses of different wavelengths. Simulations of this process will be presented as well of results for a MagLIF design for a potential new machine delivering 50 MA of current. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. High Yield Preparation Method of Thermally Stable Cellulose Nanofibers

    Directory of Open Access Journals (Sweden)

    Hongli Zhu

    2014-02-01

    Full Text Available The preparation of nanocellulose fibers (NFs is achieved through pretreating cellulose in a NaOH/urea/thiourea solution, and then defibrillating the fibers through ultrasonication, resulting in a high yield of 85.4%. Extensive work has been done to optimize the preparation parameters. The obtained NFs are about 30 nm in diameter with cellulose II crystal structure. They possess high thermal stability with an onset of thermal degradation at 270 °C and a maximum degradation temperature of 370 °C. Such NFs have potential applications in transistors and batteries with high thermal stability. NFs-H were obtained by homogenizing undefibrillated fibers separated from the preparation of NFs. NFs-H were also in cellulose II crystal form but with lower thermal stability due to low crystallinity. They can be applied to make highly transparent paper.

  7. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoxi, E-mail: Xiaoxi.Li@agro.au.dk; Rubæk, Gitte H.; Sørensen, Peter

    2016-07-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300–500 kg P ha{sup −1} application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25 Mg ha{sup −1} straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. - Highlights: • Effects of four biomass ashes vs. a P fertiliser (TSP) on two crops were studied. • Ashes increased crop yields with P availability similar to TSP on P-depleted soil

  8. Projecting crop yield in northern high latitude area.

    Science.gov (United States)

    Matsumura, Kanichiro

    2014-01-01

    Changing climatic conditions on seasonal and longer time scales influence agricultural production. Improvement of soil and fertilizer is a strong factor in agricultural production, but agricultural production is influenced by climate conditions even in highly developed countries. It is valuable if fewer predictors make it possible to conduct future projections. Monthly temperature and precipitation, wintertime 500hPa geopotential height, and the previous year's yield are used as predictors to forecast spring wheat yield in advance. Canadian small agricultural divisions (SAD) are used for analysis. Each SAD is composed of a collection of Canadian Agricultural Regions (CAR) of similar weather and growing conditions. Spring wheat yields in each CAR are forecast from the following variables: (a) the previous year's yield, (b) earlier stages of the growing season's climate conditions and, (c) the previous year's wintertime northern hemisphere 500hPa geopotential height field. Arctic outflow events in the Okanagan Valley in Canada are associated with episodes of extremely low temperatures during wintertime. Principal component analysis (PCA) is applied for wintertime northern hemisphere 500hPa geopotential height anomalies. The spatial PCA mode1 is defined as Arctic Oscillation and it influences prevailing westerlies. The prevailing westerlies meanders and influences climatic conditions. The spatial similarity between wintertime top 5 Arctic outflow event year's composites of 500hPa geopotential height anomalies and mode 3's spatial pattern is found. Mode 3's spatial pattern looks like the Pacific/North American (PNA) pattern which describes the variation of atmospheric circulation pattern over the Pacific Ocean and North America. Climate conditions from April to June, May to July, mode 3's time coefficients, and previous year's yield are used for forecasting spring wheat yield in each SAD. Cross-validation procedure which generates eight sets of models for the eight

  9. A high-yield saponification of galactosylceramide I(3)-sulfate.

    Science.gov (United States)

    Koshy, K M; Boggs, J M

    1982-12-01

    A method for the deacylation of galactosylceramide I(3)-sulphate using aqueous methanolic KOH is described. The combination of a relatively low concentration of the alkali (0.3 M) and a moderate reaction temperature (reflux point of 90% methanol) results in the formation of galactosylsphingosine I(3)-sulphate in consistently high yields (61%) with a minimum of side reactions. The product was purified by column chromatography and its identity established by thin layer chromatography, infrared spectroscopy, determination of galactose content and organic sulphate assay using established methods or their modifications.

  10. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    Science.gov (United States)

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO2-selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  11. The development of an optically accessible, high-power combustion test rig.

    Science.gov (United States)

    Slabaugh, Carson D; Pratt, Andrew C; Lucht, Robert P; Meyer, Scott E; Benjamin, Michael; Lyle, Kent; Kelsey, Mark

    2014-03-01

    This work summarizes the development of a gas turbine combustion experiment which will allow advanced optical measurements to be made at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data are shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research.

  12. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  13. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy

    2017-02-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature $$ (T_{max} ) $$, temperature rise $$ (\\\\Delta T) $$ and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  14. Development of high-yield influenza B virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  15. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    Science.gov (United States)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  16. High yield neutron generators using the DD reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T. [Adelphi technology, 2003 E. Bayshore Rd. 94061, Redwood City, CA (United States); Ji, Qing; Ludewigt, B. A. [Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Jones, G. [G and J Enterprise, 1258 Quary Ln, Suite F, Pleasanton California 94566 (United States)

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  17. High yield neutron generators using the DD reaction

    Science.gov (United States)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  18. Film quantum yields of EUV& ultra-high PAG photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  19. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  20. Numerical study on combustion characteristics of nitrogen diluted hydrogen-rich syngas at high pressures

    Institute of Scientific and Technical Information of China (English)

    FU Zhongguang∗; LU Ke; ZHOU Yang; ZHU Yiming; LIU Xueqi

    2014-01-01

    Aiming at investigating the micro-mixing combustion characteristics of nitrogen diluted hydrogen-rich syngas at high pressures,the combustion model corrected at atmospheric pressure was adopted to ana-lyze the temperature field,flame shape and pollution emissions under conditions with different pressures, powers and equivalent ratios.The results show that,with an increase in pressure,the flame temperature and outlet temperature of the burner rose first and then dropped slightly;the flame width decreased gradu-ally while its height grew;the NOx emission indexes increased and tended to be smooth when the pressure increased to higher than 1 4 MPa.

  1. High temperature corrosion by combustion gases produced by burning liquid fuels containing sulphur, sodium and vanadium.

    OpenAIRE

    Khan, Fazlur Rahman

    1980-01-01

    High temperature corrosion, at 730° C, by combustion gases produced by burning liquid fuels in a laboratory combustor has been investigated. A selected range of steels and alloys (mild steel, stainless steel type 347, Nimonic N90, N105, and IN657) have been tested in the combustion gases using fuels containing varying amounts of impurities in the range of 0 - 6% sulphur, 0 - 60 ppm sodium, and 0 - 300 ppm vanadium. On the basis of the comprehensive results a computer programme was written t...

  2. Highly Turbulent Counterflow Flames: A Laboratory Scale Benchmark for Practical Combustion Systems

    Science.gov (United States)

    Gomez, Alessandro

    2013-11-01

    Since the pioneering work of Weinberg's group at Imperial College in the `60s, the counterflow system has been the workhorse of laminar flame studies. Recent developments have shown that it is also a promising benchmark for highly turbulent (Ret ~ 1000) nonpremixed and premixed flames of direct relevance to gasturbine combustion. Case studies will demonstrate the versatility of the system in mimicking real flame effects, such as heat loss and flame stratification in premixed flames, and the compactness of the combustion region. The system may offer significant advantages from a computational viewpoint, including: a) aerodynamic flame stabilization near the interface between the two opposed jets, with ensuing simplifications in the prescription of boundary conditions; b) a fiftyfold reduction of the domain of interest as compared to conventional nonpremixed jet flames at the same Reynolds number; and c) millisecond mean residence times, which is particularly useful for DNS/LES computational modeling, and for soot suppression in the combustion of practical fuels.

  3. Analysis of the trade-off between high crop yield and low yield instability at the global scale

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2016-10-01

    Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.

  4. Study on the Theory and Technology of High Yield Culture of Compact Corn

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi; ZHANG Rong-da; WU Sheng-li; SONG Bi; ZHANG Bang-kun; JIANG Long; WANG Song; HU Jian-feng

    2002-01-01

    Using the split plot and multi-quadric regressive orthogonal cross-course rotary combination design, corn variety Denghai 6's yield and yield components, important colony quality and physiological index, microclimate index in field and technical planting for high yield were studied. Cultivation for high yield showed that Denghai 6 had the great potential of increase yield. The average yield of two years was 12510kg/ha for 13.85ha, the highest grain yield (754.7m2) was 15477kg/ha. The climatic conditions can meet the needs for high yield during the whole growth stage of corn in the mountain area of Northwest Guizhou.

  5. Nutritional status of high yielding crossbred cow around parturition

    Directory of Open Access Journals (Sweden)

    Mohammad Yousuf

    2016-03-01

    Materials and methods: Nutritional status of cows around the peri-parturient period was investigated for six months in dairy farm. Seven to eight months' pregnant cows were selected for this study. Blood samples from 24 randomly selected cows were collected at stage-1, -2 and -3. The serum was stored at -20C until analyzing glucose, total protein (TP, albumin (Alb, triglycerides (Tg, cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, calcium (Ca, magnesium (Mg and phosphorus (P. Results: An increasing trend of glucose level was evidenced (P=0.07 during stage-1. Instead, higher levels of TP were found during stage-3 as compared to the stage-1 and -2. The Alb levels differed significantly (P<0.01 among different stages. A significantly increased (P<0.01 cholesterol, Tg, and HDL were found after parturition (stage-2 and -3 than before parturition (stage-1. LDL was significantly (P=0.02 increased during stage-2 and -3. A significantly higher level of Ca (P<0.01, Mg (P<0.01 and P (P=0.03 were present during stage-1. Glucose, TP, cholesterol and Tg were significantly higher (P<0.01 in cows two months after parturition, while Alb was found to be the highest (P<0.01 in cows immediately after parturition. An increasing trend of LDL (P=0.07 and HDL (P=0.07 were found in the cows two months after parturition. However, Ca levels were significantly (P=0.04 higher in cows two months after parturition. Conclusion: The results indicate that there is alteration of biochemical levels among the study population at three different stages, and these data may be helpful in using the necessary nutrients to the the high yielding cows around their parturition. [J Adv Vet Anim Res 2016; 3(1.000: 68-74

  6. The Combustion of HMX. [burning rate at high pressures

    Science.gov (United States)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  7. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories

    2012-08-13

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  8. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  9. Development of a Pulsed Combustion Actuator For High-Speed Flow Control

    Science.gov (United States)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.

    2005-01-01

    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

  10. Boron nitride: A high potential support for combustion catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Postole, G. [Institut de Recherches sur la Catalyse, CNRS, 69626 Villeurbanne Cedex (France); ' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Caldararu, M. [' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Ionescu, N.I. [' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Bonnetot, B. [Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, bat Berthollet, UCB Lyon I, 69622 Villeurbanne Cedex (France); Auroux, A. [Institut de Recherches sur la Catalyse, CNRS, 69626 Villeurbanne Cedex (France)]. E-mail: auroux@catalyse.cnrs.fr; Guimon, C. [LCPM, 2 Av. President Angot, 64053 Pau Cedex 9 (France)

    2005-08-15

    High surface area BN powders have been prepared from different precursors to be used as supports for noble metal catalysts. The more suitable boron nitride powders were obtained using polytrichoroborazine, pTCB, as precursor, leading to a surface area higher than 150 m{sup 2}/g. The BN powders were characterized by XRD, XPS, TG, SEM and adsorption microcalorimetry measurements (aniline and ammonia). The preliminary results showed a remarkable stability of the BN supports, even in the presence of moisture. Palladium impregnation of the BN powders was performed using a classical method and the obtained catalysts exhibited a high dispersion with Pd particles of about 4 nm.

  11. High Fidelity Tool for Turbulent Combustion in Liquid Launch Propulsion Systems Based on Spray-Flamelet Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a high-performance, high-fidelity simulation capability for simulating liquid rocket spray combustion based on a novel spray-flamelet...

  12. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  13. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  14. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  15. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples...... and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield....

  16. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  17. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  18. CG FARRAPO: a sudangrass cultivar with high biomass and grain yields

    Directory of Open Access Journals (Sweden)

    Emilio Ghisleni Arenhardt

    2016-07-01

    Full Text Available The new sudangrass cultivar [Sorghum sudanense (Piper Stapf.] was developed by the method of selection of individual plants with progeny testing. The most important traits are high biomass yield with high grain yield.

  19. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-03-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  20. Research on temperature distribution of combustion flames based on high dynamic range imaging

    Science.gov (United States)

    Zhao, Hui; Feng, Huajun; Xu, Zhihai; Li, Qi

    2007-10-01

    The imaging-based three-color method is widely used in the field of non-contact temperature measurement of combustion flames. In this paper, by analyzing the imaging process of a combustion flame in detail, we re-derivate the three-color method by adopting a theory of high dynamic range imaging. Instead of using white balanced, gamma calibrated or other algorithms applied 8-bit pixel values, we use irradiance values on the image plane; these values are obtained by combining two differently exposed raw images into one high dynamic range irradiance map with the help of the imaging system's response function. An instrumentation system is presented and a series of experiments have been carried out, the results of which are satisfactory.

  1. NO{sub x} formation in lean premixed combustion of methane at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K.U.M.; Griebel, P.; Schaeren, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    High pressure experiments in a jet-stirred reactor have been performed to study the NO{sub x} formation in lean premixed combustion of methane/air mixtures. The experimental results are compared with numerical predictions using four well known reaction mechanisms and a model which consists of a series of two perfectly stirred reactors and a plug flow reactor. (author) 2 figs., 7 refs.

  2. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  3. Stereotypical behaviour at high yielding dairy cows farms - "tongue rolling"

    Directory of Open Access Journals (Sweden)

    Prodanović Radiša

    2013-01-01

    Full Text Available The objective of this work was to determine if there was a connection between stereotypical behaviour of high yielding dairy cows breeds and values of biochemical blood parameters. The investigation was carried out in august at loose-housing type of farms, in 30 heads of cattle from four groups: drying (15 to 7 days before calving, puerperium (up to 40 days after calving, early lactation (up to 120 days after calving and late lactation (200 to 300 days after calving. Assessment of stereotypical behaviour (tongue rolling was carried out by the method of careful observation of all the tested animals 2 to 4 hours after morning feeding. Blood samples were taken by puncture of jugular vein from 8 cows out of each animal group. In these blood samples there was determined the concentration of glucose, beta hydroxy-butyric acid (BHBA, total protein (TP, albumin, urea, total bilirubin (TBI, Ca, P, and Mg as well as AST and ALT activities. During the period up to 40 days after calving (puerperium, behavioral disorder in the form of „tongue rolling“ was found out in 4 out of 30 observed animals (13.33%. Average concentrations of all the tested blood parameters during the drying period as well as in early and late lactation were within physiological values for cattle. During puerperium there were found significantly lower values of glycaemia, proteinemia, albuminemia, uremia and magnesiemia in regard to antepartal values (p<0.05, where the values of glycaemia and magnesiemia were below the physiological limit. A the same time, in this group of cows the values of TBI and AST activities were higher than physiological values. Frequent appearance of „tongue rolling“ phenomenon only among cows in the group with deviation of biochemical parameters values, points out to a possible connection between the stereotypical behaviour and biochemical composition of blood. It seems that hypomagnesiemia could be a significant etiopathogenetic factor causing the

  4. Evaluation of high yielding soybean germplasm under water limitation

    Institute of Scientific and Technical Information of China (English)

    Silvas J. Prince; Henry T. Nguyen; Mackensie Murphy; Raymond N. Mutava; Zhengzhi Zhang; Na Nguyen; Yoon Ha Kim; Safiullah M. Pathan; Grover J. Shannon; Babu Valliyodan

    2016-01-01

    Limited information is available for soybean root traits and their plasticity under drought stress. To date, no studies have focused on examining diverse soybean germ-plasm for regulation of shoot and root response under water limited conditions across varying soil types. In this study, 17 genetically diverse soybean germplasm lines were selected to study root response to water limited conditions in clay (trial 1) and sandy soil (trial 2) in two target environments. Physiological data on shoot traits was measured at multiple crop stages ranging from early vegetative to pod filling. The phenotypic root traits, and biomass accumulation data are collected at pod filling stage. In trial 1, the number of lateral roots and forks were positively correlated with plot yield under water limitation and in trial 2, lateral root thickness was positively correlated with the hill plot yield. Plant Introduction (PI) 578477A and 088444 were found to have higher later root number and forks in clay soil with higher yield under water limitation. In sandy soil, PI458020 was found to have a thicker lateral root system and higher yield under water limitation. The genotypes identified in this study could be used to enhance drought tolerance of elite soybean cultivars through improved root traits specific to target environments.

  5. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  6. Combustion Effects in Laser-oxygen Cutting: Basic Assumptions, Numerical Simulation and High Speed Visualization

    Science.gov (United States)

    Zaitsev, Alexander V.; Ermolaev, Grigory V.

    Laser-oxygen cutting is very complicated for theoretical description technological process. Iron-oxygen combustion playing a leading role making it highly effective, able to cut thicker plates and, at the same time, producing special types of striations and other defects on the cut surface. In this paper results of numerical simulation based on elementary assumptions on iron-oxygen combustion are verified with high speed visualization of laser-oxygen cutting process. On a base of assumption that iron oxide lost its protective properties after melting simulation of striation formation due cycles of laser induced non self-sustained combustion is proposed. Assumption that reaction limiting factor is oxygen transport from the jet to cutting front allows to calculate reaction intensity by solving Navier - Stokes and diffusion system in gas phase. Influence of oxygen purity and pressure is studied theoretically. The results of numerical simulation are examined with high speed visualization of laser-oxygen cutting of 4-20 mm mild steel plates at cutting conditions close to industrial.

  7. A high-order public domain code for direct numerical simulations of turbulent combustion

    CERN Document Server

    Babkovskaia, N; Brandenburg, A

    2010-01-01

    A high-order scheme for direct numerical simulations of turbulent combustion is discussed. Its implementation in the massively parallel and publicly available Pencil Code is validated with the focus on hydrogen combustion. Ignition delay times (0D) and laminar flame velocities (1D) are calculated and compared with results from the commercially available Chemkin code. The scheme is verified to be fifth order in space. Upon doubling the resolution, a 32-fold increase in the accuracy of the flame front is demonstrated. Finally, also turbulent and spherical flame front velocities are calculated and the implementation of the non-reflecting so-called Navier-Stokes Characteristic Boundary Condition is validated in all three directions.

  8. Annealing effects on the photoluminescence yield of Gd{sub 2}O{sub 3}:Eu nanoparticles produced by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsohn, L.G., E-mail: luiz@clemson.ed [Center for Optical Materials Science and Engineering Technologies, and School of Materials Science and Engineering, Clemson University, Anderson, SC 29625 (United States); Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tornga, S.C.; Bennett, B.L.; Muenchausen, R.E. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Ugurlu, O. [Characterization Facility, Institute of Technology, University of Minnesota, Minneapolis, MN 55455 (United States); Tseng, T.-K.; Choi, J.; Holloway, P.H. [Department of Materials Science and Engineering, University of Florida, Gainsville, FL 32611-6400 (United States)

    2010-03-15

    Post-synthesis annealing is commonly required to achieve intense luminescence from nanoparticles synthesized by means of the solution combustion synthesis (SCS) method. We carried out investigation to gain insight on the underpinning mechanisms related to this enhancement. Gd{sub 2}O{sub 3}:Eu nanoparticles were prepared by SCS and characterized in their structure, crystallinity, crystallite size, photoluminescence (PL) and PL lifetime. After synthesis, samples were calcined at 500 {sup o}C for 4 h to eliminate organic residues, and annealed in air at 1000 {sup o}C for up to 180 min. The fast increase of PL intensity in the first {approx}15 min of annealing is understood by the decrease of the probability of non-radiative recombination through the elimination of quenching defects. This is in agreement with increasing crystallinity, as determined by the absolute intensity of the (222) and (440) diffraction peaks as a function of annealing time. The systematic measurements of crystallinity, crystallite size, PL intensity and lifetime as a function of annealing time carried out in this work supports the assignment of a major role to crystallization and the elimination of structural disorder on PL yield of SCS-prepared materials.

  9. Low-Cost, High-Performance Combustion Chamber for LOX/CH4 Propulsion, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project, Ultramet is designing and fabricating a lightweight, high temperature combustion chamber for use with cryogenic liquid oxygen/methane (LOX/CH4)...

  10. An investigation of the retention sulfur during briquette combustion at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Yu Hongguan; Wu Junqing; Zhang Jun [Shandong Institute of Mining and Technology, Jinan (China). Jinan Branch, Dept. of Chemical Engineering

    1997-12-31

    Two high sulphur coals from China, one high in organic sulphur, the other high in non-organic sulphur, were combusted as briquettes, and their sulphur retention analysed. Using calcium oxide as an additive reduced sulphur emissions. Sulphur retention was best with inorganic sulphur coal. Adding calcium carbide slag to the briquette mixture improved sulphur retention, but led to vast numbers of other impurities which weakened the briquettes. Further investigation is needed of coal briquette composition to reduce sulphur emissions. 3 refs., 6 figs., 2 tabs.

  11. CD 150 - short wheat cultivar with high quality and high yield

    Directory of Open Access Journals (Sweden)

    Ivan Schuster

    2011-01-01

    Full Text Available The industrial quality and lodging resistance of CD 150, a cross between CD104 and CD108, are high and the plant heightis short. The average yield was 10 % higher than of the controls in the regions II, III and IV. It is suitable for cultivation in the states of PR,SP, MS and GO, MG, and DF.

  12. Microbial Carbon Substrate Utilization Differences among High- and Average-Yield Soybean Areas

    National Research Council Canada - National Science Library

    Taylor C. Adams; Kristofor R. Brye; Mary C. Savin; Jung Ae Lee; Edward E. Gbur

    2017-01-01

    Since soybean (Glycine max L. (Merr.)) yields greater than 6719 kg ha−1 have only recently and infrequently been achieved, little is known about the soil microbiological environment related to high-yield soybean production...

  13. Combustible and Smokeless Tobacco Use Among High School Athletes - United States, 2001-2013.

    Science.gov (United States)

    Agaku, Israel T; Singh, Tushar; Jones, Sherry Everett; King, Brian A; Jamal, Ahmed; Neff, Linda; Caraballo, Ralph S

    2015-09-04

    Athletes are not a typical at-risk group for smoking combustible tobacco products, because they are generally health conscious and desire to remain fit and optimize athletic performance (1). In contrast, smokeless tobacco use historically has been associated with certain sports, such as baseball (2). Athletes might be more likely to use certain tobacco products, such as smokeless tobacco, if they perceive them to be harmless (3); however, smokeless tobacco use is not safe and is associated with increased risk for pancreatic, esophageal, and oral cancers (4). Tobacco use among youth athletes is of particular concern, because most adult tobacco users first try tobacco before age 18 years (5). To examine prevalence and trends in current (≥1 day during the past 30 days) use of combustible tobacco (cigarettes, cigars) and smokeless tobacco (chewing tobacco, snuff, or dip [moist snuff]) products among athlete and nonathlete high school students, CDC analyzed data from the 2001–2013 National Youth Risk Behavior Surveys. Current use of any tobacco (combustible or smokeless tobacco) significantly declined from 33.9% in 2001 to 22.4% in 2013; however, current smokeless tobacco use significantly increased from 10.0% to 11.1% among athletes, and did not change (5.9%) among nonathletes. Furthermore, in 2013, compared with nonathletes, athletes had significantly higher odds of being current smokeless tobacco users (adjusted odds ratio [AOR] = 1.77, p<0.05), but significantly lower odds of being current combustible tobacco users (AOR = 0.80, p<0.05). These findings suggest that opportunities exist for development of stronger tobacco control and prevention measures targeting youth athletes regarding the health risks associated with all forms of tobacco use.

  14. Multiresonant Spectroscopy and the High-Resolution Threshold Photoionization of Combustion Free Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Edward R. Grant

    2005-09-07

    This report describes the results of a program of research on the thermochemistry, spectroscopy and intramolecular relaxation dynamics of the combustion intermediate, HCO. We prepare this radical from acetaldehyde as a photo-precursor in a differentially pumped laser-ionization source quadrupole mass spectrometer. Using a multiresonant spectroscopic technique established in our laboratory, we select individual rotational states and overcome Franck-Condon barriers associated with neutral-to-cation geometry changes to promote transitions to individual autoionizing series and state-resolved ionization thresholds. Systematic analysis of rotational structure and associated lineshapes provide experimental insight on autoionization dynamics as input for theoretical modeling. Extrapolation of series, combined with direct threshold-photoelectron detection, yield precise ionization potentials that constitute an important contribution to the thermochemical base of information on HCO.

  15. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V.; Sidorov, A. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Strelkov, A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyväskylä, Jyväskylä (Finland)

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  16. Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion

    Science.gov (United States)

    Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh

    2017-04-01

    Particulate emissions from biomass burning can alter the atmosphere's radiative balance and cause significant harm to human health. However, the relationship between these emissions and fundamental combustion processes is, to date, poorly characterised. In atmospheric models, aerosol emissions are represented by emission factors based on mass loss, which are averaged over an entire combustion event for each particulate species. This approach, however, masks huge variability in emissions during different phases of the combustion period. Laboratory tests have shown that even small changes to the burning environment can lead to huge variation in observed aerosol emission factors (Akagi et al., 2011). In order to address this gap in understanding, in this study, small wood samples sourced from Côte D'Ivoire were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding heat were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real-time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. Both of these instruments are used regularly to measure aerosol concentrations in the field. This methodology produced remarkably repeatable results, allowing three different phases of combustion to be identified by their emissions. Black carbon was emitted predominantly during flaming combustion; organic aerosols were emitted during pyrolysis before ignition and from smouldering-dominated behaviour near the end of combustion. During the flaming period, there was a strong correlation between the emission of black carbon and the rate of mass loss, which suggests there is value in employing a mass-based emission factor for this species. However, very little correlation was seen between organic aerosol and mass loss throughout the tests. As such, results here suggest that emission factors averaged over an entire combustion event are unlikely to be

  17. Research and development on transonic compressor of high pressure ratio turbocharger for vehicle internal combustion engines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pressure ratio required for a turbocharger centrifugal compressor increases with internal combustion engine power density. High pressure ratio causes a transonic flow field at the impeller inducer. Transonic flow narrows the stable flow range and de-teriorates stage efficiency. In this work, an advanced high pressure ratio transonic compressor was designed. The experimental results show that the maximum pressure ratio of this turbocharger is about 4.2, the maximum efficiency is above 80% and the stable flow range at the designed rotating speed is up to 34%. A turbocharger with this transonic compressor has been applied to some vehicle research actually, and improved power density by 40%.

  18. Ash deposition and high temperature corrosion at combustion of aggressive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Henriksen, N. [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    In order to reduce CO{sub 2} emission, ELSAM is investigating the possibilities of using biomass - mainly straw - for combustion in high efficiency power plants. As straw has very high contents of chlorine and potassium, a fuel with high corrosion and ash deposition propensities has been introduced. ELSAM has investigated 3 ultra supercritical boiler concepts for combustion of straw alone or together with coal: (1) PF boilers with a relatively low share of straw, (2) CFB boilers with low to high share of straw and (3) vibrating grate boilers with 100% straw. These investigations has mainly been full-scale tests with straw fed into existing boilers. Corrosion tests have been performed in these boilers using temperature regulated probes and in-plant test tubes in existing superheaters. The corrosion has been determined by detailed measurements of wall thickness reduction and light optical microscopic measurements of the material degradation due to high temperature corrosion. Corrosion mechanisms have been evaluated using SEM/EDX together with thermodynamical considerations based on measurements of the chemical environment in the flue gas. Ash deposition is problematic in CFB boilers and in straw fired boilers, especially in years with high potassium and chlorine content of the straw. This ash deposition also is related to condensation of KCl and can probably only be handled by improved cleaning devices. (EG)

  19. Thermo-acoustic instabilities of high-frequency combustion in rocket engines; Instabilites thermo-acoustiques de combustion haute-frequence dans les moteurs fusees

    Energy Technology Data Exchange (ETDEWEB)

    Cheuret, F.

    2005-10-15

    Rocket motors are confined environments where combustion occurs in extreme conditions. Combustion instabilities can occur at high frequencies; they are tied to the acoustic modes of the combustion chamber. A common research chamber, CRC, allows us to study the response of a turbulent two-phase flame to acoustic oscillations of low or high amplitudes. The chamber is characterised under cold conditions to obtain, in particular, the relative damping coefficient of acoustic oscillations. The structure and frequency of the modes are determined in the case where the chamber is coupled to a lateral cavity. We have used a powder gun to study the response to a forced acoustic excitation at high amplitude. The results guide us towards shorter flames. The injectors were then modified to study the combustion noise level as a function of injection conditions. The speed of the gas determines whether the flames are attached or lifted. The noise level of lifted flames is higher. That of attached flames is proportional to the Weber number. The shorter flames whose length is less than the radius of the CRC, necessary condition to obtain an effective coupling, are the most sensitive to acoustic perturbations. The use of a toothed wheel at different positions in the chamber allowed us to obtain informations on the origin of the thermo-acoustic coupling, main objective of this thesis. The flame is sensitive to pressure acoustic oscillations, with a quasi-zero response time. These observations suggest that under the conditions of the CRC, we observe essentially the response of chemical kinetics to pressure oscillations. (author)

  20. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  1. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    OpenAIRE

    2016-01-01

    4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The ...

  2. Frequency of cardiac arrhythmias in high and low- yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Afshin Jafari Dehkordi

    2014-06-01

    Full Text Available Electrocardiography (ECG may be used to recognize cardiac disorders. Levels of milk production may change the serum electrolytes which its imbalance has a role in cardiac arrhythmia. Fifty high yielding and fifty low yielding Holstein dairy cows were used in this study. Electrocardiography was recorded by base-apex lead and blood samples were collected from jugular vein for measurement of serum elements such as sodium, potassium, calcium, phosphorous, iron and magnesium. Cardiac dysrhythmias were detected more frequent in low yielding Holstein cows (62.00% compared to high yielding Holstein cows (46.00%. The cardiac dysrhythmias that were observed in low yielding Holstein cows included sinus arrhythmia (34.70%, wandering pacemaker (22.45 %, bradycardia (18.37%, tachycardia (10.20%, atrial premature beat (2.04%, sinoatrial block (2.04%, atrial fibrillation (8.16% and atrial tachycardia (2.04%. The cardiac dysrhythmias were observed in high yielding Holstein cows including, sinus arrhythmia (86.95% and wandering pacemaker (13.05%. Also, notched P wave was observed to be 30% and 14% in high- and low- yielding Holstein cows respectively. The serum calcium concentration of low yielding Holstein cows was significantly lower than that of high yielding Holstein cows. There was not any detectable significant difference in other serum elements between high- and low- yielding Holstein cows. Based on the result of present study, could be concluded that low serum concentration of calcium results to more frequent dysrhythmias in low yielding Holstein cows.

  3. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  4. An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Robers [Pennsylvania State Univ., State College, PA (United States); Dryer, Frederick [Princeton Univ., NJ (United States); Ju, Yiguang [Princeton Univ., NJ (United States)

    2013-09-30

    An integrated and collaborative effort involving experiments and complementary chemical kinetic modeling investigated the effects of significant concentrations of water and CO2 and minor contaminant species (methane [CH4], ethane [C2H6], NOX, etc.) on the ignition and combustion of HHC fuels. The research effort specifically addressed broadening the experimental data base for ignition delay, burning rate, and oxidation kinetics at high pressures, and further refinement of chemical kinetic models so as to develop compositional specifications related to the above major and minor species. The foundation for the chemical kinetic modeling was the well validated mechanism for hydrogen and carbon monoxide developed over the last 25 years by Professor Frederick Dryer and his co-workers at Princeton University. This research furthered advance the understanding needed to develop practical guidelines for realistic composition limits and operating characteristics for HHC fuels. A suite of experiments was utilized that that involved a high-pressure laminar flow reactor, a pressure-release type high-pressure combustion chamber and a high-pressure turbulent flow reactor.

  5. Making highly flammable liquid wastes of petrochemical works safe by combustion without burners

    Energy Technology Data Exchange (ETDEWEB)

    Shelygin, B.L.; Bakhirev, V.I.; Gudzyuk, V.L.

    1983-11-01

    At the V.I. Lenin Energy Institute in Ivanov a technological program was implementd for combustion of highly flammable bulk wastes (for example, piperylene fractions) of petrochemical enterprises, with a moisture content of under 10% and mechanical admixtures (particles of catalyst dust) of up to 5%, without the use of burners. In devising the program, the results of mathematical theoretical analysis of pre-igniting preparation of substances to make them safe were utilized as well as the experience acquired in burning petroleum sludge in furnaces with bubbling equipment.

  6. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  7. High-harmonic generation: Ultrafast lasers yield X-rays

    NARCIS (Netherlands)

    McKinnie, Iain; Kapteyn, Henry

    2010-01-01

    Table-top sources that generate both extreme ultraviolet light and soft X-rays through high-harmonic generation of ultrafast infrared laser pulses look set to perform tasks previously accessible using only large-scale synchrotrons.

  8. A High-Speed Motion-Picture Study of Normal Combustion, Knock and Preignition in a Spark-Ignition Engines

    Science.gov (United States)

    Rothrock, A M; Spencer, R C; Miller, Cearcy D

    1941-01-01

    Combustion in a spark-ignition engine was investigated by means of the NACA high-speed motion-picture cameras. This camera is operated at a speed of 40,000 photographs a second and therefore makes possible the study of changes that take place in the intervals as short as 0.000025 second. When the motion pictures are projected at the normal speed of 16 frames a second, any rate of movement shown is slowed down 2500 times. Photographs are presented of normal combustion, of combustion from preignitions, and of knock both with and without preignition. The photographs of combustion show that knock may be preceded by a period of exothermic reaction in the end zone that persists for a time interval of as much as 0.0006 second. The knock takes place in 0.00005 second or less.

  9. Optimisation énergétique des chambres de combustion à haut taux de compression Energy Optimization of High-Compression-Ratio Combustion Chambers

    Directory of Open Access Journals (Sweden)

    Douaud A.

    2006-11-01

    Full Text Available Une synthèse des études entreprises à l'institut Français du Pétrole pour la compréhension des phénomènes de combustion, de transferts thermiques, de cliquetis et leur maîtrise pour l'optimisation du rendement de chambre à haut taux de compression conduit à proposer deux thèmes de réalisation : - chambre calme à double allumage; - chambre turbulente à effet de chasse. Les avantages de principe et les contraintes associés à la mise en oeuvre de chaque type de chambre sont examinés. A synthesis of research undertaken at the Institut Français du Pétrole on understanding combustion, heat-transfer and knock phenomena and on mastering them to optimize the efficiency of high-compression-ratio combustion chambers has led to the proposing of two topics of implementation:(a calm chamber with dual ignition;(b turbulent chamber with squish effect. The advantages of the principle and the constraints connected to the implementation of each type of chamber are examined.

  10. Holey graphene frameworks for highly selective post-combustion carbon capture

    Science.gov (United States)

    Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2016-02-01

    Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.

  11. Statistical model for combustion of high-metal magnesium-based hydro-reactive fuel

    Institute of Scientific and Technical Information of China (English)

    Hu Jian-Xin; Han Chao; Xia Zhi-Xun; Huang Li-Ya; Huang Xu

    2012-01-01

    We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro-reactive fuel under high temperature gaseous atmosphere.The fuel studied in this paper contains 73% magnesium powders.An experimental system is designed and experimeuts are carried out in both argon and water vapor atmospheres.It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium,which indicates the molten state of magnesium particles in the burning surface of the fuel.Based on physical considerations and experimental results,a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel.The model enables the evaluation of the burning surface temperature,the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration.The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase,which are in agreement with the observed experimental trends.

  12. High School Student Physics Research Experience Yields Positive Results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-01-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a…

  13. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the...

  14. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  15. Controllable preparation of high-yield magnetic polymer latex.

    Science.gov (United States)

    Wu, Chun-Chao; Kong, Xiang-Ming; Yang, Hai-Long

    2011-09-01

    In order to overcome the low conversion and complex post-treatment, four different polymerization procedures were adopted to prepare the magnetic polymer latexes. The results clearly show that the strategy using magnetic emulsion template-dosage is the most effective and feasible. Based on the optimized procedure, various factors including the type of initiators such as oil soluble initiator, water soluble initiator, redox initiator system, crosslinking agent, functional monomers etc. were systematically studied. Magnetic polymer latex with high monomer conversion of 83% and high magnet content of 31.8% was successfully obtained. Besides, core-shell structured magnetic polymer latex with good film forming property was also prepared, which is promising for potential applications such as magnetic coatings and modification of cementitious materials with controlled polymer location.

  16. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  17. High school student physics research experience yields positive results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  18. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  19. The Prospects for High-Yield ICF with a Z-Pinch Driven Dynamic Hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    CHANDLER, GORDON A.; CHRIEN, R.; COOPER, GARY WAYNE; DERZON, MARK S.; DOUGLAS, MELISSA R.; HEBRON, DAVID E.; LASH, JOEL S.; LEEPER, RAMON J.; MATZEN, M. KEITH; MEHLHORN, THOMAS A.; NASH, THOMAS J.; OLSON, RICHARD E.; PETERSON, D.L.; RUIZ, CARLOS L.; SANFORD, THOMAS W. L.; SLUTZ, STEPHEN A.

    1999-09-07

    Recent success with the Sandia Z machine has renewed interest in utilizing fast z-pinenes for ICF. One promising concept places the ICF capsule internal to the imploding z-pinch. At machine parameters relevant to achieving high yield, the imploding z-pinch mass has sufficient opacity to trap radiation giving rise to a dynamic hohlraum. The concept utilizes a 12 MJ, 54 MA z-pinch driver producing a capsule drive temperature exceeding 300 eV to realize a 550 MJ thermonuclear yield. They present the current high-yield design and its development that supports high-yield ICF with a z-pinch driven dynamic hohlraum.

  20. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  1. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  2. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  3. (DURIP 10) High Speed Intensified Imaging System For Studies Of Mixing And Combustion In Supersonic Flows And Hydrocarbon Flame Structure Measurements At Elevated Pressures

    Science.gov (United States)

    2016-11-09

    AFRL-AFOSR-VA-TR-2016-0357 (DURIP 10) HIGH-SPEED INTENSIFIED IMAGING SYSTEM FOR STUDIES OF MIXING AND COMBUSTION IN SUPERSONIC FLOWS AND HYDROCARBON...COVERED (From - To) 03 Sep 2010 to 29 Sep 2011 4. TITLE AND SUBTITLE (DURIP 10) HIGH-SPEED INTENSIFIED IMAGING SYSTEM FOR STUDIES OF MIXING AND COMBUSTION ...91125 HIGH SPEED INTENSIFIED IMAGING SYSTEM FOR MIXING AND COMBUSTION IN SUPERSONIC FLOWS AND HYDROCARBON- FLAME STRUCTURE MEASUREMENTS AT

  4. High Precision and High Yield Fabrication of Dense Nanoparticle Arrays onto DNA Origami at Statistically Independent Binding Sites †

    OpenAIRE

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph Tyler; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-01-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templa...

  5. Thermogravimetric Analysis of Effects of High-Content Limstone Addition on Combustion Characteristics of Taixi Anthracite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Mei; SUN Min; WEI Xian-yong

    2004-01-01

    Combustion characteristics of Taixi anthracite admixed with high content of limestone addition were investigated with thermogravimetric analysis. The results show that limestone addition has a little promoting effect on the ignition of raw coals as a whole. The addition of limestone is found to significantly accelerate the combustion and burnout of raw coals. The higher the sample mass is, the more significant the effect will be. The results also show that the change of limestone proportion between 45%-80% has little effect on ignition temperatures of coal in the blended samples. Increasing limestone content lowers the temperature corresponding to the maximum weight loss. Although higher maximum mass loss rates are observed with higher limestone content, the effect is found not ascribed to changing limestone addition, but to the decrease of absolute coal mass in the sample. The change of limestone proportion has little effect on its burnout temperature. Mechanism analysis indicates that these phenomena result mainly from improved heat conduction due to limestone addition.

  6. A high-pressure plug flow reactor for combustion chemistry investigations

    Science.gov (United States)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J.

    2017-10-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations.

  7. Finely tuning MOFs towards high-performance post-combustion CO2 capture materials.

    Science.gov (United States)

    Wang, Qian; Bai, Junfeng; Lu, Zhiyong; Pan, Yi; You, Xiaozeng

    2016-01-11

    CO2 capture science and technology, particularly for the post-combustion CO2 capture, has become one of very important research fields, due to great concern of global warming. Metal-organic frameworks (MOFs) with a unique feature of structural fine-tunability, unlike the traditional porous solid materials, can provide many and powerful platforms to explore high-performance adsorbents for post-combustion CO2 capture. Until now, several strategies for finely tuning MOF structures have been developed, in which either the larger quadrupole moment and polarizability of CO2 are considered: metal ion change (I), functional groups attachment (II) and functional group insertion (III), vary the electronic nature of the pore surface; or targeting the smaller kinetic diameter of CO2 over N2 is focused on: framework interpenetration (IV), ligand shortening (V) and coordination site shifting (VI) contract the pore size of frameworks to improve their CO2 capture properties. In this review, from the viewpoint of synthetic materials scientists/chemists, we would like to introduce and summarize these strategies based upon recent work published by other groups and ourselves.

  8. Study on the combustion behavior of high impact polystyrene nanocomposites produced by different extrusion processes

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The combustion behavior of a blend made of high impact polystyrene (HIPS with sodium montmorillonite (MMT-Na+ and triphenyl phosphite (TPP, as a halogen-free flame retardant, is analyzed in detail in this work. The blend is processed through various extrusion methods aimed to improve clay dispersion. The UL94 method in vertical position, oxygen index and cone calorimetric measurements assess HIPS blend behavior in combustion. TGA, FTIR, SEM and X-ray measurements, together with mechanical and rheological tests evaluate the thermal degradation, morphology, intercalation and degree of dispersion of particles. The use of a static-mixing die placed at the extreme of a single screw extruder improves clay platelets distribution and reduces the peak heat release rate better than employing a twin screw extrusion process. In addition, mechanical and rheological properties are affected substantially by changing the extrusion process. A correlation between clay dispersion and HIPS fire retardant properties is found, as the peak heat release rate decreases with good clay dispersion in cone calorimetric tests.

  9. Studying the Internal Ballistics of a Combustion Driven Potato Cannon using High-speed Video

    CERN Document Server

    Courtney, E D S

    2013-01-01

    A potato cannon was designed to accommodate several different experimental propellants and have a transparent barrel so the movement of the projectile could be recorded on high-speed video (at 2000 frames per second). Both combustion chamber and barrel were made of polyvinyl chloride (PVC). Five experimental propellants were tested: propane (C3H8), acetylene (C2H2), ethanol (C2H6O), methanol (CH4O), and butane (C4H10). The amount of each experimental propellant was calculated to approximate a stoichometric mixture and considering the Upper Flammability Limit (UFL) and the Lower Flammability Limit (LFL), which in turn were affected by the volume of the combustion chamber. Cylindrical projectiles were cut from raw potatoes so that there was an airtight fit, and each weighed 50 (+/- 0.5) grams. For each trial, position as a function of time was determined via frame by frame analysis. Five trials were taken for each experimental propellant and the results analyzed to compute velocity and acceleration as functions...

  10. High confinement, high yield Si3N4 waveguides for nonlinear optical application

    CERN Document Server

    Epping, Jörn P; Mateman, Richard; Leinse, Arne; Heideman, René G; van Rees, Albert; van der Slot, Peter J M; Lee, Chris J; Boller, Klaus-J

    2014-01-01

    In this paper we present a novel fabrication technique for silicon nitride (Si3N4) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si3N4. Using this technique no stress-induced cracks in the Si3N4 layer were observed resulting in a high yield of devices on the wafer. The propagation losses of the obtained waveguides were measured to be as low as 0.4 dB/cm at a wavelength of around 1550 nm.

  11. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail: pmarashi@aut.ac.ir; Fatmesari, D. Haghshenas

    2016-12-01

    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  12. Breeding of Zhongyouza 8, a Canola Variety with Large Seeds and High Oil Yield

    Institute of Scientific and Technical Information of China (English)

    LI Yun-chang; HU Qiong; MEI De-sheng; LI Ying-de; XU Yu-song

    2006-01-01

    High oil yield resulted from a combination of high grain yield and high oil content is a prerequisite for the high efficient oilseed rape production. By using irradiation induced mutation and sexual hybridization combined with paired test cross,the fertility, yield and oil content of the three lines of cytoplasmic male sterility have been improved and a new hybrid variety Zhongyouza 8 with high oil yield was developed. It has been testified that the yield of Zhongyouza 8 was significantly higher than that of the control variety Zhongyou 821 with 9.82 and 10.64% increase in the regional trials of Hubei Province and nationwide, respectively. The oil content and oil yield of Zhongyouza 8 were the highest among all the lines involved in Hubei provincial trials, being 42.77% and 1 051.05 kg ha-1 which was raised by 3% and 161.25 kg ha-1compared to the control Zhongyou 821, respectively. The genetic basis for the strong heterosis, and the factors contributing to the yield and oil content increase of Zhongyouza 8 as well as the strategy for high oil yielding variety improvement through increasing seed size were also discussed in this paper.

  13. Theoretical Study on Auto-Oscillating Combustion in Self-propagating High Temperature Synthesis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-yong; FU Zheng-yi; WANG Wei-min; ZHANG Qing-jie

    2003-01-01

    Oscillating combustion is one of classic phenomenon in SHS. But the cause of its formation in a set of complex processes is unclear yet. With a two-step chemical reaction assumption and effects of other thermal dynamic factors, an auto- oscillating combustion hes been gained in a solid SHS process on the macro- humogenous and micro- heterogonous model. Numerical solution shows that the change of chemical reaction is the main cause of the oscillating combustion.

  14. Rapid Manufacture of Combustion Chambers Using Ductile, High Strength MMCs (1000-803) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Triton Systems, Inc. (Triton) proposes to develop a cost-effective manufacturing approach to fabricate combustion chambers for a rocket technology demonstrator...

  15. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  16. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  17. HYDROGEN ADDITION ON COMBUSTION AND EMISSION CHARACTERISTICS OF HIGH SPEED SPARK IGNITION ENGINE- AN EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    SHIVAPRASAD K. V.

    2016-11-01

    Full Text Available The present article aims at characterizing the combustion and emission parameters of a single cylinder high speed SI engine operating with different concentrations of hydrogen with gasoline fuel. The conventional carburetted SI engine was modified into an electronically controllable engine, wherein ECU was used to control the injection timings and durations of gasoline. The engine was maintained at a constant speed of 3000 rpm and wide open throttle position. The experimental results demonstrated that heat release rate and cylinder pressure were increased with the addition of hydrogen until 20%. The CO and HC emissions were reduced considerably whereas NOx emission was increased with the addition of hydrogen in comparison with pure gasoline engine operation.

  18. Velocity measurement in life combustion systems with high temperature anemometer - HTA

    Energy Technology Data Exchange (ETDEWEB)

    Staudinger, G.; Mory, A.; Pilz, R.; Zimmel, M. [Technische Universitaet Graz, Graz (Austria). Inst. fuer Verfahrenstechnik, Abt. fuer Apparatebau und Mechanische Verfahrenstechnik

    1998-12-31

    An anemometer was developed which allows to measure velocities in dusty atmospheres at temperatures up to 1200{degree}C in a range between 1 and 40 m/s. The most important features of this vane-anemometer are its frictionless aerostatic bearing and the internal air cooling. The frequency of rotation is detected with a high temperature resistant optical fibre. In the project velocities and velocity-fields were measured in the combustion chambers of a 300 MW{sub el} power plant, a 27 MW{sub th} waste incinerator and in different pilot- and semi-industrial plants. The fuels used were coal, biomass, and municipal waste. 11 figs., 2 tabs.

  19. A secular carbon debt from atmospheric high temperature combustion of stem wood?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2012-01-01

    ' approach for smokestack emissions that was propagated within the Kyoto process, the first phase of which is terminating in 2012. Otherwise, it is tolerated that the substitution of wood pellets for coal or other fossil fuels creates long lasting extra emissions of carbon dioxide – a mistake of climate......Basically, combustion of woody biomass in high temperature processes that react with atmospheric air results in a long lasting addition of carbon dioxide to the atmosphere. When harvesting large extra amounts of stem tree for energetic use, a global as well as secular time frame is needed to assess...... overall consequences with due attention given to biosphere processes, including the complex productivity of whole ecosystems. Analytically, a time dependent variable of carbon neutralization can be traced by a simple carbon neutrality or CN factor. Using the forgotten Marland approach, project managers...

  20. DAMAGE OF A HIGH-ENERGY SOLID PROPELLANT AND ITS EFFECTS ON COMBUSTION

    Institute of Scientific and Technical Information of China (English)

    张泰华; 白以龙; 王世英; 刘培德

    2001-01-01

    In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1) to introduce damage into the propellants by means of a large-scale drop-weight apparatus; (2) to observe microstructural variations of the propellant with a scanning electron microscope (SEM) and then to characterize the damage with density measurements; (3) to investigate thermal decomposition; (4) to carry out closed-bomb tests. The NEPE propellant can be considered as a viscoelastic material. The matrices of damaged samples are severely degraded, but the particles are not. The results of the thermal decomposition and closed-bomb tests show that the microstructural damage in the propellant affects its decomposition and burn rate.

  1. Modified Flamelet-Based Model for Non-Premixed High Speed Combustion

    Science.gov (United States)

    Lou, Zhipeng; Ladeinde, Foluso; Li, Wenhai

    2016-11-01

    The influence of static pressure and the use of Troe's model on flamelet solutions in supersonic combustion are studied. With various values of the background static pressure, we have observed significant effects on the flamelet solutions in such quantities as the quenching stoichiometric scalar dissipation rate, reaction rate of species and progress variable, heat release rate, and the temperature profile. In addition, the Troe's model shows opposite effects for low and high pressure conditions. The baseline flamelet table has been constructed with respect to mixture fraction and its stoichiometric scalar dissipation rate, where the information on both the stable and unstable flamelet solutions have been included. We have also experimented with the addition of pressure as an independent variable in the table, toward modeling compressibility and/or pressure-sensitive properties and the variable quenching conditions in real dual-mode scramjet operations.

  2. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Rubæk, Gitte Holton; Sørensen, Peter

    2016-01-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd......) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP...... ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash...

  3. Method of Comparative Analysis of Highly Dispersed Condensed Fuel Combustion Efficiency in Arbitrary Geometry Solid Propellant Ramjet Burners

    Directory of Open Access Journals (Sweden)

    A. V. Voroneckii

    2016-01-01

    Full Text Available The paper deals with various theoretical approaches to the mathematical modeling of the operating process in solid propellant ramjets (SPRJ that use highly metalized solid propellant. It introduces a new method (combustion operating law method that allows us to carry out comparative analysis of combustion efficiency in SPRJ arbitrary geometry ram-burners (RB when there is no accurate information on the combustion law of condensed fuel particles. To illustrate an application of the proposed method, mathematical modeling of the operating process was conducted for three SPRJ ram-burners with three different air intakes (AI, for which distribution fields of main parameters of gas and fuel particles have been obtained. Most complete combustion of fuel particles and the lowest level of particles buildup are registered for RB180 (180 degree angle between AIs. The results of a comparative analysis show that the relative (compared to RB180 efficiency of the particle burning process equals 0.64 and 0.6, respectively, for RB90 (90 degree angle between AIs and RB60 (60 degree angle between AIs. The proposed method may be applied to solve the most difficult problems of mathematical modeling when the optimization development of the solid propellant and ramjet structure are fulfilled simultaneously, i.e. when designers do not have the complete information about the combustion law of the condensed fuel particles.

  4. High-temperature CO / HC gas sensors to optimize firewood combustion in low-power fireplaces

    Directory of Open Access Journals (Sweden)

    B. Ojha

    2017-06-01

    Full Text Available In order to optimize firewood combustion in low-power firewood-fuelled fireplaces, a novel combustion airstream control concept based on the signals of in situ sensors for combustion temperature, residual oxygen concentration and residual un-combusted or partly combusted pyrolysis gas components (CO and HC has been introduced. A comparison of firing experiments with hand-driven and automated airstream-controlled furnaces of the same type showed that the average CO emissions in the high-temperature phase of the batch combustion can be reduced by about 80 % with the new control concept. Further, the performance of different types of high-temperature CO / HC sensors (mixed-potential and metal oxide types, with reference to simultaneous exhaust gas analysis by a high-temperature FTIR analysis system, was investigated over 20 batch firing experiments (∼ 80 h. The distinctive sensing behaviour with respect to the characteristically varying flue gas composition over a batch firing process is discussed. The calculation of the Pearson correlation coefficients reveals that mixed-potential sensor signals correlate more with CO and CH4; however, different metal oxide sensitive layers correlate with different gas species: 1 % Pt / SnO2 designates the presence of CO and 2 % ZnO / SnO2 designates the presence of hydrocarbons. In the case of a TGS823 sensor element, there was no specific correlation with one of the flue gas components observed. The stability of the sensor signals was evaluated through repeated exposure to mixtures of CO, N2 and synthetic air after certain numbers of firing experiments and exhibited diverse long-term signal instabilities.

  5. Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis

    Directory of Open Access Journals (Sweden)

    Ganghua Li

    2014-08-01

    Full Text Available Improvement of yield in rice (Oryza sativa L. is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars (53 in 2007 and 48 in 2008 were grown in Taoyuan, Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107 (a large-panicle type and Xieyou 107 (a heavy-panicle type, were planted in Taoyuan, Yunnan province and Nanjing, Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes. Growth duration (GD, leaf area index (LAI, panicles per m2 (PN, and spikelets per m2 (SM were significantly and positively correlated with grain yield (GY over all years. Sequential path analysis identified PN and panicle weight (PW as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height (PH, days from heading to maturity (HM, and grain weight (GW were stable traits that showed little variation across sites or years, whereas GD (mainly the pre-heading period, PHP and PN varied significantly across locations. To achieve a yield of 15 t ha− 1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m− 2, and a GW of 29–31 mg.

  6. Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis

    Institute of Scientific and Technical Information of China (English)

    Ganghua; Li; Jun; Zhang; Congdang; Yang; Yunpan; Song; Chengyan; Zheng; Shaohua; Wang; Zhenghui; Liu; Yanfeng; Ding

    2014-01-01

    Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars(53 in 2007 and 48 in 2008) were grown in Taoyuan,Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107(a large-panicle type) and Xieyou 107(a heavy-panicle type), were planted in Taoyuan, Yunnan province and Nanjing,Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes.Growth duration(GD), leaf area index(LAI), panicles per m2(PN), and spikelets per m2(SM) were significantly and positively correlated with grain yield(GY) over all years. Sequential path analysis identified PN and panicle weight(PW) as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height(PH), days from heading to maturity(HM), and grain weight(GW) were stable traits that showed little variation across sites or years, whereas GD(mainly the pre-heading period, PHP) and PN varied significantly across locations. To achieve a yield of 15 t ha-1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m-2, and a GW of 29–31 mg.

  7. Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Aho, Martti; Paakkinen, Kari

    2013-01-01

    Studies of the release of critical ash-forming elements from combustion of biomass are typically conducted with small sample masses under well controlled conditions. In biomass combustion on a grate, secondary recapture and release reactions in the fuel-bed may affect the overall release...... and partitioning of these elements. Earlier work by the authors on the release of K, Cl, and S from a high-chlorine biomass (corn stover) in a lab-scale setup is, in the present work, supplemented with novel results from a bench-scale fixed bed reactor and a 100kW moving grate pilot facility. The results from...... the bench-scale reactor indicate that S and K release are not significantly affected by secondary reactions, while Cl is partly recaptured by secondary reactions in the char. A linear increase in K-release was observed from 50% at 906°C to almost 80wt.% at 1234°C when firing only corn stover. A similar...

  8. CR Dhan 407, a high-yielding rice cultivar released for the rainfed shallow lowland ecosystem of eastern India

    National Research Council Canada - National Science Library

    Roy, P S; Patnaik, S S C; Patnaik, A; Rao, G J N; Singh, O N

    2015-01-01

    .... Development and release of CR Dhan 407, a high-yielding cultivar, with a potential yield of more than 5 tons per hectare and non-lodging plant type, can address the problem of yield stagnation...

  9. Combustion of drops of Mexican fuel oils with high asphaltenes content; Combustion de gotas de combustoleos mexicanos con alto contenido de asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodriguez, Jose Francisco [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    In this work the combustion of fuel drops with a content of 18% of asphaltenes has been studied . The results obtained for this fuel were compared with the ones obtained for another with a content of 12% asphaltenes. The drops were suspended in a platinum filament and burned in an spherical radiant furnace. The drop size varied between 600 and 800 microns. The fuel drops with 12% asphaltenes showed shorter combustion times, a smaller diameter increment of the smaller diameter during the combustion stages and also a shorter burning time of the carbonaceous residue than the fuel drops with a content of 18% asphaltenes. [Espanol] En el presente trabajo se ha estudiado la combustion de gotas de combustible con 18% de contenido de asfaltenos. Los resultados obtenidos para este combustible se compararon con los obtenidos para otro con 12% de contenido de asfaltenos. Las gotas fueron suspendidas en un filamento de platino y quemadas en un horno radiante esferico. El tamano de las gotas vario entre 600 y 800 micras. Las gotas de combustible con 12% de asfaltenos mostraron tiempos de combustion mas cortos, un incremento del diametro menor durante las etapas de combustion y un tiempo de quemado del residuo carbonoso tambien mas corto que las gotas del combustible con 18% de contenido de asfaltenos.

  10. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  11. Neutron and fission yields from high-energy deuterons in infinite /sup 238/U targets

    Energy Technology Data Exchange (ETDEWEB)

    Canfield, E.

    1965-06-28

    Early work on the interaction of high energy deuterons with large /sup 238/U targets is reexamined and current theoretical study is discussed. Results of fission and neutron yield calculations are compared with experiment. (SDF)

  12. Development and application of a high-temperature sampling probe for burning chamber conditions of fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M.; Jormanainen, P.; Roine, J.; Paakkinen, K. [VTT Chemistry, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-01

    A sampling probe for the burning chamber conditions of fluidized-bed combustion will be developed in this project. The probe will be suitable for sampling vaporous heavy and alkali metals and other condensing compounds (e.g. chlorides) as well combustion gases and alternatively also flue gas particles at high temperatures. The knowledge gained with the probe will help understanding, developing and modeling combustion processes and will thus aid the manufacturers of the boilers. (author)

  13. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield

    Directory of Open Access Journals (Sweden)

    Nahuel R. Peralta

    2016-10-01

    Full Text Available A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted on yield monitor data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties (Clay, Dickinson, Rice, Saline, and Washington of Kansas (total of 457 ha. Three basic tests were conducted on the data: (1 spatial dependence on each of the yield and vegetation indices (VIs using Moran’s I test; (2 model selection for the relationship between imagery data and actual yield using ordinary least square regression (OLS and spatial econometric (SPL models; and (3 model validation for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test for both yield and VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge simple ratio, near infrared = NIR and green-NDVI = NDVIG was tested positive and statistically significant for most of the fields (p < 0.05, except for one. Inclusion of spatial adjustment to model improved the model fit on most fields as compared to OLS models, with the spatial adjustment coefficient significant for half of the fields studied. When selected models were used for prediction to validate dataset, a striking similarity (RMSE = 0.02 was obtained between predicted and observed yield within a field. Yield maps could assist implementing more effective site-specific management tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite imagery data can be reasonably used to forecast yield via utilization of models that include spatial adjustment to

  14. Fast and green synthesis of biologically important quinoxalines with high yields in water

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2014-06-01

    Full Text Available Optimal method were developed for the green synthesis of quinoxaline derivatives based on the highly efficient and simple condensation reaction of various aromatic 1,2-diketones and 1,2-diamines in nearly quantitative yields in water. In this method we did not use any catalyst. The very mild reaction conditions, the high yields of the products, and the absence of any catalyst make this methodology an efficient and green route for synthesis of quinoxalines.

  15. Divisional compound hierarchical classification method for regionalization of high, medium and low yield croplands of China

    Science.gov (United States)

    Yuliang, Qiao; Ying, Wang; Jinchun, Liu

    This is an introduction to the method of classifying high, medium and low yield croplands by remote sensing and GIS, which is the result of a key project of The Scientific and Industry Technology Committee of National Defence. In the study, special information related to high, medium and low yield cropland was compounded with TM data. The development of the method of compound hierarchy classification improved accuracy of remote sensing classification greatly.

  16. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  17. Enhanced electron yield from a laser-plasma accelerator using high-Z gas jet targets

    CERN Document Server

    Mirzaie, Mohammad; Li, Song; Sokollik, Thomas; He, Fei; Cheng, Ya; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    An investigation of the multi-hundred MeV electron beam yield (charge) form helium, nitrogen, neon and argon gas jet plasmas in a laser-plasma wakefield acceleration experiment was carried out. The charge measurement has been made via imaging the electron beam intensity profile on a fluorescent screen into a 14-bit charge coupled device (CCD) which was cross-calibrated with nondestructive electronics-based method. Within given laser and plasma parameters, we found that laser-driven low Z- gas jet targets generate high-quality and well-collimated electron beams with reasonable yields at the level of 10-100 pC. On the other hand, filamentary electron beams which were observed from high-Z gas jets at higher densities reached much higher yield. Evidences for cluster formation were clearly observed in high-Z gases, especially in the argon gas jet target where we received the highest yield of ~ 3 nC

  18. Commercial Practice on Technology for High- Temperature Cracking of C4 Fraction to Increase Propylene Yield

    Institute of Scientific and Technical Information of China (English)

    Yu Darong; Zhang Zhigang

    2003-01-01

    This article refers to the results of small-scale and commercial tests on high-temperature cracking of C4 fraction in FCC unit to increase the propylene yield. The bench tests revealed that the conversion rate of C4 fraction during high-temperature cracking reached 37.38 % and propylene yield was equal to 15.60 % with the conversion rate of C4 olefins equating around 50%. The results of commercial application showed that adoption of the technology for high-temperature cracking of C4 fraction in FCC unit had led to an increase of propylene yield by 2.16 % with no remarkable changes in the yields and properties of other products.

  19. Intrinsic and metal-doped gallium oxide based high-temperature oxygen sensors for combustion processes

    Science.gov (United States)

    Rubio, Ernesto Javier

    Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3

  20. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander

    2016-01-01

    Full Text Available Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB2, Al\\Mg alloy, Fe, Ti and Zr in HEMs composition leads to the reduce of the specific impulse and combustion temperature. Replacement of aluminum powder by boron and magnesium in HEM reduces the mass fraction of condensed products in the combustion chamber of solid rocket motor. So, for compositions HEMs with boron and aluminum boride the mass fraction in chamber is reduced by 24 and 36 %, respectively, with respect to the composition HEMs with Al powder. But the mass fraction of CCPs in the nozzle exit increases by 13 % for HEMs with aluminum boride due to the formation of boron oxide in the condensed combustion products. Partial replacement of 2 wt. % aluminum powder by iron and copper additives in HEM leads to the reduce of CCPs mass fraction in chamber by 4–10 % depending on the aluminum powder dispersity duo to these metals are not formed condensed products at the HEMs combustion in chamber.

  1. High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid.

    Science.gov (United States)

    Wang, Yun; Zhang, Dong-Hao; Zhang, Jiang-Yan; Chen, Na; Zhi, Gao-Ying

    2016-01-01

    In this paper, Lipozyme TLIM-catalyzed synthesis of ethyl cinnamate through esterification of cinnamic acid with ethanol was studied. In order to increase the yield of ethyl cinnamate, several media, including acetone, isooctane, DMSO and solvent-free medium, were investigated in this reaction. The reaction showed a high yield by using isooctane as reaction medium, which was found to be much higher than the yields reported previously. Furthermore, several parameters such as shaking rate, water activity, reaction temperature, substrate molar ratio and enzyme loading had important influences on this reaction. For instance, when temperature increased from 10 to 50 °C, the initial reaction rate increased by 18 times and the yield of ethyl cinnamate increased by 6.2 times. Under the optimum conditions, lipase-catalyzed synthesis of ethyl cinnamate gave a maximum yield of 99%, which was of general interest for developing industrial processes for the preparation of ethyl cinnamate.

  2. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Directory of Open Access Journals (Sweden)

    Nathaniel B Lyman

    Full Text Available Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  3. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Science.gov (United States)

    Lyman, Nathaniel B; Jagadish, Krishna S V; Nalley, L Lanier; Dixon, Bruce L; Siebenmorgen, Terry

    2013-01-01

    Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable) rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  4. Analysis on differential expressed genes of ovarian tissue between high- and low-yield laying hen.

    Science.gov (United States)

    Chen, Wei; Song, Ling-Jun; Zeng, Yong-Qing; Yang, Yun; Wang, Hui

    2013-01-01

    In order to elucidate molecular genetic mechanism of laying hen reproduction at the transcriptional level and the structure of significantly differential genes, the mRNA differential display and reverse northern dot-blot were used to detect the differential expression of genes in the ovary tissue of low-yield laying hens and high-yield laying hens in the present study. Sixteen 32-week-old CAU-pink laying hens divided into two groups were used and the laying performance was measured. The results showed that only the egg numbers were significantly different between the two groups; and from 15 primer pairs, a total of 336 bands were displayed of which 59 cDNA bands were found to be differentially expressed in both high-yield and low-yield laying hen. The sequence analysis indicated that the expression of such bands as H-AP5, H-P5, and H-P4 was significantly potentiated in high-yield laying hen using primer pairs AP5/HT11G, P5/HT11G and P4/HT11G and these transcripts had high homology (98%) to HoxDb, HoxCa, and HoxBa, respectively. The differentially expressed gene fragments may be relevant to the progression of the high-yield hens to the egg-laying stage. And further study is required to elucidate the molecular function to improve the productivity of laying hens.

  5. Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Yang, Jungwoo; Kim, Kyoung Heon

    2017-01-11

    To reduce the distillation costs of cellulosic ethanol, it is necessary to produce high sugar titers in the enzymatic saccharification step. To obtain high sugar titers, high biomass loadings of lignocellulose are necessary. In this study, to overcome the low saccharification yields and the low operability of high biomass loadings, a fed-batch saccharification process was developed using an enzyme reactor that was designed and built in-house. After optimizing the cellulase and biomass feeding profiles and the agitation speed, 132.6 g/L glucose and 76.0% theoretical maximum glucose were obtained from the 60 h saccharification of maleic acid-pretreated rice straw at a 30% (w/v) solids loading with 15 filter paper units (FPU) of Cellic CTec2/g glucan. This study demonstrated that through the proper optimization of fed-batch saccharification, both high sugar titers and high saccharification yields are possible, even with using the high solids loading (i.e., ≥30%) with the moderate enzyme loading (i.e., high solids saccharification process in cellulosic fuel and chemical production.

  6. Combustion of Shock-Dispersed Flake Aluminum - High-Speed Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Neuwald, P; Reichenbach, H; Kuhl, A

    2006-06-19

    Charges of 0.5 g PETN were used to disperse 1 g of flake aluminum in a rectangular test chamber of 4 liter inner volume and inner dimensions of approximately 10 cm x 10 cm x 40 cm. The subsequent combustion of the flake aluminum with the ambient air in the chamber gave rise to a highly luminous flame. The evolution of the luminous region was studied by means of high-speed cinematography. The high-speed camera is responsive to a broad spectral range in the visible and near infra-red. For a number of tests this response range was narrowed down by means of a band-pass filter with a center wavelength of 488 nm and a half-width of 23 nm. The corresponding images were expected to have a stronger temperature dependence than images obtained without the filter, thus providing better capability to highlight hot-spots. Emission in the range of the pass-band of the filter can be due to continuous thermal radiation from hot Al and Al{sub 2}O{sub 3} particles or to molecular band emission from gaseous AlO. A time-resolving spectrometer was improvised to inspect this topic. The results suggest that AlO emission occurs, but that the continuous spectrum is the dominating effect in our experiments.

  7. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  8. Study on effects of high pressure injection for DI diesel combustion. Koatsu funsha ni yoru chokufun diesel no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Takahashi, T.; Sami, H. (Toyota Motor Corp., Aichi (Japan)); Nakakita, K.; Osawa, K. (Toyota Centeral Research and Development Lab., Aichi (Japan))

    1990-08-01

    A study was conducted on properties of exhaust gas of diesel engine by using high pressure injection type diesel engine equipped with pressure-reservoir for changing injection pressure, together with improvement of combustion conditions by high pressure injection of fuel. Equipments for the experiments were explained by figures. As for experiment, effects of injection pressure and its timing on emission quantities of NO {sub x} and paticulate were measured. Based upon the obtained results, those were understood that NO {sub x} and particulate were to be reduced by adjusting injection pressure and injection timing, and that, by reducing initial injection pressure, trade-off effect between NO {sub x} and particulate were improved. Observation of combustion conditions by inside-visible engine, those were recognized that low injection pressure caused poor atomization and, by that, delay of vaporization, that propagation of flame rapid to whole combustion room in case of pressure-reservoir type, and that lower injection rate at initial stage suppressed combustion rate and reduced NO {sub x} generation. 4 refs., 16 figs., 3 tabs.

  9. Novel Active Combustion Control Concept for High-Frequency Modulation of Atomized Fuel Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal by Jansen's Aircraft Systems Controls, Inc presents an innovative solution for Active Combustion Control. Relative to the state of the art, this...

  10. Novel Active Combustion Control Concept for High-Frequency Modulation of Atomized Fuel Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal by Jansen's Aircraft Systems Controls, Inc presents an innovative solution for Active Combustion Control. Relative to the state of the art, this...

  11. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  12. Highly resolved numerical simulation of combustion downstream of a rocket engine igniter

    Science.gov (United States)

    Buttay, R.; Gomet, L.; Lehnasch, G.; Mura, A.

    2017-02-01

    We study ignition processes in the turbulent reactive flow established downstream of highly under-expanded coflowing jets. The corresponding configuration is typical of a rocket engine igniter, and to the best knowledge of the authors, this study is the first that documents highly resolved numerical simulations of such a reactive flowfield. Considering the discharge of axisymmetric coaxial under-expanded jets, various morphologies are expected, depending on the value of the nozzle pressure ratio, a key parameter used to classify them. The present computations are conducted with a value of this ratio set to fifteen. The simulations are performed with the massively parallel CREAMS solver on a grid featuring approximately 440,000,000 computational nodes. In the main zone of interest, the level of spatial resolution is D/74, with D the central inlet stream diameter. The computational results reveal the complex topology of the compressible flowfield. The obtained results also bring new and useful insights into the development of ignition processes. In particular, ignition is found to take place rather far downstream of the shock barrel, a conclusion that contrasts with early computational studies conducted within the unsteady RANS computational framework. Consideration of detailed chemistry confirms the essential role of hydroperoxyl radicals, while the analysis of the Takeno index reveals the predominance of a non-premixed combustion mode.

  13. Ozone formation in relation with combustion processes in highly populated urban areas

    Directory of Open Access Journals (Sweden)

    Pasquale Avino

    2015-07-01

    Full Text Available The complex chain of photochemical reactions is one of the most important tasks in the air quality evaluation, expecially in urban areas. In fact, in this case there are high emission levels of NOx and no-methane hydrocarbons by combustion processes such as autovehicular traffic, domestic heating and industrial plants. Ozone is not emitted directly into the atmosphere but it is formed from a complex series of reactions between emitted nitrogen oxides (NOx and reactive organic compounds (ROC. The high ozone concentrations, which occur during photochemical episodes, are usually accompanied by elevated concentrations of other photochemical oxidants such as nitric acid (HNO3, peroxyacylnitrates (PANs, hydrogen peroxide (H2O2, etc. The complex series of these reactions constitutes the most important issue to the degradation of air quality. Further, the NMHCs play a key role in the formation of photochemical air pollution: they are considered as precursors for ozone production at the ground level when the sunlight and nitrogen oxides are present. From a practically point of view defining a quality standard or a limit is substantially correct but it is no sufficient to solve the problem. So it should become necessary to acquire knowledge on the different formation mechanisms of the photochemical pollution phenomena. In this paper there will be shown the results of a long-term study performed in Rome for evaluating the ozone formation in relationship with the autovehicular traffic density.

  14. Effect of Simulated High Hydrogen Content Combustion Environments on Abradable Properties of Ceramic Turbine Coatings

    Science.gov (United States)

    Basu Majumder, Madhura

    Air plasma sprayed (APS) abradable coatings are used in the turbine hot section to reduce the stator-rotor gap, minimizing gas leakage. These coatings are designed to exhibit controlled removal of material in thin layers when the turbine blades sweep through the coating, which protects the mechanical integrity of the turbine blade. In an effort to lower CO2 emissions, high H2 content fuel is being explored. This change in chemical composition of the fuel may affect the microstructure, abradability and durability of the coatings at turbine operational temperatures. The presence of high water vapor in the combustion chamber leads to accelerated degradation of the sacrificial coating materials. In this work, zirconia based composite materials with a machinable phase and varied porosity have been used to study microstructural evolution, thermal and chemical stability of the phases and abradable characteristics of baseline coating systems in both humid and dry environments. Investigation of the mechanisms that control the removal of materials and performance of abradable coatings through thermo-mechanical tests will be discussed.

  15. Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber

    Institute of Scientific and Technical Information of China (English)

    薛晓春; 余永刚; 张琦

    2013-01-01

    To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure in a liquid medium is studied in the cylindrical filling liquid chamber. A series of the jet expansion shapes is obtained by using a high-speed photographic system. The influences of the jet pressure on the jet expansion shape are discussed. Based on the experiments, the three-dimensional mathematical model is established. The expansion processes of the twin gas jets in the liquid medium are simulated by means of fluent to get the pressure, density, temperature, velocity contours and evolutionary process of vortices. Results show that the jet external outline and tops are all irregular. The Kelvin-Helmholtz instability is shown in the whole expansion process. The numerical simulation results of the axial displacement of the twin gas jets in liquid agree well with the experiment.

  16. Highly resolved numerical simulation of combustion downstream of a rocket engine igniter

    Science.gov (United States)

    Buttay, R.; Gomet, L.; Lehnasch, G.; Mura, A.

    2017-07-01

    We study ignition processes in the turbulent reactive flow established downstream of highly under-expanded coflowing jets. The corresponding configuration is typical of a rocket engine igniter, and to the best knowledge of the authors, this study is the first that documents highly resolved numerical simulations of such a reactive flowfield. Considering the discharge of axisymmetric coaxial under-expanded jets, various morphologies are expected, depending on the value of the nozzle pressure ratio, a key parameter used to classify them. The present computations are conducted with a value of this ratio set to fifteen. The simulations are performed with the massively parallel CREAMS solver on a grid featuring approximately 440,000,000 computational nodes. In the main zone of interest, the level of spatial resolution is D/74, with D the central inlet stream diameter. The computational results reveal the complex topology of the compressible flowfield. The obtained results also bring new and useful insights into the development of ignition processes. In particular, ignition is found to take place rather far downstream of the shock barrel, a conclusion that contrasts with early computational studies conducted within the unsteady RANS computational framework. Consideration of detailed chemistry confirms the essential role of hydroperoxyl radicals, while the analysis of the Takeno index reveals the predominance of a non-premixed combustion mode.

  17. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    Science.gov (United States)

    2013-07-01

    field strength in the discharge. In order to clarify this phenomenon, further study on the gas analysis within the ozone gas by an FTIR spectrometer...31st ICPIG, July 14-19, 2013, Granada, Spain Investigation of ozone yield of air fed ozonizer by high pressure homogeneous dielectric barrier... ozonizer and found that the ozone yield is higher by the homogeneous discharge mode than by the conventional filamentary discharge mode in larger

  18. High-resistance controlled yielding supporting technique in deep-well oil shale roadways

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Bai Jianbiao; Wang Xiangyu; Wang Junde; Xue Shizhi; Xu Ke

    2014-01-01

    In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is:to‘resist’ by high pre-tightening force and high stiff-ness in the early stage, to‘yield’ by making use of the controlled deformation of a yielding tube in the middle stage, and to‘fix’ by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of‘high pre-tightening force yielding anchor bolt+small-bore pre-tight-ening force anchor cable+rebar ladder beam+rhombic metal mesh+lagging gunite’ has been estab-lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rhe-ology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.

  19. Application and Comparison of Different Combustion Models of High Pressure LOX/CH4 Jet Flames

    OpenAIRE

    Maria Grazia De Giorgi; Aldebara Sciolti; Antonio Ficarella

    2014-01-01

    The present work focuses on the numerical modeling of combustion in liquid-propellant rocket engines. Pressure and temperature are well above thermodynamic critical points of both the propellants and then the reactants show liquid-like characteristics of density and gas-like characteristics for diffusivity. The aim of the work is an efficient numerical description of the phenomena and RANS simulations were performed for this purpose. Hence, in the present work different kinetics, combustion ...

  20. Growth and development characteristics of super-high-yielding mid-season japonica rice

    Institute of Scientific and Technical Information of China (English)

    YANG Jianchang; DU Yong; WU Changfu; LIU Lijun; WANG Zhiqin; ZHU Qingsen

    2007-01-01

    Rice is one of the most important food crops in China.The realization of the super-high-yielding (SHY)type has great significance in ensuring food security in this country.This study investigated the growth and development characteristics of the super-high-yielding rice (grain yield>11 t/hm2).Four mid-season japonica rice cultivars (including lines):Lianjiajing 2,Huajing 5,0026 and 9823,were grown in the paddy field.Growth analysis was performed during the growth period,and yield components were determined at maturity.Results showed that SHY rice had more sipkelets per panicle and higher filled-grain percentage than the high-yielding rice (CK,grain yield 8.98-9.16 t/hm2).There was no significant difference in the 1 000-grain weight between the super-high-yielding and the CK.Super-high-yield rice exhib ited fewer tillers at the early growth stage (from transplanting to jointing),with a higher ratio of productive tillers to total tillers,when compared with the CK.The leaf area index (LAI),photosynthetic potential and dry matter accumulation were lower for the SHY rice than those for the CK at the early growth stage,and the differences were not significant between the two rice types at heading,but were greater in the former than the latter after heading.The root-shoot ratio at each growth stage,root bleedings from heading to maturity,grain-leaf ratio,translocation percentage of the matter from stems and sheaths and harvest index of super-high-yielding rice were greater than those of CK.The indexes for the growth and development of SHY mid-season rice population were suggested,i.e.total spikelets>4.5×104/m2,filled-grain percentage>90%,1 000-grain weight>26 g;ratio of productive tillers>80%,leaf area index at heading 7.5-8.0,photosynthetic potential during the whole growth period >22 t/hm2,harvest index>0.51;grain-leaf ratio (number of spikelets per cm2 leaf area)>0.58;root-shoot ratio at heading tion approaches and key cultivation techniques for raising the

  1. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  2. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids.

    Science.gov (United States)

    Sasikala, Suchithra Padmajan; Henry, Lucile; Yesilbag Tonga, Gulen; Huang, Kai; Das, Riddha; Giroire, Baptiste; Marre, Samuel; Rotello, Vincent M; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-05-24

    This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are ∼3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 kΩ/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials.

  3. Preliminary Study on PAHs Distribution in High-grade Oil Shale and Its Spontaneous Combustion Product in Fushun, Liaoning Province

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liping; ZENG Rongshu; XU Wendong

    2007-01-01

    Spontaneous combustion of oil shale is very common as a result of long-time exposure to the air in the Fushun West Open-Pit Mine and West Dump. The PAHs in the high-grade oil shale and its spontaneous combustion product were analyzed semiquantitatively by GC-MS in order to investigate their distribution in different states and their potential negative effects on the environment. Totally 57and 60 PAHs and their alkyl homologues were identified in the two analyzed samples, among which the alkyl derivatives were predominant, taking up to about 65 % in the total PAHs. Those low-molecular mass PAHs (3- or 4-ring) were the main compounds in the two samples. Ten of sixteen USEPA priority pollutant PAHs were detected in two samples, of which phenanthrene was the richest whose contents were 6.93% and 15.03%. Based on comparison of analysis results, the amount and contents of PAHs,except for triaromatic steroid group, were higher in the burning oil shale. So it can be determined that the effects caused by spontaneous combustion of oil shale would be more serious and that the effects of the Fushun oil shale and its spontaneous combustion on the environment should not be ignored in the future work.

  4. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  5. Metabolic characterization of high- and low-yielding strains of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Christensen, Bjarke; Thykær, Jette; Nielsen, Jens

    2000-01-01

    A recently developed method for analyzing metabolic networks using C-13-labels was employed for investigating the metabolism of a high- and a low-yielding strain of Penicillium chrysogenum. Under penicillin-producing conditions, the flux through the pentose phosphate (PP) pathway in the high...

  6. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    in terms of a detailed chemical kinetic mechanism for hydrocarbon oxidation. On the basis of results of the present study, it can be expected that oxy-fuel combustion will lead to strongly increased CO concentrations in the near-burner region. The CO2 present will compete with O-2 for atomic hydrogen......The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... and lead to formation of CO through the reaction CO2 + H reversible arrow CO + OH. Reactions of CO2 with hydrocarbon radicals may also contribute to CO formation. The most important steps are those of singlet and triplet CH2 with CO2, while other radicals such as CH3 and CH are less important for consuming...

  7. Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods

    KAUST Repository

    Rachidi, Mariam El

    2015-01-01

    This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and C{single bond}C/C{single bond}O β-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and β-scission at the α-β C{single bond}C bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics. © 2014.

  8. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    Science.gov (United States)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.

    2017-01-01

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807

  9. Sputtering yields of carbon based materials under high particle flux with low energy

    Science.gov (United States)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-04-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.

  10. Introgression of High Yield Genes from Lycopersicon hirsutum acc. LA1777 Using CAPS Marker

    Institute of Scientific and Technical Information of China (English)

    LI Hong; WANG Xiao-xuan; SONG Ming; GAO Jian-chang; GUO Yan-mei; ZHU De-wei; DAI Shan-shu; DU Yong-chen

    2007-01-01

    The idea behind this study is to show that using high yield genes from a wild tomato can enrich tomato breeding resources and accelerate tomato breeding programs. In this study, the near-isogenic line TA1229 containing a 24-cM introgression at the bottom of chromosome 1 from Lycopersicon acc. LA1777, affects several higher yield traits. The TA1229 × 9706 BC1population was analyzed by marker-assisted selection and the traits of the population were evaluated. Twenty-three recombinant individuals that carried a shorter segment than TA1229 were obtained. Among them, 16 lines with the chromosome 1 recombinant segment can increase tomato yield and a QTL affecting yield was found between TG53 and TG158. Sixteen recombinant lines are useful to improve the tomato variety.

  11. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice.

    Science.gov (United States)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P; Lovell, John T; Moyers, Brook T; Baraoidan, Marietta; Naredo, Maria Elizabeth B; McNally, Kenneth L; Poland, Jesse; Bush, Daniel R; Leung, Hei; Leach, Jan E; McKay, John K

    2017-02-21

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.

  12. Controlled Fabrication of High-Yield CdS Nanostructures by Compartment Arrangement

    Directory of Open Access Journals (Sweden)

    Joshua M. Green

    2008-01-01

    Full Text Available High-yield, high-purity CdS nanostructures were synthesized in a turf-like configuration using an improved vapor-liquid-solid method. To increase the yield, a compartment arrangement was employed. The specific kind of nanostructure fabricated was found to be directly dependent on the temperature in the compartment. Along with the high-yield growth of CdS nanorods, nanowires, and nanobelts, intertwined structures were also observed, and the electron field emission property of the intertwined structures was investigated and compared with that of other type of nanostructures. Photoluminescence measurements at 10 K showed a peak emission from the CdS nanostructures at 485 nm.

  13. [Effects of nitrogen fertilization on population dynamics and yield of high-yielding wheat and on alteration of soil nitrogen].

    Science.gov (United States)

    Ye, You-Liang; Wang, Gui-Liang; Zhu, Yun-Ji; Li, Huan-Huan; Huang, Yu-Fang

    2010-02-01

    Taking wheat varieties Yumai 49-198 (multi-spike phenotype) and Lankao Aizao 8 (large-spike phenotype) as test materials, field experiments were conducted at Wenxian and Lankao sites of Henan Province to study the effects of nitrogen fertilization on their population dynamics and yield and on the alteration of soil nitrogen. Five nitrogen application rates, i. e., 0, 90, 180, 270, and 360 N kg x hm(-2) were installed. The population amount of the two test varieties were all increased after emergence, reached the highest at jointing stage, and decreased afterwards. As for Yumai 49-198, its population amount had no significant differences at wintering and turning-green stages among the five nitrogen application rates and two experimental sites, but differed significantly after jointing stage with the nitrogen application rates. For Lankao Aizao 8, its population amount had no significant differences among the nitrogen application rates during whole growth period. The grain yield of the two varieties increased with the increase of nitrogen fertilization rate, but excessive nitrogen fertilization decreased the grain yield. Yumai 49-198 had the highest yield at 270 N kg x hm(-2), being 9523 and 9867 kg x hm(-2) at Wenxian and Lanako sites, respectively, while Lankao Aizao 8 had the highest yield at 180 N kg x hm(-2), being 9258 and 9832 kg x hm(-2) at Wenxian and Lanako sites, respectively. With the increase of nitrogen fertilization rate, soil nitrate N concentration and apparent nitrogen loss increased. At Wenxian and Lankao sites, the apparent soil nitrogen loss for Yumai 49-198 was 32.56% - 51.84% and - 16.7% - 42.6% of fertilized nitrogen, and that for Lankao Aizao 8 was 18.58% - 52.94% and - 11.5% - 45.8% of fertilized nitrogen, respectively. Considering the yield and environmental effect comprehensively, the nitrate N concentration in 0-90 cm soil layer in our case should not be exceeded 120 - 140 kg x hm(-2), and the maximal nitrogen application rate should not

  14. A New High-Yielding Two-line Hybrid Rice Variety - Peiliang You 981

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Peiliang You 981 (also called 98 Guangzhi 1 or Peiliang You Guangzhi 1) is a late-season two-line indica hybrid rice variety with high yield and late maturity. Pei'ai 64S is the female parent and R981 (Guang 1) is the male parent of Peiliang You 981. The hybrid showed its characters of high and stable yield and wide adaptability in the variety trials and demonstration production in the recent years, and it was released in March 2002 by Hunan Crop Varieties Release Committee.

  15. Property Evaluation Method Using Spherical Indentation for High-Yield Strength Materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngsick; Marimuthu, Karuppasamy Pandian; Lee, Hyungyil [Sogang Univ., Seoul (Korea, Republic of); Lee, Jin Haeng [KAERI, Daejeon (Korea, Republic of)

    2015-11-15

    In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.

  16. Property evaluation method using spherical indentation for high-yield strength materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Sick; Marimuthu, Karuppasamy Pandian; Lee, Hyung Yil [Dept. of Mechanical Engineering, Sogang University, Seoul (Korea, Republic of); Lee, Jin Haeng [Reactor Mechanical Engineering Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-11-15

    In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10 GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.

  17. Characterization of high-yield performance as affected by genotype and environment in rice

    Institute of Scientific and Technical Information of China (English)

    Song CHEN; Fang-rong ZENG; Zong-zhi PAO; Guo-ping ZHANG

    2008-01-01

    We characterized yield-relevant characters and their variations over genotypes and environments (locations and years) by examining two rice varieties (9746 and Jinfeng) with high yield potential.9746 and Jinfeng were planted in two locations of Shanghai,China,during 2005 and 2006.The results show that there was a large variation in grain yield between locations and years.The realization of high yield potential for the two types of rice was closely related to the improved sink size,such as more panicles per square meter or grains per panicle.Stem and leaf biomasses were mainly accumulated from tillering stage to heading stage,and showed slow decline during grain filling.Meanwhile,some photosynthetic characters including net photosynthesis rate (Pn),leaf area index (LAI),specific leaf area (SLA),fluorescence parameter (maximum quantum yield of PSII,Fv/Fm),chlorophyll content (expressed as SPAD value),as well as nutrient (N,P,K) uptake were also measured to determine their variations over genotypes and environments and their relationships with grain yield.Although there were significant differences between years or locations for most measurements,SLA at tillering and heading stages,Fv/Fm and LAI at heading stage,stem biomass at heading and maturity stages,and leaf nitrogen concentration at tillering and heading stages remained little changed,indicating their pos-sible applications as selectable characters in breeding programs.It was also found that stem nitrogen accumulation at tillering stage is one of the most important and stable traits for high yield formation.

  18. Application and Comparison of Different Combustion Models of High Pressure LOX/CH4 Jet Flames

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-01-01

    Full Text Available The present work focuses on the numerical modeling of combustion in liquid-propellant rocket engines. Pressure and temperature are well above thermodynamic critical points of both the propellants and then the reactants show liquid-like characteristics of density and gas-like characteristics for diffusivity. The aim of the work is an efficient numerical description of the phenomena and RANS simulations were performed for this purpose. Hence, in the present work different kinetics, combustion models and thermodynamic approaches were used for combustion modeling first in a trans-critical environment, then in the sub-critical state. For phases treatment the pure Eulerian single phase approach was compared with the Lagrangian/Eulerian description. For modeling combustion, the Probability Density Function (PDF equilibrium and flamelet approaches and the Eddy Dissipation approach, with two different chemical kinetic mechanisms (the Jones-Lindstedt and the Skeletal model, were used. Real Gas (Soave-Redlich-Kwong and Peng-Robinson equations were applied. To estimate the suitability of different strategies in phenomenon description, a comparison with experimental data from the literature was performed, using the results for different operative conditions of the Mascotte test bench: trans-critical and subcritical condition for oxygen injection. The main result of this study is the individuation of the DPM approach of the most versatile methods to reproduce cryogenic combustion adapted for different operating conditions and producing good results.

  19. Yield behaviour associated with stacking faults in a high-temperature annealed ultra-low carbon high manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Liming [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Fan, Likun [Shanghai Research Institute of Materials, 99 Handan Road, Shanghai, 200437 (China); Li, Zhigang; Sun, Nairong [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Wang, Huanrong; Wang, Wei [Baosteel Research Institute, 889 Fujin Road, Shanghai, 201900 (China); Shan, Aidang, E-mail: adshan@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2013-10-10

    This paper investigated the tensile behaviour of high-temperature annealed ultra-low carbon high manganese steel with 42 vol% delta-ferrite. The results show that the tensile stress-strain curve of plastic deformation exhibits three distinct stages of deformation: a yielding stage with a remarkably large elongation and a positive strain-hardening rate, a second stage in which the strain-hardening rate rapidly increases, and a third stage in which the strain-hardening rate slowly increase. The yield plateau is intrinsically associated with the increasing formation of strain-induced stacking faults. The stacking faults quickly form during yield deformation, and the yield elongation monotonically increases with the extent of the stacking faults. The localised strain concentration of delta-ferrite and the heterogeneous strain partitioning between harder delta-ferrite and softer austenite play important roles in the rapid formation of stacking faults during strain at the yield plateau, which is an important prerequisite for this yielding phenomenon. The results and analysis demonstrate that the rapid and then slow hardening deformation after the yield plateau result from strain-induced transformation and deformation twinning, respectively.

  20. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  1. Mechanical model for yield strength of nanocrystalline materials under high strain rate loading

    Institute of Scientific and Technical Information of China (English)

    朱荣涛; 周剑秋; 马璐; 张振忠

    2008-01-01

    To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations.

  2. Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol

    Science.gov (United States)

    Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.

    2017-04-01

    Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.

  3. Use of Iron Powder to Obtain High Yields of Leptothrix Sheaths in Culture

    Directory of Open Access Journals (Sweden)

    Tomoko Suzuki

    2015-06-01

    Full Text Available The Leptothrix species, Fe-oxidizing bacteria, produce an extracellular, microtubular sheath with a complicated organic–inorganic hybrid nature. We have discovered diverse industrial functions for this material, e.g., electrode material for Li-ion batteries, catalyst enhancers, pigments, plant growth promoters, and plant protectants. To consistently obtain material with the qualitative and quantitative stability needed for industrial applications, we focused on developing an optimum culture system for sheath synthesis by the Leptothrix sp. strain OUMS1. Although we have used Fe plates as an Fe source in the liquid silicon-glucose-peptone medium (SGP, the plates do not yield a consistent quality or precise mass, and formation of Fe-encrusted sheath is restricted to a surface of the plates, which limits harvest yield. In this study, to obtain a high yield of sheaths, we cultured OUMS1 in SGP supplemented with Fe powders. The addition of Fe powders to the medium (up to 14.0 g/L did not adversely influence growth of OUMS1. The final yield of sheaths was about 10-fold greater than in the Fe plate culture. The sheaths also maintained a microtubular form and crystalline texture similar to those produced on Fe plates in SGP. The results proved the usefulness of Fe powder for consistently high yields of Fe-encrusted sheaths of stable quality.

  4. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  5. High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Melzak; Tim Lieuwen; Adel Mansour

    2012-01-31

    The goal of this program was to develop and demonstrate fuel injection technologies that will facilitate the development of cost-effective turbine engines for Integrated Gasification Combined Cycle (IGCC) power plants, while improving efficiency and reducing emissions. The program involved developing a next-generation multi-point injector with enhanced stability performance for lean premix turbine systems that burn hydrogen (H2) or synthesis gas (syngas) fuels. A previously developed injector that demonstrated superior emissions performance was improved to enhance static flame stability through zone staging and pilot sheltering. In addition, piezo valve technology was implemented to investigate the potential for enhanced dynamic stability through high-bandwidth modulation of the fuel supply. Prototype injector and valve hardware were tested in an atmospheric combustion facility. The program was successful in meeting its objectives. Specifically, the following was accomplished: Demonstrated improvement of lean operability of the Parker multi-point injector through staging of fuel flow and primary zone sheltering; Developed a piezo valve capable of proportional and high-bandwidth modulation of gaseous fuel flow at frequencies as high as 500 Hz; The valve was shown to be capable of effecting changes to flame dynamics, heat release, and acoustic signature of an atmospheric combustor. The latter achievement indicates the viability of the Parker piezo valve technology for use in future adaptively controlled systems for the mitigation of combustion instabilities, particularly for attenuating combustion dynamics under ultra-lean conditions.

  6. 板栗丰产栽培技术%High-yield Cultivation Technology of Chestnuts

    Institute of Scientific and Technical Information of China (English)

    李明杰; 于海洋; 孙少娟; 吴岩

    2011-01-01

    In view of the biological characteristics of chestnuts, several key technical points of high-yield cultivation of chestnuts are presented.%针对板栗的生物学特性,对栗树的丰产栽培提出几项技术要点。

  7. Surrogate models for identifying robust, high yield regions of parameter space for ICF implosion simulations

    Science.gov (United States)

    Humbird, Kelli; Peterson, J. Luc; Brandon, Scott; Field, John; Nora, Ryan; Spears, Brian

    2016-10-01

    Next-generation supercomputer architecture and in-transit data analysis have been used to create a large collection of 2-D ICF capsule implosion simulations. The database includes metrics for approximately 60,000 implosions, with x-ray images and detailed physics parameters available for over 20,000 simulations. To map and explore this large database, surrogate models for numerous quantities of interest are built using supervised machine learning algorithms. Response surfaces constructed using the predictive capabilities of the surrogates allow for continuous exploration of parameter space without requiring additional simulations. High performing regions of the input space are identified to guide the design of future experiments. In particular, a model for the yield built using a random forest regression algorithm has a cross validation score of 94.3% and is consistently conservative for high yield predictions. The model is used to search for robust volumes of parameter space where high yields are expected, even given variations in other input parameters. Surrogates for additional quantities of interest relevant to ignition are used to further characterize the high yield regions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697277.

  8. Comparing high density LIDAR and medium resolution GPS generated elevation data for predicting yield stability

    Science.gov (United States)

    High density light detection and ranging (LIDAR) imaging has been shown to be able to define yield stability areas of a field for multi-cropping. Since LIDAR imaging is expensive and not widely available, we hypothesized that medium resolution GPS elevation data which is commonly collected with var...

  9. CULTIVAR RELEASE - FAEM Carlasul: new white oat cultivar with high grain yield

    Directory of Open Access Journals (Sweden)

    Antônio Costa de Oliveira

    2012-01-01

    Full Text Available The white oat cultivar FAEM Carlasul was developed at the Plant Genomics and Breeding Center, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, as a result of the cross between UFRGS 10 and 90SAT-28 (Coronado2/Cortez3/Pendek/ME 1563. It is characterized by high yield and grain quality.

  10. 31 CFR 356.21 - How are awards at the high yield or discount rate calculated?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are awards at the high yield or discount rate calculated? 356.21 Section 356.21 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT SALE...

  11. Engineering of High Yield Production of L-serine in Escherichia coli

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre

    2016-01-01

    L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E. coli MG1655 was prevente...

  12. Lab-on-Chip platform for high-yield electrofusion in droplets

    NARCIS (Netherlands)

    Schoeman, R.M.; Braak, ter P.M.; Bomer, J.G.; Berg, van den A.

    2014-01-01

    In this article, we present a microfluidic device, consisting of a microchannel structure in PDMS bonded to a glass substrate with recessed platinum electrodes. Our device is capable of successive high-yield single cell encapsulation in droplets, with additional droplet pairing, fusion, shrinkage an

  13. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  14. Barbarasul: a high-yielding and lodging-resistant white oat cultivar

    Directory of Open Access Journals (Sweden)

    Fernando Irajá Félix de Carvalho

    2009-01-01

    Full Text Available The white-oat cultivar Barbarasul was developed by the Universidade Federal de Pelotas. It resulted from across between UPF18 and CTC5. It is adapted to the southern region of Brazil, with excellent grain yield potential, shortstature and high lodging tolerance.

  15. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  16. Improved forage strategies for high-yielding dairy cows in Vietnam : report of a workshop

    NARCIS (Netherlands)

    Wouters, A.P.; Lee, van der J.

    2013-01-01

    This report presents results of the workshop "Improved forage strategies for high-yielding dairy cows in Vietnam" which was held with Vietnamese stakeholders on January 17-18, 2013 in Ho Chi Minh City as part of the project "Forage and Grass Production for Dairy Development in Vietnam" funded by the

  17. Personalized implant for high tibial opening wedge: combination of solid freeform fabrication with combustion synthesis process.

    Science.gov (United States)

    Zhim, Fouad; Ayers, Reed A; Moore, John J; Moufarrège, Richard; Yahia, L'Hocine

    2012-09-01

    In this work a new generation of bioceramic personalized implants were developed. This technique combines the processes of solid freeform fabrication (SFF) and combustion synthesis (CS) to create personalized bioceramic implants with tricalcium phosphate (TCP) and hydroxyapatite (HA). These porous bioceramics will be used to fill the tibial bone gap created by the opening wedge high tibial osteotomy (OWHTO). A freeform fabrication with three-dimensional printing (3DP) technique was used to fabricate a metallic mold with the same shape required to fill the gap in the opening wedge osteotomy. The mold was subsequently used in a CS process to fabricate the personalized ceramic implants with TCP and HA compositions. The mold geometry was designed on commercial 3D CAD software. The final personalized bioceramic implant was produced using a CS process. This technique was chosen because it exploits the exothermic reaction between P₂O₅ and CaO. Also, chemical composition and distribution of pores in the implant could be controlled. To determine the chemical composition, the microstructure, and the mechanical properties of the implant, cylindrical shapes were also fabricated using different fabrication parameters. Chemical composition was performed by X-ray diffraction. Pore size and pore interconnectivity was measured and analyzed using an electronic microscope system. Mechanical properties were determined by a mechanical testing system. The porous TCP and HA obtained have an open porous structure with an average 400 µm channel size. The mechanical behavior shows great stiffness and higher load to failure for both ceramics. Finally, this personalized ceramic implant facilitated the regeneration of new bone in the gap created by OWHTO and provides additional strength to allow accelerated rehabilitation.

  18. High resolution fossil fuel combustion CO2 emission fluxes for the United States.

    Science.gov (United States)

    Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-07-15

    Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  19. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-03-19

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  20. High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx.

    Science.gov (United States)

    Martín, Nuria; Moliner, Manuel; Corma, Avelino

    2015-06-21

    The synthesis of chabazite with high solid yields is achieved by the rational combination of directing effects of a source of Si and Al coming from USY zeolites and the inexpensive tetraethylammonium. Moreover, Cu-CHA materials prepared by post-synthetic and "one-pot" methodologies show high activity and stability for SCR of NOx.

  1. Root-determined hypernodulation mutant of Lotus japonicus shows high-yielding characteristics.

    Science.gov (United States)

    Yokota, Keisuke; Li, Yong Yi; Hisatomi, Masahiro; Wang, Yanxu; Ishikawa, Kaori; Liu, Chi-Te; Suzuki, Shino; Aonuma, Kho; Aono, Toshihiro; Nakamoto, Tomomi; Oyaizu, Hiroshi

    2009-07-01

    Here we report the phenotypic characteristics of a novel hypernodulation mutant, Ljrdh1 (root-determined hypernodulation 1) of Lotus japonicus. At 12 weeks after rhizobial inoculation, there were no differences between the growth of Ljrdh1 and, wild-type. However, Ljrdh1 showed 2 to 3 times higher nitrogen-fixing activity, and seed and pod yields, were approximately 50% higher than the wild-type. This is the first report of a legume hypernodulation mutant showing normal growth and a high-yielding characteristic under optimal cultivation conditions.

  2. Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF

    Science.gov (United States)

    Köser, J.; Becker, L. G.; Vorobiev, N.; Schiemann, M.; Scherer, V.; Böhm, B.; Dreizler, A.

    2015-12-01

    This work presents first-of-its-kind high-speed planar laser-induced fluorescence measurements of the hydroxyl radical in the boundary layer of single coal particles. Experiments were performed in a laminar flow reactor providing an oxygen-enriched exhaust gas environment at elevated temperatures. Single coal particles in a sieve fraction of 90-125 µm and a significant amount of volatiles (36 wt%) were injected along the burner's centerline. Coherent anti-Stokes Raman spectroscopy measurements were taken to characterize the gas-phase temperature. Time-resolved imaging of the OH distribution at 10 kHz allowed identifying reaction and post-flame zones and gave access to the temporal evolution of burning coal particles. During volatile combustion, a symmetric diffusion flame was observed around the particle starting from a distance of ~150 µm from the particle surface. For subsequent char combustion, this distance decreased and the highest OH signals appeared close to the particle surface.

  3. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  4. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.

    2013-11-21

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  5. Efficient Defect Engineering for Solution Combustion Processed In-Zn-O thin films for high performance transistors

    Science.gov (United States)

    Liang, Xiaoci; Wang, Chengcai; Liang, Jun; Liu, Chuan; Pei, Yanli

    2017-09-01

    The oxygen related defects in the solution combustion-processed InZnO vitally affect the field-effect mobility and on-off characteristics in thin film transistors (TFTs). We use photoelectron spectroscopy to reveal that these defects can be well controlled by adjusting the atmosphere and flow rate during the combustion reaction, but are hardly affected by further post-annealing after the reaction. In device performance, the threshold voltage of the InZnO-TFTs was regulated in a wide range from 3.5 V to 11.0 V. To compromise the high field-effect mobility and good subthreshold properties, we fabricate the TFTs with double active layers of InZnO to achieve vertical gradience in defect distribution. The resulting TFT exhibits much higher field-effect mobility as 17.5 cm2 · V-1 · s-1, a low reversed sub-threshold slope as 0.35 V/decade, and a high on-off ratio as 107. The presented understandings and methods on defect engineering are efficient in improving the device performance of TFTs made from the combustion reaction process.

  6. Release of K, Cl, and S during Pyrolysis and Combustion of High-Chlorine Biomass

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jakobsen, Jon Geest; Frandsen, Flemming

    2011-01-01

    ranging from 500 to 1150 °C, under both pyrolysis and combustion atmospheres. The volatilized material was quantified by means of mass balances based on char and ash elemental analysis, compared to a corresponding feedstock fuel analysis. Close relations between the observed K and Cl release are found...

  7. Flame Acceleration and Transition to Detonation in High Speed Turbulent Combustion

    Science.gov (United States)

    2016-12-21

    Obstacles, G.B. Goodwin, R.\\i\\r. Houim, E.S. Oran, Combustion and Flame, 173, 16-26, 2016. The Role of Spontaneous ·w aves in the DeBagra.tion-to...Goodwin, R. Houim, and E. Oran, 36th International Symposium on Com- bustion, Seoul, Korea, August 2016. Effects of Pressure \\\\" aves on the Stability

  8. Theoretical Combustion Performance of Several High-Energy Fuels for Ramjet Engines

    Science.gov (United States)

    Tower, Leonard K; Breitwieser, Roland; Gammon, Benson E

    1958-01-01

    An analytical evaluation of the air and fuel specific-impulse characteristics of magnesium, magnesium octene-1 slurries, aluminum, aluminum octene-1 slurries, boron, boron octene-1 slurries, carbon, hydrogen, alpha-methylnaphthalene, diborane, pentaborane, and octene-1 is presented. While chemical equilibrium was assumed in the combustion process, the expansion was assumed to occur at fixed composition.

  9. Management of high sulfur coal combustion residues, issues and practices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Beasley, G.A. [eds.

    1994-10-01

    Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization

    CERN Document Server

    Khruschov, V V; Nadyozhin, D K; Fomichev, S V

    2014-01-01

    The relative yields of active and sterile neutrinos in the matter with a high density and different degree of neutronization are calculated. A significant increase in the proportion of sterile neutrinos produced in superdense matter when approaching the medium neutronization degree to value of two is found. The results obtained can be used in the calculations of the neutrino fluxes for media with a high density and different neutronization degrees in astrophysical processes such as the formation of protoneutron core of a supernova.

  11. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

    Science.gov (United States)

    Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

  12. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  13. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Directory of Open Access Journals (Sweden)

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.

  14. Rice Breeding for High Grain Yield under Drought: A Strategic Solution to a Complex Problem

    Directory of Open Access Journals (Sweden)

    Shalabh Dixit

    2014-01-01

    Full Text Available Drought is one of the major abiotic stresses that affect rice production in rainfed areas. Recent trends in climate change have predicted a further increase in drought intensity, making the development of new drought-tolerant rice cultivars critical to sustain rice production in this ecosystem. The use of grain yield as a selection criterion at the International Rice Research Institute (IRRI, through proper population development and precise phenotyping techniques, has allowed the development of several high-yielding rice cultivars that have been released in major rainfed rice-growing areas. This strategy has also allowed the identification of several major quantitative trait loci (QTLs that show large effects under drought across environments and genetic backgrounds. These QTLs are being pyramided together to develop drought-tolerant versions of popular drought-susceptible varieties. The near-isogenic lines (NILs developed can replace the popular, high-yielding but drought-susceptible varieties in rainfed areas prone to drought. Additionally, these NILs serve as suitable genetic material for the study of molecular and physiological mechanisms underlying these QTLs. This may provide a better understanding of plant functions responsible for high grain yield under drought and lead to the identification of new traits and genes.

  15. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  16. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.

    Science.gov (United States)

    Navarro, Pilar; Savoie, Jean-Michel

    2015-01-01

    To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  17. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg

    2013-10-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  18. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    Science.gov (United States)

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  19. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets.

    Science.gov (United States)

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-29

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  20. Combustion of coffee husks

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, M.; Hartge, E.-U.; Werther, J. [Technical Univ. Hamburg-Harburg, Chemical Engineering 1, Hamburg (Germany); Ogada, T.; Siagi, Z. [Moi Univ., Dept. of Production Engineering, Eldoret (Kenya)

    2001-05-01

    Combustion mechanisms of two types of coffee husks have been studied using single particle combustion techniques as well as combustion in a pilot-scale fluidized bed facility (FBC), 150 mm in diameter and 9 m high. Through measurements of weight-loss and particle temperatures, the processes of drying, devolatilization and combustion of coffee husks were studied. Axial temperature profiles in the FBC were also measured during stationary combustion conditions to analyse the location of volatile release and combustion as a function of fuel feeding mode. Finally the problems of ash sintering were analysed. The results showed that devolatilization of coffee husks (65-72% volatile matter, raw mass) starts at a low temperature range of 170-200degC and takes place rapidly. During fuel feeding using a non water-cooled system, pyrolysis of the husks took place in the feeder tube leading to blockage and non-uniform fuel flow. Measurements of axial temperature profiles showed that during under-bed feeding, the bed and freeboard temperatures were more or less the same, whereas for over-bed feeding, freeboard temperatures were much higher, indicating significant combustion of the volatiles in the freeboard. A major problem observed during the combustion of coffee husks was ash sintering and bed agglomeration. This is due to the low melting temperature of the ash, which is attributed to the high contents of K{sub 2}O (36-38%) of the coffee husks. (Author)

  1. Surface studies and implanted helium measurements following NOVA high-yield DT experiments

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M.A.; Hudson, G.B.

    1997-02-18

    This paper presents the results of three March 6, 1996 direct-drive high-yield DT NOVA experiments and provides `proof-of-principal` results for the quantitative measurement of energetic He ions. Semiconductor quality Si wafers and an amorphous carbon wafer were exposed to NOVA high-yield implosions. Surface damage was sub-micron in general, although the surface ablation was slightly greater for the carbon wafer than for the Si wafers. Melting of a thin ({approx} 0.1{mu}) layer of Si was evident from microscopic investigation. Electron microscopy indicated melted blobs of many different metals (e.g. Al, Au, Ta, Fe alloys, Cu and even Cd) on the surfaces. The yield measured by determining the numbers of atoms of implanted {sup 4}He and {sup 3}He indicate the number of DT fusions to be 9.1({plus_minus}2.3) X 10{sup 12} and DD fusions to be 4.8({plus_minus}1.0) x 10{sup 10}, respectively. The helium DT fusion yield is slightly lower than that of the Cu activation measurement, which was 1.3({plus_minus}0.l) x 10{sup 13} DT fusions.

  2. Study on Plant Morphological Traits and Production Characteristics of Super High-Yielding Soybean

    Institute of Scientific and Technical Information of China (English)

    AO Xue; XIE Fu-ti; HAN Xiao-ri; ZHAO Ming-hui; ZHU Qian; LI Jie; ZHANG Hui-jun; WANG Hai-ying; YU Cui-mei; LI Chun-hong; YAO Xing-dong

    2013-01-01

    Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages;the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments

  3. Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Cho, Yonghwan; Shin, Dongjoon; Choi, Wonjoon

    2015-07-01

    Combustion wave propagation in micro/nanostructured materials generates a chemical-thermal-electrical energy conversion, which enables the creation of an unusual source of electrical energy, called a thermopower wave. In this paper, we report that high electrical resistance regimes would significantly amplify the output voltage of thermopower waves, because the current crowding creates a narrow path for charge carrier transport. We show that the structurally defective regions in the hybrid composites of chemical fuels and carbon nanotube (CNT) arrays determine both the resistance levels of the hybrid composites and the corresponding output voltage of thermopower waves. A sudden acceleration of the crowded charges would be induced by the moving reaction front of the combustion wave when the supplied driving force overcomes the potential barrier to cause charge carrier transport over the defective region. This property is investigated experimentally for the locally manipulated defective areas using diverse methods. In this study, thermopower waves in CNT-based hybrid composites are able to control the peak voltages in the range of 10-1000 mV by manipulating the resistance from 10 Ω to 100 kΩ. This controllable voltage generation from thermopower waves may enable applications using the combustion waves in micro/nanostructured materials and better understanding of the underlying physics.

  4. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2016-01-01

    Full Text Available 4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The results showed that the burnout rate was increased after adding the additives; meanwhile, the NOX and SO2 release concentration were reduced, but the degree of action varied for different additives and coals. The substitute of chemical reagents by industrial wastes was very effective; overall, the cold-rolled iron oxide worked better than others; the particles surface was tougher and the peaks of crystalline phase were lower than raw coal, which indicated that the additives played good roles in combustion process.

  5. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    Science.gov (United States)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  6. Selective phase synthesis of a high luminescence Gd{sub 2}O{sub 3}:Eu nanocrystal phosphor through direct solution combustion

    Energy Technology Data Exchange (ETDEWEB)

    Xia Guodong; Wang Sumei; Zhou Shengming [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu Jun, E-mail: xiagd@hotmail.com, E-mail: zhousm@mail.siom.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2010-08-27

    A Gd{sub 2}O{sub 3}:Eu nanocrystal phosphor has been directly synthesized by a mild solution combustion method with a single step approach while avoiding further thermal annealing. The as-combusted Gd{sub 2}O{sub 3}:Eu powders have been characterized by x-ray diffraction, infrared spectroscopy, transmission electron microscopy and photoluminescence spectra. The ratio of citric acid to metal nitrate (C/M) has a critical impact on the phase composition and crystallization of as-combusted Gd{sub 2}O{sub 3}:Eu. An optimal C/M ratio of 0.7 gave highly crystalline powders with a single cubic phase, and a high luminescence intensity comparable with that of a commercial Y{sub 2}O{sub 3}:Eu phosphor, even without further thermal annealing. This direct solution combustion method can be used to prepare a variety of high quality oxide nanocrystals.

  7. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    Science.gov (United States)

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.

  8. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  9. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  10. High-Yield Solvothermal Formation of Magnetic CoPt Alloy Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zongtao [ORNL; Blom, Douglas Allen [ORNL; Gai, Zheng [ORNL; Thompson, James R [ORNL; Shen, Jian [ORNL; Dai, Sheng [ORNL

    2003-01-01

    One-dimensional (1D) magnetic nanomaterials have attracted much attention recently because of their applications in magnetic recording and spintronics. Nevertheless, it remains a challenge to prepare free-standing magnetic nanowires in high yield. This Communication reports the successful high-yield synthesis of an interesting 1D ferromagnetic CoPt alloy by direct decomposition of platinum acetylacetonate and cobalt carbonyl compound in ethylenediamine solvent through a solvothermal reaction. The CoPt alloy nanowires obtained have a tunable diameter of 10-50 nm and a length along the longitudinal axis of up to several microns, depending on crystallization temperature and reaction time. A unique formation mechanism involving coarsening and ripening under solvothermal conditions was discovered. This research opens new opportunities in synthesizing nanomaterials through low-temperature solvothermal processes.

  11. [Molecular ecological basis of high-yielding formation of rice and its application].

    Science.gov (United States)

    Lin, Wenxiong; Liang, Kangjing; Guo, Yuchun; He, Huaqin; Wang, Jingyuan; Liang, Yiyuan; Chen, Fangyu

    2003-12-01

    This paper introduced the developmental genetics and its molecular ecological basis of high yielding formation of rice in the past decade, and analyzed the advantage and the shortage of comparative physiological approach traditionally used in the research work on crop cultivation. It was emphasized to actively introduce the research contents and its methodology from relative disciplines to deeply understand the scientific issue, and suggested that the key to realize stable and high yielding of rice was to develop a rational cultivation system based on the properties of genetic effects on the traits in different developmental stages by controlling and regulating the traits governed by dominant effect genes and additive effect genes x environment in same direction, which was considered as the main characteristics and the technological innovation of modern crop genetic ecological cultivation science. Finally, the development trend of crop cultivation science shifting to molecular crop cultivation science was predicted and discussed.

  12. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2016-01-01

    Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant...... archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae...... and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield....

  13. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I, E-mail: saiful@mail.ucf.edu [Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826 (United States)

    2010-04-23

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm{sup 2} V{sup -1} s{sup -1} respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  14. Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power

    Science.gov (United States)

    2008-12-01

    very effective at maintaining a constant voltage and stroke as the HCCI combustion pressure varies during engine warmup. The current is modulated by the...Comparison of Measured and Predicted Two- Stroke Engine Power Output for Jet-A and Propane 5 The exhaust emissions of the 300 W MICE generator with HCCI ...1 Two-Stroke Engine Double- Helix Spring Linear Alternator Magnet Pole Permanent Magnet Alternator Coil Spring Casing Coil Standoff Double-Helix

  15. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  16. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  17. Mutagenesis and Screening of High Yield Xylanase Production Strain of Aspergillus usamii by Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    李永泉; 陈时飞; 岑沛霖

    2003-01-01

    A high yield xylanase producing strain, A. usamii L336-23, was screened out from its parent strain A.usamii L336 after microwave irradiation. Its productivity of xylanase activity increased by 35.7% from 21000μ·m1-1 to 28500μ·m1-1 and was stable after frequent subcultures and storage for more than two months.The mechanism of microwave mutation was also discussed.

  18. Epidemiology and impact of Fasciola hepatica exposure in high-yielding dairy herds.

    Science.gov (United States)

    Howell, Alison; Baylis, Matthew; Smith, Rob; Pinchbeck, Gina; Williams, Diana

    2015-09-01

    The liver fluke Fasciola hepatica is a trematode parasite with a worldwide distribution and is the cause of important production losses in the dairy industry. The aim of this observational study was to assess the prevalence of exposure to F. hepatica in a group of high yielding dairy herds, to determine the risk factors and investigate their associations with production and fertility parameters. Bulk milk tank samples from 606 herds that supply a single retailer with liquid milk were tested with an antibody ELISA for F. hepatica. Multivariable linear regression was used to investigate the effect of farm management and environmental risk factors on F. hepatica exposure. Higher rainfall, grazing boggy pasture, presence of beef cattle on farm, access to a stream or pond and smaller herd size were associated with an increased risk of exposure. Univariable regression was used to look for associations between fluke exposure and production-related variables including milk yield, composition, somatic cell count and calving index. Although causation cannot be assumed, a significant (phepatica exposure and estimated milk yield at the herd level, representing a 15% decrease in yield for an increase in F. hepatica exposure from the 25th to the 75th percentile. This remained significant when fertility, farm management and environmental factors were controlled for. No associations were found between F. hepatica exposure and any of the other production, disease or fertility variables.

  19. A novel medium devoid of ruminant peptone for high yield growth of Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Patel, Hiren; Mackintosh, David; Ayling, Roger D; Nicholas, Robin A J; Fielder, Mark D

    2008-03-18

    Mycoplasma ovipneumoniae is considered an emerging veterinary pathogen causing pneumonia in sheep and goats worldwide. Currently it has not been possible to define a growth medium that yields the maximum growth of M. ovipneumoniae within a short incubation period. Growth yields of M. ovipneumoniae in Eaton's medium are variable and not as consistently high as those seen with other Mycoplasma spp. This study investigated the ability of different M. ovipneumoniae field strains to grow in various media formulations, where PPLO broth was replaced by a vegetable protein source, and comparisons were made in terms of strain viability in Eaton's medium. Studies were also conducted to determine the optimal carbohydrate source for use in the M. ovipneumoniae medium. Generally, it was found that different strains showed good growth in all media tested, with growth yields at 24h in TSB-1 medium higher than those observed with Eaton's medium. Growth yields reached 10(8) to 10(9)cfu ml(-1) within 24h for particular field strains, with all strains achieving this growth level within 48-72h.

  20. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  1. Some critical considerations on rice high-yielding breeding in China

    Institute of Scientific and Technical Information of China (English)

    ZHU Lihong

    2007-01-01

    Views and comments concerning rice highyielding breeding in China had been touched upon:(1) historical development of rice breeding in China and its prominent contributions recounted;current challenges evolved from rapid population increase,erosion of key natural resources and socioeconomic changes envisaged;(2) concept of extra or super high-yielding rice breeding and related ideas embraced nowadays in the main rice-producing countries assessed;the conception of so-called superrice in China could have been misled and misunderstood,and no substantial genetical differences could be affirmed yet between superrice and modern high-yielding rice;(3) two strategical approaches of rice production and breeding in China would have been persistent in the construction of most favorable-to-growth rice fields to plant rice varieties with high-yielding potentiality as well as renovation and rejuvenation of less favorable rice fields to plant most adaptableto-ecoenvironment varieties with promising productivity;in addition,breeding for rice varieties compatible with the specific rice regions ridden by adverse ecoenvironments;(4) overview of the relationship between the development of genetical researches and the perspective of rice breeding;integration of the classical genetical principles and breeding methods and techniques wherefrom with molecular biotechniques underscored.Finally,appeal to the breeders to adhere to due attentions to the development of genetics and promote pragmatism and traditional ethic solemnly so as to live up to implementing the national rice breeding mandates.

  2. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available High fluorescence quantum yield graphene quantum dots (GQDs have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications.

  3. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.

    Science.gov (United States)

    Wang, L; Chen, Y; Ye, Y; Lu, B; Zhu, S; Shen, S

    2011-01-01

    As an ideal fuel due to the advantages of no pollution, high combustion heat and abundant sources, hydrogen gas can be produced from organic matter through the electrohydrogenesis process in microbial electrolysis cells. But in many MECs, platinum is often used as catalyst, which limits the practical applications of MECs. To reduce the cost of the MECs, Ni-based alloy cathodes were developed by electrodepositing. In this paper hydrogen production using Ni-W-P cathode was studied for the first time in a single-chamber membrane-free MEC. At an applied voltage of 0.9 V, MECs with Ni-W-P cathodes obtained a hydrogen production rate of 1.09 m3/m3/day with an cathodic hydrogen recovery of 74%, a Coulombic efficiency of 56% and an electrical energy efficiency relative to electrical input of 139%, which was the best result of reports in this study. The Ni-W-P cathode demonstrated a better electrocatalytic activity than the Ni-Ce-P cathode and achieved a comparable performance to the Pt cathode in terms of hydrogen production rate, Coulombic efficiency, cathodic hydrogen recovery and electrical energy efficiency at 0.9 V.

  4. Economics of fertility in high-yielding dairy cows on confined TMR systems.

    Science.gov (United States)

    Cabrera, V E

    2014-05-01

    The objective of this review paper was to summarise the latest findings in dairy cattle reproductive economics with an emphasis on high yielding, confined total mixed ration systems. The economic gain increases as the reproductive efficiency improves. These increments follow the law of diminishing returns, but are still positive even at high reproductive performance. Reproductive improvement results in higher milk productivity and, therefore, higher milk income over feed cost, more calf sales and lower culling and breeding expenses. Most high-yielding herds in the United States use a combination of timed artificial insemination (TAI) and oestrous detection (OD) reproductive programme. The ratio of achievable pregnancies between OD and TAI determines the economic value difference between both and their combinations. Nonetheless, complex interactions between reproductive programme, herd relative milk yield, and type of reproductive programme are reported. For example, higher herd relative milk yield would favour programme relying more on TAI. In addition, improved reproductive efficiency produces extra replacements. The availability of additional replacements could allow more aggressive culling policies (e.g. less services for non-pregnant cows) to balance on-farm supply and demand of replacements. Balancing heifer replacement availability in an efficient reproductive programme brings additional economic benefits. New technologies such as the use of earlier chemical tests for pregnancy diagnosis could be economically effective depending on the goals and characteristics of the farm. Opportunities for individual cow reproductive management within defined reproductive programme exist. These decisions would be based on economic metrics derived from the value of a cow such as the value of a new pregnancy, the cost of a pregnancy loss, or the cost of an extra day open.

  5. Diagnostic Yield of High-Resolution Breast Sonography in Detecting Microcalcifications Compared to Mammography

    Directory of Open Access Journals (Sweden)

    N Ahmadinejad

    2009-08-01

    Full Text Available Background/Objective: Mammography remains the most suitable screening test in detecting microcalcifications as the earliest manifestation of breast malignancy. By means of highfrequency transducers yielding high-resolution breast imaging, some researchers have reported that ultrasonography is capable of depicting microcalcifications in the breast tissue. Therefore, this study has been designed to compare the diagnostic yield of high-resolution"nbreast ultrasonography (HRS versus conventional mammography."nPatients and Methods: Seventy-four consecutive patients who had breast microcalcifications (hyperdense foci < 0.5mm according to standard mammograms, without a prior history of breast disease, surgery, biopsy, chest wall radiation or systemic chemotherapy were enrolled. Considering mammograms as a reference, 46 patients without a mass, voluntarily underwent high-resolution bilateral breast ultrasonography."nResults: The mean age was 50.7±10 years (range, 35-85 years. The upper outer quadrant of the breast was the commonest place where microcalcifications were detected (36.9%. A relative frequency of 45.7% was reported for microcalcifications with breast imaging reporting"nand data system (BIRADS score 3. An overall 82.6% diagnostic yield was discovered for HRS in detecting microcalcifications; it detected all microcalcifications with BIRADS score 4 and 5, but 57.1% and 90.5% of microcalcifications with BIRADS score 2 and 3, respectively. Cluster microcalcification was the most common pattern (43.5%."nConclusion: Considering the 82.6% diagnostic yield of HRS compared to mammography, it can be proposed as the surrogate modality in locating microcalcifications in procedures such as biopsies and hook-wiring, with the advantage of reducing radiation exposure. HRS may be the future screening modality as a result of feasibility, safety, compliance and accuracy.

  6. Engineering of high yield production of L-serine in Escherichia coli.

    Science.gov (United States)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre; Nielsen, Alex Toftgaard

    2016-04-01

    L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E. coli MG1655 was prevented by deletion of three L-serine deaminases sdaA, sdaB, and tdcG, as well as serine hydroxyl methyl transferase (SHMT) encoded by glyA. Upon overexpression of the serine production pathway, consisting of a feedback resistant version of serA along with serB and serC, this quadruple deletion strain showed a very high serine production yield (0.45 g/g glucose) during small-scale batch fermentation in minimal medium. Serine, however, was found to be highly toxic even at low concentrations to this strain, which lead to slow growth and production during fed batch fermentation, resulting in a serine production of 8.3 g/L. The production strain was therefore evolved by random mutagenesis to achieve increased tolerance towards serine. Additionally, overexpression of eamA, a cysteine/homoserine transporter was demonstrated to increase serine tolerance from 1.6 g/L to 25 g/L. During fed batch fermentation, the resulting strain lead to the serine production titer of 11.7 g/L with yield of 0.43 g/g glucose, which is the highest yield reported so far for any organism.

  7. Computational Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  8. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.

    Science.gov (United States)

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2013-02-01

    We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.

  9. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. The NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.

  10. Sulfur Recovery from Acid Gas Using the Claus Process and High Temperature Air Combustion (HiTAC Technology

    Directory of Open Access Journals (Sweden)

    Mohamed Sassi

    2008-01-01

    Full Text Available Sulfur-bearing compounds are very detrimental to the environment and to industrial process equipment. They are often obtained or formed as a by-product of separation and thermal processing of fuels containing sulfur, such as coal, crude oil and natural gas. The two sulfur compounds, which need special attention, are: hydrogen sulfide (H2S and sulfur dioxide (SO2. H2S is a highly corrosive gas with a foul smell. SO2 is a toxic gas responsible for acid rain formation and equipment corrosion. Various methods of reducing pollutants containing sulfur are described in this paper, with a focus on the modified Claus process, enhanced by the use of High Temperature Air Combustion (HiTAC technology in the Claus furnace. The Claus process has been known and used in the industry for over 100 years. It involves thermal oxidation of hydrogen sulfide and its reaction with sulfur dioxide to form sulfur and water vapor. This process is equilibrium-limited and usually achieves efficiencies in the range of 94-97%, which have been regarded as acceptable in the past years. Nowadays strict air pollution regulations regarding hydrogen sulfide and sulfur dioxide emissions call for nearly 100% efficiency, which can only be achieved with process modifications. High temperature air combustion technology or otherwise called flameless (or colorless combustion is proposed here for application in Claus furnaces, especially those employing lean acid gas streams, which cannot be burned without the use of auxiliary fuel or oxygen enrichment under standard conditions. With the use of HiTAC it has been shown, however, that fuel-lean, Low Calorific Value (LCV fuels can be burned with very uniform thermal fields without the need for fuel enrichment or oxygen addition. The uniform temperature distribution favors clean and efficient burning with an additional advantage of significant reduction of NOx, CO and hydrocarbon emission.

  11. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    Science.gov (United States)

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  12. Advances and Prospects in Breeding Japonica Rice for Super High Yield in the Northern China

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-fu; XU Zheng-jin; ZHANG Wen-zhong

    2007-01-01

    In this paper, advances and prospects in breeding japonica rice for super high yield in the northern China were analyzed comprehensively in terms of breeding theories, techniques and practices. The author holds that developing and spreading super rice is an important way to enhance the overall yielding ability of japonica rice and attaining immense expansion of rice production. After theories and technical guidelines for super rice breeding were formulated, which involved the creation of new plant morphology and strong hybrid vigor through crossing indica with japonica subspecies, the optimization of combination of desirable traits via multiple crossing or backcrossing, the assemblage of favorable genes and the integration of ideal plant morphology with the utilization of vigor-major breakthroughs have been made in conventional breeding of japonica super rice. A batch of new super rice varieties marked by superior rice quality and high disease resistance, such as Shennong 265, Shennong 606, and Jijing 88, etc., have been developed and released. In comparison with the advancement in conventional breeding of super rice, progress in hybrid japonica super rice breeding is slower because of climatic and ecological constraint in northern China. Therefore, solving the contradictions between vigor and growth duration, between yield and rice quality, and boosting vastly seed production are still serious challenges for breeders of hybrid japonica rice. Physiological and genetic problems in japonica super rice breeding are also discussed in this paper.

  13. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaie, Mohammad; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Li, Song; Liu, Feng; Zhang, Jie [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); He, Fei; Cheng, Ya [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  14. High-yielding Cultivation and Fertilization Technology of Lvhan No.1 in Angola

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] The aim was to research high-yielding cultivation and fertilization technology for Lvhan No.l, a new Chinese rice cultivar, in Angola. [Method] In rainy season of 2012, high-yielding cultivation and fertilization technology of Lvhan No.l, a new cultivar of earlier ripe and drought resistant rice, was researched in CATETE farm of Luanda suburb with pot experiment method. [Result] In CATETE farm, Lvhan No.1 rice were directly sown in black clay and the rice can be significantly improved in plant height, grain weight of single plant, biological yield of single plant, ear length, total grain number per ear, number of filled grain per ear and thousand seed weight, as well as economic coefficient and ratio of grain to straw, if applied with base fertilizer made up of DAP (N:P2Os=14:43), or compound fertilizer of N, P and K (N:P2Os:K~O=15:15:15) and with Duannai fertilizer and ear-grain fertilizer made up of urea. If DAP is taken as base fertilizer, the optimal quantity is 300 kg/hm2. If compound fertilizer of N, P and K is taken as base fertilizer, the optimal quantity is 450 kg/hm2, but urea at 75 kg/hm2 should be applied as Duannai fertilizer and ear- grain fertilizer, respectively, on time. [Conclusion] The research provides technical ref- erences for planting of Chinese rice cultivars in Angola.

  15. Research Advances in High-Yielding Cultivation and Physiology of Super Rice

    Institute of Scientific and Technical Information of China (English)

    FU Jing; YANG Jian-chang

    2012-01-01

    In 1996,China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types.Today,approximately 80 super rice varieties have been released and some of them show high grain yields of 12-21 t/hm2 in field experiments.The main reasons for the high yields of super rice varieties,compared with those of conventional varieties,can be summarized as follows:more spikelets per panicle and larger sink size (number of spikelets per square meter); larger leaf area index,longer duration of green leaf,greater photosynthetic rate,higher lodging resistance,greater dry matter accumulation before the heading stage,greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period; and larger root system and greater root activity.However,there are two main problems in super rice production:poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets),and low and unstable seed-setting rate.Here,we review recent research advances in the crop physiology of super rice,focusing on biological features,formation of yield components,and population quality.Finally,we suggest further research on crop physiology of super rice.

  16. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Institute of Scientific and Technical Information of China (English)

    FU Guan-fu; TAO Long-xing; SONG Jian; WANG Xi; CAO Li-yong; CHENG Shi-hua

    2008-01-01

    By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control) were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05) respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  17. Low NO/x/ combustion systems for burning heavy residual fuels and high-fuel-bound nitrogen fuels

    Science.gov (United States)

    White, D. J.; Batakis, A.; Lecren, R. T.; Yacobucci, H. G.

    1981-01-01

    Design concepts are presented for lean-lean and staged rich-lean combustors. The combustors are designed for the dry reduction of thermal NO(x), control of NO(x) from fuels containing high levels of organic nitrogen, and control of smoke from low hydrogen content fuels. The combustor concepts are tested with a wide variety of fuels including a middle distillate, a petroleum based heavy residual, a coal derived synthetic, and ratios of blends of these fuels. The configurations of the lean-lean and rich-lean combustion systems are provided along with a description of the test rig and test procedure.

  18. Shock-Ignited High Gain/Yield Targets for the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K. N.; Bedrosiian, P.; Tabak, M.; Miles, A.; Dixit, S.; Betti, R.; Anderson, K.; Zhou, C.

    2006-10-01

    Shock-ignition, a new concept for ICF ignition [C.Zhou, R.Betti Bull APS, v50, 2005], is being studied as a future option for efficiently achieving high gains in large laser facilities such as NIF. Accordingly, this offers the potential for testing: (1)High yield (up to 200MJ), reactor-relevant targets for inertial fusion energy (2)High fusion yield targets for DOE NNSA stockpile application (3)Targets with appreciable gain at low laser drive energies (gains of 10's at 150kJ) (4)Ignition of simple, non-cryo (room temperature) single shell gas targets at (unity gain). By contrast to conventional hotspot ignition, we separate the assembly and ignition phases by initially imploding a massive cryogenic shell on a low adiabat (alpha 0.7) at low velocity (less than 2e7cm/s) using a direct drive pulse of modest total energy. The assembled fuel is then separately ignited by a strong, spherically convergent shock driven by a high intensity spike at the end of the pulse and timed to reach the center as the main fuel is stagnating and starting to rebound. Like fast ignition, shock ignition can achieve high gains with low drive energy, but has the advantages of requiring only a single laser with less demanding timing and spatial focusing requirements.

  19. Optimization of Escherichia coli cultivation methods for high yield neuropeptide Y receptor type 2 production.

    Science.gov (United States)

    Berger, Christian; Montag, Cindy; Berndt, Sandra; Huster, Daniel

    2011-03-01

    The recombinant expression of human G protein-coupled receptors usually yields low production levels using commonly available cultivation protocols. Here, we describe the development of a high yield production protocol for the human neuropeptide Y receptor type 2 (Y2R), which provides the determination of expression levels in a time, media composition, and process parameter dependent manner. Protein was produced by Escherichia coli in a defined medium composition suitable for isotopic labeling required for investigations by nuclear magnetic resonance spectroscopy. The Y2 receptor was fused to a C-terminal 8x histidine tag by means of the pET vector system for easy one-step purification via affinity chromatography, yielding a purity of 95-99% for every condition tested, which was determined by SDS-PAGE and Western blot analysis. The Y2 receptor was expressed as inclusion body aggregates in complex media and minimal media, using different carbon sources. We investigated the influences of media composition, temperature, pH, and set specific growth rate on cell behavior, biomass wet weight specific and culture volume specific amounts of the target protein, which had been identified by inclusion body preparation, solubilization, followed by purification and spectrometric determination of the protein concentration. The developed process control strategy led to very high reproducibility of cell growth and protein concentrations with a maximum yield of 800 μg purified Y2 receptor per gram wet biomass when glycerol was used as carbon source in the mineral salt medium composition (at 38 °C, pH 7.0, and a set specific growth rate of 0.14 g/(gh)). The maximum biomass specific amount of purified Y2 receptor enabled the production of 35 mg Y2R per liter culture medium at an optical density (600 nm) of 25.

  20. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria.

    Science.gov (United States)

    Taher, Edris; Chandran, Kartik

    2013-04-02

    The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH(4)) to methanol (CH3OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH(4) to CH(3)OH. In fed-batch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH(3)OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of Nitrosomonas europaea. The maximum specific rate of CH(4) to CH(3)OH conversion obtained during this study was 0.82 mg CH(3)OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH(4) oxidation to CH(3)OH by AOB was inhibited by NH(3) (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH(3)OH, itself. Further, oxidation of CH(4) to CH(3)OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH(2)OH) as an electron donor. Therefore, a potential optimum design for promoting CH(4) to CH(3)OH oxidation by AOB could involve supplying NH(3) (needed to maintain AMO activity) uncoupled from the supply of NH(2)OH and CH(4). Partial oxidation of CH(4)-containing gases to CH3OH by AOB represents an attractive platform for the conversion of a gaseous mixture to an aqueous compound, which could be used as a commodity chemical. Alternately, the nitrate and CH(3) OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N(2), using an internally produced organic electron donor.

  1. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  2. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order t...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method.......A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...

  4. High yield expression of catalytically active USP18 (UBP43 using a Trigger Factor fusion system

    Directory of Open Access Journals (Sweden)

    Basters Anja

    2012-08-01

    Full Text Available Abstract Background Covalent linkage of the ubiquitin-like protein ISG15 interferes with viral infection and USP18 is the major protease which specifically removes ISG15 from target proteins. Thus, boosting ISG15 modification by protease inhibition of USP18 might represent a new strategy to interfere with viral replication. However, so far no heterologous expression system was available to yield sufficient amounts of catalytically active protein for high-throughput based inhibitor screens. Results High-level heterologous expression of USP18 was achieved by applying a chaperone-based fusion system in E. coli. Pure protein was obtained in a single-step on IMAC via a His6-tag. The USP18 fusion protein exhibited enzymatic activity towards cell derived ISG15 conjugated substrates and efficiently hydrolyzed ISG15-AMC. Specificity towards ISG15 was shown by covalent adduct formation with ISG15 vinyl sulfone but not with ubiquitin vinyl sulfone. Conclusion The results presented here show that a chaperone fusion system can provide high yields of proteins that are difficult to express. The USP18 protein obtained here is suited to setup high-throughput small molecule inhibitor screens and forms the basis for detailed biochemical and structural characterization.

  5. High-temperature-oxidation-induced ordered structure in Inconel 939 superalloy exposed to oxy-combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jingxi; Wise, Adam; Nuhfer, Thomas; Holcomb, Gordon R; Jablonski, Paul D; Sridhar, Seetharaman; Laughlin, David E

    2013-04-20

    In the integrated oxy-fuel combustion and turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO2 and O2. While surface and internal oxidation of the alloy takes place, the microstructure in the subsurface region also changes due to oxidation that results in the loss of the strengthening precipitates. In an earlier study of the oxidation of Inconel 939 Ni-based superalloy exposed to oxy-fuel combustion environment for up to 1000 hours, a high-temperature-oxidation-induced phase transformation in the sub-surface region was noticed and a two-phase region formed at the expense of strengthening γ' phase. While one of the two phases was identified as the Ni-matrix (γ solid solution, face-center-cubic) phase, the other product phase remained unidentified. In this study, the crystal structure of the unknown phase and its orientation relationship with the parent Ni-matrix phase was investigated through electron diffraction and high-resolution transmission electron microscopy. It was determined that the crystal structure of the unknown phase could be modeled as a ternary derivative of the ordered η-Ni3Ti phase (D024) structure with lattice parameters of a = 0.5092 nm and c = 0.8336 nm, α = 90º, β = 90º and γ = 120º.

  6. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    Science.gov (United States)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  7. Simple and high yield access to octafunctional azido, amine and urea group bearing cubic spherosilicates.

    Science.gov (United States)

    Schäfer, Sandra; Kickelbick, Guido

    2016-12-20

    Spherosilicates and polyhedral oligomeric silsesquioxanes represent unique well-defined rigid building blocks for molecular and hybrid materials. Drawbacks in their synthesis are often low yields and the restricted presence of functional groups either based on incomplete transformation of all corners or the reactivity of the functional groups. Particularly amine-functionalization reveals some synthetic challenges. In this study we report the synthesis of a new class of octafunctionalized hydrogen bond forming spherosilicates via a facile route based on octabromo alkyl functionalized cubic spherosilicates. Four different alkyl chain lengths, namely C4, C5, C6 and C11, were realized starting from ω-alkenylbromides via hydrosilylation of Q8M8(H). Using sodium azide in a mixture of acetonitrile : DMF = 10 : 1, the octaazide was obtained quantitatively and could be rapidly transformed in an octaamine cube via catalytic hydrogenation over Pd/C in absolute ethanol. The following reaction to hydrogen bond forming spherosilicates was performed in situ by adding propyl isocyanate. All transformations proceed quantitatively at the eight corners of the cube, which was evidenced by NMR spectroscopy and ESI-MS measurements. The Q8-target compound can be separated after each reaction step over simple chemical workup while no cage rearrangement was observed. The structures were confirmed using (1)H, (13)C, (29)Si-NMR, FT-IR, elemental analysis and ESI-MS. The method opens a high yield route (overall isolated yield 83-88%) for structural building blocks in hybrid materials.

  8. Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis

    Science.gov (United States)

    Liu, Jian; Zhang, Yong; Ionescu, Mihnea Ioan; Li, Ruying; Sun, Xueliang

    2011-06-01

    Nitrogen-doped carbon nanotubes (CN x) were prepared by ultrasonic spray pyrolysis from mixtures of imidazole and acetonitrile. Imidazole, as an additive, was used to control the structure and nitrogen doping in CN x by adjusting its concentration in the mixtures. Scanning electron microscopy observation showed that the addition of imidazole increased the nanotube growth rate and yield, while decreased the nanotube diameter. Transmission electron microscopy study indicated that the addition of imidazole promoted the formation of a dense bamboo-like structure in CN x. X-ray photoelectron spectroscopy analysis demonstrated that the nitrogen content varied from 3.2 to 5.2 at.% in CN x obtained with different imidazole concentrations. Raman spectra study showed that the intensity ratio of D to G bands gradually increased, while that of 2D to G bands decreased, due to increasing imidazole concentration. The yield of CN x made from mixtures of imidazole and acetonitrile can reach 192 mg in 24 min, which is 15 times that of CN x prepared from only acetonitrile. The aligned CN x, with controlled nitrogen doping, tunable structure and high yield, may find applications in developing non-noble catalysts and novel catalyst supports for fuel cells.

  9. Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jian; Zhang Yong; Ionescu, Mihnea Ioan; Li Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 (Canada); Sun Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 (Canada)

    2011-06-15

    Nitrogen-doped carbon nanotubes (CN{sub x}) were prepared by ultrasonic spray pyrolysis from mixtures of imidazole and acetonitrile. Imidazole, as an additive, was used to control the structure and nitrogen doping in CN{sub x} by adjusting its concentration in the mixtures. Scanning electron microscopy observation showed that the addition of imidazole increased the nanotube growth rate and yield, while decreased the nanotube diameter. Transmission electron microscopy study indicated that the addition of imidazole promoted the formation of a dense bamboo-like structure in CN{sub x}. X-ray photoelectron spectroscopy analysis demonstrated that the nitrogen content varied from 3.2 to 5.2 at.% in CN{sub x} obtained with different imidazole concentrations. Raman spectra study showed that the intensity ratio of D to G bands gradually increased, while that of 2D to G bands decreased, due to increasing imidazole concentration. The yield of CN{sub x} made from mixtures of imidazole and acetonitrile can reach 192 mg in 24 min, which is 15 times that of CN{sub x} prepared from only acetonitrile. The aligned CN{sub x}, with controlled nitrogen doping, tunable structure and high yield, may find applications in developing non-noble catalysts and novel catalyst supports for fuel cells.

  10. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders.

    Science.gov (United States)

    Yavarna, Tarunashree; Al-Dewik, Nader; Al-Mureikhi, Mariam; Ali, Rehab; Al-Mesaifri, Fatma; Mahmoud, Laila; Shahbeck, Noora; Lakhani, Shenela; AlMulla, Mariam; Nawaz, Zafar; Vitazka, Patrik; Alkuraya, Fowzan S; Ben-Omran, Tawfeg

    2015-09-01

    Clinical exome sequencing (CES) has become an increasingly popular diagnostic tool in patients with heterogeneous genetic disorders, especially in those with neurocognitive phenotypes. Utility of CES in consanguineous populations has not yet been determined on a large scale. A clinical cohort of 149 probands from Qatar with suspected Mendelian, mainly neurocognitive phenotypes, underwent CES from July 2012 to June 2014. Intellectual disability and global developmental delay were the most common clinical presentations but our cohort displayed other phenotypes, such as epilepsy, dysmorphism, microcephaly and other structural brain anomalies and autism. A pathogenic or likely pathogenic mutation, including pathogenic CNVs, was identified in 89 probands for a diagnostic yield of 60%. Consanguinity and positive family history predicted a higher diagnostic yield. In 5% (7/149) of cases, CES implicated novel candidate disease genes (MANF, GJA9, GLG1, COL15A1, SLC35F5, MAGE4, NEUROG1). CES uncovered two coexisting genetic disorders in 4% (6/149) and actionable incidental findings in 2% (3/149) of cases. Average time to diagnosis was reduced from 27 to 5 months. CES, which already has the highest diagnostic yield among all available diagnostic tools in the setting of Mendelian disorders, appears to be particularly helpful diagnostically in the highly consanguineous Middle Eastern population.

  11. Particle Concentration and Yield Stress of Biomass Slurries During Enzymatic Hydrolysis at High-Solids Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Roche, C. M.; Dibble, C. J.; Knutsen, J. S.; Stickel, J. J.; Liberatore, M. W.

    2009-01-01

    Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost-effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress ({tau}{sub y}) of the slurries were measured. The saccharified stover liquefies to the point of being pourable ({tau}{sub y} {le} 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi-empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high-solids loadings.

  12. A high throughput DNA extraction method with high yield and quality

    Science.gov (United States)

    Background: Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome), and next-generation sequencing directly from sheared ...

  13. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    Science.gov (United States)

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.

  14. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    Directory of Open Access Journals (Sweden)

    Yasmin Abou Rajab

    Full Text Available One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species in Sulawesi (Indonesia with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1, total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1. This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1. The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.

  15. Determination of total sulfur in fertilizers by high temperature combustion: single-laboratory validation.

    Science.gov (United States)

    Bernius, Jean; Kraus, Sabine; Hughes, Sandra; Margraf, Dominik; Bartos, James; Newlon, Natalie; Sieper, Hans-Peter

    2014-01-01

    Asingle-laboratory validation study was conducted for the determination of total sulfur (S) in a variety of common, inorganic fertilizers by combustion. The procedure involves conversion of S species into SO2 through combustion at 1150 degrees C, absorption then desorption from a purge and trap column, followed by measurement by a thermal conductivity detector. Eleven different validation materials were selected for study, which included four commercial fertilizer products, five fertilizers from the Magruder Check Sample Program, one reagent grade product, and one certified organic reference material. S content ranged between 1.47 and 91% as sulfate, thiosulfate, and elemental and organically bound S. Determinations of check samples were performed on 3 different days with four replicates/day. Determinations for non-Magruder samples were performed on 2 different days. Recoveries ranged from 94.3 to 125.9%. ABS SL absolute SD among runs ranged from 0.038 to 0.487%. Based on the accuracy and precision demonstrated here, it is recommended that this method be collaboratively studied for the determination of total S in fertilizers.

  16. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.

    Science.gov (United States)

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A

    2015-11-01

    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change.

  17. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 C) mixed culture environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chenxi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); Lu, Wenjing; Wang, Hongtao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-07-15

    The effect of pH and medium composition on extreme-thermophilic (70 C) dark fermentative simultaneous hydrogen and ethanol production (process performance and microbial ecology) was investigated. Hydrogen and ethanol yields were optimized with respect to glucose, peptone, FeSO{sub 4}, NaHCO{sub 3}, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations as well as initial pH as independent variables. A combination of low levels of both glucose ({<=}2 g/L) and vitamin solutions ({<=}1 mL/L) and high levels of initial pH ({>=}7), mineral salts solution ({>=}5 mL/L) and FeSO{sub 4} ({>=}100 mg/L) stimulated the hydrogen production, while high level of glucose ({>=}5 g/L) and low levels of both initial pH ({<=}5.5) and mineral salts solution ({<=}1 mL/L) enhanced the ethanol production. High yield of simultaneous hydrogen and ethanol production (1.58 mol H{sub 2}/mol glucose combined with an ethanol yield of 0.90 mol ethanol/mol glucose) was achieved under extreme-thermophilic mixed culture environment. Results obtained showed that the shift of the metabolic pathways favouring either hydrogen or ethanol production was affected by the change in cultivation conditions (pH and medium composition). The mixed culture in this study demonstrated flexible ability for simultaneous hydrogen and ethanol production, depending on pH and nutrients formulation. The microorganisms involved could be regarded as simultaneous hydrogen/ethanol producers, as hydrogen and ethanol fermentation under all conditions was carried out by a group of extreme-thermophilic bacterial species related to Thermoanaerobacter, Thermoanaerobacterium and Caldanaerobacter. (author)

  18. Controlled fabrication of individual silicon quantum rods yielding high intensity, polarized light emission

    Science.gov (United States)

    Bruhn, Benjamin; Valenta, Jan; Linnros, Jan

    2009-12-01

    Elongated silicon quantum dots (also referred to as rods) were fabricated using a lithographic process which reliably yields sufficient numbers of emitters. These quantum rods are perfectly aligned and the vast majority are spatially separated well enough to enable single-dot spectroscopy. Not only do they exhibit extraordinarily high linear polarization with respect to both absorption and emission, but the silicon rods also appear to luminesce much more brightly than their spherical counterparts. Significantly increased quantum efficiency and almost unity degree of linear polarization render these quantum rods perfect candidates for numerous applications.

  19. Production of carbon nanofibers in high yields using a sodium chloride support.

    Science.gov (United States)

    Geng, Junfeng; Kinloch, Ian A; Singh, Charanjeet; Golovko, Vladimir B; Johnson, Brian F G; Shaffer, Milo S P; Li, Yali; Windle, Alan H

    2005-09-08

    A new route for the highly convenient scalable production of carbon nanofibers on a sodium chloride support has been developed. Since the support is nontoxic and soluble in water, it can be easily removed without damage to the nanofibers and the environment. Nanofiber yields of up to 6500 wt % relative to the nickel catalyst have been achieved in a growth time of 15 min. Electron microscopy (SEM, TEM) and thermal gravimetric analysis (TGA) indicated that the catalytically grown carbon had relatively little thermal over-growth and possessed either a herringbone or a semi-ordered nanostructure, depending on the growth conditions.

  20. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  1. Creation of High-Yield Polyhydroxyalkanoates Engineered Strains by Low Energy Ion Implantation

    Science.gov (United States)

    Qian, Shiquan; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu

    2008-12-01

    Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8 × 1014 N+/cm2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4 reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.

  2. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    Science.gov (United States)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ˜16 m to a streak camera in a well-shielded location. An ˜200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ˜40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  3. Genome shuffling and ribosome engineering of Streptomyces actuosus for high-yield nosiheptide production.

    Science.gov (United States)

    Wang, Qingling; Zhang, Dong; Li, Yudong; Zhang, Fuming; Wang, Cao; Liang, Xinle

    2014-07-01

    Nosiheptide is one of the EU-approved sulfur-containing peptides in feed industry to inhibit the growth of the majority of Gram-positive bacteria. The main purpose of this study is directed to breed the high nosiheptide-producers by genome shuffling and ribosome engineering in Streptomyces actuosus AW7. The starting population for shuffling was generated by combining (60)Coγ-irradiation with LiCl mutagenesis treatments on the spores. After four rounds of protoplast fusion exposed to streptomycin as adaptive pressure, a high-yield recombinant strain D92 was obtained. In a 10-L fermenter, nosiheptide production reached 1.54 g/L which was 9.20-fold compared to that of the parental strain. Hyphae development, metabolic process, and ribosomal protein S12 sequence were investigated to characterize the differentiation among the recombinants. Several mutations in S12 were believed to be responsible to streptomycin resistance in the tested strain. The results demonstrated that the combination of genome shuffling and ribosome engineering is an efficient approach to breed high-yield industrial strains.

  4. Creation of High-Yield Polyhydroxyalkanoates Engineered Strains by Low Energy Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    QIAN Shiquan; CHENG Ying; ZHU Suwen; CHENG Beijiu

    2008-01-01

    Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8×1014 N+/cm2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.

  5. Flow "Fine" Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods.

    Science.gov (United States)

    Kobayashi, Shū

    2016-02-18

    The concept of flow "fine" synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow "fine" synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Improvement of bleached wheat straw pulp properties by using aspen high-yield pulp.

    Science.gov (United States)

    Zhang, Hongjie; Li, Jianguo; Hu, Huiren; He, Zhibin; Ni, Yonghao

    2012-09-01

    The bleached wheat straw pulp (BWSP) accounts for about 25% of the virgin fiber supply in the Chinese Pulp and Paper Industry. As a non-wood chemical pulp, BWSP is known to have low bulk, low light scattering coefficient and poor drainage due to its high content of parenchyma cells. In this study, a high-quality aspen high-yield pulp (HYP) was used to improve the BWSP properties at the laboratory scale. The results indicate that adding 5-20% aspen HYP into unrefined or refined BWSP can minimize many of the drawbacks associated with the BWSP: improving its drainage, bulk, light scattering coefficient and opacity. The addition of a small amount (up to 20%) of aspen HYP can also significantly increase the tear index of BWSP with only a slight decrease of the tensile index.

  7. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  8. Study on effects of high pressure injection for DI diesel combustion. Koatsu funsha ni yoru chokufun diesel no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Takahashi, T.; Sami, H.; Nakakita, K.; Osawa, K. (Toyota Motor Corp., Aichi, (Japan) Toyota Central Research and Development Labs. Inc., Aichi, (Japan))

    1990-04-25

    Accumulator type high pressure fuel injection equipment (HPIE), able to freely set the fuel injection pressure, was applied to a 94mm bore small type high speed direct injection Diesel engine (with turbo-charger), of which exhaust gas characteristics were investigated. Also by using a 102mm bore visualized single-cylinder engine, was observed combustion improvement effect by the HPIE. As a result, partial load exhaust gas characteristics were investigated at the rotation, 60% of the maximum number of rotations. That accumulator type HPIE changed in initial injection ratio due to the injection pressure. NO {sub x} emission depending upon both the injection pressure and timing, increase in NO {sub x} emission due to increase by 20MPa in injection pressure could be balanced with a CA delay by about 2 degrees in injection timing angle. Particulate is different by load in exhaust characteristics. In combustion observation, soot decreased in produced quantity with diminution in luminous portion of flame. 3 refs., 12 figs., 2 tabs.

  9. An innovative approach for combustion assessment of an high performance engine, based in cylce-resolved pressure indicating technology

    Energy Technology Data Exchange (ETDEWEB)

    Mammetti, M.; Marcigliano, F.; Cipolla, G. [Ferrari S.p.A., Maranello (Italy)

    2002-07-01

    Cycle-to-cycle and cylinderto-cylinder stochastic variation is ''stressed'' in high performance engines by analyzing the pressure traces and angular velocity signals. The wide operating range (min-to-max load vs rotational speed) of such engines causes a much more difficult optimization for the coefficient of variation (COV) of IMEP especially at low loads. The COV of IMEP has very bad effects on the NVH overall behaviour generally related to high fuel consumption and emissions at part load and reduces performance at full load, moreover it inhibits a cood combustion diagnostic (i.e. misfiring detection) for an board diagnostics (EOBD/OBD II). The experimental indicating pressure traces and the resulting IMEP for individual cylinder in each cycle has been processed in order to extract the main statistical features through ensemble-averaged and cycle resolved approach for new V8/4.2 l engine of Maserati Spyder. For data processing different tools have been used in order to properly evaluate the stability of the combustion by means of the investigation of the angular velocity signals especially for the diagnosis of misfiring events. (orig.)

  10. Problems in Fast-growing and High-yield Plantation Ecosystem Management and Their Countermeasures in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper analyzed the basic characteristics of fast-growing and high-yield plantation, classified and identified the ecological problems in its development, and finally proposed the basic principles and corresponding technical measures for fast-growing and high-yield plantation ecosystem management based on these problems.

  11. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2007-10-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those

  12. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  13. High yield sample preconcentration using a highly ion-conductive charge-selective polymer.

    Science.gov (United States)

    Chun, Honggu; Chung, Taek Dong; Ramsey, J Michael

    2010-07-15

    The development and analysis of a microfluidic sample preconcentration system using a highly ion-conductive charge-selective polymer [poly-AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid)] is reported. The preconcentration is based on the phenomenon of concentration polarization which develops at the boundaries of the poly-AMPS with buffer solutions. A negatively charged polymer, poly-AMPS, positioned between two microchannels efficiently extracts cations through its large cross section, resulting in efficient anion sample preconcentration. The present work includes the development of a robust polymer that is stable over a wide range of buffers with varying chemical compositions. The sample preconcentration effect remains linear to over 3 mM (0.15 pmol) and 500 microM (15 fmol) for fluorescein and TRITC-tagged albumin solutions, respectively. The system can potentially be used for concentrating proteins on microfluidic devices with subsequent analysis for proteomic applications.

  14. A novel high-heat transfer low-NO{sub x} natural gas combustion system. Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Rue, D.M. [Institute of Gas Technology, Des Plaines, IL (United States); Fridman, A. [Univ. of Illinois, Chicago (United States); Viskanta, R. [Purdue Univ. (United States); Neff, D. [Cumbustion Tec, Inc. (United States)

    1997-11-01

    Phase I of the project focused on acquiring the market needs, modeling, design, and test plan information for a novel high-heat transfer low-NO{sub x} natural gas combustion system. All goals and objectives were achieved. The key component of the system is an innovative burner technology which combines high temperature natural gas preheating with soot formation and subsequent soot burnout in the flame, increases the system`s energy efficiency and furnace throughput, while minimizing the furnace air emissions, all without external parasitic systems. Work has included identifying industry`s needs and constraints, modeling the high luminosity burner system, designing the prototype burner for initial laboratory-scale testing, defining the test plan, adapting the burner technology to meet the industry`s needs and constraints, and outlining the Industrial Adoption Plan.

  15. Modeling of time-resolved laser-induced incandescence transients for particle sizing in high-pressure spray combustion environments : a comparative study

    NARCIS (Netherlands)

    Dreier, T.; Bougie, B.; Dam, N.J.; Gerber, T.

    2006-01-01

    In this study experimental single-pulse, time-resolved laser-induced incandescence (TIRE-LII) signal intensity profiles acquired during transient Diesel combustion events at high pressure were processed. Experiments were performed between 0.6 and 7 MPa using a high-temperature high-pressure constant

  16. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  17. Combustion, pyrolysis, gasification, and liquefaction of biomas

    Science.gov (United States)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  18. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    Science.gov (United States)

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  19. Yield gains of coffee plants from phosphorus fertilization may not be generalized for high density planting

    Directory of Open Access Journals (Sweden)

    Samuel Vasconcelos Valadares

    2014-06-01

    Full Text Available Inconclusive responses of the adult coffee plant to phosphorus fertilization have been reported in the literature, especially when dealing with application of this nutrient in high density planting systems. Thus, this study was carried out for the purpose of assessing the response of adult coffee plants at high planting density in full production (in regard to yield and their biennial cycle/stability to the addition of different sources and application rates of P in the Zona da Mata region of Minas Gerais, Brazil. The experiment with coffee plants of the Catucaí Amarelo 6/30 variety was carried out over four growing seasons. Treatments were arranged in a full factorial design [(4 × 3 + 1] consisting of four P sources (monoammonium phosphate, simple superphosphate, natural reactive rock phosphate from Algeria (Djebel-Onk, and FH 550®, three P rates (100, 200, and 400 kg ha-1 year-1 of P2O5, and an additional treatment without application of the nutrient (0 kg ha-¹ year-¹. A randomized block experimental design was used with three replicates. The four seasons were evaluated as subplots in a split plot experiment. The P contents in soil and leaves increased with increased rates of P application. However, there was no effect from P application on the yield and its biennial cycle/stability regardless of the source used over the four seasons assessed.

  20. Functionalization of quinoxalines by using TMP bases: preparation of tetracyclic heterocycles with high photoluminescene quantum yields.

    Science.gov (United States)

    Nafe, Julia; Herbert, Simon; Auras, Florian; Karaghiosoff, Konstantin; Bein, Thomas; Knochel, Paul

    2015-01-12

    Tetracyclic heterocycles that exhibit high photoluminescence quantum yields were synthesized by anellation reactions of mono-, di-, and trifunctionalized 2,3-dichloroquinoxalines. Thus, treatment of 2,3-dichloroquinoxaline with TMPLi (TMP = 2,2,6,6-tetramethylpiperidyl) allows a regioselective lithiation in position 5. Quenching with various electrophiles (iodine, (BrCl2 C)2 , allylic bromide, acid chloride, aryl iodide) leads to 5-functionalized 2,3-dichloroquinoxalines. Further functionalization in positions 6 and 8 can be achieved by using TMPLi or TMPMgCl⋅LiCl furnishing a range of new di- and tri-functionalized 2,3-dichloroquinoxalines. The chlorine atoms are readily substituted by anellation with 1,2-diphenols or 1,2-dithiophenols leading to a series of new tetracyclic compounds. These materials exhibit strong, tunable optical absorption and emission in the blue and green spectral region. The substituted O-heterocyclic compounds exhibit particularly high photoluminescence quantum yields of up to 90%, which renders them interesting candidates for fluorescence imaging applications.

  1. Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lieuwen, Tim; Santavicca, Dom; Yang, Vigor

    2012-03-31

    During the duration of this sponsorship, we broadened our understanding of combustion instabilities through both analytical and experimental work. Predictive models were developed for flame response to transverse acoustic instabilities and for quantifying how a turbulent flame responds to velocity and fuel/air ratio forcing. Analysis was performed on the key instability mechanisms controlling heat release response for flames over a wide range of instability frequencies. Importantly, work was done closely with industrial partners to transition existing models into internal instability prediction codes. Experimentally, the forced response of hydrogen-enriched natural gas/air premixed and partially premixed flames were measured. The response of a lean premixed flame was investigated, subjected to velocity, equivalence ratio, and both forcing mechanisms simultaneously. In addition, important physical mechanisms controlling the response of partially premixed flames to inlet velocity and equivalence ratio oscillations were analyzed. This final technical report summarizes our findings and major publications stemming from this program.

  2. Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved

    Science.gov (United States)

    Raju, Manthena S.

    2002-01-01

    Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.

  3. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  4. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  5. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization.

    Science.gov (United States)

    Zerfaß, Christian; Braukmann, Sandra; Nietzsche, Sandor; Hobe, Stephan; Paulsen, Harald

    2015-04-01

    We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, but may even promote counterion-independent self-assembly which in turn leads to silica precipitation. Enzymatic phosphorylation, a common modification in native silica biomineralizing peptides, can be used to modify the precipitation activity.

  6. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  7. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  8. Radiation Hard & High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    AUTHOR|(CDS)2081071

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO:Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  9. Reaching High-Yield Fusion with a Slow Plasma Liner Compressing a Magnetized Target

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D; Parks, P B

    2008-03-18

    Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high high-Z material is discussed. A 'soft-landing' (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than, roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma liner with one or two glide cones allows for a direct access to the area near the center of the reactor chamber. One can then generate plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the point of a maximum compression and thereby increase the fusion yield.

  10. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  11. Quantitative Analysis of Spectral Interference of Spontaneous Raman Scattering in High-Pressure Fuel-Rich H2-Air Combustion

    Science.gov (United States)

    Kojima, Jun; Nguyen, Quang-Viet

    2004-01-01

    We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.

  12. A Novel High-Heat Transfer Low-NO{sub x} Natural Gas Combustion System. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, H.

    2004-01-01

    A novel high-heat transfer low NO(sub x) natural gas combustion system. The objectives of this program are to research, develop, test, and commercialize a novel high-heat transfer low-NO{sub x} natural gas combustion system for oxygen-, oxygen-enriched air, and air-fired furnaces. This technology will improve the process efficiency (productivity and product quality) and the energy efficiency of high-temperature industrial furnaces by at least 20%. GTI's high-heat transfer burner has applications in high-temperature air, oxygen-enriched air, and oxygen furnaces used in the glass, metals, cement, and other industries. Development work in this program is focused on using this burner to improve the energy efficiency and productivity of glass melting furnaces that are major industrial energy consumers. The following specific project objectives are defined to provide a means of achieving the overall project objectives. (1) Identify topics to be covered, problems requiring attention, equipment to be used in the program, and test plans to be followed in Phase II and Phase III. (2) Use existing codes to develop models of gas combustion and soot nucleation and growth as well as a thermodynamic and parametric description of furnace heat transfer issues. (3) Conduct a parametric study to confirm the increase in process and energy efficiency. (4) Design and fabricate a high-heat transfer low-NOx natural gas burners for laboratory, pilot- and demonstration-scale tests. (5) Test the high-heat transfer burner in one of GTI's laboratory-scale high-temperature furnaces. (6) Design and demonstrate the high-heat transfer burner on GTI's unique pilot-scale glass tank simulator. (7) Complete one long term demonstration test of this burner technology on an Owens Corning full-scale industrial glass melting furnace. (8) Prepare an Industrial Adoption Plan. This Plan will be updated in each program Phase as additional information becomes available. The Plan will include

  13. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending.

  14. Time evolution of the high temperature region formed by laser induced breakdown and of the development of the flame kernel in the constant volume combustion vessel

    Science.gov (United States)

    Hayashi, J.; Nakatsuka, N.; Morimoto, I.; Akamatsu, F.

    2017-02-01

    The lean combustion is one of the key techniques for the advanced internal combustion systems due to the requirement of the higher thermal efficiency. Since the successful ignition must be guaranteed even in the lean combustion, advanced ignition systems have been developed in this decade. Laser ignition is one of the advanced ignition systems which have the profits of the flexibility in the position and the timing of ignition. To develop this ignition system for the actual combustion system, it is required to reveal the underlying physics of the laser ignition. Particularly, the time evolution of high temperature region formed by laser induced breakdown should be discussed. In this study, therefore, the time evolution of the high temperature region formed by the laser induced breakdown and the development of flame kernel were observed by using high-speed imaging. The ignition trials of methane/air lean premixed mixture were carried out in the constant volume combustion vessel to obtain minimum laser pulse energy for ignition (MPE). Results showed that the light emission from plasma formed by laser induced breakdown remained at least in several tens nano-seconds. In addition, there were large differences between the breakdown threshold and the MPE, which meant that the breakdown threshold did not determine the minimum pulse energy for ignition.

  15. Glucose concentration and blood acid-basis status in high-yielding dairy cows during heat stress

    Directory of Open Access Journals (Sweden)

    Vujanac Ivan

    2011-01-01

    Full Text Available The objective of this work was to examine the effect of heat stress on glucose and pH values in blood of high-yielding dairy cows in the early stage of lactation, as well as to determine whether the changes in these parameters are interdependent under such conditions. An experiment was performed on high-yielding dairy cows during the summer and the spring periods. Forty cows were selected, twenty each for the two periods under investigation. In the course of the experiment, the temperature humidity index (THI was determined for the entire period of investigations, and then also the average daily THI, nightmorning THI (average value of hourly THI measured from 22h on the previous day until 10h of the current day, as well as the day-night THI (average value of hourly THI measured during the period from 10h to 22h of the current day. The pH and glucose concentration were determined in blood samples taken in the morning and afternoon of days 30, 60, and 90 of lactation during the spring and summer periods of the investigations. Based on the results for the THI, it was established that the animals were not exposed to the effect of extreme heat stress during the spring period of investigations, while they were periodically exposed to moderate but also extreme heat stress during the summer, in particular in the afternoon hours. It can be concluded from the results obtained for the blood pH that the cows were in respiratory alkalosis during the summer in the morning and afternoon hours on day 30, in the afternoon hours of days 60 and 90 of lactation, as well as in the afternoon on day 90 of lactation during the spring period of investigations. During the summer period, there were no statistically significant differences between the pH value determined in the morning and afternoon hours on day 30 of lactation, while the pH value was significantly higher in the afternoon hours than in the morning hours on days 60 and 90 of lactation. There were no

  16. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013

  17. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    Science.gov (United States)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  18. JLT-408 A New High Yielding Sesame Variety for Maharashtra State

    Directory of Open Access Journals (Sweden)

    M. G. Jadhav, G.B.Chaudhari,T. R. Patil, and S. C. Patil

    2015-03-01

    Full Text Available Sesame variety JLT-408 is developed through hybridization followed by advance generation selection from the cross Padma x Yuzhi-8 by pedigree method at Oilseeds Research Station, Jalgaon. This variety gave 29.9 % and 20.8% higher yield than checks JLT-7 and JLT-26, respectively. It has medium maturity period (81-85 days, white bold seed and found superior in quality viz. high oil content (53.2%, low in free fatty acid (1.46% and its Iodine value is 107.0. This new variety is moderately resistant to major diseases like Phyllody, Cercospora leaf spot, Alternaria leaf spot, Powdery mildew and Macrophomina stem/ root rot and it is moderately tolerant to leaf roller /capsule borer and tolerant to gall fly under field conditions. Considering merits in respect of yield, oil content and quality parameters JLT-408 has been released for cultivation in kharif season in North Maharashtra and adjoining areas of Vidarbha and Marathwada regions in Maharashtra.

  19. Engineering a high-yield glutathione strain of Hansenula polymorpha using ion beam implantation.

    Science.gov (United States)

    Qian, Weidong; Fu, Yunfang; Cai, Changlong

    2013-01-01

    To generate an industrial strain of Hansenula polymorpha capable of yielding greater levels of glutathione (GSH), wild strain H. polymorpha DL-1 cells were mutated using a nitrogen ion beam, a novel mutagen. At an energy level of 20 keV and dose of 2.13 × 10(16) ions/cm(2), H. polymorpha strain 28 (HP28) with a high-yield of GSH was screened. HP28 intracellular GSH levels reached 337.16 mg/L by ion beam implantation, 1.56 times greater than that of the wild type strain when the fermentation time was shortened from 48 hr to 42 hr, greatly improving efficiency and reducing the cost of industrial-scale production. The enhanced efficiency of HP28 is promising for GSH production from lignocellulosic materials. Therefore, the ion beam implantation would be a cost-effective alternative to the conventional mutation method for engineering yeast and improving its utility.

  20. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants

    Science.gov (United States)

    Mortley, D. G.; Bonsi, C. K.; Loretan, P. A.; Hill, W. A.; Morris, C. E.

    2000-01-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  1. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants

    Science.gov (United States)

    Mortley, D. G.; Bonsi, C. K.; Loretan, P. A.; Hill, W. A.; Morris, C. E.

    2000-01-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  2. Yields of AGB and SAGB models with chemistry of low- and high-metallicity Globular Clusters

    CERN Document Server

    Ventura, P; Carini, R; D'Antona, F

    2013-01-01

    We present yields from stars of mass in the range Mohigh-Z Globular Clusters. The yields are based on full evolutionary computations, following the evolution of the stars from the pre-Main Sequence through the Asymptotic Giant Branch phase, until the external envelope is lost. Independently of metallicity, stars with M<3Mo are dominated by Third Dredge-Up, thus ejecting into their surroundings gas enriched in carbon and nitrogen. Conversely, Hot Bottom Burning is the main responsible for the modification of the surface chemistry of more massive stars, whose mass exceeds 3Mo: their gas shows traces of proton-capture nucleosynthesis. The extent of Hot Bottom Burning turns out to be strongly dependent on metallicity. In this paper we analyze the consequences of this fact. These results can be used to understand the role played by intermediate mass stars in the self-enrichment scenario of globular clusters: the resu...

  3. The yield of high-detail radiographic skeletal surveys in suspected infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Ignasi [Hospital Vall d' Hebron, Universitat Autonoma de Barcelona, Pediatric Radiology Department, Barcelona (Spain); Perez-Rossello, Jeannette M.; Kleinman, Paul K. [Boston Children' s Hospital, Radiology Department, Boston, MA (United States); Wilson, Celeste R. [Boston Children' s Hospital, Division of General Pediatrics, Boston, MA (United States)

    2014-07-06

    Skeletal surveys are routinely performed in cases of suspected child abuse, but there are limited data regarding the yield of high-detail skeletal surveys in infants. To determine the diagnostic yield of high-detail radiographic skeletal surveys in suspected infant abuse. We reviewed the high-detail American College of Radiology standardized skeletal surveys performed for suspected abuse in 567 infants (median: 4.4 months, SD 3.47; range: 4 days-12 months) at a large urban children's hospital between 2005 and 2013. Skeletal survey images, radiology reports and medical records were reviewed. A skeletal survey was considered positive when it showed at least one unsuspected fracture. In 313 of 567 infants (55%), 1,029 definite fractures were found. Twenty-one percent (119/567) of the patients had a positive skeletal survey with a total of 789 (77%) unsuspected fractures. Long-bone fractures were the most common injuries, present in 145 children (26%). The skull was the site of fracture in 138 infants (24%); rib cage in 77 (14%), clavicle in 24 (4.2%) and uncommon fractures (including spine, scapula, hands and feet and pelvis) were noted in 26 infants (4.6%). Of the 425 infants with neuroimaging, 154 (36%) had intracranial injury. No significant correlation between positive skeletal survey and associated intracranial injury was found. Scapular fractures and complex skull fractures showed a statistically significant correlation with intracranial injury (P = 0.029, P = 0.007, respectively). Previously unsuspected fractures are noted on skeletal surveys in 20% of cases of suspected infant abuse. These data may be helpful in the design and optimization of global skeletal imaging in this vulnerable population. (orig.)

  4. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  5. BRS FC402: high-yielding common bean cultivar with carioca grain, resistance to anthracnose and fusarium wilt

    Directory of Open Access Journals (Sweden)

    Leonardo Cunha Melo

    2016-12-01

    Full Text Available BRS FC402 is a common bean cultivar of the carioca-grain group with commercial grain quality, suitable for cultivation in 21 Brazilian states. Cultivar has a normal cycle (85-94 days, high yield potential (4479 kg ha-1, 10.1% higher mean yield than the controls (2462 kg ha-1 and resistance to fusarium wilt and anthracnose.

  6. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  7. High-Yield Synthesis of Silver Nanoparticles by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    Y. D. Sosa

    2010-01-01

    Full Text Available Silver nanoparticles were precipitated at 70°C in a reverse microemulsion containing a high concentration of 0.5 M silver nitrate aqueous solution, toluene as organic phase, and a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, w/w. Nanoparticles were characterized by X-ray diffraction, atomic absorption spectroscopy, and high-resolution transmission electron microscopy. In spite of the high-water/surfactant molar ratio and concentration of silver nitrate solution used in this study, characterizations demonstrated that nanoparticles were silver crystals (purity >99% with 8.6–8.8 nm in average diameter and 2.9–4.7 nm in standard deviation. It is proposed that slow dosing rate of aqueous solution of precipitating agent and the small molecular volume of toluene attenuated both particle aggregation and polydispersity widening. Experimental yield of silver nanoparticles obtained in this study was much higher than theoretical yields calculated from available data in the literature on preparation of silver nanoparticles in reverse microemulsions.

  8. The addition of submergence-tolerant Sub1 gene into high yielding MR219 rice variety and analysis of its BC2F3 population in terms of yield and yield contributing characters to select advance lines as a variety

    Directory of Open Access Journals (Sweden)

    Fahim Ahmed

    2016-09-01

    Full Text Available A cross was made between MR219 (high yielding but submergence intolerant and Swarna-Sub1 (submergence tolerant to produce submergence-tolerant rice variety using the marker-assisted backcrossing (MABC method to protect the farmers of low-lying land from flash floods during rain. Knowledge of yield and yield contributing factors plays a vital role in the selection process of a variety. This experim ent was designed to determine the genetic diversity among recently produced different lines of BC2F3 population and also to compare all the lines with MR219 to find the best one. Agronomical, yield and yield contributing data were taken, while genotypic and phenotypic coefficients, variance components and heritability were estimated. Introgression of the target gene, Sub1, was done using tightly linked marker, and also background recovery was measured using simple sequence repeat (SSR markers in different generations. The observed recurrent parent genome (RPG recovery of BC2F2 generation was 95.37%, which indicates high-level similarity between the recurrent parent (MR219 and the resulting lines. Thirty newly developed lines of BC2F3 population, resulting backcross of MR219 and Swarna-Sub1, were planted with four replications following randomised complete block design (RCBD. Newly developed lines were grouped into four clusters based on traits with UPGMA dendrogram and cluster analysis to select the 10 best plants. This study will help the future researchers to select the best plants of a breeding programme after introgression of a gene considering phenotype performances to develop new varieties.

  9. Molecular signature of high yield (growth influenza a virus reassortants prepared as candidate vaccine seeds.

    Directory of Open Access Journals (Sweden)

    Manojkumar Ramanunninair

    Full Text Available BACKGROUND: Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8, to provide the high yield reassortant (HYR viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA and neuraminidase (NA genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo. METHODOLOGY: The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2 and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry. RESULTS: Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA. SIGNIFICANCE: In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.

  10. Novel fully-BODIPY functionalized cyclotetraphosphazene photosensitizers having high singlet oxygen quantum yields

    Science.gov (United States)

    Şenkuytu, Elif; Eçik, Esra Tanrıverdi

    2017-07-01

    Novel fully-BODIPY functionalized dendrimeric cyclotetraphosphazenes (FBCP 1 and 2) have been synthesized and characterized by 1H, 13C and 31P NMR spectroscopies. The photophysical and photochemical properties of FBCP 1 and 2 are investigated in dichloromethane solution. The effectiveness of singlet oxygen generation was measured for FBCP 1 and 2 by UV-Vis spectra monitoring of the solution of 1,3-diphenylisobenzofuran (DPBF), which is a well-known trapping molecule used in detection of singlet oxygen. FBCP 1 and 2 show high molar extinction coefficients in the NIR region, good singlet oxygen quantum yields and appropriate photo degradation. The data presented in the work indicate that the dendrimeric cyclotetraphosphazenes are effective singlet oxygen photosensitizers that might be used for various areas of applications such as photodynamic therapy and photocatalysis.

  11. Improvement of production of high-yield poplar varieties seedlings by mycorrhiza application

    Directory of Open Access Journals (Sweden)

    Galić Zoran A.

    2007-01-01

    Full Text Available Research related to the effects of treatment by mycorrhiza preparations Ectovit, Rhodovit (preparations Symbio-m Ltd., Czech Rep. and their combination on growth of four high-yield poplar clones of Populus deltoides and one variety of Populus x euramericana are presented in this paper. In order to make more accurate assessment of mycorrhiza effect, soil characteristics such as morphology, texture and chemical composition were determined. The study results indicate that mycorrhized cuttings had the same or the better survival in all the study clones compared to the control. The application of the preparation Ectovit and Rhodovit resulted averagely in the first class planting stock of all the study clones. The combination of the preparations Ectovit and Rhodovit produced averagely the first class planting stock only of the clone Populus x euramericana.

  12. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium.

    Science.gov (United States)

    Coconi-Linares, Nancy; Magaña-Ortíz, Denis; Guzmán-Ortiz, Doralinda A; Fernández, Francisco; Loske, Achim M; Gómez-Lim, Miguel A

    2014-11-01

    The white-rot fungus Phanerochaete chrysosporium secretes extracellular oxidative enzymes during secondary metabolism, but lacks versatile peroxidase, an enzyme important in ligninolysis and diverse biotechnology processes. In this study, we report the genetic modification of a P. chrysosporium strain capable of co-expressing two endogenous genes constitutively, manganese peroxidase (mnp1) and lignin peroxidase (lipH8), and the codon-optimized vpl2 gene from Pleurotus eryngii. For this purpose, we employed a highly efficient transformation method based on the use of shock waves developed by our group. The expression of recombinant genes was verified by PCR, Southern blot, quantitative real-time PCR (qRT-PCR), and assays of enzymatic activity. The production yield of ligninolytic enzymes was up to four times higher in comparison to previously published reports. These results may represent significant progress toward the stable production of ligninolytic enzymes and the development of an effective fungal strain with promising biotechnological applications.

  13. High-yield synthesis of silicon carbide nanowires by solar and lamp ablation

    Science.gov (United States)

    Lu, Hai-bo; Chan, Benjamin C. Y.; Wang, Xiaolin; Tong Chua, Hui; Raston, Colin L.; Albu-Yaron, Ana; Levy, Moshe; Popowitz-Biro, Ronit; Tenne, Reshef; Feuermann, Daniel; Gordon, Jeffrey M.

    2013-08-01

    We report a reasonably high yield (∼50%) synthesis of silicon carbide (SiC) nanowires from silicon oxides and carbon in vacuum, by novel solar and lamp photothermal ablation methods that obviate the need for catalysis, and allow relatively short reaction times (∼10 min) in a nominally one-step process that does not involve toxic reagents. The one-dimensional core/shell β-SiC/SiOx nanostructures—characterized by SEM, TEM, HRTEM, SAED, XRD and EDS—are typically several microns long, with core and outer diameters of about 10 and 30 nm, respectively. HRTEM revealed additional distinctive nanoscale structures that also shed light on the formation pathways.

  14. Modeling Integrated High-Yield IFE Target Explosions in Xenon Filled Chambers

    Science.gov (United States)

    Fatenejad, Milad; Moses, Gregory

    2010-11-01

    We will present the results of several radiation-hydrodynamics simulations which model the aftermath of an exploding high yield (200 MJ) indirect drive target in a xenon filled reactor chamber. The goal is to determine the radial extent to which debris from the target and hohlraum expands into the target chamber. The 1D radiation-hydrodynamics code BUCKY is used to perform integrated simulations of the target explosion beginning from ignition and includes interactions between the chamber gas and tungsten first wall. The 3D radiation-hydrodynamics code Cooper will be used to model the growth of fluid instabilities as the target material expands into the xenon gas. Cooper will also be used to investigate the early-time interaction between the burning target and hohlraum shortly after ignition.

  15. Maximising high solid loading enzymatic saccharification yield from acid-catalysed hydrothermally-pretreated brewers spent grain

    Directory of Open Access Journals (Sweden)

    Stuart Wilkinson

    2016-06-01

    Full Text Available Enzyme saccharification of pretreated brewers spent grains (BSG was investigated, aiming at maximising glucose production. Factors investigated were; variation of the solids loadings at different cellulolytic enzyme doses, reaction time, higher energy mixing methods, supplementation of the cellulolytic enzymes with additional enzymes (and cofactors and use of fed-batch methods. Improved slurry agitation through aerated high-torque mixing offered small but significant enhancements in glucose yields (to 53 ± 2.9 g/L and 45% of theoretical yield compared to only 41 ± 4.0 g/L and 39% of theoretical yield for standard shaking methods (at 15% w/v solids loading. Supplementation of the cellulolytic enzymes with additional enzymes (acetyl xylan esterases, ferulic acid esterases and α-L- arabinofuranosidases also boosted achieved glucose yields to 58 – 69 ± 0.8 - 6.2 g/L which equated to 52 - 58% of theoretical yield. Fed-batch methods also enhanced glucose yields (to 58 ± 2.2 g/L and 35% of theoretical yield at 25% w/v solids loading compared to non-fed-batch methods. From these investigations a novel enzymatic saccharification method was developed (using enhanced mixing, a fed-batch approach and additional carbohydrate degrading enzymes which further increased glucose yields to 78 ± 4.1 g/L and 43% of theoretical yield when operating at high solids loading (25% w/v.

  16. Applied combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  17. A high loading overland flow system: Impacts on soil characteristics, grass constituents, yields and nutrient removal.

    Science.gov (United States)

    Wen, C G; Chen, T H; Hsu, F H; Lu, C H; Lin, J B; Chang, C H; Chang, S P; Lee, C S

    2007-04-01

    The objectives of this paper are to determine effects of different grass species and their harvests on pollutant removal, elucidate impacts on soil characteristics and grass constituents, observe grass yield and quantify nutrient uptake by vegetation in an overland flow system (OLFS). Polluted creek water was applied to eight channels in the OLFS, which were planted with Paragrass, Nilegrass, Cattail, and Vetiver, with each two channels being randomly planted with a given grass species. The grass in one channel was harvested while that in the other channel was not. At a high rate of 27.8 m d(-1) hydraulic loading, the removal efficiencies of conventional pollutants such as BOD, COD, suspended solids (SS), and total coliforms in wastewater are not affected by the type of the grasses species, but those of nitrogen and phosphorus are affected by different species. Overall average removal efficiencies of BOD, COD, SS, ammonia, total nitrogen, total phosphorus and total coliforms through the OLFS are 42%, 48%, 78%, 47%, 40%, 33% and 89%, respectively. The concentration of nitrate, however, increases due to nitrification. Soil characteristics in OLFS have been changed significantly; specific conductivity, organic matter, exchangeable magnesium, extractable copper and zinc in soils all increase with time while pHs decrease. During the winter season, there is a significant accumulation of nitrate in grass with the subsequent reduction during the active growing season (Spring). The contents of nitrate and phosphorus in grass tissue are higher than those of grass in general pastureland, probably due to nutrient luxury uptake by grass. The overall grass yield, growth rate and nutrient uptake are quantified and implication of such high rate OLFS discussed.

  18. Wireless power-receiving assembly for a telemetry system in a high-temperature environment of a combustion turbine engine

    Science.gov (United States)

    Bevly, III, Alex J.; McConkey, Joshua S.

    2016-08-16

    In a telemetry system (100) in a high-temperature environment of a combustion turbine engine (10), a wireless power-receiving coil assembly (116) may be affixed to a movable component (104) of the turbine engine. Power-receiving coil assembly (116) may include a radio-frequency transparent housing (130) having an opening (132). A lid (134) may be provided to close the opening of the housing. Lid (134) may be positioned to provide support against a surface (120) of the movable component. An induction coil (133) is disposed in the housing distally away from the lid and encased between a first layer (136) and a last layer (140) of a potting adhesive. Lid (134) is arranged to provide vibrational buffering between the surface (120) of the movable component (104) and the layers encasing the induction coil.

  19. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  20. High-yield Synthesis of Multiwalled Carbon Nanotube by Mechanothermal Method

    Directory of Open Access Journals (Sweden)

    Manafi SA

    2009-01-01

    Full Text Available Abstract This study reports on the mechanothermal synthesis of multiwalled carbon nanotube (MWCNTs from elemental graphite powder. Initially, high ultra-active graphite powder can be obtained by mechanical milling under argon atmosphere. Finally, the mechanical activation product is heat-treated at 1350°C for 2–4 h under argon gas flow. After heat-treatment, active graphite powders were successfully changed into MWCNTs with high purity. The XRD analyses showed that in the duration 150 h of milling, all the raw materials were changed to the desired materials. From the broadening of the diffraction lines in the XRD patterns, it was concluded that the graphite crystallites were nanosized, and raising the milling duration resulted in the fineness of the particles and the increase of the strain. The structure and morphology of MWCNTs were investigated using scanning electron microscopy (SEM and high-resolution transmission electron microscopy (HRTEM. The yield of MWCNTs was estimated through SEM and TEM observations of the as-prepared samples was to be about 90%. Indeed, mechanothermal method is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanotubes (CNTs. As a matter of fact, the method of mechanothermal guarantees the production of MWCNTs suitable for different applications.

  1. High-yield Synthesis of Nanohybrid Shish-kebab Polyethylene-carbon Nanotube Structure

    Institute of Scientific and Technical Information of China (English)

    CUI Chaojie; QIAN Weizhong; ZHAO Mengqiang; XU Guanghui; NIE Jingqi; JIA Xilai; WEI Fei

    2013-01-01

    We report a novel method to prepare nanohybrid shish-kebab (NHSK) structure of polyethylene (PE) and carbon nanotube (CNT),Pristine CNTs without surface modification with high concentration was effectively dispersed in xylene solution by a simple shearing method,which induces the quick crystallization of PE in xylene to form a novel NHSK structure with more dense and smaller PE kebab on CNT axis.The flocculated NHSK product was transferred quickly from the xylene solution to the ethanol solution,in order to shorten the preparation time.The freeze-drying method was used in vacuum instead of high-temperature drying to avoid the aggregation of NHSK product.These improvements allow the formation of NHSK with an absolute yield of 200 mg·h-1,which is 2000 folds of that reported previously.It is favorable to apply this structured material in high performance nanocomposite,by improving the compatibility of CNTs in polymer and the interracial force between CNTs and polymer.

  2. Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kalaskar, Vickey B [ORNL; Szybist, James P [ORNL; Splitter, Derek A [ORNL

    2014-01-01

    In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

  3. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Gjernes, Erik; Hansen, Lars Kresten

    1996-01-01

    Within the past decade, there has been an interest for pressurized combustion and gasification of solid fuels in power plants due to the potential for high efficiency. The utilization of new types of solid fuels for pressurized combustion and gasification depends on char yield and char reactivity...... at relevant conditions. The pressurized entrained now reactor designed at Rise is introduced. Pyrolysis and combustion at 10 and 20 bar pressure have been studied using pulverized wheat straw. Samples of partly reacted particles are collected, and the conversion is calculated using the ash tracer technique...

  4. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield.

    Science.gov (United States)

    Shaw, A Joe; Podkaminer, Kara K; Desai, Sunil G; Bardsley, John S; Rogers, Stephen R; Thorne, Philip G; Hogsett, David A; Lynd, Lee R

    2008-09-16

    We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations in continuous culture. The growth rate of strain ALK2 was similar to the wild-type strain, with a reduction in cell yield proportional to the decreased ATP availability resulting from acetate kinase inactivation. Glucose and xylose are co-utilized and utilization of mannose and arabinose commences before glucose and xylose are exhausted. Using strain ALK2 in simultaneous hydrolysis and fermentation experiments at 50 degrees C allows a 2.5-fold reduction in cellulase loading compared with using Saccharomyces cerevisiae at 37 degrees C. The maximum ethanol titer produced by strain ALK2, 37 g/liter, is the highest reported thus far for a thermophilic anaerobe, although further improvements are desired and likely possible. Our results extend the frontier of metabolic engineering in thermophilic hosts, have the potential to significantly lower the cost of cellulosic ethanol production, and support the feasibility of further cost reductions through engineering a diversity of host organisms.

  5. Does high yield spread dampen economic growth? : the case of US-Japan

    Directory of Open Access Journals (Sweden)

    Yutaka Kurihara

    2014-04-01

    Full Text Available This article focuses on the relationship between the United States' and Japan's yield spread of interest rates and economic growth in Japan. The yield spread is defined in this article as the difference between the Japanese government bond yield minus the US government bond yield. Some studies have tackled this issue and found a negative relationship between the yield spread and economic growth; however, recent studies have shown no or a weak relationship. This problem has not yet consensus in spite of its importance. As the Japanese interest rate has been quite low since the adoption of the zero interest rate policy at the end of 1990s, the situation may change the results. The empirical results show that reliability of yield spread as a leading indicator of output growth exists in Japan; however, term structure of interest rate is not related to economic growth.

  6. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  7. Combustion efficiency and altitude operational limits of three liquid hydrocarbon fuels having high volumetric energy content in a J33 single combustor

    Science.gov (United States)

    Stricker, Edward G

    1950-01-01

    Combustion efficiency and altitude operational limits were determined in a J33 single combustor for AN-F-58 fuel and three liquid hydrocarbon fuels having high volumetric energy content (decalin, tetralin, and monomethylnaphthalene) at simulated altitude and combustor inlet-air conditions. At the conditions investigated, the combustion efficiency for the four fuels generally decreased with an increase in volumetric energy content. The altitude operational limits for decalin and tetralin fuels were higher than for AN-F-58 fuel; monomethylnaphthalene fuel gave the lowest altitude operational limit.

  8. Breeding of a high yielding chamomile variety (Matricaria recutita L. with improved traits for machine harvesting

    Directory of Open Access Journals (Sweden)

    Albrecht, Sebastian

    2016-07-01

    Full Text Available A more productive variety of chamomile (Matricaria recutita L., which is more efficient in machine processing with consistent quality traits, will benefit the viability of german products in the global market. Breeding of an enhanced chamomile variety is part of a german multi-network project called KAMEL whose research aims on Matricaria recutita L., Valeriana officinalis L. and Melissa officinalis L. The agronomic and qualitative improvement of these speciality crops are the basis for further economic prosperity of medicinal and aromatic plant cultivation in Germany. The main breeding goals of a new variety of chamomile are the increase of blossom product yield (Matricariae flos to 6 dt/ha in up to three harvest stages through a homogenous flower horizon (pick height, an even flowering time, large flower heads and a high regeneration rate after each harvest stage. The upgrade of the content of essential oil content to a minimum of 0.8 % with its compostion according to Ph. Eur. and a chamazulene content of min. 25 % are further objectives of the breeding process. In addition to these quality traits, high tolerances against common fungal diseases are of particular interest. Development of an innovative chamomile variety is realized over nine years in three stages (2010 - 2019.

  9. Propagation method for persistent high yield of diverse Listeria phages on permissive hosts at refrigeration temperatures.

    Science.gov (United States)

    Radford, Devon R; Ahmadi, Hanie; Leon-Velarde, Carlos G; Balamurugan, Sampathkumar

    2016-10-01

    The efficient production of a high concentration of bacteriophage in large volumes has been a limiting factor in the exploration of the true potential of these organisms for biotechnology, agriculture and medicine. Traditional methods focus on generating small volumes of highly concentrated samples as the end product of extensive mechanical and osmotic processing. To function at an industrial scale mandates extensive investment in infrastructure and input materials not feasible for many smaller facilities. To address this, we developed a novel, scalable, generic method for producing significantly higher titer psychrophilic phage (P Listeria, Yersinia and their phages grow in equilibrium. Diverse Yersinia and Listeria phages tested yielded averages of 3.49 × 10(8) to 3.36 × 10(12) PFU/ml/day compared to averages of 1.28 × 10(5) to 1.30 × 10(10) PFU/ml/day by traditional methods. Host growth and death kinetics made this method ineffective for extended propagation of mesophilic phages.

  10. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  11. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  12. Combustion Front Dynamics in the Combustion Synthesis of Refractory Metal Carbides and Di-borides using Time-Resolved X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wong,J.; Larson, E.; Waide, P.; Frahm, R.

    2006-01-01

    A compact diffraction-reaction chamber, using a 2-inch photodiode array detector, has been employed to investigate the chemical dynamics at the combustion front of a selected series of refractory metal carbides and di-borides from their constituent element reactants as well as binary products from B4C as a reactant. These systems are denoted as (i) M + C {yields} MC; (ii) M + 2B {yields} MB{sub 2}; and (iii) 3M + B{sub 4}C {yields} 2MB{sub 2} + MC, where M = Ti, Zr, Nb, Hf or Ta. Time-resolved X-ray diffraction using intense synchrotron radiation at frame rates up to 10 frames s{sup -1} (or 100 ms frame{sup -1}) was employed. The combustion reactions were found to complete within 200-400 ms. In contrast to the Ta + C {yields} TaC combustion system studied earlier, in which a discernible intermediate sub-carbide phase was first formed, reacted further and disappeared to yield the final TaC product, no intermediate sub-carbide or sub-boride was detected in the current systems. Combustion for the Ti, Zr and Hf systems involved a liquid phase, in which the adiabatic temperatures T{sub ad} are well above the melting points of the respective reactant metals and have a typical combustion front velocity of 5-6 mm s{sup -1}. The Nb and Ta systems have lower T{sub ad}, involving no liquid phase. These are truly solid combustion systems and have a lower combustion front velocity of 1-2 mm s{sup -1}. The current study opens up a new avenue to chemical dynamics and macrokinetic investigations of high-temperature solid-state reactions.

  13. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties

    Science.gov (United States)

    Fang, Caihong; Zhao, Guili; Xiao, Yanling; Zhao, Jun; Zhang, Zijun; Geng, Baoyou

    2016-11-01

    Au nanobipyramids (NBPs) have attracted great attention because of their unique localized surface plasmon resonance properties. However, the current growth methods always have low yield or suffer tedious process. Developing new ways to direct synthesis of high-yield Au NBPs using common agents is therefore desirable. Here, we employed chloroplatinic acid as the key shape-directing agent for the first time to grow Au NBPs using a modified seed-mediated method at room temperature. H2PtCl6 was added both during the seed preparation and in growth solution. Metallic Pt, reduced from chloroplatinic acid, will deposit on the surface of the seed nanoparticles and the Au nanocrystals and thus plays a critical role for the formation of Au NBPs. Additionally, the reductant, precursor, and surfactant are all cheap and commonly used. Furthermore, the Au NBPs offer narrow size distribution, two sharp tips, and a shared basis. Au NBPs therefore show much higher refractive index sensitivities than that of the Au nanorods. The refractive index sensitivities and lager figure of merit values of Au NBPs exhibit an increase of 63% and 321% respectively compared to the corresponding values of Au nanorod sample.

  15. Induction of embryogenic callus and plantlet regeneration from young leaves of high yielding mature oil palm

    Directory of Open Access Journals (Sweden)

    Yeedum, I.

    2004-09-01

    Full Text Available Callus induction and plantlet regeneration from young leaves of high-yielding mature oil palm were carried out using 10-year and 20-year-old trees from Thepa Research Station, Faculty of Natural Resources,Prince of Songkla University, Hat Yai, and Trang Agricultural College, respectively. Culture media used in this experiment were Murashige and Skoog (1962 and Oil Palm supplemented with various concentrations of α-naphthaleneacetic acid (NAA or 2,4- dichlorophenoxy acetic acid (2,4-D or dicamba (Di and antioxidants.Young leaves from 6th to 11st frond were excised, sterilized, cut into 5x5 mm pieces and cultured in the dark at 26±4ºC or 28±0.5ºC for 3 months. The results revealed that MS medium with 200 mg/l ascorbic acid (As and 1 mg/l Di (MS-AsDi gave the highest callus induction percentage (7.93 after culture for 3 months at 28±0.5ºC. Leaf segments from 6th - 8th frond yielded callus forming percentage at 10% (averaged from 1, 2.5 and 5 mg/l Di containing MS medium. Ascorbic acid as an antioxidant at concentration of 200 mg/l supplemented in MS medium in the presence of 2.5 mg/l Di produced the highest callus induction percentage (11.2 and number of nodules (7.06. A high percentage of embryogenic callus formation (66.67 was obtained when the calli were transferred to the same medium component supplemented with 0.5 mg/l Di and 1,000 mg/l casein hydrolysate (CH (MS-AsDiCH. Haustorial-staged embryos were observed to be isolated as an individual embryo and germinated on MS medium without plant growth regulator (MS-free. Development of root could be classified into two distinct types, fibrous and tap root.

  16. Association between udder morphology and in vitro activity of milk leukocytes in high yielding crossbred cows

    Directory of Open Access Journals (Sweden)

    Tripti Sharma (Buragohain

    2017-03-01

    Full Text Available Aim: The present investigation was conducted to study the association between udder morphology and in vitro activity of milk leukocytes in high yielding crossbred cows. Materials and Methods: A total of 48 healthy high yielding crossbred cows were selected for the study. The udder configuration and teat/udder morphology were recorded before milking. Milk samples (100 ml/cow were collected aseptically. Milk somatic cell counts (SCC and milk differential leukocyte counts were performed microscopically. Milk leukocytes (viz., neutrophils, lymphocytes, and macrophages were isolated from milk samples by density gradient centrifugation. Phagocytic index (PI of milk neutrophils and macrophages were evaluated by colorimetric nitro blue tetrazolium assay. Lymphocytes proliferation response was estimated by MTT assay and expressed as stimulation index. Results: There was a significant (p<0.01 positive correlation between milk SCC with mid teat diameter, teat base diameter and significant (p<0.05 negative correlation between milk SCC and the height of the teat from the ground. Milk SCC was found to be significantly (p<0.01 lower in bowl-shaped udder and higher (p<0.01 in pendulous type. Milk macrophage percentage was positively (p<0.01 correlated with udder circumference. PI of milk neutrophil was negatively (p<0.01 correlation between teat base diameter, and PI of milk macrophages was found to be positively (p<0.01 correlated with teat apex diameter. Both PI of milk neutrophils and macrophages was found to be significantly (p<0.01 lower in the animals having flat and round teat and pendulous type of udder. In vitro PI of milk neutrophils was found to be significantly (p<0.01 lower in flat teat. In vitro PI of milk macrophages was found to be significantly (p<0.01 lower in the round and flat teats compared to pointed and cylindrical teats. Conclusion: Udder risk factors such as teat shape and size, teat to floor distance, udder shape, and size may decrease

  17. High-yielding aquifers in crystalline basement: insights about the role of fault zones, exemplified by Armorican Massif, France

    Science.gov (United States)

    Roques, Clément; Bour, Olivier; Aquilina, Luc; Dewandel, Benoît

    2016-12-01

    While groundwater constitutes a crucial resource in many crystalline-rock regions worldwide, well-yield conditions are highly variable and barely understood. Nevertheless, it is well known that fault zones may have the capacity to ensure sustainable yield in crystalline media, but there are only a few and disparate examples in the literature that describe high-yield conditions related to fault zones in crystalline rock basements. By investigating structural and hydraulic properties of remarkable yielding sites identified in the Armorican Massif, western France, this study discusses the main factors that may explain such exceptional hydrogeological properties. Twenty-three sites, identified through analysis of databases available for the region, are investigated. Results show that: (1) the highly transmissive fractures are related to fault zones which ensure the main water inflow in the pumped wells; (2) the probability of intersecting such transmissive fault zones does not vary significantly with depth, at least within the range investigated in this study (0-200 m); and (3) high yield is mainly controlled by the structural features of the fault zones, in particular the fault dip and the presence of a connected storage reservoir. Conceptual models that summarize the hydrological properties of high-yield groundwater resources related to fault zones in crystalline basement are shown and discussed.

  18. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.

    Science.gov (United States)

    Wang, Junzhong; Manga, Kiran Kumar; Bao, Qiaoliang; Loh, Kian Ping

    2011-06-15

    High-yield production of few-layer graphene flakes from graphite is important for the scalable synthesis and industrial application of graphene. However, high-yield exfoliation of graphite to form graphene sheets without using any oxidation process or super-strong acid is challenging. Here we demonstrate a solution route inspired by the lithium rechargeable battery for the high-yield (>70%) exfoliation of graphite into highly conductive few-layer graphene flakes (average thickness electrolyte of Li salts and organic solvents under high current density and exfoliated efficiently into few-layer graphene sheets with the aid of sonication. The dispersible graphene can be ink-brushed to form highly conformal coatings of conductive films (15 ohm/square at a graphene loading of <1 mg/cm(2)) on commercial paper.

  19. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  20. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning.

    Science.gov (United States)

    Erickson, Ariane E; Edmondson, Dennis; Chang, Fei-Chien; Wood, Dave; Gong, Alex; Levengood, Sheeny Lan; Zhang, Miqin

    2015-12-10

    The inability to produce large quantities of nanofibers has been a primary obstacle in advancement and commercialization of electrospinning technologies, especially when aligned nanofibers are desired. Here, we present a high-throughput centrifugal electrospinning (HTP-CES) system capable of producing a large number of highly-aligned nanofiber samples with high-yield and tunable diameters. The versatility of the design was revealed when bead-less nanofibers were produced from copolymer chitosan/polycaprolactone (C-PCL) solutions despite variations in polymer blend composition or spinneret needle gauge. Compared to conventional electrospinning techniques, fibers spun with the HTP-CES not only exhibited superior alignment, but also better diameter uniformity. Nanofiber alignment was quantified using Fast Fourier Transform (FFT) analysis. In addition, a concave correlation between the needle diameter and resultant fiber diameter was identified. This system can be easily scaled up for industrial production of highly-aligned nanofibers with tunable diameters that can potentially meet the requirements for various engineering and biomedical applications.

  1. High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese.

    Science.gov (United States)

    Escobar, D; Clark, S; Ganesan, V; Repiso, L; Waller, J; Harte, F

    2011-03-01

    High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties.

  2. Single PA mutation as a high yield determinant of avian influenza vaccines

    Science.gov (United States)

    Lee, Ilseob; Il Kim, Jin; Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Yun, Soo-Hyeon; Lee, Joo-Yeon; Kim, Kisoon; Kang, Chun; Park, Man-Seong

    2017-01-01

    Human infection with an avian influenza virus persists. To prepare for a potential outbreak of avian influenza, we constructed a candidate vaccine virus (CVV) containing hemagglutinin (HA) and neuraminidase (NA) genes of a H5N1 virus and evaluated its antigenic stability after serial passaging in embryonated chicken eggs. The passaged CVV harbored the four amino acid mutations (R136K in PB2; E31K in PA; A172T in HA; and R80Q in M2) without changing its antigenicity, compared with the parental CVV. Notably, the passaged CVV exhibited much greater replication property both in eggs and in Madin-Darby canine kidney and Vero cells. Of the four mutations, the PA E31K showed the greatest effect on the replication property of reverse genetically-rescued viruses. In a further luciferase reporter, mini-replicon assay, the PA mutation appeared to affect the replication property by increasing viral polymerase activity. When applied to different avian influenza CVVs (H7N9 and H9N2 subtypes), the PA E31K mutation resulted in the increases of viral replication in the Vero cell again. Taken all together, our results suggest the PA E31K mutation as a single, substantial growth determinant of avian influenza CVVs and for the establishment of a high-yield avian influenza vaccine backbone. PMID:28084423

  3. Identified particle yield associated with a high-$p_T$ trigger particle at the LHC

    CERN Document Server

    Veldhoen, Misha; van Leeuwen, Marco

    Identified particle production ratios are important observables, used to constrain models of particle production in heavy-ion collisions. Measurements of the inclusive particle ratio in central heavy-ion collisions showed an increase of the baryon-to-meson ratio compared to proton-proton collisions at intermediate pT, the so-called baryon anomaly. One possible explanation of the baryon anomaly is that partons from the thermalized deconfined QCD matter hadronize in a different way compared to hadrons produced in a vacuum jet. In this work we extend on previous measurements by measuring particle ratios in the yield associated with a high-pT trigger particle. These measurements can potentially further constrain the models of particle production since they are sensitive to the difference between particles from a jet and particles that are produced in the bulk. We start by developing a particle identification method that uses both the specific energy loss of a particle and the time of flight. From there, we presen...

  4. A novel high yield method for dry functionalization of carbon nanotubes.

    Science.gov (United States)

    Ansari, S G

    2011-04-01

    A novel and high yield (> 80%) dry method to functionalize (dry functionalization) carbon nanotubes (CNTs) using hydrothermal method, is reported here. The hydrothermal solution was prepared with HNO3, H2SO4 and H2O2 (1:3:2 vol. ratios) and reaction was carried out from 120 to 200 degrees C for 24 h. CNTs (multi wall) were kept in a way to avoid the direct contact with the solution. Treatment above 180 degrees C resulted in better functionalization of nanotubes as observed from Fourier transform infrared absorption spectroscopic (FTIR) measurements. Field emission scanning electron microscopic (FESEM) images showed that after functionalization, the nanotubes are seen with open ends, granular surface, twisted and are joined together. These clearly indicate the destruction of the graphite structure on the surface. This indicates that after treatment, CNTs reactivity has increased at the ends as well as at the side walls. X-ray Photoelectron Spectroscopic (XPS) studies show a shift in the C 1s peak position, increase in O 1s peak intensity and appearance of an N 1s peak.

  5. High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity

    Science.gov (United States)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-07-01

    Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO2 nanotubes (GQDs/TiO2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600-800 nm. The photocatalytic activity of prepared GQDs/TiO2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO2 nanotubes (TiO2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV-vis light irradiation (λ = 380-780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO2 composite.

  6. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb(2+)) with trivalent antimony (Sb(3+)) to synthesize stable and brightly luminescent Cs3Sb2Br9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs3Sb2X9) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  7. High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase

    Science.gov (United States)

    Padovani, Dominique; Zeghouf, Mahel; Traverso, José A.; Giglione, Carmela; Cherfils, Jacqueline

    2013-01-01

    Small GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus. N-myristoylation of recombinant Arf GTPases can be achieved by co-expression in E. coli with a eukaryotic N-myristoyl transferase. However, purifying myristoylated Arf GTPases is difficult and has a poor overall yield. Here we show that human Arf6 can be N-myristoylated in vitro by recombinant N-myristoyl transferases from different eukaryotic species. The catalytic efficiency depended strongly on the guanine nucleotide state and was highest for Arf6-GTP. Large-scale production of highly pure N-myristoylated Arf6 could be achieved, which was fully functional for liposome-binding and EFA6-stimulated nucleotide exchange assays. This establishes in vitro myristoylation as a novel and simple method that could be used to produce other myristoylated Arf and Arf-like GTPases for biochemical assays. PMID:23319116

  8. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2013-12-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  9. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  10. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  11. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  12. Air-insufflated high-definition dacryoendoscopy yields significantly better image quality than conventional dacryoendoscopy.

    Science.gov (United States)

    Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa

    2017-01-01

    To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.

  13. High-yield synthesis of conductive carbon nanotube tips for multiprobe scanning tunneling microscope.

    Science.gov (United States)

    Konishi, H; Murata, Y; Wongwiriyapan, W; Kishida, M; Tomita, K; Motoyoshi, K; Honda, S; Katayama, M; Yoshimoto, S; Kubo, K; Hobara, R; Matsuda, I; Hasegawa, S; Yoshimura, M; Lee, J-G; Mori, H

    2007-01-01

    We have established a fabrication process for conductive carbon nanotube (CNT) tips for multiprobe scanning tunneling microscope (STM) with high yield. This was achieved, first, by attaching a CNT at the apex of a supporting W tip by a dielectrophoresis method, second, by reinforcing the adhesion between the CNT and the W tip by electron beam deposition of hydrocarbon and subsequent heating, and finally by wholly coating it with a thin metal layer by pulsed laser deposition. More than 90% of the CNT tips survived after long-distance transportation in air, indicating the practical durability of the CNT tips. The shape of the CNT tip did not change even after making contact with another metal tip more than 100 times repeatedly, which evidenced its mechanical robustness. We exploited the CNT tips for the electronic transport measurement by a four-terminal method in a multiprobe STM, in which the PtIr-coated CNT portion of the tip exhibited diffusive transport with a low resistivity of 1.8 kOmega/microm. The contact resistance at the junction between the CNT and the supporting W tip was estimated to be less than 0.7 kOmega. We confirmed that the PtIr thin layer remained at the CNT-W junction portion after excess current passed through, although the PtIr layer was peeled off on the CNT to aggregate into particles, which was likely due to electromigration or a thermally activated diffusion process. These results indicate that the CNT tips fabricated by our recipe possess high reliability and reproducibility sufficient for multiprobe STM measurements.

  14. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.

    Science.gov (United States)

    Tetali, Sailaja; Zaka, Mujtaba; Schönfelder, Ronny; Bachmatiuk, Alicja; Börrnert, Felix; Ibrahim, Imad; Lin, Jarrn H; Cuniberti, Gianaurelio; Warner, Jamie H; Büchner, Bernd; Rümmeli, Mark H

    2009-12-22

    The use of mixed catalysts for the high-yield production of single-walled carbon nanotubes is well-known. The mechanisms behind the improved yield are poorly understood. In this study, we systematically explore different catalyst combinations from Ni, Co, and Mo for the synthesis of carbon nanotubes via laser evaporation. Our findings reveal that the mixing of catalysts alters the catalyst cluster size distribution, maximizing the clusters' potential to form a hemispherical cap at nucleation and, hence, form a single-walled carbon nanotube. This process significantly improves the single-walled carbon nanotube yields.

  15. High Performance Hybrid RANS-LES Simulation Framework for Turbulent Combusting Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a computational framework for high performance, high fidelity computational fluid dynamics (CFD) to enable accurate, fast and robust...

  16. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  17. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response...

  18. Mascotte, a research test facility for high pressure combustion of cryogenic propellants; Mascotte, un banc d'essai de recherche pour la combustion a haute pression d'ergols cryogeniques

    Energy Technology Data Exchange (ETDEWEB)

    Vingert, L.; Habiballah, M.; Traineau, J.C. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    2000-07-01

    Detailed experimental studies of cryogenic propellant combustion are needed to improve design and optimization of high performance liquid rocket engines. A research test facility called Mascotte has been built up by ONERA to study elementary processes that are involved in the combustion of liquid oxygen and gaseous hydrogen. Mascotte is aimed at feeding a single element combustor with actual propellants, and the third version in operation since mid 1998 allows to reach supercritical pressures in the combustor. A specific high pressure combustor was developed for this purpose. Research teams from different laboratories belonging to CNRS and ONERA, regrouped in a common research program managed by CNES and SNECMA division SEP, may run experiments on Mascotte, with several objectives: - improve the knowledge and the modeling of physical phenomena; - provide experimental results for computer code validation; - improve and assess diagnostic techniques (especially optical diagnostics). Following diagnostics for instance, were used on Mascotte from 1994 to 1999: - OH imaging (spontaneous emission and laser induced fluorescence ); - CARS temperature measurements (using the H{sub 2} and simultaneously the H{sub 2}O molecules); - High speed cinematography (with a copper vapor laser synchronized to a high speed camera); - O{sub 2} vapor imaging (laser induced fluorescence); - Particle sizing (by means of a Phase Doppler Particle Analyzer). (authors)

  19. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  20. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Science.gov (United States)

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  1. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    Science.gov (United States)

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM.

  2. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  3. Effect of High Injection Pressure of Algae and Jatropha Derived Biodiesel on Ignition Delay and Combustion Process

    Science.gov (United States)

    Rahman, Nurdin; Khalid, Amir; Manshoor, Bukhari; Jaat, Norrizam; Zaman, Izzuddin; Sunar, Norshuhaila

    2016-11-01

    This paper presents the investigation of the effect of high injection pressure on the ignition delay period and emission characteristics. Few experiments were conducted in a rapid compression machine (RCM). Four types of fuels were tested inside a RCM which are standard diesel (SD), Algae biodiesel (A2), Palm Oil biodiesel (B5, B10, and B15) and Jatropha biodiesel (J5, J10, J15). The experiments were conducted at high injection pressure of 130 MPa. The ambient temperature of constant volume chamber at the time of fuel injection was set at 850 K. The results indicate that the combined factors of specific of ambient temperature and higher injection pressure produces shorter ignition delay time. B5 has the shortest ignition delay with 1.5 ms. Biodiesel has the shorter ignition delay which is prolonged with increasing biodiesel content in the blends. In terms of emissions, Carbon dioxide (CO2), Carbon monoxide (CO), hydrocarbon (HC) and smoke emissions decreased with all biodiesel-diesel blends. However, oxides of nitrogen (NOx) emission of the biodiesel was relatively higher than those of the diesel under all test conditions. In addition, the increase of blends in terms of biodiesel ratio was found to be significant in enhancing the combustion process.

  4. [Characteristics of canopy structure of super high yielding japonica hybrid rice community].

    Science.gov (United States)

    Chen, Jinhong; Zhang, Guoping; Guo, Hengde; Mao, Guojuan

    2003-06-01

    In this paper, the characteristics of canopy structure, such as the numbers of seedling, panicle and grain, the distribution of dry matters in different canopy layers and different organs, and the distributions of LAI and of solar radiation in different canopy layers of super high yielding community of japonica hybrid rice were studied, in comparison with normal japonica rice. The results showed that the total the dry matter weight and the dry matter weight of layers below 40 cm, 40-60 cm, 60-80 cm and above 80 cm of japonica hybrid rice canopy were 32.29%, 29.12%, 13.95%, 16.45% and 100.17% higher those that of normal japonica rice, respectively. The ratios of dry leaf (photosynthetic organ) and of dry panicle (sink organ) weight to total dry weight were 24.8% and 12.8%, respectively, which were greater than those of normal japonica rice, while the ratios of dry sheath and stem (storage organs) weight were 33.6% and 28.9%, respectively, which were lower than those of normal japonica rice. The allotment of LAI in different layers of japonica hybrid rice canopy was reasonable, and the LAI of above 40 cm layer at full heading stage reached 5.44. The solar radiation was well-distributed inside japonica hybrid rice canopy, for example, the solar radiation in layers below 60 cm were 13.1%-37.0% higher, but 5.9%-12.2% lower above 60 cm than that of normal japonica rice. The extinction coefficients of solar radiation in layers below 20 cm, 20-40 cm, 40-60 cm and 60-80 cm of japonica hybrid rice canopy were 35.1%, 13.5%, 29.1% and 17.2% lower than that of normal japonica rice, respectively.

  5. Photoyellowing inhibition of bleached high yield pulps using novel water-soluble UV screens.

    Science.gov (United States)

    Argyropoulos, D S; Halevy, P; Peng, P

    2000-02-01

    To address the deficiencies of benzophenone UV screens for preventing brightness reversion in high yield mechanical papers, we synthesized a new series of such materials with enhanced water solubility and compatibility with the lignocellulosic substrate. A series of 2,4-dihydroxybenzophenones (DHB) were synthesized containing various Mannich bases at the C3 position of one of its rings. They possess the UV-screening ability of o-hydroxylbenzophenones, and they also contain tertiary nitrogen atoms that may function as radical scavengers. Aqueous solutions of the hydrochloride salt of 3-(dimethylaminomethylene)-2,4-dihydroxylbenzophenone (1), when applied on bleached chemithermomechanical pulp (CTMP) sheets, were significantly more efficient in preventing photoyellowing than the original DHB applied on the sheets from ethanol-water solutions. This confirmed our original hypothesis that increasing the compatibility of the UV screen with the lignocellulosic matrix would increase its efficiency in preventing photoyellowing. Compound 1, however, was found to be somewhat more effective than its hydrochloride salt toward preventing photoyellowing. This was attributed to the synergistic action of the free tertiary aminic center attached on the molecule with its UV-screening ability. To comprehend further the various parameters that influence the photoyellowing inhibition performance of these compounds and DHB with bleached CTMP pulp fibers, a series of handsheets were prepared at different pH. The interactions of the protonated compound 1 with pulp fibers were then evaluated by studying their kinetics of absorption and desorption to and from the fiber matrix. This part of our study found that the adsorption of protonated Mannich derivatives of DHB onto pulp is most likely governed by a cation-exchange mechanism involving the cationic amine group with the sulfonic and carboxylic acid groups located on the surface of the fibers. The pH the paper sheet was made from was also

  6. A high-yield double-purification proteomics strategy for the identification of SUMO sites.

    Science.gov (United States)

    Hendriks, Ivo A; Vertegaal, Alfred C O

    2016-09-01

    The small ubiquitin-like modifier (SUMO) is a protein modifier that is post-translationally coupled to thousands of lysines in more than a thousand proteins. An understanding of which lysines are modified by SUMO is critical in unraveling its function as a master regulator of all nuclear processes, as well as its involvement in diseases such as cancer. Here we describe a protocol for the lysine-deficient (K0) method for efficient identification of SUMOylated lysines by mass spectrometry (MS). To our knowledge, the K0 method is the only currently available method that can routinely identify >1,000 SUMO sites in mammalian cells under standard growth conditions. The K0 strategy relies on introducing a His10-tagged SUMO wherein all lysines have been substituted to arginines. Lysine deficiency renders the SUMO immune to digestion by the endoproteinase Lys-C, which in turn allows for stringent and high-yield tandem purification through the His10 tag. In addition, the His10-tagged SUMO also contains a C-terminal Q87R mutation, which accommodates generation of SUMO-site peptides with a QQTGG mass remnant after digestion with trypsin. This remnant possesses a unique mass signature and readily generates diagnostic ions in the fragment ion scans, which increases SUMO-site identification confidence. The K0 method can be applied in any mammalian cell line or in any model system that allows for integration of the K0-SUMO construct. From the moment of cell lysis, the K0 method takes ∼7 d to perform.

  7. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    Science.gov (United States)

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  8. A multi-region assessment of population rates of cardiac catheterization and yield of high-risk coronary artery disease

    Directory of Open Access Journals (Sweden)

    Clement Fiona M

    2011-11-01

    Full Text Available Abstract Background There is variation in cardiac catheterization utilization across jurisdictions. Previous work from Alberta, Canada, showed no evidence of a plateau in the yield of high-risk disease at cardiac catheterization rates as high as 600 per 100,000 population suggesting that the optimal rate is higher. This work aims 1 To determine if a previously demonstrated linear relationship between the yield of high-risk coronary disease and cardiac catheterization rates persists with contemporary data and 2 to explore whether the linear relationship exists in other jurisdictions. Methods Detailed clinical information on all patients undergoing cardiac catheterization in 3 Canadian provinces was available through the Alberta Provincial Project for Outcomes Assessment in Coronary Heart (APPROACH disease and partner initiatives in British Columbia and Nova Scotia. Population rates of catheterization and high-risk coronary disease detection for each health region in these three provinces, and age-adjusted rates produced using direct standardization. A mixed effects regression analysis was performed to assess the relationship between catheterization rate and high-risk coronary disease detection. Results In the contemporary Alberta data, we found a linear relationship between the population catheterization rate and the high-risk yield. Although the yield was slightly less in time period 2 (2002-2006 than in time period 1(1995-2001, there was no statistical evidence of a plateau. The linear relationship between catheterization rate and high-risk yield was similarly demonstrated in British Columbia and Nova Scotia and appears to extend, without a plateau in yield, to rates over 800 procedures per 100,000 population. Conclusions Our study demonstrates a consistent finding, over time and across jurisdictions, of linearly increasing detection of high-risk CAD as population rates of cardiac catheterization increase. This internationally-relevant finding

  9. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  10. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus;

    2015-01-01

    knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays....

  11. In search of annual legumes to improve forage sorghum yield and nutritive value in the southern high plains

    Science.gov (United States)

    Livestock production is significant in the Southern High Plains of the USA and demand is increasing for greater forage dry matter (DM) yield with increased nutritive value. Forage sorghum (FS)[Sorghum bicolor (L.) Moench] is commonly used, although, it is low in crude protein (CP) and high in fiber....

  12. Simulation study on combustion of biomass

    Science.gov (United States)

    Zhao, M. L.; Liu, X.; Cheng, J. W.; Liu, Y.; Jin, Y. A.

    2017-01-01

    Biomass combustion is the most common energy conversion technology, offering the advantages of low cost, low risk and high efficiency. In this paper, the transformation and transfer of biomass in the process of combustion are discussed in detail. The process of furnace combustion and gas phase formation was analyzed by numerical simulation. The experimental results not only help to optimize boiler operation and realize the efficient combustion of biomass, but also provide theoretical basis for the improvement of burner technology.

  13. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  14. High Yield Technique of Virus-free Potato Favorite Planting in Paddy

    Directory of Open Access Journals (Sweden)

    Yan-xia Zhang

    2013-04-01

    Full Text Available To screen the best combination cultivation factors, the orthogonal test was conducted on the 6 factors of virus-free potato Favorite including sowing time, density, urea, calcium superphosphate, potassium sulfate and zinc, planted in paddy field of Xian-ning, Luo-tian and Guang-shui. The results showed that: a experimental site had significant influence on growth period (F = 147.08>F0.01, sowing date had great significant influence on growth period (F = 15.68>F0.01, with the delay of sowing date, the growth period was short (R1 = 0.9851**. b Density had great significant influence on yield (F = 4.0>F0.01, the yield could be increased with the density increasing (R2 = 0.9782**, sowing date had significant influence on yield (F = 3.55>F0.05. c The maximum yield and economic return appeared at the treatment of seeding date December 10, seeding density 75000 plant/hm2, N 75 kg/hm2, phosphorus fertilizer 900 kg/hm2, potassium sulfate 450 kg/hm2 and zinc 22.5 kg/hm2, with the yield 31185 kg/hm2 and economic benefit 26833 Yuan/hm2.

  15. Practice and Thought on Developing Hybrid Rice for Super High Yield by Exploiting Inter-subspecific Heterosis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Since the breakthrough of grain yield owing to the development of dwarf rice and three-line system hybrid rice, rice breeding for high yield hardly had showed significant progress in the next successive two decades. It was considered that utilizing heterosis between subspecific varieties (Oryza sativa L.) would be an effective approach to increase yield further. During 1987-1993,an indica-japonica hybrid Yayou 2 yielded as high as 10.5 t/ha; however, it failed to be commercialized because of seed purity problem due to non-uniform emasculation by chemical agent in seed production, and sensitivity of seed setting in F1 plants to environmental conditions. In the past decade, two inter-subspeific hybrids, Liangyoupeijiu (Peiai 64S/9311, javanica/indica) and Liangyou E32 (Peiai 64S/E32, javanica/japonica); both of them exhibited grain yield higher than 10.5 t/ha, and were widely judged as the pioneers of super hybrid rice. Liangyoupeijiu has been successfully popularized over 4 million hectare in wide climatic areas, while Liangyou E32 made a yield record and offered a model of plant ideotype for super hybrid rice. It was considered that in combination with plant ideotype, active physiological functions, and wide-range adaptability to ecological conditions, exploitation of indica-japonica heterosis would be the key approach for super hybrid rice breeding.

  16. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.

    Science.gov (United States)

    Purchase, R L; de Groot, H J M

    2015-06-06

    propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis.

  17. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

    Science.gov (United States)

    Purchase, R. L.; de Groot, H. J. M.

    2015-01-01

    . We propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis. PMID:26052428

  18. A comprehensive fractal char combustion model☆

    Institute of Scientific and Technical Information of China (English)

    Yuting Liu; Rong He

    2016-01-01

    The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the complex factors affecting the char combustion were included, such as the coupling effects between the pore diffusion and the chemical reactions, the evolution of the char pore structures and the variation of the apparent reaction order during combustion, the CO/CO2 ratio in the combustion products and the correction for oxy-char combustion. Eleven different chars were then combusted in two drop tube furnaces with the conversions of the partly burned char samples measured by thermogravimetric analysis. The combustion processes of these chars were simulated with the predicted char conversions matching very well with the measured data which shows that this char combustion model has good accuracy. The apparent reaction order of the char combustion decreases, stabilizes and then increases during the combustion process. The combustion rates in the oxy-mode are general y slower than in the air-mode and the effect of the char-CO2 gasification reac-tion becomes obvious only when the temperature is relatively high and the O2 concentration is relatively low.

  19. Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.

  20. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Arnold, E-mail: aburger@fisk.edu [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Rowe, Emmanuel; Groza, Michael; Morales Figueroa, Kristle [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Cherepy, Nerine J.; Beck, Patrick R.; Hunter, Steven; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-10-05

    We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent light yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.

  1. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion.

    Science.gov (United States)

    Peng, Nana; Li, Yi; Liu, Zhengang; Liu, Tingting; Gai, Chao

    2016-09-15

    Emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) were investigated during municipal solid waste (MSW) and coal combustion alone and MSW/coal blend (MSW weight fraction of 25%) co-combustion within a temperature range of 500°C-900°C. The results showed that for all combustion experiments, flue gas occupied the highest proportion of total PAHs and fly ash contained more high-ring PAHs. Moreover, the 3- and 4-ring PAHs accounted for the majority of total PAHs and Ant or Phe had the highest concentrations. Compared to coal, MSW combustion generated high levels of total PAHs with the range of 111.28μg/g-10,047.22μg/g and had high toxicity equivalent value (TEQ). MSW/coal co-combustion generated the smallest amounts of total PAHs and had the lowest TEQ than MSW and coal combustion alone. Significant synergistic interactions occurred between MSW and coal during co-combustion and the interactions suppressed the formation of PAHs, especially hazardous high-ring PAHs and decreased the TEQ. The present study indicated that the reduction of the yield and toxicity of PAHs can be achieved by co-combustion of MSW and coal.

  2. Dioxin emissions from small-scale combustion of bio-fuel and household waste

    Energy Technology Data Exchange (ETDEWEB)

    Hedman, Bjoern

    2005-09-01

    This thesis deals with emissions of persistent organic pollutants, primarily dioxins, from the combustion of solid biofuels and dry combustible household waste in relatively small facilities, 5-600 kW, without advanced air pollution controls. Co-combustion of waste and biofuel in effective small boilers was tested as an alternative to prevailing large-scale management and combustion strategies for handling municipal solid waste. This approach includes no advanced air pollution control systems, but offers two advantages: limiting transport and providing scope to use local biofuel resources. Source-sorted, dry, combustible household waste was collected from households in a sparsely populated area and co-combusted as briquettes together with reed canary-grass in 150-600 kW biofuel boilers. Most trials showed difficulties to meet regulative limits for the emissions of dioxins valid for incineration of MSW and the regulated limits for emissions of hydrochloric acid were exceeded manifold. It was concluded that additional flue-gas cleaning will be needed to ensure that emissions are sufficiently low. Dioxins were also found in the waste, especially in the textile fraction. The mass of dioxins in the flue-gas emissions was generally lower than the mass in the fuel input. Intermittent combustion of wood pellets in a residential boiler resulted in an unexpectedly high dioxin emissions factor of 28 ng (WHO-TEQ)/kg fuel. Combustion of wood in a modern environmentally certified boiler yielded considerably lower dioxin emissions than combustion in an old boiler, and combustion with a full air supply, i.e. with use of heat storage tank, resulted in up to 90% reductions in dioxin emission factors compared to combustion with reduced air supply. Combustion of plastic waste in a residential wood boiler resulted in high emissions of dioxins. Tests of uncontrolled combustion of garden and household waste in barrels or open fires, 'backyard burnings', resulted in emissions

  3. The features of heterogeneous water droplet evaporation in high-temperature combustion products of typical flammable liquids

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2017-01-01

    Full Text Available This paper presents the experimental results on heating and evaporation features of heterogeneous (with opaque solid particles – the size of 0.05-0.5 mm, relative mass concentration 0-1% water droplets (the initial size – radius 1-3 mm during their motion through high-temperature (500-1800 K gases. A significant increase in the integral characteristics of evaporation by introducing opaque inclusions into droplets was observed. The influence of energy accumulation on the conditions of droplet evaporation at the internal solid/liquid interfaces was established. For proportioned inclusions, the conditions of intensive vaporization (leading to the explosive disintegration of droplets at internal inclusion/liquid interfaces was set. To summarize research results, experiments were conducted with the combustion products of kerosene, gasoline, industrial alcohol, acetone, and oil. The particles of graphite, carbon, and aluminum as solid inclusions were used. The investigation compared integral characteristics of heterogeneous droplet evaporation under the conditions of non-stationary (gas temperature varied from 1800 K to 500 K over the length of channel and nearly stationary (gas temperature was maintained at about 1100 K heating.

  4. Energy transfer and light yield properties of a new highly loaded indium(III) β-diketonate organic scintillator system

    Science.gov (United States)

    Buck, C.; Hartmann, F. X.; Motta, D.; Schoenert, S.

    2007-02-01

    We present combined experimental and model studies of the light yield and energy transfer properties of a newly developed high light yield scintillator based on indium(III)-tris(2,4-pentanedionate) in a 2-(4-biphenyl)-5-phenyloxazole (BPO), methoxybenzene organic liquid; of interest to the detection of solar electron neutrino oscillations. Optical measurements are made to understand the energy transfer properties and a model is advanced to treat the unusual conditions of high metal and fluor loadings. Such scintillator types are of interest to the exploration of novel luminescent materials and the development of large-scale detectors for studying fundamental properties of naturally occurring neutrinos.

  5. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  6. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2005-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation

  7. Gluconacetobacter hansenii subsp. nov., a high-yield bacterial cellulose producing strain induced by high hydrostatic pressure.

    Science.gov (United States)

    Ge, Han-Jing; Du, Shuang-Kui; Lin, De-Hui; Zhang, Jun-Na; Xiang, Jin-Le; Li, Zhi-Xi

    2011-12-01

    Strain M(438), deposited as CGMCC3917 and isolated from inoculums of bacterial cellulose (BC) producing strain screened in homemade vinegar and then induced by high hydrostatic pressure treatment (HHP), has strong ability to produce BC more than three times as that of its initial strain. It is the highest yield BC-producing strain ever reported. In this paper, M(438) was identidied as Gluconacetobacter hansenii subsp. nov. on the basis of the results obtained by examining it phylogenetically, phenotypically, and physiologically-biochemically. Furthermore, the genetic diversity of strain M(438) and its initial strain was examined by amplified fragment length polymorphism. The results indicated that strain M(438) was a deletion mutant induced by HHP, and the only deleted sequence showed 99% identity with 24,917-24,723 bp in the genome sequence of Ga. hansenii ATCC23769, and the complement gene sequence was at 24,699-25,019 bp with local tag GXY_15142, which codes small multidrug resistance (SMR) protein. It can be inferred that SMR might be related to inhibiting BC production to a certain extent.

  8. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-06-13

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp.

    Science.gov (United States)

    Manda, B M Krishna; Blok, Kornelis; Patel, Martin K

    2012-11-15

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO(2)) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO(2) coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10-35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13GJ/ton paper) and GHG emission reduction by 75% (0.6 tonCO(2)eq./ton paper). Micro TiO(2) coated CTMP paper offered NREU savings by 25% (3GJ/ton paper) and savings of GHG emissions by 10% (0.1 tonCO(2)eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the nanoparticles are serious, then the

  10. Innovations in papermaking: An LCA of printing and writing paper from conventional and high yield pulp

    Energy Technology Data Exchange (ETDEWEB)

    Manda, B.M. Krishna, E-mail: b.m.k.manda@uu.nl; Blok, Kornelis, E-mail: K.Blok@uu.nl; Patel, Martin K., E-mail: m.k.patel@uu.nl

    2012-11-15

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO{sub 2}) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO{sub 2} coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10-35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13 GJ/ton paper) and GHG emission reduction by 75% (0.6 ton CO{sub 2} eq./ton paper). Micro TiO{sub 2} coated CTMP paper offered NREU savings by 25% (3 GJ/ton paper) and savings of GHG emissions by 10% (0.1 ton CO{sub 2} eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the

  11. High Diagnostic Yield of Dedicated Pulmonary Screening before Hematopoietic Cell Transplantation in Children

    NARCIS (Netherlands)

    Versluijs, Anne Birgitta; van der Ent, Korstiaan; Boelens, Jaap J.; Wolfs, Tom; de Jong, Pim; Bierings, Marc B.

    2015-01-01

    Pulmonary complications are an important cause for treatment-related morbidity and mortality in hematopoietic cell transplantation (HCT) in children. The aim of this study was to investigate the yield of our pre-HCT pulmonary screening program. We also describe our management guidelines based on

  12. Scintillation light, ionization yield and scintillation decay times in high pressure xenon and xenon methane

    NARCIS (Netherlands)

    Pushkin, K. N.; Akimov, D. Y.; Burenkov, A. A.; Dmitrenko, V. V.; Kovalenko, A. G.; Lebedenko, V. N.; Kuznetsov, I. S.; Stekhanov, V. N.; Tezuka, C.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2007-01-01

    Scintillation light, ionization yield and scintillation decay times have been measured in xenon and in its mixture with a 0.05% concentration of methane as a function of the reduced electric field (E/N)-the ratio of the electric field strength to the number density of gas-at a pressure of 21 atm. Th

  13. Nuclear Engineering of Microalgae for High Yield Secretion of Recombinant Proteins

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel

    to the glycomodules, accumulation of a fusion protein was dramatically increased by up to 12 folds, with the maximum yield of 15 mg L-1. Characterization of the secreted Venus showed the presence of glycosylations and increased resistance to proteolytic degradation. The results from this thesis demonstrate...

  14. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  15. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    Science.gov (United States)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce

  16. Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application

    Science.gov (United States)

    2007-08-12

    field and CH profile. Thermophoresis will causeThe PSV methodology is validated by compar- a particle drift in the high temperature-gradient ing...the cold-flow region, where a quadratic 1.2- Ct HprLIF is fit to determine flow boundary conditions, are 1.0 unaffected by thermophoresis . To compare...through the gas and solid phases. They found that thermophoresis is reaction zone. This thermophoretic force results from significant for micron-sized

  17. Particle image velocimetry of highly luminescent, pressurized combustion flows of aero engine combustors

    OpenAIRE

    Schroll, Michael; Klinner, Joachim; Lange, Lena; Willert, Christian

    2013-01-01

    This contribution describes recent efforts leading toward the successful application of particle image velocimetry (PIV) in highly luminescent flames avoiding saturation of the second frame of commonly available double shutter PIV cameras, which is usually inevitable when using their interline-transfer CCD sensors. Information on fuel placement, reaction zone and temperature field among other quantities can be provided by frequently used spectroscopic techniques. The velocity information is o...

  18. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2004-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic

  19. Combustion LES Software for Improved Emissions Predictions of High Performance Gas Turbine Combustors

    Science.gov (United States)

    2005-09-01

    94 vii 8503/8 ABSTRACT Low emissions of CO, NO,, and unburned hydrocarbons ( UHC ) are a difficult...NOR, UHC , and smoke, are becoming a requirement for today’s and future military gas turbine engines. Advanced, high performance gas turbines will...range, and operating pressure. 2 850318 1. INTRODUCTION Low emissions of pollutants, including CO, NO,,, UHC , and smoke, are becoming a requirement

  20. Assessing Model Assumptions for Turbulent Premixed Combustion at High Karlovitz Number

    Science.gov (United States)

    2015-09-03

    flames in the high-Karlovitz regime are characterized and modeled using Direct Numerical Simulations ( DNS ) with detailed chemistry. To enable the present...Simulations, detailed chemistry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...information. 15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report. 16. SECURITY CLASSIFICATION. Enter security classification

  1. Development of a New Class of Scintillating Fibres with Very Short Decay Time and High Light Yield

    Science.gov (United States)

    Borshchev, O.; Cavalcante, A. B. R.; Gavardi, L.; Gruber, L.; Joram, C.; Ponomarenko, S.; Shinji, O.; Surin, N.

    2017-05-01

    We present first studies of a new class of scintillating fibres which are characterised by very short decay times and high light yield. The fibres are based on a novel type of luminophores admixed to a polystyrene core matrix. These so-called Nanostructured Organosilicon Luminophores (NOL) have high photoluminescense quantum yield and decay times just above 1 ns. A blue and a green emitting prototype fibre with 250 μm diameter were produced and characterised in terms of attenuation length, ionisation light yield, decay time and tolerance to x-ray irradiation. The well-established Kuraray SCSF-78 and SCSF-3HF fibres were taken as references. Even though the two prototype fibres mark just an intermediate step in an ongoing development, their performance is already on a competitive level. In particular, their decay time constants are about a factor of two shorter than the fastest known fibres, which makes them promising candidates for time critical applications.

  2. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2003-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, the efforts focused on developing an innovative high temperature distributed fiber optic sensor by fabricating in-fiber gratings in single crystal sapphire fibers. So far, our major accomplishments include: Successfully grown alumina cladding layers on single crystal sapphire fibers, successfully fabricated in-fiber gratings in single crystal sapphire fibers, and successfully developed a high temperature distributed fiber optic sensor. Under Task 2, the emphasis has been on putting into place a computational capability for simulation of combustors. A PC workstation was acquired with dual Xeon processors and sufficient memory to support 3-D calculations. An existing license for Fluent software was expanded to include two PC processes, where the existing license was for a Unix workstation. Under Task 3, intelligent state estimation theory is being developed which will map the set of 1D (located judiciously within a 3D environment) measurement data into a 3D temperature profile. This theory presents a semigroup

  3. Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments

    Science.gov (United States)

    Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu

    New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.

  4. Workshop: High-performance coatings for internal combustion engines; Workshop: Hochleistungsschichten fuer Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Blau, W. [Foerdergemeinschaft Duenne Schichten e.V., Dresden (Germany). Transferzentrum Oberflaechen- und Schichttechnologie; Lugscheider, E. [Technische Hochschule Aachen (Germany). Lehr- und Forschungsgebiet Werkstoffwissenschaften; Suchentrunk, R. (comps.) [DaimlerChrysler Aerospace AG (Dasa), Muenchen (Germany)

    1999-07-01

    Progress in vehicles is closely related to progress in materials. Engine components must withstand high thermal, corrosive and mechanical loads. The workshop focused on the coating and boundary layer treatment of components especially of piston engines, although gas turbine technology was gone into as well. [German] Fortschritte in der Verkehrstechnik sind oft eng mit Fortschritten in der Werkstofftechnik verknuepft. Besonders hoch sind die Anforderungen hinsichtlich thermischer, korrosiver und mechanischer Belastbarkeit bei Bauteilen von Verbrennungsmotoren. Der Workshop widmet sich ausschliesslich dem Teilgebiet die Beschichtung und Randschichtbehandlung von Bauteilen. Kolbenmotoren stehen im Mittelpunkt, Querverbindungen zur Gasturbinentechnik werden angesprochen. (orig./AKF)

  5. High yield stress associated with capillary attraction between alumina surfaces in the presence of low molecular weight dicarboxylic acids.

    Science.gov (United States)

    Teh, E-Jen; Leong, Yee-Kwong; Liu, Yinong; Craig, Vincent S J; Walsh, Rick B; Howard, Shaun C

    2010-03-02

    Adsorbed low molecular weight charged molecules are known to give rise to a range of surface forces that affect the rheological behavior of oxide dispersions. The behavior of dicarboxylic acid bolaform compounds in alumina slurry was investigated to determine the influence of the molecular structure on the nanoscale interactions between alumina surfaces and on the macroscopic properties of the slurry. The surface forces in dispersions and between a single particle and a flat surface were characterized by yield stress and atomic force microscopy (AFM) respectively. Absorbed muconic acid increased the yield stress of the alumina system, which indicates an additional attractive interaction between the particles. Adsorbed trans,trans (TT) muconic acid resulted in a much higher yield stress than cis,cis (CC) muconic acid. Force-distance data obtained via AFM displayed features indicating the presence of a capillary force attraction at low pH between the alumina surfaces when TT and CC muconic acids were adsorbed at high surface coverage. This force appeared to explain the high yield stress at low pH (pH 3.6), but the absence of a net attractive force at higher pH (pH 5) did not correlate with the yield stress results. At low pH, the muconic acids become less soluble in the confined space between the interacting surfaces resulting in the formation of an "oily" muconic acid phase located between the interacting surfaces. The nanosized "oil" phase is the source of the capillary force.

  6. Investigation and analysis of high temperature corrosion and degradation of marine boiler combustion swirler

    Science.gov (United States)

    Virdi, R. S.; Thakur, D. G.

    2016-03-01

    The present paper investigated and analyzed swirler material consisting of mild steel which was subjected to service for the period of one year in a 30 MW marine boiler. Due to the presence of high temperatures in the furnace coupled with the corrosive marine environment swirler material showed accelerated degradation and material wastage. An investigation into the feasibility of manufacturing the existing swirler with an alternate material or coating the swirler material with a thermal barrier coating was undertaken. Based on their properties and performance, SS 304 and SS 316 were proposed as the replacement materials for the swirler. The other alternative of coating the existing swirlers with a form thermal barrier coating to observe for any improvement in their performance at elevated temperatures was also tested. Stellite, which is a Ni-Co based coating, was carried out on the MS samples and the same were exposed to same temperatures mentioned above. The performance of the available options was evaluated with respect to the grain structure of the material, the hardness value of the materials and deterioration at elevated temperatures. Investigation showed the proposed materials/coatings like SS 304, SS 316 and Stellite coating revealed that SS 316 is the material best suited for high temperature application.

  7. Investigation and Analysis of High Temperature Corrosion and Degradation of Marine Boiler Combustion Swirler

    Institute of Scientific and Technical Information of China (English)

    RS Virdi; DG Thakur

    2016-01-01

    The present paper investigated and analyzed swirler material consisting of mild steel which was subjected to service for the period of one year in a 30 MW marine boiler. Due to the presence of high temperatures in the furnace coupled with the corrosive marine environment swirler material showed accelerated degradation and material wastage. An investigation into the feasibility of manufacturing the existing swirler with an alternate material or coating the swirler material with a thermal barrier coating was undertaken. Based on their properties and performance, SS 304 and SS 316 were proposed as the replacement materials for the swirler. The other alternative of coating the existing swirlers with a form thermal barrier coating to observe for any improvement in their performance at elevated temperatures was also tested. Stellite, which is a Ni-Co based coating, was carried out on the MS samples and the same were exposed to same temperatures mentioned above. The performance of the available options was evaluated with respect to the grain structure of the material, the hardness value of the materials and deterioration at elevated temperatures. Investigation showed the proposed materials/ coatings like SS 304, SS 316 and Stellite coating revealed that SS 316 is the material best suited for high temperature application.

  8. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  9. Emission and combustion characteristics of multiple stage diesel combustion; Nidan nensho ni yoru diesel kikan no nensho to haishutsubutsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T.; Miyamoto, T.; Tsujimura, K. [New A.C.E. Institute Co. Ltd., Tokyo (Japan); Kobayashi, S.; Shimizu, K. [Japan Automobile Research Institute, Tsukuba (Japan)

    1997-10-01

    A new concept of multiple stage diesel combustion was studied by means of engine test, combustion observation and numerical simulation, in order to reduce NOx emissions at high load conditions. With this concept, the premixed combustion occurs under the fuel lean conditions and the diffusion combustion occurs under the high temperature conditions. As seen in the result of combustion observation, a first stage combustion occurs with no luminous flame. A second stage combustion occurs with a luminous flame after very short ignition delay period. However the luminous flame is disappeared immediately. Because cylinder temperature is high, and hence soot oxidizes immediately. 5 refs., 11 figs., 1 tab.

  10. Gallium loading of gold seed for high yield of patterned GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, J. P.; Chia, A. C. E.; LaPierre, R. R., E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-08-25

    A method is presented for maximizing the yield and crystal phase purity of vertically aligned Au-assisted GaAs nanowires grown with an SiO{sub x} selective area epitaxy mask on GaAs (111)B substrates. The nanowires were grown by the vapor-liquid-solid (VLS) method in a gas source molecular beam epitaxy system. During annealing, Au VLS seeds will alloy with the underlying GaAs substrate and collect beneath the SiO{sub x} mask layer. This behavior is detrimental to obtaining vertically aligned, epitaxial nanowire growth. To circumvent this issue, Au droplets were pre-filled with Ga assuring vertical yields in excess of 99%.

  11. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway.

    Science.gov (United States)

    Becker, Sidney; Thoma, Ines; Deutsch, Amrei; Gehrke, Tim; Mayer, Peter; Zipse, Hendrik; Carell, Thomas

    2016-05-13

    The origin of life is believed to have started with prebiotic molecules reacting along unidentified pathways to produce key molecules such as nucleosides. To date, a single prebiotic pathway to purine nucleosides had been proposed. It is considered to be inefficient due to missing regioselectivity and low yields. We report that the condensation of formamidopyrimidines (FaPys) with sugars provides the natural N-9 nucleosides with extreme regioselectivity and in good yields (60%). The FaPys are available from formic acid and aminopyrimidines, which are in turn available from prebiotic molecules that were also detected during the Rosetta comet mission. This nucleoside formation pathway can be fused to sugar-forming reactions to produce pentosides, providing a plausible scenario of how purine nucleosides may have formed under prebiotic conditions.

  12. Fast and high light yield scintillation in the Ga2O3 semiconductor material

    Science.gov (United States)

    Yanagida, Takayuki; Okada, Go; Kato, Takumi; Nakauchi, Daisuke; Yanagida, Satoko

    2016-04-01

    We report the distinct scintillation properties of the well-known Ga2O3 semiconductor material. Under UV excitation, the photoluminescence (PL) emission peak appeared near a wavelength of 380 nm with a quantum yield of 6%, and fast decays of 8 and 793 ns were observed. In contrast, the X-ray-induced scintillation spectrum showed an intense emission band near a wavelength of 380 nm, whose decay curve was reproduced using two exponential decay components with time constants of 8 and 977 ns. The pulse height spectrum of 137Cs γ-rays measured using Ga2O3 showed a clear photoabsorption peak with a light yield of 15000 ± 1500 photons/MeV.

  13. Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells.

    Science.gov (United States)

    Bouallagui, Zouhaier; Sayadi, Sami

    2006-12-27

    An immobilized whole cell system was successfully performed to produce the most powerful antioxidant, hydroxytyrosol. Bioconversion of tyrosol into hydroxytyrosol was achieved via the immobilization of Pseudomonas aeruginosa resting cells in calcium alginate beads. Immobilization was advantageous as it allows immobilized cells to tolerate a greater tyrosol concentration than free cells. The bioconversion yield reached 86% in the presence of 5 g L-1 of tyrosol when cells immobilized in alginate beads were carried out in single batches. Evaluation of kinetic parameters showed the maintenance of the same catalytic efficiency expressed as Kcat/Km for both free and immobilized cells. The use of immobilized cells in repeated batches demonstrated a notable activity stabilization since the biocatalyst reusability was extended for at least four batches with a molar yield greater than 85%.

  14. High yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ramos-Martinez, E M; Fimognari, L; Sakuragi, Y

    2017-02-16

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability, and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. In order to increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n, wherein n=10 or 20]. The yields of the (SP)n-fused Venus were higher than Venus without the glycomodule by up to 12 folds, with the maximum yield of 15 mg L(-1) . Moreover, the presence of the glycomodules confererred an enhanced proteolytic protein stability. The Venus-(SP)n proteins were shown to be glycosylated, and a treatment of the cells with Brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins. This article is protected by copyright. All rights reserved.

  15. Chemistry in plumes of high-flying aircraft with H2 combustion engines: a modelling study

    Directory of Open Access Journals (Sweden)

    G. Weibring

    Full Text Available Recent discussions on high-speed civil transport (HSCT systems have renewed the interest in the chemistry of supersonic-aircraft plumes. The engines of these aircraft emit large concentrations of radicals like O, H, OH, and NO. In order to study the effect of these species on the composition of the atmosphere, the detailed chemistry of an expanding and cooling plume is examined for different expansion models.

    For a representative flight at 26 km the computed trace gas concentrations do not differ significantly for different models of the expansion behaviour. However, it is shown that the distributions predicted by all these models differ significantly from those adopted in conventional meso-scale and global models in which the plume chemistry is not treated in detail. This applies in particular to the reservoir species HONO and H2O2.

  16. The desulfurization behavior of mineral matter in ash during coal combustion at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tian-hua; Li, Run-dong; Li, Yan-ji; Zhou, Jun-huz; Cen, Ke-fa [Shenyang Institute of Aeronautical Engineering, Shenyang (China)

    2007-02-15

    In allusion to the desulfurization characteristic of coal ash, the desulfurization of the ash and CaO, Al{sub 2}O{sub 3} added to Changguang coal with different proportions at high temperature was studied. Sulphoaluminate as the main desulfurization product was analyzed by X-ray diffraction and SEM visualization. Experimental results indicate that higher proportion of ash added can improve the desulfurization efficiency. The sulphoaluminate content in residue increases with increasing the addition of ash. The desulfurization efficiency of the additive CaO and Al{sub 2}O{sub 3} is up to 24% at 1300{sup o}C, at the same time the sulphoaluminate is detected in the residue. 6 refs., 10 figs., 2 tabs.

  17. Temperature-dependent yield criterion for high strength steel sheets under warm-forming conditions

    Directory of Open Access Journals (Sweden)

    Cai Zhengyang

    2015-01-01

    Full Text Available In this paper, uniaxial and biaxial tensile tests with cruciform specimens were conducted to investigate the deformation behaviour of dual phase steel sheet with a tensile strength of 590 MPa (DP590 under evaluated warm-forming temperatures (20–190 ∘C. Detailed analyses were then carried out to obtain the corresponding experimental yield loci. For the purpose of describing the temperature-dependent yield behaviour of DP590 appropriately, the Yld2000–2d yield function with temperature-dependent exponent was proposed. The identification procedures of the introduced parameters were then proposed based on Levenberg-Marquardt optimization algorithm. Afterwards, the proposed model was implemented into ABAQUS as user subroutine VUMAT with NICE (Next Increment Corrects Error explicit integration scheme. The numerical simulations of biaxial tensile tests were then conducted to confirm the validity of the proposed model. It could be concluded that the flexibility and accuracy of the proposed model guarantee the applicability in warm-forming applications.

  18. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.

  19. A new copper containing MALDI matrix that yields high abundances of [peptide + Cu]+ ions.

    Science.gov (United States)

    Wu, Zhaoxiang; Fernandez-Lima, Francisco A; Perez, Lisa M; Russell, David H

    2009-07-01

    The dinuclear copper complex (alpha-cyano-4-hydroxycinnamic acid (CHCA) copper salt (CHCA)(4)Cu(2)), synthesized by reacting CHCA with copper oxide (CuO), yields increased abundances of [M + xCu - (x-1)H](+) (x = 1-6) ions when used as a matrix for matrix-assisted laser desorption ionization (355 nm Nd:YAG laser). The yield of [M + xCu - (x-1)H](+) (x = 1 to approximately 6) ion is much greater than that obtained by mixing peptides with copper salts or directly depositing peptides onto oxidized copper surfaces. The increased ion yields for [M + xCu - (x-1)H](+) facilitate studies of biologically important copper binding peptides. For example, using this matrix we have investigated site-specific copper binding of several peptides using fragmentation chemistry of [M + Cu](+) and [M + 2Cu - H](+) ions. The fragmentation studies reveal interesting insight on Cu binding preferences for basic amino acids. Most notable is the fact that the binding of a single Cu(+) ion and two Cu(+) ions are quite different, and these differences are explained in terms of intramolecular interactions of the peptide-Cu ionic complex.

  20. Simulating evapotranspiration (ET) and corn yield response to irrigation management in the Texas High Plains using DSSAT

    Science.gov (United States)

    Grain corn (Zea mays L) continues to be a major irrigated crop in the northern Texas High Plains. Improvements in irrigation system efficiency, irrigation management, and plant genetics have increased average yields while decreasing seasonal water use in the last 40 years. However, declining water l...