WorldWideScience

Sample records for high voltage electric

  1. High voltage electricity installations a planning perspective

    CERN Document Server

    Jay, Stephen Andrew

    2006-01-01

    The presence of high voltage power lines has provoked widespread concern for many years. High Voltage Electricity Installations presents an in-depth study of policy surrounding the planning of high voltage installations, discussing the manner in which they are percieved by the public, and the associated environmental issues. An analysis of these concerns, along with the geographical, environmental and political influences that shape their expression, is presented. Investigates local planning policy in an area of the energy sector that is of highly topical environmental and public concern Cover

  2. Electrical system architecture having high voltage bus

    Science.gov (United States)

    Hoff, Brian Douglas [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  3. Copper wire theft and high voltage electrical burns.

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale.

  4. Copper wire theft and high voltage electrical burns

    OpenAIRE

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresenc...

  5. Copper wire theft and high voltage electrical burns

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  6. High Voltage Electrical Injuries In The University Of Calabar ...

    African Journals Online (AJOL)

    Even when patients present relatively early and are resuscitated and treated, complete prosthetic rehabilitation is difficult because of poverty and lack of social support systems. Case Report: This review presents three cases of high voltage electrical burns resulting from typical 11KVA burns as well as lightning strike.

  7. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    The proximity effects of high voltage electric power transmission lines on Leyland Cypress (xCupressocyparis leylandii (Dallim. and A.B. Jacks.) Dallim) and Japanese Privet (Ligustrum japonicum Thunb.) growth were examined in a private nursery located in Sakarya, Turkey. Five transect were randomly chosen in both ...

  8. High voltage diagnostics on electrical insulation of supersonducting magnets

    International Nuclear Information System (INIS)

    Irmisch, M.

    1995-12-01

    The high voltage (HV) performance of superconducting magnets of large dimensions, e.g. as needed in fusion reactors, is a challange in the field of high voltage technology, i.e. especially in the field of cryogenic high voltage components and with respect to questions of HV insulation diagnostics at low temperature. By using the development of POLO - a superconducting prototype coil of a tokamak poloidal field coil - as an example, this work deals with special problems of how to get use of conventional HV test techniques for diagnostics under special cryogenic boundary conditions. As a first approach to gain experience in the field of phase resolved partial discharge (PRPD) measurements during operation of a superconductive coil, the POLO coil was subject to several high voltage tests. Compared with DC insulation resistance measurements and capacitive impulse voltage discharges to the coil, the AC PD measurements have been the only way to observe special characteristics of the electrical insulation with respect to the cooling down of the coil from 300 K to 4.2 K. The PRPD measurement technique thereby has proofed as a suitable diagnostic tool. This work can serve as basic data to be comparable within further projects of electrical insulation diagnostics at cryogenic temperatures. (orig.)

  9. Static Electricity as Part of Electromagnetic Environment on High-Voltage Electrical Substation

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2012-01-01

    Full Text Available Causes of occurrences electrostatic discharges (ESD on high-voltage electric substation were investigated and dependences values ESD’s on parameters interaction structures, humidity of air were found. Experimental research values ESD’s on high-voltage electric substation and in man-made conditions was fulfilled. Uncertainty measurement’s was taken into consideration by research results analyze. Matching with research of other authors was made. Danger ESD’s for electric devises was established.

  10. Vivitron 1995, transient voltage simulation, high voltage insulator tests, electric field calculation

    International Nuclear Information System (INIS)

    Frick, G.; Osswald, F.; Heusch, B.

    1996-01-01

    Preliminary investigations showed clearly that, because of the discrete electrode structure of the Vivitron, important overvoltage leading to insulator damage can appear in case of a spark. The first high voltage tests showed damage connected with such events. This fact leads to a severe voltage limitation. This work describes, at first, studies made to understand the effects of transients and the associated over-voltage appearing in the Vivitron. Then we present the high voltage tests made with full size Vivitron components using the CN 6 MV machine as a pilot machine. Extensive field calculations were made. These involve simulations of static stresses and transient overvoltages, on insulating boards and electrodes. This work gave us the solutions for arrangements and modifications in the machine. After application, the Vivitron runs now without any sparks and damage at 20 MV. In the same manner, we tested column insulators of a new design and so we will find out how to get to higher voltages. Electric field calculation around the tie bars connecting the discrete electrodes together showed field enhancements when the voltages applied on the discrete electrodes are not equally distributed. This fact is one of the sources of discharges and voltage limitations. A scenario of a spark event is described and indications are given how to proceed towards higher voltages, in the 30 MV range. (orig.)

  11. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  12. Application of high voltage electric field (HVEF) drying technology in potato chips

    International Nuclear Information System (INIS)

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-01-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  13. Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    Fast electrical diagnostics and improvement of electrical circuits for methyl orange (MO) degradation by high voltage pulsed electrical discharge were investigated. To eliminate electromagnetic radiation, several effective methods were employed. RG 218 coaxial cable was substituted for the common transmission lines to transmit high voltage pulses, and multi-lines in parallel were earthed to avoid electromagnetic interference and, additionally, to reduce the stray inductance of the electrical circuit and increase the pulse rise rate to reduce the energy losses in the transmission system. The problem of the differences in the bandwidths of voltage and current probes causing an error in the calculation of energy dissipation was avoided by reducing the bandwidths of voltage and current measurements to the same value. The real discharge current was obtained by subtracting the capacitive current from the total current. The energy per pulse obtained in the reactor before and after improvement of the diagnostics and electrical circuit were 15.5 mJ and 26.8 mJ, respectively, and the energy efficiencies of MO degradation were 1.34 x 10 -9 mol/J and 1.95 x 10 -9 mol/J, respectively

  14. High voltage transmission of electrical energy over long distances

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, S W

    1962-07-01

    Technical aspects of ac transmission lines, additional means of improving stability ac transmisson lines, insulation problems, ac transmission by cables, high voltage dc transmission, advantages of dc over ac transmission, disadvantages of dc transmission, use of underground cables for dc transmission, history of the development of conversion equipment; transmission schemes adopted on Gotland Island, Sweden; and economics of ac and dc transmission are discussed.

  15. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  16. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  17. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  18. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  19. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  20. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    Science.gov (United States)

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  1. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  2. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  3. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  4. Study on Earthquake Response of High Voltage Electrical Equipment Coupling System with Flexible Busbar

    Science.gov (United States)

    Liu, Chuncheng; Qu, Da; Wang, Chongyang; Lv, Chunlei; Li, Guoqiang

    2017-12-01

    With the rapid development of technology and society, all walks of life in China are becoming more and more dependent on power systems. When earthquake occurs, the electrical equipment of substation is prone to damage because of its own structural features, top-heavy, and brittleness of main body. At the same time, due to the complex coupling of the soft electrical connection of substation electrical equipment, the negative impact can not be estimated. In this paper, the finite element model of the coupling system of the single unit of high voltage electrical equipment with the connecting soft bus is established and the seismic response is analysed. The results showed that there is a significant difference between the simple analysis for the seismic response of electrical equipment monomer and the analytical results of electrical equipment systems, and the impact on different electrical equipment is different. It lays a foundation for the future development of seismic performance analysis of extra high voltage electrical equipment.

  5. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  6. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  7. Electric field analysis of extra high voltage (EHV) underground cables using finite element method

    DEFF Research Database (Denmark)

    Kumar, Mantosh; Bhaskar, Mahajan Sagar; Padmanaban, Sanjeevikumar

    2017-01-01

    used for the insulator due electrical, thermal or environmental stress. Most of these problems are related to the electric field stress on the insulation of the underground cables. The objective of the electric field analysis by using different numerical techniques is to find electric field stress...... electric field stress and other parameters of EHV underground cables with given boundary conditions using 2-D electric field analysis software package (IES-ELECTRO module) which is based on the finite element method (FEM).......Transmission and Distribution of electric power through underground cables is a viable alternative to overhead lines, particularly in residential or highly populated areas. The electrical stresses are consequences of regular voltages and over voltages and the thermal stresses are related to heat...

  8. Potentially damaging failure modes of high- and medium-voltage electrical equipment

    International Nuclear Information System (INIS)

    Hoy, H.C.

    1984-01-01

    The high- and medium-voltage electrical equipment failures of both nuclear and nonnuclear electric utilities have been reviewed for possible disruptive failure modes that would be of special concern in a nuclear power plant. The resulting emphasis was on the electrical faults of transformers, switchgear (circuit breakers), lightning (surge) arrestors, high-voltage cabling and buswork, control boards, and other electrical equipment that, through failure, can be the initiating event that may expand the original fault to nearby or associated equipment. Many failures of such equipment were found and documented, although the failure rate of electrical equipment in utilities is historically quite low. Nuclear plants record too few failures to be statistically valid, but failures that have been recorded show that good design usually restricts the failure to a single piece of equipment. Conclusions and recommendations pertaining to the design, maintenance, and operation of the affected electrical equipment are presented

  9. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  10. Brachial artery protected by wrapped latissimus dorsi muscle flap in high voltage electrical injury

    Science.gov (United States)

    Gencel, E.; Eser, C.; Kokacya, O.; Kesiktas, E.; Yavuz, M.

    2016-01-01

    Summary High voltage electrical injury can disrupt the vascular system and lead to extremity amputations. It is important to protect main vessels from progressive burn necrosis in order to salvage a limb. The brachial artery should be totally isolated from the burned area by a muscle flap to prevent vessel disruption. In this study, we report the use of a wrap-around latissimus dorsi muscle flap to protect a skeletonized brachial artery in a high voltage electrical injury in order to salvage the upper extremity and restore function. The flap wrapped around the exposed brachial artery segment and luminal status of the artery was assessed using magnetic resonance angiography. No vascular intervention was required. The flap survived completely with good elbow function. Extremity amputation was not encountered. This method using a latissimus dorsi flap allows the surgeon to protect the main upper extremity artery and reconstruct arm defects, which contributes to restoring arm function in high voltage electrical injury. PMID:28149236

  11. Some biological effects of high-voltage stationary electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, V.V.; Dobrov, N.N.; Drobyshev, V.I.; Koroleva, L.V.; Nikitin, M.D.; Petrukhin, S.V.; Semonova, L.A.; Fedorov, V.P.

    The experiments were carried out on 345 white mice using hematological and pathomorphological procedures. The constant electric field (CEF) was generated in a special laboratory device. The exposure to CEF of 50 and 100 kV/m for 20 s caused hematological and morphological changes typical of the anxiety stage of the adaptation syndrome. The exposure also produced morphological changes of reactive and destructive type in skeletal muscles and different segments of kinesthetic receptors. The level of the above changes appears to be directly related to the CEF strength. 6 references, 4 figures, 1 table.

  12. An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS

    International Nuclear Information System (INIS)

    Hu Xia-Rong; Lü Rui

    2014-01-01

    In this paper, an analytical model for the vertical electric field distribution and optimization of a high voltage-reduced bulk field (REBULF) lateral double-diffused metal—oxide-semiconductor (LDMOS) transistor is presented. The dependences of the breakdown voltage on the buried n-layer depth, thickness, and doping concentration are discussed in detail. The REBULF criterion and the optimal vertical electric field distribution condition are derived on the basis of the optimization of the electric field distribution. The breakdown voltage of the REBULF LDMOS transistor is always higher than that of a single reduced surface field (RESURF) LDMOS transistor, and both analytical and numerical results show that it is better to make a thick n-layer buried deep into the p-substrate. (interdisciplinary physics and related areas of science and technology)

  13. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  14. The Architecture Design of Detection and Calibration System for High-voltage Electrical Equipment

    Science.gov (United States)

    Ma, Y.; Lin, Y.; Yang, Y.; Gu, Ch; Yang, F.; Zou, L. D.

    2018-01-01

    With the construction of Material Quality Inspection Center of Shandong electric power company, Electric Power Research Institute takes on more jobs on quality analysis and laboratory calibration for high-voltage electrical equipment, and informationization construction becomes urgent. In the paper we design a consolidated system, which implements the electronic management and online automation process for material sampling, test apparatus detection and field test. In the three jobs we use QR code scanning, online Word editing and electronic signature. These techniques simplify the complex process of warehouse management and testing report transferring, and largely reduce the manual procedure. The construction of the standardized detection information platform realizes the integrated management of high-voltage electrical equipment from their networking, running to periodic detection. According to system operation evaluation, the speed of transferring report is doubled, and querying data is also easier and faster.

  15. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik

    2014-09-29

    The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220 Wh/kg. The development work was focused on establishing a dual electrolyte system, coated cathode particle techniques, various types of additives, and different conductive salts. The program had a duration of three years, with Seeo delivering the final cells at the end of 2014 for evaluation by a DOE laboratory.

  16. Electric field control methods for foil coils in high-voltage linear actuators

    NARCIS (Netherlands)

    Beek, van T.A.; Jansen, J.W.; Lomonova, E.A.

    2015-01-01

    This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators. The field control methods are evaluated using 2-D and 3-D boundary element methods. A comparison is presented between the field control methods and their ability to mitigate

  17. High-voltage electrical burns due to copper theft - Case series.

    Science.gov (United States)

    Braga, M J; Oliveira, I; Egipto, P; Silva, A

    2016-03-31

    Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring.

  18. High-voltage electrical burns due to copper theft – Case series

    Science.gov (United States)

    Braga, M.J.; Oliveira, I.; Egipto, P.; Silva, A.

    2016-01-01

    Summary Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring. PMID:27857650

  19. Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    OpenAIRE

    REBILLAT, Marc; BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid M.

    2014-01-01

    International audience; High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea unde...

  20. ENEL high and medium voltage electrical substations for power supply to urban centers

    International Nuclear Information System (INIS)

    Bargigia, A.; Boatto, C.; Di Mario, A.; Fava, N.; Sciarra, S.; Speziali, R.

    1991-12-01

    Modular high and medium voltage gas insulated electrical substations are being used by ENEL (Italian Electricity Board) to meet the specific needs of urban centers with special design and sizing constraints of a historical/architectural nature. This paper illustrates the key design, construction operation and performance characteristics of these standardized units. The descriptions include brief notes on equipment-transformer interconnection, interchangeability and environmental compatibility. Performance test procedures and results of actual reliability and certification tests on some substations are reported

  1. Electrical and optical characteristics of dielectric-barrier discharge driven by high voltage nanosecond generator

    International Nuclear Information System (INIS)

    Ahmadeev, V.V.; Kost'yuchenko, S.V.; Kudryavtsev, N.N.; Kurkin, G.A.; Vasilyak, L.M.

    1998-01-01

    Electrical and optical characteristics of the dielectric-barrier discharge in the pressure range of 10-400 Torr were investigated experimentally, particular attention being paid to the discharge homogeneity and to the energy dissipation in the discharge volume. The discharge was driven by a high-voltage pulse generator producing nanosecond high-voltage pulses with an amplitude of 20-30 kV. Air, nitrogen, and helium were used as working gases. The discharge was found to be homogeneous within a wide range of gas pressure. A power density of up to 250 mW/cm 3 has been achieved. (J.U.)

  2. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications.

    Science.gov (United States)

    Wang, Qijun; Li, Yifei; Sun, Da-Wen; Zhu, Zhiwei

    2018-02-02

    Improvements in living standards result in a growing demand for food with high quality attributes including freshness, nutrition and safety. However, current industrial processing methods rely on traditional thermal and chemical methods, such as sterilization and solvent extraction, which could induce negative effects on food quality and safety. The electric fields (EFs) involving pulsed electric fields (PEFs) and high voltage electric fields (HVEFs) have been studied and developed for assisting and enhancing various food processes. In this review, the principles and applications of pulsed and high voltage electric fields are described in details for a range of food processes, including microbial inactivation, component extraction, and winemaking, thawing and drying, freezing and enzymatic inactivation. Moreover, the advantages and limitations of electric field related technologies are discussed to foresee future developments in the food industry. This review demonstrates that electric field technology has a great potential to enhance food processing by supplementing or replacing the conventional methods employed in different food manufacturing processes. Successful industrial applications of electric field treatments have been achieved in some areas such as microbial inactivation and extraction. However, investigations of HVEFs are still in an early stage and translating the technology into industrial applications need further research efforts.

  3. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these

  4. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  5. The effect of high voltage pulsed electric field on water molecular

    Science.gov (United States)

    Fan, Xuejie; Bai, Yaxiang; Ren, Ziying

    2017-10-01

    In order to study the mechanism of high voltage pulsed electric field pre-treatment on the food drying technology. In this paper, water was treated with high pulse electric field (HPEF) in different frequency, and different voltage, then, the viscosity coefficient and the surface tension coefficient of the water were measured. The results showed that indicated that the viscosity coefficient and the surface tension coefficient of the treated water can be decreased, and while HPEF pre-treatment was applied for 22.5kV at a frequency of 50Hz and 70 Hz, the surface tension and the viscosity coefficient of the pre-treatment treatment were reduced 13.1% and 7.5%, respectively.

  6. Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature

    Science.gov (United States)

    Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU

    2018-05-01

    In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.

  7. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  8. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    International Nuclear Information System (INIS)

    Volkov, M. S.; Gusev, Yu. P.; Monakov, Yu. V.; Cho, Gvan Chun

    2016-01-01

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed

  9. A new SOI high-voltage device with a step-thickness drift region and its analytical model for the electric field and breakdown voltage

    International Nuclear Information System (INIS)

    Luo Xiaorong; Zhang Wei; Zhang Bo; Li Zhaoji; Yang Shouguo; Zhan Zhan; Fu Daping

    2008-01-01

    A new SOI high-voltage device with a step-thickness drift region (ST SOI) and its analytical model for the two-dimension electric field distribution and the breakdown voltage are proposed. The electric field in the drift region is modulated and that of the buried layer is enhanced by the variable thickness SOI layer, thereby resulting in the enhancement of the breakdown voltage. Based on the Poisson equation, the expression for the two-dimension electric field distribution is presented taking the modulation effect into account, from which the RESURF (REduced SURface Field) condition and the approximate but explicit expression for the maximal breakdown voltage are derived. The analytical model can explain the effects of the device parameters, such as the step height and the step length of the SOI layer, the doping concentration and the buried oxide thickness, on the electric field distribution and the breakdown voltage. The validity of this model is demonstrated by a comparison with numerical simulations. Improvement on both the breakdown voltage and the on-resistance (R on ) for the ST SOI is obtained due to the variable thickness SOI layer

  10. [Influence of high-voltage electric burn on the microcirculation of heart in rabbit].

    Science.gov (United States)

    Zhang, Qing-fu; Zhou, Hui-min; Wang, Che-jiang; Shao, Hong-bo

    2012-06-01

    To study the influence of high-voltage electric burn on the microcirculation of heart in rabbit. One-hundred and twenty New Zealand rabbits of clean grade were divided into control group (C) and electric burn group (EB) according to the random number table, with 60 rabbits in each group. Rabbits in EB group were subjected to high-voltage electric burn (the electrical current flow into the left foreleg at the lateral side of proximal end and out from the corresponding site of the right hind leg) with voltage regulator and experimental transformer. Rabbits in C group were sham injured with the same devices without electrification. At 15 minutes before injury, and 5 minutes, 1, 2, 4, 8 hour (s) post injury (PIM or PIH), ten rabbits in each group were chosen to examine the cardiac apex microcirculation hemoperfusion (CAMH) with laser Doppler hemoperfusion image instrument. The morphologic changes of microvessels of left ventricular wall tissues of 2 rabbits from each of the 10 rabbits collected at above-mentioned time points were observed with light microscope and transmission electron microscope. Auricular vein blood of rabbit was harvested at above-mentioned time points for the determination of aspartate amino transferase (AST), lactate dehydrogenase (LDH), hydroxybutyrate dehydrogenase (HBDH), creatine kinase (CK), and creatine kinase isozyme MB (CK-MB) by full-automatic biochemical analyzer. Data were processed with two-factor analysis of variance and LSD test. (1) The differences between C group and EB group in detection results were statistically significant, with F values from 425.991 to 3046.834, P values all below 0.01. Only the data within EB group were comparable. (2) At PIM 5, the CAMH value of rabbits in EB group was (1.96 ± 0.09) V, which was lower than that at 15 minutes before injury [(4.34 ± 0.35) V, P electric burn can bring damage to the microvessels of heart in rabbits and change blood flow of microcirculation, which should be given adequate

  11. PIEZOELECTRIC WAVEGUIDE SENSOR FOR MEASURING PULSE PRESSURE IN CLOSED LIQUID VOLUMES AT HIGH VOLTAGE ELECTRIC DISCHARGE

    Directory of Open Access Journals (Sweden)

    V. G. Zhekul

    2017-10-01

    Full Text Available Purpose. Investigations of the characteristics of pressure waves presuppose the registration of the total profile of the pressure wave at a given point in space. For these purposes, various types of «pressure to the electrical signal» transmitters (sensors are used. Most of the common sensors are unsuitable for measuring the pulse pressure in a closed water volume at high hydrostatic pressures, in particular to study the effect of a powerful high-voltage pulse discharge on increasing the inflow of minerals and drinking water in wells. The purpose of the work was to develop antijamming piezoelectric waveguide sensor for measuring pulse pressure at a close distance from a high-voltage discharge channel in a closed volume of a liquid. Methodology. We have applied the calibration method as used as a secondary standard, the theory of electrical circuits. Results. We have selected the design and the circuit solution of the waveguide pressure sensor. We have developed a waveguide pulse-pressure sensor DTX-1 with a measuring loop. This sensor makes it possible to study the spectral characteristics of pressure waves of high-voltage pulse discharge in closed volumes of liquid at a hydrostatic pressure of up to 20 MPa and a temperature of up to 80 °C. The sensor can be used to study pressure waves with a maximum amplitude value of up to 150 MPa and duration of up to 80 µs. According to the results of the calibration, the sensitivity of the developed sensor DTX-1 with a measuring loop is 0.0346 V/MPa. Originality. We have further developed the theory of designing the waveguide piezoelectric pulse pressure sensors for measuring the pulse pressure at a close distance from a high-voltage discharge channel in a closed fluid volume by controlling the attenuation of the amplitude of the pressure signal. Practical value. We have developed, created, calibrated, used in scientific research waveguide pressure pulse sensors DTX-1. We propose sensors DTX-1 for sale

  12. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  13. Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge

    Directory of Open Access Journals (Sweden)

    K Higa

    2016-10-01

    Full Text Available We have developed the high voltage power-supply unit by Cockcroft-Walton circuit for ingenerate high pressure due to underwater shockwave by electrical discharge. This high voltage power supply has the problem of the metal contact switch operation that contact switch stop by melting and bonding due to electrical spark. We have studied the evaluation of materials of contact switch for the reducing electrical energy loss and the problem of contact switch operation. In this research, measurement of discharge voltage and high pressure due to underwater shockwave was carried out using the contact switch made of different materials as brass plate, brass-carbon plate-brass and carbon block. The contact switch made of carbon is effective to reduce energy loss and problem of contactor switch operation.

  14. [Dynamic change in microcirculation of pancreas after experimental high-voltage electric burn].

    Science.gov (United States)

    Zhang, Qing-fu; Bai, Yong-qiang

    2009-10-01

    To observe the changes in surface microcirculation of pancreas after high-voltage electric burn (HEB). Thirty rabbits were divided into electrical injury (E) group and control (C) group in a simple random method, with 15 rabbits in each group. Rabbit model of HEB was reproduced from E group with TC-30-20KVA type voltage regulator and YDJ-10KVA type experimental transformer. Rabbits in C group were shamly burned with the same equipment as in E group but not electrified. Intravenous blood of rabbits in both groups was drawn 15 mins before HEB and 0, 1, 2, 4, 8 h after to determine the levels of serum amylase and blood glucose. The morphology of the pancreas microvessels and its surrounding tissues, and the dynamic changes in microvascular blood flow were observed with WX-9 microscope and its image analytical system. The level of serum amylase of rabbits in E group increased gradually and peaked (849 +/- 39) U/L at 8 post HEB h (PHH), which decreased gradually reaching the nadir (153 +/- 21) U/L at 8 PHH in C group (P 0.05), and no erythrocyte aggregation or microthrombus was found in both groups. In E group, blood flow speed slowed down at 0 PHH as compared with that before HEB, it accelerated at 1 h and slowed down later; erythrocyte aggregation in venules and capillaries was found at 0 PHH, and it aggregated gradually. No above-mentioned change was found in C group. HEB produces microcirculation disturbance and functional disturbance of pancreas.

  15. Pyogenic Arthritis of the Ankle Joint Following a High-Voltage Electrical Burn in the Lower Extremity: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk Seon; Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Lee, Eil Seong; Min, Seon Jung; Han, You Mie [Dept. of Radiology, Hangang Scared Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Lee, Eil Seong [Dept.of Radiology, Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju (Korea, Republic of)

    2011-04-15

    A high-voltage electrical burn caused extensive deep muscle injuries beneath a relatively small skin wound at the contact point. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, which can lead to major amputations or sepsis. The radiologic features of this rare, sometimes life-threatening injury have occasionally been described in the literature. However, to the best of our knowledge, there have been no reports on a case of pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity. We report a case of the pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity.

  16. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge.

    Science.gov (United States)

    Xi, Jun; He, Lang; Yan, Liang-Gong

    2017-09-01

    Pomegranate peel, a waste generated from fruit processing industry, is a potential source of phenolic compounds that are known for their anti-oxidative properties. In this study, a continuous high voltage electrical discharge (HVED) extraction system was for the first time designed and optimized for phenolic compounds from pomegranate peel. The optimal conditions for HVED were: flow rate of materials 12mL/min, electrodes gap distance 3.1mm (corresponding to 29kV/cm of electric field intensity) and liquid to solid ratio 35mL/g. Under these conditions, the experimental yield of phenolic compounds was 196.7±6.4mg/g, which closely agreed with the predicted value (199.83mg/g). Compared with the warm water maceration, HVED method possessed higher efficiency for the extraction of phenolic compounds. The results demonstrated that HVED technique could be a very effective method for continuous extraction of natural compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Study of protection devices against the effects of electric discharges inside a very high voltage generator: the Vivitron accelerator

    International Nuclear Information System (INIS)

    Nolot, E.

    1996-01-01

    The Vivitron tandem is a large electrostatic accelerator comprising a Van de Graaff generator designed to reach terminal voltages of around 30 MV. The machine is limited at rather lower nominal voltages (about 20 MV) due to the sensitivity of the insulating column structure to transient overvoltages. These are induced by electrical discharges in compressed SF 6 . This thesis first aims at analysing the fundamental reasons of electrical discharges in order to limit the probability of their occurrence. Then we simulate the transient overvoltages induced and present some improvements which may lead to a stable behaviour of the Vivitron at nominal voltages higher than 20 MV. Initially we deduce discharge onset voltages and actual breakdown field limitations in the different gap geometries from analysis of possible breakdown mechanisms in compressed SF 6 . In a second part, some electrical characteristics of the insulating column structure are measured at high voltage. Fast rising oscillating waves induced by sparking in the Vivitron, along with the associated energies,are determined in the third part. The last part deals with new surge protections of the insulating column structure. Spark gaps with precise onset voltage and optimized shielding electrodes are discussed. ZnO-based varistors designed for operation at very high fields have also been developed in order to reduce transient overvoltage values. (author)

  18. Project resumes: biological effects from electric fields associated with high-voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Abstracts of research projects are presented in the following areas: measurements and special facilities; cellular and subcellular studies; physiology; behavior; environmental effects; modeling, scaling and dosimetry; and high voltage direct current. (ACR)

  19. Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Wafa Tourab

    2016-06-01

    Conclusion: We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.

  20. The principles of high voltage electric field and its application in food processing: A review.

    Science.gov (United States)

    Dalvi-Isfahan, Mohsen; Hamdami, Nasser; Le-Bail, Alain; Xanthakis, Epameinondas

    2016-11-01

    Food processing is a major part of the modern global industry and it will certainly be an important sector of the industry in the future. Several processes for different purposes are involved in food processing aiming at the development of new products by combining and/or transforming raw materials, to the extension of food shelf-life, recovery, exploitation and further use of valuable compounds and many others. During the last century several new food processes have arisen and most of the traditional ones have evolved. The future food factory will require innovative approaches food processing which can combine increased sustainability, efficiency and quality. Herein, the objective of this review is to explore the multiple applications of high voltage electric field (HVEF) and its potentials within the food industry. These applications include processes such as drying, refrigeration, freezing, thawing, extending food shelf- life, and extraction of biocompounds. In addition, the principles, mechanism of action and influence of specific parameters have been discussed comprehensively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A methodological reappraisal of non invasive high voltage electrical stimulation of lumbosacral nerve roots.

    Science.gov (United States)

    Troni, Walter; Di Sapio, Alessia; Berra, Eliana; Duca, Sergio; Merola, Aristide; Sperli, Francesca; Bertolotto, Antonio

    2011-10-01

    To describe a neurophysiological method to locate the optimal stimulation site (OSS) over the vertebral column, customized to the individual subject, to achieve maximal activation of lumbosacral roots by means of non-invasive high voltage electrical stimulation (HVES). OSS was located in 30 volunteers by testing different stimulation points of a surface multi-electrode array placed over the dorso-lumbar junction of the vertebral column. The dorso-ventral stimulating montage was used (Troni et al., 1996). Motor responses to root stimulation (rCMAPs) were bilaterally recorded from Vastus Medialis (VM), Tibialis Anterior (TA), Soleus (SL) and Flexor Hallucis Brevis (FHB) muscles. The direct nature of rCMAPs was tested by delivering two maximal stimuli 50 ms apart. Except for a few subjects with large girth, maximal rCMAPs could be obtained from all muscles with a stimulating current intensity up to 550 V (1050 mA). Maximal double HVES excluded any reflex component in the recorded rCMAPs. The procedure was well tolerated and no side effects were observed. A single maximal electric shock delivered at the proper vertebral level by means of the dorso-ventral montage is able to safely achieve synchronous, bilateral maximal activation of several roots, from L3 to S1. Maximal activation of lumbosacral roots at their origin, unattainable with magnetic stimulation, is the essential requirement for direct detection of proximal nerve conduction slowing and block in lower limbs. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler

    Science.gov (United States)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng

    2017-09-01

    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  3. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor

    Science.gov (United States)

    St-Pierre, François; Marshall, Jesse D; Yang, Ying; Gong, Yiyang; Schnitzer, Mark J; Lin, Michael Z

    2015-01-01

    Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. Here we describe Accelerated Sensor of Action Potentials 1 (ASAP1), a novel voltage sensor design in which a circularly permuted green fluorescent protein is inserted within an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrates on- and off- kinetics of 2.1 and 2.0 ms, reliably detects single action potentials and subthreshold potential changes, and tracks trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range, and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at KHz frame rates using standard epifluorescence microscopy. PMID:24755780

  4. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  5. Radiation tests on selected electrical insulating materials for high-power and high voltage application

    International Nuclear Information System (INIS)

    Liptak, G.; Schuler, R.; Haberthuer, B.; Mueller, H.; Zeier, W.; Maier, P.; Schoenbacher, H.

    1985-01-01

    This report presents a comprehensive set of test results on the irradiation of insulating materials and systems used for the windings of rotating machines, dry-type transformers, and magnet coils. The materials were: Novolac, bisphenol-A, and cycloaliphatic types of epoxy; saturated and unsaturated polyesterimide; silicone, phenolic, and acrylic resins. The reinforcement consisted of glass mat, glass roving, glass cloth, mica paper, polyester mat, polyester roving, polyester cloth, aromatic polyamide paper, or combinations thereof. The materials were irradiated in an 8 MW pool reactor up to integrated doses of 10 8 Gy. On most samples, flexural properties were examined as recommended by IEC Standard 544. For tapes and varnishes, the breakdown voltage was measured. The adhesion of copper bars glued together with an epoxy resin was examined by means of a lap-shear test. A cupping test by means of the Erichsen apparatus was used to measure the flexibility of varnishes. The results are presented in tables and graphs for each of the materials tested. Those from mechanical tests show that the radiation resistance of composite resin-rich insulations depends not only on the base resin combination and the reinforcement material but, to a large degree, also on the adhesion between the two. It appears that better adhesion, and consequently higher radiation resistance, is obtained by special surface treatments of glass fibres. For laminates, higher radiation resistance is obtained with glass mat and resin combinations than with glass cloth as reinforcing materials. The breakdown voltage tests show that the application of mechanical stress to most irradiated samples causes the insulation layer to crack, resulting in lower dielectric strength. For a number of materials, the critical properties of flexural strength and breakdown voltage are above 50% of the initial value at doses between 10 7 and 10 8 Gy, i.e. a radiation index of 7 to 8 at 10 5 Gy/h. (orig.)

  6. Impact of pulsed-electric field and high-voltage electrical discharges on red wine microbial stabilization and quality characteristics.

    Science.gov (United States)

    Delsart, C; Grimi, N; Boussetta, N; Miot Sertier, C; Ghidossi, R; Vorobiev, E; Mietton Peuchot, M

    2016-01-01

    In this study, pulsed-electric fields (PEF) and high-voltage electrical discharges (HVED) are proposed as new techniques for the microbial stabilization of red wines before bottling. The efficiency of the treatment was then evaluated. PEF and HVED-treatments have been applied to wine for the inactivation of Oenococcus oeni CRBO 9304, O. oeni CRBO 0608, Pediococcus parvulus CRBO 2.6 and Brettanomyces bruxellensis CB28. Different treatment times (1, 2, 4, 6, 8 and 10 ms) were used at 20 kV cm(-1) for the PEF treatments and at 40 kV for the HVED treatments, which correspond to applied energies from 80 to 800 kJ l(-1) . The effects of the treatments on the microbial inactivation rate and on various characteristics of red wines (phenolic composition, chromatic characteristics and physico-chemical parameters) were measured. The application of PEF or HVED treatments on red wine allowed the inactivation of alteration yeasts (B. bruxellensis CB28) and bacteria (O. oeni CRBO 9304, O. oeni CRBO 0608 and P. parvulus CRBO 2.6). The electric discharges at 40 kV were less effective than the PEF even after 10 ms of treatments. Indeed, 4 ms of PEF treatment at 20 kV cm(-1) were sufficient to inactivate all micro-organisms present in the wines. Also, the use of PEF had no negative impact on the composition of wines compared to the HVED treatments. Contrary to PEF, the phenolics compounds were degraded after the HVED treatment and the physico-chemical composition of wine were modified with HVED. PEF technology seems to be an interesting alternative to stabilize microbiologically wines before bottling and without modifying their composition. This process offers many advantages for winemakers: no chemical inputs, low energy consumption (320 kJ l(-1) ), fast (treatment time of 4 ms) and athermal (ΔT ≈ 10°C). © 2015 The Society for Applied Microbiology.

  7. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  8. Urban exposure to ELF magnetic field due to high-, medium- and low-voltage electricity supply networks

    International Nuclear Information System (INIS)

    Bottura, V.; Cappio Borlino, M.; Carta, N.; Cerise, L.; Imperial, E.

    2009-01-01

    The regional environment protection agency (ARPA) of the Aosta Valley region in north Italy performed a survey of magnetic field triggered by the power supply network in high, medium and low voltages on the entire area of Aosta town. The electrical distribution system for houses was not however taken into account. The aim of the survey was to evaluate the global population exposure and not simply the assessment of the legal exposure limit compliance. (authors)

  9. High voltage-derived enhancement of electric conduction in nanogap devices for detection of prostate-specific antigen

    Science.gov (United States)

    Park, Hyung Ju; Chi, Young Shik; Choi, Insung S.; Yun, Wan Soo

    2010-07-01

    We report a simple method of enhancing electric conductance in nanogap devices without any additional treatments, such as silver-enhancing process. The low electric conductance after selective immobilization of biofunctionalized gold nanoparticles in the gap region was greatly enhanced by repeated I-V scans at relatively high voltage ranges of -5 to 5 V, which was attributed to the formation of a new conduction pathway across the gap. The higher conduction state of the nanogap device showed a very stable I-V curve, which was used as an excellent measure of the existence of prostate-specific antigen.

  10. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    Science.gov (United States)

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis

  12. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique

    Directory of Open Access Journals (Sweden)

    Igor Bogachev

    2015-11-01

    Full Text Available Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  13. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique.

    Science.gov (United States)

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10-15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  14. High voltage isolation transformer

    Science.gov (United States)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  15. Some problems relating to the transmission of electrical power at very high voltage

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A

    1965-01-01

    Some of the technical and economic factors which influence the choice of a transmission system, particularly a very high voltage one, are discussed. The stability of transmission overvoltages at mains frequency and their control by means of compensating reactances is described. Overvoltages due to circuit-breaker operation and those of atmospheric origin, and appropriate protective devices, the behaviour of equipment at 750 kV, and problems of testing are included. Finally, the 735 kV network now being installed to carry 5300 MW of hydroelectric power 650 km from the Manicouagan River to Quebec and Montreal is described.

  16. Voltage Support from Electric Vehicles in Distribution Grid

    DEFF Research Database (Denmark)

    Huang, Shaojun; Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The paper evaluates the voltage support functions from electric vehicles (EVs) on a typical Danish distribution grid with high EV penetration. In addition to the popular voltage control modes, such as voltage droop charging (low voltage level leads to low charging power) and reactive power support...

  17. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  18. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    International Nuclear Information System (INIS)

    Pilan, N.; Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G.; Rosa, S. Dalla; Kraemer, V.; Quirmbach, T.; Chitarin, G.; Gobbo, R.; Pesavento, G.; De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L.

    2015-01-01

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  19. MR imaging findings of high-voltage electrical burns in the upper extremities: correlation with angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Min, Seon Jung; Han, You Mi (Dept. of Radiology, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of)); Suh, Kyung Jin (Dept. of Radiology, Dongguk Univ. College of Medicine, Gyeongju Hospital, Gyeongju (Korea, Republic of)), email: kyungjin.suh@gmail.com; Choi, Min Ho (Dept. of Internal Medicine, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of))

    2011-02-15

    Background: A high-voltage electrical burn is often associated with deep muscle injuries. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, and this can lead to major amputations or sepsis. MRI has excellent soft tissue contrast and it may aid in differentiating the areas of viable deep muscle from the areas of non-viable deep muscle. Purpose: To describe the MR imaging findings of a high-voltage electrical burn in the upper extremity with emphasis on the usefulness of the gadolinium-enhanced MRI and to compare the MR imaging findings with angiography. Material and Methods: We retrospectively reviewed the imaging studies of six patients with high-voltage electrical burns who underwent both MRI and angiography at the burn center of our hospital from January 2005 to December 2009. The imaging features were evaluated for the involved locations, the MR signal intensity of the affected muscles, the MR enhancement pattern, the involved arteries and the angiographic findings (classified as normal, sluggish flow, stenosis or occlusion) of the angiography of the upper extremity. We assessed the relationship between the MR imaging findings and the angiographic findings. Results: The signal intensities of affected muscles were isointense or of slightly high signal intensity as compared with the adjacent unaffected skeletal muscle on the T1-weighted MR images. Affected muscles showed heterogenous high signal intensity relative to the adjacent unaffected skeletal muscle on the T2- weighted images. The gadolinium-enhanced T1-weighted images showed diffuse inhomogeneous enhancement or peripheral rim enhancement of the affected muscles. The angiographic findings of the arterial injuries showed complete occlusion in three patients, severe stenosis in two patients and sluggish flow in one patient. Of these, the five patients with complete occlusion or severe stenosis on angiography showed non-perfused and non-viable areas of edematous muscle on

  20. Study on Communication Methods for Electric Power High-voltage Equipment Monitoring System

    Directory of Open Access Journals (Sweden)

    Jia Yu Chen

    2018-02-01

    Full Text Available Real-time monitoring of high-voltage equipment in substations is beneficial for early detection of faults. The use of wireless sensor networks to build monitoring system is an effective way, but the data collection is a difficult task. The author introduces a real-time monitoring system based on ZIGBEE and mobile communication technology. The system includes multiple monitoring points and terminal platforms. Each monitoring point consists of a number of sensor nodes to form a ZIGBEE network, detecting relevant parameters, coordinator node data collected one by one, known as linear transmission, and finally to the monitoring platform through the mobile communication network. This paper presents a fusion algorithm for monitoring cell data acquisition to reduce the amount of data uploaded to the base station. In addition, multi-hop routing algorithm based on opportunistic routing is proposed to balance network energy and improve network transmission rate and efficiency.

  1. Vibration of high-voltage electric machines with rotors on rolling bearings

    Science.gov (United States)

    Shekyan, H. G.; Gevorgyan, A. V.

    2018-04-01

    The paper presents an investigation of vibrational activity of electric machines due to high-harmonic vibrational loadings. It is shown that the vibrational loadings experienced by bearings may result in the interruption of their normal operation and even take them out of action. Therefore, the values of the vibrational speed-up leading to high harmonics are factors determining the admissible dynamic loading on the bearings. In the paper, an attempt is made to consider the factors which result in origination of high harmonics and to illustrate methods for their smoothing.

  2. Effect of high-voltage pulsed electric field (HPEF pretreatment on biogas production rates of hybrid Pennisetum by anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Baijuan Wang

    2018-02-01

    Full Text Available In this paper, the raw materials of hybrid Pennisetum were pretreated in different conditions of high voltage pulsed electric field (HPEF to improve its material utilization ratios and biogas production rates of anaerobic fermentation. Then, anaerobic digestion experiments were conducted within 32 days at moderate temperature (35 °C with TS mass fraction (6%, inoculation rate (20% and initial pH (7.0. It is indicated that compared with the control group, 9 groups of hybrid Pennisetum pretreated by HPEF are obviously superior in gas production efficiency of anaerobic fermentation, and higher in cumulative gas production, peak daily gas production and maximum methane concentration; that the most remarkable stimulation occurs in the HPEF condition of 15 kV/120 Hz/60 min, in that situation, the cumulative gas production in the fermentation period of 32 days is up to 9587 mL, 26.95% higher than that of the control group, the peak daily gas production increases and the range of peak period extends. It is demonstrated that the optimal HPEF pretreatment time is 60 min and three HPEF parameters have a better effect on gas production in the order of voltage > time > frequency; and that the effect degree of treatment parameters on peak daily gas production is voltage, frequency and time in turn. It is concluded that HPEF can improve material utilization ratio and gas production rate of hybrid Pennisetum by anaerobic fermentation and shorten the gas production cycle. By virtue of this physical pretreatment method, the resource of Pennisetum is utilized sufficiently and the classes of energy plants are enlarged effectively. Keywords: Hybrid Pennisetum, Anaerobic fermentation, High voltage pulsed electric field (HPEF, Biogas, Material utilization ratio, Gas generation rate, Model, Stimulation

  3. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  4. Voltage tensor for a plasma in high frequency electromagnetic and constant electric fields in the presence of collisions

    International Nuclear Information System (INIS)

    Vigdorchik, N.E.

    1978-01-01

    The voltage tensor expression is obtained for plasma placed in a HF electromagnetic and constant electric fields. The kinetic equations with allowance for collisions are initial. Weakly ionized and completely ionized plasmas are considered. The voltage tensor for completely ionized plasma differs essentially from that for transparent media

  5. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping.

    Science.gov (United States)

    Chi, Yu-Wen; Hu, Chi-Chang; Shen, Hsiao-Hsuan; Huang, Kun-Ping

    2016-09-14

    Integrating various devices to achieve high-performance energy storage systems to satisfy various demands in modern societies become more and more important. Electrical double-layer capacitors (EDLCs), one kind of the electrochemical capacitors, generally provide the merits of high charge-discharge rates, extremely long cycle life, and high efficiency in electricity capture/storage, leading to a desirable device of electricity management from portable electronics to hybrid vehicles or even smart grid application. However, the low cell voltage (2.5-2.7 V in organic liquid electrolytes) of EDLCs lacks the direct combination of Li-ion batteries (LIBs) and EDLCs for creating new functions in future applications without considering the issue of a relatively low energy density. Here we propose a guideline, "choosing a matching pair of electrode materials and electrolytes", to effectively extend the cell voltage of EDLCs according to three general strategies. Based on the new strategy proposed in this work, materials with an inert surface enable to tolerate a wider potential window in commercially available organic electrolytes in comparison with activated carbons (ACs). The binder-free, vertically grown graphene nanowalls (GNW) and nitrogen-doped GNW (NGNW) electrodes respectively provide good examples for extending the upper potential limit of a positive electrode of EDLCs from 0.1 to 1.5 V (vs Ag/AgNO3) as well as the lower potential limit of a negative electrode of EDLCs from -2.0 V to ca. -2.5 V in 1 M TEABF4/PC (propylene carbonate) compared to ACs. This newly designed asymmetric EDLC exhibits a cell voltage of 4 V, specific energy of 52 Wh kg(-1) (ca. a device energy density of 13 Wh kg(-1)), and specific power of 8 kW kg(-1) and ca. 100% retention after 10,000 cycles charge-discharge, reducing the series number of EDLCs to enlarge the module voltage and opening the possibility for directly combining EDLCs and LIBs in advanced applications.

  6. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  7. Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Increased electrical breakdown strength and increased dielectric permittivity of silicone-based dielectric elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS–PPMS copolymers as well as PDMS–PEG copolymers in order to compensate for the negative...... effect of softness on electrical stability of silicone elastomers. The voltage-stabilised elastomer, incorporating a high-permittivity PDMS–PEG copolymer, possesses increased relative permittivity, high electrical breakdown strength, excellent network integrity and low dielectric loss and paves the way...

  8. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  9. RTE takes over Houilleres du Bassin de Lorraine's high voltage electricity network; RTE reprend le reseau electrique haute tension des Houilleres du Bassin de Lorraine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    Houilleres du Bassin de Lorraine (HBL) decided to sell their high voltage electricity network to RTE. This takeover by RTE, the French transmission system operator, corresponds to the public service mission entrusted to it by the law of February 10, 2000, concerning the rational distribution of an electricity service in France and the local servicing of customers through the public transmission system.

  10. The Electrostatic Wind Energy Converter : Electrical performance of a high voltage prototype

    NARCIS (Netherlands)

    Djairam, D.

    2008-01-01

    Wind energy is converted to electrical energy by letting the wind move charged particles against the direction of an electric field. The advantage of this type of conversion is that no rotational movement, which occurs in conventional wind turbines, is required. An electrostatic wind energy

  11. Potentially damaging failure modes of high- and medium-voltage electrical equipment

    International Nuclear Information System (INIS)

    Hoy, H.C.

    1983-07-01

    The electrical equipment failures of both nuclear and nonnuclear public utilities were reviewed. Those failures that could pose an additional problem to surrounding and connected equipment were defined. The literature was searched; utilities, repair shops, and large electrical equipment users were contacted for failure information. The data were reviewed in detail, and failure modes were determined. Sample cascade failures are discussed. The failure rate of electrical equipment in utilities is historically quite low. Nuclear plants record too few failures to be statistically valid, but failures that have been recorded show that good design usually restricts the failure to a single piece of equipment

  12. Carbon structures formation in low current high voltage electrical discharge in hydrocarbon vapours

    International Nuclear Information System (INIS)

    Sobczyk, A T; Jaworek, A

    2011-01-01

    The properties of carbon fibers and other carbon structures produced from hydrocarbon vapours decomposed in electrically generated plasma at atmospheric pressure are studied in this paper. The electrical discharge was generated between a stainless steel needle and a plate made of nickel alloy. The carbon fiber has grown at the tip of the needle electrode, while other microflower-like deposits were built at the plate. The physical properties of carbon fibers were investigated by SEM, Raman spectroscopy, XRD, and EDS methods.

  13. High voltage electric field effects on structure and biological characteristics of barley seeds

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, J. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Agrotechnology, Univ. College of Abouraihan; Aliabadi, E. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Crop Production Horticulture, Univ. College of Aburaihan; Shayegani, A.A. [Tehran Univ., Tehran (Iran, Islamic Republic of). Univ. College of Engineering

    2010-07-01

    Electric biostimulation of seeds is a pre-sowing treatment in which an electric field is applied to seeds to increase germination of non standard seeds. This paper reported on a study that examined the effects of AC electric field and exposure time on the structure and biological characteristics of barley seeds. The objective was to determine the potential to accelerate seed germination, plant growth and root development by the electric field strength and exposure time. Makooei cultivar barley seeds were used in this study. The effect of electric field strength (at 2, 4, 9, and 14 kV/m) and exposure time (at 15, 45, 80, and 150 min) on seed germination was studied along with height of seedling, length or root, height of stem, length of leaves, earliness, dry weight and wet weight of seedling. The treated seeds were stored for a month in a refrigerator at 5 degrees C prior to the germination experiments. The initial germination percent of the seed was 81 per cent. The treatment of barley seeds in an AC electric field had a positive effect on all investigated parameters. The germination percent of the treated seed increased to 94.5 per cent . The seeds exposed for long periods of time (45 to 150 min) showed better germination than the seeds exposed to lower exposure times. Dry and wet weights of seedling increased 143.4 per cent and 45.7 per cent, respectively.

  14. [Changes of platelet rheological behavior and the interventional effects of ulinastatin in rats with high-voltage electrical burns].

    Science.gov (United States)

    Zhang, Q F; Li, Y; Feng, J K; Xu, Y F; Tu, L L

    2017-12-20

    Objective: To explore the influence of high-voltage electrical burns on the number of platelet aggregation, β-thromboglobulin (β-TG) and platelet factor 4 (PF-4) and the interventional effects of ulinastatin in rats with high-voltage electrical burns. Methods: A total of 240 Sprague-Dawley rats were divided into sham injury (SI) group, simple electrical burn (SEB) group, normal saline (NS) group, and ulinastatin (UTI) group according to the random number table, with 60 rats in each group. The electrical current was applied to the outside proximal part of left forelimb of rats and exited from the outside proximal part of right hind limb of rats. Rats in groups SEB, NS, and UTI were inflicted with high-voltage electrical burn wounds of 1 cm×1 cm at current entrances and exits, with the voltage regulator and experimental transformer. Rats in group SI were sham injured through connecting the same equipments without electricity. At 2 min post injury, rats in group NS were intraperitoneally injected with 2 mL/kg NS, and rats in group UTI were intraperitoneally injected with 2×10(4) U/kg UTI of 10 g/L. At 15 min before injury and 5 min, 1 h, 2 h, 4 h, 8 h post injury, 10 rats in each group were selected to collect 5-7 mL blood of heart respectively. Blood of 0.05 mL were collected to make fresh blood smear for observing the number of platelet aggregation, and serum were separated from the remaining blood to determine content of β-TG and PF-4 with enzyme-linked immunosorbent assay. Data were processed with analysis of factorial design of variance, student-Newman-Keuls test, Kruskal-Wallis H test, Wilcoxon rank sum test, and Bonferroni correction. Results: (1) At 15 min before injury, the numbers of platelet aggregation of rats were close among groups SI, SEB, NS and UTI (5.9±1.2, 5.8±1.2, 5.9±1.3, 5.9±1.1, respectively, with P values above 0.05). At 5 min, 1 h, 2 h, 4 h, 8 h post injury, the numbers of platelet aggregation of rats in group SEB were 57.2±16.3, 59

  15. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  16. Preventive maintenance basis: Volume 10 -- High voltage electric motors (5 kV and greater). Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-07-01

    US nuclear plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This report provides an overview of the PM Basis project and describes use of the PM Basis database. Volume 10 of the report provides a program of PM tasks suitable for application to high voltage (5kV and greater) electric motors in nuclear power plants. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs. Reactor Coolant Pumps motors (RCP's) are not excluded from this report in so far as good PM practices for motors of the appropriate class are concerned. However, the special auxiliary equipment normally associated with RCP's has not been included. Consequently, this report does not provide a complete PM program for RCP's. Industry and vendor programs for RCP's should be consulted for complete definition of RCP motor PM programs

  17. Collapse and pull - down analysis of high voltage electricity transmission towers subjected to cyclonic wind

    International Nuclear Information System (INIS)

    Ahmed, Ammar; Arthur, Craig; Edwards, Mark

    2010-01-01

    Bulk electricity transmission lines are linear assets that can be very exposed to wind effects, particularly where they traverse steep topography or open coastal terrain in cyclonic regions. Interconnected nature of the lattice type towers and conductors also, present complex vulnerabilities. These relate to the direction of wind attack to the conductors and the cascading failure mechanisms in which the failure of a single tower has cascading effects on neighbouring towers. Such behaviour is exacerbated by the finely tuned nature of tower design which serves to minimize cost and reserve strength at design wind speeds. There is a clear need to better quantify the interdependent vulnerabilities of these critical infrastructure assets in the context of the severe wind hazard. This paper presents a novel methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology then involves the development of heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results, considering isolated tower loss along with three interdependent failure mechanisms to give overall likelihoods of failure.

  18. High-voltage engineering and testing

    CERN Document Server

    Ryan, Hugh M

    2013-01-01

    This 3rd edition of High Voltage Engineering Testing describes strategic developments in the field and reflects on how they can best be managed. All the key components of high voltage and distribution systems are covered including electric power networks, UHV and HV. Distribution systems including HVDC and power electronic systems are also considered.

  19. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  20. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  1. Effect of electric field in the characterization of pultruded GFRP boron-free composite insulator for the extra high voltage by the ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Hissae; Silva Junior, Edmilson Jose; Shinohara, Armando Hideki [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Xavier, Gustavo Jose Vasconcelos [CHESF, Recife, PE (Brazil); Costa, Edson Guedes [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Lott Neto, Henrique Batista Duffles Teixeira; Britto, Paulo Roberto Ranzan; Fontan, Marcio A.B. [Sistema de Transmissao do Nordeste S.A., Recife, PE (Brazil)

    2016-07-01

    Full text: The pultruded boron-free glass fiber reinforced polymer (GFRP) composite has been widely used material for the electrical insulators in the high, extra and ultra high voltage overhead lines worldwide. In terms of design, the composite insulator has a highly complex geometry and large size. Aging of materials begin as soon as the insulators start their operation due to the strong electric field, mechanical load due to the weight of conductor cables, environment, corona discharge, generation of acids, and as a result, GFRP can fail mechanically by the stress corrosion crack (SCC) and electrical breakdown known as flashover. In order to mitigate the mechanical and electrical failures, the insulators in the field are frequently monitored by visual inspection, infrared thermography, UV detection, variation of measurement of distribution of electric field variation. However, new technologies for characterization and inspection of the composite insulator in the field are required for reliable operation. Imaging characterization using ionizing radiation (X-ray or g-ray) is an interesting technique, however, it can reduce drastically breakdown voltage due to the Townsend discharge, which free electrons are accelerated by an electric field, collide with gas molecules of air, and free additional electrons resulting in an avalanche multiplication that allows an electrical conduction through the air. In this study, in order to evaluate the potential application of ionization radiation for characterization of composite insulator under electric field, testing were conducted in high voltage laboratory by applying voltages up to 640 kV and varying radiation area of the composite insulator. As a result, even though there was an occurrence of flame on Imaging Plate (IP) detector case when it was located near the phase, corona discharge, but no breakdown discharge (flashover) occurred and high quality imaging of radiography could be obtained when X-ray source was employed

  2. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    International Nuclear Information System (INIS)

    Sulaeman, M. Y.; Widita, R.

    2014-01-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation

  3. Evaluation of the effectiveness of neurofeedback in the reduction of Posttraumatic stress disorder (PTSD in a patient following high-voltage electric shock with the use of ERPs

    Directory of Open Access Journals (Sweden)

    Anna Chrapusta

    2015-09-01

    Chronic PTSD developed within the patient as a result of a high-voltage electric burn. The application of a method of therapy (neurofeedback resulted in the withdrawal of the syndrome symptoms. ERPs in a GO/NOGO task can be used to plan neurofeedback and in the assessment of functional brain changes induced by neurotherapeutic programmes. Funds Collection: Private sources.

  4. High frequency relay protection channels on super high voltage lines

    Energy Technology Data Exchange (ETDEWEB)

    Mikutskii, G V

    1964-08-01

    General aspects of high voltage transmission line design are discussed. The relationships between line voltage and length and line dimensions and power losses are explained. Electrical interference in the line is classified under three headings: interference under normal operating conditions, interference due to insulation faults, and interference due to variations in operating conditions of the high-voltage network.

  5. The anti-biofouling behavior of high voltage pulse electric field (HPEF) mediated by carbon fiber composite coating in seawater.

    Science.gov (United States)

    Feng, Tiantian; Wu, Jinyi; Chai, Ke; Yang, Pengpeng

    2018-04-25

    One of the most important research areas in the marine industry is to investigate new and effective anti-biofouling technologies. In this study, high voltage pulse electric field (HPEF) mediated by carbon fiber (CF) composite coating was utilized to prevent the fouling of bacteria, microalgae and barnacle larvae in seawater. The plate count, 2, 3, 5-triphenyl-tetrazolium chloride (TTC) reduction assay and neutral red (NR) staining and larval motility detection showed that the inactivation rates were at the highest levels, which reached 99.1%, 99.9%, 99.7%, 98.7% and 85% respectively for Pseudomonas sp., Vibrio sp., iron bacteria, Navicula sp. and the second stage nauplii of Balanus reticulatus, under the HPEF with 19 kV pulse amplitude, 23.15 kHz frequency and 0.5 duty cycle. The field-emission scanning electron microscopy (FE-SEM) of Navicula sp. revealed that the HPEF brought about the cell lysis and the cell organic matter release on the coating, which could be the mechanism of the inactivation by the HPEF. Additionally, the FE-SEM and Raman spectroscopy indicated that the HPEF hardly damaged the coating. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Analysis of Voltage Support by Electric Vehicles and Photovoltaic in a Real Danish Low Voltage Network

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Marinelli, Mattia; Juul Møller, René

    2014-01-01

    of incorporating electric vehicles (EVs) in a low voltage distribution network with high penetration of photovoltaic installations (PVs), and focuses on analysing potential voltage support functions from EVs and PVs. In addition, the paper evaluates the benefits that reactive power control may provide...

  7. Influence of Voltage on Main Characteristics of Electric Lighting Lamps

    Directory of Open Access Journals (Sweden)

    V. B. Kozlovskaya

    2009-01-01

    Full Text Available An analysis and systemization of data on influence of voltage value on main lighting engineering, electric and economic characteristics of incandescent lamps, gaseous-discharge lamps of low and high pressure have been made in the paper.Analytical and graphical dependences have been obtained that ensure to evaluate quantitative changes of corresponding lamp characteristics at voltage deviation from nominal value.

  8. Image registration algorithm for high-voltage electric power live line working robot based on binocular vision

    Science.gov (United States)

    Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping

    2017-12-01

    In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.

  9. Utilization of low- and high-voltage electric equipment at heights exceeding 1000 m above sea level

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, M.M.

    1980-01-01

    The present-day state of high- and low-voltage equipment utilization at heights exceeding 1000 m above sea level is considered with allowance for the technical requirements applicable to the equipment, as provided for in the GOST (All-Union State Standards), and for the results of scientific research studies. 12 refs.

  10. Effects of high voltage electrical stimulation on the rate of pH decline, meat quality and color stability in chilled beef carcasses

    OpenAIRE

    Mombeni, Ehsan Gharib; Mombeini, Manoochehr Gharib; Figueiredo, Lucas Chaves; Siqueira, Luciano Soares Jacintho; Dias, Debora Testoni

    2013-01-01

    Objective: To determine the effects of high voltage electrical stimulation (HVES, 800 Voltage) on rapid decreases in pH values and improvements in meat quality. Methods: A total of 50 beef carcasses were applied, divided into two groups, one as a control and another for HVES. Meat quality was evaluated based on M. longissimus dorsi by examining pH and temperature levels at 1, 2, 5, 10 and 24 h, while color stability was examined seven days after slaughter. Results: HVES decreased the pH...

  11. Capacitance-voltage analysis of electrical properties for WSe2 field effect transistors with high-k encapsulation layer

    Science.gov (United States)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho Kyun; You, Min Youl; Jin, Jun-Eon; Choi, Miri; Cho, Jiung; Kim, Gyu-Tae

    2018-02-01

    Doping effects in devices based on two-dimensional (2D) materials have been widely studied. However, detailed analysis and the mechanism of the doping effect caused by encapsulation layers has not been sufficiently explored. In this work, we present experimental studies on the n-doping effect in WSe2 field effect transistors (FETs) with a high-k encapsulation layer (Al2O3) grown by atomic layer deposition. In addition, we demonstrate the mechanism and origin of the doping effect. After encapsulation of the Al2O3 layer, the threshold voltage of the WSe2 FET negatively shifted with the increase of the on-current. The capacitance-voltage measurements of the metal insulator semiconductor (MIS) structure proved the presence of the positive fixed charges within the Al2O3 layer. The flat-band voltage of the MIS structure of Au/Al2O3/SiO2/Si was shifted toward the negative direction on account of the positive fixed charges in the Al2O3 layer. Our results clearly revealed that the fixed charges in the Al2O3 encapsulation layer modulated the Fermi energy level via the field effect. Moreover, these results possibly provide fundamental ideas and guidelines to design 2D materials FETs with high-performance and reliability.

  12. Elimination of bus voltage impact on temperature sensitive electrical parameter during turn-on transition for junction temperature estimation of high-power IGBT modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    Junction temperature is of great importance to safe operating area of IGBT modules. Various information of the IGBT operating state is reflected on electrical characteristics during turn-on transient. A unified extraction method for internal junction temperature via dynamic thermo......-sensitive electrical parameters (DTSEP) during turn-on transient is proposed. Two DTSEP, turn-on delay time (tdon) and the maximum increasing rate of collector current dic/dt(max), are combined to eliminate the bus voltage impact. Using the inherent emitter-auxiliary inductor LeE in high-power modules, the temperature......-dependent DTSEPs can be converted into a low-voltage and measurable signal. Finally, experiment results are exhibited to verify the effectiveness of proposed method....

  13. New High Voltage Interconnections with Islands in the Mediterranean Sea: Malta and Sicily. Analysis of the Effects on Renewable Energy Sources Integration and Benefits for the Electricity Market

    Directory of Open Access Journals (Sweden)

    Mariano Giuseppe Ippolito

    2018-04-01

    Full Text Available The present paper shows the benefits coming from the operation of the recent electrical high voltage (HV interconnections between Sicily, Malta and mainland Italy. These new interconnections allow zonal prices of electricity considerably lower than in the past, ensuring greater flexibility to the system and a better integration of Renewable Energy Sources (RES. After briefly illustrating the two high-voltage electrical systems (Sicily and Malta, and having provided a description of the interconnection cable with Malta and its protection devices, the authors hypothesized two modes of operation (Sicily-Malta system islanded or interconnected to the rest of Europe. For the first case (islanded some simulations are performed through the use of an electric network model realized in the Neplan® environment, and for the second case an analysis of one year real data was made. The results of the simulation, thanks to the use of a power flow tracing method, show that this new interconnection between the two islands (Sicily and Malta allows an important improvement in the integration and dispatching of the power generated by RES of the Sicilian territory, better operation of traditional Sicilian generation units, lower electricity zonal prices and a significant reduction in emissions from obsolete fuel oil thermal units located in Malta.

  14. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  15. Experimental validation of prototype high voltage bushing

    Science.gov (United States)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  16. Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-05-01

    Full Text Available The main objective of this paper was to study a bidirectional direct current to direct current converter (BDC topology with a high voltage conversion ratio for electric vehicle (EV batteries connected to a dc-microgrid system. In this study, an unregulated level converter (ULC cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC is introduced to achieve a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V. In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high voltage step-down conversion ratio (385 V to 48 V. The features, operation principles, steady-state analysis, simulation and experimental results are made to verify the performance of the studied novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be achieved, respectively, in charge and discharge states.

  17. High voltage load resistor array

    Science.gov (United States)

    Lehmann, Monty Ray [Smithfield, VA

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  18. High-voltage test and measuring techniques

    CERN Document Server

    Hauschild, Wolfgang

    2014-01-01

    It is the intent of this book to combine high-voltage (HV) engineering with HV testing technique and HV measuring technique. Based on long-term experience gained by the authors as lecturer and researcher as well as member in international organizations, such as IEC and CIGRE, the book will reflect the state of the art as well as the future trends in testing and diagnostics of HV equipment to ensure a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.

  19. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    Science.gov (United States)

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  20. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    Energy Technology Data Exchange (ETDEWEB)

    VanGordon, James A.; Kovaleski, Scott D., E-mail: kovaleskis@missouri.edu; Norgard, Peter; Gall, Brady B. [Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Dale, Gregory E. [High Power Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  1. Compact, Lightweight, High Voltage Propellant Isolators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TA&T, Inc. proposes an enabling fabrication process for high voltage isolators required in high power solar electric and nuclear electric propulsion (SEP and...

  2. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  3. High voltage distributions in RPCs

    International Nuclear Information System (INIS)

    Inoue, Y.; Muranishi, Y.; Nakamura, M.; Nakano, E.; Takahashi, T.; Teramoto, Y.

    1996-01-01

    High voltage distributions on the inner surfaces of RPCs electrodes were calculated by using a two-dimensional resistor network model. The calculated result shows that the surface resistivity of the electrodes should be high, compared to their volume resistivity, to get a uniform high voltage over the surface. Our model predicts that the rate capabilities of RPCs should be inversely proportional to the thickness of the electrodes if the ratio of surface-to-volume resistivity is low. (orig.)

  4. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  5. Various mechanisms and clinical phenotypes in electrical short circuits of high-voltage devices: report of four cases and review of the literature.

    Science.gov (United States)

    Tsurugi, Takuo; Matsui, Shogo; Nakajima, Hiroshi; Nishii, Nobuhiro; Honda, Toshihiro; Kaneko, Yoshiaki

    2015-06-01

    An electrical short circuit is a rare complication in a high-voltage implantable cardioverter-defibrillator (ICD). However, the inability of an ICD to deliver appropriate shock therapy can be life-threatening. During the last 2 years, four cases of serious complications related to an electrical short circuit have been reported in Japan. A spark due to an electrical short circuit resulted in the failure of an ICD shock to terminate ventricular tachycardia and total damage to the ICD generator in three of four cases. Two of the four patients died from an electrical short circuit between the right ventricle and superior vena cava (SVC) leads. The others had audible sounds from the ICD generator site and were diagnosed with a lead-to-can abrasion, which was manifested by the arc mark on the surface of the can. It is still difficult to predict the occurrence of an electrical short circuit in current ICD systems. To reduce the probability of an electrical short circuit, we suggest the following: (i) avoid lead stress at ICD implantation, (ii) select a single-coil lead instead of a dual-coil lead, or (iii) use a unique algorithm which automatically disconnect can or SVC lead from shock deliver circuit when excessive current was detected. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  6. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.

    Science.gov (United States)

    Hartveit, Espen; Veruki, Margaret Lin

    2010-03-15

    Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. High voltage switches having one or more floating conductor layers

    Science.gov (United States)

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  8. The peculiarities of spectral manifestations of high-voltage electric discharge in different phase states of ion systems.

    Science.gov (United States)

    Gafurov, M M; Aliev, A R; Ataev, M B; Rabadanov, K Sh

    2013-10-01

    The effects of high-voltage pulsed discharge (HVPD activation) on vibrational spectra of ion salt systems have been studied. The peculiarities of spectral display of HVPD in ion melts and aqueous solutions of electrolytes, in ion-conducting phases of crystalline and glassy salt systems have been investigated. After HVPD a salt system is in non-equilibrium activated state. In the activated state of a salt system, the relaxation time of the vibrational excited states of molecular ions is shorter than in the equilibrium state if the vibrational relaxation rate increases with temperature in the system. For those systems for which the relaxation rate decreases at elevated temperatures, the relaxation time of the vibrational excited states of molecular ions is longer than in the equilibrium state. HVPD activation of a salt system can change the configuration of the electron shell of molecular ions. Therefore, the lifetime values of activated state of salt systems are abnormally large. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Optical sensors for the measurement of electric current and voltage

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W R; Hulshof, H J.M.; Laurensse, I J; van der Wey, A H

    1987-01-01

    Optical sensors for the measurement of electrical current and voltage were developed for application in electric power systems. The current sensor, based on the Faraday effect in a monomode glass fiber, and the voltage sensor, based on the transverse Pockels effect in a crystal, are demonstrated in wide-band (10 MHz) interference-free measurements of pulsed currents and impulse voltages.

  10. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  11. Conducted EMI Prediction and Mitigation Strategy Based on Transfer Function for a High-Low Voltage DC-DC Converter in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2018-04-01

    Full Text Available The high dv/dt and di/dt outputs from power devices in a high-low voltage DC-DC converter on electric vehicles (EVs can always introduce the unwanted conducted electromagnetic interference (EMI emissions. A conducted EMI prediction and mitigation strategy that is based on transfer function for the high-low voltage DC-DC converter in EVs are proposed. A complete test for the DC-DC converter is conducted to obtain the conducted EMI from DC power cables in the frequency band of 150 kHz-108 MHz. The equivalent circuit with high-frequency parasitic parameters of the DC-DC converter is built`1 based on the measurement results to acquire the characteristics of the conducted EMI of the DC power cables. The common mode (CM and differential mode (DM propagation coupling paths are determined, and the corresponding transfer functions of the DM interference and CM interference are established. The simulation results of the conducted EMI can be obtained by software Matlab and Computer Simulation Technology (CST. By analyzing the transfer functions and the simulation results, the dominated interference is the CM interference, which is the main factor of the conducted EMI. A mitigation strategy for the design of the CM interference filter based on the dominated CM interference is proposed. Finally, the mitigation strategy of the conducted EMI is verified by performing the conducted voltage experiment. From the experiment results, the conducted voltage of the DC power cables is decreased, respectively, by 58 dBμV, 55 dBμV, 65 dBμV, 53 dBμV, and 54 dBμV at frequency 200 kHz, 400 kHz, 600 kHz, 1.4 MHz, and 50 MHz. The conduced voltage in the frequency band of 150 kHz–108 MHz can be mitigated by adding the CM interference filters, and the values are lower than the limit level-3 of CISPR25 standard (GB/T 18655-2010.

  12. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  13. Analysis of the Mechanisms Determining the Thermal and Electrical Properties of Epoxy Nanocomposites for High Voltage Applications

    NARCIS (Netherlands)

    Tsekmes, I.A.

    2016-01-01

    The addition of microsized fillers to polymers, in order to tailor their properties, has been extensively used in many industrial applications since the 1960s. The same approach applies to the field of electrical insulation. Epoxy resin is a widely used polymer in the electrical power sector, but it

  14. Evaluation of the effectiveness of neurofeedback in the reduction of Posttraumatic stress disorder (PTSD in a patient following high-voltage electric shock with the use of ERPs

    Directory of Open Access Journals (Sweden)

    Anna Chrapusta

    2015-09-01

    Full Text Available Background. The aim of our research was an evaluation of the effectiveness of neurofeedback in reducing the symptoms of Post-trauma stress disorder (PTSD, which had developed as a result of a high-voltage electric burn to the head. Quantitative EEG (QEEG and Event related potentials (ERPs were utilised in the evaluation. Case study. A 21-year-old patient, experienced 4[sup]th[/sup] degree burns to his head as a result of a high-voltage electric burn. The patient was repeatedly operated on and despite the severity of the injuries was to recover. However the patient complained of flashbacks, difficulties with sleeping as well as an inability to continue work in his given profession. Specialist tests were to show the presence within him of PTSD. As a result of which the patient was provided with neurofeedback therapy. The effectiveness of this therapy in the reduction (eradication of the symptoms of PTSD were evaluated through the utilisation of qantitative eeg (Qeeg and event related potentials (ERPs. Results. It was found that in the first examination that ERPs display the most significant deviations from the reference in the two components: (1 the one component is generated within the cingulate cortex. The pattern of its deviation from the norms is similar to that found in a group of OCD patients. In contrast to healthy subjects the component repeats itself twice; (2 the second component is generated in the medial prefrontal cortex. Its pattern (neuromarker is similar to that found in PTSD patients. There is a delay in the late part of the component, which probably reflects the flashbacks. In the second examination, after neurofeedback training, the ERPs were similar to the norm. The patient returned to work. Conclusions. Chronic PTSD developed within the patient as a result of a high-voltage electric burn. The application of a method of therapy (neurofeedback resulted in the withdrawal of the syndrome symptoms. ERPs in a GO/NOGO task can be

  15. Evaluation of the effectiveness of neurofeedback in the reduction of Posttraumatic stress disorder (PTSD) in a patient following high-voltage electric shock with the use of ERPs.

    Science.gov (United States)

    Chrapusta, Anna; Pąchalska, Maria; Wilk-Frańczuk, Magdalena; Starczyńska, Małgorzata; Kropotov, Juri D

    2015-01-01

    The aim of our research was an evaluation of the effectiveness of neurofeedback in reducing the symptoms of Post-trauma stress disorder (PTSD), which had developed as a result of a high-voltage electric burn to the head. Quantitative EEG (QEEG) and Event related potentials (ERPs) were utilised in the evaluation. A 21-year-old patient, experienced 4(th) degree burns to his head as a result of a high-voltage electric burn. The patient was repeatedly operated on and despite the severity of the injuries was to recover. However the patient complained of flashbacks, difficulties with sleeping as well as an inability to continue work in his given profession. Specialist tests were to show the presence within him of PTSD. As a result of which the patient was provided with neurofeedback therapy. The effectiveness of this therapy in the reduction (eradication) of the symptoms of PTSD were evaluated through the utilisation of qantitative eeg (Qeeg) and event related potentials (ERPs). It was found that in the first examination that ERPs display the most significant deviations from the reference in the two components: (1) the one component is generated within the cingulate cortex. The pattern of its deviation from the norms is similar to that found in a group of OCD patients. In contrast to healthy subjects the component repeats itself twice; (2) the second component is generated in the medial prefrontal cortex. Its pattern (neuromarker) is similar to that found in PTSD patients. There is a delay in the late part of the component, which probably reflects the flashbacks. In the second examination, after neurofeedback training, the ERPs were similar to the norm. The patient returned to work. Chronic PTSD developed within the patient as a result of a high-voltage electric burn. The application of a method of therapy (neurofeedback) resulted in the withdrawal of the syndrome symptoms. ERPs in a GO/NOGO task can be used to plan neurofeedback and in the assessment of functional brain

  16. The high voltage homopolar generator

    Science.gov (United States)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  17. High voltage power network construction

    CERN Document Server

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  18. The principle of elaboration of the relay protection against short circuits between the closely placed phases of high voltage electrical line

    Directory of Open Access Journals (Sweden)

    Kiorsak M.

    2015-12-01

    Full Text Available The article is devoted to the elaboration of the principle of relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation, based on the six phase’s symmetrical components. It is shown that the unsymmetrical short circuits between the closely placed phases are characterized by appearance of zero and tertiary sequences of symmetrical components. This fact can be used to choose them for relay protection. The electrical basic circuits and formulas for calculation of the passive parameters of zero and tertiary filters of currents (voltages are done. It is presented the structural-functional basic circuit scheme for relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation.

  19. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  20. High-voltage polymeric insulated cables

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A

    1987-01-01

    Reviews developments in high-voltage (here defined as 25 kV, 66 kV and 132 kV) polymeric insulated cables in the UK over the period 1979-1986, with particular reference to the experience of the Eastern Electricity Board. Outlines the background to the adoption of XPLE-insulated solid cable, and the design, testing, terminations, jointing and costs of 25 kV, 66 kV and 132 kV cables.

  1. Invariant protection of high-voltage electric motors of technological complexes at industrial enterprises at partial single-phase ground faults

    Science.gov (United States)

    Abramovich, B. N.; Sychev, Yu A.; Pelenev, D. N.

    2018-03-01

    Development results of invariant protection of high-voltage motors at incomplete single-phase ground faults are observed in the article. It is established that current protections have low action selectivity because of an inadmissible decrease in entrance signals during the shirt circuit occurrence in the place of transient resistance. The structural functional scheme and an algorithm of protective actions where correction of automatic zero sequence currents signals of the protected accessions implemented according to the level of incompleteness of ground faults are developed. It is revealed that automatic correction of zero sequence currents allows one to provide the invariance of sensitivity factor for protection under the variation conditions of a transient resistance in the place of damage. Application of invariant protection allows one to minimize damages in 6-10 kV electrical installations of industrial enterprises for a cause of infringement of consumers’ power supply and their system breakdown due to timely localization of emergency of ground faults modes.

  2. Impact Assessment of Electric Boilers in Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Sinha, Rakesh; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2018-01-01

    Flexibility from the electricity supply, with high share of intermittent energy sources such as wind and solar, has been offered by combined heat and power (CHP) generation in Denmark for decades. There could be periods where the fuel prices are higher than the electricity prices (even -ve), during...... high wind production and is idle for electric boilers (EBs) operation. In the future, using EBs, excess electricity from wind turbines can be effectively utilized for heat production, and still meet the thermal demand by decreasing CHP production. Thus, there is need for demand side flexibility...... control incorporated based on grid voltages, restricts the operation of EBs but ensures operation of the distribution system within limits still trying to keep the thermal comfort in the houses....

  3. High-voltage CMOS detectors

    International Nuclear Information System (INIS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-01-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented. - Highlights: • High-voltage CMOS sensors will be used in Mu3e experiment at PSI (Switzerland). • HVCMOS sensors are considered as an option for ATLAS (LHC/CERN) and CLIC (CERN). • Efficiency of more than 95% (99%) has been measured with (un-)irradiated chips. • The time resolution measured in the beam tests is nearly 100 ns. • We plan to improve time resolution and efficiency by using high-resistive substrate.

  4. High-voltage CMOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ehrler, F., E-mail: felix.ehrler@student.kit.edu; Blanco, R.; Leys, R.; Perić, I.

    2016-07-11

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented. - Highlights: • High-voltage CMOS sensors will be used in Mu3e experiment at PSI (Switzerland). • HVCMOS sensors are considered as an option for ATLAS (LHC/CERN) and CLIC (CERN). • Efficiency of more than 95% (99%) has been measured with (un-)irradiated chips. • The time resolution measured in the beam tests is nearly 100 ns. • We plan to improve time resolution and efficiency by using high-resistive substrate.

  5. Advances in high voltage engineering

    CERN Document Server

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  6. Temporary over voltages in the high voltage networks

    International Nuclear Information System (INIS)

    Vukelja, Petar; Naumov, Radomir; Mrvic, Jovan; Minovski, Risto

    2001-01-01

    The paper treats the temporary over voltages that may arise in the high voltage networks as a result of: ground faults, loss of load, loss of one or two phases and switching operation. Based on the analysis, the measures for their limitation are proposed. (Original)

  7. Voltage generators of high voltage high power accelerators

    International Nuclear Information System (INIS)

    Svinin, M.P.

    1981-01-01

    High voltage electron accelerators are widely used in modern radiation installations for industrial purposes. In the near future further increasing of their power may be effected, which enables to raise the efficiency of the radiation processes known and to master new power-consuming production in industry. Improvement of HV generators by increasing their power and efficiency is one of many scientific and engineering aspects the successful solution of which provides further development of these accelerators and their technical parameters. The subject is discussed in detail. (author)

  8. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants......, better wind conditions at off-shore and the general demand to put them out of sight have all contributed to the installation of large wind power plants in off-shore condition. However, moving wind power plants far out in the off-shore comes with many associated problems. One of the main challenges...... is the transmission of power over long distance. Historically, the power transmission from off-shore wind power plants has been done via HVAC submarine cables. This provides a simple solution, but AC cables cannot be arbitrarily long. It is shown in the report that major issues with HVAC cable transmission system...

  9. High voltage fast switches for nuclear applications

    International Nuclear Information System (INIS)

    Chatroux, D.; Lausenaz, Y.; Villard, J.F.; Lafore, D.

    1999-01-01

    SILVA process consists in a selective ionization of the 235 uranium isotope, using laser beams generated by dye lasers pumped by copper vapour laser (C.V.L.). SILVA involves power electronic for 3 power supplies: - copper vapour laser power supply, - extraction power supply to generate the electric field in the vapour, and - electron beam power supply for vapour generation. This article reviews the main switches that are proposed on the market or are on development and that could be used in SILVA power supplies. The SILVA technical requirements are: high power, high voltage and very short pulses (200 ns width). (A.C.)

  10. Electric vehicles integration within low voltage electricity networks & possibilities for distribution energy loss reduction

    NARCIS (Netherlands)

    Lampropoulos, I.; Veldman, E.; Kling, W.L.; Gibescu, M.; Slootweg, J.G.

    2010-01-01

    With the prospect of an increasing number of electric vehicles (EVs) on the road, domestic charging will be the most obvious way to recharge the vehicles’ batteries. However, this can have adverse impacts to low voltage (LV) distribution grids such as high current demand, increased 3-phase load

  11. Precision High-Voltage DC Dividers and Their Calibration

    Czech Academy of Sciences Publication Activity Database

    Dragounová, Naděžda

    2005-01-01

    Roč. 54, č. 5 (2005), s. 1911-1915 ISSN 0018-9456 R&D Projects: GA AV ČR KSK1048102; GA ČR GA202/03/0889 Keywords : calibration * dc voltage * high voltage (HV) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.665, year: 2005

  12. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  13. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  14. Recycling ``in situ`` of dielectric oil of electric transformer of medium and high voltage; Reciclaje ``in situ`` y ``en carga`` del aceite dielectrico de los transformadores electricos de media y alta tension

    Energy Technology Data Exchange (ETDEWEB)

    Solis, A.

    1997-06-01

    The author describes the process followed by the company to control the quality of every type of oil from electric transformer of medium and high voltage polluted because of its use. The pollutants contained in the dielectric liquid are eliminated or minimize through the following treatments: conditioning-reconditioning-regeneration. (Author) 6 refs.

  15. Low voltage initiation of damaging arcs between electrical contacts

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1975-07-01

    Metallic arcs were found to precede the firm contacting of electrical contacts which were closed without bounce. When the open-circuit voltages were below the ionization potential, the initiation of these arcs was found to depend on the presence of asperities on the surfaces and on asperity contracting, melting, and pinching off by magnetic forces. The arc is thought to be initiated inductively when the molten metallic asperity contact is pinched off, and the electrode damage is similar to that produced by the arcing of opening contacts. Arcing could not be produced for exceptionally smooth surfaces, or, for rough surfaces when the open-circuit potential was below the melting voltages of the electrode metals. In order to prevent damage to contact surfaces by melting or arcing, it is suggested that test potentials be limited to below the melting voltages, that the current be limited, the test circuits be designed to prevent inductively generated high voltage transients, and the contact surfaces be very smooth. In order to facilitate arc initiation in arc welding applications, it is suggested that the surfaces of electrodes and work pieces be roughened. (U.S.)

  16. Contribution to high voltage matrix switches reliability

    International Nuclear Information System (INIS)

    Lausenaz, Yvan

    2000-01-01

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr

  17. High voltage capacitor design and the determination of solid dielectric voltage breakdown

    International Nuclear Information System (INIS)

    Hutapea, S.

    1976-01-01

    The value of the external field intensity serves as an electrical insulating material and is a physical characteristic of the substance. Capacitor discharge in the dielectric medium are experimentally investigated. The high voltage power supply and other instrument needed are briefly discussed. Capacitors with working voltage of 30.000 volt and the plastic being used for dielectrics in the capacitors are also discussed. (author)

  18. Electrical and optical investigations on the low voltage vacuum arc

    International Nuclear Information System (INIS)

    Braic, M.; Braic, V.; Pavelescu, G.; Balaceanu, M.; Pavelescu, D.; Dumitrescu, G.; Gherendi, F.

    2002-01-01

    Preliminary investigations of a low voltage circuit breaker, adapted from a real industrial device, were carried out by electrical and optical methods. Electrical, parameters were measured in the high current arc period and in zero current moment (C.Z) and corroborated with the arc plasma spectroscopic investigations. For the first time in vacuum arc diagnostics, the paper presents results based on single shot time resolved emission spectroscopy around C.Z. The short-circuit current was produced in a special high power installation in order to reproduce exactly the short-circuit regimes developing in low voltage distribution networks. A stainless steel vacuum chamber with classical Cu-Cr electrodes was used. Tests were performed for different current values in the range 3 - 20 kA rms , the voltages being varied between 200 and 1000 V ac . Interruption processes in the different arc regimes (from the diffuse arc mode to the constricted column mode) were analyzed. The success of the arc interruption was analyzed in terms of electric arc energy achieved in the first current halfperiod. The results obtained were corroborated with arc plasma spectroscopic investigations. The emission spectroscopy setup, using an Acton spectrograph and an intensified CCD camera, allowed the spatial and time-resolved investigation of spectra emitted by the vacuum arc plasma. The first truly time-resolved spectroscopic measurements on a single half-period was proven to be a good method to investigate the vacuum arc. Using single shot time resolved spectroscopy around zero current on partial unsuccessful interruption we concluded that the Cu ions, more that Cr ions were responsible for the arc reignition. The financial support for this work comes from NATO-STI SfP /974083 and CORINT-Romania projects. (authors)

  19. [High voltage accidents, characteristics and treatment].

    Science.gov (United States)

    Hülsbergen-Krüger, S; Pitzler, D; Partecke, B D

    1995-04-01

    High-voltage injuries cause localised entrance and exit burns, extensive arc, flame and flash burns and, even more dangerous, necrosis of the underlying muscles on the pathway of the current through the body. Therefore it should be recognized that the ensuing disease is more like a crush injury than a thermal burn. The extent of injury cannot be judged by the percentage and depth of the skin burn. Diagnostic fasciotomies, radical debridement, and in many cases early amputation are necessary to prevent life-threatening complications. Over a period of 10 years, 43 patients with high-voltage injuries have been treated at the Hamburg Burn Center, 36 of them in primary care. Common causes of injury were accidents in railway areas (28%), using portable aluminium ladders near overhead power lines (9.3%), and working on electrical equipment (30.2%). Six of the primary care patients died (16.6%), and 34.9% had an amputation of one or more extremities. Nearly all patients underwent several debridement and split-skin graft procedures. In 30% of cases additional free and pedicled flaps were needed to cover soft tissue defects. Ten patients (23.3%) sustained fractures and other injuries from falls, seven (16.3%) of them severe polytrauma. Initial cardiac arrhythmics were diagnosed in 16.6% of the primarily treated patients. Thirty per cent of our patients had neurological complications such as peripheral paresis, tetraplegia and paraplegia, 20.7% of these caused solely by the electric current.

  20. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    International Nuclear Information System (INIS)

    Lotfi, E; Rezania, H; Arghavaninia, B; Yarmohammadi, M

    2016-01-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength. (paper)

  1. Phase-wise enhanced voltage support from electric vehicles in a Danish low-voltage distribution grid

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    High deployment of electric vehicles (EVs) imposes great challenges for the distribution grids, especially in unbalanced systems with notable voltage variations which detrimentally affect security of supply. On the other hand, with development of Vehicle-to-Grid technology, EVs may be able...... to provide numerous services for grid support, e.g., voltage control. Implemented electronic equipment will allow them to exchange reactive power for autonomous voltage support without communicating with the distribution system operator or influencing the available active power for primary transportation...

  2. Determination of the threshold-energy surface for copper using in-situ electrical-resistivity measurements in the high-voltage electron microscope

    International Nuclear Information System (INIS)

    King, W.E.; Merkle, K.L.; Meshii, M.

    1981-01-01

    A detailed study of the anisotropy of the threshold energy for Frenkel-pair production in copper was carried out experimentally, using in-situ electrical-resistivity measurements in the high-voltage electron microscope. These electrical-resistivity measurements, which are sensitive to small changes in point-defect concentration, were used to determine the damage or defect production rate. Damage-rate measurements in copper single crystals were carried out for approx.40 incident electron-beam directions and six electron energies from 0.4 to 1.1 MeV. The total cross section for Frenkel-pair production is proportional to the measured damage rate and can be theoretically calculated if the form of the threshold-energy surface is known. Trial threshold-energy surfaces were systematically altered until a ''best fit'' of the calculated to the measured total cross sections for Frenkel-pair production was obtained. The average threshold energy of this surface is 28.5 eV. The minimum threshold energy is 18 +- 2 eV and is located near . A ring of very high threshold energy (>50 eV) surrounds the direction. A damage function for single-defect production was derived from this surface and was applied to defect-production calculations at higher recoil energies. This function rises rather sharply from a value of zero at 17 eV to 0.8 at 42 eV. It has the value of 0.5 at 24.5 eV. Above 30 eV the slope of the curve begins to decrease, reflecting the presence of the high-energy regions of the threshold-energy surface. Both topographical and quantitative comparisons of the present surface with those in the literature were presented. Based on a chi 2 goodness-of-fit test, the present surface was found to predict the experimentally observed total cross sections for Frenkel-pair production significantly better than the other available surfaces. Also, the goodness of fit varied substantially less with energy and direction for the present surface

  3. Improvement of Local Voltage in Feeders with Photovoltaic using Electric Vehicles

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guangya; Fawzy, Y. T.

    2013-01-01

    In low-voltage (LV) feeders with high penetration of photovoltaic (PV), a major issue to be solved is voltage rise due to the active power injection. If no measures are taken, this may lead to generation’s interruptions and to the malfunctioning of domestic appliances due to non-standard voltage...... profiles. This paper proposes a storage strategy to alleviate voltage rise in feeders with PV, using coordinated electric vehicle (EV) load as the storage solution. The voltage support strategy is easy to implement practically and it is demonstrated on a test feeder emulating a household with roof...

  4. Recycling potential for low voltage and high voltage high rupturing capacity fuse links.

    Science.gov (United States)

    Psomopoulos, Constantinos S; Barkas, Dimitrios A; Kaminaris, Stavros D; Ioannidis, George C; Karagiannopoulos, Panagiotis

    2017-12-01

    Low voltage and high voltage high-rupturing-capacity fuse links are used in LV and HV installations respectively, protecting mainly the LV and HV electricity distribution and transportation networks. The Waste Electrical and Electronic Equipment Directive (2002/96/EC) for "Waste of electrical and electronic equipment" is the main related legislation and as it concerns electrical and electronic equipment, it includes electric fuses. Although, the fuse links consist of recyclable materials, only small scale actions have been implemented for their recycling around Europe. This work presents the possibilities for material recovery from this specialized industrial waste for which there are only limited volume data. Furthermore, in order to present the huge possibilities and environmental benefits, it presents the potential for recycling of HRC fuses used by the Public Power Corporation of Greece, which is the major consumer for the country, but one of the smallest ones in Europe and globally, emphasizing in this way in the issue. According to the obtained results, fuse recycling could contribute to the effort for minimize the impacts on the environment through materials recovery and reduction of the wastes' volume disposed of in landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of high-voltage electrical stimulation on the albumin and histamine serum concentrations, edema, and pain in acute joint inflammation of rats

    Directory of Open Access Journals (Sweden)

    Maria C. Sandoval

    2015-04-01

    Full Text Available BACKGROUND: The mechanism by which high-voltage electrical stimulation (HVPC acts on edema reduction is unknown. OBJECTIVE: To assess the effect of HVPC with negative polarity (- applied to the ankle of rats with acute joint inflammation. METHOD: Sixty-four rats were divided into four groups (n=16: inflamed+HVPC(-, 0.03 mL application of ι-carrageenan (3% to the tibiotarsal joint plus HVPC(-; inflamed+HVPC placebo, carrageenan application and HVPC placebo; normal+HVPC(-, HVPC application(-; and normal control, no intervention. The HVPC(- 100 Hz at a submotor level was applied daily for 45 min on three consecutive days. The variables were pain, hind-foot volume, and serum histamine and albumin assessed before and during the 48 hours following inflammation. The variables were compared using the t test, one-way ANOVA, nested ANOVA for repeated measures, and the post hoc Bonferroni test. Analysis of covariance was applied to adjust the effects of HVPC(- by measurements of pain, inflammation, albumin, and histamine at 24 h, and the final weight was compared to the other groups. The significance level was set at p0.05. Albumin was reduced in the groups that received the intervention, but there was no differences between them. There was only a 24 hour increase in histamine with the normal+HVPC(- (p=0.0001 and inflamed+HVPC placebo groups (p=0.01 compared to the normal control group. CONCLUSIONS: The results of the present study suggest that HVPC(- with the parameters employed did not reduce pain or edema and did not change serum albumin or histamine levels,, which indicates the inability of this resource to have a positive effect when treating treat acute joint inflammation.

  6. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  7. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  8. Study of electric field distorted by space charges under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  9. Enhanced Local Grid Voltage Support Method for High Penetration of Distributed Generators

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Rodriguez, Pedro

    2011-01-01

    Grid voltage rise and thermal loading of network components are the most remarkable barriers to allow high number of distributed generator (DG) connections on the medium voltage (MV) and low voltage (LV) electricity networks. The other barriers such as grid power quality (harmonics, voltage...

  10. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.

    Science.gov (United States)

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi

    2013-09-15

      One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.

  11. Non-isolated DC-AC converter with high voltage gain for autonomous systems of electric power; Conversor CC-CA nao isolado com alto ganho de tensao para aplicacao em sistemas autonomos de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, George Cajazeiras [Centro Federal de Educacao Tecnologica do Ceara (CEFET/CE), Fortaleza, CE (Brazil); Torrico-Bascope, Rene P. [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-PET), PE (Brazil)

    2008-07-01

    A non-isolated DC-AC converter with high voltage gain with two output sinusoidal voltage - 110 V and 220 V - and frequency 60 Hz for application in autonomous systems of electric power is proposed in this work. This topology consists of a boost converter with high voltage gain, based on three-state switching cell combined with a double half bridge inverter. This configuration type the size and the cost are reduced and the efficiency is gotten better, due to the reduced number of switches. The converters that compose this topology operate with high frequency, reducing the volume of the magnetic materials. can be mention as important characteristics: the voltage stress across the switches of the boost converter are low, due they be naturally clamped by one output filter capacitor, which allows the utilization of switches with lower conduction resistances, and the waveforms of the output voltage of the double half bridge inverter supplies for the load it is sinusoidal and it possesses low harmonic content. (author)

  12. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  13. Streamer model for high voltage water switches

    International Nuclear Information System (INIS)

    Sazama, F.J.; Kenyon, V.L. III

    1979-01-01

    An electrical switch model for high voltage water switches has been developed which predicts streamer-switching effects that correlate well with water-switch data from Casino over the past four years and with switch data from recent Aurora/AMP experiments. Preclosure rounding and postclosure resistive damping of pulseforming line voltage waveforms are explained in terms of spatially-extensive, capacitive-coupling of the conducting streamers as they propagate across the gap and in terms of time-dependent streamer resistance and inductance. The arc resistance of the Casino water switch and of a gas switch under test on Casino was determined by computer fit to be 0.5 +- 0.1 ohms and 0.3 +- 0.06 ohms respectively, during the time of peak current in the power pulse. Energy lost in the water switch during the first pulse is 18% of that stored in the pulseforming line while similar energy lost in the gas switch is 11%. The model is described, computer transient analyses are compared with observed water and gas switch data and the results - switch resistance, inductance and energy loss during the primary power pulse - are presented

  14. Determining the mode of high voltage breakdowns in vacuum devices

    International Nuclear Information System (INIS)

    Miller, H.C.; Furno, E.J.; Sturtz, J.P.

    1980-01-01

    Devices were constructed which were essentially vacuum diodes equipped with windows allowing observation of high voltage breakdowns. The waveform of the applied voltage was photographed, and the x-ray output was monitored to investigate electrical breakdown in these vacuum diodes. Results indicate that breakdowns may be divided into two types: (1) vacuum (interelectrode) breakdown - characterized by a diffuse moderately bright discharge, a relative slow and smooth voltage collapse, and a large burst of x-rays, and (2) surface (insulator) flashover - characterized by a bright discharge with a very bright filamentary core, a relatively fast and noisy voltage collapse and no x-ray burst. Useful information concerning the type of breakdown in a vacuum device can be obtained by monitoring the voltage (current) waveform and the x-ray output

  15. High-voltage pulse generator

    International Nuclear Information System (INIS)

    Roche, M.

    1991-01-01

    This generator is composed of elementary impulsion generators connected in series. Each of them have -storage capacities, and switchs. The closure of switch causes an accumulator discharge. -control means of these switches are electrically independent and forecast to switch on by pulses in the same time -loading means of storage means have a very low enough electric dependence not to induce a loss of power at the exit of the generator. Applications to particle accelerators [fr

  16. Time isolation high-voltage impulse generator

    International Nuclear Information System (INIS)

    Chodorow, A.M.

    1975-01-01

    Lewis' high-voltage impulse generator is analyzed in greater detail, demonstrating that voltage between adjacent nodes can be equalized by proper selection of parasitic impedances. This permits improved TEM mode propagation to a matched load, with more faithful source waveform preservation

  17. Integration of Electric Vehicles in Low Voltage Danish Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Thøgersen, Paul; Møller, Jan

    2012-01-01

    Electric Vehicles (EVs) are considered as one of the important components of the future intelligent grids. Their role as energy storages in the electricity grid could provide local sustainable solutions to support more renewable energy. In order to estimate the extent of interaction of EVs...... in the electricity grid operation, a careful examination in the local electricity system is essential. This paper investigates the degree of EV penetration and its key influence on the low voltage distribution grids. Three detailed models of residential grids in Denmark are considered as test cases in this study...... it is shown that there is enough head-space on the transformer capacity which can be used to charge many EVs during a day. The overall transformer capability of handling EV loads varies between 6-40% for peak and minimum demand hours, which is dependent on the robustness of the grids. The voltage drops...

  18. Optically triggered high voltage switch network and method for switching a high voltage

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  19. Optically triggered high voltage switch network and method for switching a high voltage

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  20. High voltage investigations for ITER coils

    International Nuclear Information System (INIS)

    Fink, S.; Fietz, W.H.

    2006-01-01

    The superconducting ITER magnets will be excited with high voltage during operation and fast discharge. Because the coils are complex systems the internal voltage distribution can differ to a large extent from the ideal linear voltage distribution. In case of fast excitations internal voltages between conductor and radial plate of a TF coil can be even higher than the terminal voltage of 3.5 kV to ground which appears during a fast discharge without a fault. Hence the determination of the transient voltage distribution is important for a proper insulation co-ordination and will provide a necessary basis for the verification of the individual insulation design and the choice of test voltages and waveforms. Especially the extent of internal overvoltages in case of failures, e. g. malfunction of discharge units and / or arcing is of special interest. Transient calculations for the ITER TF coil system have been performed for fast discharge and fault scenarios to define test voltages for ITER TF. The conductor and radial plate insulation of the ITER TF Model Coil were exposed at room temperature to test voltages derived from the results from these calculations. Breakdown appeared during the highest AC voltage step. A fault scenario for the TF fast discharge system is presented where one fault triggers a second fault, leading to considerable voltage stress. In addition a FEM model of Poloidal Field Coil 3 for the determination of the parameters of a detailed network model is presented in order to prepare detailed investigations of the transient voltage behaviour of the PF coils. (author)

  1. Stakeholder involvement in other sectors. High Voltage Electricity Transmission. Case study: CO_2 capture and storage. Common misconceptions on stakeholder involvement - Reviewing deployment of RES

    International Nuclear Information System (INIS)

    Wolsink, Maarten; Komendantova, Nadejda; Kalaydjian, Francois

    2017-01-01

    Session 7 featured several speakers with expertise outside of the nuclear field. High-voltage electricity transmission and carbon capture and storage projects were presented by experts who study and advise on stakeholder involvement in such activities. The session chair provided an overview of stakeholder involvement fundamentals as applied to renewable energy projects. Though the presentations were on non-nuclear projects, the principles presented and discussed were clearly applicable in nuclear contexts as well. Mr Wolsink of University of Amsterdam re-framed the topic of the power supply system as a 'socio-technical system'. He identified three types or levels of societal acceptance for energy innovation: socio-political acceptance, market acceptance and community acceptance. This distinction highlights the different nature of questions, issues, set of actors and challenges that arise at different points or forums around energy infrastructure projects and why general favorability towards a technology does not translate into support of its local implementation. Societal acceptance probably cannot be acquired without meaningful involvement. Arnstein's 'ladder of citizen participation' was referenced by two session speakers. Mr Wolsink explained that inexperienced organisations may target 'consultation', thinking that this is real participation. However, consultation is a relatively low level of involvement which consists of gathering information or views, without promoting two-way dialogue (engagement) or committing to actual influence and indeed some degree of citizen power. He advised that simple consultation should be avoided unless the organisation finds that such stakeholder or public input is essential to the decision and intends to give it due account. The Barendrecht case on carbon capture and storage, as presented by Mr Kalaydjian of IFP Energies Nouvelles, illustrates the danger in overly restricting or compartmentalising stakeholder involvement. Ms

  2. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  3. Intense neutron source: high-voltage power supply specifications

    International Nuclear Information System (INIS)

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  4. Current voltage characteristics of composite superconductors with high contact resistance

    International Nuclear Information System (INIS)

    Akhmetov, A.A.; Baev, V.P.

    1984-01-01

    An experimental study has been made of current-voltage characteristics of composite superconductors with contact resistance between superconducting filaments and normal metal with high electrical conductivity. It is shown that stable resistive states exist in such conductors over a wide range of currents. The presence of resistive states is interpreted in terms of the resistive domain concept. The minimum and maximum currents of resistive states are found to be dependent on the electrical resistance of normal metal and magnetic field. (author)

  5. High voltage traction power supply; Ein- und Mehrspannungssysteme in der Bahnenergieversorgung mit hohen Spannungen

    Energy Technology Data Exchange (ETDEWEB)

    Borchard, Ludwig O. [Transnet freight rail, (Technology Management), Braamfontein (South Africa); Lehmann, Michael [Technische Univ. Dresden (Germany). Professur Elektrische Bahnen

    2009-04-15

    Raising the nominal voltage of electric railway systems implies many advantages, therefore several concepts can be presented and compared. Detailed studies on two systems with high contact line voltages were performed for the upgrade of the 1 AC 50 kV railway line in South Africa. Finally requirements for high voltage locomotives are derived and illustrated by examples. (orig.)

  6. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Science.gov (United States)

    2010-07-01

    ...-voltage power lines. 56.12071 Section 56.12071 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than trolley...

  7. Analysis of dynamic behavior of the back-to-back High Voltage Direct Current link model as part of electrical power system

    Directory of Open Access Journals (Sweden)

    Rudnik Vladimir

    2017-01-01

    Full Text Available One of the main directions of the development of electric power systems is the introduction of technologies based on high-power semiconductor switches, such as FACTS devices and HVDC technologies. These systems effectively solve a number of urgent tasks of EPS, connected with asynchronous connection of EPS, transmission of electricity, improve local and systemic flexibility and reliability of EPS, increasing the capacity of network elements that contains a “weak” connection. However, the implementation and operation of mentioned technologies in the EPS determines the need for a wide range of analysis and research that can only be done with the help of mathematical modeling.

  8. Detecting Faults In High-Voltage Transformers

    Science.gov (United States)

    Blow, Raymond K.

    1988-01-01

    Simple fixture quickly shows whether high-voltage transformer has excessive voids in dielectric materials and whether high-voltage lead wires too close to transformer case. Fixture is "go/no-go" indicator; corona appears if transformer contains such faults. Nests in wire mesh supported by cap of clear epoxy. If transformer has defects, blue glow of corona appears in mesh and is seen through cap.

  9. Technique eliminates high voltage arcing at electrode-insulator contact area

    Science.gov (United States)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  10. High-voltage pulsed life of multistressed polypropylene capacitor dielectric

    International Nuclear Information System (INIS)

    Laghari, J.R.

    1992-01-01

    High-voltage polypropylene capacitors were aged under singular as well as simultaneous multiple stresses (electrical, thermal, and radiation) at the University of Buffalo's 2 MW thermal nuclear reactor. These stresses were combined neutron-gamma radiation with a total dose of 1.6 x 10 6 rad, electrical stress at 40 V rms /μm, and thermal stress at 90 degrees C. After exposure, the polypropylene dielectric was tested for life (number of pulses to fail) under high-voltage high-repetition-rate (100 pps) pulses. Pulsed life data were also compared with ac life data. Results show that radiation stress causes the most degradation in life, either acting alone or in combination with other stresses. The largest reduction in life occurs when polypropylene is aged under simultaneous multiple stresses (electrical, thermal, and radiation). In this paper, it is shown that pulsed life can be equivalently compared with ac life

  11. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  12. Nested high voltage generator/particle accelerator

    International Nuclear Information System (INIS)

    Adler, R.J.

    1992-01-01

    This patent describes a modular high voltage particle accelerator having an emission axis and an emission end, the accelerator. It comprises: a plurality of high voltage generators in nested adjacency to form a nested stack, each the generator comprising a cup-like housing having a base and a tubular sleeve extending from the base, a primary transformer winding encircling the nested stack; a secondary transformer winding between each adjacent pair of housings, magnetically linked to the primary transformer winding through the gaps; a power supply respective to each of the secondary windings converting alternating voltage from its respective secondary winding to d.c. voltage, the housings at the emission end forming a hollow throat for particle acceleration, a vacuum seal at the emission end of the throat which enables the throat to be evacuated; a particle source in the thrond power means to energize the primary transformer winding

  13. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  14. The Application of Voltage Transformer Simulator in Electrical Test Training

    Science.gov (United States)

    Li, Nan; Zhang, Jun; Chai, Ziqi; Wang, Jingpeng; Yang, Baowei

    2018-02-01

    The voltage transformer test is an important means to monitor its operating state. The accuracy and reliability of the test data is directly related to the test skill level of the operator. However, the risk of test instruments damage, equipment being tested damage and electric shock in operator is caused by improper operation when training the transformer test. In this paper, a simulation device of voltage transformer is set up, and a simulation model is built for the most common 500kV capacitor voltage transformer (CVT), the simulation model can realize several test items of CVT by combing with teaching guidance platform, simulation instrument, complete set of system software and auxiliary equipment in Changchun. Many successful applications show that the simulation device has good practical value and wide application prospect.

  15. The research of high voltage switchgear detecting unit

    Science.gov (United States)

    Ji, Tong; Xie, Wei; Wang, Xiaoqing; Zhang, Jinbo

    2017-07-01

    In order to understand the status of the high voltage switch in the whole life circle, you must monitor the mechanical and electrical parameters that affect device health. So this paper gives a new high voltage switchgear detecting unit based on ARM technology. It can measure closing-opening mechanical wave, storage motor current wave and contactor temperature to judge the device’s health status. When something goes wrong, it can be on alert and give some advice. The practice showed that it can meet the requirements of circuit breaker mechanical properties temperature online detection.

  16. Properties of Polymer Composites Used in High-Voltage Applications

    Directory of Open Access Journals (Sweden)

    Ilona Pleşa

    2016-04-01

    Full Text Available The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal properties. In addition to describing the scientific development of micro/nanocomposites electrical features desired in power engineering, the study is mainly focused on the electrical properties of insulating materials, particularly cross-linked polyethylene (XLPE and epoxy resins, unfilled and filled with different types of filler. Polymer micro/nanocomposites based on XLPE and epoxy resins are usually used as insulating systems for high-voltage applications, such as: cables, generators, motors, cast resin dry-type transformers, etc. Furthermore, this paper includes ample discussions regarding the advantages and disadvantages resulting in the electrical, mechanical and thermal properties by the addition of micro- and nanofillers into the base polymer. The study goals are to determine the impact of filler size, type and distribution of the particles into the polymer matrix on the electrical, mechanical and thermal properties of the polymer micro/nanocomposites compared to the neat polymer and traditionally materials used as insulation systems in high-voltage engineering. Properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, erosion resistance, space charge behavior, electric breakdown, tracking and electrical tree resistance, thermal conductivity, tensile strength and modulus, elongation at break of micro- and nanocomposites based on epoxy resin and XLPE are analyzed. Finally, it was concluded that the use of polymer micro/nanocomposites in electrical engineering is very promising and further research work

  17. High-Voltage Isolation Transformer

    Science.gov (United States)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-01-01

    Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.

  18. 76 FR 70721 - Voltage Coordination on High Voltage Grids; Notice of Staff Workshop

    Science.gov (United States)

    2011-11-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Staff Workshop Take notice that the Federal Energy Regulatory Commission will hold a Workshop on Voltage Coordination on High Voltage Grids on Thursday, December 1, 2011...

  19. Organic dielectrics in high voltage cables

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, J

    1962-03-01

    It appears that the limit has been reached in the applicability of oil-impregnated paper as the dielectric for ehv cables, as with rising voltages the prevention of conductor losses becomes increasingly difficult, while the dielectric losses of the insulation, increasing as the square of the voltage, contribute to a greater extent to the temperature rise of the conductor. The power transmitting capacity of ehv cables reaches a maximum at 500 to 600 kV for these reasons. Apart from artificial cooling, a substantial improvement can be obtained only with the use of insulating materials with much lower dielectric losses; these can moreover be applied with a smaller wall thickness, but this means higher field strengths. Synthetic polymer materials meet these requirements but can be used successfully only in the form of lapped film tapes impregnated with suitable liquids. The electrical properties of these heterogeneous dielectrics, in particular, their impulse breakdown strengths are studied in detail.

  20. High voltage generator circuit with low power and high efficiency applied in EEPROM

    International Nuclear Information System (INIS)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (V th ) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation. (semiconductor integrated circuits)

  1. Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications

  2. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  3. Transmission of power at high voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lane, F J

    1963-01-01

    High voltage transmission is considered to be concerned with circuits and systems operating at or above 132 kV. While the general examination is concerned with ac transmission, dc systems are also included. The choice of voltage for a system will usually involve hazardous assessments of the future requirements of industry, commerce and a changing population. Experience suggests that, if the estimated economic difference between two voltages is not significant, there is good reason to choose the higher voltage, as this will make the better provision for unexpected future expansion. Two principal functions served by transmission circuits in a supply system are: (a) the transportation of energy in bulk from the generator to the reception point in the distribution system; and (b) the interconnection and integration of the generating plant and associated loads. These functions are considered and various types of system are discussed in terms of practicability, viability, quality and continuity of supply. Future developments requiring transmission voltages up to 750 kV will raise many problems which are in the main empirical. Examples are given of the type of problem envisaged and it is suggested that these can only be partially solved by theory and model operation.

  4. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  5. Microparticles in high-voltage accelerator tubes

    International Nuclear Information System (INIS)

    Griffith, G.L.; Eastham, D.A.

    1979-01-01

    Microparticles with radii greater than 2 μm have been observed in a high voltage vacuum accelerator tube. The charge acquired by most of the particles is similar to the contact charging of a conducting sphere on a plane. (author)

  6. An Inexpensive Source of High Voltage

    Science.gov (United States)

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  7. PC-based control of a high-voltage injector

    International Nuclear Information System (INIS)

    Constantin, F.

    1998-01-01

    The stability of high voltage injectors is one of the major problems in any accelerator system. Most of the troubles encountered in the normal operation of an accelerator are connected with the ion source and associated high voltage platforms, regardless of the source or high voltage generator type. The quality of the ion beam injected in the accelerator strongly depends on the power supplies used in the injector and on the ability to control the non-electrical parameters (gas-flow, temperature, etc.). A wide used method in controlling is based on optical links between high-voltage platform and computer, the adjustments being more or less automated. Although the method mentioned above can be still useful in injector control, a different approach is presented in this work, i.e., the computer itself is placed inside the high-voltage terminal. Only one optical link is still necessary to connect this computer with an user-friendly host at ground potential. Requirements: - varying and monitoring the filament current; - gas flow control in the ion source; - reading the vacuum values; - current and voltage control for the anodic, magnet, extraction, suppression and lens' sources. Even in the high voltage terminal there are compartments with different voltages regardless the floating ground. In our injector the extraction voltage is applied on the top of the ion source including the filament and the anodic voltage. The extraction voltage is of maximum 30 kV. In this situation a second optical link is required to transfer the control for the anodic and magnet source power supply assuming the dedicated computer on the floating ground. One PC is placed inside the high voltage terminal and one PC outside the injector. The optical link (more precisely two optical wires) connects the serial ports. The inside computer is equipped with two multipurpose ADC/DAC and digital I/O card. They permit to read or output DC levels ranging between 0 to 10 volts or TTL signals. The filament

  8. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  9. 30 CFR 75.804 - Underground high-voltage cables.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section...

  10. 30 CFR 75.813 - High-voltage longwalls; scope.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage longwalls; scope. 75.813 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage longwalls; scope. Sections 75.814 through 75.822 of this...

  11. Thyristor voltage converter in induction electric drives with microprocessor control

    Energy Technology Data Exchange (ETDEWEB)

    Braslavsky, I.; Zuzev, A.; Shilin, S. [Electric Drive Department, Urals State Technical University, Ekaterinburg (Russian Federation)

    1997-12-31

    The paper consists of some results on developed pulse model of thyristor voltage converter which is one of the most mathematically complicated unit of electric drive. The model structure and model parameter calculating method are represented. The application of the model allows to analyse stability in `locally` by the linear pulse system theory methods with talking into consideration quantise processes within the converter. Such application provides the obtaining higher accurate results comparing with the non-linear system theory approximate methods. Logarithmic frequency characteristics are used to analyse converter dynamic features and they are represented too. (orig.) 4 refs.

  12. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian; Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  13. Low-voltage electricity-induced lung injury.

    Science.gov (United States)

    Truong, Thai; Le, Thuong Vu; Smith, David L; Kantrow, Stephen P; Tran, Van Ngoc

    2018-02-01

    We report a case of bilateral pulmonary infiltrates and haemoptysis following low-voltage electricity exposure in an agricultural worker. A 58-year-old man standing in water reached for an electric watering machine and sustained an exposure to 220 V circuit for an uncertain duration. The electricity was turned off by another worker, and the patient was asymptomatic for the next 10 h until he developed haemoptysis. A chest radiograph demonstrated bilateral infiltrates, and chest computed tomography (CT) revealed ground-glass opacities with interstitial thickening. Evaluations, including electrocardiogram, serum troponin, N-terminal pro-B-type natriuretic peptide (NT-pro BNP), coagulation studies, and echocardiogram, found no abnormality. The patient was treated for suspected electricity-induced lung injury and bleeding with tranexamic acid and for rhabdomyolysis with volume resuscitation. He recovered with complete resolution of chest radiograph abnormalities by Day 7. This is the first reported case of bilateral lung oedema and/or injury after electricity exposure without cardiac arrest.

  14. High voltage pulse generator. [Patent application

    Science.gov (United States)

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  15. Generator voltage stabilisation for series-hybrid electric vehicles.

    Science.gov (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  16. Analysis and Comparison of Voltage Dependent Charging Strategies for Single-Phase Electric Vehicles in an Unbalanced Danish Distribution Grid

    DEFF Research Database (Denmark)

    Álvarez, Jorge Nájera; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    This paper studies four voltage dependent solutions for modulating the charging of multiple Electric Vehicles (EVs) in a real Danish network. Uncontrolled EV charging, especially in grid with high EV penetration, can result in overloaded lines and transformers, low-voltages and other performance...

  17. Advances in high voltage insulation and arc interruption in SF6 and vacuum

    CERN Document Server

    Maller, V N

    1982-01-01

    Advances in High Voltage Insulation and Arc Interruption in SF6 and Vacuum deals with high voltage breakdown and arc extinction in sulfur hexafluoride (SF6) and high vacuum, with special emphasis on the application of these insulating media in high voltage power apparatus and devices. The design and developmental aspects of various high voltage power apparatus using SF6 and high vacuum are highlighted. This book is comprised of eight chapters and opens with a discussion on electrical discharges in SF6 and high vacuum, along with the properties and handling of SF6 gas. The following chapters fo

  18. Discussion - a high voltage DC generator

    International Nuclear Information System (INIS)

    Bhagwat, P.V.; Singh, Jagir; Hattangadi, V.A.

    1993-01-01

    One of the requirements for a high power ion source is a high voltage, high current DC generator. The high voltage, high current generator, DISCATRON, presently under development in our laboratory is a rotating disc type electrostatic generator similar in design to the one reported by A. Isoya et al. (1985). It is compact and rugged electrostatic DC generator based on the principle of induction charging by pellet chains used in the pelletron accelerator. It is, basically, a constant-current device with little stored energy, so that, in case of a breakdown, damage to the equipment connected to the output terminals is minimal. Since the present generator is only a proto-type, meant for a study of the practical difficulties that would be encountered in its manufacture, the output voltage and current specified has been kept quite modest viz., 300 kV at 500 μA, maximum. Some results of the preliminary tests carried out with this generator are described. (author). 4 figs

  19. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  20. High-voltage nanosecond pulse shaper

    International Nuclear Information System (INIS)

    Kapishnikov, N.K.; Muratov, V.M.; Shatanov, A.A.

    1987-01-01

    A high-voltage pulse shaper with an output of up to 250 kV, a base duration of ∼ 10 nsec, and a repetition frequency of 50 pulses/sec is described. The described high-voltage nanosecond pulse shaper is designed for one-orbit extraction of an electron beam from a betatron. A diagram of the pulse shaper, which employs a single-stage generator is shown. The shaping element is a low-inductance capacitor bank of series-parallel KVI-3 (2200 pF at 10 kV) or K15-10 (4700 pF at 31.5 kV) disk ceramic capacitors. Four capacitors are connected in parallel and up to 25 are connected in series

  1. Application to the system of insulated of diagnosis in high-voltage motors by partial discharge

    International Nuclear Information System (INIS)

    Mikami, M.

    2005-01-01

    In order to detect electric insulators degradation of high-voltage electric motors at an early stage, measurements of partial discharge of operating high-voltage electric motors (about 150 units) in the nuclear power plants were conducted from 2001 to 2004 by the use of on-line monitoring systems that could measure partial discharge of electric insulators. Influencing factors for measured values were identified from measured data and evaluation criteria of electric insulators integrity were established based on variations of partial discharge values. (T. Tanaka)

  2. 75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-06

    ... High-Voltage Continuous Mining Machine Standard for Underground Coal Mines AGENCY: Mine Safety and... of high-voltage continuous mining machines in underground coal mines. It also revises MSHA's design...-- Underground Coal Mines III. Section-by-Section Analysis A. Part 18--Electric Motor-Driven Mine Equipment and...

  3. Development of high voltage PEEK wire with radiation-resistance and cryogenic characteristics

    International Nuclear Information System (INIS)

    Fujita, T.; Hirata, T.; Araki, S.; Ohara, H.; Nishimura, H.

    1989-01-01

    High voltage electric wires insulated with highly-refined polyetheretherketone (PEEK) have been developed for the wiring in fusion reactors, where the wire is required to withstand high voltage under high vacuum up to 10 -5 Torr. The PEEK wires having the advantages of PEEK resin including superior radiation resistance and cryogenic characteristics are usable over a wide range of temperature and in radiation fields. The results of withstand voltage tests proved that the PEEK wires exceeding 0.8 mm in insulation thickness withstand such specified high voltage conditions as 24 kV for 1 minutes by 10 times and 6.6 kV for 110 hours. The results also revealed that the withstand voltage is improved by providing a jacket layer over the insulation and decreased by periodical voltage charge, by bending of the specimen and by water in the conductor. This paper deal with the withstand voltage test results under varied conditions of the PEEK wires. (author)

  4. AC transmission, with very high voltages and the 750 kV line

    Energy Technology Data Exchange (ETDEWEB)

    Bocker, H

    1964-01-01

    The economic case for adoption of extra-high voltages for transmitting electric power over distances of the order of 1000 km is discussed. Some special technical developments for solving the problems attached to such high voltages are briefly discussed, particularly in the fields of switching and transients suppression. The first 750-kV projects in Canada and Russia are mentioned. Equipment, e.g., bushings, transformers, etc., operating at such voltages are illustrated.

  5. Prototype high voltage bushing: Configuration to its operational demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Sejal, E-mail: sshah@iter-india.org [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Sharma, D. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Parmar, D.; Tyagi, H.; Joshi, K.; Shishangiya, H.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2016-12-15

    High Voltage Bushing (HVB) is the key component of Diagnostic Neutral Beam (DNB) system of ITER as it provides access to high voltage electrical, hydraulic, gas and diagnostic feedlines to the beam source with isolation from grounded vessel. HVB also provides primary vacuum confinement for the DNB system. Being Safety Important Class (SIC) component of ITER, it involves several configurational, technological and operational challenges. To ensure its operational performance & reliability, particularly electrostatic behavior, half scale down Prototype High Voltage Bushing (PHVB) is designed considering same design criteria of DNB HVB. Design optimization has been carried out followed by finite element (FE) analysis to obtain DNB HVB equivalent electric stress on different parts of PHVB, taking into account all design, manufacturing & space constraints. PHVB was tested up to 60 kV without breakdown, which validates its design for the envisaged operation of 50 kV DC. This paper presents the design of PHVB, FEA validation, manufacturing constraints, experimental layout with interfacing auxiliary systems and operational results related to functional performance.

  6. Design and development of high voltage and high frequency center tapped transformer for HVDC test generator

    International Nuclear Information System (INIS)

    Thaker, Urmil; Saurabh Kumar; Amal, S.; Baruah, U.K.; Bhatt, Animesh

    2015-01-01

    A High Voltage center tapped transformer for high frequency application had been designed, fabricated, and tested. It was designed as a part of 200 kV HVDC Test Generator. The High Frequency operation of transformer increases power density. Therefore it is possible to reduce power supply volume. The step up ratio in High Voltage transformer is limited due to stray capacitance and leakage inductance. The limit was overcome by winding multi secondary outputs. Switching frequency of transformer was 15.8 kHz. Input and output voltages of transformer were 270V and 16.5kV-0V-16.5kV respectively. Power rating of transformer is 7kVA. High Voltage transformer with various winding and core arrangement was fabricated to check variation in electrical characteristics. The transformer used a ferrite core (E Type) and nylon insulated primary and secondary bobbins. Two set of E-E geometry cores had been stacked in order to achieve the estimated core volume. Compared with traditional high voltage transformer, this transformer had good thermal behavior, good line insulation properties and a high power density. In this poster, design procedures, development stages and test results of high voltage and high frequency transformer are presented. Results of various parameters such as transformer loss, temperature rise, insulation properties, impedance of primary and secondary winding, and voltage regulation are discussed. (author)

  7. Cooling of electrically insulated high voltage electrodes down to 30 mK Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mK

    CERN Document Server

    Eisel, Thomas; Bremer, J

    2011-01-01

    The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator. Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the ther...

  8. On-site voltage measurement with capacitive sensors on high voltage systems

    NARCIS (Netherlands)

    Wu, L.; Wouters, P.A.A.F.; Heesch, van E.J.M.; Steennis, E.F.

    2011-01-01

    In Extra/High-Voltage (EHV/HV) power systems, over-voltages occur e.g. due to transients or resonances. At places where no conventional voltage measurement devices can be installed, on-site measurement of these occurrences requires preferably non intrusive sensors, which can be installed with little

  9. 76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda

    Science.gov (United States)

    2011-11-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda As announced in the Notice of Staff..., from 9 a.m. to 4:30 p.m. to explore the interaction between voltage control, reliability, and economic...

  10. High voltage superconducting switch for power application

    International Nuclear Information System (INIS)

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  11. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil......-fuelled generators to supply future grid support functions. The quick start and fast response characteristics of battery storages enable the electric vehicles to provide most of the power system auxiliary tasks. This chapter discusses key ancillary services that could be supplied by electric vehicles to maintain...... the system balance in power systems with high volumes of wind power generation. To analyse the applications and performance of electric vehicles in supplying active power balancing services, the case studies simulated in wind-power-dominated Danish power systems are also presented....

  12. Atypical Exit Wound in High-Voltage Electrocution.

    Science.gov (United States)

    Parakkattil, Jamshid; Kandasamy, Shanmugam; Das, Siddhartha; Devnath, Gerard Pradeep; Chaudhari, Vinod Ashok; Shaha, Kusa Kumar

    2017-12-01

    Electrocution fatality cases are difficult to investigate. High-voltage electrocution burns resemble burns caused by other sources, especially if the person survives for few days. In that case, circumstantial evidence if correlated with the autopsy findings helps in determining the cause and manner of death. In addition, the crime scene findings also help to explain the pattern of injuries observed at autopsy. A farmer came in contact with a high-voltage transmission wire and sustained superficial to deep burns over his body. A charred and deeply scorched area was seen over the face, which was suggestive of the electric entry wound. The exit wound was present over both feet and lower leg and was atypical in the form of a burnt area of peeled blistered skin, charring, and deep scorching. The injuries were correlated with crime scene findings, and the circumstances that lead to his electrocution are discussed here.

  13. Cavallo's multiplier for in situ generation of high voltage

    Science.gov (United States)

    Clayton, S. M.; Ito, T. M.; Ramsey, J. C.; Wei, W.; Blatnik, M. A.; Filippone, B. W.; Seidel, G. M.

    2018-05-01

    A classic electrostatic induction machine, Cavallo's multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.

  14. High voltage processing of the SLC polarized electron gun

    International Nuclear Information System (INIS)

    Saez, P.; Clendenin, J.; Garden, C.; Hoyt, E.; Klaisner, L.; Prescott, C.; Schultz, D.; Tang, H.

    1993-04-01

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required x-ray sensitive photographic film, a nanoammeter in series with gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometry were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, we found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described

  15. Topologically protected loop flows in high voltage AC power grids

    International Nuclear Information System (INIS)

    Coletta, T; Delabays, R; Jacquod, Ph; Adagideli, I

    2016-01-01

    Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids. (paper)

  16. Characteristics and Breakdown Behaviors of Polysilicon Resistors for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Tang

    2015-01-01

    Full Text Available With the rapid development of the power integrated circuit technology, polysilicon resistors have been widely used not only in traditional CMOS circuits, but also in the high voltage applications. However, there have been few detailed reports about the polysilicon resistors’ characteristics, like voltage and temperature coefficients and breakdown behaviors which are critical parameters of high voltage applications. In this study, we experimentally find that the resistance of the polysilicon resistor with a relatively low doping concentration shows negative voltage and temperature coefficients, while that of the polysilicon resistor with a high doping concentration has positive voltage and temperature coefficients. Moreover, from the experimental results of breakdown voltages of the polysilicon resistors, it could be deduced that the breakdown of polysilicon resistors is thermally rather than electrically induced. We also proposed to add an N-type well underneath the oxide to increase the breakdown voltage in the vertical direction when the substrate is P-type doped.

  17. Maintenance Optimization of High Voltage Substation Model

    Directory of Open Access Journals (Sweden)

    Radim Bris

    2008-01-01

    Full Text Available The real system from practice is selected for optimization purpose in this paper. We describe the real scheme of a high voltage (HV substation in different work states. Model scheme of the HV substation 22 kV is demonstrated within the paper. The scheme serves as input model scheme for the maintenance optimization. The input reliability and cost parameters of all components are given: the preventive and corrective maintenance costs, the actual maintenance period (being optimized, the failure rate and mean time to repair - MTTR.

  18. Environmental impact of high voltage substations

    International Nuclear Information System (INIS)

    Geambasu, C.; Popadiuc, S.; Drobota, C.; Marza, F.

    2004-01-01

    The first Romanian methodology for simultaneous environmental and human risk evaluation in case of HV installations within substations pertaining to nuclear power stations, based on EU regulation is now applicable in Cernavoda substation. High voltage substations are zones where the environmental impact is focused on electromagnetic field that's causes particular effects in living tissues (human being included). That is the reason why is necessary to identify the potential risk sources, the asses including the way to correct them and to dissimulate the results to the staff and the operational personal.(author)

  19. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  20. Voltage inverter with push-pull topology to inject energy into electrical systems with modulation SPWM

    Directory of Open Access Journals (Sweden)

    Emerson Charles M. Silva

    2013-09-01

    Full Text Available This paper presents a proposal for a voltage inverter topology based on push-pull converters, switched at high frequency to inject energy into the grid from a source of DC power. A system using two reverse voltage static converters provides the power grid; energy in the form of alternating current, that can work in conjunction with the provision of utility power. Aiming at the possible use of renewable energy sources, that can be stored in the form of voltage continuous, such as wind, solar, hydroelectric and others. The functioning of topology is presented, such as the power and control circuits, as well as sizing components, theoretical and practical results achieved with the assembly of a prototype 100W of power and switching in 40khz, which after filtering provides the frequency of 60Hz, which is compatible with the Brazilian electrical system.

  1. Study of protection devices against the effects of electric discharges inside a very high voltage generator: the Vivitron accelerator; Etude de dispositifs de protection contre les effets des decharges electriques au sein d`un generateur de tres haute tension: l`accelerateur Vivitron

    Energy Technology Data Exchange (ETDEWEB)

    Nolot, E

    1996-10-31

    The Vivitron tandem is a large electrostatic accelerator comprising a Van de Graaff generator designed to reach terminal voltages of around 30 MV. The machine is limited at rather lower nominal voltages (about 20 MV) due to the sensitivity of the insulating column structure to transient overvoltages. These are induced by electrical discharges in compressed SF{sub 6}. This thesis first aims at analysing the fundamental reasons of electrical discharges in order to limit the probability of their occurrence. Then we simulate the transient overvoltages induced and present some improvements which may lead to a stable behaviour of the Vivitron at nominal voltages higher than 20 MV. Initially we deduce discharge onset voltages and actual breakdown field limitations in the different gap geometries from analysis of possible breakdown mechanisms in compressed SF{sub 6}. In a second part, some electrical characteristics of the insulating column structure are measured at high voltage. Fast rising oscillating waves induced by sparking in the Vivitron, along with the associated energies,are determined in the third part. The last part deals with new surge protections of the insulating column structure. Spark gaps with precise onset voltage and optimized shielding electrodes are discussed. ZnO-based varistors designed for operation at very high fields have also been developed in order to reduce transient overvoltage values. (author). 122 refs.

  2. High voltage designing of 300.000 Volt

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1978-01-01

    Some methods of designing a.c and d.c high voltage supplies are discussed. A high voltage supply for the Gama Research Centre accelerator is designed using transistor pulse generators. High voltage transformers being made using radio transistor ferrits as a core are also discussed. (author)

  3. Accelerator System Development at High Voltage Engineering

    International Nuclear Information System (INIS)

    Klein, M. G.; Gottdang, A.; Haitsma, R. G.; Mous, D. J. W.

    2009-01-01

    Throughout the years, HVE has continuously extended the capabilities of its accelerator systems to meet the rising demands from a diverse field of applications, among which are deep level ion implantation, micro-machining, neutron production for biomedical research, isotope production or accelerator mass spectrometry. Characteristic for HVE accelerators is the coaxial construction of the all solid state power supply around the acceleration tubes. With the use of solid state technology, the accelerators feature high stability and very low ripple. Terminal voltages range from 1 to 6 MV for HVE Singletrons and Tandetrons. The high-current versions of these accelerators can provide ion beams with powers of several kW. In the last years, several systems have been built with terminal voltages of 1.25 MV, 2 MV and 5 MV. Recently, the first system based on a 6 MV Tandetron has passed the factory tests. In this paper we describe the characteristics of the HVE accelerator systems and present as example recent systems.

  4. Bottlenecks reduction using superconductors in high voltage transmission lines

    Directory of Open Access Journals (Sweden)

    Daloub Labib

    2016-01-01

    Full Text Available Energy flow bottlenecks in high voltage transmission lines known as congestions are one of the challenges facing power utilities in fast developing countries. Bottlenecks occur in selected power lines when transmission systems are operated at or beyond their transfer limits. In these cases, congestions result in preventing new power supply contracts, infeasibility in existing contracts, price spike and market power abuse. The “Superconductor Technology” in electric power transmission cables has been used as a solution to solve the problem of bottlenecks in energy transmission at high voltage underground cables and overhead lines. The increase in demand on power generation and transmission happening due to fast development and linked to the intensive usage of transmission network in certain points, which in turn, lead to often frequent congestion in getting the required power across to where it is needed. In this paper, a bottleneck in high voltage double overhead transmission line with Aluminum Conductor Steel Reinforced was modeled using conductor parameters and replaced by Gap-Type Superconductor to assess the benefit of upgrading to higher temperature superconductor and obtain higher current carrying capacity. This proved to reduce the high loading of traditional aluminum conductors and allow more power transfer over the line using superconductor within the same existing right-of-way, steel towers, insulators and fittings, thus reducing the upgrade cost of building new lines.

  5. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    Rocca, J.J.; Szapiro, B.; Murray, C.

    1989-01-01

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  6. High voltage transmission lines - what are the hazards

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    1985-01-01

    With the increasing use of high voltage alternating current (HVAC) transmission lines there is a growing concern among the public about possible human health effects resulting from exposure to the electric fields associated with these lines. While there is no definitive evidence of such effects, mounting public fear and activism over hypothesized health risks is already causing delays in the licensing and constuction of major power transmission facilities, and is encouraging the formation of regulatory policy. This paper briefly reviews the concerns, biological effects data and standards for HVAC transmission lines

  7. Simulations of momentum transfer process between solar wind plasma and bias voltage tethers of electric sail thruster

    Science.gov (United States)

    Xia, Guangqing; Han, Yajie; Chen, Liuwei; Wei, Yanming; Yu, Yang; Chen, Maolin

    2018-06-01

    The interaction between the solar wind plasma and the bias voltage of long tethers is the basic mechanism of the electric sail thruster. The momentum transfer process between the solar wind plasma and electric tethers was investigated using a 2D full particle PIC method. The coupled electric field distribution and deflected ion trajectory under different bias voltages were compared, and the influence of bias voltage on momentum transfer process was analyzed. The results show that the high potential of the bias voltage of long tethers will slow down, stagnate, reflect and deflect a large number of ions, so that ion cavities are formed in the vicinity of the tether, and the ions will transmit the axial momentum to the sail tethers to produce the thrust. Compared to the singe tether, double tethers show a better thrust performance.

  8. A prospective study analyzing the application of radiofrequency energy and high-voltage, ultrashort pulse duration electrical fields on the quantitative reduction of adipose tissue.

    Science.gov (United States)

    Duncan, Diane Irvine; Kim, Theresa H M; Temaat, Robbin

    2016-10-01

    Noninvasive fat reduction is claimed by many device manufacturers, but proof of efficacy has been difficult to establish. This prospective study was designed to measure the reduction of fat thickness and actual volume reduction in 20 female patients treated with an external radiofrequency (RF) device. This device combines RF heat, suction coupled vacuum, and oscillating electrical pulses that induce adipocyte death over time. Patients underwent pre- and post-treatment and intercurrent measurements of weight, body mass index, ultrasonic transcutaneous fat thickness, and 2D and 3D Vectra photography with independent calculation of circumferential and volumetric change. Mean transcutaneous ultrasound thickness at reproducible points was 2.78 cm; at 1-month post-treatment, the mean fat thickness was 1.71 cm. At 3-month post-treatment, the mean fat thickness reduction was 39.6%. Vectra circumference measurements were taken at 10-mm intervals, with postural and breathing cycle control. Independent analysis of serial measurements from + 60 to - 70 mm showed mean abdominal circumference measurement of 2.3 cm. Mean abdominal volume loss was 202.4 and 428.5 cc at 1- and 3-month post-treatment, respectively. Scanning electron microscopy confirmed that permanent cell destruction was caused by irreversible electroporation. Pyroptosis appears to be the mechanism of action.

  9. Complete low power controller for high voltage power systems

    International Nuclear Information System (INIS)

    Sumner, R.; Blanar, G.

    1997-01-01

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components

  10. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  11. Prediction of breakdown voltages in novel gases for high voltage insulation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.

    2015-07-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF{sub 6}) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF{sub 6} is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF{sub 6} in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF{sub 6} based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media.

  12. Prediction of breakdown voltages in novel gases for high voltage insulation

    International Nuclear Information System (INIS)

    Koch, M.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF_6) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF_6 is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF_6 in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF_6 based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media

  13. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  14. High voltage high brightness electron accelerators with MITL voltage adder coupled to foilless diodes

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Frost, C.A.; Shope, S.L.; Halbleib, J.A.; Turman, B.N.

    1993-01-01

    During the last ten years the authors have extensively studied the physics and operation of magnetically-immersed electron foilless diodes. Most of these sources were utilized as injectors to high current, high energy linear induction accelerators such as those of the RADLAC family. Recently they have experimentally and theoretically demonstrated that foilless diodes can be successfully coupled to self-magnetically insulated transmission line voltage adders to produce very small high brightness, high definition (no halo) electron beams. The RADLAC/SMILE experience opened the path to a new approach in high brightness, high energy induction accelerators. There is no beam drifting through the device. The voltage addition occurs in a center conductor, and the beam is created at the high voltage end in an applied magnetic field diode. This work was motivated by the remarkable success of the HERMES-III accelerator and the need to produce small radius, high energy, high current electron beams for air propagation studies and flash x-ray radiography. In this paper they present experimental results compared with analytical and numerical simulations in addition to design examples of devices that can produce multikiloamp electron beams of as high as 100 MV energies and radii as small as 1 mm

  15. Low Voltage, High-Q SOI MEMS Varactors for RF Applications

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Jensen, Søren; Hansen, Ole

    2003-01-01

    A micro electromechanical tunable capacitor with a low control voltage, a wide tuning range and high electrical quality factor is presented with detailed characterizations. A 50μm thick single-crystalline silicon layer was etched using deep reactive ion etching (DRIE) for obtaining high-aspect ra...... is a suitable passive component to be used in band-pass filtering, voltage controlled oscillator or impedance matching applications on the very high frequency(VHF) and ultra high frequency (UHF) bands....

  16. RICH High Voltages & PDF Analysis @ LHCb

    CERN Multimedia

    Fanchini, E

    2009-01-01

    In the LHCb experiment an important issue is the identification of the hadrons of the final states of the B mesons decays. Two RICH subdetectors are devoted to this task, and the Hybrid Photon Detectors (HPDs) are the photodetectors used to detect Cherenkov light. In this poster there is a description of how the very high voltage (-18 KV) supply stability used to power the HPDs is monitored. It is also presented the basics of a study which can be done with the first collision data: the analysis of the dimuons from the Drell-Yan process. This process is well known and the acceptance of the LHCb detector in terms of pseudorapidity will be very useful to improve the knowledge of the proton structure functions or, alternatively, try to estimate the luminosity from it.

  17. High-voltage test stand at Livermore

    International Nuclear Information System (INIS)

    Smith, M.E.

    1977-01-01

    This paper describes the present design and future capability of the high-voltage test stand for neutral-beam sources at Lawrence Livermore Laboratory. The stand's immediate use will be for testing the full-scale sources (120 kV, 65 A) for the Tokamak Fusion Test Reactor. It will then be used to test parts of the sustaining source system (80 kV, 85 A) being designed for the Magnetic Fusion Test Facility. Following that will be an intensive effort to develop beams of up to 200 kV at 20 A by accelerating negative ions. The design of the test stand features a 5-MVA power supply feeding a vacuum tetrode that is used as a switch and regulator. The 500-kW arc supply and the 100-kW filament supply for the neutral-beam source are battery powered, thus eliminating one or two costly isolation transformers

  18. Summary of transient high-voltage calculations for the FRX-C experiment

    International Nuclear Information System (INIS)

    Kewish, R.W. Jr.; Rej, D.J.

    1982-06-01

    Calculations of the electrical circuit equations are performed over a wide range of parameters corresponding to the FRX-C field-reversed THETA-pinch experiment at Los Alamos. Without any plasma or external damping, serious voltage doubling and quadrupling of the main capacitor bank charge voltage are observed. These oscillating high voltages are found to be adequately suppressed by the strategic placement of external snubber circuitry. On the other hand, no doubling of the THETA-pinch preionization bank charge voltage is found. Calculations of the equations for the z-pinch preionization circuit are also performed

  19. Market Report : The high-voltage transmission market in Poland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    In order to meet the accession requirements for membership to the European Union, Poland is currently restructuring its energy sector, and the initiative to privatise the electric power industry to full competition by 2005 is on course. This report describes the opportunities for foreign investors and suppliers of electrical equipment and services, particularly at this time when power demand is growing, the power grid infrastructure is ageing and obsolete components must be replaced. The total installed capacity in Poland is about 33,000 megawatts. This includes all installations of power plants and combined heat and power plants. An investment of $23 billion is anticipated by 2010 in order to modernize the electricity power industry and to meet the growing energy demand. Polski Siece Elektroenergetyczne, S.A. (PSE) is the state-owned company which controls Poland's high-voltage transmission grid. It operates a 220 kilovolt and 40 kV grid and holds the monopoly on acquiring and transmitting electricity in the country. Poland maintains grid interconnections with several other European countries and is looking to expand its network. Opportunities for Canadian suppliers lie in the areas of high-voltage power transmission equipment and services. Other opportunities lie in commercial prospects in sales of equipment and services. The report includes a section on international competition, and the Canadian position for both private- and public-sector companies. A section on market logistics describes distribution channels, market-entry considerations, import regulations, and export credit risks. A list of key contacts and support services is included with this report. refs., tabs.

  20. Piezoelectric self sensing actuators for high voltage excitation

    International Nuclear Information System (INIS)

    Grasso, E; Totaro, N; Janocha, H; Naso, D

    2013-01-01

    Self sensing techniques allow the use of a piezoelectric transducer simultaneously as an actuator and as a sensor. Such techniques are based on knowledge of the transducer behaviour and on measurements of electrical quantities, in particular voltage and charge. Past research work has mainly considered the linear behaviour of piezoelectric transducers, consequently restricting the operating driving voltages to low values. In this work a new self sensing technique is proposed which is able to perform self sensing reconstruction both at low and at high driving voltages. This technique, in fact, makes use of a hysteretic model to describe the nonlinear piezoelectric capacitance necessary for self sensing reconstruction. The capacitance can be measured and identified at the antiresonances of a vibrating structure with a good approximation. After providing a mathematical background to deal with the main aspects of self sensing, this technique is compared theoretically and experimentally to a typical linear one by using an aluminum plate with one bonded self sensing transducer and a positive position feedback (PPF) controller to verify the performance in self sensing based vibration control. (paper)

  1. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  2. Temperature and Voltage Offsets in High-ZT Thermoelectrics

    Science.gov (United States)

    Levy, George S.

    2017-10-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.

  3. Temperature and Voltage Offsets in High- ZT Thermoelectrics

    Science.gov (United States)

    Levy, George S.

    2018-06-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high- ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/ n + and p/ p + junctions, selecting appropriate dimensions, doping, and loading.

  4. Innovation of High Voltage Supply Adjustment Device on Diagnostic X-Ray Machine

    International Nuclear Information System (INIS)

    Sujatno; Wiranto Budi Santoso

    2010-01-01

    Innovation of high voltage supply adjustment device on diagnostic x-ray machine has been carried out. The innovation is conducted by utilizing an electronic circuit as a high voltage adjustment device. Usually a diagnostic x-ray machine utilizes a transformer or an auto-transformer as a high voltage supply adjustment device. A high power diagnostic x-ray machine needs a high power transformer which has big physical dimension. Therefore a box control where the transformer is located has to have big physical dimension. Besides, the price of the transformer is expensive and hardly found in local markets. In this innovation, the transformer is replaced by an electronic circuit. The main component of the electronic circuit is Triac BTA-40. As adjustment device, the triac is controlled by a variable resistor which is coupled by a stepper motor. A step movement of stepper motor varies a value of resistor. The resistor value determines the triac gate voltage. Furthermore the triac will open according to the value of electrical current flowing to the gate. When the gate is open, electrical voltage and current will flow from cathode to anode of the triac. The value of these electrical voltage and current depend on gate open condition. Then this triac output voltage is feed to diagnostic x-ray machine high voltage supply. Therefore the high voltage value of diagnostic x-ray machine is adjusted by the output voltage of the electronic circuit. By using this electronic circuit, the physical dimension of diagnostic x-ray machine box control and the price of the equipment can be reduced. (author)

  5. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  6. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....

  7. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    Directory of Open Access Journals (Sweden)

    F Sohbatzadeh

    2017-02-01

    Full Text Available In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power

  8. A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses

    Science.gov (United States)

    Arevalo, L.; Wu, D.; Jacobson, B.

    2013-08-01

    The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.

  9. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  10. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    Science.gov (United States)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  11. Constant potential high-voltage generator

    International Nuclear Information System (INIS)

    Resnick, T.A.; Dupuis, W.A.; Palermo, T.

    1980-01-01

    An X-ray tube voltage generator with automatic stabilization circuitry is disclosed. The generator includes a source of pulsating direct current voltage such as from a rectified 3 phase transformer. This pulsating voltage is supplied to the cathode and anode of an X-ray tube and forms an accelerating potential for electrons within that tube. The accelerating potential is stabilized with a feedback signal which is provided by a feedback network. The network includes an error signal generator which compares an instantaneous accelerating potential with a preferred reference accelerating potential and generates an error function. This error function is transmitted to a control tube grid which in turn causes the voltage difference between X-ray tube cathode and anode to stabilize and thereby reduce the error function. In this way stabilized accelerating potentials are realized and uniform X-ray energy distributions produced. (Auth.)

  12. LED-Based High-Voltage Lines Warning System

    Directory of Open Access Journals (Sweden)

    Eldar MUSA

    2013-04-01

    Full Text Available LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines, remote measurement of high-voltage line currents, and local illumination of the line area

  13. Advances in high voltage power switching with GTOs

    International Nuclear Information System (INIS)

    Podlesak, T.F.

    1990-01-01

    The control of high voltage at high power, particularly opening switches, has been difficult in the past. Using gate turnoff thyristors (GTOs) arranged in series enables large currents to be switched at high voltage. The authors report a high voltage opening switch has been successfully demonstrated. This switch uses GTOs in series and successfully operates at voltages higher than the rated voltage of the individual devices. It is believed that this is the first time this has been successfully demonstrated, in that GTOs have been operated in series before, but always in a manner as to not exceed the voltage capability of the individual devices. In short, the devices have not worked together, sharing the voltage, but one device has been operated using several backup devices. Of particular interest is how well the individual devices share the voltage applied to them. Equal voltage sharing between devices is absolutely essential, in order to not exceed the voltage rating of any of the devices in the series chain. This is accomplished at high (microsecond) switching speeds. Thus, the system is useful for high frequency applications as well as high power, making for a flexible circuit system element. This demonstration system is rated at 5 KV and uses 1 KV devices. A larger 24 KV system is under design and will use 4.5 KV devices. In order to design the 24 KV switch, the safe operating area of the large devices must be known thoroughly

  14. Cermet insert high voltage holdoff for ceramic/metal vacuum devices

    Science.gov (United States)

    Ierna, William F.

    1987-01-01

    An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

  15. Cermet insert high voltage holdoff improvement for ceramic/metal vacuum devices

    Science.gov (United States)

    Ierna, W.F.

    1986-03-11

    An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

  16. Control of Grid Interactive PV Inverters for High Penetration in Low Voltage Distribution Networks

    OpenAIRE

    Demirok, Erhan

    2012-01-01

    Regarding of high density deployment of PV installations in electricity grids, new technical challenges such as voltage rise, thermal loading of network components, voltage unbalance, harmonic interaction and fault current contributions are being added to tasks list of distribution system operators (DSOs) in order to maintain at least the same power quality as before PVs were not revealed. Potential problems caused by high amount of PV installations can be avoided with technical study of both...

  17. Ionization smoke detectors - the high-voltage issues

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Production of high-voltage ionization smoke detectors ceased in 1978 following the development of lower voltage models which used much smaller amounts of radioactive material. Despite this fact, thousands of high-voltage detectors are still in use today in many large UK companies. The major users argue that there is no reason to stop using their detectors if they are still fit for their purpose - many could last for another 15 to 20 years if properly maintained. But pressure has been mounting on businesses to replace all their high-voltage detectors with new low-voltage models within the next couple of years. This could place a huge financial burden on the companies concerned, with costs possibly running into millions of pounds. Traditionally, the major detector installers offered cleaning and maintenance services for high-voltage detectors to their customers but these have now been withdrawn. The installers give no clear reasons for this decision except that the detectors are outmoded and should be disposed of as soon as possible. Most users would agree that conversion to low-voltage types is inevitable but their main worry is the financial strain of replacing all their detectors - and associated equipment - in one go. They would prefer to phase out their high-voltage detectors in stages over a number of years to spread the costs of conversion. The problems of maintenance is discussed. A dual voltage fire alarm panel which allows the high-voltage detectors to be phased out is mentioned. (Author)

  18. Environmental and biotechnological applications of high-voltage pulsed discharges in water

    International Nuclear Information System (INIS)

    Sato, Masayuki

    2008-01-01

    A high-voltage pulse has wide application in fields such as chemistry, physics and biology and their combinations. The high-voltage pulse forms two kinds of physical processes in water, namely (a) a pulsed electric field (PEF) in the parallel electrode configuration and (b) plasma generation by a pulsed discharge in the water phase with a concentrated electric field. The PEF can be used for inactivation of bacteria in liquid foods as a non-thermal process, and the underwater plasma is applicable not only for the decomposition of organic materials in water but also for biological treatment of wastewater. These discharge states are controlled mainly by the applied pulse voltage and the electrode shape. Some examples of environmental and biotechnological applications of a high-voltage pulse are reviewed.

  19. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  20. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    Science.gov (United States)

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  1. High voltage disconnect switch position monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Crampton, S W

    1983-08-01

    Unreliable position indication on high-voltage (HV) disconnect switches can result in equipment damage worth many times the cost of a disconnect switch. The benefits and limitations of a number of possible methods of reliably monitoring HV disconnect switches are assessed. Several methods of powering active devices at HV are noted. It is concluded that the most reliable way of monitoring switch position at reasonable cost would use a passive hermetically-sealed blade-position sensor located at HV, with a fibre-optic link between HV and ground. Separate sensors would be used for open and closed position indication. For maximum reliability the fibre-optic link would continue into the relay building. A passive magnetically actuated fibre-optic sensor has been built which demonstrates the feasibility of the concept. The sensor monitors blade position relative to the jaws in three dimensions with high resolution. A design for an improved passive magneto-optic sensor has significantly lower optical losses, allowing a single fibre-optic loop and 3 sensors to monitor closure of all phases of a disconnect switch. A similar loop would monitor switch opening. The improved sensor has a solid copper housing to provide greater immunity to fault currents, and to protect it from the environment and from physical damage. Two methods of providing a protected path for fibre-optics passing from HV to ground are proposed, one using a hollow porcelain switch-support insulator and the other using an additional small-diameter polymer insulator with optical fibres imbedded in its fibreglass core. A number of improvements are recommended which can be made to existing switches to increase their reliability. 16 refs., 13 figs., 1 tab.

  2. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipments such as TV sets, microwave ovens, duplicators and etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through property and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  3. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipment such as TV sets, microwave ovens, duplicators etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  4. Voltage Flicker Mitigation in Electric Arc Furnace using D-STATCOM

    OpenAIRE

    Deepthisree Madathil; Ilango Karuppasamy; Kirthika Devi V S; Manjula G Nair

    2014-01-01

    The major power quality issue of voltage flicker has resulted as a serious concern for the customers and heavy power companies. Voltage flicker is an impression of unsteadiness of visual sensation induced by a light source whose luminance fluctuates with time. This phenomenon is experienced when an Electric Arc Furnace (EAF) as load is connected to the power system. Flexible AC transmission devices (FACTS) devices were gradually utilized for voltage flicker reduction. In this paper the FACTS ...

  5. An interleaved structure for a high-voltage planar transformer for a Travelling-wave Tube

    DEFF Research Database (Denmark)

    Zhao, Bin; Wang, Gang; Hurley, William G.

    2016-01-01

    Fully interleaved structure can significantly reduce leakage inductance in transformers, However, it is hard to apply them into high-voltage applications due to the electric insulation. In this paper, a partially interleaved structure that is suitable for high-voltage high frequency applications...... is proposed to reduce leakage inductance and the insulation’s thickness is adjusted to optimize the electric isolation. In addition, the resistance and parasitic capacitance are investigated. With this method, a planar transformer used for a Travelling-Wave Tube Amplifier (TWTA) is designed. Calculations...

  6. Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks

    DEFF Research Database (Denmark)

    García-Villalobos, J.; Zamora, I.; Knezovic, Katarina

    2016-01-01

    The massive introduction of plug-in electric vehicles (PEVs) into low voltage (LV) distribution networks will lead to several problems, such as: increase of energy losses, decrease of distribution transformer lifetime, lines and transformer overload issues, voltage drops and unbalances...

  7. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  8. Generalized Bohm’s criterion and negative anode voltage fall in electric discharges

    Energy Technology Data Exchange (ETDEWEB)

    Londer, Ya. I.; Ul’yanov, K. N., E-mail: kulyanov@vei.ru [Lenin All-Russian Electrotechnical Institute (Russian Federation)

    2013-10-15

    The value of the voltage fall across the anode sheath is found as a function of the current density. Analytic solutions are obtained in a wide range of the ratio of the directed velocity of plasma electrons v{sub 0} to their thermal velocity v{sub T}. It is shown that the voltage fall in a one-dimensional collisionless anode sheath is always negative. At the small values of v{sub 0}/v{sub T}, the obtained expression asymptotically transforms into the Langmuir formula. Generalized Bohm’s criterion for an electric discharge with allowance for the space charge density ρ(0), electric field E(0), ion velocity v{sub i}(0), and ratio v{sub 0}/v{sub T} at the plasma-sheath interface is formulated. It is shown that the minimum value of the ion velocity v{sub i}{sup *}(0) corresponds to the vanishing of the electric field at one point inside the sheath. The dependence of v{sub i}{sup *} (0) on ρ(0), E(0), and v{sub 0}/v{sub T} determines the boundary of the existence domain of stationary solutions in the sheath. Using this criterion, the maximum possible degree of contraction of the electron current at the anode is determined for a short high-current vacuum arc discharge.

  9. Degradation diagnosing method for low voltage electric wire and cable in nuclear facility

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Seki, Ikuo; Yagyu, Hideki; Onishi, Takao; Kusama, Yasuo.

    1991-01-01

    A considerable skill is required for a visual inspection method which has been used most widely for determining the degradation of low voltage electric wires and cables used mostly in facilities such as nuclear power plants. It is extremely difficult to determine the degradation accurately and appropriately even for skilled inspectors because of individual difference. Then, a small amount of organic insulation materials is taken as a sample from insulators or sheath materials actually disposed. The pyrolytic temperature of the sample is measured by thermal gravimetric analysis to determine the extent of the degradation of the electric wire and cable based on the relationship between the degradation and the elongation. Since there is a close relationship between the temperature at which the measured weight of the sample is reduced by 5% and the degradation behavior of the mechanical property, analysis can be conducted effectively by an extremely small amount of the sample. Since the insulation degradation of relatively low voltage electric wires and cables can be determined in a non-destructive manner at high accuracy, the lifetime can be forecasted. (N.H.)

  10. Generalized Bohm’s criterion and negative anode voltage fall in electric discharges

    International Nuclear Information System (INIS)

    Londer, Ya. I.; Ul’yanov, K. N.

    2013-01-01

    The value of the voltage fall across the anode sheath is found as a function of the current density. Analytic solutions are obtained in a wide range of the ratio of the directed velocity of plasma electrons v 0 to their thermal velocity v T . It is shown that the voltage fall in a one-dimensional collisionless anode sheath is always negative. At the small values of v 0 /v T , the obtained expression asymptotically transforms into the Langmuir formula. Generalized Bohm’s criterion for an electric discharge with allowance for the space charge density ρ(0), electric field E(0), ion velocity v i (0), and ratio v 0 /v T at the plasma-sheath interface is formulated. It is shown that the minimum value of the ion velocity v i * (0) corresponds to the vanishing of the electric field at one point inside the sheath. The dependence of v i * (0) on ρ(0), E(0), and v 0 /v T determines the boundary of the existence domain of stationary solutions in the sheath. Using this criterion, the maximum possible degree of contraction of the electron current at the anode is determined for a short high-current vacuum arc discharge

  11. Integration of 100% heat pumps and electric vehicles in the low voltage distribution network: A Danish case story

    DEFF Research Database (Denmark)

    Shao, Nan; You, Shi; Segerberg, Helena

    2013-01-01

    The existing electricity infrastructure may to a great extent limit a high penetration of micro-sized Distributed Energy Rescores (DERs), due to physical bottlenecks, e.g. load capacities of cables and transformers and voltage limitations. In this study, integration impacts of heat pumps (HPs) an...

  12. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  13. High voltage high brightness electron accelerator with MITL voltage adder coupled to foilless diode

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poulkey, J.W.; Rovang, D.

    1995-01-01

    The design and analysis of a high brightness electron beam experiment under construction at Sandia National Laboratory is presented. The beam energy is 12 MeV, the current 35-40 kA, the rms radius 0.5 mm, and the pulse duration FWHM 40 ns. The accelerator is SABRE a pulsed inductive voltage adder, and the electron source is a magnetically immersed foilless diode. This experiment has as its goal to stretch the technology to the edge and produce the highest possible electron current in a submillimeter radius beam

  14. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  15. Illumination and Voltage Dependence of Electrical Characteristics of Au/0.03 Graphene-Doped PVA/n-Si Structures via Capacitance/Conductance-Voltage Measurements

    International Nuclear Information System (INIS)

    Sahar, Alialy; Şlemsettin, Altındal; Ahmet, Kaya; İ, Uslu

    2015-01-01

    Au/n-Si (MS) structures with a high dielectric interlayer (0.03 graphene-doped PVA) are fabricated to investigate the illumination and voltage effects on electrical and dielectric properties by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and at 1 MHz. Some of the main electrical parameters such as concentration of doping atoms (N D ), barrier height (ϕ B (C - V)), depletion layer width (W D ) and series resistance (R s ) show fairly large illumination dispersion. The voltage-dependent profile of surface states (N ss ) and resistance of the structure (R i ) are also obtained by using the dark-illumination capacitance (C dark -C ill ) and Nicollian-Brews methods, respectively. For a clear observation of changes in electrical parameters with illumination, the values of N D , W D , ϕ B (C - V) and R s are drawn as a function of illumination intensity. The values of N D and W D change almost linearly with illumination intensity. On the other hand, R s decreases almost exponentially with increasing illumination intensity whereas ϕ B (C - V) increases. The experimental results suggest that the use of a high dielectric interlayer (0.03 graphene-doped PVA) considerably passivates or reduces the magnitude of the surface states. The large change or dispersion in main electrical parameters can be attributed to generation of electron-hole pairs in the junction under illumination and to a good light absorption. All of these experimental results confirm that the fabricated Au/0.03 graphene-doped PVA/n-Si structure can be used as a photodiode or a capacitor in optoelectronic applications. (paper)

  16. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    Science.gov (United States)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  17. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erofeev, E. V., E-mail: erofeev@micran.ru [Tomsk State University of Control Systems and Radioelectronics, Research Institute of Electrical-Communication Systems (Russian Federation); Fedin, I. V.; Kutkov, I. V. [Research and Production Company “Micran” (Russian Federation); Yuryev, Yu. N. [National Research Tomsk Polytechnic University, Institute of Physics and Technology (Russian Federation)

    2017-02-15

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V{sub th} = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V{sub th} = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  18. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    International Nuclear Information System (INIS)

    Erofeev, E. V.; Fedin, I. V.; Kutkov, I. V.; Yuryev, Yu. N.

    2017-01-01

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V_t_h = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V_t_h = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  19. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. This is followed by treatment of the technical and economic problems arising in three phase-extra high voltage transmission. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating, and reactive power and stability problems.

  20. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. The technical and economic problems arising in three phase extra high voltage transmission are discussed. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating and reactive power and stability problems.

  1. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  2. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  3. CMOS-compatible high-voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Parpia, Z

    1988-01-01

    Considerable savings in cost and development time can be achieved if high-voltage ICs (HVICs) are fabricated in an existing low-voltage process. In this thesis, the feasibility of fabricating HVICs in a standard CMOS process is investigated. The high-voltage capabilities of an existing 5-{mu}m CMOS process are first studied. High-voltage n- and p-channel transistors with breakdown voltages of 50 and 190 V, respectively, were fabricated without any modifications to the process under consideration. SPICE models for these transistors are developed, and their accuracy verified by comparison with experimental results. In addition, the effect of the interconnect metallization on the high-voltage performance of these devices is also examined. Polysilicon field plates are found to be effective in preventing premature interconnect induced breakdown in these devices. A novel high-voltage transistor structure, the insulated base transistor (IBT), based on a merged MOS-bipolar concept, is proposed and implemented. In order to enhance the high-voltage device capabilities, an improved CMOS-compatible HVIC process using junction isolation is developed.

  4. High Voltage Homemade Capacitor Charger for Plasma Focus System

    International Nuclear Information System (INIS)

    Abdul Halim Baijan; Azaman Ahmad; Rokiah Mohd Sabri; Siti Aiasah Hashim; Mohd Rizal Md Chulan; Wah, L.K.; Azhar Ahmad; Rosli Che Ros; Mohd Faiz Mohd Zin

    2015-01-01

    A high voltage capacitor charger has been designed and built to replace a high voltage charger type General Atomics CCDs Power Supply which was damaged. The fabrication design was using materials which were easily available in the local market. Among the main components of the high-voltage charger is a transformer for neon lights, variable transformer rated 0 - 240 V 1 KVA, and 240 V transformer isolator. The results of experiments that have been conducted shows that a homemade capacitor charger was able to charge high voltage capacitors up to the required voltage of which was 12 kV. However the time taken for charging is quite long, up to more than 6 minutes. (author)

  5. Structure Design and Analysis of High-Voltage Power Supply for ECRH

    International Nuclear Information System (INIS)

    Wang Lei; Huang Yiyun; Zhao Yanping; Zhang Jian; Yang Lei; Guo Wenjun

    2014-01-01

    In order to develop a high-voltage power supply (HVPS) with high quality parameters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electrical field and potential simulations of its main devices are analyzed. Finally, relevant calculations and conclusions are given. (fusion engineering)

  6. Optimal Coordinated Management of a Plug-In Electric Vehicle Charging Station under a Flexible Penalty Contract for Voltage Security

    Directory of Open Access Journals (Sweden)

    Jip Kim

    2016-07-01

    Full Text Available The increasing penetration of plug-in electric vehicles (PEVs may cause a low-voltage problem in the distribution network. In particular, the introduction of charging stations where multiple PEVs are simultaneously charged at the same bus can aggravate the low-voltage problem. Unlike a distribution network operator (DNO who has the overall responsibility for stable and reliable network operation, a charging station operator (CSO may schedule PEV charging without consideration for the resulting severe voltage drop. Therefore, there is a need for the DNO to impose a coordination measure to induce the CSO to adjust its charging schedule to help mitigate the voltage problem. Although the current time-of-use (TOU tariff is an indirect coordination measure that can motivate the CSO to shift its charging demand to off-peak time by imposing a high rate at the peak time, it is limited by its rigidity in that the network voltage condition cannot be flexibly reflected in the tariff. Therefore, a flexible penalty contract (FPC for voltage security to be used as a direct coordination measure is proposed. In addition, the optimal coordinated management is formulated. Using the Pacific Gas and Electric Company (PG&E 69-bus test distribution network, the effectiveness of the coordination was verified by comparison with the current TOU tariff.

  7. A high-voltage pulse generator for corona plasma generation

    NARCIS (Netherlands)

    Yan, K.; Heesch, van E.J.M.; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Gompel, van F.M.; Leuken, van H.E.M.; Matyas, Z.

    2002-01-01

    This paper discusses a high-voltage pulse generator for producing corona plasma. The generator consists of three resonant charging circuits, a transmission line transformer, and a triggered spark-gap switch. Voltage pulses in the order of 30-100 kV with a rise time of 10-20 ns, a pulse duration of

  8. High voltage short plus generation based on avalanche circuit

    International Nuclear Information System (INIS)

    Hu Yuanfeng; Yu Xiaoqi

    2006-01-01

    Simulate the avalanche circuit in series with PSPICE module, design the high voltage short plus generation circuit by avalanche transistor in series for the sweep deflection circuit of streak camera. The output voltage ranges 1.2 KV into 50 ohm load. The rise time of the circuit is less than 3 ns. (authors)

  9. Power quality issues into a Danish low-voltage grid with electric vehicles

    DEFF Research Database (Denmark)

    Marra, Francesco; Jensen, Morten M.; Garcia-Valle, Rodrigo

    2011-01-01

    An increased interest on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is dealing with their introduction into low voltage (LV) distribution grids. Lately, analysis on power quality issues has received attention when considering EVs as additional load. The charging of EVs...

  10. Impact of plug-in electric vehicles on voltage unbalance in ...

    African Journals Online (AJOL)

    Plug-in electric vehicle (PEV) will soon be connected to residential distribution networks. ... generation units which transfer the energy stored in their battery into grid. ... electric vehicles on voltage imbalance in distribution system is presented. ... and other types of distribution generator such as solar photovoltaic and wind ...

  11. Physicochemical assessment criteria for high-voltage pulse capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Darian, L. A., E-mail: LDarian@rambler.ru; Lam, L. Kh. [National Research University, Moscow Power Engineering Institute (Russian Federation)

    2016-12-15

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  12. Physicochemical assessment criteria for high-voltage pulse capacitors

    International Nuclear Information System (INIS)

    Darian, L. A.; Lam, L. Kh.

    2016-01-01

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  13. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    Science.gov (United States)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  14. Experimental Study of Arcing on High-voltage Solar Arrays

    Science.gov (United States)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  15. High voltage performance of BARC-TIFR Pelletron Accelerator

    International Nuclear Information System (INIS)

    Surendran, P.; Ansari, Q.N.; Nair, J.P.

    2014-01-01

    The 14 UD Pelletron Accelerator at TIFR, Mumbai is operational since its inception in 1988. It was decided to impart enough time for high voltage conditioning to achieve higher operational voltage. Prior to this, comprehensive works such as replacing all the sputter ion pumps and Titanium sublimation pumps across the accelerator tube with new or refurbished ones and replacement of Alumina balls in the SF_6 drier with fresh balls were carried out. High voltage conditioning of each module was done. Further conditioning of two modules at a time in overlapping mode improved the terminal voltage. As a result of this rigorous conditioning Terminal voltage of 12.6 MV was achieved and beam has been delivered to users at 12 MV terminal. Details of this effort will be presented in this paper. (author)

  16. High voltage performance of BARC-TIFR Pelletron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Surendran, P.; Ansari, Q.N.; Nair, J.P., E-mail: surendra@tifr.res.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai (India); and others

    2014-07-01

    The 14 UD Pelletron Accelerator at TIFR, Mumbai is operational since its inception in 1988. It was decided to impart enough time for high voltage conditioning to achieve higher operational voltage. Prior to this, comprehensive works such as replacing all the sputter ion pumps and Titanium sublimation pumps across the accelerator tube with new or refurbished ones and replacement of Alumina balls in the SF{sub 6} drier with fresh balls were carried out. High voltage conditioning of each module was done. Further conditioning of two modules at a time in overlapping mode improved the terminal voltage. As a result of this rigorous conditioning Terminal voltage of 12.6 MV was achieved and beam has been delivered to users at 12 MV terminal. Details of this effort will be presented in this paper. (author)

  17. Radio and television interference caused by corona discharges from high-voltage transmission lines

    International Nuclear Information System (INIS)

    Sarmadi, M.

    1996-01-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather

  18. High voltage transmission lines studies with the use of artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ekonomou, L. [A.S.PE.T.E. - School of Pedagogical and Technological Education, Department of Electrical Engineering Educators, N. Heraklion, 141 21 Athens (Greece)

    2009-12-15

    The paper presents an alternative approach for the studies of high voltage transmission lines based on artificial intelligence and more specifically artificial neural networks (ANNs). In contrast to the existing conventional-analytical techniques and simulations which are using in the calculations empirical and/or approximating equations, this approach is based only on actual field data and actual measurements. The proposed approach is applied on high voltage transmission lines in order to calculate the lightning outages, on grounding systems in order to assess the grounding resistance and on high voltage transmission lines' polluted insulators in order to estimate the critical flashover voltage. The obtained results are very close to the actual ones for all three case studies, something which clearly implies that the ANN approach is well working and has an acceptable accuracy, constituting an additional tool of electric engineers. (author)

  19. On the mechanism of high-voltage discharge initiation in high-voltage accelerator accelerating tubes

    International Nuclear Information System (INIS)

    Zheleznikov, F.G.

    1983-01-01

    Experimental investigation into physical natupe of discharge processes in high-voltage accelerator accelerating tubes in the absence of the accelerated particle beam are conducted. The installation for the study of the mechanism of initiating vacuum isolation conductivity is used in the experiments. The vacuum chamber of the installation is made of steel and sealed with rubber packings. Electrodes 300-360 mm in diameter are made of stainless steel. Two variants of cleaning technology were used before electrode assembling: 1) degreasing by organic solvents; 2) cleaning by fine grinding cloth with successive washing by rectificated alcohol. Analysis of the obtained data shows that forma. tion of background flux of charged particles in interelectrode gap is caused by external photoelectric effect, excited by X radiation, which initiates the formation of intensive internal field in microfilms of non-conducting impurities on the electrode surfaces. The secondary electron emission plays the minor role at that

  20. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    Science.gov (United States)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  1. MAGY: An innovative high voltage-low current power supply for gyrotron

    International Nuclear Information System (INIS)

    Siravo, Ugo; Alex, Juergen; Bader, Michael; Carpita, Mauro; Fasel, Damien; Gavin, Serge; Perez, Albert

    2011-01-01

    From the electrical point of view, the body and the anode of high power gyrotrons behave as capacitive loads. A highly dynamic power supply is, therefore, hard to achieve. The MAGY concept (Modulator for the Anode of a triode type GYrotron) embodies an innovative solution to manage the capacitive current ensuring a very low ripple on the output voltage. It consists of a series of independent, bi-directional and regulated DC sources. Compared to existing topologies, this solution requires a smaller number of power modules. It avoids internal high frequency modulation and simultaneously offers high resolution of the output voltage and a wide range of operating scenarios.

  2. Assessment of the voltage level and losses with photovoltaic and electric vehicle in low voltage network

    NARCIS (Netherlands)

    Ye, G.; Xiang, Y.; Cobben, J.F.G.

    2014-01-01

    Livelab from Alliander, a network operator, is a program which started to measure electrical and power quality data in the Dutch distribution network since 2013. A proper probability distribution can be used to model load distribution on feeders. This paper presents a methodology to generate the

  3. Solid State High Voltage Supply for EB and X-Ray Generators

    Czech Academy of Sciences Publication Activity Database

    Zobač, Martin; Vlček, Ivan

    2009-01-01

    Roč. 44, 5-6 (2009), s. 73-75 ISSN 0861-4717 R&D Projects: GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20650511 Keywords : high voltage supply * electron beam generator * x-ray generator Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. Using Expert Systems in Evaluation of the State of High Voltage Machine Insulation Systems

    Directory of Open Access Journals (Sweden)

    K. Záliš

    2000-01-01

    Full Text Available Expert systems are used for evaluating the actual state and future behavior of insulating systems of high voltage electrical machines and equipment. Several rule-based expert systems have been developed in cooperation with top diagnostic workplaces in the Czech Republic for this purpose. The IZOLEX expert system evaluates diagnostic measurement data from commonly used offline diagnostic methods for the diagnostic of high voltage insulation of rotating machines, non-rotating machines and insulating oils. The CVEX expert system evaluates the discharge activity on high voltage electrical machines and equipment by means of an off-line measurement. The CVEXON expert system is for evaluating the discharge activity by on-line measurement, and the ALTONEX expert system is the expert system for on-line monitoring of rotating machines. These developed expert systems are also used for educating students (in bachelor, master and post-graduate studies and in courses which are organized for practicing engineers and technicians and for specialists in the electrical power engineering branch. A complex project has recently been set up to evaluate the measurement of partial discharges. Two parallel expert systems for evaluating partial dischatge activity on high voltage electrical machines will work at the same time in this complex evaluating system.

  5. Facts and feelings : Framing effects in responses to uncertainties about high-voltage power lines

    NARCIS (Netherlands)

    de Vries, G.; de Bruijn, J.A.

    2017-01-01

    To ensure power supply security, electricity transmission system operators (TSOs) have to upscale high-voltage overhead power lines. However, upscaling frequently meets opposition. Opposition can be caused by uncertainties about risks and benefits and might lead to costly delays (Linder, 1995;

  6. Planning aspects of ac extra high voltage lines

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, H

    1964-01-01

    The technical points arising in any project for application of higher voltages on power grids in Europe are discussed. The cost aspects of two alternative ways of extending the voltage level of existing systems are discussed in detail. The short-circuit current in a high-power system with isolated or grounded neutral point and its relation to the mode of grounding is examined. For a transmission distance of 200 kVm, operating cost for each kWh transmitted are shown on curves for voltages of 220, 380 and 700 kV against transmitted energy. This shows that for any rated voltage there is a range of energy values which can be transmitted economically. Factors to be considered in maintaining, selecting or rejecting transformers and switchgear of other systems for higher voltage purposes are mentioned.

  7. Integrated differential high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Farch, Kjartan

    2015-01-01

    In this paper an integrated differential high-voltage transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is designed and implemented in a 0.35 μm high-voltage process. Measurements are performed on the integrated circuit in order...... to assess its performance. The circuit generates pulses at differential voltage levels of 60V, 80V and 100 V, a frequency up to 5MHz and a measured driving strength of 1.75 V/ns with the CMUT connected. The total on-chip area occupied by the transmitting circuit is 0.18 mm2 and the power consumption...

  8. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Bridge (P2DAB) converter, i.e. low-voltage (LV) side parallel and high-voltage (HV) side series, is proposed to achieve high voltage gain and low current stress over switching devices and transformer windings. Given the unmodified P2DAB power stage, by regulating the phase-shift angle between......Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...... the paralleled active bridges, the power equations and voltage gain are then modified, and therefore the operation range can be extended effectively. The operating principles of the proposed converter and its power characteristics under various operation modes are studied, and the design constraints...

  9. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    Directory of Open Access Journals (Sweden)

    S. Demirezen

    Full Text Available In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε′, ε′, tanδ, electric modulus (M′ and M″ and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε′, ε′, tanδ, M′, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε′, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε′ and ε″ values at low frequencies may be attributed to the Maxwell–Wagner and space charge polarization. The high values of ε′ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M′ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M′ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε′, ε″, tanδ, M′, M″ and ac electric conductivity (σac is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization. Keywords: Thin films, Electrical properties, Interface/interphase

  10. Performance of a 2-megawatt high voltage test load

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.

    1995-01-01

    A high-power, water-cooled resistive load which simulates the electrical load characteristics of a high-power klystron, capable of 2 megawatts dissipation at 95 kV DC, was built and installed at the Advanced Photon Source for use in load-testing high voltage power supplies. During this testing, the test load has logged approximately 35 hours of operation at power levels in excess of one mezawatt. Slight variations in the resistance of the load during operation indicate that leakage currents in the cooling water may be a significant factor affecting the performance of the load. Sufficient performance data have been collected to indicate that leakage current through the deionized (DI) water coolant shunts roughly 15 percent of the full-load current around the load resistor elements. The leakage current could cause deterioration of internal components of the load. The load pressure vessel was disassembled and inspected internally for any signs of significant wear and distress. Results of this inspection and possible modifications for improved performance will be discussed

  11. Optical control system for high-voltage terminals

    International Nuclear Information System (INIS)

    Bicek, J.J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal

  12. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Xiao, Dong-Dong; Ge, Mingyuan; Yu, Xiqian; Chu, Yong; Huang, Xiaojing; Zhang, Xu-Dong; Yin, Ya-Xia; Yang, Xiao-Qing; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2018-03-01

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg -1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Self-aligned photolithography for the fabrication of fully transparent high-voltage devices

    Science.gov (United States)

    Zhang, Yonghui; Mei, Zengxia; Huo, Wenxing; Wang, Tao; Liang, Huili; Du, Xiaolong

    2018-05-01

    High-voltage devices, working in the range of hundreds of volts, are indispensable elements in the driving or readout circuits for various kinds of displays, integrated microelectromechanical systems and x-ray imaging sensors. However, the device performances are found hardly uniform or repeatable due to the misalignment issue, which are extremely common for offset drain high-voltage devices. To resolve this issue, this article reports a set of self-aligned photolithography technology for the fabrication of high-voltage devices. High-performance fully-transparent high-voltage thin film transistors, diodes and logic inverters are successfully fabricated with this technology. Unlike other self-aligned routes, opaque masks are introduced on the backside of the transparent substrate to facilitate proximity exposure method. The photolithography process is simulated and analyzed with technology computer aided design simulation to explain the working principle of the proximity exposure method. The substrate thickness is found to be vital for the implementation of this technology based on both simulation and experimental results. The electrical performance of high-voltage devices is dependent on the offset length, which can be delicately modulated by changing the exposure dose. The presented self-aligned photolithography technology is proved to be feasible in high-voltage circuits, demonstrating its huge potential in practical industrial applications.

  14. A New Contribution in Reducing Electric Field Distribution Within/Around Medium Voltage Underground Cable Terminations

    Directory of Open Access Journals (Sweden)

    S. S. Desouky

    2017-10-01

    Full Text Available Ιn medium voltage cables, the stress control layers play an important part in controlling the electric field distribution around the medium voltage underground cable terminations. Underground cable accessories, used in medium voltage cable systems, need a stress control tube in order to maintain and control the insulation level which is designed for long life times. The term “electrical stress control” refers to the cable termination analysis of optimizing the electrical stress in the area of insulation shield cutback to reduce the electrical field concentration at this point in order to reduce breakdown in the cable insulation. This paper presents the effect of some materials of different relative permittivities and geometrical regulation with the curved shape stress relief cones on the electric field distribution of cable termination. The optimization was done by comparing the results of eight materials used. Also, the effect of the change in the thickness of the stress control tube is presented. The modeling design is very important for engineers to find the optimal solution of terminator design of medium voltage cables. This paper also describes the evolution of stress control systems and their benefits. A developed program using Finite Element Method (FEM has calculated a numerical study to the stress control layering electric field distribution.

  15. Energy Storage Options for Voltage Support in Low-Voltage Grids with High Penetration of Photovoltaic

    DEFF Research Database (Denmark)

    Marra, Francesco; Tarek Fawzy, Y.; Bülo, Thorsten

    2012-01-01

    to be established. In the long term, these solutions should also aim to allow further more PV installed capacity, while meeting the power quality requirements. In this paper, different concepts of energy storage are proposed to ensure the voltage quality requirements in a LV grid with high PV penetration...

  16. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid

    Science.gov (United States)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick

    2015-01-01

    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  17. Evaluation of diagnostic technique for degradation of low-voltage electric cables with silicone rubber insulator

    International Nuclear Information System (INIS)

    Mikami, Masao

    2005-01-01

    As a part of countermeasures against ageing problems of nuclear power plants, it is requested to establish non-destructive diagnostic technique for their degradation of low voltage electric cables and assessment standard of their life. Having aimed at investigating the degradation of low-voltage electric cable with silicone rubber insulator, change of its surface hardness at elevated temperature were measured by indenter modules. Moreover, we also measured the elongation at break, which is regarded as general degradation index of electric cables, and the surface hardness with a micro hardness meter. Consequently, it is seen that the indenter modulus measurement is (1) capable to obtain general feature of the thermal degradation of silicone rubber insulator, (2) applicable to diagnose the degree of degradation of the electric cable by converting the result to elongation at break, (3) well correlated with the hardness measurement of the electric cable with the micro hardness meter. (author)

  18. A compact 100 kV high voltage glycol capacitor.

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Feng, Jiahuai

    2015-01-01

    A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.

  19. A compact, all solid-state LC high voltage generator.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  20. Low cost photomultiplier high-voltage readout system

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Kunz, P.F.

    1976-10-01

    The Large Aperture Solenoid Spectrometer (LASS) at Stanford Linear Accelerator Center (SLAC) requires monitoring over 300 voltages. This data is recorded on magnetic tapes along with the event data. It must also be displayed so that operators can easily monitor and adjust the voltages. A low-cost high-voltage readout system has been implemented to offer stand-alone digital readout capability as well as fast data transfer to a host computer. The system is flexible enough to permit use of a DVM or ADC and commercially available analogue multiplexers

  1. Effects of a low-voltage static electric field on energy metabolism in astrocytes.

    Science.gov (United States)

    Huang, R; Peng, L; Hertz, L

    1997-01-01

    Mouse astrocytes (glial cells) in primary cultures were exposed to a low-voltage static DC electric field with no current flow and thus with no generation of magnetic fields. The electric field altered the rate of glycolysis, measured by 2-deoxyglucose accumulation. The magnitude and direction of this effect depended on the polarization of the field and the applied voltage. The maximum effect was an increase of approximately 30%, which occurred with field across the cells at an intensity that can be calculated to be 0.3 mV/cm or less. Reversal of the polarization converted the stimulation to a small but statistically significant inhibition.

  2. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  3. Thin grain oriented electrical steel for PWM voltages fed magnetic cores

    Directory of Open Access Journals (Sweden)

    Thierry Belgrand

    2018-04-01

    Full Text Available This paper reports on performances of high permeability grain oriented electrical steel when used in association with power electronic switching devices. Loss measurement results obtained from the Epstein test, using sinusoidal or various PWM voltages in medium frequency range, show that for both studied thicknesses (HGO 0.23mm and HGO 0.18mm, comparing performances at a fixed induction level between the various situations may not be the most convenient method. The effect of magnetic domain refinement has been investigated. After having shown the interest of lowering the thickness, an alternative way of looking at losses is proposed that may help to design the magnetic core when it comes to the matter of reducing size in considering frequency and magnetization levels.

  4. Design & Fabrication of a High-Voltage Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  5. Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System

    Directory of Open Access Journals (Sweden)

    Xueqi Hu

    2016-10-01

    Full Text Available In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field.

  6. Fire extinguishing of electrical equipment under voltage at nuclear power plants

    International Nuclear Information System (INIS)

    Capek, Josef

    2009-01-01

    Fire extinguishing on equipment that is under voltage is always hazardous. Conventional fire fighting equipment applicable to this task includes powder and gas extinguishers, which, however, have some drawbacks. Therefore, attention has been increasingly devoted to high-pressure fire extinguishing, whose assets include better heat removal as compared to a full water flow where the majority of the water runs off without any cooling effect. This article describes the testing of some types and combinations of extinguishing techniques and their interpretation based on earth-leakage current measurement and determination of a safe distance for fire extinguishing. Methodology described in CSN IEC 60-1:1994 and CSN EN 3-7:2004 was applied. To meet the criterion, none of the tests was to exhibit an earth-leakage current higher than 0.5 mA. In the accredited laboratory test room setup, 3 extinguishing equipment arrangements proved to extinguish fire on electrical equipment under voltage at a safe distance of 1 m (or 3 m). (orig.)

  7. Force and Motion Characteristics of Contamination Particles near the High Voltage End of UHVDC Insulator

    Directory of Open Access Journals (Sweden)

    Lei Lan

    2017-07-01

    Full Text Available It is important to reveal the relations of physical factors to deposition of contaminants on insulator. In this paper, the simulation model of high voltage end of insulator was established to study the force and motion characteristics of particles affected by electric force and airflow drag force near the ultra-high voltage direct current (UHVDC insulator. By finite element method, the electric field was set specially to be similar to the one near practical insulator, the steady fluid field was simulated. The electric force and air drag force were loaded on the uniformly charged particles. The characteristics of the two forces on particles, the relationship between quantity of electric charge on particles and probability of particles contacting the insulator were analyzed. It was found that, near the sheds, airflow drag force on particles is significantly greater than electric force with less electric charge. As the charge multiplies, electric force increases linearly, airflow drag force grows more slowly. There is a trend that the magnitude of electric force and drag force is going to similar. Meanwhile, the probability of particles contacting the insulator is increased too. However, at a certain level of charge which has different value with different airflow velocity, the contact probability has extremum here. After exceeding the value, as the charge increasing, the contact probability decreases gradually.

  8. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    International Nuclear Information System (INIS)

    Park, Sae-Hoon; Kim, Jeong-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub; Kim, Yu-Seok

    2014-01-01

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand

  9. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Jeong-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yu-Seok [Dongguk Univ.., Gyeongju (Korea, Republic of)

    2014-10-15

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand.

  10. Pulsed high voltage discharge induce hematologic changes

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Sterilization appears to be the best way to ensure a very high level of safety in transfusion of blood and its ... those of individual proteins. ... MATERIALS AND METHODS ... Schematic diagram of the apparatus for generation of the Pulsed ... different number of pulses (function of exposure time) of high E-.

  11. Electric Boiler and Heat Pump Thermo-Electrical Models for Demand Side Management Analysis in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bak-Jensen, Birgitte; Chen, Zhe

    2013-01-01

    The last fifteen years many European countries have integrated large percentage of renewable energy on their electricity generation mix. In Denmark the 21.3% of the electricity consumed nowadays is produced by the wind, and it has planned to be the 50% by 2025. In order to front future challenges...... on the power system control and operation, created by this unstable way of generation, Demand Side Management turns to be a promising solution. The storage capacity from thermo-electric units, like electric boilers and heat pumps, allows operating them with certain freedom. Hence they can be employed under...... certain coordination, to actively respond to the power system fluctuations. The following paper presents two simple thermo-electrical models of an electrical boiler and an air-source CO2 heat pump system. The purpose is using them in low voltage grids analysis to assess their capacity and flexibility...

  12. High-Voltage, Multiphasic, Nanosecond Pulses to Modulate Cellular Responses.

    Science.gov (United States)

    Ryan, Hollie A; Hirakawa, Shinji; Yang, Enbo; Zhou, Chunrong; Xiao, Shu

    2018-04-01

    Nanosecond electric pulses are an effective power source in plasma medicine and biological stimulation, in which biophysical responses are governed by peak power and not energy. While uniphasic nanosecond pulse generators are widely available, the recent discovery that biological effects can be uniquely modulated by reversing the polarity of nanosecond duration pulses calls for the development of a multimodal pulse generator. This paper describes a method to generate nanosecond multiphasic pulses for biomedical use, and specifically demonstrates its ability to cancel or enhance cell swelling and blebbing. The generator consists of a series of the fundamental module, which includes a capacitor and a MOSFET switch. A positive or a negative phase pulse module can be produced based on how the switch is connected. Stacking the modules in series can increase the voltage up to 5 kV. Multiple stacks in parallel can create multiphase outputs. As each stack is independently controlled and charged, multiphasic pulses can be created to produce flexible and versatile pulse waveforms. The circuit topology can be used for high-frequency uniphasic or biphasic nanosecond burst pulse production, creating numerous opportunities for the generator in electroporation applications, tissue ablation, wound healing, and nonthermal plasma generation.

  13. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Science.gov (United States)

    2010-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad tracks...

  14. Statistical characteristics of transient enclosure voltage in ultra-high-voltage gas-insulated switchgear

    Science.gov (United States)

    Cai, Yuanji; Guan, Yonggang; Liu, Weidong

    2017-06-01

    Transient enclosure voltage (TEV), which is a phenomenon induced by the inner dielectric breakdown of SF6 during disconnector operations in a gas-insulated switchgear (GIS), may cause issues relating to shock hazard and electromagnetic interference to secondary equipment. This is a critical factor regarding the electromagnetic compatibility of ultra-high-voltage (UHV) substations. In this paper, the statistical characteristics of TEV at UHV level are collected from field experiments, and are analyzed and compared to those from a repeated strike process. The TEV waveforms during disconnector operations are recorded by a self-developed measurement system first. Then, statistical characteristics, such as the pulse number, duration of pulses, frequency components, magnitude and single pulse duration, are extracted. The transmission line theory is introduced to analyze the TEV and is validated by the experimental results. Finally, the relationship between the TEV and the repeated strike process is analyzed. This proves that the pulse voltage of the TEV is proportional to the corresponding breakdown voltage. The results contribute to the definition of the standard testing waveform of the TEV, and can aid the protection of electronic devices in substations by minimizing the threat of this phenomenon.

  15. High voltage switch triggered by a laser-photocathode subsystem

    Science.gov (United States)

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  16. High Voltage Design Considerations for the Electrostatic Septum for the Mu2e Beam Resonant

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Matthew L. [Fermilab; Jensen, C.; Morris, D.; Nagaslaev, V.; Pham, H.; Tinsley, D.

    2018-04-01

    aTwo electrostatic septa (ESS) are being designed for the slow extraction of 8GeV proton beam for the Mu2e experiment at Fermilab. Special attention is given to the high voltage components that affect the performance of the septa. The components under consideration are the high voltage (HV) feedthrough, cathode standoff (CS), and clearing electrode ceramic standoffs (CECS). Previous experience with similar HV systems at Fermilab was used to define the evaluation criteria of the design of the high voltage components. Using electric field simulation software, high E-field intensities on the components and integrated field strength along the surface of the dielectric material were minimized. Here we discuss the limitations found and improvements made based on those studies.

  17. Novel high-voltage power lateral MOSFET with adaptive buried electrodes

    International Nuclear Information System (INIS)

    Zhang Wen-Tong; Wu Li-Juan; Qiao Ming; Luo Xiao-Rong; Zhang Bo; Li Zhao-Ji

    2012-01-01

    A new high-voltage and low-specific on-resistance (R on,sp ) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage V d is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field E I and the breakdown voltage (BV) of ABE SOI are 545 V/μm and −587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low R on,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Study on condition monitoring techniques for low voltage electrical cables in nuclear power plants

    International Nuclear Information System (INIS)

    Hirao, Hideo; Sakai, Takeshi; Kajimura, Yuusaku

    2017-01-01

    Low voltage electrical cables installed in nuclear power plants are required to maintain its function in a design basis accident environment and they are qualified to that environment. The cables degrade also in normal operating conditions due to ageing and they must maintain integrity until the end of their qualified life. Demands for the condition monitoring technique for low voltage electrical cables have therefore been increasing as nuclear power plants operate longer. A single perfect method for this purpose is not available yet, but the possibility to use two different types of methods which can complement with each other has been examined. The combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Indenter Modulus (IM) method was found highly effective. FT-IR is a method that determines chemical properties (changes in molecular bindings) of cables by using infrared rays, while IM is a method that determines mechanical properties (changes in hardness) of cables by indenters. Both methods are non-destructive and can be applied in-situ to the same material. Reliability of the evaluation can be assured by applying two different types of measurement principles that complement with each other. In this study, various cable samples with different kinds of insulation material (cross-linked polyethylene, ethylene propylene rubber, silicone rubber etc.) were aged with a special accelerated ageing technique which applies simultaneous thermal and radiation ageing to simulate ageing phenomena in a more realistic manner, and the degree of ageing was evaluated with FT-IR and IM. The evaluation result shows good correlation with ageing time and other ageing properties for most material types and the effectiveness of these methods were demonstrated. (author)

  19. Experimental research for vacuum gap breakdown in high voltage multi-pulse

    International Nuclear Information System (INIS)

    Huang Ziping; He Jialong; Chen Sifu; Deng Jianjun; Wang Liping

    2008-01-01

    Base on the breakdown theory of vacuum gaps, experiments have been done to find out the breakdown electric field intensities in high voltage single-and triple-pulse for 26 vacuum gaps with different shapes. The experimental results match up to the theory and confirm the effect of the pulse-number increase on the breakdown electric field intensity. The key point to decide the macroscopical breakdown electric field intensity of a vacuum gap has been pointed out with some advises about the design of a multi-pulse linear inductive accelerator's accelerate gap. (authors)

  20. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  1. Effect of applied voltage parameters on the electric characteristics of a DBD in coaxial electrode configuration

    NARCIS (Netherlands)

    Petrovic, D.; Martens, T.; De Bie, C.; Brok, W.J.M.; Bogaerts, A.; Schmidt, J.; Simek, M.; Pekarek, S.

    2009-01-01

    A numerical parameter study has been performed for a cylindrical atmospheric pressure dielectric barrier discharge (DBD) in helium with nitrogen impurities using a two-dimensional time dependent fluid model. The calculated electric currents and gap voltages as a function of time for a given applied

  2. Modeling of long High Voltage AC Underground

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella; Bak, Claus Leth; Wiechowski, W. T.

    2010-01-01

    cable models, perform highly accurate field measurements for validating the model and identifying possible disadvantages of the cable model. Furthermore the project suggests and implements improvements and validates them against several field measurements. It is shown in this paper how a new method...

  3. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  4. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  5. Management of Power Quality Issues in Low Voltage Networks using Electric Vehicles: Experimental Validation

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Knezovic, Katarina; Marinelli, Mattia

    2017-01-01

    the existing and future power quality problems. One of the main aspects of the power quality relates to voltage quality. The aim of this work is to experimentally analyse whether series-produced EVs, adhering to contemporary standard and without relying on any V2G capability, can mitigate line voltage drops...... in improving the power quality of a highly unbalanced grid...

  6. High-voltage pulsed generator for dynamic fragmentation of rocks.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  7. High-voltage pulsed generator for dynamic fragmentation of rocks

    Science.gov (United States)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  8. Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Choong-Koo Chang

    2016-02-01

    Full Text Available Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV high resistance grounding (HRG system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

  9. High-Voltage Multiplexing for ATLAS ITk

    CERN Document Server

    Hommels, Bart; The ATLAS collaboration

    2017-01-01

    The High Luminosity upgrade to the Large Hadron Collider (HL-LHC) requires a replacement of the present ATLAS inner tracker with an all-silicon inner tracker (ITk). The outer radii of the ITk will consist of groups of silicon strip sensors mounted on common support structures. Lack of space for additional cabling will require groups of sensors to share a common HV bus (-500 V). This creates a need to remotely disable a failing sensor from the common HV bus to permit continued operation of the other sensors. We have developed circuitry consisting of a Gallium Nitride Field-Effect transistor (GaNFET) and a HV Multiplier circuit to disable a failed sensor. The devices have been shown to survive radiation doses as high as 1 x 1016 neutrons/cm2 and ionizing doses over 200 Mrad. We will present the HV Mux circuitry and show irradiation results on individual components with an emphasis on the GaNFET results with neutrons, protons, pions, and gammas. We will present a dual-stage variation of the HV Mux that will perm...

  10. Design and realization of high voltage disconnector condition monitoring system

    Science.gov (United States)

    Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang

    2017-08-01

    The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.

  11. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    Science.gov (United States)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  12. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    Science.gov (United States)

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  13. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar

    2017-01-01

    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  14. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    Science.gov (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  15. Concept design of the high voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations -- such as the Channel Tunnel -- demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  16. Concept design of the high-voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-01-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations-such as the Channel Tunnel-demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  17. On some aspects of high voltage electron microscopy

    International Nuclear Information System (INIS)

    Jouffrey, B.; Trinquier, J.

    1987-01-01

    The present paper deals with high voltage electron microscopy (HVEM). It is an overview on this domain due to the pionneer work of G. Dupouy which has permitted to perform a new kind of electron microscopy. Since this time, HVEM has shown its interest in high resolution, irradiations, chemical analysis, in situ experiments

  18. High-Voltage, Low-Power BNC Feedthrough Terminator

    Science.gov (United States)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  19. Non-canonical spectral decomposition of random functions of the traction voltage and current in electric transportation systems

    Directory of Open Access Journals (Sweden)

    N.A. Kostin

    2015-03-01

    Full Text Available The paper proposes the non-canonical spectral decomposition of random functions of the traction voltages and currents. This decomposition is adapted for the electric transportation systems. The numerical representation is carried out for the random function of voltage on the pantograph of electric locomotives VL8 and DE1.

  20. Computer applications: Automatic control system for high-voltage accelerator

    International Nuclear Information System (INIS)

    Bryukhanov, A.N.; Komissarov, P.Yu.; Lapin, V.V.; Latushkin, S.T.. Fomenko, D.E.; Yudin, L.I.

    1992-01-01

    An automatic control system for a high-voltage electrostatic accelerator with an accelerating potential of up to 500 kV is described. The electronic apparatus on the high-voltage platform is controlled and monitored by means of a fiber-optic data-exchange system. The system is based on CAMAC modules that are controlled by a microprocessor crate controller. Data on accelerator operation are represented and control instructions are issued by means of an alphanumeric terminal. 8 refs., 6 figs

  1. High voltage pulsed cable design: a practical example

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces.

  2. High voltage pulsed cable design: a practical example

    International Nuclear Information System (INIS)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces

  3. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid (AVC-TeDP)

    Science.gov (United States)

    Gemin, Paul; Kupiszewski, Tom; Radun, Arthur; Pan, Yan; Lai, Rixin; Zhang, Di; Wang, Ruxi; Wu, Xinhui; Jiang, Yan; Galioto, Steve; hide

    2015-01-01

    The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.

  4. High-voltage, high-current, solid-state closing switch

    Science.gov (United States)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  5. Digitally Programmable High-Q Voltage Mode Universal Filter

    Directory of Open Access Journals (Sweden)

    D. Singh

    2013-12-01

    Full Text Available A new low-voltage low-power CMOS current feedback amplifier (CFA is presented in this paper. This is used to realize a novel digitally programmable CFA (DPCFA using transistor arrays and MOS switches. The proposed realizations nearly allow rail-to-rail swing capability at all the ports. Class-AB output stage ensures low power dissipation and high current drive capability. The proposed CFA/ DPCFA operates at supply voltage of ±0.75 V and exhibits bandwidth better than 95 MHz. An application of the DPCFA to realize a novel voltage mode high-Q digitally programmable universal filter (UF is given. Performances of all the proposed circuits are verified by PSPICE simulation using TSMC 0.25μm technology parameters.

  6. Integrated reconfigurable high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2015-01-01

    In this paper a high-voltage transmitting circuit aimed for capacitive micromachined ultrasonic transducers (CMUTs) used in scanners for medical applications is designed and implemented in a 0.35 μm high-voltage CMOS process. The transmitting circuit is reconfigurable externally making it able...... to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes with voltages up to 100 V, maximum pulse range of 50 V, frequencies up to 5 MHz and different driving slew rates. Measurements are performed on the circuit in order to assess its functionality and power consumption...... performance. The design occupies an on-chip area of 0.938 mm2 and the power consumption of a 128-element transmitting circuit array that would be used in an portable ultrasound scanner is found to be a maximum of 181 mW....

  7. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  8. Control of Grid Interactive PV Inverters for High Penetration in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan

    Regarding of high density deployment of PV installations in electricity grids, new technical challenges such as voltage rise, thermal loading of network components, voltage unbalance, harmonic interaction and fault current contributions are being added to tasks list of distribution system operators...... of these inverters may depend on grid connection rules which are forced by DSOs. Minimum requirement expected from PV inverters is to transfer maximum power by taking direct current (DC) form from PV modules and release it into AC grid and also continuously keep the inverters synchronized to the grid even under...... for this problem but PV inverters connected to highly capacitive networks are able to employ extra current and voltage harmonics compensation to avoid triggering network resonances at low order frequencies. The barriers such as harmonics interaction, flicker, fault current contribution and dc current injections...

  9. The Preceding Voltage Pulse and Separation Welding Mechanism of Electrical Contacts

    DEFF Research Database (Denmark)

    Yang, Xiao Cheng; Huang, Jiang; Li, Zhen Biao

    2016-01-01

    In order to obtain a better understanding of the welding mechanism in contact separation, electrical endurance tests were conducted with AgSnO2 and AgNi contacts on a simulation test device. Waveforms of contact displacement, contact voltage, and current were recorded with LabVIEW during the tests......, and changes in a contact gap and heights of pips with increases in operation cycles were observed through charge-coupled device cameras. The resultant test results show that welding in separation is accompanied with a preceding voltage pulse which represents arc rather than contact bounce arc....

  10. Background voltage distortion influence on power electric systems in the presence of the Steinmetz circuit

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Luis; Pedra, Joaquin [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain); Caro, Manuel [IDOM Ingenieria y Arquitectura, C. Barcas 2, 46002 Valencia (Spain)

    2009-01-15

    In traction systems, it is usual to connect reactances in delta configuration with single-phase loads to reduce voltage unbalances and avoid electric system operation problems. This set is known as Steinmetz circuit. Parallel and series resonances can occur due to the capacitive reactance of the Steinmetz circuit and affect power quality. In this paper, the series resonance ''observed'' from the supply system is numerically located. The study of this resonance is important to avoid problems due to background voltage distortion. Experimental measurements are also presented to validate the obtained numerical results. (author)

  11. Wideband Electrostatic Vibration Energy Harvester (e-VEH) Having a Low Start-Up Voltage Employing a High-Voltage Integrated Interface

    International Nuclear Information System (INIS)

    Dudka, A; Galayko, D; Basset, P; Cottone, F; Blokhina, E

    2013-01-01

    This paper reports on an electrostatic Vibration Energy Harvester (e-VEH) system, for which the energy conversion process is initiated with a low bias voltage and is compatible with wideband stochastic external vibrations. The system employs the auto-synchronous conditioning circuit topology with the use of a novel dedicated integrated low-power high-voltage switch that is needed to connect the charge pump and flyback – two main parts of the used conditioning circuit. The proposed switch is designed and implemented in AMS035HV CMOS technology. Thanks to the proposed switch device, which is driven with a low-voltage ground-referenced logic, the e-VEH system may operate within a large voltage range, from a pre-charge low voltage up to several tens volts. With such a high-voltage e-VEH operation, it is possible to obtain a strong mechanical coupling and a high rate of vibration energy conversion. The used transducer/resonator device is fabricated with a batch-processed MEMS technology. When excited with stochastic vibrations having an acceleration level of 0.8 g rms distributed in the band 110–170 Hz, up to 0.75 μW of net electrical power has been harvested with our system. This work presents an important milestone in the challenge of designing a fully integrated smart conditioning interface for the capacitive e-VEHs

  12. Effect of Transportation and Low Voltage Electrical Stimulation on Meat Quality Characteristics of Omani Sheep

    Directory of Open Access Journals (Sweden)

    Isam T. Kadim

    2010-01-01

    Full Text Available The aim of this study was to determine the effects of road transportation during the hot season (36 oC and low voltage electrical stimulation on meat quality characteristics of Omani sheep. Twenty intact male sheep (1-year old were divided into two equal groups: 3 hrs transported or non-transported. The transported group was transferred to the slaughterhouse the day of slaughter in an open truck covering a distance of approximately 300 km. The non-transported group was kept in a lairage of a commercial slaughterhouse with ad libitum feed and water for 3 days prior to slaughter. Blood samples were collected from the animals before loading and prior to slaughter in order to assess their physiological response to stress in terms of hormonal levels. Fifty percent of the carcasses from each group were randomly assigned to low voltage (90 V at 20 min postmortem. Muscle ultimate pH, expressed juice, cooking loss percentage, WB-shear force value, sarcomere length, myofibrillar fragmentation index and colour L*, a*, b* were measured on samples from Longissimus dorsi muscles collected 24 hrs postmortem at 2-4 oC. The transported sheep had significantly (P<0.05 higher cortisol adrenaline, nor-adrenaline, and dopamine levels than the non-transported group. Muscles from electrically-stimulated carcasses had significantly (P<0.05 lower pH values, longer sarcomere length, lower shear force value, higher expressed juice, myofibrillar fragmentation index and L* values than those from non-stimulated ones. Transportation significantly influenced meat quality characteristics of the Longissimus dorsi muscle. Muscle ultimate pH and shear force values were significantly higher, while CIE L*, a*, b*, expressed juice and cooking loss were lower in transported than non-transported sheep. This study indicated that pre-slaughter transportation at high ambient temperatures can cause noticeable changes in muscle physiology in sheep. Nevertheless, meat quality of transported

  13. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    Science.gov (United States)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  14. Low Voltage Electrolytic Capacitor Pulse Forming Inductive Network for Electric Weapons

    National Research Council Canada - National Science Library

    Mays, Thomas A

    2006-01-01

    .... Pulsed alternators potentially have the same maintenance issues as other motor-generator sets, so a solid-state system would be desirable, but high voltage capacitor systems are not robust enough for the field...

  15. Breakdown of highly excited oxygen in a DC electric field

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsin, D.V.; Yuryshev, N.N.; Deryugin, A.A.; Kochetov, I.V.; Napartovich, A.P.

    2000-01-01

    The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules in the a 1 Δ g excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solving the Boltzmann equation is in good agreement with the experimental data

  16. High-voltage short-fall pulse generator

    International Nuclear Information System (INIS)

    Dolbilov, G.V.; Fateev, A.A.; Petrov, V.A.

    1986-01-01

    Powerful high-voltage pulses with short fall times and relatively low afterpulse amplitude are required for the deflection systems of accelerators. A generator is described that provides, into a 75-ohm load, a voltage pulse of up to 100 kV with a fall time of less than 1 nsec and a relative afterpulse amplitude of less than or equal to 15%. The generator employs a short-circuited ferrite-filled line in which shock waves are formed. A magnetic section is used to increase power. The switch is a TGI1-2500/50 thyratron. The main causes of afterpulses and methods for reducing their amplitude are examined

  17. Mass impregnation plant speeds high voltage cable production

    Energy Technology Data Exchange (ETDEWEB)

    1965-05-07

    A mass impregnation and continuous sheath extrusion plant that will eliminate the long period of vacuum treatment usually required for high voltage oil-filled cables is among the latest techniques included in the new factory at Pirelli General's Eastleigh works. The new factory is said to be the first in Europe designed solely for the manufacture of the full range of oil-filled cables. Possible future increases of system voltages to about 750-kV ac or 1000-kV dc have been taken into account in the design of the works, so that only a small amount of modification and new plant will be involved.

  18. Digital measurement system for the LHC klystron high voltage modulator.

    CERN Document Server

    Mikkelsen, Anders

    Accelerating voltage in the Large Hadron Collider (LHC) is created by a means of 16 superconducting standing wave RF cavities, each fed by a 400MHz/300kW continuous wave klystron amplifier. Part of the upgrade program for the LHC long shutdown one is to replace the obsolete analogue current and voltage measurement circuitry located in the high voltage bunkers by a new, digital system, using ADCs and optical fibres. A digital measurement card is implemented and integrated into the current HV modulator oil tank (floating at -58kV) and interfaced to the existing digital VME boards collecting the data for several klystrons at the ground potential. Measured signals are stored for the logging, diagnostics and post-mortem analysis purposes.

  19. A Review of High Voltage Drive Amplifiers for Capacitive Actuators

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...

  20. Switching phenomena in high-voltage circuit breakers

    International Nuclear Information System (INIS)

    Nakanishi, K.

    1991-01-01

    The topics covered in this book include: general problems concerning current interruption, the physical arc model, and miscellaneous types of modern switching apparatus, such as gas circuit breakers, gas-insulated switch-gear, vacuum circuit breakers and high-voltage direct-current circuit breakers

  1. Medium and high voltage power cables market in Europe

    International Nuclear Information System (INIS)

    Kupiec, M.

    1992-06-01

    This note gives an overview of the European market for medium and high voltage power cables. In this text, emphasis is placed on suppliers and important European clients; there is also a brief review of the different techniques for cable laying and utilization in Europe. This not has mainly been drafted from informations supplied by EUROPACABLE

  2. High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Bregliozzi, G; Calatroni, S; Costa Pinto, P; Day, H; Ducimetière, L; Kramer, T; Namora, V; Mertens, V; Taborelli, M

    2014-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.

  3. Calculations for high voltage insulators and conductors with computer aided design and transient voltage simulations engineering for a large electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, F.; Roumie, M.; Frick, G.; Heusch, B.

    1994-11-01

    Calculations have been made to increase the high voltage performance of some components and to explain electrical failures of the Vivitron. These involve simulations of static stresses and transient over voltages, especially on insulating boards and electrodes occurring before or during breakdowns. Developments made to the structure of the machine over the last years and new ideas to improve the static and dynamic behaviour are presented. The application of this study and HV tests led recently to a nominal potential near 20 MV without sparks. (author). 49 refs., 25 figs., 2 tabs.

  4. Calculations for high voltage insulators and conductors with computer aided design and transient voltage simulations engineering for a large electrostatic accelerator

    International Nuclear Information System (INIS)

    Osswald, F.; Roumie, M.; Frick, G.; Heusch, B.

    1994-11-01

    Calculations have been made to increase the high voltage performance of some components and to explain electrical failures of the Vivitron. These involve simulations of static stresses and transient over voltages, especially on insulating boards and electrodes occurring before or during breakdowns. Developments made to the structure of the machine over the last years and new ideas to improve the static and dynamic behaviour are presented. The application of this study and HV tests led recently to a nominal potential near 20 MV without sparks. (author). 49 refs., 25 figs., 2 tabs

  5. Influence Voltage Pulse Electrical Discharge In The Water at the Endurance Fatigue Of Carbon Steel

    Directory of Open Access Journals (Sweden)

    I.A. Vakulenko

    2016-05-01

    Full Text Available Effect of pulses of electrical discharge in the water at the magnitude of the limited endurance under cyclic loading thermally hardened carbon steel was investigated. Observed increase stamina during cyclic loading a corresponding increase in the number of accumulated dislocations on the fracture surface. Using the equation of Cofino-Manson has revealed a decrease of strain loading cycle after treatment discharges. For field-cycle fatigue as a result of processing the voltage pulses carbon steel structure improvement, followed by growth of limited endurance decrease per cycle of deformation. With increasing amplitude of the voltage loop gain stamina effect on metal processing voltage pulses is reduced. The results can be used to extend the life of parts that are subject to cyclic loading.

  6. Tests of industrial ethylene-propylene rubber high voltage cable for cryogenic use

    CERN Document Server

    Balhan, B; Goddard, B; Muratori, G; Otwinowski, S; Rieubland, Jean Michel; Wang, H; CERN. Geneva. SPS and LEP Division

    1999-01-01

    At the beginning of 1999 UCLA has received a prototype High Voltage Cryogenic Cable supplied fee of charge by Pirelli. The cable is intended for more than ten years of service at 100 kV D.C. and liquid argon temperature. Thecable uses an all welded construction, whichi is axially tight and free of ionizable voids. The cable was submitted to a number of mechanical and electrical tests as described below.

  7. Facts and feelings: Framing effects in responses to uncertainties about high-voltage power lines

    OpenAIRE

    de Vries, G.; de Bruijn, J.A.

    2017-01-01

    To ensure power supply security, electricity transmission system operators (TSOs) have to upscale high-voltage overhead power lines. However, upscaling frequently meets opposition. Opposition can be caused by uncertainties about risks and benefits and might lead to costly delays (Linder, 1995; Wiedemann, Boerner,& Claus, 2016). To minimize opposition, TSOs and related public services need to respond to these uncertainties in a credible and convincing (effective) way. Effective risk commun...

  8. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Science.gov (United States)

    2010-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; minimum design...

  9. Dynamic voltage stability constrained congestion management framework for deregulated electricity markets

    International Nuclear Information System (INIS)

    Amjady, Nima; Hakimi, Mahmood

    2012-01-01

    Highlights: ► A new congestion management method for electricity markets is proposed. ► The proposed method includes dynamic models of generators and loads. ► Dynamic voltage stability limits are properly modeled in the proposed method. ► The proposed method is compared with several other congestion management methods. ► It leads to a more robust power system with a lower congestion management cost. - Abstract: Congestion management is an important part of power system operation in today deregulated electricity markets. However, congestion management is traditionally performed based on static analysis tools, while these tools may not correctly capture dynamic voltage stability limits of a power system. In this paper, a new congestion management framework considering dynamic voltage stability boundary of power system is proposed. For this purpose, precise dynamic modeling of power system equipment, including generators and loads, is incorporated into the proposed congestion management framework. The proposed method alleviates congestion with a lower congestion management cost and more dynamic voltage stability margin, resulting in a more robust power system, compared with the previous congestion management methods. The validity of proposed congestion management framework is studied based on the New England 39-bus power system. The obtained results confirm the validity of the developed approach.

  10. Modelling chloride penetration in concrete using electrical voltage and current approaches

    Directory of Open Access Journals (Sweden)

    Juan Lizarazo-Marriaga

    2011-03-01

    Full Text Available This paper reports a research programme aimed at giving a better understanding of the phenomena involved in the chloride penetration in cement-based materials. The general approach used was to solve the Nernst-Planck equation numerically for two physical ideal states that define the possible conditions under which chlorides will move through concrete. These conditions are named in this paper as voltage control and current control. For each condition, experiments and simulations were carried out in order to establish the importance of electrical variables such as voltage and current in modelling chloride transport in concrete. The results of experiments and simulations showed that if those electrical variables are included as key parameters in the modelling of chloride penetration through concrete, a better understanding of this complex phenomenon can be obtained.

  11. High-voltage pulse generator synchronous with LINAC

    International Nuclear Information System (INIS)

    Muto, M.; Hiratsuka, Yoshio; Niimura, Nobuo

    1974-01-01

    High-voltage pulse generator (H.V. Flip-Flop) No.2, an improved type of No.1, is described, which is used in the structural analysis of transient phenomena in materials through the neutron TOF with a Linac. The method of producing positive and negative high-voltage pulses synchronous with the Linac is identical with that in No.1. However, No.2 has outstanding features as follows: (1) The rise time of output pulses is reduced to 0.3 msec, due to the improvement of switching circuit and the winding of a step-up transformer; (2) The widths of positive and negative pulses are variable up to maximum 8 and 16 frames, respectively (One frame = 10 msec); (3) The distribution of TOF signals from a BF 3 counter to a time analyzer is possible even in the negative voltage duration. The panel is provided with the switches for choosing pulse width and the frame for analysis, as well as the dials for setting positive/negative pulse voltage values and the respective indicating meters. (Mori, K)

  12. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  13. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    International Nuclear Information System (INIS)

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-μs pulse width driving a load of ∼100 Ω, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 Ω, up to a level of ∼650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of ∼100 Ω

  14. Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis

    International Nuclear Information System (INIS)

    Yun, J; Shim, J-I; Shin, D-S

    2013-01-01

    We demonstrate a modeling method based on the three-dimensional electrical and thermal circuit analysis to extract current, voltage and temperature distributions of light-emitting diodes (LEDs). In our model, the electrical circuit analysis is performed first to extract the current and voltage distributions in the LED. Utilizing the result obtained from the electrical circuit analysis as distributed heat sources, the thermal circuit is set up by using the duality between Fourier's law and Ohm's law. From the analysis of the thermal circuit, the temperature distribution at each epitaxial film is successfully obtained. Comparisons of experimental and simulation results are made by employing an InGaN/GaN multiple-quantum-well blue LED. Validity of the electrical circuit analysis is confirmed by comparing the light distribution at the surface. Since the temperature distribution at each epitaxial film cannot be obtained experimentally, the apparent temperature distribution is compared at the surface of the LED chip. Also, experimentally obtained average junction temperature is compared with the value calculated from the modeling, yielding a very good agreement. The analysis method based on the circuit modeling has an advantage of taking distributed heat sources as inputs, which is essential for high-power devices with significant self-heating. (paper)

  15. Influence Voltage Pulse Electrical Discharge In The Water at the Endurance Fatigue Of Carbon Steel

    OpenAIRE

    I.A. Vakulenko; A.G. Lisnyak

    2016-01-01

    Effect of pulses of electrical discharge in the water at the magnitude of the limited endurance under cyclic loading thermally hardened carbon steel was investigated. Observed increase stamina during cyclic loading a corresponding increase in the number of accumulated dislocations on the fracture surface. Using the equation of Cofino-Manson has revealed a decrease of strain loading cycle after treatment discharges. For field-cycle fatigue as a result of processing the voltage pulses carbon st...

  16. High-voltage variable-duration pulse generator

    International Nuclear Information System (INIS)

    Anisimova, T.E.; Akkuratov, E.V.; Gromovenko, V.M.; Nikonov, Yu.P.; Malinin, A.N.

    1988-01-01

    A high-voltage generator is described that allows pulse duration tau to be varied within wide limits and has high efficiency (at least 50% for tau = 0.5 tau/sub max/) and an amplitude of up to 5 kV, a repetition frequency of up to 200 Hz,and a variable duration of 0-30 μsec. The generator is used in the controller of an electron accelerator

  17. Square-Wave Voltage Injection Algorithm for PMSM Position Sensorless Control With High Robustness to Voltage Errors

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2017-01-01

    relationship with the magnetic field distortion. Position estimation errors caused by higher order harmonic inductances and voltage harmonics generated by the SVPWM are also discussed. Both simulations and experiments are carried out based on a commercial PMSM to verify the superiority of the proposed method......Rotor position estimated with high-frequency (HF) voltage injection methods can be distorted by voltage errors due to inverter nonlinearities, motor resistance, and rotational voltage drops, etc. This paper proposes an improved HF square-wave voltage injection algorithm, which is robust to voltage...... errors without any compensations meanwhile has less fluctuation in the position estimation error. The average position estimation error is investigated based on the analysis of phase harmonic inductances, and deduced in the form of the phase shift of the second-order harmonic inductances to derive its...

  18. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized surface high-voltage lines... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be repaired... on power circuits with a phase-to-phase nominal voltage no greater than 15,000 volts; (3) Such...

  19. Effect of electric and magnetic fields on current-voltage characteristics of a lyotropic liquid crystal

    International Nuclear Information System (INIS)

    Minasyants, M.Kh.; Badalyan, G. G.; Shahinian, A. A.

    1997-01-01

    The effect of electric and magnetic fields on current-voltage characteristics is studied for the lamellar phase in the lyotropic liquid-crystal sodium pentadecylsulfonate (SPDS)-water and lecithin-water systems. It has been found that the current-voltage characteristics of both systems have hysteresis. In the case of ionogenic SPDS, the hysteresis is formed due to ion current caused by the spatial reorientation of domains consisting of parallel lamellar fragments; in the case of lecithin, whose molecules contain dipoles, the hysteresis is formed due to the spatial reorientation of domains caused by the interaction of the resultant dipole moment of the domains with the electric field. It is shown that the introduction into lamellae of cetylpyridine bromide, which has an intrinsic magnetic moment, changes the resultant magnetic moment of domains and, thus, also the hysteresis loop of the current-voltage characteristic. The systems studied show the 'memory' effect with respect to both the electric and magnetic fields. Field-induced processes of domain reorientation were recorded by the method of small-angle x-ray scattering

  20. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, A., E-mail: ariobarzan.oderj@gmail.com; Rastgoo, A.; Mohammadi, M.

    2017-03-15

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  1. High-voltage pixel sensors for ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Perić, I., E-mail: ivan.peric@ziti.uni-heidelberg.de [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Kreidl, C.; Fischer, P. [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M. [CPPM, Marseille (France); Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B. [CERN, Geneve (Switzerland); Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A. [University of Geneve (Switzerland); and others

    2014-11-21

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  2. High-voltage, high-power architecture considerations

    International Nuclear Information System (INIS)

    Moser, R.L.

    1985-01-01

    Three basic EPS architectures, direct energy transfer, peak-power tracking, and a potential EPS architecture for a nuclear reactor are described and compared. Considerations for the power source and energy storage are discussed. Factors to be considered in selecting the operating voltage are pointed out. Other EPS architecture considerations are autonomy, solar array degrees of freedom, and EPS modularity. It was concluded that selection of the power source and energy storage has major impacts on the spacecraft architecture and mass

  3. The high voltage grid interface in present and future JET operational requirements

    International Nuclear Information System (INIS)

    Selin, K.I.; Ciscato, D.; Marchese, V.; Ashmole, P.; Jervis, B.

    1987-01-01

    A number of limitations surround the JET pulse load and its impact upon the high voltage network in order not to decrease quality and reliability of the electrical supply to other consumers. According to the present agreement with the Central Electricity Generating Board (CEGB) the active and reactive power swing at the 400kV point of supply should not exceed 575MW and 375MVAr. The voltage drop should be less than 1.5% and the rise and decay of JET load should not exceed 200MW/s. There are also limitations in load power steps the purpose being to protect components of the CEGB power system. The paper presents two simulated JET scenarios in which the plasma current is Ip = 5MA and the additional heating power to the plasma is 25MW. The pulse termination is either normal or abnormal (plasma disruption). In the first case a reactive power compensation of 130MVAr is needed in order to comply with the limits on voltage drop. In case of plasma disruption an active power compensation of 150MW is needed in addition in order that the combined JET load may remain within the present limits of active power step, reactive power swing and voltage drop

  4. Voltage control and protection in electrical power systems from system components to wide-area control

    CERN Document Server

    Corsi, Sandro

    2015-01-01

    Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At th...

  5. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  6. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  7. Ground-fault protection of insulated high-voltage power networks in mines

    Energy Technology Data Exchange (ETDEWEB)

    Pudelko, H

    1976-09-01

    Safety of power networks is discussed in underground black coal mines in Poland. Safety in mines with a long service life was compared with safety in mines constructed since 1950. Power networks and systems protecting against electric ground-faults in the 2 mine groups are comparatively evaluated. Systems for protection against electric ground-faults in mine high-voltage networks with an insulated star point of the transformer are characterized. Fluctuations of resistance of electrical insulation under conditions of changing load are analyzed. The results of analyses are given in 14 diagrams. Recommendations for design of systems protecting against electric ground-faults in 6 kV mine power systems are made. 7 references.

  8. Expansion of the high-voltage direct current transmission systems; Netzausbau mit Hochspannungs-Gleichstrom-Uebertragung

    Energy Technology Data Exchange (ETDEWEB)

    Spahic, Ervin; Benz, Thomas; Goerner, Raphael; Sass, Florian [ABB AG, Mannheim (Germany)

    2012-12-15

    In September 2010 the German federal government announced its energy concept for an environmentally friendly, reliable and affordable energy supply. This concept describes a ''path into the era of renewable energy'' up to the year 2050, with electricity production from photovoltaics and wind power taking centre stage. Since the expansion of renewable energy production is mainly taking place in the North (wind power) and the South (PV), this poses a great challenge to the electricity networks. It necessitates the expansion of power transmission systems, notably for transporting electricity generated by wind power in the North to the consumer centres in Western and Southern Germany. However, progress to this end has been very slow. For this reason a technical question now presents itself, namely whether high-voltage direct current technology could possibly offer a solution to the electricity transport problems associated with the energy turnaround.

  9. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    Science.gov (United States)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  10. Sheath and arc-column voltages in high-pressure arc discharges

    International Nuclear Information System (INIS)

    Benilov, M S; Benilova, L G; Li Heping; Wu Guiqing

    2012-01-01

    Electrical characteristics of a 1 cm-long free-burning atmospheric-pressure argon arc are calculated by means of a model taking into account the existence of a near-cathode space-charge sheath and the discrepancy between the electron and heavy-particle temperatures in the arc column. The computed arc voltage exhibits a variation with the arc current I similar to the one revealed by the experiment and exceeds experimental values by no more than approximately 2 V in the current range 20-175 A. The sheath contributes about two-thirds or more of the arc voltage. The LTE model predicts a different variation of the arc voltage with I and underestimates the experimental values appreciably for low currents but by no more than approximately 2 V for I ≳ 120 A. However, the latter can hardly be considered as a proof of unimportance of the space-charge sheath at high currents: the LTE model overestimates both the resistance of the bulk of the arc column and the resistance of the part of the column that is adjacent to the cathode, and this overestimation to a certain extent compensates for the neglect of the voltage drop in the sheath. Furthermore, if the latter resistance were evaluated in the framework of the LTE model in an accurate way, then the overestimation would be still much stronger and the obtained voltage would significantly exceed those observed in the experiment.

  11. Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge

    Science.gov (United States)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2014-11-01

    The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P =6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.

  12. Disintegration of rocks based on magnetically isolated high voltage discharge

    Science.gov (United States)

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper.

  13. A high open-circuit voltage gallium nitride betavoltaic microbattery

    International Nuclear Information System (INIS)

    Cheng, Zaijun; Chen, Xuyuan; San, Haisheng; Feng, Zhihong; Liu, Bo

    2012-01-01

    A high open-circuit voltage betavoltaic microbattery based on a gallium nitride (GaN) p–i–n homojunction is demonstrated. As a beta-absorbing layer, the low electron concentration of the n-type GaN layer is achieved by the process of Fe compensation doping. Under the irradiation of a planar solid 63 Ni source with activity of 0.5 mCi, the open-circuit voltage of the fabricated microbattery with 2 × 2 mm 2 area reaches as much as 1.64 V, which is the record value reported for betavoltaic batteries with 63 Ni source, the short-circuit current was measured as 568 pA and the conversion effective of 0.98% was obtained. The experimental results suggest that GaN is a high-potential candidate for developing the betavoltaic microbattery. (paper)

  14. High-voltage direct-current circuit breakers

    International Nuclear Information System (INIS)

    Yoshioka, Y.; Hirasawa, K.

    1991-01-01

    This paper reports that in 1954 the first high-voltage direct-current (HVDC) transmission system was put into operation between Gotland and the mainland of Sweden. Its system voltage and capacity were 100 kV and 20 MW, respectively. Since then many HVDC transmission systems have been planned, constructed, or commissioned in more than 30 places worldwide, and their total capacity is close to 40 GW. Most systems commissioned to date are two-terminal schemes, and HVDC breakers are not yet used in the high-potential main circuit of those systems, because the system is expected to perform well using only converter/inverter control even at a fault stage of the transmission line. However, even in a two-terminal scheme there are not a few merits in using an HVDC breaker when the system has two parallel transmission lines, that is, when it is a double-circuit system

  15. A high-voltage triggered pseudospark discharge experiment

    International Nuclear Information System (INIS)

    Ramaswamy, K.; Destler, W.W.; Rodgers, J.

    1996-01-01

    The design and execution of a pulsed high-voltage (350 endash 400 keV) triggered pseudospark discharge experiment is reported. Experimental studies were carried out to obtain an optimal design for stable and reliable pseudospark operation in a high-voltage regime (approx-gt 350 kV). Experiments were performed to determine the most suitable fill gas for electron-beam formation. The pseudospark discharge is initiated by a trigger mechanism involving a flashover between the trigger electrode and hollow cathode housing. Experimental results characterizing the electron-beam energy using the range-energy method are reported. Source size imaging was carried out using an x-ray pinhole camera and a novel technique using Mylar as a witness plate. It was experimentally determined that strong pinching occurred later in time and was associated with the lower-energy electrons. copyright 1996 American Institute of Physics

  16. Design and implementation of the wireless high voltage control system

    International Nuclear Information System (INIS)

    Srivastava, Saurabh; Misra, A.; Pandey, H.K.; Thakur, S.K.; Pandit, V.S.

    2011-01-01

    In this paper we will describe the implementation of the wireless link for controlling and monitoring the serial data between control PC and the interface card (general DAQ card), by replacing existing RS232 based remote control system for controlling and monitoring High Voltage Power Supply (120kV/50mA). The enhancement in the reliability is achieved by replacing old RS232 based control system with wireless system by isolating ground loop. (author)

  17. Adventitious X-radiation from high voltage equipment

    International Nuclear Information System (INIS)

    Martin, E.B.M.

    1979-01-01

    The monograph is concerned with hazards of unwanted x-rays from sources such as television receivers, high voltage equipment, radar transmitters, switchgear and electron beam apparatus for welding, evaporation, analysis and microscopy. Chapters are included on units, production of x radiation, biological effects, protection standards, radiation monitoring, shielding and control of access, medical and dosimetric supervision and types of equipment. A bibliography of 92 references and other cited literature is included. (U.K.)

  18. Increasing break-down strength of the support colomn of high-voltage accelerators

    International Nuclear Information System (INIS)

    Rezvykh, K.A.; Romanov, V.A.

    1981-01-01

    Calculation results of strength of electric field of the EG-2.5 electrostatic accelerator for the support colomn with electrodes of circular and elliptical transverse cross sections are presented. Conducted is the choice of constructing the column under the condition that the dimensions of the tank, high-voltage electrode, step between the sections and internal diameter of the colomn electrodes are not changed. The potential at the high-voltage electrode equals 2.5 MV while the average longitudinal gradient of the colomn field equals 1.25 MV/m. The support insulation colomn of the high-voltage accelerator screened by rings with transverse cross section in the form of orientation oval in some accelerators promotes obtaining higher operating voltage and at the same time increase of operation reliability at the rest unchanged dimensions of the plant because the probability of break-down between the support colomn and the tank wall decreases. The latter is especially significant for most high-energy accelerators as well as for accelerators used in national economy [ru

  19. ELECTROMECHANICAL TRANSIENT PROCESSES DURING SUPPLY VOLTAGE CHANGING IN THE SYSTEM OF POLYMER INSULATION COVERING OF THE CURRENT-CARRYING CORE OF ULTRA HIGH VOLTAGE CABLES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2018-04-01

    Full Text Available Aim. The article is devoted to the analysis of the electromechanical transient processes in a system of three frequency-controlled electric drives based on asynchronous motors that control current-carrying core motion, as well as to the study of the effect of such processes on the modes applying three-layer polymer insulation to the current-carrying core. Technique. The study was conducted based on the concepts of electromechanics, electromagnetic field theory, mathematical physics, mathematical modeling. Results. A mathematical model has been developed to analyze transients in an electromechanical system consisting of three frequency-controlled electric drives providing current-carrying core motion of ultra-high voltage cables in an inclined extrusion line. The coordination of the electromechanical parameters of the system drives has been carried out and the permissible changes in the supply voltage at the limiting mass while moving current-carrying core of ultra-high voltage cables with applied polymer insulation have been estimated. Scientific novelty. For the first time it is determined that with the limiting mass of the current-carrying core, the electromechanical system allows to stabilize the current-carrying core speed with the required accuracy at short-term decreases in the supply voltage by no more than 27 % of its amplitude value. It is also shown that this system is resistant to short-term increases in voltage by 32 % for 0.2 s. Practical significance. Using the developed model, it is possible to calculate the change in the configuration and speed of the slack current-carrying core when applying polymer insulation, depending on the specific mass of the current-carrying core per unit length, its tension at the bottom, the torque of the traction motor and the supply voltage to achieve stable operation of the system and accurate working of the set parameters.

  20. High-voltage therapy of carcinoma of the prostate

    International Nuclear Information System (INIS)

    Schnorr, D.; Kelly, L.U.; Guddat, H.M.; Schubert, J.; Gorski, J.; Schorcht, J.; Mau, S.; Wehnert, J.; Medizinische Akademie, Dresden

    1983-01-01

    High-voltage therapy is becoming increasingly important as a form of individual differential therapy of carcinoma of the prostate. Around 40% of all patients with a diagnosis of carcinoma of the prostate can be treated with high-voltage therapy. The precondition is the absence of bone and soft tissue metastases and of juxtaregional lymph node metastases. Individual carcinoma therapy is based on pre therapeutic tumor classification according to the TNM system. The 5-year survival rates are presented from a retrospective study carried out using primary radiation monotherapy and a combined hormone and radiation therapy; these figures were calculated by the life-table method. The study revealed no significant differences between the two forms of therapy as regards 5-year survival rates. The 5-year survival rates of all patients of the classifications T 0 -T 3 N/sub x/-N 2 M 0 irradiated (n: 198) (72% +- 11% for hormone plus radiation therapy and 74% +- 11% for radiation monotherapy) did not differ greatly from those of a normal male population of the same age (77%). High-voltage therapy of carcinoma of the prostate can thus be classified as a curative method of treatment. (author)

  1. Some questions of the technique of high-voltage testing of accele-- rating tube space in electrostatic accelerators

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Mukhametshin, V.I.; Dmitriev, E.P.; Kidalov, A.I.

    1983-01-01

    In the course of high-voltage testing of accelerating spaces a wide spread of experimental values of electric strength is observed. This circumstance is determined by a number of factors one of which is the technique used for high-voltage testing. For the purpose of obtaining more reliable experimental data on electric strength of accelerating spaces it is suggested to take for a criterion of electric strength of an accelerating space in long accelerating tubes a long-time withstood voltage which is equal approximately to a doubled working space voltage obtained as a result of a smooth voltage rise at dark current density not exceeding (1...5)x10 -2 A/cm 2 . In the course of testing of accelerating spaces of 25 mm height with total working area of electrodes approximately 360 cm 2 and insulator area onto vacuum approximately 150 cm 2 a long-time 70 kV voltage with dark current less than 1.10 -8 A is obtained

  2. Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery

    International Nuclear Information System (INIS)

    Cheng Zai-Jun; San Hai-Sheng; Chen Xu-Yuan; Liu Bo; Feng Zhi-Hong

    2011-01-01

    A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated. Under the irradiation of a 4×4 mm 2 planar solid 63 Ni source with an activity of 2 mCi, the open-circuit voltage V oc of the fabricated single 2×2mm 2 cell reaches as high as 1.62 V, the short-circuit current density J sc is measured to be 16nA/cm 2 . The microbattery has a fill factor of 55%, and the energy conversion efficiency of beta radiation into electricity reaches to 1.13%. The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices. (cross-disciplinary physics and related areas of science and technology)

  3. Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-01-01

    Full Text Available The battery is a key component and the major fault source in electric vehicles (EVs. Ensuring power battery safety is of great significance to make the diagnosis more effective and predict the occurrence of faults, for the power battery is one of the core technologies of EVs. This paper proposes a voltage fault diagnosis detection mechanism using entropy theory which is demonstrated in an EV with a multiple-cell battery system during an actual operation situation. The preliminary analysis, after collecting and preprocessing the typical data periods from Operation Service and Management Center for Electric Vehicle (OSMC-EV in Beijing, shows that overvoltage fault for Li-ion batteries cell can be observed from the voltage curves. To further locate abnormal cells and predict faults, an entropy weight method is established to calculate the objective weight, which reduces the subjectivity and improves the reliability. The result clearly identifies the abnormity of cell voltage. The proposed diagnostic model can be used for EV real-time diagnosis without laboratory testing methods. It is more effective than traditional methods based on contrastive analysis.

  4. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.

  5. Determining the mode of high voltage breakdowns in vacuum devices

    International Nuclear Information System (INIS)

    Miller, H.C.; Furno, E.J.; Sturtz, J.P.

    1980-01-01

    High voltage breakdowns (HVBs) occur in many vacuum devices. It frequently is of great practical interest to know the type (or mode) of such HVB's, since this can indicate weak points in the device. Post-mortems can sometimes be helpful, but it would be quite desirable to have a technique which would allow the HVB mode to be determined in an operating device. Photography can be quite helpful, but unfortunately many devices do not permit optical access to the region of interest. However, the idea of using photography in conjunction with other diagnostic techniques to establish the validity of these techniques seemed promising, since these techniques could then be used to determine the mode of HVBs in opaque devices. A literature search indicates that promising techniques are to measure the voltage applied to the device (or the current through the device) and also to look for x-rays generated by the device during an HVB

  6. Uv laser triggering of high-voltage gas switches

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Frost, C.A.; Green, T.A.

    1982-01-01

    Two different techniques are discussed for uv laser triggering of high-voltage gas switches using a KrF laser (248 nm) to create an ionized channel through the dielectric gas in a spark gap. One technique uses an uv laser to induce breakdown in SF 6 . For this technique, we present data that demonstrate a 1-sigma jitter of +- 150 ps for a 0.5-MV switch at 80% of its self-breakdown voltage using a low-divergence KrF laser. The other scheme uses additives to the normal dielectric gas, such as tripropylamine, which are selected to undergo resonant two-step ionization in the uv laser field

  7. High voltage power supplies for INDUS-2 RF system

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  8. Electrohydrodynamics: a high-voltage direct energy conversion process

    International Nuclear Information System (INIS)

    Brun, S.

    1967-04-01

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [fr

  9. Three-phase current transformer rectifier sets. High-voltage power supplies for difficult conditions in electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Stackelberg, Josef von [Rico-Werk Eiserlo und Emmrich GmbH, Toenisvorst (Germany)

    2013-04-01

    The precipitation rate of electrostatic precipitators (ESP) highly depends on the consistency of waste gas. Among other things, electrical conductivity plays an important role as well as the ability of particles to be electrically charged or ionised. Within certain limits, common ESPs are able to clean waste gas satisfactorily. If the dust attributes exceed these limits, more sophisticated technical solutions are required in the ESP to meet the demands for the gas cleaning equipment. In these cases, a three phase transformer rectifier system offers an alternative to the conventional single phase system, as it delivers a smooth direct current voltage over a wide voltage range. (orig.)

  10. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  11. A High Voltage Swing 1.9 GHz PA in Standard CMOS

    NARCIS (Netherlands)

    Aartsen, W.A.J.; Annema, Anne J.; Nauta, Bram

    2002-01-01

    A circuit technique for RF power amplifiers that reliably handle voltage peaks well above the nominal supply voltage is presented. To achieve this high-voltage tolerance the circuit implements switched-cascode transistors that yield reliable operation for voltages up to 7V at RF frequencies in a

  12. Management of High-Voltage Burns of the Hand and Wrist with Negative Pressure Dressing

    Directory of Open Access Journals (Sweden)

    Nazım Gümüş

    2017-12-01

    Full Text Available Objective: Negative pressure dressing stimulates wound healing by promoting cellular proliferation and regeneration. It also removes interstitial edema and increases local blood flow, resulting in rapid growth of the granulation tissue. We used the dressing method in deep hand and wrist burns caused by high-voltage electrical current, which leads to progressive tissue necrosis, elevated compartment pressure, and deep tissue edema, to reveal if subatmospheric pressure could limit the zone of injury or ongoing tissue necrosis after electrical burn. Material and Methods: Six hands of five patients, who came in contact with high-voltage electrical wire carrying more than 1000 volts, are presented in this study. Hands and wrists were seriously injured and contracted. After the initial treatment involving fluid resuscitation, fasciotomy, carpal tunnel release, and debridement, a negative pressure dressing was applied to the wounds of hand, wrist, and forearm with 125 mm Hg continuous pressure, and maintained for 20 days. Results: When negative pressure dressing was stopped on the 20th day, significant granulation tissue developed over the hand and forearm wounds. However, wrist wounds needed more debridement and repeated dressings because of the presence of necrosis. Edema of the hands subsided significantly during the use of negative pressure dressing. Time to closure for hand and forearm wounds decreased considerably. Moreover, in one wrist, spontaneous closure was achieved at about one month. All hands except one treated with negative pressure dressing could be saved from amputation; however, significant tissue loss developed, needing complex reconstruction procedures. One hand was amputated because of the permanent loss of blood perfusion. Conclusion: The management of high-voltage burns of hand and wrist with subatmospheric pressure appears to be capable of reducing hand edema and accelerating closure of the wounds. It seems that negative

  13. Simulation Model solves exact the Enigma named Generating high Voltages and high Frequencies by Tesla Coil

    OpenAIRE

    Simo Janjanin

    2016-01-01

    Simulation model of Tesla coil has been successfully completed, and has been verified the procedure and functioning. The literature and documentation for the model were taken from the rich sources, especially the copies of Tesla patents. The oscillating system‟s electrical scheme consists of the voltage supply 220/50 Hz, Fe transformer, capacitor and belonging chosen electrical components, the air gap in the primary Tesla coil (air transformer) and spark gap in the exit of the coil. The inves...

  14. High voltage power supplies for ITER RF heating and current drive systems

    International Nuclear Information System (INIS)

    Gassmann, T.; Arambhadiya, B.; Beaumont, B.; Baruah, U.K.; Bonicelli, T.; Darbos, C.; Purohit, D.; Decamps, H.; Albajar, F.; Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T.; Parmar, D.; Patel, A.; Rathi, D.; Singh, N.P.

    2011-01-01

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  15. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED

    Energy Technology Data Exchange (ETDEWEB)

    Sunstrom, Joseph [Daikin America, Inc., Orangeburg, NY (United States); Hendershot, Ron E. [Daikin America, Inc., Orangeburg, NY (United States)

    2017-03-06

    An evaluation of high voltage electrolytes which contain fluorochemicals as solvents/additive has been completed with the objective of formulating a safe, stable electrolyte capable of operation to 4.6 V. Stable cycle performance has been demonstrated in LiNi1/3Mn1/3Co1/3O2 (NMC111)/graphite cells to 4.5 V. The ability to operate at high voltage results in significant energy density gain (>30%) which would manifest as longer battery life resulting in higher range for electric vehicles. Alternatively, a higher energy density battery can be made smaller without sacrificing existing energy. In addition, the fluorinated electrolytes examined showed better safety performance when tested in abuse conditions. The results are promising for future advanced battery development for vehicles as well as other applications.

  16. High Voltage EEE Parts for EMA/EHA Applications on Manned Launch Vehicles

    Science.gov (United States)

    Griffin, Trent; Young, David

    2011-01-01

    The objective of this paper is an assessment of high voltage electronic components required for high horsepower electric thrust vector control (TVC) systems for human spaceflight launch critical application. The scope consists of creating of a database of available Grade 1 electrical, electronic and electromechanical (EEE) parts suited to this application, a qualification path for potential non-Grade 1 EEE parts that could be used in these designs, and pathfinder testing to validate aspects of the proposed qualification plan. Advances in the state of the art in high power electric power systems enable high horsepower electric actuators, such as the electromechnical actuator (EMA) and the electro-hydrostatic actuator (EHA), to be used in launch vehicle TVC systems, dramaticly reducing weight, complexity and operating costs. Designs typically use high voltage insulated gate bipolar transistors (HV-IGBT). However, no Grade 1 HV-IGBT exists and it is unlikely that market factors alone will produce such high quality parts. Furthermore, the perception of risk, the lack of qualification methodoloy, the absence of manned space flight heritage and other barriers impede the adoption of commercial grade parts onto the critical path. The method of approach is to identify high voltage electronic component types and key parameters for parts currently used in high horsepower EMA/EHA applications, to search for higher quality substitutes and custom manufacturers, to create a database for these parts, and then to explore ways to qualify these parts for use in human spaceflight launch critical application, including grossly derating and possibly treating hybrid parts as modules. This effort is ongoing, but results thus far include identification of over 60 HV-IGBT from four manufacturers, including some with a high reliability process flow. Voltage ranges for HV-IGBT have been identified, as has screening tests used to characterize HV-IGBT. BSI BS ISO 21350 Space systems Off

  17. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Science.gov (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  18. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang

    2016-11-01

    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  19. The high-voltage system for the LHCb RICH hybrid photon detectors

    International Nuclear Information System (INIS)

    Arnaboldi, C.; Bellunato, T.; De Lucia, A.; Fanchini, E.; Perego, D.L.; Pessina, G.

    2009-01-01

    We describe the characterization of the high-voltage (HV) distribution system designed and produced for the pixel hybrid photon detectors of the ring imaging Cherenkov counters of the LHCb experiment. The HV system consists of a series of printed circuit boards with a specific layout designed to prevent any discharge arising from high electric fields. The system has dedicated monitoring and control features to supervise HV set-up during data taking. The full production of the HV system has been now completed and all the boards have been fully characterized and installed in the detector, which is currently being commissioned.

  20. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    Science.gov (United States)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  1. Impact and Cost Evaluation of Electric Vehicle Integration on Medium Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Cheng, Lin; Pineau, Ulysse

    2013-01-01

    This paper presents the analysis of the impact of electric vehicle (EV) integration on medium voltage (MV) distribution networks and the cost evaluation of replacing the overloaded grid components. A number of EV charging scenarios have been studied. A 10 kV grid from the Bornholm Island...... in the city area has been used to carry out case studies. The case study results show that the secondary transformers are the bottleneck of the MV distribution networks and the increase of EV penetration leads to the overloading of secondary transformers. The cost of the transformer replacement has been...

  2. New perspectives in vacuum high voltage insulation. I. The transition to field emission

    CERN Document Server

    Diamond, W T

    1998-01-01

    Vacuum high-voltage insulation has been investigated for many years. Typically, electrical breakdown occurs between two broad-area electrodes at electric fields 100-1000 times lower than the breakdown field (about 5000 MV/m) between a well-prepared point cathode and a broad-area anode. Explanations of the large differences remain unsatisfactory, usually evoking field emission from small projections on the cathode that are subject to higher peak fields. The field emission then produces secondary effects that lead to breakdown. This article provides a significant resolution to this long standing problem. Field emission is not present at all fields, but typically starts after some process occurs at the cathode surface. Three effects have been identified that produce the transition to field emission: work function changes; mechanical changes produced by the strong electrical forces on the electrode surfaces; and gas desorption from the anode with sufficient density to support an avalanche discharge. Material adso...

  3. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    CERN Document Server

    Krieger, A.; Catherall, R.; Hochschulz, F.; Kramer, J.; Neugart, R.; Rosendahl, S.; Schipper, J.; Siesling, E.; Weinheimer, Ch.; Yordanov, D.T.; Nortershauser, W.

    2011-01-01

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  4. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    Science.gov (United States)

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  5. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  6. An inverted-geometry, high voltage polarized electron gun with UHV load lock

    International Nuclear Information System (INIS)

    Breidenbach, M.; Foss, M.; Hodgson, J.; Kulikov, A.; Odian, A.; Putallaz, G.; Rogers, H.; Schindler, R.; Skarpaas, K.; Zolotorev, M.

    1994-01-01

    The design of a high voltage electron source with a GaAs photocathode and a load lock system is described. The inverted high voltage structure of the gun permits a compact and simple design. Test results demonstrate that the load lock system provides a reliable way to achieve high quantum efficiency of the photocathode in a high voltage device. ((orig.))

  7. A novel high voltage start up circuit for an integrated switched mode power supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hao; Chen Xingbi, E-mail: huhao21@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2010-09-15

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions. (semiconductor devices)

  8. New 2LC-Y DC-DC converter topologies for high-voltage/low-current renewable applications

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Padmanaban, Sanjeevikumar; Maroti, Pandav Kiran

    2017-01-01

    (2LC-LVD, 2LC-2LVD, 2LC-2LCVD and 2LC-2LCmVD) converters are presented in this treatise which offer an effective solution for renewable applications requiring a very high voltage conversion ratio such as a Photovoltaic Multilevel Inverter (PV-MLI) system, hybrid electrical drives and automotive...

  9. High-Voltage Power Supply System for Laser Isotope Separation

    Energy Technology Data Exchange (ETDEWEB)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-06-26

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

  10. High-Voltage Power Supply System for Laser Isotope Separation

    International Nuclear Information System (INIS)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-01-01

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs

  11. High Voltage Bi-directional Flyback Converter for Capacitive Actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    in the converter, including the most dominating parameters of the high voltage transformer viz., self-capacitance and leakage inductance. The specific capacitive load for this converter is a dielectric electro active polymer (DEAP) actuator, which can be used as an effective replacement for conventional actuators...... in a number of applications. In this paper, the discharging energy efficiency definition is introduced. The proposed converter has been experimentally tested with the film capacitive load and the DEAP actuator, and the experimental results are shown together with the efficiency measurements....

  12. Spatial and temporal instabilities in high voltage power devices

    Energy Technology Data Exchange (ETDEWEB)

    Milady, Saeed

    2010-01-29

    Dynamic avalanche can occur during the turn-off process of high voltage bipolar devices, e.g. IGBTs and p{sup +}n{sup -}n{sup +} power diodes, that may result in spatial instabilities of the homogeneous current density distribution across the device and the formation of current filaments. Filaments may cause the destruction of the device, mainly because of the high local temperatures. The first part of this work is dedicated to the current filament behavior. The positive feedback mechanisms caused by the transient current flow through the gate capacitance of an IGBT operating under short circuit conditions may result in oscillations and temporal instabilities of the IGBT current. The oscillations may cause electromagnetic interference (EMI). Furthermore, the positive feedback mechanism may accelerate the over-heating of the device and result in a thermal run-away. This is the subject of the second part of this work. In the first part of this work using the device simulation results of power diodes the underlying physical mechanisms of the filament dynamic is investigated. Simulation results of diode structures with evenly distributed doping inhomogeneities show that, the filament motion gets smoother as the distance between the inhomogeneities decreases. Hopping to faraway inhomogeneities turns into the hopping to neighboring ones and finally a smooth motion. In homogeneous structures the slow inhibitory effect of the electron-hole plasma extraction and the fast activation, due to hole current flowing along the filament, result in a smooth filament motion. An analytical model for the filament velocity under isothermal conditions is presented that can reproduce the simulation data satisfactorily. The influence of the boundary conditions on the filament behavior is discussed. The positive beveled edge termination prohibits a long stay of the filament at the edge reducing the risk of filament pinning. Self-heating effects may turn the initially electrically triggered

  13. Design philosophy and use of high voltage power systems for multi-megawatt ion beam accelerators

    International Nuclear Information System (INIS)

    Barber, G.C.; Broverman, A.Y.; Hill, R.E.; Loring, C.M.; Ponte, N.S.

    1977-01-01

    The requirements for a neutral beam high voltage power system are derived from the characteristics of the ion source. High voltage system component characteristic requirements and choices are described

  14. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, A., E-mail: kriegea@uni-mainz.d [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Geppert, Ch. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Catherall, R. [CERN, CH-1211 Geneve 23 (Switzerland); Hochschulz, F. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Kraemer, J.; Neugart, R. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Rosendahl, S. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Schipper, J.; Siesling, E. [CERN, CH-1211 Geneve 23 (Switzerland); Weinheimer, Ch. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Yordanov, D.T. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Noertershaeuser, W. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany)

    2011-03-11

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the high-voltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequency-comb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  15. Quadratic dependence of the spin-induced Hall voltage on longitudinal electric field

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    The effect of optically induced spins in semiconductors in the low electric field is investigated. Here we report an experiment which investigates the effect of a longitudinal electric field (E) on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a spin-induced anomalous Hall voltage (V AH ) resulting from spin-carrier electrons accumulating at the transverse edges of the sample. Unlike the ordinary Hall effect, a quadratic dependence of V AH on E is observed, which agrees with the results of the recent theoretical investigations. It is also found that V AH depends on the doping density. The results are discussed

  16. Quadratic dependence of the spin-induced Hall voltage on longitudinal electric field

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-10-15

    The effect of optically induced spins in semiconductors in the low electric field is investigated. Here we report an experiment which investigates the effect of a longitudinal electric field (E) on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a spin-induced anomalous Hall voltage (V{sub AH}) resulting from spin-carrier electrons accumulating at the transverse edges of the sample. Unlike the ordinary Hall effect, a quadratic dependence of V{sub AH} on E is observed, which agrees with the results of the recent theoretical investigations. It is also found that V{sub AH} depends on the doping density. The results are discussed.

  17. Electric power quality analysis methods. Application to voltage dips and harmonic disturbances

    International Nuclear Information System (INIS)

    Vanya, Ignatova

    2006-10-01

    The power quality concerns all the actors in the energy domains, that they are network administrators, suppliers, producers, or consumers of electricity. The research work presented in this PhD thesis is situated in the field of the power quality monitoring. Its objective is to introduce new techniques for analysis of power quality problems. There are different methods designed for the analysis of the power quality disturbances. This method reaches very good performances in the voltage dips analysis, as it allows segmenting, classifying and characterising these power quality disturbances. The periodic systems method allows the theoretical study of the generation and the propagation of harmonic disturbances in the network. Finally, the statistical matrix method has the objective to represent statistically electrical signals without loss of important information. (author)

  18. 30 CFR 77.704-1 - Work on high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 77.704-1 Section 77... MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded as... provided in § 77.103) that such high-voltage line has been deenergized and grounded. Such qualified person...

  19. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  20. Analysis of the Interphase on Carbon Black Formed in High Voltage Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Scipioni, Roberto

    2015-01-01

    Carbon black (CB) additives commonly used to increase the electrical conductivity of electrodes in Li-ion batteries are generally believed to be electrochemically inert additives in cathodes. Decomposition of electrolyte in the surface region of CB in Li-ion cells at high voltages up to 4.9 V...... is here studied using electrochemical measurements as well as structural and surface characterizations. LiPF6 and LiClO4 dissolved in ethylene carbonate:diethylene carbonate (1:1) were used as the electrolyte to study irreversible charge capacity of CB cathodes when cycled between 4.9 V and 2.5 V....... Synchrotron-based soft X-ray photoelectron spectroscopy (SOXPES) results revealed spontaneous partial decomposition of the electrolytes on the CB electrode, without applying external current or voltage. Depth profile analysis of the electrolyte/cathode interphase indicated that the concentration of decomposed...

  1. A high voltage SOI pLDMOS with a partial interface equipotential floating buried layer

    International Nuclear Information System (INIS)

    Wu Lijuan; Zhang Wentong; Zhang Bo; Li Zhaoji

    2013-01-01

    A novel silicon-on-insulator (SOI) high-voltage pLDMOS is presented with a partial interface equipotential floating buried layer (FBL) and its analytical model is analyzed in this paper. The surface heavily doped p-top layers, interface floating buried N + /P + layers, and three-step field plates are designed carefully in the FBL SOI pLDMOS to optimize the electric field distribution of the drift region and reduce the specific resistance. On the condition of ESIMOX (epoxy separated by implanted oxygen), it has been shown that the breakdown voltage of the FBL SOI pLDMOS is increased from −232 V of the conventional SOI to −425 V and the specific resistance R on,sp is reduced from 0.88 to 0.2424 Ω·cm 2 . (semiconductor devices)

  2. Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-10-01

    Full Text Available This paper presents a novel interleaved converter (NIC with extra-high voltage gain to process the power of low-voltage renewable-energy generators such as photovoltaic (PV panel, wind turbine, and fuel cells. The NIC can boost a low input voltage to a much higher voltage level to inject renewable energy to DC bus for grid applications. Since the NIC has two circuit branches in parallel at frond end to share input current, it is suitable for high power applications. In addition, the NIC is controlled in an interleaving pattern, which has the advantages that the NIC has lower input current ripple, and the frequency of the ripple is twice the switching frequency. Two coupled inductors and two switched capacitors are incorporated to achieve a much higher voltage gain than conventional high step-up converters. The proposed NIC has intrinsic features such as leakage energy totally recycling and low voltage stress on power semiconductor. Thorough theoretical analysis and key parameter design are presented in this paper. A prototype is built for practical measurements to validate the proposed NIC.

  3. A low-ripple chargepump circuit for high voltage applications

    NARCIS (Netherlands)

    Berkhout, M.; Berkhout, M.; van Steenwijk, G.; van Steenwijk, Gijs; van Tuijl, Adrianus Johannes Maria

    1995-01-01

    The subject of this paper is a fully integrated chargepump circuit with a very low output voltage ripple. At a supply voltage of 30V the chargepump can source 1mA at an output voltage of 40V. Two simple modifications to the classical chargepump circuit give a substantial reduction of the output

  4. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  5. Effect of high-voltage impulse current on the structure and function of rabbit heart

    Directory of Open Access Journals (Sweden)

    Xin-ping XU

    2011-06-01

    Full Text Available Objective To explore the effect of high-voltage impulse current(HVIC on the structure and function of rabbit heart.Methods Sixty healthy male rabbits were involved in present study and divided into 6 groups randomly(n=10.The rabbits were then shocked using a high-voltage pulse generator with current intensity of 0,50,100,150,250 and 500mA(pulse width 100μs,duration 5s respectively.The heart rate and electrocardiogram(ECG of rabbits were detected before and 0,1,3,7,14 and 28 days after the electric shock.Moreover,the myocardial tissue of rabbits was obtained immediately and 28 days after shock to observe the pathological changes.Results Immediately after electric shock of 50 to 500mA,the heart rate of rabbit increased by different degree,and the ECG showed arrhythmia,myocardial ischemia,atrial fibrillation and atrioventricular block,and the changes recovered gradually one day later.The pathological observation showed cell swelling,separation of myofibril and sarcoplasmic condensation of Purkinje fibers immediately after electric shock of 50 to 500mA,and the changes recovered 28 days after shock.The cardiac injuries aggravated with the increasing of current intensity,especially when it exceeded 150mA,and the recovery time prolonged.Conclusion High-voltage impulse current may induce recoverable injuries on heart structure and function,and the damage effect shows a correlation with the current intensity.

  6. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination...

  7. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended to...

  8. 30 CFR 75.705-1 - Work on high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground; (b...

  9. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of any...

  10. High current capacity electrical connector

    International Nuclear Information System (INIS)

    Bettis, E.S.; Watts, H.L.

    1976-01-01

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a ''sandwiched'' configuration in which a conductor plate contacts the busses along major surfaces clamped between two stainless steel backing plates. The conductor plate is provided with contact buttons in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors

  11. Specific Localization of High-Voltage Discharge in Vicinity of Two Gases

    Science.gov (United States)

    Leonov, Sergey; Shurupov, Michail; Shneider, Michail; Napartovich, Anatoly; Kochetov, Igor

    2011-10-01

    A subject of paper is the appearance and dynamics of sub-microsecond long filamentary high-voltage discharge generated in atmosphere, and in non-homogeneous gaseous media. Typical discharge parameters are: maximal current 1-3kA, breakdown voltage >100 kV, duration 30-100 ns, gap distance 50-100mm. The effect of discharge specific localization within mixing layer of two gases is particularly discussed. The second discussed idea is the filamentary discharge movement within a region with concentration gradient of different components. For the short-pulse discharge the physical mechanism appears as the following. The first stage of the spark breakdown is the multiple streamers propagation from the high-voltage electrode toward the grounded one. In case of high-power electrical source those streamers occupy a huge volume of the gas, covering all possible paths for the further development. The next phase consists of the real selection of the discharge path among the multiple channels with non-zero conductivity. Experiments and calculations are presented for Air-CO2 and Air-C2H4 pairs. The effects found are supposed to be applied for lightning prediction/protection, and for high-speed mixing acceleration. The work was funded through EOARD-ISTC project #3793p. Some part of this work was supported by RFBR grant #10-08-00952.

  12. Twenty-channel high-voltage pulse generators

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Kashirin, A.P.

    1980-01-01

    A 20-channel high-voltage pulse generator operating with a mismatched load is described. The generator contains shaping lines 20 m long made of coaxial cable, a trigatron-type discharged, and isolating plates. The channel characteristic impedance is 50 Ohm. The maximum pulse amplitude is up to 15 kV on a high-resistance load and 7.5 kV on a matched one. The pulse duration is 100 ns at a pulse rise time of 12 ns, the delay introduced by the generator is 200 +-2.5 ns. Provision is made in the control circuit for compensation of the shaped pulse and separation of a pulse reflected from the load. The reflected pulse shape and amplitude characterize load parameters. Generator tests proved its high operational reliability (after 10 5 operations no significant changes in generator performances have been observed). The generator is intended for filmless data output from spark chambers

  13. Integration Test of the High Voltage Hall Accelerator System Components

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  14. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  15. Audio-frequency noise emissions from high-voltage overhead power lines

    International Nuclear Information System (INIS)

    Semmler, M.; Straumann, U.; Roero, C.; Teich, T. H.

    2005-01-01

    This article discusses the noise-emissions caused by high-voltage overhead power lines that can occur under certain atmospheric conditions. These emissions, caused by electric discharges around the conductors, can achieve disturbing values, depending on the conditions prevailing at the time in question. The causes of the discharges are examined and the ionisation processes involved are looked at. The parameters influencing the discharges are discussed and measures that can be taken to reduce such audio-frequency emissions are looked at. The authors note that a reduction of peripheral field strengths can reduce emissions and that hydrophilic coatings can lead to faster reduction of such effects after rainfall

  16. Optical fiber sensor of partial discharges in High Voltage DC experiments

    Science.gov (United States)

    Búa-Núñez, I.; Azcárraga-Ramos, C. G.; Posada-Román, J. E.; Garcia-Souto, J. A.

    2014-05-01

    A setup simulating High Voltage DC (HVDC) transformers barriers was developed to demonstrate the effectiveness of an optical fiber (OF) sensor in detecting partial discharges (PD) under these peculiar conditions. Different PD detection techniques were compared: electrical methods, and acoustic methods. Standard piezoelectric sensors (R15i-AST) and the above mentioned OF sensors were used for acoustic detection. The OF sensor was able to detect PD acoustically with a sensitivity better than the other detection methods. The multichannel instrumentation system was tested in real HVDC conditions with the aim of analyzing the behavior of the insulation (mineral oil/pressboard).

  17. 30 CFR 77.704-2 - Repairs to energized high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized high-voltage lines. 77.704... UNDERGROUND COAL MINES Grounding § 77.704-2 Repairs to energized high-voltage lines. An energized high-voltage... repairs will be performed on power circuits with a phase-to-phase nominal voltage no greater than 15,000...

  18. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Marzocchi, Badder

    2017-01-01

    The CMS Electromagnetic Calorimeter is made of scintillating lead tungstate crystals, using avalanche photodiodes (APD) as photo-detectors in the barrel part. The high voltage system, consisting of 1224 channels, biases groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  19. High-voltage high-current triggering vacuum switch

    International Nuclear Information System (INIS)

    Alferov, D.F.; Bunin, R.A.; Evsin, D.V.; Sidorov, V.A.

    2012-01-01

    Experimental investigations of switching and breaking capacities of the new high current triggered vacuum switch (TVS) are carried out at various parameters of discharge current. It has been shown that the high current triggered vacuum switch TVS can switch repeatedly a current from units up to ten kiloampers with duration up to ten millisecond [ru

  20. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    address this challenge, a) Designing a discrete power opamp with high .... the use of high-impedance feedback networks, thus minimizing their output loading ... Spice simulation is done for the circuit and results are given in figures 4a–c.