WorldWideScience

Sample records for high voltage cable

  1. 30 CFR 75.804 - Underground high-voltage cables.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section...

  2. High-voltage polymeric insulated cables

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A

    1987-01-01

    Reviews developments in high-voltage (here defined as 25 kV, 66 kV and 132 kV) polymeric insulated cables in the UK over the period 1979-1986, with particular reference to the experience of the Eastern Electricity Board. Outlines the background to the adoption of XPLE-insulated solid cable, and the design, testing, terminations, jointing and costs of 25 kV, 66 kV and 132 kV cables.

  3. High voltage pulsed cable design: a practical example

    International Nuclear Information System (INIS)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces

  4. High voltage pulsed cable design: a practical example

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces.

  5. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Science.gov (United States)

    2010-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; minimum design...

  6. Mass impregnation plant speeds high voltage cable production

    Energy Technology Data Exchange (ETDEWEB)

    1965-05-07

    A mass impregnation and continuous sheath extrusion plant that will eliminate the long period of vacuum treatment usually required for high voltage oil-filled cables is among the latest techniques included in the new factory at Pirelli General's Eastleigh works. The new factory is said to be the first in Europe designed solely for the manufacture of the full range of oil-filled cables. Possible future increases of system voltages to about 750-kV ac or 1000-kV dc have been taken into account in the design of the works, so that only a small amount of modification and new plant will be involved.

  7. Medium and high voltage power cables market in Europe

    International Nuclear Information System (INIS)

    Kupiec, M.

    1992-06-01

    This note gives an overview of the European market for medium and high voltage power cables. In this text, emphasis is placed on suppliers and important European clients; there is also a brief review of the different techniques for cable laying and utilization in Europe. This not has mainly been drafted from informations supplied by EUROPACABLE

  8. Cable Insulation Breakdowns in the Modulator with a Switch Mode High Voltage Power Supply

    CERN Document Server

    Cours, A

    2004-01-01

    The Advanced Photon Source modulators are PFN-type pulsers with 40 kV switch mode charging power supplies (PSs). The PS and the PFN are connected to each other by 18 feet of high-voltage (HV) cable. Another HV cable connects two separate parts of the PFN. The cables are standard 75 kV x-ray cables. All four cable connectors were designed by the PS manufacturer. Both cables were operating at the same voltage level (about 35 kV). The PS’s output connector has never failed during five years of operation. One of the other three connectors failed approximately five times more often than the others. In order to resolve the failure problem, a transient analysis was performed for all connectors. It was found that transient voltage in the connector that failed most often was subjected to more high-frequency, high-amplitude AC components than the other three connectors. It was thought that these components caused partial discharge in the connector insulation and led to the insulation breakdown. Modification o...

  9. Organic dielectrics in high voltage cables

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, J

    1962-03-01

    It appears that the limit has been reached in the applicability of oil-impregnated paper as the dielectric for ehv cables, as with rising voltages the prevention of conductor losses becomes increasingly difficult, while the dielectric losses of the insulation, increasing as the square of the voltage, contribute to a greater extent to the temperature rise of the conductor. The power transmitting capacity of ehv cables reaches a maximum at 500 to 600 kV for these reasons. Apart from artificial cooling, a substantial improvement can be obtained only with the use of insulating materials with much lower dielectric losses; these can moreover be applied with a smaller wall thickness, but this means higher field strengths. Synthetic polymer materials meet these requirements but can be used successfully only in the form of lapped film tapes impregnated with suitable liquids. The electrical properties of these heterogeneous dielectrics, in particular, their impulse breakdown strengths are studied in detail.

  10. Tests of industrial ethylene-propylene rubber high voltage cable for cryogenic use

    CERN Document Server

    Balhan, B; Goddard, B; Muratori, G; Otwinowski, S; Rieubland, Jean Michel; Wang, H; CERN. Geneva. SPS and LEP Division

    1999-01-01

    At the beginning of 1999 UCLA has received a prototype High Voltage Cryogenic Cable supplied fee of charge by Pirelli. The cable is intended for more than ten years of service at 100 kV D.C. and liquid argon temperature. Thecable uses an all welded construction, whichi is axially tight and free of ionizable voids. The cable was submitted to a number of mechanical and electrical tests as described below.

  11. Estimation of Medium Voltage Cable Parameters for PD Detection

    DEFF Research Database (Denmark)

    Villefrance, Rasmus; Holbøll, Joachim T.; Henriksen, Mogens

    1998-01-01

    Medium voltage cable characteristics have been determined with respect to the parameters having influence on the evaluation of results from PD-measurements on paper/oil and XLPE-cables. In particular, parameters essential for discharge quantification and location were measured. In order to relate...... and phase constants. A method to estimate this propagation constant, based on high frequency measurements, will be presented and will be applied to different cable types under different conditions. The influence of temperature and test voltage was investigated. The relevance of the results for cable...

  12. The Thermal Regime Around Buried Submarine High-Voltage Cables

    Science.gov (United States)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  13. Electric field analysis of extra high voltage (EHV) underground cables using finite element method

    DEFF Research Database (Denmark)

    Kumar, Mantosh; Bhaskar, Mahajan Sagar; Padmanaban, Sanjeevikumar

    2017-01-01

    used for the insulator due electrical, thermal or environmental stress. Most of these problems are related to the electric field stress on the insulation of the underground cables. The objective of the electric field analysis by using different numerical techniques is to find electric field stress...... electric field stress and other parameters of EHV underground cables with given boundary conditions using 2-D electric field analysis software package (IES-ELECTRO module) which is based on the finite element method (FEM).......Transmission and Distribution of electric power through underground cables is a viable alternative to overhead lines, particularly in residential or highly populated areas. The electrical stresses are consequences of regular voltages and over voltages and the thermal stresses are related to heat...

  14. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Science.gov (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  15. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang

    2016-11-01

    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  16. High voltage dc cables

    Energy Technology Data Exchange (ETDEWEB)

    Bjustrom, B

    1965-12-01

    How stress distribution in dc cables varies with temperature and stress level, influence of polarity reversals and space charges, and different types of overvoltage to which dc cable may be subjected are discussed. Design problems, especially as related to corrosion protection and to mechanical stress caused by wire armoring during manufacturing and laying, accessories and work done on test methods, and the possibility of designing 400 to 600 kV dc cables for transmitting 2000 to 4000 MW are described.

  17. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  18. 30 CFR 75.907 - Design of trailing cables for medium-voltage circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Design of trailing cables for medium-voltage... Medium-Voltage Alternating Current Circuits § 75.907 Design of trailing cables for medium-voltage circuits. [Statutory Provisions] Trailing cables for medium-voltage circuits shall include grounding...

  19. Development of a method of partial discharge detection in extra-high voltage cross-linked polyethylene insulated cable lines

    International Nuclear Information System (INIS)

    Katsuta, G.; Toya, A.; Muraoka, K.; Endoh, T.; Sekii, Y.; Ikeda, C.

    1992-01-01

    This paper reports that deterioration in the insulation performance of extra-high voltage XLPE cables is believed to be attributable to the deterioration caused by partial discharges. In the authors study, after using an XLPE cable to investigate the behavior of partial discharges under various adverse conditions, we succeeded in developing a highly sensitive new method of measuring partial discharge in XLPE cable lines. Partial discharges in a 275 kV XLPE cable live line has been measured using this newly developed method. As a result, a detection sensitivity of 1 pC has been achieved

  20. VPE single core medium voltage cables in EVU supply networks. [Polyethylene (VPE)

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, E [Elektromark Kommunales Elektrizitaetswerk Mark A.G., Hagen (Germany, F.R.). Elektrotechnische Abt.

    1977-02-01

    This paper gives a brief outline of the different cable constructions and constructional parts of medium voltage cables (10 - 20 kV) in power supply networks. At medium voltage (particularly at 20 kV), single core cables are being used to an increasing extent, preferably for station supplies and for pole mounted cables. Polymerized polyethylene (VPE) is used as insulating material for this cable; according to present knowledge it is suitable for the insulation of power cables for all voltages up to 110 kV.

  1. High-Voltage, Low-Power BNC Feedthrough Terminator

    Science.gov (United States)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  2. Specification for high voltage cable plug and socket connections for medical X-ray equipment

    International Nuclear Information System (INIS)

    1980-01-01

    Under the direction of the Light Engineering Standards Committee, a British Standard Specification has been prepared for three-conductor and four-conductor high-voltage cable plug and socket connections for medical X-ray equipment. The standard deals with the essential dimensions to ensure mechanical interchangeability, the recommended dimensions, the wiring connections to contacts of plug and socket and the marking of contacts of plug and socket. (U.K.)

  3. The degradation diagnosis of low voltage cables used at nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Toshio; Ashida, Tetsuya; Ikeda, Takeshi; Yasuhara, Takeshi; Takechi, Kei; Araki, Shogo

    2001-01-01

    Low voltage cables which have been used for the supply of electric power and the propagation of control signals in nuclear power plants must be sound for safe and stable operation. The long use of nuclear power plants has been reviewed, and the degradation diagnosis to estimate the soundness of low voltage cables has been emphasized. Mitsubishi Cable Industries has established a degradation diagnosis method of cables which convert the velocity of ultrasonic wave in the surface layer of the cable insulation or jacket into breaking elongation, and has developed a degradation diagnosis equipment of low voltage cables used at nuclear power plants in cooperation with Mitsubishi Heavy Industries. This equipment can be moved by an ultrasonic probe by sequential control and measure the ultrasonic velocity automatically. It is capable of a fast an sensitive diagnosis of the cables. We report the outline of this degradation diagnosis equipment and an example of the adaptability estimation at an actual nuclear power plant. (author)

  4. Influence of water trees on breakdown voltage of polymeric cables insulations

    Energy Technology Data Exchange (ETDEWEB)

    Stancu, Cristina [INCDIE ICPE CA, Bucharest (Romania); Notingher, Petru V.; Plopeanu, Mihai Gabriel [Politehnica University of Bucharest, Bucharest (Romania)

    2011-07-01

    In a previous paper was shown that water trees development modifies considerably the electric field repartition, which increases significantly in the vicinity of treed areas. In order to find the water trees influence on the breakdown voltage, in the present paper, an experimental study on model cables insulated with low density polyethylene is done. In insulation samples, water trees with various dimensions and densities were developed. For the reduction of the test duration, an electric field with a higher frequency (3-5 kHz) was used. For breakdown voltage measurement an automatic setup was realized. For each value of the ageing time the dimensions and densities of water trees and breakdown voltage were measured and the dependency of the breakdown voltage with these quantities were analysed. The results show a significant reduction of the breakdown voltage of treed cables insulations compared to un-treed ones. Key words: polyethylene, water treeing, electric field, breakdown, power cables.

  5. Measurement scheme of kicker impedances via beam-induced voltages of coaxial cables

    Energy Technology Data Exchange (ETDEWEB)

    Shobuda, Yoshihiro, E-mail: yoshihiro.shobuda@j-parc.jp [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Irie, Yoshiro [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Toyama, Takeshi; Kamiya, Junichiro [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Watanabe, Masao [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda, Tokyo 100-8959 (Japan)

    2013-06-11

    A new theory, which satisfies the causality condition, is developed to describe impedances of kicker magnets with coaxial cables. The theoretical results well describe measurement results, which are obtained by standard wire methods. On the other hand, when beams pass through the kicker, voltages are induced at the terminals of coaxial cables. In other words, by analyzing the voltages, the kicker impedance for the beams can be obtained. The observed impedances are consistent with the theoretical results. The theory describes the impedance for non-relativistic beams, as well. The theoretical, simulation and measurement results indicate that the horizontal kicker impedance is drastically reduced by the non-relativistic effect. -- Highlights: ► We develop an innovative method to measure kicker impedance including power cable. ► By analyzing voltages at the ends of coaxial cables, the impedance is derived. ► The horizontal impedance is reduced as the beam becomes non-relativistic.

  6. ELECTROMECHANICAL TRANSIENT PROCESSES DURING SUPPLY VOLTAGE CHANGING IN THE SYSTEM OF POLYMER INSULATION COVERING OF THE CURRENT-CARRYING CORE OF ULTRA HIGH VOLTAGE CABLES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2018-04-01

    Full Text Available Aim. The article is devoted to the analysis of the electromechanical transient processes in a system of three frequency-controlled electric drives based on asynchronous motors that control current-carrying core motion, as well as to the study of the effect of such processes on the modes applying three-layer polymer insulation to the current-carrying core. Technique. The study was conducted based on the concepts of electromechanics, electromagnetic field theory, mathematical physics, mathematical modeling. Results. A mathematical model has been developed to analyze transients in an electromechanical system consisting of three frequency-controlled electric drives providing current-carrying core motion of ultra-high voltage cables in an inclined extrusion line. The coordination of the electromechanical parameters of the system drives has been carried out and the permissible changes in the supply voltage at the limiting mass while moving current-carrying core of ultra-high voltage cables with applied polymer insulation have been estimated. Scientific novelty. For the first time it is determined that with the limiting mass of the current-carrying core, the electromechanical system allows to stabilize the current-carrying core speed with the required accuracy at short-term decreases in the supply voltage by no more than 27 % of its amplitude value. It is also shown that this system is resistant to short-term increases in voltage by 32 % for 0.2 s. Practical significance. Using the developed model, it is possible to calculate the change in the configuration and speed of the slack current-carrying core when applying polymer insulation, depending on the specific mass of the current-carrying core per unit length, its tension at the bottom, the torque of the traction motor and the supply voltage to achieve stable operation of the system and accurate working of the set parameters.

  7. Electrical Insulation of 500-m High-Tc Superconducting Power Cable

    International Nuclear Information System (INIS)

    Takahashi, T; Ichikawa, M; Suzuki, H; Okamoto, T; Akita, S; Mukoyama, S; Yagi, M; Maruyama, S; Kimura, A

    2006-01-01

    Electrical insulation is one of the essential technologies for the electric power apparatus. Determination of testing voltages and design method of the electrical insulation layer are inextricably linked each other, and are critical to developing and realizing a cold dielectric (CD) type high-Tc superconducting (HTS) power cable. The authors had proposed the electrical insulation design method with concepts of partial discharge-free designs for ac voltage condition. This paper discusses the testing voltages for a 77 kV 1000 A HTS power cable with a length of 500 m, and describes results of various voltage withstand test. As a result, it is concluded that the proposed electrical insulation design method is appropriate for the HTS power cable

  8. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  9. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  10. A New Contribution in Reducing Electric Field Distribution Within/Around Medium Voltage Underground Cable Terminations

    Directory of Open Access Journals (Sweden)

    S. S. Desouky

    2017-10-01

    Full Text Available Ιn medium voltage cables, the stress control layers play an important part in controlling the electric field distribution around the medium voltage underground cable terminations. Underground cable accessories, used in medium voltage cable systems, need a stress control tube in order to maintain and control the insulation level which is designed for long life times. The term “electrical stress control” refers to the cable termination analysis of optimizing the electrical stress in the area of insulation shield cutback to reduce the electrical field concentration at this point in order to reduce breakdown in the cable insulation. This paper presents the effect of some materials of different relative permittivities and geometrical regulation with the curved shape stress relief cones on the electric field distribution of cable termination. The optimization was done by comparing the results of eight materials used. Also, the effect of the change in the thickness of the stress control tube is presented. The modeling design is very important for engineers to find the optimal solution of terminator design of medium voltage cables. This paper also describes the evolution of stress control systems and their benefits. A developed program using Finite Element Method (FEM has calculated a numerical study to the stress control layering electric field distribution.

  11. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    International Nuclear Information System (INIS)

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent

  12. Modelling of long High Voltage AC Cables in the Transmission System

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella

    : conductor-insulation (with or without SC layers)-conductor-insulation(-conductor-insulation), whereas a transmission line single core XLPE cable will normally have the configuration: conductor-SC layerinsulation-SC layer-conductor-SC layer-conductor-insulation. Furthermore the existing cable models use......, EMTDC/PSCAD is provided. A typical HV AC underground power cable is formed by 4 main layers, namely; Conductor-Insulation-Screen-Insulation. In addition to these main layers, the cable also has semiconductive screens, swelling tapes and metal foil. For high frequency modelling in EMT-based software......-SC layer-solid hollow conductor) is implemented in the model. These improvements result in a more correct series impedance and hence a more correct damping of the simulations. Even though the series impedance is more correct, it does still not include the proximity effect and high frequency oscillations...

  13. Proposal for the award of a contract without competitive tendering for the supply of coaxial high-voltage cable for the LHC beam dumping system

    CERN Document Server

    2002-01-01

    This document concerns the award of a contract without competitive tendering for the supply of two types of coaxial high-voltage cable for the LHC beam dumping system. Following a market survey carried out among 14 firms in four Member States, a call for tenders (IT-2969/SL/LHC) was sent on 10 July 2001 to one firm. By the closing date, CERN had received one tender. The Finance Committee is invited to agree to the negotiation of a contract with DRAKA MULTIMEDIA CABLE (DE), the only bidder, for the supply of 14 km of coaxial high-voltage cable for the LHC beam dumping system for a total amount of 530 488 euros (779 900 Swiss francs), not subject to revision. The rate of exchange which has been used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: DE - 100%.

  14. Impacts of an underwater high voltage DC power cable on fish migration movements in the San Francisco Bay.

    Science.gov (United States)

    Wyman, M. T.; Kavet, R.; Klimley, A. P.

    2016-02-01

    There is an increasingly strong interest on a global scale in offshore renewable energy production and transportation. However, there is concern that the electromagnetic fields (EMF) produced by these underwater cables may alter the behavior and physiology of marine species. Despite this concern, few studies have investigated these effects in free-living species. In 2009, a 85 km long high-voltage DC (HVDC) power cable was placed within the San Francisco Bay, running parallel, then perpendicular to, the migration route of anadromous species moving from the inland river system to the oceans. In this study, we assess the impacts of this HVDC cable on the migration behaviors of EMF-sensitive fish, including juvenile salmonids (Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss) and adult green sturgeon, Acipenser medirostris. Acoustic telemetry techniques were used to track fish migration movements through the San Francisco Bay both before and after the cable was activated; individuals implanted with acoustic transmitters were detected on cross-channel hydrophone arrays at key locations in the system. Magnetic fields were surveyed and mapped at these locations using a transverse gradiometer, and models of the cable's magnetic field were developed that closely matched the empirically measured values. Here, we present our analyses on the relationships between migration-related behavioral metrics (e.g., percent of successful migrations, duration of migration, time spent near vs. far from cable location, etc.) and environmental parameters, such as cable activation and load level, local magnetic field levels, depth, and currents.

  15. Degradation diagnosing method for low voltage electric wire and cable in nuclear facility

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Seki, Ikuo; Yagyu, Hideki; Onishi, Takao; Kusama, Yasuo.

    1991-01-01

    A considerable skill is required for a visual inspection method which has been used most widely for determining the degradation of low voltage electric wires and cables used mostly in facilities such as nuclear power plants. It is extremely difficult to determine the degradation accurately and appropriately even for skilled inspectors because of individual difference. Then, a small amount of organic insulation materials is taken as a sample from insulators or sheath materials actually disposed. The pyrolytic temperature of the sample is measured by thermal gravimetric analysis to determine the extent of the degradation of the electric wire and cable based on the relationship between the degradation and the elongation. Since there is a close relationship between the temperature at which the measured weight of the sample is reduced by 5% and the degradation behavior of the mechanical property, analysis can be conducted effectively by an extremely small amount of the sample. Since the insulation degradation of relatively low voltage electric wires and cables can be determined in a non-destructive manner at high accuracy, the lifetime can be forecasted. (N.H.)

  16. Performance Comparison of BPL, EtherLoop and SHDSL technology performance on existing pilot cable circuits under the presence of induced voltage

    International Nuclear Information System (INIS)

    Che, Y X; Ong, H S; Lai, L C; Ong, X J; Do, N Q; Karuppiah, S

    2013-01-01

    Pilot cable is originally used for utility protection. Then, pilot cable is further utilized for SCADA communication with low frequency PSK modem in the early 1990. However, the quality of pilot cable communication drops recently. Pilot cable starts to deteriorate due to aging and other unknown factors. It is also believed that the presence of induced voltage causes interference to existing modem communication which operates at low frequency channel. Therefore, BPL (Broadband Power Line), EtherLoop and SHDSL (Symmetrical High-speed Digital Subscriber Line) modem technology are proposed as alternative communication solutions for pilot cable communication. The performance of the 3 selected technologies on existing pilot cable circuits under the presence of induced voltage are measured and compared. Total of 11 pilot circuits with different length and level of induced voltage influence are selected for modem testing. The performance of BPL, EtherLoop and SHDSL modem technology are measured by the delay, bandwidth, packet loss and the long term usability SCADA (Supervisory Control and Data Acquisition) application. The testing results are presented and discussed in this paper. The results show that the 3 selected technologies are dependent on distance and independent on the level of induced voltage.

  17. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  18. Preparation and Dielectric Properties of SiC/LSR Nanocomposites for Insulation of High Voltage Direct Current Cable Accessories.

    Science.gov (United States)

    Shang, Nanqiang; Chen, Qingguo; Wei, Xinzhe

    2018-03-08

    The conductivity mismatch in the composite insulation of high voltage direct current (HVDC) cable accessories causes electric field distribution distortion and even insulation breakdown. Therefore, a liquid silicone rubber (LSR) filled with SiC nanoparticles is prepared for the insulation of cable accessories. The micro-morphology of the SiC/LSR nanocomposites is observed by scanning electron microscopy, and their trap parameters are characterized using thermal stimulated current (TSC) tests. Moreover, the dielectric properties of SiC/LSR nanocomposites with different SiC concentrations are tested. The results show that the 3 wt % SiC/LSR sample has the best nonlinear conductivity, more than one order of magnitude higher than that of pure LSR with improved temperature and nonlinear conductivity coefficients. The relative permittivity increased 0.2 and dielectric loss factor increased 0.003, while its breakdown strength decreased 5 kV/mm compared to those of pure LSR. Moreover, the TSC results indicate the introduction of SiC nanoparticles reduced the trap level and trap density. Furthermore, the SiC nanoparticles filling significantly increased the sensitivity of LSR to electric field stress and temperature changes, enhancing the conductivity and electric field distribution within the HVDC cable accessories, thus improving the reliability of the HVDC cable accessories.

  19. Multiple resolution chirp reflectometry for fault localization and diagnosis in a high voltage cable in automotive electronics

    Science.gov (United States)

    Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae

    2016-12-01

    A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.

  20. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with AC Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  1. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with Ac Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  2. Calculation of harmonic losses and ampacity in low-voltage power cables when used for feeding large LED lighting loads

    Directory of Open Access Journals (Sweden)

    N. J. Milardovich

    2014-10-01

    Full Text Available A numerical investigation on the harmonic disturbances in low-voltage cables feeding large LED loads is reported. A frequency domain analysis on several commercially-available LEDs was performed to investigate the signature of the harmonic current injected into the power system. Four-core cables and four single-core cable arrangements (three phases and neutral of small, medium, and large conductor cross sections, with the neutral conductor cross section approximately equal to the half of the phase conductors, were examined. The cables were modelled by using electromagnetic finite-element analysis software. High harmonic power losses (up to 2.5 times the value corresponding to an undistorted current of the same rms value of the first harmonic of the LED current were found. A generalized ampacity model was employed for re-rating the cables. It was found that the cross section of the neutral conductor plays an important role in the derating of the cable ampacity due to the presence of a high-level of triplen harmonics in the distorted current. The ampacity of the cables should be derated by about 40 %, almost independent of the conductor cross sections. The calculation have shown that an incoming widespread use of LED lamps in lighting could create significant additional harmonic losses in the supplying low-voltage lines, and thus more severely harmonic emission limits should be defined for LED lamps.

  3. Study on condition monitoring techniques for low voltage electrical cables in nuclear power plants

    International Nuclear Information System (INIS)

    Hirao, Hideo; Sakai, Takeshi; Kajimura, Yuusaku

    2017-01-01

    Low voltage electrical cables installed in nuclear power plants are required to maintain its function in a design basis accident environment and they are qualified to that environment. The cables degrade also in normal operating conditions due to ageing and they must maintain integrity until the end of their qualified life. Demands for the condition monitoring technique for low voltage electrical cables have therefore been increasing as nuclear power plants operate longer. A single perfect method for this purpose is not available yet, but the possibility to use two different types of methods which can complement with each other has been examined. The combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Indenter Modulus (IM) method was found highly effective. FT-IR is a method that determines chemical properties (changes in molecular bindings) of cables by using infrared rays, while IM is a method that determines mechanical properties (changes in hardness) of cables by indenters. Both methods are non-destructive and can be applied in-situ to the same material. Reliability of the evaluation can be assured by applying two different types of measurement principles that complement with each other. In this study, various cable samples with different kinds of insulation material (cross-linked polyethylene, ethylene propylene rubber, silicone rubber etc.) were aged with a special accelerated ageing technique which applies simultaneous thermal and radiation ageing to simulate ageing phenomena in a more realistic manner, and the degree of ageing was evaluated with FT-IR and IM. The evaluation result shows good correlation with ageing time and other ageing properties for most material types and the effectiveness of these methods were demonstrated. (author)

  4. Evaluation of diagnostic technique for degradation of low-voltage electric cables with silicone rubber insulator

    International Nuclear Information System (INIS)

    Mikami, Masao

    2005-01-01

    As a part of countermeasures against ageing problems of nuclear power plants, it is requested to establish non-destructive diagnostic technique for their degradation of low voltage electric cables and assessment standard of their life. Having aimed at investigating the degradation of low-voltage electric cable with silicone rubber insulator, change of its surface hardness at elevated temperature were measured by indenter modules. Moreover, we also measured the elongation at break, which is regarded as general degradation index of electric cables, and the surface hardness with a micro hardness meter. Consequently, it is seen that the indenter modulus measurement is (1) capable to obtain general feature of the thermal degradation of silicone rubber insulator, (2) applicable to diagnose the degree of degradation of the electric cable by converting the result to elongation at break, (3) well correlated with the hardness measurement of the electric cable with the micro hardness meter. (author)

  5. Switching Restrikes in HVAC Cable Lines and Hybrid HVAC Cable/OHL Lines

    DEFF Research Database (Denmark)

    da Silva, Filipe Miguel Faria; Bak, Claus Leth; Balle Holst, Per

    2011-01-01

    The disconnection of HV underground cables may, if unsuccessful, originate a restrike in the circuit breaker, leading to high overvoltages, and potentially damaging the cable and near equipment. Due to the cable high capacitance and low resistance the voltage damping is slow, resulting, half a cy...

  6. Magnetic fields and childhood cancer: an epidemiological investigation of the effects of high-voltage underground cables

    International Nuclear Information System (INIS)

    Bunch, K J; Vincent, T J; Murphy, M F G; Swanson, J

    2015-01-01

    Epidemiological evidence of increased risks for childhood leukaemia from magnetic fields has implicated, as one source of such fields, high-voltage overhead lines. Magnetic fields are not the only factor that varies in their vicinity, complicating interpretation of any associations. Underground cables (UGCs), however, produce magnetic fields but have no other discernible effects in their vicinity. We report here the largest ever epidemiological study of high voltage UGCs, based on 52 525 cases occurring from 1962–2008, with matched birth controls. We calculated the distance of the mother’s address at child’s birth to the closest 275 or 400 kV ac or high-voltage dc UGC in England and Wales and the resulting magnetic fields. Few people are exposed to magnetic fields from UGCs limiting the statistical power. We found no indications of an association of risk with distance or of trend in risk with increasing magnetic field for leukaemia, and no convincing pattern of risks for any other cancer. Trend estimates for leukaemia as shown by the odds ratio (and 95% confidence interval) per unit increase in exposure were: reciprocal of distance 0.99 (0.95–1.03), magnetic field 1.01 (0.76–1.33). The absence of risk detected in relation to UGCs tends to add to the argument that any risks from overhead lines may not be caused by magnetic fields. (paper)

  7. Connection for transfer of Liquid Nitrogen from High Voltage to ground potential

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Hansen, Finn; Willén, Dag

    2001-01-01

    In order to operate a superconducting cable conductor it must be kept at a cryogenic temperature (e.g. using liquid nitrogen). The superconducting cable conductor is at high voltage and the cooling equipment is kept at ground potential. This requires a thermally insulating connection that is also...... properties and withstand towards high-pressure liquid nitrogen. The length per joint is approximately 900 mm, including a Johnstoncoupling. The joints are tested in a closed liquid nitrogen circuit, with a pressure of up to 10 bars. The rated voltage of the cable system is 36 kV (phase-phase)....

  8. A new VME-based high voltage power supply for large photomultiplier systems

    International Nuclear Information System (INIS)

    Neumaier, S.; Hubbeling, T.; Kolb, B.W.; Purschke, M.L.; Ippolitov, M.; Blume, C.; Bohne, E.M.; Bucher, D.; Claussen, A.; Peitzmann, T.; Schepers, G.; Schlagheck, H.

    1995-01-01

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10,080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.)

  9. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  10. Application of optical diagnosis to aged low-voltage cable insulation in nuclear plants

    International Nuclear Information System (INIS)

    Katagiri, Junichi; Takezawa, Yoshitaka; Shouji, Hiroshi

    2008-01-01

    We have developed a novel non-destructive optical diagnosis technique for low-voltage cable insulations used in nuclear power plants. The key features of this diagnosis are the use of two wavelengths to measure the change in reflective absorbance (ΔA R ), the use of polarized light to measure crystallinity and the use of element volatilizing to measure fluorescence. Chemical kinetics is used to predict the lifetimes of the cable insulations. When cable insulations darken and harden by time degradation, the ΔA R and depolarization parameters increase. This means that the cross-linking density in the cable insulations increases due to deterioration reactions. When the cross-linking density of insulation increases, its elasticity, corresponding to the material's life, increases. Similarly, as the crystallinity increases due to the change in the high-order structure of the insulating resin caused by irradiation, its elongation property decreases. The elongation property of insulation is one of the most important parameters that can be used to evaluate material lifetimes, because it relates to elasticity. The ΔA R correlated with the elongation property, and the correlation coefficient of an accelerated experiment using model pieces was over 0.9. Thus, we concluded that this optical diagnosis should be applied to evaluate the degradation of cable insulations used in nuclear power plants. (author)

  11. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  12. High voltage transmission of electrical energy over long distances

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, S W

    1962-07-01

    Technical aspects of ac transmission lines, additional means of improving stability ac transmisson lines, insulation problems, ac transmission by cables, high voltage dc transmission, advantages of dc over ac transmission, disadvantages of dc transmission, use of underground cables for dc transmission, history of the development of conversion equipment; transmission schemes adopted on Gotland Island, Sweden; and economics of ac and dc transmission are discussed.

  13. Concept design of the high voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations -- such as the Channel Tunnel -- demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  14. Concept design of the high-voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-01-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations-such as the Channel Tunnel-demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  15. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR Conductors in High-Voltage Transmission Line

    Directory of Open Access Journals (Sweden)

    Xingchi Ma

    2017-09-01

    Full Text Available This work reports the fretting wear behavior of aluminum cable steel reinforced (ACSR conductors for use in high-voltage transmission line. Fretting wear tests of Al wires were conducted on a servo-controlled fatigue testing machine with self-made assistant apparatus, and their fretting process characteristics, friction force, wear damage, and wear surface morphology were detailed analyzed. The results show that the running regime of Al wires changes from a gross slip regime to a mixed regime more quickly as increasing contact load. With increasing amplitudes, gross slip regimes are more dominant under contact loads of lower than 30 N. The maximum friction force is relatively smaller in the NaCl solution than in a dry friction environment. The primary wear mechanisms in dry friction environments are abrasive wear and adhesive wear whereas abrasive wear and fatigue damage are dominant in NaCl solution.

  16. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    International Nuclear Information System (INIS)

    Maguire, J.F.; Yuan, J.

    2009-01-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  17. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.F., E-mail: jmaguire@amsc.co [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States); Yuan, J. [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States)

    2009-10-15

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  18. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Science.gov (United States)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  19. Cable aging management

    International Nuclear Information System (INIS)

    Anandkumaran, A.; Sedding, H.

    2012-01-01

    Worldwide, due to the age of the majority of nuclear generating stations significant attention is being paid to the condition of the major components, e.g., reactor, steam generator, turbine generator, transformer, etc., with respect to relicensing and life extension. However, there is recognition that cable systems are critical to the safe, reliable and economic operation of nuclear power plants. Consequently, there is great interest in ageing management of low and medium voltage cables in the nuclear environment. Successful implementation of such programs requires an understanding of how the materials associated with cables and their accessories behave under normal operating and accident conditions. However, there is also a great need to determine the actual condition of the materials and systems in order to make rational decisions on whether or not to replace cables to ensure long term assurance of reliable operation. This proposed contribution describes an approach to cable ageing management of low and medium voltage cables based on measurements of material and electrical properties obtained in the laboratory and in the field. The effectiveness of various chemical, mechanical and electrical test methods are discussed in the context of, • Cable configuration, i.e., low or medium voltage, shielded or unshielded • Material type, i.e., PVC, XLPE, EPR, etc., • Ageing stress, i.e., electrical, thermal, radiation, thermal plus radiation, etc. These factors are key to identifying the most appropriate test method (or methods) to enable understanding of the current condition of the cable. While electrical test methods, e.g., ac withstand testing, partial discharge and various dielectric loss measurement techniques have been found effective for medium voltage cables, they are of very limited use on low voltage cables that constitute the majority of cables in nuclear power plants. This limited effectiveness is due to the lack of a well defined ground plane that is a

  20. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Science.gov (United States)

    2010-07-01

    ... portable or mobile equipment from low-voltage three-phase resistance grounded power systems shall contain... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage... STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage...

  1. Cable handling

    International Nuclear Information System (INIS)

    1980-01-01

    In computerized axial tomography scanning, problems arise in exchanging electrical signals between fixed and rotating assemblies. A novel method of overcoming this problem is described in detail for both signal and high voltage cables. Apparatus using a sequence of drums and pulleys is used to maintain the interconnecting cables in a neat arrangement and free from mechanical strain. The apparatus is simple and relatively easy and inexpensive to assemble and maintain. (UK)

  2. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  3. Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) : Part 2: cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2005-01-01

    Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) : Part 2: cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

  4. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    Energy Technology Data Exchange (ETDEWEB)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  5. Bottlenecks reduction using superconductors in high voltage transmission lines

    Directory of Open Access Journals (Sweden)

    Daloub Labib

    2016-01-01

    Full Text Available Energy flow bottlenecks in high voltage transmission lines known as congestions are one of the challenges facing power utilities in fast developing countries. Bottlenecks occur in selected power lines when transmission systems are operated at or beyond their transfer limits. In these cases, congestions result in preventing new power supply contracts, infeasibility in existing contracts, price spike and market power abuse. The “Superconductor Technology” in electric power transmission cables has been used as a solution to solve the problem of bottlenecks in energy transmission at high voltage underground cables and overhead lines. The increase in demand on power generation and transmission happening due to fast development and linked to the intensive usage of transmission network in certain points, which in turn, lead to often frequent congestion in getting the required power across to where it is needed. In this paper, a bottleneck in high voltage double overhead transmission line with Aluminum Conductor Steel Reinforced was modeled using conductor parameters and replaced by Gap-Type Superconductor to assess the benefit of upgrading to higher temperature superconductor and obtain higher current carrying capacity. This proved to reduce the high loading of traditional aluminum conductors and allow more power transfer over the line using superconductor within the same existing right-of-way, steel towers, insulators and fittings, thus reducing the upgrade cost of building new lines.

  6. Design of a termination for a high temperature superconduction power cable

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa; Tønnesen, Ole

    1999-01-01

    ). This assembly is electrically insulated with an extruded polymer dielectric kept at room temperature. Cooling is provided by a flow of liquid nitrogen inside the former. The purpose of the termination is to connect the superconducting cable conductor at cryogenic temperature to the existing power grid at room...... temperatures, the transfer of liquid nitrogen over a high voltage drop and that of providing a well defined atmosphere inside the termination and around the cable conductor. Designs based on calculations and experiments will be presented. The solutions are optimized with respect to a low heat in-leak....

  7. Southwire's High Temperature Superconducting Cable Development - Summary Report

    International Nuclear Information System (INIS)

    Sinha, Uday; Lindsay, David

    2005-01-01

    at ORNL for the DC Ic, voltage withstand, ac loss, and other properties using both the Vacuum and Pressure Terminations. The design concept was proven with the 5-m cables and the same design was used for the 30-m cables. Three 30-m cables were constructed during the first two quarters of 1999. The cables were made on flexible formers but they were introduced into three separate rigid vacuum jacketed pipes (VJP). The cables passed the DC Ic tests that were carried out at the manufacturing site. A site was developed at Southwire with a switch yard, liquid nitrogen tank, a cryogenic cooling and delivery system, and a control room with PLC control for the system. The HTS cables were installed by the third quarter of 1999. The HTS cables were energized Jan. 6, 2000. The official opening was carried out on Feb. 18, 2000. As of April 30, 2005 the HTS site has been operating at 100% load for >29,000 hours. Since June 1, 2001 the system has logged over 21,000 hours at full load without an operator on duty at the site. The cryogenic system has been under operation for more than two years and has proven very reliable. Southwire has developed World's First Industrial HTS cable and is continuing to prove its reliability. This report contains several sections outlined below that are related to Southwire's HTS cable development: (1) High Temperature Superconducting (HTS) Tapes; (2) Hand Wound 1-m Cables; (3) Development of Facilities for Construction and testing of HTS cables; (4) 5-m HTS Cables; (5) 30-m HTS Cables, Installation at Southwire; (6) Continued Developments; and (7) Publications. Each of the above sections provide only a short report. The details are given in separate volumes (Vol. 1 to Vol. 7) with separate appendices for each section. These are available at the Cofer Center Technical Library

  8. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical

  9. Method for analysis the complex grounding cables system

    International Nuclear Information System (INIS)

    Ackovski, R.; Acevski, N.

    2002-01-01

    A new iterative method for the analysis of the performances of the complex grounding systems (GS) in underground cable power networks with coated and/or uncoated metal sheathed cables is proposed in this paper. The analyzed grounding system consists of the grounding grid of a high voltage (HV) supplying transformer station (TS), middle voltage/low voltage (MV/LV) consumer TSs and arbitrary number of power cables, connecting them. The derived method takes into consideration the drops of voltage in the cable sheets and the mutual influence among all earthing electrodes, due to the resistive coupling through the soil. By means of the presented method it is possible to calculate the main grounding system performances, such as earth electrode potentials under short circuit fault to ground conditions, earth fault current distribution in the whole complex grounding system, step and touch voltages in the nearness of the earthing electrodes dissipating the fault current in the earth, impedances (resistances) to ground of all possible fault locations, apparent shield impedances to ground of all power cables, e.t.c. The proposed method is based on the admittance summation method [1] and is appropriately extended, so that it takes into account resistive coupling between the elements that the GS. (Author)

  10. Insulating materials for cables: state of the technology and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Blechschmidt, H H [Hessische Elektrizitaets-A.G., Darmstadt (Germany, F.R.)

    1977-02-01

    This article gives a summary of old and new insulating materials for electrical cables. The electrical properties of some polymer insulating materials (PVC, polyethelene (PE), polymerised polyethelene (VPE), polypropylene) are compared in a table with the properties of paper insulation. The changeover from oiled paper to plastic insulation is almost complete for low voltage cables. Soft PVC is the dominant insulating material in this field. For medium voltage cables (10 kV and 20 kV supplies) and for high voltage cables (60 kV and 110 kV supplies) there is a trend to plastic PE/VPE, because these insulating materials have better electrical properties than PVC.

  11. Comparison of Conductor-Temperature Calculations Based on Different Radial-Position-Temperature Detections for High-Voltage Power Cable

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2018-01-01

    Full Text Available In this paper, the calculation of the conductor temperature is related to the temperature sensor position in high-voltage power cables and four thermal circuits—based on the temperatures of insulation shield, the center of waterproof compound, the aluminum sheath, and the jacket surface are established to calculate the conductor temperature. To examine the effectiveness of conductor temperature calculations, simulation models based on flow characteristics of the air gap between the waterproof compound and the aluminum are built up, and thermocouples are placed at the four radial positions in a 110 kV cross-linked polyethylene (XLPE insulated power cable to measure the temperatures of four positions. In measurements, six cases of current heating test under three laying environments, such as duct, water, and backfilled soil were carried out. Both errors of the conductor temperature calculation and the simulation based on the temperature of insulation shield were significantly smaller than others under all laying environments. It is the uncertainty of the thermal resistivity, together with the difference of the initial temperature of each radial position by the solar radiation, which led to the above results. The thermal capacitance of the air has little impact on errors. The thermal resistance of the air gap is the largest error source. Compromising the temperature-estimation accuracy and the insulation-damage risk, the waterproof compound is the recommended sensor position to improve the accuracy of conductor-temperature calculation. When the thermal resistances were calculated correctly, the aluminum sheath is also the recommended sensor position besides the waterproof compound.

  12. High-tension electrical-arc-induced thermal burns caused by railway overhead cables.

    Science.gov (United States)

    Koller, J

    1991-10-01

    Eleven patients with high-tension electrical-arc-induced thermal burns due to railway overhead cables were treated at the Bratislava Burn Department during a relatively short period of 18 months. All the injuries occurred by the same mechanism, that is persons climbing on top of railway carriages and approaching the 25,000 V a.c. overhead cables. All the burns were the result of an electrical arc passing externally to the body, with subsequent ignition of the victim's clothes. The cutaneous burns, ranging from 24 to 79 per cent of the BSA, were mostly deep partial to full skin thickness injuries. One patient died on day 5 postburn, the other survived. In spite of high-tension aetiology, no true electrical injuries appear to have occurred and no amputations were necessary. The pathophysiology and possible preventive measures are discussed. It must be stressed that arcing can be induced by an earthed object approaching, but not touching, a cable carrying a high voltage.

  13. 30 CFR 75.817 - Cable handling and support systems.

    Science.gov (United States)

    2010-07-01

    ... High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be provided with cable-handling and support systems that are constructed, installed and maintained to minimize... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable handling and support systems. 75.817...

  14. Double Layered Sheath in Accurate HV XLPE Cable Modeling

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella; Silva, J. De; Bak, Claus Leth

    2010-01-01

    This paper discusses modelling of high voltage AC underground cables. For long cables, when crossbonding points are present, not only the coaxial mode of propagation is excited during transient phenomena, but also the intersheath mode. This causes inaccurate simulation results for high frequency...

  15. Innovating Technological Process for Expanding the Service Life of Underground Power Cables

    Directory of Open Access Journals (Sweden)

    Tabacaru V.

    2016-08-01

    Full Text Available As a public power distribution operator on low voltage (023/0.4 kV, medium voltage (6 and 20 kV, and high voltage (110 kV in the territory of Galati County, SDEE Galati serves approximately 240,000 consumers (captive and eligible, domestic and non-domestic For this purpose, in the field of medium voltage underground distribution lines, SDEE Galati manages and operates a volume of approx. 500 km UDL/6kV circuit and approximately 630 km UDL/20 kV circuit. Many of these cables which are still in operation, were manufactured with materials and on the technological level of the ’60s,’70s and ‘80s decades and have reached the end of their service life. Evidence does and incident statistics from these networks in which, every year, one of the "tips" is the medium voltage cables damaged "technical wear" normal operating conditions. The current paper will present the main features of an innovating technological process called SPR (Sustained Pressure Rejuvenation, designed for on-site refurbishing of underground power cable insulation medium and high voltage. The process offers a viable alternative that has proven, over the 25 years of application initially on the American content and now on the worldwide, substantially more cost effective than replacing cables. The paper does not propose detailed presentation of the technological process, but to inform the family of energetics NPS about the existence and the benefits of applying this new technological process to the old cable medium and high voltage.

  16. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, Rick [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hampton, Nigel [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Perkel, Josh [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hernandez, JC [Univ. de Los Andes, Merida (Venezuela); Elledge, Stacy [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); del Valle, Yamille [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Grimaldo, Jose [Georgia Inst. of Technology, Atlanta, GA (United States). School of Electrical and Computer Engineering; Deku, Kodzo [Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  17. Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables

    Directory of Open Access Journals (Sweden)

    Roberto Benato

    2014-12-01

    Full Text Available The knowledge of ground return current in fault occurrence plays a key role in the dimensioning of the earthing grid of substations and of cable sealing end compounds, in the computation of rise of earth potential at substation sites and in electromagnetic interference (EMI on neighbouring parallel metallic conductors (pipes, handrails, etc.. Moreover, the ground return current evaluation is also important in steady-state regime since this stray current can be responsible for EMI and also for alternating current (AC corrosion. In fault situations and under some assumptions, the ground return current value at a substation site can be computed by means of k-factors. The paper shows that these simplified and approximated approaches have a lot of limitations and only multiconductor analysis can show the ground return current behaviour along the cable (not only the two end values both in steady-state regime and in short circuit occurrence (e.g., phase-to-ground and phase-to-phase-to-ground. Multiconductor cell analysis (MCA considers the cable system in its real asymmetry without simplified and approximated hypotheses. The sensitivity of ground return current on circuit parameters (cross-bonding box resistances, substation earthing resistances, soil resistivity is presented in the paper.

  18. Underground cables as an alternative to overhead lines. A comparison of economic and technical aspects of voltages over 22 kV

    Energy Technology Data Exchange (ETDEWEB)

    Trohjell, J.E.; Vognild, I.H.

    1994-07-11

    The report presents technical and economical aspects of underground cables compared to overhead lines in Norway in high voltage transmission systems above 22 kV. The economical comparison between the two options includes capital costs of installation (investment costs), maintenance costs and costs of electrical losses. The main technical issues discussed are reliability and flexibility. 35 refs., 23 figs., 29 tabs.

  19. Nuclear instrumentation cable end seal

    International Nuclear Information System (INIS)

    Cannon, C.P.; Brown, D.P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions is described. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates

  20. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... material and 21/2 inches of conductor insulation. The type, amperage, voltage rating, and construction of...

  1. Distance Protection of Cross-Bonded Transmission Cable-Systems

    DEFF Research Database (Denmark)

    Bak, Claus Leth; F. Jensen, Christian

    2014-01-01

    In this paper the problems of protecting a cross-bonded cable system using distance protection are analysed. The combination of the desire to expand the high voltage transmission grid and the public's opinion towards new installations of overhead lines (OHL), more and more transmission cable syst...

  2. Air insulated cables for medium and low voltage supplies of the EVU

    Energy Technology Data Exchange (ETDEWEB)

    Dienstel, S

    1977-02-01

    Air insulated cables and insulated overhead cables are electrical components, which, by the use of new insulating materials and technology, are particularly suitable for the introduction of systems for overhead power transmission plants. They combine the favorable properties of underground cables, such as compact construction and low inductance, with their high mechanical strength. The present report deals with the construction, accessories and technical properties of these cables. The constructional and operational aspects of such systems and their costs are also discussed.

  3. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  4. Effect of D.C. testing water tree deteriorated cable and a preliminary evaluation of V.L.F. as alternate

    International Nuclear Information System (INIS)

    Eager, G.S. Jr.; Fryszczyn, B.; Katz, C.; ElBadaly, H.A.; Jean, A.R.

    1992-01-01

    This paper reports that according to the experience of some power utilities, the application of industry recommended high voltage d.c. field tests on 5-35 kV extruded dielectric cables, containing water trees, sometimes causes further deterioration of the insulation. Tests conducted on laboratory aged 15 kV ethylene propylene rubber (EP) and 15 and 28 kV crosslinked polyethylene (XLPE) insulated cables indicate that d.c. proof tests in accordance with AEIC specifications an IEEE test guides without flashover do not appear to cause further deterioration. Depending on the degree of cable aging and the level of test voltage, when flashovers take place, damage may be inflicted to XLPE cables. No damage was observed on aged EP cable, at the same test levels. Because of the aforementioned power utility experience, some users have requested an alternate field proof test. Tests conducted on new XLPE and EP cables indicate that damage to the insulation structure can be detected using VLF (0.1 Hz) voltage at approximately one-third the d.c. voltage level. Field tests conducted on severely tree deteriorated 15 kV polyethylene (PE) cable using AEIC recommended d.c. voltage level of about five times operating voltage level caused cable failure; VLF voltage levels up to two times operating voltage did not. VLF voltage appears to be a suitable alternate to d.c. voltage for field proof testing

  5. Terminal load response law of coaxial cable to continuous wave electromagnetic irradiation

    International Nuclear Information System (INIS)

    Pan Xiaodong; Wei Guanghui; Li Xinfeng; Lu Xinfu

    2012-01-01

    In order to study the coupling response law of continuous wave electromagnetic irradiation to coaxial cable, the typical RF coaxial cable is selected as the object under test. The equipment or subsystem connected by coaxial cable is equivalent to a lumped load. Continuous wave irradiation effect experiments under different conditions are carried out to analyze the terminal load response law of coaxial cable. The results indicate that the coaxial cable has a frequency selecting characteristic under electromagnetic irradiation, and the terminal load response voltage peak appears at a series of discrete frequency points where the test cable's relative lengths equal to semi-integers. When the coaxial cable is irradiated by continuous wave, the induced sheath current converts to the differential-mode induced voltage between inner conductor and shielding layer through transfer impedance, and the internal resistance of induced voltage source is the characteristic impedance of the coaxial cable. The change in terminal load value has no influence on the response curve. The voltages on the terminal load and the internal resistance of equivalent induced voltage source obey the principle of voltage division. Moreover, when the sheath current on the coaxial cable is in resonance, the distributed induced voltage between adjacent current nodes is in the same polarity, which can be equivalent to a single induced voltage source. The induced voltage source which is adjacent to the terminal load plays the leading role in the irradiation response process. (authors)

  6. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, II, Gregory Von [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Glover, Steven F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Gary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williamson, Kenneth Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gelbard, Fred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    In a submerged environment, power cables may experience accelerated insulation degradation due to water - related aging mechanisms . Direct contact with water or moisture intrusion in the cable insulation s ystem has been identified in the literature as a significant aging stressor that can affect performance and lifetime of electric cables . Progressive reduction of the dielectric strength is commonly a result of water treeing which involves the development of permanent hydrophilic structures in the insulation coinciding with the absorption of water into the cable . Water treeing is a phenomenon in which dendritic microvoids are formed in electric cable insulation due to electrochemic al reactions , electromechanical forces , and diffusion of contaminants over time . These reactions are caused by the combined effect s of water presence and high electrical stress es in the material . Water tree growth follow s a tree - like branching pattern , i ncreasing in volume and length over time . Although these cables can be "dried out," water tree degradation , specifically the growth of hydrophilic regions, is believed to be permanent and typically worsens over time. Based on established research , water treeing or water induced damage can occur in a variety of electric cables including XLPE, TR - XLPE and other insulating materials, such as EPR and butyl rubber . Once water trees or water induced damage form, the dielectric strength of an insulation materia l will decrease gradually with time as the water trees grow in length, which could eventually result in failure of the insulating material . Under wet conditions or i n submerged environments , several environmental and operational parameters can influence w ater tree initiation and affect water tree growth . These parameters include voltage cycling, field frequency, temperature, ion concentration and chemistry, type of insula tion material , and the characteristics of its defects. In this effort, a review of academic

  7. Comparison study of cable geometries and superconducting tape layouts for high-temperature superconductor cables

    Science.gov (United States)

    Ta, Wurui; Shao, Tianchong; Gao, Yuanwen

    2018-04-01

    High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.

  8. Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network

    CERN Document Server

    Langeslag, S A E; Aviles Santillana, I; Sgobba, S; Foussat, A

    2015-01-01

    The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insul...

  9. Energy cable engineering. Energiekabeltechnik

    Energy Technology Data Exchange (ETDEWEB)

    Luecking, H W

    1981-01-01

    This textbook intends to explain cable elements and common cable constructions according to VDE, and in a second part, to review the theoretical fundamentals and their consequences with a view to the construction of cables for higher voltages and powers. It will give the student a picture of the variety of problems and solutions which make cable engineering so interesting and show the practising engineer how to derive a theoretical system from their extensive everyday experience.

  10. Air flow around suspended cables

    Directory of Open Access Journals (Sweden)

    Gołębiowska Irena

    2017-01-01

    Full Text Available The impact of wind on construction structures is essential issue in design and operation. In particular, the wind can cause the dengerous vibrations of slender structures with low rigidity, eg. vibrations of cables of suspension and cable-stayed bridges or high voltage transmision lines, thus understanding of wind flow around such constructions is significant. In the paper the results of the analysis of wind flow around the cables for different Reynolds number is presented. The analysed flow meets the Navier-Stokes and continuity equations. The circle and elipse section of the cable is analysed. The discusion of vorticity, drag and lift coefficients and cases due to different angle of wind flow action is presented. The boundary layer and its infuence on total flow is analysed.

  11. Stationary operational behavior unsymmetrical superconducting three-phase cable

    Energy Technology Data Exchange (ETDEWEB)

    Iser, R.

    1974-01-01

    A superconducting cable with a coaxial conductor arrangement is electrically unsymmetrical. Voltage and current relationships are analyzed for such a cable where, as a result of reactance and capacitance matrices being unsymmetric, large voltage unsymmetry appears. This limits the practical length of this type of cable. It is shown that a significant gain in symmetry is attained by the use of two cables connected in parallel. The compensating current which then occurs involves no disadvantage. The circuit described permits overloads of up to 100 percent.

  12. Power cables now and in the future

    Energy Technology Data Exchange (ETDEWEB)

    Wanser, G

    1976-01-01

    A survey is presented of the problems to be faced with the underground supply of electric power to large, urban areas and of the contributions that improvements in power cable technology will make to solving these problems. It is concluded that the increase in population densities and the rising demand for energy on the part of individual consumers bring up problems for electricity supply and thus have a direct influence on development trends in cable engineering. During the last few years the increasing capacities required in power transmission have led to the use of higher voltages and to the application of special methods of cooling for the oil-filled cable. When the technical and economic possibilities with present-day cable techniques have been exhausted, we must anticipate the introduction of new types of cable, i.e., gas-insulated cables and superconducting cables. The problems involved in power distribution are being solved successfully by resorting to larger conductor cross-sectional areas and by raising the voltage levels. The advantages of plastic cables are also being utilized on a wide scale. The requirement that there be freedom from partial discharges in plastic cables operating at medium and higher voltages is becoming increasingly more widely adopted as a new quality criterion in cable engineering. New materials from the polymer range are permitting the introduction of fittings which are easier to install and which reduce costs. Cable engineering has already, to a considerable extent, adapted itself to face future problems. Even so, there are still a large number of problems in cable engineering requiring research, development and operation.

  13. Fundamental aspects of excitation and propagation of on-line partial discharge signals in three-phase medium voltage cable systems

    NARCIS (Netherlands)

    Wielen, van der P.C.J.M.; Steennis, E.F.; Wouters, P.A.A.F.

    2003-01-01

    On-line partial discharge (PD) detection of three-phase belted medium voltage cable connections results in a number of interpretation differences as compared to off-line measurements where only one phase is energized. The induced currents and charges in the phase conductors and earth screen upon a

  14. Partial discharge tests and characterisation of the Advanced Photon Source linac modulator cables

    International Nuclear Information System (INIS)

    Cours, A.

    2007-01-01

    The advanced photon source (APS) linac modulators are PFN-type pulsers with switch-mode charging power supplies (PSs). The PS and the PFN are connected to each other by 15 feet of 100-kV x-ray cable, with the PFN end of the cable terminated with a connector that was confirmed partial-discharge (PD)-free up to 38 kV ac (53.5 kV peak). Another end of the cable is terminated with a connector that was designed by the PS manufacturer and cannot easily be replaced with another type of connector, since part of it is located inside the densely packed PS. PD tests of the cables with this type of connector show that the PD inception voltages (PDIVs) in different cables turn out to be located within a wide voltage range: 21 to 27 kV ac that corresponds to 29 to 38 kV peak. In order to evaluate the insulation condition of the modulator cables, detect insulation deterioration, and ensure failure-preventing equipment maintenance, over the last two years the PDIVs of all high-voltage (HV) cables in use in the modulators have been tested about every three and a half months. Before the tests, all cables were removed from the equipment, carefully cleaned, inspected, and regreased. The tests were performed using a 40-kV PD detector. The test results show that: 1 The PDIVs remain almost unchanged in all tested cables. 2 From test to test, the PDIV of any particular cable may slightly oscillate around some average value. This possibly depends on the connector regreasing technique. 3 There is no direct evidence of cable insulation deterioration during more than two years of operation under voltage higher than the PD inception level.

  15. The reduction of leading- and trailing-edge of high-voltage steep pulse in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Zhu Zongtao; Gui Gang; Wang Zhijian; Gong Chunzhi; Yang Shiqin; Tian Xiubo

    2010-01-01

    During plasma immersion ion implantation (PIII) processes, due to the capacitance effect of the coaxial cable and plasma load, the output voltage pulse of high-voltage modulator possesses a longer leading- and trailing-edge time. The leading- and trailing-edge of the high voltage (HV) pulse have a critical effect on the ion-energy uniformity, depth and dose distribution during PIII processes. In this work, a tetrode was used as a hard tube to switch the DC high voltage, and a HV pulse modulator with a maximum pulse voltage of 40 kV was built successfully. The effect of the trailing-edge time on the implantation uniformity was simulated by one-dimension PIC method. The potential on the control grids of the tetrode was optimized to obtain a HV pulse with a short rise time. In our system, 200 V potential on grid one is utilized and the leading-edge time of pulse can be as small as 1 μs. The IGBTs in series was utilized to release the remnant charges reserved in the equivalent capacitance of the plasma load and coaxial cable. Thus the trailing-edge time of the HV pulse could be reduced. The effect of the driver signals with different delay time and the absorption parameters of each IGBTs were simulated by PSPICE software to optimize the design the electric circuit. (authors)

  16. Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Sen Song

    2018-06-01

    Full Text Available In high voltage direct current (HVDC power transmission of offshore wind power systems, DC/DC converters are applied to transfer power from wind generators to HVDC terminals, and they play a crucial role in providing a high voltage gain, high efficiency, and high fault tolerance. This paper introduces an innovative multi-port DC/DC converter with multiple modules connected in a scalable matrix configuration, presenting an ultra-high voltage step-up ratio and low voltage/current rating of components simultaneously. Additionally, thanks to the adoption of active clamping current-fed push–pull (CFPP converters as sub-modules (SMs, soft-switching is obtained for all power switches, and the currents of series-connected CFPP converters are auto-balanced, which significantly reduce switching losses and control complexity. Furthermore, owing to the expandable matrix structure, the output voltage and power of a modular converter can be controlled by those of a single SM, or by adjusting the column and row numbers of the matrix. High control flexibility improves fault tolerance. Moreover, due to the flexible control, the proposed converter can transfer power directly from multiple ports to HVDC terminals without bus cable. In this paper, the design of the proposed converter is introduced, and its functions are illustrated by simulation results.

  17. Twenty-channel high-voltage pulse generators

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Kashirin, A.P.

    1980-01-01

    A 20-channel high-voltage pulse generator operating with a mismatched load is described. The generator contains shaping lines 20 m long made of coaxial cable, a trigatron-type discharged, and isolating plates. The channel characteristic impedance is 50 Ohm. The maximum pulse amplitude is up to 15 kV on a high-resistance load and 7.5 kV on a matched one. The pulse duration is 100 ns at a pulse rise time of 12 ns, the delay introduced by the generator is 200 +-2.5 ns. Provision is made in the control circuit for compensation of the shaped pulse and separation of a pulse reflected from the load. The reflected pulse shape and amplitude characterize load parameters. Generator tests proved its high operational reliability (after 10 5 operations no significant changes in generator performances have been observed). The generator is intended for filmless data output from spark chambers

  18. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    Science.gov (United States)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  19. Recommendation on the Environmental Effect Report for the high-voltage transmission line between Netherlands and Norway

    International Nuclear Information System (INIS)

    1998-01-01

    The recommendation on the title subject was addressed to the Dutch Minister of Economic Affairs and concerns the environmental impact of the new high-voltage transmission line (NorNed cable) from Norway to the Eemshaven in Groningen, Netherlands. In planning this power cable the environmental impact on the Wadden Sea has to be taken into account. Therefore an environmental effect report (MER, abbreviated in Dutch) has been drafted by the Dutch cooperative of electric power generating companies, Sep, and commented by the WaddenAdviesRaad

  20. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    Science.gov (United States)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  1. New selection rules for cable- and line protection

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, J

    1982-04-01

    In June 1981 new regulations were published on the protection and dimensioning of leads and cables: of DIN 57100/VDE 0100 the parts 430 and 523. They shall substitute the well-known Paragraph 41 'Dimensioning of leads and cables and their protection against high temperatures of VDE 0100/5.73. The work deals with the essential statements with application examples especially for the operation of low-voltage breakers and power switch-gear.

  2. Advanced nuclear power plant design with minimized use of cables

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The objective of this report is to present a nuclear power plant design with a minimum utilization of cables. The report describes the types of software and hardware that will be needed to minimize hard-wired control and instrumentation circuits and to reduce the quantity of low voltage power cables while maintaining a high availability and reliability of the plant control systems

  3. Apparatus including a plurality of spaced transformers for locating short circuits in cables

    Science.gov (United States)

    Cason, R. L.; Mcstay, J. J. (Inventor)

    1978-01-01

    A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined.

  4. Influence of Cable Vibrations on Connectors Used in Automotive Applications

    Directory of Open Access Journals (Sweden)

    AMEL Bouzera

    2012-10-01

    Full Text Available In order to determine the influence of cable vibrations on the contact resistance of connectors, the cable resonant frequency and the resulting movement of both parts of the connector have been studied. The increase of contact voltage, followed by rapidfluctuations generated by wear particles, has been analysed. A test bench designed to monitor wire vibrations was used while the transferred amplitude was measured by a high sensitivity displacement sensor. The contact interface was made of copper alloy and tin coated. The connector was connected to a resistive power supplytransmitting different currents and voltage values. Two investigations were performed on the contact voltage measured with a fast sampling oscilloscope which enabled histograms and a Fast FourierTransform analysis to be obtained. The appearance of contact fluctuations observed during the fretting generated by cable vibrations, and depending upon the wear effect, is attributed toelectromechanical phenomena. Some slow fluctuations are well correlated to the vibration period while the rapid ones are linked to an electrical conduction perturbation in the granular interface caused by the connector movement.

  5. Comparison of advanced high power underground cable designs

    International Nuclear Information System (INIS)

    Erb, J.; Heinz, W.; Hofmann, A.; Koefler, H.J.; Komarek, P.; Maurer, W.; Nahar, A.

    1975-09-01

    In this paper, advanced high power underground cable designs are compared in the light of available literature, of reports and information supplied by participating industries (AEG, BICC, CGE, Pirelli, Siemens), spontaneous contributions by EdF, France, BBC and Felten and Guilleaume Kabelwerke A.G., Germany, and Hitachi, Furukawa, Fujikura and Sumitomo, Japan, and earlier studies carried out at German public research centres. The study covers cables with forced cooling by oil or water, SF 6 -cables, polyethylene cables, cryoresistive and superconducting cables. (orig.) [de

  6. Optimal Cable Tension Distribution of the High-Speed Redundant Driven Camera Robots Considering Cable Sag and Inertia Effects

    Directory of Open Access Journals (Sweden)

    Yu Su

    2014-03-01

    Full Text Available Camera robots are high-speed redundantly cable-driven parallel manipulators that realize the aerial panoramic photographing. When long-span cables and high maneuverability are involved, the effects of cable sags and inertias on the dynamics must be carefully dealt with. This paper is devoted to the optimal cable tension distribution (OCTD for short of the camera robots. Firstly, each fast varying-length cable is discretized into some nodes for computing the cable inertias. Secondly, the dynamic equation integrated with the cable inertias is set up regarding the large-span cables as catenaries. Thirdly, an iterative optimization algorithm is introduced for the cable tension distribution by using the dynamic equation and sag-to-span ratios as constraint conditions. Finally, numerical examples are presented to demonstrate the effects of cable sags and inertias on determining tensions. The results justify the convergence and effectiveness of the algorithm. In addition, the results show that it is necessary to take the cable sags and inertias into consideration for the large-span manipulators.

  7. THE EFFICACY OF THE CABLES OF 6–110 KW WITH XLPE INSULATION. Part 2

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The assessment of the suitability of cables of 6–110 kW with XLPE insulation in comparison with cables of the same voltage but possessing paper-oil insulation has been fulfilled on the basis of the method of multi-objective optimization that makes it possible to account not only the quantitative characteristics (of reduced costs, but also qualitative ones. As an indicator of the reliability of the cable line the maximum mean time to failure (the value inversely proportional to the parameter of succession of failures, which is an order more for cable lines with XLPE insulation than for cable lines with paper insulation, is adopted. A comprehensive assessment of the convenience of installation of cable lines revealed that the installation of cable with XLPE insulation features a 1.2–1.6 times easier installation as compared to three-wire (voltage 10 kW and 1.4 times easier installation as compared to single-core oil-filled cables (voltage of 110 kW. The efficacy of the cables 6–110 kW with XLPE insulation is proved on the basis on the method of multi-objective optimization, that took into account as the costs for the construction and operation of cable lines and the reliability of its operation, ease of its installation and other quality indicators. If the goals taken into account are considered as equally important, the polyethylene-insulated cables for a voltage of 10–110 kW is more efficient as compared to three-wire (voltage 10 kW and solid (110 kW cables with paper insulation. Herewith, the cost of the cable with XLPE insulation may exceed the cost of cable with paper insulation up to two times. If the most important aim is to provide the minimum reduced costs for the construction and operation of the cable line, the use of cables with XLPE insulation for voltage of 10 kW is most advisable in individual cases.

  8. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  9. Young's moduli of cables for high field superconductive dipole magnet

    International Nuclear Information System (INIS)

    Yamada, Shunji; Shintomi, Takakazu.

    1983-01-01

    Superconductive dipole magnets for big accelerators are subjected to enormous electro-magnetic force, when they are operated with high field such as 10 Tesla. They should be constructed by means of superconductive cables, which have high Young's modulus, to obtain good performance. To develop such cables we measured the Young's moduli of cables for practical use of accelerator magnets. They are monolithic and compacted strand cables. We measured also Young's moduli of monolithic copper and brass cables for comparison. The obtained data showed the Young's moduli of 35 and 15 GPa for the monolithic and compacted strand cables, respectively. (author)

  10. Potentially damaging failure modes of high- and medium-voltage electrical equipment

    International Nuclear Information System (INIS)

    Hoy, H.C.

    1984-01-01

    The high- and medium-voltage electrical equipment failures of both nuclear and nonnuclear electric utilities have been reviewed for possible disruptive failure modes that would be of special concern in a nuclear power plant. The resulting emphasis was on the electrical faults of transformers, switchgear (circuit breakers), lightning (surge) arrestors, high-voltage cabling and buswork, control boards, and other electrical equipment that, through failure, can be the initiating event that may expand the original fault to nearby or associated equipment. Many failures of such equipment were found and documented, although the failure rate of electrical equipment in utilities is historically quite low. Nuclear plants record too few failures to be statistically valid, but failures that have been recorded show that good design usually restricts the failure to a single piece of equipment. Conclusions and recommendations pertaining to the design, maintenance, and operation of the affected electrical equipment are presented

  11. Design of power cable grounding wire anti-theft monitoring system

    Science.gov (United States)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  12. Non destructive testing of medium and high voltage cables with a transportable radiography system

    Directory of Open Access Journals (Sweden)

    D. V. Bandekas

    2010-01-01

    Full Text Available A power cable is the most important part in a power transmission system. The cables must be total quality dedicated andcertified for development, manufacturing and installation, however are exposed to a corrosive environment. The purpose ofthis paper is to show that the fast neutron radiography with a transportable system is a solution to find defects in the cablesand reduce the cost of inspection. The design, regarding the materials considered, was compatible with the European UnionDirective on “Restriction of Hazardous Substances” (RoHS 2002/95/EC, hence excluding the use of cadmium and lead.Wide width values for the collimator ratio were calculated. With suitable collimator design it was possibly to optimize theneutron radiography parameters. Finally the shielding design was examined closely. The proposed system has been simulatedusing the MCNPX code.

  13. Analysis and elimination method of the effects of cables on LVRT testing for offshore wind turbines

    Science.gov (United States)

    Jiang, Zimin; Liu, Xiaohao; Li, Changgang; Liu, Yutian

    2018-02-01

    The current state, characteristics and necessity of the low voltage ride through (LVRT) on-site testing for grid-connected offshore wind turbines are introduced firstly. Then the effects of submarine cables on the LVRT testing are analysed based on the equivalent circuit of the testing system. A scheme for eliminating the effects of cables on the proposed LVRT testing method is presented. The specified voltage dips are guaranteed to be in compliance with the testing standards by adjusting the ratio between the current limiting impedance and short circuit impedance according to the steady voltage relationship derived from the equivalent circuit. Finally, simulation results demonstrate that the voltage dips at the high voltage side of wind turbine transformer satisfy the requirements of testing standards.

  14. Structured Cable for High-Current Coils of Tokamaks

    Science.gov (United States)

    Benson, Christopher; McIntyre, Peter; Sattarov, Akhdiyor; Mann, Thomas

    2011-10-01

    The 45 kA superconducting cable for the ITER central solenoid coil has yielded questionable results in two recent tests. In both cases the cable Tc increased after cycling only a fraction of the design life, indicating degradation due to fatigue and fracture among the superconducting strands. The Accelerator Research Lab at Texas A&M University is developing a design for a Nb3Sn structured cable suitable for such tokamak coils. The superconductor is configured in 6 sub-cables, and each subcable is supported within a channel of a central support structure within a high-strength armor sheath. The structured cable addresses two issues that are thought to compromise opposition at high current. The strands are supported without cross-overs (which produce stress concentration); and armor sheath and core structure bypass stress through the coil and among subcables so that the stress within each subcable is only what is produced directly upon it. Details of the design and plans for development will be presented.

  15. Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator.

    Science.gov (United States)

    Moses, Matthew S; Murphy, Ryan J; Kutzer, Michael D M; Armand, Mehran

    2015-12-01

    This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy.

  16. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  17. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    , such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...... based on the current density distribution in different conductor designs by means of the Finite Element Method (FEM). The obtained results and methods are compared to available standards (IEC publication 60287-1-1)....

  18. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  19. Conducted EMI Prediction and Mitigation Strategy Based on Transfer Function for a High-Low Voltage DC-DC Converter in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2018-04-01

    Full Text Available The high dv/dt and di/dt outputs from power devices in a high-low voltage DC-DC converter on electric vehicles (EVs can always introduce the unwanted conducted electromagnetic interference (EMI emissions. A conducted EMI prediction and mitigation strategy that is based on transfer function for the high-low voltage DC-DC converter in EVs are proposed. A complete test for the DC-DC converter is conducted to obtain the conducted EMI from DC power cables in the frequency band of 150 kHz-108 MHz. The equivalent circuit with high-frequency parasitic parameters of the DC-DC converter is built`1 based on the measurement results to acquire the characteristics of the conducted EMI of the DC power cables. The common mode (CM and differential mode (DM propagation coupling paths are determined, and the corresponding transfer functions of the DM interference and CM interference are established. The simulation results of the conducted EMI can be obtained by software Matlab and Computer Simulation Technology (CST. By analyzing the transfer functions and the simulation results, the dominated interference is the CM interference, which is the main factor of the conducted EMI. A mitigation strategy for the design of the CM interference filter based on the dominated CM interference is proposed. Finally, the mitigation strategy of the conducted EMI is verified by performing the conducted voltage experiment. From the experiment results, the conducted voltage of the DC power cables is decreased, respectively, by 58 dBμV, 55 dBμV, 65 dBμV, 53 dBμV, and 54 dBμV at frequency 200 kHz, 400 kHz, 600 kHz, 1.4 MHz, and 50 MHz. The conduced voltage in the frequency band of 150 kHz–108 MHz can be mitigated by adding the CM interference filters, and the values are lower than the limit level-3 of CISPR25 standard (GB/T 18655-2010.

  20. AN EVALUATION OF CONDITION MONITORING TECHNIQUES FOR LOW-VOLTAGE ELECTRIC CABLES

    International Nuclear Information System (INIS)

    LOFARO, R.J.; GROVE, E.; SOO, P.

    2000-01-01

    Aging of systems and components in nuclear power plants is a well known occurrence that must be managed to ensure the continued safe operation of these plants. Much of the degradation due to aging is controlled through periodic maintenance and/or component replacement. However, there are components that do not receive periodic maintenance or monitoring once they are installed; electric cables are such a component. To provide a means of monitoring the condition of electric cables, research is ongoing to evaluate promising condition monitoring (CM) techniques that can be used in situ to monitor cable condition and predict remaining life. While several techniques are promising, each has limitations that must be considered in its application. This paper discusses the theory behind several of the promising cable CM techniques being studied, along with their effectiveness for monitoring aging degradation in typical cable insulation materials, such as cross-linked polyethylene and ethylene propylene rubber. Successes and limitations of each technique are also presented

  1. Crystal River 3 Cable Materials for Thermal and Gamma Radiation Aging

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Correa, Miguel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zwoster, Andy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-07

    The Expanded Materials Degradation Assessment Volume 5: Aging of Cables and Cable Systems (EMDA) summarizes the state of knowledge of materials, constructions, operating environments, and aging behavior of low voltage and medium cables in nuclear power plants (NPPs) and identifies potential knowledge gaps with regard to cable operation beyond 60 years. The greatest area of uncertainty relates to how well the accelerated aging used in the original equipment qualification (EQ) processes predicts the performance of cable materials in extended operation. General opinion and utility experience have indicated that actual operating environments of in-plant cables are not as severe, however, as the operating and design basis environments used in the qualification process. Better understanding of the long term aging behavior of cable insulation materials in service conditions and the analysis of actual cable operating environments are the objectives of ongoing research to support subsequent license renewal activities in particular and long term cable aging management in general. A key component of the effort to better understand cable material aging behavior is the availability of representative samples of cables that have been installed in operating light water reactors and have experienced long term service. Unique access to long term service cables, including relatively rich information on cable identity and history, occurred in 2016 through the assistance of the Electric Power Research Institute (EPRI). EPRI facilitated DOE receipt of harvested cables from the decommissioned Crystal River Unit 3 (CR3) pressurized water reactor representing six of the nine most common low voltage cable manufacturers (EPRI 103841R1): Rockbestos, Anaconda Wire and Cable Company (Anaconda), Boston Insulated Wire (BIW), Brand-Rex, Kerite and Okonite. Cable samples received had been installed in the operating plant for durations ranging from 10 years to 36 years. These cables provide the

  2. Full-scale fire experiments on vertical horizontal cable trays

    International Nuclear Information System (INIS)

    Mangs, J.; Keski-Rahkonen, O.

    1997-10-01

    Two full-scale fire experiments on PVC cables used in nuclear power plants were carried out, one with cables in vertical position and one with cables in horizontal position. The vertical cable bundle, 3 m high, 300 mm wide and 30 mm thick, was attached to a steel cable ladder. The vertical bundle experiment was carried out in nearly free space with three walls near the cable ladder guiding air flow in order to stabilise flames. The horizontal cable experiment was carried out in a small room with five cable bundles attached to steel cable ladders. Three of the 2 m long cable bundles were located in an array, equally spaced above each other near one long side of the room and two correspondingly near the opposite long side. The vertical cable bundle was ignited with a small propane gas burner beneath the lower edge of the bundle. The horizontal cable bundles were ignited with a small propane burner beneath the lowest bundle in an array of three bundles. Rate of heat release by means of oxygen consumption calorimetry, mass change, CO 2 , CO and smoke production rate and gas, wall and cable surface temperatures were measured as a function of time, as well as time to sprinkler operation and failure of test voltage in cables. Additionally, the minimum rate of heat release needed to ignite the bundle was determined. This paper concentrates on describing and recording the experimental set-up and the data obtained. (orig.)

  3. High power cable with internal water cooling 400 kV

    Science.gov (United States)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  4. High power cable with internal water cooling 400 kV

    Energy Technology Data Exchange (ETDEWEB)

    Rasquin, W; Harjes, B

    1982-08-01

    The project was planned for a duration of 4 years. Afterwards it has been extended over 6 years and finally stopped after 3 1/2 years. Therefore, of course results of field tests with an internally cooled 400 kV cable are not available. Nevertheless, this conductor cooled high power cable has been developed to such an extend, that this manufactured cable could withstand type tests according to IEC/VDE recommendations. Even by missing field tests it is obvious that a high power cable for 400 kV is available.

  5. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    International Nuclear Information System (INIS)

    Krueger Olsen, S.; Kuehle, A.; Traeholt, C.; C Rasmussen, C.; Toennesen, O.; Daeumling, M.; Rasmussen, C.N.; Willen, D.W.A.

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current and the voltage over the cable close to 90 degrees. This has the effect that the loss cannot be derived directly using most commercial lock-in amplifiers due to their limited absolute accuracy. However, by using two lock-in amplifiers and an appropriate correction scheme the high relative accuracy of such lock-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce the inductive voltage. The 1 μV cm -1 critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6±0.15 W m -1 . This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far at these high currents. (author)

  6. Reliability studies, construction and test of a pilot cable installation with supra-conductors

    International Nuclear Information System (INIS)

    Franke, H.; Allgemeine Elektricitaets-Gesellschaft AEG Telefunken Kabelwerke A.G., Moenchengladbach; Kabel- und Metallwerke Gutehoffnungshuette A.G., Hannover; Linde A.G., Hoellriegelskreuth

    1980-01-01

    The basic knowledge of electrical insulation, of current carrying capacity of superconductors, of contraction of papers and of thermal insulation was extended. Different kinds of cable-joints were developed. Voltage tests of a testline were made. The line stands the operating voltage, the terminations must be improved to stand the test voltage. The cooling system of a larger cable installation was studied. (orig.) [de

  7. Implementation of computational model for the evaluation of electromagnetic susceptibility of the cables for communication and control of high voltage substations; Implementacao de modelo computacional para a avaliacao da suscetibilidade eletromagnetica dos cabos de comunicacao e controle de subestacoes de alta tensao

    Energy Technology Data Exchange (ETDEWEB)

    Sartin, Antonio C.P. [Companhia de Transmissao de Energia Eletrica Paulista (CTEEP), Bauru, SP (Brazil); Dotto, Fabio R.L.; Sant' Anna, Cezar J.; Thomazella, Rogerio [Fundacao para o Desenvolvimento de Bauru, SP (Brazil); Ulson, Jose A.C.; Aguiar, Paulo R. de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil)

    2009-07-01

    This work show the implementation of a electromagnetic model for supervision cable, protection, communication and high voltage substations control that was investigated in literature and adapted. The model was implemented by using a computational tool in order to obtain the electromagnetic behavior of various cables used in CTEEP substation, subject to several sources of electromagnetic interference in this inhospitable environment, such as lightning strikes, outbreaks of maneuvers switching and the corona effect. The results obtained in computer simulations were compared with results of laboratory tests carried out on a lot of cables that represent those systems that are present in substations 440 kV. This study characterized the electromagnetic interference, ranked them, identified possible susceptible points in the substation, which contributed to the development of a technical procedure that minimizes unwanted effects caused in communication systems and substation control. This developed procedure also assured the maximum reliability and availability in the operation of the electrical power system to the company.

  8. Design of anti-theft/cable cut real time alert system for copper cable using microcontroller and GSM technology

    Science.gov (United States)

    Lim, E. K.; Norizan, M. N.; Mohamad, I. S.; Yasin, M. N. M.; Murad, S. A. Z.; Baharum, N. A.; Jamalullail, N.

    2017-09-01

    This paper presents the design of anti-theft/cable cut real time alert system using microcontroller and GSM technology. The detection part is using the electrical circuit wire connection in detecting the voltage drop of the cable inside the microcontroller digital input port. The GSM wireless modem is used to send the location of cable cut directly to the authority mobile phone. Microcontroller SK40C with Microchip PIC16F887 is used as a controller to control the wireless modem and also the detection device. The device is able to detect and display the location of the cable cut on the LCD display besides of and sending out the location of the cable break to the authority mobile phone wirelessly via SMS.

  9. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  10. Cabling for an SSC silicon tracking system

    International Nuclear Information System (INIS)

    Ziock, H.; Boissevain, J.; Cooke, B.; Miller, W.

    1990-01-01

    As part of the Superconducting Super Collider Laboratory (SSCL) funded silicon tracking subsystem R ampersand D program, we examine the problems associated with cabling such a system. Different options for the cabling plant are discussed. A silicon microstrip tracking detector for an SSC experiment is an extremely complex system. The system consists of approximately 10 7 detector channels, each of which requires a communication link with the outside world and connections to the detector bias voltage supply, to a DC power supply for the onboard electronics, and to an adjustable discrimination level. The large number of channels and the short time between beam interactions (16 nanoseconds) dictates the need for high speed and large bandwidth communication channels, and a power distribution system that can handle the high current draw of the electronics including the large AC component due to their switching. At the same time the constraints imposed by the physics measurements require that the cable plant have absolutely minimal mass and radiation length. 4 refs., 2 figs

  11. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  12. Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of the tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.

  13. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.

  14. Compound deterioration properties of non-halogen flame-resisting cables

    International Nuclear Information System (INIS)

    Yamamoto, Yasuaki; Yagyu, Hideki; Onishi, Takao; Kamiharako, Shinji

    1984-01-01

    Conventional flame-resisting cables release harmful gas such as hydrogen chloride and smoke on burning. To improve this disadvantage, the cables for nuclear power plants using new non-halogen flame-resisting insulating material have been developed. In this experiment, the non-halogen flame-resisting cables were subjected to the environmental test with varying test conditions. The test conditions included the order of exposure (heat treatment, γ-ray irradiation and steam exposure) and dose rate. After the environmental test, the mechanical and electrical properties of the samples were measured. In all test conditions, the samples did not crack in bending, and withstood the bending and withstand-voltage in-water test. The tensile strength and a.c. breakdown voltage did not change, and were stable. The elongation decreased greatly, but maintained the value of about 100 %, and the volumetric resistivity decreased by only one figure. It was confirmed that these cables were able to withstand various environmental tests. (Yoshitake, I.)

  15. Full Scale Test on a 100km, 150kV AC Cable

    DEFF Research Database (Denmark)

    Faria da Silva, Filipe Farria; Wiechowski, W.; Bak, Claus Leth

    2010-01-01

    phenomena is conducted. The cases analysed in this paper are: Zero-missing phenomenon, Ferranti effect, energisation transient, effect of the cable's connection in the busbar voltage and cable disconnection. For all the phenomena described in the paper measurement data are presented and it is verified......This paper presents some of the results obtained from the electrical measurements on a 99.7 km, 150 kV three-phase AC cable, connecting 215 MW offshore wind farm Horns Rev 2, located in Denmark west coast, to Denmark's 400 kV transmission network. The measurements were performed at nominal voltage...... if the obtained results are in accordance with the theory and also with simulations performed in PSCAD/EMTDC. With the exception of the cable disconnection, for all the remaining cases introduced in this paper the measurements confirmed the theoretical expectations. Depending on the cable disconnection sequence...

  16. Characteristics of the joint mini-model high temperature superconducting cable

    International Nuclear Information System (INIS)

    Kim, H.; Sim, K.; Cho, J.; Kim, S.; Kim, J.H.; Jung, H.Y.

    2008-01-01

    To obtain realistic data on the high temperature superconducting (HTS) power cable, 3-phase 100 m long, 22.9 kV class HTS power transmission cable system have been developed by Korea Electrotechnology Research Institute (KERI) and LS cable Ltd. that is one of 21st Century Frontier Project in Korea. This cable was installed at Go-chang testing site of Korea Electric Power Corporation (KEPCO). For the application of the HTS power cable joint is very important to ensure the performance. Therefore, this paper gives some investigation of AC loss, critical current and joint resistance in jointed HTS tape. We experimentally showed that the influence of joint resistance on AC loss by using several joint methods. Finally, we are measured critical current, AC loss and jointed resistance for the manufactured mini-model cable

  17. Cable Diagnostic Focused Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  18. External electromagnetic transient sources: analysis of its effect in underground power cables; Fuentes transitorias electromagneticas externas: analisis de su efecto en los cables de potencia subterraneos

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla Paz, Antonio

    2009-07-01

    In most of the electrical power systems that operate at present, the subterranean cables are only a complement. The cost of these cables is generally higher than the one of the aerial power lines, thus its use is restricted only to those areas where the construction of the aerial power lines is not feasible. It is estimated that for voltages lower than 110 kV this cost is up to seven times greater than the one of an aerial power line and for voltages higher than 380 kV it can be up to twenty times greater. Nevertheless, important reasons exist to construct a subterranean cable system such as: a) the fast growth of the urban centers and the industrial zones, which brings about restrictions of the rights of way for the construction of aerial power lines, b) the crossing of large water bodies, c) the congestion of aerial power lines near the generating substations or power plants, d) the crossing of air lines and e) the laws and the regulations, to mention some of them. The importance of the underground transmission systems of high and extra high voltage will be increased in the medium and the long term, therefore, it is considered that the effects of the external phenomena in these systems, like the inductions produced by the electromagnetic transient sources, will be more severe. In this research work the atmospheric discharges are defined as the external electromagnetic transient sources. The large dimension cables such as the power cables, behave as large collectors of the interferences produced by the atmospheric discharges, which can bring about damages in the components of a system. In order to avoid the damages and to increase the reliability of the subterranean cable systems it is necessary to use protective devices and appropriate insulation levels, mainly. If the phenomenon and the behavior of the system are properly represented, it is possible to more accurately determine the characteristics that the equipment must have to resist the over voltages and the

  19. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  20. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current......-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce-the inductive...... voltage. The 1 mu V cm(-1) critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6 +/- 0.15 W m(-1). This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far...

  1. Modeling of long High Voltage AC Underground

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella; Bak, Claus Leth; Wiechowski, W. T.

    2010-01-01

    cable models, perform highly accurate field measurements for validating the model and identifying possible disadvantages of the cable model. Furthermore the project suggests and implements improvements and validates them against several field measurements. It is shown in this paper how a new method...

  2. Classification of PD sources in HV cables using neural networks and the LN-FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Barros, W.H.; Oliveira, R.M.; Sobrinho, C.L.; Leite, R.C. [Univ. Federal do Para, Para (Brazil). Dept. of Computational and Electrical Engineering

    2008-07-01

    Partial discharges can be generated by the presence of several defects, and are often the cause of failures in electrical equipment insulators. In this study, a local non-orthogonal finite difference time-domain method (LN-FDTD) was used to simulate the sources of partial discharges in a high voltage coaxial cable model. The artificial neural network (ANN) technique used a Marquandt-Levenberg training algorithm to detect and classify cable PD sources. A set of harmonics obtained from the difference between the registered signals in the time domain was used as part of the training procedure. A failure was inserted on an electrical cable in each simulation in order to obtain the correlated data. Input signals were injected using a voltage pulse represented by a Gaussian function. A total of 90 simulations were conducted to generate 360 data groups in order to consider 6 different types of failures. Results of the study showed that the method can be used to detect and classify partial discharges in cables. 12 refs., 21 figs.

  3. Design and testing of low capacitance, 80-kV source cables for MFTF sustaining neutral beam power supplies

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Shimer, D.W.

    1979-01-01

    In this paper we summarize characteristics of several cable configurations and consider one design in detail, which consists of twelve, 250 MCM arc cables, ten 4/0 filament cables, and accel, gradient grid, control, and instrumentation cables within a circular split Al pipe. The pipe is air insulated from an outer 24-in. x 24-in. steel duct by utility pin insulators. Varying run lengths require adjustment of the arc inductance by variation of cross sectional cable position. Equilibrium heat transfer analysis indicates the pulse-off time for source conditioning must be somewhat greater than 60 s to keep conductor temperatures below 90 0 C. The results of a high voltage test of a model cable are presented

  4. Results of Recent DOE Research on Development of Cable Condition Monitoring and Aging Management Technologies

    International Nuclear Information System (INIS)

    Campbell, C.J.; McConkey, J.B.; Hashemian, H.M.; Sexton, C.D.; Cummins, D.S.

    2012-01-01

    Analysis and Measurement Services (AMS) Corporation has been conducting two research projects focused on understanding cable aging and developing cable condition monitoring technologies for nuclear power plants. The goal of the first project is to correlate cable faults with testing techniques that can identify and locate the faults whether they are in the cable, conductor, or the insulation. This project involves laboratory experiments using low and medium voltage cable types typically installed in nuclear power plants. The second project is focused on development of an integrated cable condition monitoring system for nuclear facilities. This system integrates a number of cable testing and cable condition monitoring techniques, such as the time domain reflectometry (TDR), frequency domain reflectometry (FDR), inductance, capacitance, resistance (LCR), reverse TDR (RTDR), current-to-voltage (IV) for testing of nuclear instrumentation sensors, insulation resistance (IR) and other techniques. The purpose of the project is to combine all proven technologies into one system to detect and pinpoint problems in cable circuits as well as cable insulation, shield, or jacket material. (author)

  5. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    International Nuclear Information System (INIS)

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  6. Technical Challenges and Potential Solutions for Cross-Country Multi-Terminal Superconducting DC Power Cables

    Science.gov (United States)

    Al-Taie, A.; Graber, L.; Pamidi, S. V.

    2017-12-01

    Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.

  7. Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    Fast electrical diagnostics and improvement of electrical circuits for methyl orange (MO) degradation by high voltage pulsed electrical discharge were investigated. To eliminate electromagnetic radiation, several effective methods were employed. RG 218 coaxial cable was substituted for the common transmission lines to transmit high voltage pulses, and multi-lines in parallel were earthed to avoid electromagnetic interference and, additionally, to reduce the stray inductance of the electrical circuit and increase the pulse rise rate to reduce the energy losses in the transmission system. The problem of the differences in the bandwidths of voltage and current probes causing an error in the calculation of energy dissipation was avoided by reducing the bandwidths of voltage and current measurements to the same value. The real discharge current was obtained by subtracting the capacitive current from the total current. The energy per pulse obtained in the reactor before and after improvement of the diagnostics and electrical circuit were 15.5 mJ and 26.8 mJ, respectively, and the energy efficiencies of MO degradation were 1.34 x 10 -9 mol/J and 1.95 x 10 -9 mol/J, respectively

  8. Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hvidsten, Sverre

    1999-07-01

    Condition assessment of XLPE power cables is becoming increasingly important for the utilities, due to a large number of old cables in service with high probability of failure caused by water tree degradation. The commercial available techniques are generally based upon measurements of the dielectric response, either by time (polarisation/depolarisation current or return voltage) or frequency domain measurements. Recently it has been found that a high number of water trees in XLPE insulated cables causes the dielectric response to increase more than linearly with increasing test voltage. This nonlinear feature of water tree degraded XLPE insulation has been suggested to be of a great importance, both for diagnostic purposes, and for fundamental understanding of the water tree phenomenon itself. The main purpose of this thesis have been to study the nonlinear feature of the dielectric response measured on watertreed XLPE insulation. This has been performed by dielectric response measurements in both time and frequency domain, numerical calculations of losses of simplified water tree models, and fmally water content and water permeation measurements on single water trees. The dielectric response measurements were performed on service aged cable samples and laboratory aged Rogowski type objects. The main reason for performing laboratory ageing was to facilitate diagnostic testing as a function of ageing time of samples containing mainly vented water trees. A new method, based upon inserting NaC1 particles at the interface between the upper semiconductive screen and the insulation, was found to successfully enhance initiation and growth of vented water trees. AC breakdown strength testing show that it is the vented water trees that reduce the breakdown level of both the laboratory aged test objects and service aged cable samples. Vented water treeing was found to cause the dielectric response to become nonlinear at a relatively low voltage level. However, the measured

  9. Properties of Polymer Composites Used in High-Voltage Applications

    Directory of Open Access Journals (Sweden)

    Ilona Pleşa

    2016-04-01

    Full Text Available The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal properties. In addition to describing the scientific development of micro/nanocomposites electrical features desired in power engineering, the study is mainly focused on the electrical properties of insulating materials, particularly cross-linked polyethylene (XLPE and epoxy resins, unfilled and filled with different types of filler. Polymer micro/nanocomposites based on XLPE and epoxy resins are usually used as insulating systems for high-voltage applications, such as: cables, generators, motors, cast resin dry-type transformers, etc. Furthermore, this paper includes ample discussions regarding the advantages and disadvantages resulting in the electrical, mechanical and thermal properties by the addition of micro- and nanofillers into the base polymer. The study goals are to determine the impact of filler size, type and distribution of the particles into the polymer matrix on the electrical, mechanical and thermal properties of the polymer micro/nanocomposites compared to the neat polymer and traditionally materials used as insulation systems in high-voltage engineering. Properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, erosion resistance, space charge behavior, electric breakdown, tracking and electrical tree resistance, thermal conductivity, tensile strength and modulus, elongation at break of micro- and nanocomposites based on epoxy resin and XLPE are analyzed. Finally, it was concluded that the use of polymer micro/nanocomposites in electrical engineering is very promising and further research work

  10. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  11. Online Location of Faults on AC Cables in Underground Transmission Systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær

    under fault conditions well, but the accuracy of the calculated impedance is low for fault location purposes. The neural networks can therefore not be trained and no impedance-based fault location method can be used for crossbonded cables or hybrid lines. The use of travelling wave-based methods...... connection to verify the proposed method. Faults, at reduced a voltage are artificially applied in the cable system and the transient response is measured at two terminals at the cable’s ends. The measurements are time-synchronised and it is found that a very accurate estimation of the fault location can......A transmission grid is normally laid out as an almost pure overhead line (OHL) network. The introduction of transmission voltage level XLPE cables and the increasing interest in the environmental impact of OHL has resulted in an increasing interest in the use of underground cables on transmission...

  12. Total Magnetic Field Signatures over Submarine HVDC Power Cables

    Science.gov (United States)

    Johnson, R. M.; Tchernychev, M.; Johnston, J. M.; Tryggestad, J.

    2013-12-01

    Mikhail Tchernychev, Geometrics, Inc. Ross Johnson, Geometrics, Inc. Jeff Johnston, Geometrics, Inc. High Voltage Direct Current (HVDC) technology is widely used to transmit electrical power over considerable distances using submarine cables. The most commonly known examples are the HVDC cable between Italy and Greece (160 km), Victoria-Tasmania (300 km), New Jersey - Long Island (82 km) and the Transbay cable (Pittsburg, California - San-Francisco). These cables are inspected periodically and their location and burial depth verified. This inspection applies to live and idle cables; in particular a survey company could be required to locate pieces of a dead cable for subsequent removal from the sea floor. Most HVDC cables produce a constant magnetic field; therefore one of the possible survey tools would be Marine Total Field Magnetometer. We present mathematical expressions of the expected magnetic fields and compare them with fields observed during actual surveys. We also compare these anomalies fields with magnetic fields produced by other long objects, such as submarine pipelines The data processing techniques are discussed. There include the use of Analytic Signal and direct modeling of Total Magnetic Field. The Analytic Signal analysis can be adapted using ground truth where available, but the total field allows better discrimination of the cable parameters, in particular to distinguish between live and idle cable. Use of a Transverse Gradiometer (TVG) allows for easy discrimination between cable and pipe line objects. Considerable magnetic gradient is present in the case of a pipeline whereas there is less gradient for the DC power cable. Thus the TVG is used to validate assumptions made during the data interpretation process. Data obtained during the TVG surveys suggest that the magnetic field of a live HVDC cable is described by an expression for two infinite long wires carrying current in opposite directions.

  13. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    Science.gov (United States)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  14. High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses.

    Directory of Open Access Journals (Sweden)

    Mona Hichert

    Full Text Available It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses.Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting.Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33% more and high (50% object's breaking force. The time to complete the task was not different between settings during successful manipulation trials.High cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs.

  15. Cable testing for Fermilab's high field magnets using small racetrack coils

    International Nuclear Information System (INIS)

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.I.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Yamada, R.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb 3 Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable

  16. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  17. The Mathematical Modelling of Heat Transfer in Electrical Cables

    Directory of Open Access Journals (Sweden)

    Bugajev Andrej

    2014-05-01

    Full Text Available This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes were applied in two-dimensional domain to eliminate this error. Adaptive mesh is also tried. For calculations OpenFOAM open source software which uses Finite Volume Method is applied. To generate acute triangles meshes aCute library is used. The efficiency of the proposed approach is analyzed. The results show that the second order of convergence or close to that is achieved (in terms of sizes of finite volumes. Also it is shown that standard strategy, used by OpenFOAM is less efficient than the proposed approach. Finally it is concluded that for solving real problem a spatial adaptive mesh is essential and adaptive time steps also may be needed.

  18. Overcurrent experiments on HTS tape and cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, Kim Høj; Træholt, Chresten

    2001-01-01

    their critical current. In this light, it is important to investigate the response of HTS tapes and cable conductors to overcurrents several times the critical current. A number of experiments have been performed on HTS tapes and cable conductors, with currents up to 20 times the critical current. During...... overcurrent experiments, the voltage, and the temperature were measured as functions of time in order to investigate the dynamic behavior of the HTS tape and cable conductor. After each experiment, damage to the superconductors was assessed by measuring the critical current. Preliminary results show...... that within seconds an HTS tape (critical current=17 A) heats above room temperature with an overcurrent larger than 140 A. Similar overcurrent experiments showed that a HTS cable conductor could sustain damage with overcurrents exceeding 10 times the critical current of the cable conductor....

  19. Design issues of the High Voltage platform and feedthrough for the ITER NBI Ion Source

    International Nuclear Information System (INIS)

    Boldrin, M.; Palma, M. Dalla; Milani, F.

    2009-01-01

    In the ITER heating Neutral Beam Injector (NBI), a High Voltage air-insulated platform (named High Voltage Deck, HVD) will be installed to host the Ion Source and Extractor Power supply system and associated diagnostics referred to -1 MV DC potential. All power and control cables are routed from the HVD via a feedthrough (HV bushing) to the gas insulated transmission line which feeds the Injector. The paper focuses on insulation and mechanical issues for both HVD and HV bushing which are very special components, far from the present industrial standards as far as voltage (-1 MV DC) and dimensions are concerned. For this purpose, a preliminary design of the HVD has been carried out as concerns the mechanical structure and external shield. Then, the structure has been verified with a seismic analysis applying the seismic load excitation specified for the ITER construction site (Cadarache) and carrying out verifications according to relevant international standards. As regards the HV bushing design, proposals for the complex inner conductor structure and for interfaces to the HVD and transmission line are outlined; alternative installation layouts (aside or underneath the HVD) are compared from both mechanical and electrical points of view.

  20. High-voltage isolation transformer for sub-nanosecond rise time pulses constructed with annular parallel-strip transmission lines.

    Science.gov (United States)

    Homma, Akira

    2011-07-01

    A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.

  1. High-voltage, high-current, solid-state closing switch

    Science.gov (United States)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  2. Cryogenic System for a High-Temperature Superconducting Power Transmission Cable

    International Nuclear Information System (INIS)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-01-01

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed

  3. Impact of corrosion on the reliability of low voltage cables with aluminium conductors

    NARCIS (Netherlands)

    van Deursen, A.; Kruizinga, B.; Wouters, P.A.A.F.; Steennis, E.F.

    2017-01-01

    Aluminium is widely used as conductor material for power cables, but corrosion taking place under specific circumstances can have impact on its reliability. Aluminium corrosion under the influence of an alternating current was studied experimentally. Submerged cable segments with inflicted damage

  4. Capacitor discharge process for welding braided cable

    Science.gov (United States)

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  5. CMOS-compatible high-voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Parpia, Z

    1988-01-01

    Considerable savings in cost and development time can be achieved if high-voltage ICs (HVICs) are fabricated in an existing low-voltage process. In this thesis, the feasibility of fabricating HVICs in a standard CMOS process is investigated. The high-voltage capabilities of an existing 5-{mu}m CMOS process are first studied. High-voltage n- and p-channel transistors with breakdown voltages of 50 and 190 V, respectively, were fabricated without any modifications to the process under consideration. SPICE models for these transistors are developed, and their accuracy verified by comparison with experimental results. In addition, the effect of the interconnect metallization on the high-voltage performance of these devices is also examined. Polysilicon field plates are found to be effective in preventing premature interconnect induced breakdown in these devices. A novel high-voltage transistor structure, the insulated base transistor (IBT), based on a merged MOS-bipolar concept, is proposed and implemented. In order to enhance the high-voltage device capabilities, an improved CMOS-compatible HVIC process using junction isolation is developed.

  6. MVAC Submarine cable, magnetic fields measurements and analysis

    DEFF Research Database (Denmark)

    Arentsen, Martin Trolle; Expethit, Adrian; Pedersen, Morten Virklund

    2017-01-01

    Standard 60287. Researchers believe that the wire armour of three phased submarine cables is the reason for the inaccurate calculations by the standard. Studies show that the magnetic behaviour of these cables are changed due to the wire armour. In order to investigate this hypothesis, this paper intends...... to supply the theoretical research with data from magnetic field measurements on a wire armoured 3-phase submarine cable, together with an investigation of the induced currents in the different cable components. The influence of the physical arrangement of the armour wires on the electric behaviour is also...... investigated, since several researchers believe that the twisting of the armour wires result in zero net induced voltage over one helix length. This is shown to be valid for the tested cable. Finally a replica of the armour has been built with just a single conductor in the centre. This setup was used...

  7. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  8. Study of the degradation of the insulation of HV cables with PVC insulation

    International Nuclear Information System (INIS)

    Quennehen, Pierre

    2014-01-01

    The observed decrease in the resistivity of the PVC insulation of some high voltage unipolar cables led to question their ability to perform their function. Provide answers concerning in particular the origin of the variation in resistivity and the impact on the dielectric strength were the objectives of this study. The characterizations were carried on cables withdrawn from service whose properties had changed during their use. Physico-chemical characterization (IR microscopy, UV spectroscopy, SEM - EDX and coulometry) showed that aging of the cable resulted from a mechanism of dehydro-chlorination. The presence of two modes of electric conduction in the material was observed: electronic conduction at a low temperature (≤ -10 C) and ionic conduction at room temperature and beyond. The presence of these two modes of conduction is consistent with the mechanism of dehydro-chlorination. In contrast to an Arrhenius law, artificial aging showed a threshold effect in the thermal activation of the mechanism at the origin of the resistivity drop. The dielectric strength of the cable has been confirmed by tests at voltages or temperatures well beyond the nominal values. Measurements of differential scanning calorimetry (DSC) showed occasional more or less pronounced over-heatings that correlate with the resistivity drops, and can therefore be considered as being at the origin of the observed evolutions. (author)

  9. Temporary over voltages in the high voltage networks

    International Nuclear Information System (INIS)

    Vukelja, Petar; Naumov, Radomir; Mrvic, Jovan; Minovski, Risto

    2001-01-01

    The paper treats the temporary over voltages that may arise in the high voltage networks as a result of: ground faults, loss of load, loss of one or two phases and switching operation. Based on the analysis, the measures for their limitation are proposed. (Original)

  10. Results of a literature review on the environmental qualification of low-voltage electric cables

    International Nuclear Information System (INIS)

    Lofaro, R.; Lee, B.; Villaran, M.; Gleason, J.; Aggarwal, S.

    1995-01-01

    In the design of nuclear power plants in the US, safety-related electric equipment must be qualified to provide reasonable assurance it can withstand the effects of a design basis event (DBE) and still be able to perform its prescribed safety function, even if the accident were to occur at the end of its service life. The requirement for environmental qualification (EQ) originates from the General Design Criteria in the Code of Federal Regulations, Title 10, Part 50 (10 CFR 50). The acceptable method of performing the qualification of this equipment has evolved over the years, starting with the NRC Division of Operating Reactors (DOR) Guidelines, which were issued in Bulletin 79--01B, and NUREG-0588 requirements and ending with the current EQ Rule, 10 CFR 50.49. While the EQ methods described in these documents have the same overall objective, there are some notable differences for which a clear technical basis has not been established. One difference is the preaging requirement for equipment prior to LOCA testing. In addition, specific issues related to current EQ practices have been raised by the US NRC which need to be addressed. These issues, which are discussed in detail later in this paper, are related to the sources of conservatism and uncertainty in IEEE Standard 323--1974, which is the qualification standard currently endorsed by the NRC. To address these issues, the NRC Office of Nuclear Reactor Regulation (NRR) implemented a Task Action Plan (TAP), and the Office of Nuclear Reactor Research (RES) initiated a complementary research program. The current focus of this program is on the qualification of low-voltage instrumentation and control cables. These cables were selected since they are not typically replaced on a routine basis, and their degradation could impact plant safety

  11. Extension algorithm for generic low-voltage networks

    Science.gov (United States)

    Marwitz, S.; Olk, C.

    2018-02-01

    Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating

  12. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  13. Design of HTS tri-axial cable in steady-state operation

    International Nuclear Information System (INIS)

    Hu, N.; Toda, M.; Ozcivan, A.N.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2010-01-01

    By the advantage of more compact structure, small leakage field, and low heat loss, tri-axial cable become to be mainstream design in recently HTS practical project. However, the imbalance current problem was also reported by some practice experiments. Since the HTS tri-axial cable is composed of three concentric phases, an unsymmetrical inductance and capacitance distribution which is determined by twist pitches and radii, gives an inherent imbalance in three-phase currents distribution. In our previous research, we proposed a two sections structure design to overcome this limitation. Inductance has been balanced by twist pitch adjusting. In that case, the imbalance ratio of current only can be caused by capacitance distribution which is depending on voltage and line length. In this paper, we evaluate the thickness of insulation, the unsymmetrical capacitance distribution and cable fabrication error. Then we investigate the imbalance ratio due to the capacitance as functions of voltage and length by using Electromagnetic Transients Program (EMTP).

  14. Assessment of Potential Impact of Electromagnetic Fields from Undersea Cable on Migratory Fish Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Klimley, A. P. [Univ. of California, Davis, CA (United States); Wyman, M. T. [Univ. of California, Davis, CA (United States); Kavet, Rob [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2016-09-28

    The US Department of Energy and US Department of the Interior, Bureau of Ocean Energy Management commissioned this study to address the limited scientific data on the impacts of high voltage direct current cables on aquatic biota, in particular migratory species within the San Francisco Bay. Empirical evidence exists that marine animals perceive and orient to local distortions in the earth’s main geomagnetic field magnetic field. The electromagnetic fields (EMF) generated by the cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concern exists that animals that migrate along the continental shelves might orient to the EMF from the cables, and move either inshore or offshore away from their normal path. The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) through the San Francisco Bay. The study addresses the following specific questions based on measurements and projections of the EMF produced by an existing marine cable, the TBC, in San Francisco Bay. Specifically, does the presence of EMF from an operating power cable alter the behavior and path of bony fishes and sharks along a migratory corridor? Does the EMF from an operating power cable guide migratory movements or pose an obstacle to movement? To meet the main study objectives several activities needed to be carried out: 1) modeling of the magnetic fields produced by the TBC, 2) assessing the migratory impacts on Chinook salmon smolts (Oncorhynchus tshawytscha) and green sturgeon (Acipenser medirostris) as a result of local magnetic field distortions produced by bridge structures and 3) analyzing behavioral responses by migratory Chinook salmon and green sturgeon to a high-voltage power cable. To meet the first objective, magnetic field measurements were made using two

  15. DETERMINATION OF ANALYTICAL CALCULATION ERROR OF MAGNETIC FIELD OF HIGH-VOLTAGE CABLE LINES WITH TWO-POINT BONDED CABLE SHIELDS CAUSED BY NON-UNIFORM CURRENT DISTRIBUTION IN THE SHIELDS

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2017-06-01

    Full Text Available Purpose. To obtain new calculation correlations, determining approximate energy dissipation and electric erosion of massive basic metallic electrodes in the high-voltage high-current air switchboard (HVCAS of atmospheric pressure, in-use in the bit chain of the high-voltage electrophysics setting (HVES with the powerful capacity store of energy (CSE. Methodology. Electrophysics bases of technique of high-voltage and large impulsive currents (LIC, scientific and technical bases of development and planning of high-voltage heavy-current impulsive electro-devices, including HVES and powerful CSE, and also methods of measuring in their bit chains of LIC of the microsecond temporal range. Results. On the basis of new engineering approach the results of calculation estimation of excretions energy and electric erosion of massive basic metallic electrodes are resulted in probed HVCAS. New correlations are obtained for the approximate calculation of thermal energy, selected in an impulsive air spark and on the workings surfaces of anode and cathode of HVCAS. It is entered and a new electrophysics concept, touching equivalent active resistance of impulsive air spark, is mathematically certain. New formulas are obtained for the approximate calculation of most depth of single round crater of destruction on the workings surfaces of basic metallic electrodes of HVCAS, and also mass of metal, thrown out magnetic pressure from this crater of destruction on the electrodes of switch for one electric discharge through them powerful CSE HVES. It is shown that the radius of the indicated single crater of destruction is approximately equal to the maximal radius of plasma channel of a spark discharge between a cathode and anode of HVCAS. The executed high-current experiments in the bit chain of HVES with powerful CSE validated row of the got and in-use calculation correlations for the estimation of energy dissipation and electric erosion of metallic electrodes in

  16. Calculation and measurement of space charge in MV-size xxtruded cables systems under load conditions

    NARCIS (Netherlands)

    Morshuis, P.H.F.; Bodega, R.; Fabiani, D.; Montanari, G.C.; Dissado, L.A.; Smit, J.J.

    2007-01-01

    A load current in dc high voltage cables results in a temperature drop across the insulation and hence a radial distribution of the insulation conductivity is found. Direct consequence is an accumulation of space charge in the bulk of the nsulation, that may significantly affect its reliability.

  17. Physical degradation assessment of generator station cables

    International Nuclear Information System (INIS)

    Stonkus, D.J.

    1988-01-01

    Preliminary studies of fossil-fired and nuclear generator station cables indicate that the low voltage PVC insulated cables are in relatively good condition. The insulation is flexible and in the case of nuclear cables can withstand a design basis event after nearly 15 years of service. Cables insulated with styrene butadiene rubber have been found embrittled and cables insulated with SBR should be closely inspected in any plant assurance program. Thermal analysis using oxidative induction technique shows promise to indicate cable insulation degradation. Long term reliability assurance and plant life extension studies are being actively pursued at Ontario Hydro. A major study is currently underway to extend the life of the oldest operating fossil-fuel station, the 8-unit, 2400 MW Lakeview TGS in operation since the 1960s. Plant life assurance programs have been initiated at the 2000 MW Lambton TGS in operation since 1969, and for the oldest operating nuclear plant, Pickering NGS A in operation since the early 1970s. As cables are considered one of the critical components in a generator station due to the extreme difficulty and cost of cable replacement, test programs have been initiated to evaluate the physical degradation of the cables and relate the results to electrical diagnostic tests and to chemical changes. The decommissioning of two small nuclear stations, the 20 MW Nuclear Power Demonstration (NPD) and the 200 MW Douglas Point NGS, which were placed in service in 1962 and 1967 respectively, will provide an opportunity to perform destructive electrical and physical evaluation on field aged cables

  18. Prediction of breakdown voltages in novel gases for high voltage insulation

    International Nuclear Information System (INIS)

    Koch, M.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF_6) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF_6 is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF_6 in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF_6 based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media

  19. The performance of transmission lines and cables subjected to electromagnetic radiation from a nuclear explosion (NEMP)

    International Nuclear Information System (INIS)

    Aguet, M.; Ianovici, M.; Lin, C.C.; Fornerod, F.

    1980-01-01

    The use of armoured cables for telecommunication and data transmission systems is practically essential to avoid electromagnetic interference. The authors have made a mathematical study of the probable effect of a high altitude nuclear explosion. Using a simplified model, the voltages and currents induced into single and multiple-sheathed, overhead and buried cables subjected to an intense magnetic pulse (50kV/m) from high altitude, are determined by computer. It is found that, contrary to expectations the current intensity in the second case is seven times greater than for the overhead conductor. (F.N.S.)

  20. Prediction of breakdown voltages in novel gases for high voltage insulation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.

    2015-07-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF{sub 6}) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF{sub 6} is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF{sub 6} in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF{sub 6} based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media.

  1. An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian Xun, E-mail: jxjin@uestc.edu.cn [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Center of Applied Superconductivity and Electrical Engineering, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Chen, Xiao Yuan [School of Engineering, Sichuan Normal University, Chengdu 610101 (China); Qu, Ronghai; Fang, Hai Yang [School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xin, Ying [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-03-15

    Highlights: • A novel LVDC HTS power transmission network is presented. • An integrated power system is achieved by using HTS DC cable and SMES. • DC superconducting cable is verified to achieve self-acting fault current limitation. • SMES is verified to achieve fast-response buffering effect under a power fluctuation. • SMES is verified to achieve favorable load voltage protection effect under a fault. - Abstract: A low-voltage rated DC power transmission network integrated with superconducting cables (SCs) and superconducting magnetic energy storage (SMES) devices has been studied with analytic results presented. In addition to the properties of loss-less and high current transportation capacity, the effectively integrated system is formed with a self-acting fault current limitation feature of the SC and a buffering effect of the SMES to power fluctuations. The results obtained show that the integrated system can achieve high-quality power transmission under common power fluctuation conditions with an advanced self-protection feature under short circuit conditions, which is identified to suit especially the smart grid applications.

  2. Transient analysis for alternating over-current characteristics of HTSC power transmission cable

    Science.gov (United States)

    Lim, S. H.; Hwang, S. D.

    2006-10-01

    In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.

  3. LED-Based High-Voltage Lines Warning System

    Directory of Open Access Journals (Sweden)

    Eldar MUSA

    2013-04-01

    Full Text Available LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines, remote measurement of high-voltage line currents, and local illumination of the line area

  4. Test results for cables used in nuclear power plants by a new environmental testing method

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Katsue; Fujimura, Shun-ichi; Hayashi, Toshiyasu; Takano, Keiji; Oya, Shingo

    1982-12-01

    In the nuclear power plants using PWRs or BWRs in Japan, environmental tests are provided, in which simulated LOCA conditions are considered so as to conform with Japanese conditions, and many cables which passed these tests are presently employed. Lately, the new environmental testing, in which a credible accident called MSLB (main steam line breakage) is taken into account, is investigated in PWR nuclear power plants, besides LOCA. This paper reports on the results of evaluating some PWR cables for this new environmental testing conditions. The several cables tested were selected out of PH cables (fire-retardant, ethylene propylene rubber insulated, chlorosulfonated polyethylene sheathed cables) as the cables for safety protecting circuits and to be used in containment vessels where the cables are to be exposed to severe environmental test conditions of 2 x 10/sup 8/ Rad ..gamma..-irradiation and simulated LOCA. All these cables have been accepted after the vertical tray burning test provided in the IEEE Standard 383. The new testing was carried out by sequentially applying thermal deterioration, ..gamma..-irradiation, and the exposure to steam (twice 300 s exposures to 190 deg C superheated steam). After completing each step, tensile strength, elongation, insulation resistance and breakdown voltage were measured, respectively. Every cable tested showed satisfactory breakdown voltage after the exposure to steam, thus it was decided to be acceptable. In future, it is required to investigate the influence of the rate of temperature rise on the cable to be tested in MSLB simulation.

  5. Superconducting ac cable

    Science.gov (United States)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  6. 76 FR 70721 - Voltage Coordination on High Voltage Grids; Notice of Staff Workshop

    Science.gov (United States)

    2011-11-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Staff Workshop Take notice that the Federal Energy Regulatory Commission will hold a Workshop on Voltage Coordination on High Voltage Grids on Thursday, December 1, 2011...

  7. Back-to-Back Energization of a 60kV Cable Network - Inrush Currents Phenomenon

    DEFF Research Database (Denmark)

    Faria da Silva, Filipe; Bak, Claus Leth; Hansen, M. Lind

    2010-01-01

    On November 2008 the Danish government decided that all Danish transmission lines with a rated voltage equal to and below 150kV must be put underground, in order to reduce the visual pollution caused by Overhead Lines. This decision will lead to a massive use of underground cables in the Danish...... Network, and force a change in the approach used until now when planning, analyzing and operating electrical power systems. One problem that might arise is the energization of cables in parallel, as this operation may originate high inrush currents, which represent a risk to the circuit breakers connected...

  8. A new cable-in-conduit conductor magnet with insulated strands

    International Nuclear Information System (INIS)

    Yamaguchi, Satarou; Yamamoto, Junya; Motojima, Osamu.

    1995-09-01

    Many studies have used cable-in-conduit conductor (CICC) coils in trying to develop an AC superconducting magnet because of its enormous potential if AC losses were low and insulation voltage was high. The strands in the most recent CICC magnets are coated with chromium or another metal with high electrical resistance to order to induce current re-distribution among the strands and to avoid a quench caused by a current imbalance. Current re-distribution is highly complex and very difficult to analyze because the conditions of the strand surfaces and the contact areas vary greatly with the operation of the conductor. If, however, the cable currents were well-balanced, insulating the strands would be the best way to reduce AC losses. We propose a new CICC magnet structure featuring a current lead that balances the strand currents via its resistance. Having calculated current balances, we find that strand currents are well within the present parameters for nuclear fusion experiments and superconducting magnet energy storages. (author)

  9. High-Density Superconducting Cables for Advanced ACTPol

    Science.gov (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  10. Vehicle power supply cable with optical jacket monitoring and arcing interference detection; Bordnetzkabel mit optischer Mantelueberwachung und Stoerlichtbogendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Matthias [Fachhochschule Nordhausen (Germany). Lehrstuhl fuer Industrieelektronik; Kloss, Christina [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Polymere/Elastomere und Lichtwellenleiter; Lustermann, Birgit [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Lichtwellenleiter und Simulation optischer Systeme

    2012-10-15

    In vehicles with electrical drive, vehicle power supplies are used with high-voltage level, as well as with several voltage levels. In order to minimise any hazards through arcing faults associated with this, constructive and material-technical measures are necessary. Nordhausen Technical College presents a patented, opticalelectrical combination conductor - the main constituent of an innovative vehicle power supply cable with optical jacket monitoring and arcing interference detection. (orig.)

  11. submitter Optimization of Nb$_{3}$Sn Rutherford Cables Geometry for the High Luminosity LHC

    CERN Document Server

    Fleiter, Jerome; Bonasia, Angelo; Bordini, Bernardo; Richter, David

    2017-01-01

    The quadrupole and dipole magnets for the LHC High Luminosity (HL-LHC) upgrade will be based on Nb$_{3}$Sn Rutherford cables that operate at 1.9 K and experience magnetic fields of up to about 12 T. An important step in the design of these magnets is the development of the high aspect ratio Nb$_{3}$Sn cables to achieve the nominal field with sufficient margin. The strong plastic deformation of unreacted $Nb_3Sn$ strands during the Rutherford cabling process may induce non negligible $I_c$ and RRR degradation. In this paper, the cabling degradation is investigated as a function of the cable geometry for both PIT and RRP conductors. Based on this analysis, new baseline geometries for both 11 T and QXF magnets of HL-LHC are proposed.

  12. submitter Optimization of Nb$_{3}$Sn Rutherford Cables Geometry for the High Luminosity LHC

    CERN Document Server

    Fleiter, Jerome; Bonasia, Angelo; Bordini, Bernardo; Richter, David

    2017-01-01

    The quadrupole and dipole magnets for the LHC High Luminosity (HL-LHC) upgrade will be based on Nb3Sn Rutherford cables that operate at 1.9 K and experience magnetic fields of up to about 12 T. An important step in the design of these magnets is the development of the high aspect ratio Nb3Sn cables to achieve the nominal field with sufficient margin. The strong plastic deformation of unreacted $Nb_3Sn$ strands during the Rutherford cabling process may induce non negligible $I_c$ and RRR degradation. In this paper, the cabling degradation is investigated as a function of the cable geometry for both PIT and RRP conductors. Based on this analysis, new baseline geometries for both 11 T and QXF magnets of HL-LHC are proposed.

  13. Similarity Analysis of Cable Insulations by Chemical Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-10-15

    As result of this experiment, it was found that FT-IR test for material composition, TGA test for aging trend are applicable for similarity analysis of cable materials. OIT is recommended as option if TGA doesn't show good trend. Qualification of new insulation by EQ report of old insulation should be based on higher activation energy of new insulation than that of old one in the consideration of conservatism. In old nuclear power plant, it is easy to find black cable which has no marking of cable information such as manufacturer, material name and voltage. If a type test is required for qualification of these cables, how could I select representative cable? How could I determine the similarity of these cables? If manufacturer has qualified a cable for nuclear power plant more than a decade ago and composition of cable material is changed with similar one, is it acceptable to use the old EQ report for recently manufactured cable? It is well known to use FT-IR method to determine the similarity of cable materials. Infrared ray is easy tool to compare compositions of each material. But, it is not proper to compare aging trend of these materials. Study for similarity analysis of cable insulation by chemical test is described herein. To study a similarity evaluation method for polymer materials, FT-IR, TGA and OIT tests were performed for two cable insulation(old and new) which were supplied from same manufacturer. FT-IR shows good result to compare material compositions while TGA and OIT show good result to compare aging character of materials.

  14. Similarity Analysis of Cable Insulations by Chemical Test

    International Nuclear Information System (INIS)

    Kim, Jong Seog

    2013-01-01

    As result of this experiment, it was found that FT-IR test for material composition, TGA test for aging trend are applicable for similarity analysis of cable materials. OIT is recommended as option if TGA doesn't show good trend. Qualification of new insulation by EQ report of old insulation should be based on higher activation energy of new insulation than that of old one in the consideration of conservatism. In old nuclear power plant, it is easy to find black cable which has no marking of cable information such as manufacturer, material name and voltage. If a type test is required for qualification of these cables, how could I select representative cable? How could I determine the similarity of these cables? If manufacturer has qualified a cable for nuclear power plant more than a decade ago and composition of cable material is changed with similar one, is it acceptable to use the old EQ report for recently manufactured cable? It is well known to use FT-IR method to determine the similarity of cable materials. Infrared ray is easy tool to compare compositions of each material. But, it is not proper to compare aging trend of these materials. Study for similarity analysis of cable insulation by chemical test is described herein. To study a similarity evaluation method for polymer materials, FT-IR, TGA and OIT tests were performed for two cable insulation(old and new) which were supplied from same manufacturer. FT-IR shows good result to compare material compositions while TGA and OIT show good result to compare aging character of materials

  15. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    Science.gov (United States)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government's financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  16. SUPER-CAPACITOR APPLICATION IN ELECTRICAL POWER CABLE TESTING FACILITIES IN THERMAL ENDURANCE AND MECHANICAL BRACING TESTS

    Directory of Open Access Journals (Sweden)

    I. V. Oleksyuk

    2015-01-01

    Full Text Available The current-carrying cores of the electrical power cables should be resistant to effects of short-circuit currents whose values depend on the material of the core, its cross-sectional area, cable insulation properties, environment temperature, and the duration of the short-circuit current flow (1 and 3–4 sec. when tested for thermal endurance and mechanical bracing. The facilities for testing the 10 kV aluminum core cables with short-circuit current shall provide mechanical-bracing current 56,82 kA and thermal endurance current 11,16 kA. Although capacitors provide such values of the testing currents to the best advantage, utilizing conventional capacitor-units will involve large expenditures for erecting and  running a separate building. It is expedient to apply super-capacitors qua the electric power supply for testing facilities, as they are capacitors with double-electrical layer and involve the current values of tens of kilo-amperes.The insulation voltage during short-circuit current testing being not-standardized, it is not banned to apply voltages less than 10 kV when performing short-circuit thermal endurance and mechanical bracing tests for electrical power cables of 10 kV. The super-capacitor voltage variation-in-time graph consists of two regions: capacitive and resistive. The capacitive part corresponds to the voltage change consequent on the energy change in the super-capacitors. The resistive part shows the voltage variation due to the active resistance presence in the super-capacitor.The author offers the algorithm determining the number of super capacitors requisite for testing 10 kV-electrical power cables with short-circuit currents for thermal endurance and mechanical bracing. The paper shows that installation of super-capacitors in the facilities testing the cables with short-circuit currents reduces the area needed for the super-capacitors in comparison with conventional capacitors more than by one order of magnitude.

  17. Study of Space Charge in SC Shield / XLPE Interface and Mid-Voltage Cable Perfomance

    Directory of Open Access Journals (Sweden)

    Idalberto Tamayo Ávila

    2013-01-01

    Full Text Available Se estudiaron tres cables experimentales de media tensión: C2, C3 y C4; con aislamiento de polietileno reticulado (XLPE denominados: Medio, Alto y Bajo en los test de perforación con tensiones sobre 150 kV. Los tres cables han sido medidos sistemáticamente mediante las técnicas del Pulso Electroacústico (PEA y de las Corrientes de Despolarización Estimuladas Térmicamente (TSDC usando un voltaje de polarización de 120 kV en muestras tal y como se reciben, tratadas térmicamente a 90 oC y 120 oC durante 672 horas. Las medidas de carga interna en el cable C4 son de un orden del doble que en los cables C2 y C3. El fenómeno de carga interfacial ha sido estudiado por espectroscopia infrarroja mediante la técnica de Reflectancia Total Atenuada (ATR y muestra que hay componentes que migran, se difunden y se trasportan desde la capa semiconductora externa hacia el aislamiento de polietileno reticulado durante el tratamiento térmico del cable. Las medidas por PEA usando un campo eléctrico de 120 KV/mm muestran la formación y propagación de paquetes de carga de espacio desde el semiconductor (SC hacia el aislamiento. Estos resultados son coherentes con las medidas mediante TSDC que muestran diferencias entre las áreas bajo la curva de corriente en función de la temperatura para los tres cables C2, C3 y C4 que es el resultado de la carga acumulada. Para resumir, la combinación de las mediciones PEA, TSDC y ATR son herramientas útiles para la comprensión de los procesos de relajación de carga de espacio y la eficiencia de los cables con aislamiento de XLPE.

  18. Feasibility of using continuous X-ray to simulate cable response under X-ray environment

    International Nuclear Information System (INIS)

    Ma Liang; Zhou Hui; Cheng Yinhui; Wu Wei; Li Jinxi; Zhao Mo; Guo Jinghai

    2014-01-01

    The mechanism and simulating method of cable response induced by X-ray were researched, and the relationship of cable response irradiated by continuous and pulsed X-ray was analyzed. A one-dimension model of strip line irradiation response of X-ray was given, which includes the gap between cable shield and dielectric, and induced conductivity in cable dielectric. The calculation result using the model indicates that the cable responses of continuous and rectangular-pulsed X-ray have the similar current waveform and the same gap voltages. Therefore, continuous X-ray can be used to research some cable responses of pulsed X-ray irradiation under the mechanism described in the one-dimension model. (authors)

  19. Viability study of a construction of invasive high voltage meter for the National Reference Laboratory of the Brazilian Net Calibration in Diagnostic Radiology, the National Laboratory of Metrology of the Ionizing Radiation - LNMRI

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Peixoto, J.G.P.; Pereira, M.A.G.

    2007-01-01

    This work has studied the parameters for the construction of an invasive high voltage meter for the National Reference Laboratory of the Brazilian Net Calibration in Diagnostic Radiology, the National Laboratory of Metrology of the Ionizing Radiation - LNMRI. This study took into consideration the necessity of quality control of the of X-rays equipment required by Ministry of Health - MS, through the regulation N.453. To satisfy the demands of the MS, the recommendation of the norm IEC 61676 was analyzed by using the quantity of Practical Peak Voltage (PPV) in the measurements of the voltage discharge applied to the X-rays tubes, the infra structures of metrology available in the country to offer tracking the components of the high voltage meter through INMETRO and the difficulty of adaptation of the high voltage meter analyser III U in relation to the Pan tak HF160 equipment in which respect the connection of the high voltage cable and the voltage limitations due to the electric configuration of the high voltage generator of the constant potential Pantak HF160 equipment. (author)

  20. FY 2000 research and development of fundamental technologies for AC superconducting power devices. R and D of fundamental technologies for superconducting power cables and faults current limiters, R and D of superconducting magnets for power applications, and study on the total systems and related subjects; 2000 nendo koryu chodendo denryoku kiki kiban gijutsu kenkyu kaihatsu seika hokokusho. Chodendo soden cable kiban gijutsu no kenkyu kaihatsu, chodendo genryuki kiban gijutsu no kenkyu kaihatsu, denryokuyo chodendo magnet no kenkyu kaihatsu, total system nado no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project for research and development of fundamental technologies for AC superconducting power devices has been started, and the FY 2000 results are reported. The R and D of fundamental technologies for superconducting power cables include grasping the mechanical characteristics associated with integration necessary for fabrication of large current capacity and long cables; development of barrier cable materials by various methods; and development of short insulated tubes as cooling technology for long superconducting cables, and grasping its thermal/mechanical characteristics. The R and D of faults current limiters include introduction of the unit for superconducting film fabrication, determination of the structures and layouts for large currents, and improvement of performance of each device for high voltages. R and D of superconducting magnets for power applications include grasping the fundamental characteristics of insulation at cryogenic temperature, completion of the insulation designs for high voltage/current lead bushing, and development of prototype sub-cooled nitrogen cooling unit for cooling each AC power device. Study on the total systems and related subjects include analysis for stabilization of the group model systems, to confirm improved voltage stability when the superconducting cable is in service. (NEDO)

  1. Outages of electric power supply resulting from cable failures Boston Edison Company system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Factual data are provided regarding 5 electric power supply interruptions that occurred in the Boston Metropolitan area during April to June, 1979. Common to all of these outages was the failure of an underground cable as the initiating event, followed by multiple equipment failures. There was significant variation in the voltage ratings and types of cables which failed. The investigation was unable to delineate a single specific Boston Edison design operating or maintenance practice that could be cited as the cause of the outages. After reviewing the investigative report the following actions were recommended: the development and implementation of a plan to eliminate the direct current cable network; develop a network outage restoration plan; regroup primary feeder cables wherever possible to minimize the number of circuits in manholes, and to separate feeders to high load density areas; develop a program to detect incipient cable faults; evaluate the separation of the north and south sections of Back Bay network into separate networks; and, as a minimum, install the necessary facilities to make it possible to re-energize one section without interfering with the other; and re-evaluate the cathodic protection scheme where necessary. (LCL)

  2. Test results for cables used in nuclear power plants by a new environmental testing method

    International Nuclear Information System (INIS)

    Handa, Katsue; Fujimura, Shun-ichi; Hayashi, Toshiyasu; Takano, Keiji; Oya, Shingo

    1982-01-01

    In the nuclear power plants using PWRs or BWRs in Japan, environmental tests are provided, in which simulated LOCA conditions are considered so as to conform with Japanese conditions, and many cables which passed these tests are presently employed. Lately, the new environmental testing, in which a credible accident called MSLB (main steam line breakage) is taken into account, is investigated in PWR nuclear power plants, besides LOCA. This paper reports on the results of evaluating some PWR cables for this new environmental testing conditions. The several cables tested were selected out of PH cables (fire-retardant, ethylene propylene rubber insulated, chlorosulfonated polyethylene sheathed cables) as the cables for safety protecting circuits and to be used in containment vessels where the cables are to be exposed to severe environmental test conditions of 2 x 10 8 Rad γ-irradiation and simulated LOCA. All these cables have been accepted after the vertical tray burning test provided in the IEEE Standard 383. The new testing was carried out by sequentially applying thermal deterioration, γ-irradiation, and the exposure to steam (twice 300 s exposures to 190 deg C superheated steam). After completing each step, tensile strength, elongation, insulation resistance and breakdown voltage were measured, respectively. Every cable tested showed satisfactory breakdown voltage after the exposure to steam, thus it was decided to be acceptable. In future, it is required to investigate the influence of the rate of temperature rise on the cable to be tested in MSLB simulation. (Wakatsuki, Y.)

  3. On-site voltage measurement with capacitive sensors on high voltage systems

    NARCIS (Netherlands)

    Wu, L.; Wouters, P.A.A.F.; Heesch, van E.J.M.; Steennis, E.F.

    2011-01-01

    In Extra/High-Voltage (EHV/HV) power systems, over-voltages occur e.g. due to transients or resonances. At places where no conventional voltage measurement devices can be installed, on-site measurement of these occurrences requires preferably non intrusive sensors, which can be installed with little

  4. Electrical injuries due to railway high tension cables.

    Science.gov (United States)

    Reichl, M; Kay, S

    1985-08-01

    We have noted a large number of young boys being admitted to our Unit with burns due to railway high tension cables. On review of these cases we have noted: most of the burns were due to arcing, there is a high level of ignorance among the population at risk. We propose some ways of preventing these injuries.

  5. Harmonic modelling, propagation and mitigation for large wind power plants connected via long HVAC cables

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz

    2016-01-01

    This paper presents a state-of-the-art review on grid connection of large offshore wind power plants (OWPPs) using extra-long high voltage AC (HVAC) cables. The paper describes research by DONG Energy Wind Power in close collaboration with Aalborg University addressing related challenges through...... an industrial PhD project. The overall goal is to gain a better understanding of extra-long HVAC cable connected OWPPs, in order to ensure reliability and availability of OWPPs. This will reduce the cost of energy, as the risk of costly delays and modifications after the project has been commissioned can...

  6. Ionization smoke detectors - the high-voltage issues

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Production of high-voltage ionization smoke detectors ceased in 1978 following the development of lower voltage models which used much smaller amounts of radioactive material. Despite this fact, thousands of high-voltage detectors are still in use today in many large UK companies. The major users argue that there is no reason to stop using their detectors if they are still fit for their purpose - many could last for another 15 to 20 years if properly maintained. But pressure has been mounting on businesses to replace all their high-voltage detectors with new low-voltage models within the next couple of years. This could place a huge financial burden on the companies concerned, with costs possibly running into millions of pounds. Traditionally, the major detector installers offered cleaning and maintenance services for high-voltage detectors to their customers but these have now been withdrawn. The installers give no clear reasons for this decision except that the detectors are outmoded and should be disposed of as soon as possible. Most users would agree that conversion to low-voltage types is inevitable but their main worry is the financial strain of replacing all their detectors - and associated equipment - in one go. They would prefer to phase out their high-voltage detectors in stages over a number of years to spread the costs of conversion. The problems of maintenance is discussed. A dual voltage fire alarm panel which allows the high-voltage detectors to be phased out is mentioned. (Author)

  7. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  8. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  9. Arc tracking energy balance for copper and aluminum aeronautic cables

    International Nuclear Information System (INIS)

    André, T; Valensi, F; Teulet, P; Cressault, Y; Zink, T; Caussé, R

    2017-01-01

    Arc tracking tests have been carried out between two voluntarily damaged aeronautic cables. Copper or aluminum conductors have been exposed to short circuits under alternating current. Various data have been recorded (arc voltage and current, radiated power and ablated mass), enabling to determine a power balance, in which every contribution is estimated. The total power is mainly transferred to the cables (between 50 and 65%, depending on the current and the cable type), and causes the melting and partial vaporization of the metallic core and insulating material, or is conducted or radiated. The other part is deposited into the arc column, being either radiated, convected or conducted. (paper)

  10. High-voltage engineering and testing

    CERN Document Server

    Ryan, Hugh M

    2013-01-01

    This 3rd edition of High Voltage Engineering Testing describes strategic developments in the field and reflects on how they can best be managed. All the key components of high voltage and distribution systems are covered including electric power networks, UHV and HV. Distribution systems including HVDC and power electronic systems are also considered.

  11. Design and study of photomultiplier pulse-shaping amplifier powered by the current flowing through a voltage divider

    International Nuclear Information System (INIS)

    Vladimir Popov

    2003-01-01

    A new version of Photomultiplier Tube (PMT) pulse amplifier, entirely powered by the current flowing through the base voltage divider, was designed and tested. This amplifier was designed for application in the JLAB G0 Experiment E00-006 as a part of high voltage base for XP2262 Photonis PMT. According to JLAB G0 experiment requirement, these PMT's operate with plastic scintillators at high counting rate (about MHz). Tests in JLAB experimental Hall C indicate that low energy gamma background cause up to 0.1 mA of PMT average anode current (without amplifier). At this radiation condition, PMT gain decreases by 50% within about 1 month of operation. The amplifier needs to reduce PMT anode current and to shape PMT anode pulse prior to sending it through a long cable line (more then 400 ft of RG-213 and RG-58 coax cables). Shaping of the PMT output pulse helps to reduce attenuation effect of the long cable line without significant reduction of timing accuracy. The results of this study of designed amplifier and PMT plus amplifier system are presented

  12. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  13. An approach for high voltage power supply system for HCAL of LHCb experiment

    International Nuclear Information System (INIS)

    Cimpean, A.; Dumitru, D.; Kluger, A.; Magureanu, C.; Tarta, D.; Coca, C.; Orlandea, M.; Popescu, S.

    2003-01-01

    distributor (10 mA/channel). The box can independently supply 4 groups of 40 PMTs each. The voltage setting can be made manually, through keyboard and LCD display located on the front panel using a μC board which also contains a CAN interpreter, SJA 1000, that makes the serial CAN-bus link remotely. The connection is bidirectional allowing both the setting of output voltages and the reading of the output voltage and current values. The power supply has good output features, shortcut protection and special voltages. The output voltages for a group are given. The box dimensions are: 480 x 128 x 525 mm. The voltages are transmitted trough HV coaxial cables with SHV connectors. The PMTs of FEU-115m10 type were used. In the following HV system will be adapted to be used to supply PMTs of Hamamatsu type R7899 20 which have been largely investigated by LHCb collaboration. HV Power Supply is going to be integrated in CAN network. This HVPS with parallel power groups of fast PMTs has the following advantages: a) outside PMTs supply (power dissipation is not inside HCAL modules); b) very good stability for all HV supplies (photocathode and dynodes); c) low ripple because of distributor supplementary stabilization with series transistors; d) great reserve of current (it allows high counting rates); f) being operated remotely it needs not to be radiation-proof; g) easy service. The system can be used in any experiments with many fast PMTs. (authors)

  14. High-Density Superconducting Cables for Advanced ACTPol

    Science.gov (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; hide

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measure- ment of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 µ m pitch superconducting flexible cables (flex) to connect the detec- tor wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered alu- minum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97%.

  15. High voltage designing of 300.000 Volt

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1978-01-01

    Some methods of designing a.c and d.c high voltage supplies are discussed. A high voltage supply for the Gama Research Centre accelerator is designed using transistor pulse generators. High voltage transformers being made using radio transistor ferrits as a core are also discussed. (author)

  16. Analysis of Insulating Material of XLPE Cables considering Innovative Patterns of Partial Discharges

    Directory of Open Access Journals (Sweden)

    Fernando Figueroa Godoy

    2017-01-01

    Full Text Available This paper aims to analyze the quality of insulation in high voltage underground cables XLPE using a prototype which classifies the following usual types of patterns of partial discharge (PD: (1 internal PD, (2 superficial PD, (3 corona discharge in air, and (4 corona discharge in oil, in addition to considering two new PD patterns: (1 false contact and (2 floating ground. The tests and measurements to obtain the patterns and study cases of partial discharges were performed at the Testing Laboratory Equipment and Materials (LEPEM of the Federal Electricity Commission of Mexico (CFE using a measuring equipment LDIC and norm IEC60270. To classify the six patterns of partial discharges mentioned above a Probabilistic Neural Network Bayesian Modified (PNNBM method having the feature of using a large amount of data will be used and it is not saturated. In addition, PNN converges, always finding a solution in a short period of time with low computational cost. The insulation of two high voltage cables with different characteristics was analyzed. The test results allow us to conclude which wire has better insulation.

  17. 30 CFR 75.813 - High-voltage longwalls; scope.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage longwalls; scope. 75.813 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage longwalls; scope. Sections 75.814 through 75.822 of this...

  18. The US market for high-temperature superconducting wire in transmission cable applications

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, D

    1996-04-01

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  19. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  20. High temperature superconductors as a technological discontinuity in the power cable industry

    Energy Technology Data Exchange (ETDEWEB)

    Beales, T.P.; McCormack, J.S. [BICC Cables Ltd., Hebburn (United Kingdom)

    1994-12-31

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  1. High temperature superconductors as a technological discontinuity in the power cable industry

    International Nuclear Information System (INIS)

    Beales, T.P.; McCormack, J.S.

    1994-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables

  2. Application of Superconducting Power Cables to DC Electric Railway Systems

    Science.gov (United States)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  3. Corrosion study on high power feeding of telecomunication copper cable in 5 wt.% CaSO4.2H2O solution

    Science.gov (United States)

    Shamsudin, Shaiful Rizam; Hashim, Nabihah; Ibrahim, Mohd Saiful Bahri; Rahman, Muhammad Sayuzi Abdul; Idrus, Muhammad Amin; Hassan, Mohd Rezadzudin; Abdullah, Wan Razli Wan

    2016-07-01

    The studies were carried out to find out the best powering scheme over the copper telephone line. It was expected that the application of the higher power feeding could increase the data transfer and capable of providing the customer's satisfaction. To realize the application of higher remote power feeding, the potential of corrosion problem on Cu cables was studied. The natural corrosion behaviour of copper cable in the 0.5% CaSO4.2H2O solution was studied in term of open circuit potential for 30 days. The corrosion behaviour of higher power feeding was studied by the immersion and the planned interval test to determine the corrosion rate as well as the effect of voltage magnitudes and the current scheme i.e. positive direct (DC+) and alternating current (AC) at about 0.40 ± 0.01 mA/ cm2 current density. In the immersion test, both DC+ and AC scheme showed the increasing of feeding voltage magnitude has increased the corrosion rate of Cu samples starting from 60 to 100 volts. It was then reduced at about 100 - 120 volts which may due to the passive and transpassive mechanism. The corrosion rate was slowly reduced further from 120 to 200 volts. Visually, the positively charged of Cu cable was seems susceptible to severe corrosion, while AC scheme exhibited a slight corrosion reaction on the surface. However, the planned interval test and XRD results showed the corrosion activity of the copper cable in the studied solution was a relatively slow process and considered not to be corroded as a partially protective scale of copper oxide formed on the surface.

  4. High voltage distributions in RPCs

    International Nuclear Information System (INIS)

    Inoue, Y.; Muranishi, Y.; Nakamura, M.; Nakano, E.; Takahashi, T.; Teramoto, Y.

    1996-01-01

    High voltage distributions on the inner surfaces of RPCs electrodes were calculated by using a two-dimensional resistor network model. The calculated result shows that the surface resistivity of the electrodes should be high, compared to their volume resistivity, to get a uniform high voltage over the surface. Our model predicts that the rate capabilities of RPCs should be inversely proportional to the thickness of the electrodes if the ratio of surface-to-volume resistivity is low. (orig.)

  5. High-voltage CMOS detectors

    International Nuclear Information System (INIS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-01-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented. - Highlights: • High-voltage CMOS sensors will be used in Mu3e experiment at PSI (Switzerland). • HVCMOS sensors are considered as an option for ATLAS (LHC/CERN) and CLIC (CERN). • Efficiency of more than 95% (99%) has been measured with (un-)irradiated chips. • The time resolution measured in the beam tests is nearly 100 ns. • We plan to improve time resolution and efficiency by using high-resistive substrate.

  6. High-voltage CMOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ehrler, F., E-mail: felix.ehrler@student.kit.edu; Blanco, R.; Leys, R.; Perić, I.

    2016-07-11

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented. - Highlights: • High-voltage CMOS sensors will be used in Mu3e experiment at PSI (Switzerland). • HVCMOS sensors are considered as an option for ATLAS (LHC/CERN) and CLIC (CERN). • Efficiency of more than 95% (99%) has been measured with (un-)irradiated chips. • The time resolution measured in the beam tests is nearly 100 ns. • We plan to improve time resolution and efficiency by using high-resistive substrate.

  7. High voltage high brightness electron accelerators with MITL voltage adder coupled to foilless diodes

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Frost, C.A.; Shope, S.L.; Halbleib, J.A.; Turman, B.N.

    1993-01-01

    During the last ten years the authors have extensively studied the physics and operation of magnetically-immersed electron foilless diodes. Most of these sources were utilized as injectors to high current, high energy linear induction accelerators such as those of the RADLAC family. Recently they have experimentally and theoretically demonstrated that foilless diodes can be successfully coupled to self-magnetically insulated transmission line voltage adders to produce very small high brightness, high definition (no halo) electron beams. The RADLAC/SMILE experience opened the path to a new approach in high brightness, high energy induction accelerators. There is no beam drifting through the device. The voltage addition occurs in a center conductor, and the beam is created at the high voltage end in an applied magnetic field diode. This work was motivated by the remarkable success of the HERMES-III accelerator and the need to produce small radius, high energy, high current electron beams for air propagation studies and flash x-ray radiography. In this paper they present experimental results compared with analytical and numerical simulations in addition to design examples of devices that can produce multikiloamp electron beams of as high as 100 MV energies and radii as small as 1 mm

  8. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  9. Investigation of phase-wise voltage regulator control logics for compensating voltage deviations in an experimental low voltage network

    DEFF Research Database (Denmark)

    Hu, Junjie; Zecchino, Antonio; Marinelli, Mattia

    2016-01-01

    This paper investigates the control logics of an on-load tap-changer (OLTC) transformer by means of an experimental system validation. The experimental low-voltage unbalanced system consists of a decoupled single-phase OLTC transformer, a 75-metre 16 mm2 cable, a controllable single-phase resistive...... load and an electric vehicle, which has the vehicle-to-grid function. Three control logics of the OLTC transformer are described in the study. The three control logics are classified based on their control objectives and control inputs, which include network currents and voltages, and can be measured...... either locally or remotely. To evaluate and compare the control performances of the three control logics, all the tests use the same loading profiles. The experimental results indicate that the modified line compensation control can regulate voltage in a safe band in the case of various load...

  10. Advances in high voltage power switching with GTOs

    International Nuclear Information System (INIS)

    Podlesak, T.F.

    1990-01-01

    The control of high voltage at high power, particularly opening switches, has been difficult in the past. Using gate turnoff thyristors (GTOs) arranged in series enables large currents to be switched at high voltage. The authors report a high voltage opening switch has been successfully demonstrated. This switch uses GTOs in series and successfully operates at voltages higher than the rated voltage of the individual devices. It is believed that this is the first time this has been successfully demonstrated, in that GTOs have been operated in series before, but always in a manner as to not exceed the voltage capability of the individual devices. In short, the devices have not worked together, sharing the voltage, but one device has been operated using several backup devices. Of particular interest is how well the individual devices share the voltage applied to them. Equal voltage sharing between devices is absolutely essential, in order to not exceed the voltage rating of any of the devices in the series chain. This is accomplished at high (microsecond) switching speeds. Thus, the system is useful for high frequency applications as well as high power, making for a flexible circuit system element. This demonstration system is rated at 5 KV and uses 1 KV devices. A larger 24 KV system is under design and will use 4.5 KV devices. In order to design the 24 KV switch, the safe operating area of the large devices must be known thoroughly

  11. Detection of the normal zone with cowound sensors in cable-in conduit conductors

    International Nuclear Information System (INIS)

    Martovetsky, N.N.; Chaplin, M.R.

    1996-01-01

    Tokamaks in the future will use superconducting cable-in-conduit- conductors (CICC) in all poloidal field (PF) and toroidal field (TF) magnets. Conventional quench detection, the measurement of small resistive normal zone voltages ( 4 kV). In the quench detection design for TPX, we have considered several different locations for internal co-wound voltage sensors in the cable cross-section as the primary mechanism to cancel this inductive noise. The Noise Rejection Experiment (NRE) at LLNL has been designed to evaluate which internal locations will produce the best inductive- noise cancellation, and provide us with experimental data for comparison with previously developed theory. The details of the experiments and resulting data are presented and analyzed

  12. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  13. High frequency relay protection channels on super high voltage lines

    Energy Technology Data Exchange (ETDEWEB)

    Mikutskii, G V

    1964-08-01

    General aspects of high voltage transmission line design are discussed. The relationships between line voltage and length and line dimensions and power losses are explained. Electrical interference in the line is classified under three headings: interference under normal operating conditions, interference due to insulation faults, and interference due to variations in operating conditions of the high-voltage network.

  14. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  15. Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities

    Science.gov (United States)

    Higgins, Matthew Benjamin

    This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.

  16. Vivitron 1995, transient voltage simulation, high voltage insulator tests, electric field calculation

    International Nuclear Information System (INIS)

    Frick, G.; Osswald, F.; Heusch, B.

    1996-01-01

    Preliminary investigations showed clearly that, because of the discrete electrode structure of the Vivitron, important overvoltage leading to insulator damage can appear in case of a spark. The first high voltage tests showed damage connected with such events. This fact leads to a severe voltage limitation. This work describes, at first, studies made to understand the effects of transients and the associated over-voltage appearing in the Vivitron. Then we present the high voltage tests made with full size Vivitron components using the CN 6 MV machine as a pilot machine. Extensive field calculations were made. These involve simulations of static stresses and transient overvoltages, on insulating boards and electrodes. This work gave us the solutions for arrangements and modifications in the machine. After application, the Vivitron runs now without any sparks and damage at 20 MV. In the same manner, we tested column insulators of a new design and so we will find out how to get to higher voltages. Electric field calculation around the tie bars connecting the discrete electrodes together showed field enhancements when the voltages applied on the discrete electrodes are not equally distributed. This fact is one of the sources of discharges and voltage limitations. A scenario of a spark event is described and indications are given how to proceed towards higher voltages, in the 30 MV range. (orig.)

  17. Partial discharge testing of in-situ power cable accessories

    Energy Technology Data Exchange (ETDEWEB)

    Orban, H. E.

    2002-07-01

    An overview of commercially available diagnostic methods for in-situ power cable accessories is given and relevant field experiences with these diagnostics are described. The discussion includes both PILC and polymeric insulated cables. Two major types of degradation are most frequently involved in cable systems. One is an overall condition caused by chemical aging and /or water treeing. Diagnostics for this type of aging include dissipation factor (loss angle), harmonic analysis, return voltage, isothermal relaxation current, dielectric response, or dc leakage current. The second type of degradation is discrete or incremental; condition assessment utilizes dissipation factor measurements or partial discharge (PD) level measurements. The focus in this paper is on PD diagnostics, especially off-line methods such as the 60 Hz test, the combined AC and VLF diagnostic, and the oscillating wave test system test. Among on-line diagnostics, ultrasonic detection of partial discharge and measurement of partial discharge by installing direct, capacitive or inductive couplers near cable accessories, are described. Overall, partial discharge detection and location in cable accessories is considered inadequate, since interpretation of results is difficult due to the number of variables involved. 28 refs., 1 tab.

  18. Steady State Modelling of Three-core Wire Armoured Submarine Cables

    DEFF Research Database (Denmark)

    Baù, Matteo; Viafora, Nicola; Hansen, Chris Skovgaard

    2016-01-01

    This paper introduces Finite Element Method mod-elling techniques applied to wire armoured submarine three-core cables, whose nominal voltages range from 36 to 245 kV. The analysis is focused on the implementation of the net voltage cancellation principle in a 2D environment. The model is utilised...... confirm that the wire armour stranding is not accounted for, but also suggest that the ampacity underrating might be due to other inaccuracies in the IEC modelling indications. Overall, the difference in terms of current rating between the FEM and the IEC approach is found to be voltage dependent and more...

  19. Lightning-resistant, low-inductance detonator cables

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Lee, R.S.; Moua, K.

    1994-04-01

    A lightning strike on a flat detonator cable in close proximity to a high explosive (HE) main charge poses a possible detonation hazard if the electrical explosion of the cable launches the dielectric cover coat of the cable at a high enough velocity to shock-initiate the HE. The detonator cable for the W87 system has been demonstrated to be incapable of initiating LX-17 main-charge explosive even for a 99 percentile negative lightning strike (1). The W87 cable is a relatively high inductance cable, unsuitable for use with low-inductance firesets. We have performed tests on a low-inductance cable designed for the W89 program, which show it to be marginal in its ability to withstand a lightning strike without the possibility of initiating a heated LX-17 main charge HE. A new cable design, proposed by R.E. Lee of LLNL has been tested and shown to be capable of withstanding a 99 percentile negative lightning strike without initiating LX-17 heated to 250{degree}C.

  20. A 600kV 15mA Cockcroft-Walton high-voltage power supply with high stability and low-ripple voltage

    International Nuclear Information System (INIS)

    Su Tongling; Zhang Yimin; Chen Shangwen; Liu Yantong; Lv Huiyi; Liu Jiangtao

    2006-01-01

    A Cockcroft-Walton high-voltage power supply with high stability and low-ripple voltage has been developed. This power supply has been operated in a ns pulse neutron generator. The maximum non-load voltage is 600kV while the working voltage and load current are 550kV and 15mA, respectively. The tested results indicate that when the power supply is operated at 300kV, 6.7mA and the input voltage varies +/-10%, the long-term stability of the output voltage is S=(0.300-1.006)x10 -3 . The ripple voltage is δU P-P =6.2V at 300kV, 6.8-8.3mA and the ratio of δU P-P to the output voltage V H is δU P-P /V H =2.1x10 -5

  1. High voltage electricity installations a planning perspective

    CERN Document Server

    Jay, Stephen Andrew

    2006-01-01

    The presence of high voltage power lines has provoked widespread concern for many years. High Voltage Electricity Installations presents an in-depth study of policy surrounding the planning of high voltage installations, discussing the manner in which they are percieved by the public, and the associated environmental issues. An analysis of these concerns, along with the geographical, environmental and political influences that shape their expression, is presented. Investigates local planning policy in an area of the energy sector that is of highly topical environmental and public concern Cover

  2. Vibration based monitoring of stay cable force using wireless piezoelectric based strain sensor nodes

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2012-01-01

    This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor node Imote2/SHM DAQ is described. The sensor node is originally developed by University of Illinois at Urbana champaign and is adopted in this study to monitor strain induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab scaled cable

  3. Cable-to-post attachments for use in non-proprietary high-tension cable median barrier - phase II.

    Science.gov (United States)

    2016-03-24

    The objective of this study was to reevaluate and improve the existing cable-to-post attachment hardware that is utilized : in the non-proprietary cable barrier being developed at MwRSF. The study focused on redesigning the bolted, tabbed : bracket (...

  4. Research on the discharge characteristics for water tree in crosslinked polyethylene cable based on plasma-chemical model

    Science.gov (United States)

    Fan, Yang; Qi, Yang; Bing, Gao; Rong, Xia; Yanjie, Le; Iroegbu, Paul Ikechukwu

    2018-03-01

    Water tree is the predominant defect in high-voltage crosslinked polyethylene cables. The microscopic mechanism in the discharge process is not fully understood; hence, a drawback is created towards an effective method to evaluate the insulation status. In order to investigate the growth of water tree, a plasma-chemical model is developed. The dynamic characteristics of the discharge process including voltage waveform, current waveform, electron density, electric potential, and electric field intensity are analyzed. Our results show that the distorted electric field is the predominant contributing factor of electron avalanche formation, which inevitably leads to the formation of pulse current. In addition, it is found that characteristic parameters such as the pulse width and pulse number have a great relevance to the length of water tree. Accordingly, the growth of water tree can be divided into the initial stage, development stage, and pre-breakdown stage, which provides a reference for evaluating the deteriorated stages of crosslinked polyethylene cables.

  5. Radiation effects on residual voltage of polyethylene films

    International Nuclear Information System (INIS)

    Kyokane, Jun; Park, Dae-Hee; Yoshino, Katsumi.

    1986-01-01

    It has recently been pointed out that diagnosis of deterioration in insulating materials for electric cables used in nuclear power plants and outer space (communications satellite in particular) can be effectively performed based on measurements of residual voltage. In the present study, polyethylene films are irradiated with γ-rays or electron beam to examine the changes in residual voltage characteristics. Irradiation of electron beam and γ-rays are carried out to a dose of 0 - 90 Mrad and 0 - 100 Mrad, respectively. Measurements are made of the dependence of residual voltage on applied voltage, electron beam and γ-ray irradiation, annealing temperature and annealing time. Results show that carriers, which are once trapped after being released from the electrode, move within the material after the opening of the circuit to produce resiual voltage. The residual voltage increases with increasing dose of electron beam or γ-ray and levels off at high dose. Residual voltage is increased about several times by either electron beam or γ-rays, but electron beam tends to cause greater residual voltage than γ-ray. Polyethylene films irradiated with electron beam can recover upon annealing. It is concluded from observations made that residual voltage has close relations with defects in molecular structures caused by radiations, particularly the breaking of backbone chains and alteration in superstructures. (Nogami, K.)

  6. Surge currents and voltages at the low voltage power mains during lightning strike to a GSM tower

    Energy Technology Data Exchange (ETDEWEB)

    Markowska, Renata [Bialystok Technical University (Poland)], E-mail: remark@pb.edu.pl

    2007-07-01

    The paper presents the results of numerical calculations of lightning surge currents and voltages in the low voltage power mains system connected to a free standing GSM base station. Direct lightning strike to GSM tower was studied. The analysis concerned the current that flows to the transformer station through AC power mains, the potential difference between the grounding systems of the GSM and the transformer stations and the voltage differences between phase and PE conductors of the power mains underground cable at both the GSM and the transformer sides. The calculations were performed using a numerical program based on the electromagnetic field theory and the method of moments. (author)

  7. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  8. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  9. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  10. Voltage generators of high voltage high power accelerators

    International Nuclear Information System (INIS)

    Svinin, M.P.

    1981-01-01

    High voltage electron accelerators are widely used in modern radiation installations for industrial purposes. In the near future further increasing of their power may be effected, which enables to raise the efficiency of the radiation processes known and to master new power-consuming production in industry. Improvement of HV generators by increasing their power and efficiency is one of many scientific and engineering aspects the successful solution of which provides further development of these accelerators and their technical parameters. The subject is discussed in detail. (author)

  11. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  12. The creation of high-temperature superconducting cables of megawatt range in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  13. An EMC Evaluation of the Use of Unshielded Motor Cables in AC Adjustable Speed Drive Applications

    DEFF Research Database (Denmark)

    Hanigovszki, Norbert; Poulsen, J.; Spiazzi, G.

    2004-01-01

    The most common solution for modern adjustable speed drives (ASD) is the use of induction motors (IM) fed by voltage-source inverters (VSI). The inverter generates a pulsewidth modulated (PWM) voltage, with values of about 6 kV/ dv/dt m s or even more. In three-leg inverters for three-phase appli......The most common solution for modern adjustable speed drives (ASD) is the use of induction motors (IM) fed by voltage-source inverters (VSI). The inverter generates a pulsewidth modulated (PWM) voltage, with values of about 6 kV/ dv/dt m s or even more. In three-leg inverters for three......-phase applications the occurrence of common-mode voltage is inherent due to asymmetrical output pulses. As a result, for electromagnetic compatibility (EMC) reasons, in most applications shielded cables are used between the inverter and the motor, implying high installation costs. The present paper discusses the use...

  14. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  15. Automated Cable Preparation for Robotized Stator Cable Winding

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2017-04-01

    Full Text Available A method for robotized cable winding of the Uppsala University Wave Energy Converter generator stator has previously been presented and validated. The purpose of this study is to present and validate further developments to the method: automated stand-alone equipment for the preparation of the winding cables. The cable preparation consists of three parts: feeding the cable from a drum, forming the cable end and cutting the cable. Forming and cutting the cable was previously done manually and only small cable drums could be handled. Therefore the robot cell needed to be stopped frequently. The new equipment was tested in an experimental robot stator cable winding setup. Through the experiments, the equipment was validated to be able to perform fully automated and robust cable preparation. Suggestions are also given on how to further develop the equipment with regards to performance, robustness and quality. Hence, this work represents another important step towards demonstrating completely automated robotized stator cable winding.

  16. Study of the impact of board orientation on radiated emissions due to common-mode currents on attached cables

    DEFF Research Database (Denmark)

    Sørensen, Morten; Hubing, Todd H.; Jensen, Kim

    2016-01-01

    Common-mode current on attached cables is a typical source for radiated emission. Several models have been made for conversion of the intended differential signal to unwanted common-mode current on cables. In this paper we refine a method for identifying the radiation sources arising from a long...... microstrip. This method is used to show that the radiated emission from a PCB with attached cable(s) caused by a long trace depends on whether the trace is facing up or down with different result for voltage and current sources....

  17. Physicochemical assessment criteria for high-voltage pulse capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Darian, L. A., E-mail: LDarian@rambler.ru; Lam, L. Kh. [National Research University, Moscow Power Engineering Institute (Russian Federation)

    2016-12-15

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  18. Physicochemical assessment criteria for high-voltage pulse capacitors

    International Nuclear Information System (INIS)

    Darian, L. A.; Lam, L. Kh.

    2016-01-01

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  19. Power cables thermal protection by interval simulation of imprecise dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Bontempi, G. [Universite Libre de Brussels (Belgium). Dept. d' Informatique; Vaccaro, A.; Villacci, D. [Universita del Sannio Benevento (Italy). Dept. of Engineering

    2004-11-01

    The embedding of advanced simulation techniques in power cables enables improved thermal protection because of higher accuracy, adaptiveness and. flexibility. In particular, they make possible (i) the accurate solution of differential equations describing the cables thermal dynamics and (ii) the adoption of the resulting solution in the accomplishment of dedicated protective functions. However, the use of model-based protective systems is exposed to the uncertainty affecting some model components (e.g. weather along the line route, thermophysical properties of the soil, cable parameters). When uncertainty can be described in terms of probability distribution, well-known techniques, such as Monte Carlo, are used to simulate the system behaviour. On the other hand, when the description of uncertainty in probabilistic terms is unfeasible or problematic, nonprobabilistic alternatives should be taken into consideration. This paper will discuss and compare three interval-based techniques as alternatives to probabilistic methods in the simulation of power cable dynamics. The experimental session will assess the interval-based approaches by simulating the thermal behaviour of medium voltage power cables.(author)

  20. Time isolation high-voltage impulse generator

    International Nuclear Information System (INIS)

    Chodorow, A.M.

    1975-01-01

    Lewis' high-voltage impulse generator is analyzed in greater detail, demonstrating that voltage between adjacent nodes can be equalized by proper selection of parasitic impedances. This permits improved TEM mode propagation to a matched load, with more faithful source waveform preservation

  1. Detecting Faults In High-Voltage Transformers

    Science.gov (United States)

    Blow, Raymond K.

    1988-01-01

    Simple fixture quickly shows whether high-voltage transformer has excessive voids in dielectric materials and whether high-voltage lead wires too close to transformer case. Fixture is "go/no-go" indicator; corona appears if transformer contains such faults. Nests in wire mesh supported by cap of clear epoxy. If transformer has defects, blue glow of corona appears in mesh and is seen through cap.

  2. AmpaCity. Superconducting cables and fault current limiters for the energy supply in conurbations

    International Nuclear Information System (INIS)

    Merschel, F.; Noe, M.; Stemmle, M.; Hobl, A.; Sauerbach, O.

    2013-01-01

    In 2013 RWE Germany is working jointly with cable manufacturer Nexans and with the scientific support of the Karlsruhe Institute of Technology (KIT) to install world's longest superconducting cable in the downtown area electricity grid of Essen. The AmpaCity project is partly funded by the German Federal Ministry of Economics and Technology and is playing an exemplary role in the further development of electricity grids in major cities worldwide. The project consortium presents AmpaCity as a convincing system solution especially with respect to economics and security of supply. Components of the system are a superconducting three-phase AC cable with two terminations and one connection joint in combination with a fault current limiter, which is also based on superconducting materials. The superconducting system is designed for 10 kV nominal voltage and 40 MW nominal power. It will replace a 110 kV cable system of equal capacity. At the same time, the project partners are paving the way for high failsafe performance, as the cable in conjunction with the fault current limiter cannot be overloaded by short circuit currents in the event of faults in the grid. Planning and follow up on the civil works in Essen posed a major challenge. Cable laying in the inner city, with various crossings of major highways, tramways, as well as already dense cable routes necessitated very thorough preparation and coordination. The civil works in Essen started in April 2013. At around the same time, after the cable had passed the type test, it went into production. Cable laying is scheduled for late summer. After commissioning, planned for the end of 2013, the field trial will run for at least two years under real grid conditions, to demonstrate this technology's suitability for wider deployment.

  3. Integration of 100% heat pumps and electric vehicles in the low voltage distribution network: A Danish case story

    DEFF Research Database (Denmark)

    Shao, Nan; You, Shi; Segerberg, Helena

    2013-01-01

    The existing electricity infrastructure may to a great extent limit a high penetration of micro-sized Distributed Energy Rescores (DERs), due to physical bottlenecks, e.g. load capacities of cables and transformers and voltage limitations. In this study, integration impacts of heat pumps (HPs) an...

  4. Nested high voltage generator/particle accelerator

    International Nuclear Information System (INIS)

    Adler, R.J.

    1992-01-01

    This patent describes a modular high voltage particle accelerator having an emission axis and an emission end, the accelerator. It comprises: a plurality of high voltage generators in nested adjacency to form a nested stack, each the generator comprising a cup-like housing having a base and a tubular sleeve extending from the base, a primary transformer winding encircling the nested stack; a secondary transformer winding between each adjacent pair of housings, magnetically linked to the primary transformer winding through the gaps; a power supply respective to each of the secondary windings converting alternating voltage from its respective secondary winding to d.c. voltage, the housings at the emission end forming a hollow throat for particle acceleration, a vacuum seal at the emission end of the throat which enables the throat to be evacuated; a particle source in the thrond power means to energize the primary transformer winding

  5. The Consequence of Self-field and Non-uniform Current Distribution on Short Sample Tests of Superconducting Cables

    CERN Document Server

    Verweij, A P

    1998-01-01

    Electrical measurements on samples of superconducting cables are usually performed in order to determine the critical current $I_c$ and the n-value, assuming that the voltage U at the transition from the superconducting to the normal state follows the power law, U\\sim($I/I_c$)$^n$. An accurate measurement of $I_c$ and n demands, first of all, good control of temperature and field, and precise measurement of current and voltage. The critical current and n-value of a cable are influenced by the self-field of the cable, an effect that has to be known in order to compare the electrical characteristics of the cable with those of the strands from which it is made. The effect of the self-field is dealt with taking into account the orientation and magnitude of the applied field and the n-value of the strands. An important source of inaccuracy is related to the distribution of the currents among the strands. Non-uniform distributions, mainly caused by non-equal resistances of the connections between the strands of the...

  6. Cables - a question of custom-design

    International Nuclear Information System (INIS)

    Doig, Tom

    1994-01-01

    Electrical equipment such as cabling can often be the limiting factor as far as machine operations in radioactive environments are concerned. Electronic and electrical equipment will degrade if exposed to ionising radiation, affecting equipment reliability, or causing complete failure. However, several companies provide custom-designed products directed specifically at the nuclear industry. One such company is Habia Cable which has built up its business in submarine cables, internal engine cables, and cables for high fire risk situations. It began supplying custom-designed cables to the nuclear industry in 1986, and has since then supplied cables throughout Europe from its plant in Sweden. (Author)

  7. Discussion - a high voltage DC generator

    International Nuclear Information System (INIS)

    Bhagwat, P.V.; Singh, Jagir; Hattangadi, V.A.

    1993-01-01

    One of the requirements for a high power ion source is a high voltage, high current DC generator. The high voltage, high current generator, DISCATRON, presently under development in our laboratory is a rotating disc type electrostatic generator similar in design to the one reported by A. Isoya et al. (1985). It is compact and rugged electrostatic DC generator based on the principle of induction charging by pellet chains used in the pelletron accelerator. It is, basically, a constant-current device with little stored energy, so that, in case of a breakdown, damage to the equipment connected to the output terminals is minimal. Since the present generator is only a proto-type, meant for a study of the practical difficulties that would be encountered in its manufacture, the output voltage and current specified has been kept quite modest viz., 300 kV at 500 μA, maximum. Some results of the preliminary tests carried out with this generator are described. (author). 4 figs

  8. Co-wound voltage sensor R ampersand D for TPX magnets

    International Nuclear Information System (INIS)

    Chaplin, M.R.; Martovetsky, N.N.; Zbasnik, J.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will be the first tokamak to use superconducting cable-in-conduit-conductors (CICC) in all Poloidal Field (PF) ampersand Toroidal Field (TF) magnets. Conventional quench detection, the measurement of small resistive normal-zone voltages ( 4 kV). In the quench detection design for TPX, we have considered several different locations for internal co-wound voltage sensors in the cable cross-section as the primary mechanism to cancel this inductive noise. The Noise Rejection Experiment (NRE) at LLNL and the Noise Injection Experiment (NIE) at MIT have been designed to evaluate which internal locations will produce the best inductive-noise cancellation, and provide us with experimental data to calibrate analysis codes. The details of the experiments and resulting data are presented

  9. 30 CFR 18.45 - Cable reels.

    Science.gov (United States)

    2010-07-01

    ... and locomotives shall maintain positive tension on the portable cable during reeling and unreeling. Such tension shall only be high enough to prevent a machine from running over its own cable(s). (e... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable reels. 18.45 Section 18.45 Mineral...

  10. New piercing for insulated cables in underground networks; Novos conectores compactos perfurantes ('piercings') para cabos isoldados em redes subterraneas

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Fernando; Corral, Horacio [Tradis, SP (Brazil). E-mail: tradis@mandic.com.br

    1999-07-01

    This work presents a tap and transition connection in low voltage protected underground cables. This connection allows tapping for clients or branchings from a main energized cables. The compact connectors range various types of insulated cables protected and under grounded in a simple way. The work analysed the advantages of using two components polyurethane resins for the tapping protection and insulation restoring.

  11. High voltage investigations for ITER coils

    International Nuclear Information System (INIS)

    Fink, S.; Fietz, W.H.

    2006-01-01

    The superconducting ITER magnets will be excited with high voltage during operation and fast discharge. Because the coils are complex systems the internal voltage distribution can differ to a large extent from the ideal linear voltage distribution. In case of fast excitations internal voltages between conductor and radial plate of a TF coil can be even higher than the terminal voltage of 3.5 kV to ground which appears during a fast discharge without a fault. Hence the determination of the transient voltage distribution is important for a proper insulation co-ordination and will provide a necessary basis for the verification of the individual insulation design and the choice of test voltages and waveforms. Especially the extent of internal overvoltages in case of failures, e. g. malfunction of discharge units and / or arcing is of special interest. Transient calculations for the ITER TF coil system have been performed for fast discharge and fault scenarios to define test voltages for ITER TF. The conductor and radial plate insulation of the ITER TF Model Coil were exposed at room temperature to test voltages derived from the results from these calculations. Breakdown appeared during the highest AC voltage step. A fault scenario for the TF fast discharge system is presented where one fault triggers a second fault, leading to considerable voltage stress. In addition a FEM model of Poloidal Field Coil 3 for the determination of the parameters of a detailed network model is presented in order to prepare detailed investigations of the transient voltage behaviour of the PF coils. (author)

  12. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  13. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  14. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  15. Installation and operational effects of a HVDC submarine cable in a continental shelf setting: Bass Strait, Australia

    Directory of Open Access Journals (Sweden)

    John Sherwood

    2016-12-01

    Full Text Available Despite the many submarine telecommunications and power cables laid world-wide there are fewer than ten published studies of their environmental effects in the refereed literature. This paper describes an investigation into the effects of laying and operating the Basslink High Voltage Direct Current (HVDC cable and its associated metallic return cable across Bass Strait in South East Australia. Over more than 95% of its length the cable was directly laid into a wet jetted trench given the predominantly soft sediments encountered. Underwater remote video investigations found that within two years all visible evidence of the cable and trench was gone at over a third of the transects at six deep water sites (32–72m deep. At other deep water transects the residual trench trapped drift material providing habitat for the generally sparsely distributed benthic community. Diver surveys at both of the near shore sites (<15m deep on the northern side of the Strait also found the cable route was undetectable after a year. On the southern side, where the cable traversed hard basalt rock near shore, it was encased in a protective cast iron half shell. Ecological studies by divers over 3.5 years demonstrated the colonization of the hard shell by similar species occupying hard substrates elsewhere on the basalt reef. Magnetic field strengths associated with the operating cable were found to be within 0.8% of those predicted from theory with strength dropping rapidly with distance from the cable. Beyond 20m the field was indistinguishable from background.

  16. High voltage pulse generator. [Patent application

    Science.gov (United States)

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  17. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES

    International Nuclear Information System (INIS)

    LOFARO, R.; SOO, P.; VILLARAN, M.; GROVE, E.

    2001-01-01

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed

  18. Development of a guiding system and visual feedback real-time controller for the high-speed self-align optical cable winding

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Kang, Hyun Kyoo; Shin, Kee Hyun

    2008-01-01

    Recently, the demand for the optical cable has been rapidly growing because of the increasing number of internet users and the high speed internet data transmission required. But the present optical cable winding systems have some serious problems such as pile-up and collapse of cables usually near the flange of the bobbin in the process of cables winding. To reduce the pile-up collapse in cable winding systems, a new guiding system is developed for a high-speed self-align cable winding. First, mathematical models for the winding process and bobbin shape fault compensation were proposed, the winding mechanism was analyzed and synchronization logics for the motions of winding, traversing, and the guiding were created. A prototype cable winding systems was manufactured to validate the new guiding system and the suggested logic. Experiment results showed that the winding system with the developed guiding system outperformed the system without the guiding system in reducing pile-up and collapse in high-speed winding

  19. Integration of 100% Micro-Distributed Energy Resources in the Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    You, Shi; Segerberg, Helena

    2014-01-01

    of heat pumps (HPs) and plug-in electric vehicles (PEVs) at 100% penetration level on a representative urban residential low voltage (LV) distribution network of Denmark are investigated by performing a steady-state load flow analysis through an integrated simulation setup. Three DERs integration...... oriented integration strategies, having 100% integration of DER in the provided LV network is feasible.......The existing electricity infrastructure may to a great extent limit a high penetration of the micro-sized Distributed Energy Resources (DERs), due to the physical bottlenecks, e.g. thermal capacitates of cables, transformers and the voltage limitations. In this study, the integration impacts...

  20. Evaluation of different types of sensors and their positioning for on-line PD detection and localisation in distribution cables

    NARCIS (Netherlands)

    Wielen, van der P.C.J.M.; Veen, J.; Wouters, P.A.A.F.

    2003-01-01

    Different types of sensors can be used for on-line detection and localisation of PDs in medium voltage cables. These sensors can be placed on different locations in the substa-tions where the cable under test is terminated. Both aspects have a significant influence on the measured signals. In this

  1. Analysis of High Frequency Resonance in DFIG-based Offshore Wind Farm via Long Transmission Cable

    DEFF Research Database (Denmark)

    Song, Yipeng; Ebrahimzadeh, Esmaeil; Blaabjerg, Frede

    2018-01-01

    During the past two decades, the Doubly Fed Induction Generator (DFIG) based wind farm has been under rapid growth, and the increasing wind power penetration has been seen. Practically, these wind farms are connected to the three-phase AC grid through long transmission cable which can be modelled...... as several II units. The impedance of this cable cannot be neglected and requires careful investigation due to its long distance. As a result, the impedance interaction between the DFIG based wind farm and the long cable is inevitable, and may produce High Frequency Resonance (HFR) in the wind farm....... This paper discusses the HFR of the large scale DFIG based wind farm connected to the long cable. Several influencing factors, including 1) the length of the cable, 2) the output active power and 3) the rotor speed, are investigated. Simulation validations using MATLAB / Simulink have been conducted...

  2. 76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda

    Science.gov (United States)

    2011-11-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda As announced in the Notice of Staff..., from 9 a.m. to 4:30 p.m. to explore the interaction between voltage control, reliability, and economic...

  3. A New Coordinated Voltage Control Scheme for Offshore AC Grid of HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2015-01-01

    This paper proposes a coordinated voltage control scheme (CVCS) which enhances the voltage ride through (VRT) capability of an offshore AC grid comprised of a cluster of offshore wind power plants (WPP) connected through AC cables to the offshore voltage source converter based high voltage DC (VSC......-HVDC) converter station. Due to limited short circuit power contribution from power electronic interfaced variable speed wind generators and with the onshore main grid decoupled by the HVDC link, the offshore AC grid becomes more vulnerable to dynamic voltage events. Therefore, a short circuit fault...... in the offshore AC Grid is likely to have significant implications on the voltage of the offshore AC grid, hence on the power flow to the onshore mainland grid. The proposed CVCS integrates individual local reactive power control of wind turbines and of the HVDC converter with the secondary voltage controller...

  4. High Voltage Homemade Capacitor Charger for Plasma Focus System

    International Nuclear Information System (INIS)

    Abdul Halim Baijan; Azaman Ahmad; Rokiah Mohd Sabri; Siti Aiasah Hashim; Mohd Rizal Md Chulan; Wah, L.K.; Azhar Ahmad; Rosli Che Ros; Mohd Faiz Mohd Zin

    2015-01-01

    A high voltage capacitor charger has been designed and built to replace a high voltage charger type General Atomics CCDs Power Supply which was damaged. The fabrication design was using materials which were easily available in the local market. Among the main components of the high-voltage charger is a transformer for neon lights, variable transformer rated 0 - 240 V 1 KVA, and 240 V transformer isolator. The results of experiments that have been conducted shows that a homemade capacitor charger was able to charge high voltage capacitors up to the required voltage of which was 12 kV. However the time taken for charging is quite long, up to more than 6 minutes. (author)

  5. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  6. 30 CFR 77.704-1 - Work on high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 77.704-1 Section 77... MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded as... provided in § 77.103) that such high-voltage line has been deenergized and grounded. Such qualified person...

  7. Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-10-01

    Full Text Available This paper presents a novel interleaved converter (NIC with extra-high voltage gain to process the power of low-voltage renewable-energy generators such as photovoltaic (PV panel, wind turbine, and fuel cells. The NIC can boost a low input voltage to a much higher voltage level to inject renewable energy to DC bus for grid applications. Since the NIC has two circuit branches in parallel at frond end to share input current, it is suitable for high power applications. In addition, the NIC is controlled in an interleaving pattern, which has the advantages that the NIC has lower input current ripple, and the frequency of the ripple is twice the switching frequency. Two coupled inductors and two switched capacitors are incorporated to achieve a much higher voltage gain than conventional high step-up converters. The proposed NIC has intrinsic features such as leakage energy totally recycling and low voltage stress on power semiconductor. Thorough theoretical analysis and key parameter design are presented in this paper. A prototype is built for practical measurements to validate the proposed NIC.

  8. On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids

    Directory of Open Access Journals (Sweden)

    Guido Ala

    2018-03-01

    Full Text Available This paper presents the results of a first investigation on the effects of lightning stroke on medium voltage installations’ grounding systems, interconnected with the metal shields of the Medium Voltage (MV distribution grid cables or with bare buried copper ropes. The study enables us to evaluate the distribution of the lightning current among interconnected ground electrodes in order to estimate if the interconnection, usually created to reduce ground potential rise during a single-line-to-ground fault, can give place to dangerous situations far from the installation hit by the lightning stroke. Four different case studies of direct lightning stroke are presented and discussed: (1 two secondary substations interconnected by the cables’ shields; (2 two secondary substations interconnected by a bare buried conductor; (3 a high voltage/medium voltage station connected with a secondary substation by the medium voltage cables’ shields; (4 a high voltage/medium voltage station connected with a secondary substation by a bare buried conductor. The results of the simulations show that a higher peak-lowering action on the lighting-stroke current occurs due to the use of bare conductors as interconnection elements in comparison to the cables’ shields.

  9. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipments such as TV sets, microwave ovens, duplicators and etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through property and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  10. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipment such as TV sets, microwave ovens, duplicators etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  11. Complete low power controller for high voltage power systems

    International Nuclear Information System (INIS)

    Sumner, R.; Blanar, G.

    1997-01-01

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components

  12. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  13. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  14. PC-based control of a high-voltage injector

    International Nuclear Information System (INIS)

    Constantin, F.

    1998-01-01

    The stability of high voltage injectors is one of the major problems in any accelerator system. Most of the troubles encountered in the normal operation of an accelerator are connected with the ion source and associated high voltage platforms, regardless of the source or high voltage generator type. The quality of the ion beam injected in the accelerator strongly depends on the power supplies used in the injector and on the ability to control the non-electrical parameters (gas-flow, temperature, etc.). A wide used method in controlling is based on optical links between high-voltage platform and computer, the adjustments being more or less automated. Although the method mentioned above can be still useful in injector control, a different approach is presented in this work, i.e., the computer itself is placed inside the high-voltage terminal. Only one optical link is still necessary to connect this computer with an user-friendly host at ground potential. Requirements: - varying and monitoring the filament current; - gas flow control in the ion source; - reading the vacuum values; - current and voltage control for the anodic, magnet, extraction, suppression and lens' sources. Even in the high voltage terminal there are compartments with different voltages regardless the floating ground. In our injector the extraction voltage is applied on the top of the ion source including the filament and the anodic voltage. The extraction voltage is of maximum 30 kV. In this situation a second optical link is required to transfer the control for the anodic and magnet source power supply assuming the dedicated computer on the floating ground. One PC is placed inside the high voltage terminal and one PC outside the injector. The optical link (more precisely two optical wires) connects the serial ports. The inside computer is equipped with two multipurpose ADC/DAC and digital I/O card. They permit to read or output DC levels ranging between 0 to 10 volts or TTL signals. The filament

  15. High voltage generator circuit with low power and high efficiency applied in EEPROM

    International Nuclear Information System (INIS)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (V th ) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation. (semiconductor integrated circuits)

  16. Suppression of the high-frequency disturbances in low-voltage circuits caused by disconnector operation in high-voltage open-air substations

    Energy Technology Data Exchange (ETDEWEB)

    Savic, M.S.

    1986-07-01

    The switching off and on of small capacitive currents charging busbar capacitances, connection conductors and open circuit breakers with disconnectors causes high-frequency transients in high-voltage networks. In low voltage circuits, these transient processes induce dangerous overvoltages for the electronic equipment in the substation. A modified construction of the disconnector with a damping resistor was investigated. Digital simulation of the transient process in a high-voltage network during the arcing period between the disconnector contacts with and without damping resistor were performed. A significant decrease of the arcing duration and the decrease of the electromagnetic field magnitude in the vicinity of the operating disconnector were noticed. In the low voltage circuit protected with the surge arrester, the overvoltage magnitude was not affected by the damping resistor due to the arrester protection effect.

  17. Experimental validation of prototype high voltage bushing

    Science.gov (United States)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  18. Estudio de la cargabilidad de cables de alta tensión de aislamiento sólido con las variaciones periódicas de la carga; Study of the current capacity of solid insulation high voltage cables with periodical changes of load

    Directory of Open Access Journals (Sweden)

    Juan F Zuñinga

    2011-02-01

    Full Text Available Se plantean los resultados obtenidos al introducir una corrección al método desarrollado en el CIPEL para elcálculo de la cargabilidad de cables soterrados considerando las variaciones periódicas de la curva de cargadiaria y la impedancia compleja del medio que rodea a la instalación a partir del empleo de funciones Bessel yHankel. La validación de la corrección propuesta se realizó mediante el cálculo, con y sin la corrección planteada,de la temperatura superficial de cables en servicio por el método de cálculo propuesto y su comparación conlos medidos en la superficie de dichos cables  This work presents the results obtaines after the introduction of a correction to the method developed in theCIPEL to calculate the current capacity of underground cables considering the periodical chnages of the loadchanges of the daily load curve and the complex impedance of the enviroment sorrounding the installation usingBessel and Hankel funtions.The validity of the proposed correction was carried out calculating the surfacetemperature of the cables in service by means of the calculating method  with and whithout the correction  andthe  comparison of these values with the temperature mesured on the surface of the cables

  19. Microstructural characterization of XLPE electrical insulation in power cables: determination of void size distributions using TEM

    International Nuclear Information System (INIS)

    Markey, L; Stevens, G C

    2003-01-01

    In an effort to progress in our understanding of the ageing mechanisms of high voltage cables submitted to electrical and thermal stresses, we present a quantitative study of voids, the defects which are considered to be partly responsible for cable failure. We propose a method based on large data sets of transmission electron microscopy (TEM) observations of replicated samples allowing for the determination of void concentration distribution as a function of void size in the mesoscopic to microscopic range at any point in the cable insulation. A theory is also developed to calculate the effect of etching on the apparent size of the voids observed. We present the first results of this sort ever obtained on two industrial cables, one of which was aged in an AC field. Results clearly indicate that a much larger concentration of voids occur near the inner semiconductor compared to the bulk of the insulation, independently of ageing. An effect of ageing can also be seen near the inner semiconductor, resulting in an increase in the total void internal surface area and a slight shift of the concentration curve towards larger voids, with the peak moving from about 40 nm to about 50 nm

  20. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Science.gov (United States)

    2010-07-01

    ...-voltage equipment supplying power to such equipment receiving power from resistance grounded systems shall... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage...

  1. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  2. Current Redistribution around the Superconducting-to-normal Transition in Superconducting Nb-Ti Rutherford Cables

    CERN Document Server

    Willering, G P; ten Kate, H H J

    2008-01-01

    Sufficient thermal-electromagnetic stability against external heat sources is an essential design criterion for superconducting Rutherford cables, especially if operated close to the critical current. Due to the complex phenomena contributing to stability such as helium cooling, inter-strand current and heat transfer, its level is difficult to quantify. In order to improve our understanding, many stability tests were performed on different cable samples, each incorporating several point-like heaters. The current redistribution around the heat front is measured after inducing a local normal zone in one strand of the cable. By using voltage taps, expansion of the normal zone is monitored in the initially quenched strand as well as in adjacent strands. An array of Hall probes positioned at the cable edge is used to scan the selffield generated by the cable by which it becomes possible to estimate the inter-strand current transfer. In this paper it is demonstrated that two different stability regimes can be disti...

  3. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; /Fermilab; Kikuchi, A.; /Tsukuba Magnet Lab.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; /Fermilab; Takeuchi, T.; /Tsukuba Magnet Lab.; Tartaglia, M.; Turrioni, D.; /Fermilab; Verweij, A.P.; /CERN; Wake, M.; Willering, G; /Tsukuba Magnet Lab.; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  4. Superconducting power cables in Denmark - a case study

    DEFF Research Database (Denmark)

    Østergaard, Jacob

    1997-01-01

    A case study of a 450 MVA, 132 kV high temperature superconducting (HTS) power transmission cable has been carried out. In the study, a superconducting cable system is compared to a conventional cable system which is under construction for an actual transmission line in the Danish grid. The study...... that HTS cables will be less expensive for high power ratings, have lower losses for lines with a high load, and have a reduced reactive power production. The use of superconducting cables in Denmark accommodate plans by the Danish utility to make a substantial conversion of overhead lines to underground...

  5. High-voltage nanosecond pulse shaper

    International Nuclear Information System (INIS)

    Kapishnikov, N.K.; Muratov, V.M.; Shatanov, A.A.

    1987-01-01

    A high-voltage pulse shaper with an output of up to 250 kV, a base duration of ∼ 10 nsec, and a repetition frequency of 50 pulses/sec is described. The described high-voltage nanosecond pulse shaper is designed for one-orbit extraction of an electron beam from a betatron. A diagram of the pulse shaper, which employs a single-stage generator is shown. The shaping element is a low-inductance capacitor bank of series-parallel KVI-3 (2200 pF at 10 kV) or K15-10 (4700 pF at 31.5 kV) disk ceramic capacitors. Four capacitors are connected in parallel and up to 25 are connected in series

  6. In search of extendable conditions for cable environmental qualification in nuclear power plants

    International Nuclear Information System (INIS)

    Alshaketheep, Tariq; Sekimura, Naoto; Itoi, Tatsuya; Murakami, Kenta

    2016-01-01

    The environmental qualification (EQ) for cable insulators in nuclear power plants (NPPs) has been developed on the basis of the design basis accident (DBA) to prevent reactor core damage. However, the latest safety principles require extending the design concept to prepare the utilized equipment for scenarios after core damage. Thus, we propose a modification to the EQ for cables connecting utilized equipment at design extension conditions. This paper surveys all electrical components for accident management in boiling water reactor-4 (BWR-4), and identifies their connecting cables' functional category as low-voltage power, instrumentation, and control cables. The EQ temperature profile of these cables during the incident phase was addressed for extension. This required postulating maximum temperature environments according to accident scenarios, knowledge of cable integrity degradation, and their current evaluation by the EQ. To evaluate whether these environments are suitable stressors, heat testing was conducted on flame-retardant ethylene propylene rubber (FR-EPR)-insulated cables. On the basis of those results, we suggest a maximum primary peak temperature of the EQ temperature profile of 250degC. We also suggest increasing the primary peak period of the EQ temperature profile to 48 h without experiment, on the basis of inherent excessive margin for mechanical integrity during the ageing phase. (author)

  7. The influence of transformers, induction motors and fault resistance regarding propagation voltage sags

    OpenAIRE

    Jairo Blanco; Ruben Darío Leal; Jonathan Jacome; Johann F. Petit; Gabriel Ordoñez; Víctor Barrera

    2011-01-01

    This article presents an analysis of voltage sag propagation. The ATPDraw tool was selected for simulating the IEEE 34 node test feeder. It takes into account both voltage sags caused by electrical fault network, as well as voltage sag propagation characteristics caused by induction motor starting and transformer energising. The analysis was aimed at assessing the influence of transformer winding connections, the impedance of these transformers, lines and cables, summarising the...

  8. Hybrid AC-High Voltage DC Grid Stability and Controls

    Science.gov (United States)

    Yu, Jicheng

    The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient

  9. High voltage performance of BARC-TIFR Pelletron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Surendran, P.; Ansari, Q.N.; Nair, J.P., E-mail: surendra@tifr.res.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai (India); and others

    2014-07-01

    The 14 UD Pelletron Accelerator at TIFR, Mumbai is operational since its inception in 1988. It was decided to impart enough time for high voltage conditioning to achieve higher operational voltage. Prior to this, comprehensive works such as replacing all the sputter ion pumps and Titanium sublimation pumps across the accelerator tube with new or refurbished ones and replacement of Alumina balls in the SF{sub 6} drier with fresh balls were carried out. High voltage conditioning of each module was done. Further conditioning of two modules at a time in overlapping mode improved the terminal voltage. As a result of this rigorous conditioning Terminal voltage of 12.6 MV was achieved and beam has been delivered to users at 12 MV terminal. Details of this effort will be presented in this paper. (author)

  10. High voltage performance of BARC-TIFR Pelletron Accelerator

    International Nuclear Information System (INIS)

    Surendran, P.; Ansari, Q.N.; Nair, J.P.

    2014-01-01

    The 14 UD Pelletron Accelerator at TIFR, Mumbai is operational since its inception in 1988. It was decided to impart enough time for high voltage conditioning to achieve higher operational voltage. Prior to this, comprehensive works such as replacing all the sputter ion pumps and Titanium sublimation pumps across the accelerator tube with new or refurbished ones and replacement of Alumina balls in the SF_6 drier with fresh balls were carried out. High voltage conditioning of each module was done. Further conditioning of two modules at a time in overlapping mode improved the terminal voltage. As a result of this rigorous conditioning Terminal voltage of 12.6 MV was achieved and beam has been delivered to users at 12 MV terminal. Details of this effort will be presented in this paper. (author)

  11. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  12. Composite carbon fiber cables; Des cables composites en fibres de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-10-01

    In order to fulfill the requirements of offshore engineering, Freyssinet, a daughter company of the European Vinci group, has developed a series of high-performance carbon fiber cables. These composite materials have an excellent fatigue behaviour in a huge range of constraints. Moreover, their low weight allows the implementation of very long lengths of cables in marine environment with no loss in capacity. The specific weight of the current part of the cable is reduced by a factor of 4 with respect to an equivalent capacity armature made of steel. These materials were presented in June 2002 at the ultra deep engineering and technologies (UDET) exhibition of Brest (France). (J.S.)

  13. Design of a 30 m long 1 kA 10 kV YBCO cable

    Energy Technology Data Exchange (ETDEWEB)

    Rostila, L [Institute of Electromagnetics, Tampere University of Technology, PO Box 692, FIN-33101 Tampere (Finland); Lehtonen, J [Institute of Electromagnetics, Tampere University of Technology, PO Box 692, FIN-33101 Tampere (Finland); Masti, M [Institute of Electromagnetics, Tampere University of Technology, PO Box 692, FIN-33101 Tampere (Finland); Lallouet, N [Nexas France, rue Mozart 4-10, 92587 Clichy (France); Saugrain, J-M [Nexas France, rue Mozart 4-10, 92587 Clichy (France); Allais, A [Nexans Deutschland Industries GmbH and Co. KG, Kabelkamp 20, D-30179 Hannover (Germany); Schippl, K [Nexans Deutschland Industries GmbH and Co. KG, Kabelkamp 20, D-30179 Hannover (Germany); Schmidt, F [Nexans Deutschland Industries GmbH and Co. KG, Kabelkamp 20, D-30179 Hannover (Germany); Balog, G [Nexans Norway, PO Box 6450, Etterstad, N-0605, Oslo, Norway (Norway); Marot, G [Air Liquide DTA, 2 rue de Clemenciere BP15, 38360 Sassenage (France); Ravex, A [Air Liquide DTA, 2 rue de Clemenciere BP15, 38360 Sassenage (France); Usoskin, A [European High Temperature Superconductors Gmbh and Co. KG, Windausweg 2, 37037 Goettingen (Germany); Goemoery, F [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Klincok, B [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Souc, J [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Freyhardt, H C [Institute of Materialphysic, University of Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany)

    2006-04-15

    In this paper a 30 m long one-phase coaxial YBCO cable with 1 kA transport current and 10 kV operating voltage was designed for the Super3C project to check the feasibility of YBCO tapes for low-loss cables. The final design incorporates cryogenic, mechanical and electromagnetic aspects. The electromagnetic losses during normal operation must be minimized. The cryogenic design must also take into account the generation of heat during short circuit conditions. Mechanical restrictions set the minimum gaps between the coated conductor tapes and the minimum lay angles in order to make the cabling feasible and to enable handling of the cable. The design of the electric insulation should be according to the international standard as far as applicable. The final design has to take into account all of the above restrictions.

  14. Design of a 30 m long 1 kA 10 kV YBCO cable

    International Nuclear Information System (INIS)

    Rostila, L; Lehtonen, J; Masti, M; Lallouet, N; Saugrain, J-M; Allais, A; Schippl, K; Schmidt, F; Balog, G; Marot, G; Ravex, A; Usoskin, A; Goemoery, F; Klincok, B; Souc, J; Freyhardt, H C

    2006-01-01

    In this paper a 30 m long one-phase coaxial YBCO cable with 1 kA transport current and 10 kV operating voltage was designed for the Super3C project to check the feasibility of YBCO tapes for low-loss cables. The final design incorporates cryogenic, mechanical and electromagnetic aspects. The electromagnetic losses during normal operation must be minimized. The cryogenic design must also take into account the generation of heat during short circuit conditions. Mechanical restrictions set the minimum gaps between the coated conductor tapes and the minimum lay angles in order to make the cabling feasible and to enable handling of the cable. The design of the electric insulation should be according to the international standard as far as applicable. The final design has to take into account all of the above restrictions

  15. Development of a superconducting cable for transmission of high electric power

    International Nuclear Information System (INIS)

    Moisson, F.; Leroux, J.M.

    1971-01-01

    The opportunities opened by the use of cryoresistive and superconducting materials in underground transmission systems have led to a cryocable program. A first set of problems associated with the development of cryogenic cables deals with the cable system, i.e., design, safety, terminal equipment including leads, cryogenic equipment, refrigerators, and problems related to overload capability and reliability. A second set concerns the cable itself, i.e., scientific and technological problems associated with the conductor, the electrical insulation, and the thermal exchange between conductor and helium. Useful experience is gained on the design problems and on the technological problems involved in the construction of a cryoconducting cable. A 20-M aluminum cable cooled down to 25 0 K with pressurized helium flow was built and tested with 3500-A dc under 20 Kv; results are presented. On this model the following types of problems were solved. First, mechanical problems concerning cooling of the cable, thermal contraction of the pipes, electrical insulation and conductors, construction of an invariable cable constituted by elementary helically wound conductors were solved. Second, thermal problems of reduction of heat leaks, conception of thermal insulation, and segmentation of vacuum jackets were solved. Third, electrical problems of design of 300 0 to 25 0 K leads were solved; this problem of losses at both ends is, in proportion, more important for the short model than for long cable. Finally, refrigeration problems of helium and nitrogen flows, thermal shields and design of refrigerators (optimal capacity and spacing) were solved

  16. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  17. The high voltage homopolar generator

    Science.gov (United States)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  18. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  19. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  20. NRC Information Notice No. 92-01: Cable damage caused by inadequate cable installation procedures and controls

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1993-01-01

    In June 1989, the Tennessee Valley Authority (TVA) removed the cables from a conduit in the reactor protection system of the Watts Bar Nuclear Plant, Unit 2, to inspect for damage. TVA selected this conduit in response to an employee's concern that a welding arc that struck the conduit in response to an employee's concern that a welding arc that struck the conduit during construction may have damaged cables in the conduit. When the cables were removed, TVA found significant damage in the insulation of some cables. This damage was not attributed to heat generated by the alleged welding arc. The damage was principally attributed to the pulling stresses exerted during the initial installation of the cables. Some of the cables had insulation removed down to the conductors. To assess the extent of cable damage and determine the scope of its investigation, TVA removed more cables from conduits that constituted the most difficult pulls (worst case) and found varying degrees of damage that it attributed to pulling stresses. To fill a conduit at Watts Bar, personnel used pull cords to pull more cables through the conduits over the top of existing cables. This practice is called ''pull-by.'' This practice can cause damage to the existing cables from the sawing action of the pull cords and the friction of cables as they are pulled over existing cables. TVA instituted programs to assess the adequacy of cable installation at all its nuclear facilities and take appropriate corrective actions. At Watts Bar, TVA replaced cables in conduits which exceeded a calculated threshold value of side wall bearing pressure (SWBP) and performed a high-potential (hi-pot) tests on a number of other cables in conduits with SWBP below the calculated threshold value

  1. Continued development of a non-proprietary, high-tension, cable end terminal system.

    Science.gov (United States)

    2016-04-29

    A non-proprietary, cable guardrail system is currently under development for the Midwest States Pooled Fund Program. : A cable guardrail end terminal was necessary to accompany the cable guardrail system. The objective of this research : project was ...

  2. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  3. High voltage capacitor design and the determination of solid dielectric voltage breakdown

    International Nuclear Information System (INIS)

    Hutapea, S.

    1976-01-01

    The value of the external field intensity serves as an electrical insulating material and is a physical characteristic of the substance. Capacitor discharge in the dielectric medium are experimentally investigated. The high voltage power supply and other instrument needed are briefly discussed. Capacitors with working voltage of 30.000 volt and the plastic being used for dielectrics in the capacitors are also discussed. (author)

  4. Integration of HTS Cables in the Future Grid of the Netherlands

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  5. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    Science.gov (United States)

    Khoshkbar Sadigh, Arash

    other analyses. In this study, ETAP, OpenDSS, and GridLab-D are considered, and PSCMD transfer applications written in MATLAB have been developed for each of these to read the circuit model data provided in the UP spreadsheet. In order to test the developed PSCMD transfer applications, circuit model data of a test circuit and a power distribution circuit from Southern California Edison (SCE) - a utility company - both built in CYME, were exported into the spreadsheet file according to the UP format. Thereafter, circuit model data were imported successfully from the spreadsheet files into above mentioned software using the PSCMD transfer applications developed for each software. After the SCE studied circuit is transferred into OpenDSS software using the proposed UP scheme and developed application, it has been studied to investigate the impacts of large-scale solar energy penetration. The main challenge of solar energy integration into power grid is its intermittency (i.e., discontinuity of output power) nature due to cloud shading of photovoltaic panels which depends on weather conditions. In order to conduct this study, OpenDSS time-series simulation feature, which is required due to intermittency of solar energy, is utilized. In this study, the impacts of intermittency of solar energy penetration, especially high-variability points, on voltage fluctuation and operation of capacitor bank and voltage regulator is provided. In addition, the necessity to interpolate and resample unequally spaced time-series measurement data and convert them to equally spaced time-series data as well as the effect of resampling time-interval on the amount of error is discussed. Two applications are developed in Matlab to do interpolation and resampling as well as to calculate the amount of error for different resampling time-intervals to figure out the suitable resampling time-interval. Furthermore, an approach based on cumulative distribution, regarding the length for lines/cables types

  6. Short-circuit experiments on a high Tc-superconducting cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, E.H.; Traholt, C.

    2002-01-01

    A high temperature superconductor (HTS) cable conductor (CC) with a critical current of 2.1 kA was tested over a range of short-circuit currents up to 20 kA. The duration of the short-circuit currents is 1 s. Between each short-circuit test the critical current of the HTS CC was measured in order...

  7. Material Selection for Cable Gland to Improved Reliability of the High-hazard Industries

    Science.gov (United States)

    Vashchuk, S. P.; Slobodyan, S. M.; Deeva, V. S.; Vashchuk, D. S.

    2018-01-01

    The sealed cable glands (SCG) are available to ensure safest connection sheathed single wire for the hazard production facility (nuclear power plant and others) the same as pilot cable, control cables, radio-frequency cables et al. In this paper, we investigate the specifics of the material selection of SCG with the express aim of hazardous man-made facility. We discuss the safe working conditions for cable glands. The research indicates the sintering powdered metals cables provide the reliability growth due to their properties. A number of studies have demonstrated the verification of material selection. On the face of it, we make findings indicating that double glazed sealed units could enhance reliability. We had evaluated sample reliability under fire conditions, seismic load, and pressure containment failure. We used the samples mineral insulated thermocouple cable.

  8. Experiment and operation of a LHCD-35 kV/2.8 MW/1000 s high-voltage power supply on HT-7 tokamak

    International Nuclear Information System (INIS)

    Huang Yiyun

    2002-01-01

    A-35 kV/2.8 MW/1000s high-voltage power supply (HVPS) for HT-7 superconducting tokamak has been built successfully. The HVPS is scheduled to run on a 2.45 GHz/1 MW lower hybrid current drive (LHCD) system of HT-7 superconducting tokamak before the set-up of HT-7 superconducting tokamak in 2003. The HVPS has a series of advantages such as good steady and dynamic response, logical computer program controlling the HVPS without any fault, operational panel and experimental board for data acquisition, which both are grounded distinctively in a normative way to protect the main body of HVPS along with its attached equipment from dangers. Electric power cables and other control cables are disposed reasonably, to prevent signals from magnetic interference and ensure the precision of signal transfer. The author introduced the experiment and operation of a 35 kV/2.8 MW/1000 s HVPS for 2.45 GHz/1 MW LHCD system. The reliability and feasibility of the HVPS has been demonstrated in comparison with experimental results of original design and simulation data

  9. Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer

    International Nuclear Information System (INIS)

    Choi, S. J.; Song, M. K.; Lee, S. J.; Cho, J. W.; Sim, K. D.

    2005-01-01

    The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  10. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Science.gov (United States)

    2010-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad tracks...

  11. Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yu-En Wu

    2016-09-01

    Full Text Available In this study, a novel, non-isolated, cascade-type, single-switch, high step-up DC/DC converter was developed for green energy systems. An integrated coupled inductor and voltage lift circuit were applied to simplify the converter structure and satisfy the requirements of high efficiency and high voltage gain ratios. In addition, the proposed structure is controllable with a single switch, which effectively reduces the circuit cost and simplifies the control circuit. With the leakage inductor energy recovery function and active voltage clamp characteristics being present, the circuit yields optimizable conversion efficiency and low component voltage stress. After the operating principles of the proposed structure and characteristics of a steady-state circuit were analyzed, a converter prototype with 450 W, 40 V of input voltage, 400 V of output voltage, and 95% operating efficiency was fabricated. The Renesas MCU RX62T was employed to control the circuits. Experimental results were analyzed to validate the feasibility and effectiveness of the proposed system.

  12. High-voltage test and measuring techniques

    CERN Document Server

    Hauschild, Wolfgang

    2014-01-01

    It is the intent of this book to combine high-voltage (HV) engineering with HV testing technique and HV measuring technique. Based on long-term experience gained by the authors as lecturer and researcher as well as member in international organizations, such as IEC and CIGRE, the book will reflect the state of the art as well as the future trends in testing and diagnostics of HV equipment to ensure a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.

  13. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.

  14. IBM-PC based high voltage controller [Paper No.: L7

    International Nuclear Information System (INIS)

    Mondal, N.K.; Kalmani, S.D.

    1993-01-01

    A simple IBM-PC/XT based high voltage controller is designed for C.A.E.N. high voltage supply unit, which is being used for testing the prototype detector for future accelerator experiment. The high voltage output of the supply unit can be remotely programmed. The V-set Lemo connectors at the rear panel provides the remote control facility. Similarly V-mon and I-mon can be used for remotely monitoring the voltage set and the current drawn from the supply unit. The controller described here sets the high voltage through V-set and monitors the voltage set, through V-mon at a pre-determined time interval. The monitoring is a background job and is done as an interrupt service routine of IRQ3. A simple menu driven software package used is written in Q-Basic and MASM. (author). 1 fig

  15. Optical control system for high-voltage terminals

    International Nuclear Information System (INIS)

    Bicek, J.J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal

  16. High-voltage direct current (HVDC) transmission - a key technology for our power supply

    International Nuclear Information System (INIS)

    Dorn, J.

    2016-01-01

    The phasing-out of nuclear power in some countries and the aspirations of reducing carbon dioxide emissions have far-reaching implications for electric power generation in Europe. In the future, renewable electricity generation will account for a considerable share of the energy mix, but this type of production is often far from the load centers. In Germany, for example, large quantities of wind energy are already generated in the north and in the North Sea, but large load centers are located several hundred kilometers south of there. This requires an expansion of the transmission network with innovative solutions. High-voltage direct-current (HVDC) transmission plays an important role, since it brings a number of advantages over conventional AC technology and makes certain requirements feasible, for example Cable transmission over longer distances. The lecture presents the advantages of HVDC, the semiconductors used as well as the basic functions and typical performance of the used converter topopologies. The plant configurations and main components are illustrated using current projects. (rössner) [de

  17. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  18. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended to...

  19. 30 CFR 75.705-1 - Work on high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground; (b...

  20. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  1. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  2. Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions.

    Science.gov (United States)

    Langlands, T A M; Henry, B I; Wearne, S L

    2009-12-01

    We introduce fractional Nernst-Planck equations and derive fractional cable equations as macroscopic models for electrodiffusion of ions in nerve cells when molecular diffusion is anomalous subdiffusion due to binding, crowding or trapping. The anomalous subdiffusion is modelled by replacing diffusion constants with time dependent operators parameterized by fractional order exponents. Solutions are obtained as functions of the scaling parameters for infinite cables and semi-infinite cables with instantaneous current injections. Voltage attenuation along dendrites in response to alpha function synaptic inputs is computed. Action potential firing rates are also derived based on simple integrate and fire versions of the models. Our results show that electrotonic properties and firing rates of nerve cells are altered by anomalous subdiffusion in these models. We have suggested electrophysiological experiments to calibrate and validate the models.

  3. Long-term test of the 22.9kV HTS power cable system in LS Cable Ltd

    International Nuclear Information System (INIS)

    Jang, Hyun Man; Lee, Chang Young; Kim, Choon Dong; Kim, Do Hyung; Park, In Son; Ji, Bong Ki; Kim, Dong Wook; Cho, Jeonwook

    2006-01-01

    Since 2001, LS cable Ltd. has been developing the design, manufacturing and evaluation technologies for high temperature superconducting (HTS) power cable system as a member of DAPAS (Dream for Advanced Power system by Applied Superconductivity technology) program in Korea. The 30 m HTS cable system that is rated at 22.9 kV and 1.2 kA giving a rated capacity of 50 MVA had been developed and tested. The cable was designed as a cold dielectric type employing Bi-2223 HTS tapes and polypropylene (PP) laminated paper as the conductor and electrical insulation, respectively. The cable is cooled with sub-cooled liquid nitrogen at temperature from 75 to 77 K. The manufacturing and the installation of the cable system were completed in 2004. Long-term performance test of the cable system has been conducted for six months to verify its electric and mechanical properties in 2005

  4. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  5. High Voltage Power Converter for Large Wind Turbine

    DEFF Research Database (Denmark)

    Sztykiel, Michal

    and the feeder cable sections, careful investigation for the relay selective operation has been made, which distinguishes ground faults located at the wind turbine terminals from faults within the protected cables. The obtained results from the computer simulations in EMTDC/PSCAD software show, that the best...... also for different grounding schemes, which impact is the result of the removed step-up transformer. Finally, the ground fault detection scheme for feeder cable system is proposed - with the usage of current differential relay. Due to lack of the galvanic separation between the wind turbines...

  6. A compact 100 kV high voltage glycol capacitor.

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Feng, Jiahuai

    2015-01-01

    A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.

  7. Transmission of power at high voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lane, F J

    1963-01-01

    High voltage transmission is considered to be concerned with circuits and systems operating at or above 132 kV. While the general examination is concerned with ac transmission, dc systems are also included. The choice of voltage for a system will usually involve hazardous assessments of the future requirements of industry, commerce and a changing population. Experience suggests that, if the estimated economic difference between two voltages is not significant, there is good reason to choose the higher voltage, as this will make the better provision for unexpected future expansion. Two principal functions served by transmission circuits in a supply system are: (a) the transportation of energy in bulk from the generator to the reception point in the distribution system; and (b) the interconnection and integration of the generating plant and associated loads. These functions are considered and various types of system are discussed in terms of practicability, viability, quality and continuity of supply. Future developments requiring transmission voltages up to 750 kV will raise many problems which are in the main empirical. Examples are given of the type of problem envisaged and it is suggested that these can only be partially solved by theory and model operation.

  8. 30 CFR 77.704-2 - Repairs to energized high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized high-voltage lines. 77.704... UNDERGROUND COAL MINES Grounding § 77.704-2 Repairs to energized high-voltage lines. An energized high-voltage... repairs will be performed on power circuits with a phase-to-phase nominal voltage no greater than 15,000...

  9. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  10. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  11. Low voltage powering of on-detector electronics for HL-LHC experiments upgrades

    CERN Document Server

    Bobillier, Vincent; Vasey, Francois; Karmakar, Sabyasachi; Maity, Manas; Roy, Subhasish; Kundu, Tapas Kumar

    2018-01-01

    All LHC experiments will be upgraded during the next LHC long shutdowns (LS2 and LS3). The increase in resolution and luminosity and the use of more advanced CMOS technology nodes typically implies higher current consumption of the on-detector electronics. In this context, and in view of limiting the cable voltage drop, point-of-load DC-DC converters will be used on detector. This will have a direct impact on the existing powering scheme, implying new AC-DC and/or DC-DC stages as well as changes in the power cabling infrastructure. This paper presents the first results obtained while evaluating different LV powering schemes and distribution layouts for HL-LHC trackers. The precise low voltage power source requirements are being assessed and understood using the CMS tracker upgrade as a use-case.

  12. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  13. Low cost photomultiplier high-voltage readout system

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Kunz, P.F.

    1976-10-01

    The Large Aperture Solenoid Spectrometer (LASS) at Stanford Linear Accelerator Center (SLAC) requires monitoring over 300 voltages. This data is recorded on magnetic tapes along with the event data. It must also be displayed so that operators can easily monitor and adjust the voltages. A low-cost high-voltage readout system has been implemented to offer stand-alone digital readout capability as well as fast data transfer to a host computer. The system is flexible enough to permit use of a DVM or ADC and commercially available analogue multiplexers

  14. Design & Fabrication of a High-Voltage Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  15. AC losses in superconductors: a multi-scale approach for the design of high current cables

    International Nuclear Information System (INIS)

    Escamez, Guillaume

    2016-01-01

    The work reported in this PhD deals with AC losses in superconducting material for large scale applications such as cables or magnets. Numerical models involving FEM or integral methods have been developed to solve the time transient electromagnetic distributions of field and current densities with the peculiarity of the superconducting constitutive E-J equation. Two main conductors have been investigated. First, REBCO superconductors for applications operating at 77 K are studied and a new architecture of conductor (round wires) for 3 kA cables. Secondly, for very high current cables, 3-D simulations on MgB_2 wires are built and solved using FEM modeling. The following chapter introduced new development used for the calculation of AC losses in DC cables with ripples. The thesis ends with the use of the developed numerical model on a practical example in the european BEST-PATHS project: a 10 kA MgB_2 demonstrator [fr

  16. An update on irradiation of wire and cable

    International Nuclear Information System (INIS)

    Hildreth, N.

    1981-01-01

    Radiation curing with electron accelerators is a growing high technology application in the wire and cable industry. They are used with voltages ranging from 500,000 up to 3,000,000 electron volts. Furthermore new machines are available up to 5.0 MeV. These industrial machines are high powered accelerators which operate continuously between 60 and 75 kilowatts with a few of the new machines operating up to 200 kilowatts. Radiation curing is used as a tool for developing new insulation systems based on low cost materials for applications which previously required the use of expensive fluorocarbon or silicone rubber type insulations. With the development of the larger, more efficient and reliable accelerators and the continuous trend toward developing new insulations designed to fully utilize the potential of radiation chemistry, the authors are confident that industry will continue to be provided with better, lower cost insulation systems

  17. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...... and flexure and show that localized cable bending has a pronounced influence on the fatigue resistance of cables under dynamic excitations....

  18. Problems with earth fault detecting relays assigned to parallel cables or overhead lines; Probleme bei der Erdschlussortung mit wattmetrischen Erdschlussrichtungsrelais bei parallelen Kabeln oder Leitungen

    Energy Technology Data Exchange (ETDEWEB)

    Birkner, P.; Foerg, R. [Lech-Elektrizitaetswerke AG, Augsburg (Germany)

    1998-06-29

    For practical conditions one can find currents in underground electrical conductors like cable coverings earthed on both sides. As an example these currents are due to the alternating current system of the railroad or to the alternating current system of a Peterson coil, that tries to find a minimum resistance way from the transformer station to the place of the earth fault. Currents like these create a series voltage in the cable by inductive coupling. The voltage depends on the type and the length of the cable. The series voltages of all three phases form a zero sequence system. Taking into consideration that two cable systems running parallel to another, under certain circumstances it is possible to achieve a circulating zero sequence current. Additionally there is a shift voltage between the neutral point and the earth in the case of an earth fault in another place in the grid. The combination of these two factors can cause a malfunction of the earth fault detecting relays that are assigned to the parallel cable system. (orig.) [Deutsch] Im Erdreich vorhandene elektrische Leiter, z.B. die beidseitig geerdeten Schirme von Energiekabeln, werden in der Praxis nicht selten von Stroemen beaufschlagt. Dabei kann es sich z.B. auch um den Wechselstrom einer Petersenspule, der sich im Erdschlussfall einen widerstandsminimierten Weg vom Umspannwerk zur Fehlerstelle sucht, handeln. Ueber induktive Einkopplung entsteht im Leiter des Kabels eine Laengsspannung. Deren Hoehe ist vom Kabeltyp und der Kabellaenge abhaengig. Liegt als Netzkonfiguration eine Doppelleitung vor, die parallel betrieben wird, so koennen sich unter gewissen Randbedingungen kreisende Nullstroeme ausbilden. Diese wiederum koennen bei Vorhandensein einer Verlagerungsspannung zu einem Fehlansprechen von wattmetrischen Erdschlussrichtungsrelais fuehren. (orig.)

  19. Micro controller application as x-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    The micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive the stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-B051 compiler. The test results show that the stepper motor could rotate according to an input value. (author)

  20. Integrated differential high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Farch, Kjartan

    2015-01-01

    In this paper an integrated differential high-voltage transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is designed and implemented in a 0.35 μm high-voltage process. Measurements are performed on the integrated circuit in order...... to assess its performance. The circuit generates pulses at differential voltage levels of 60V, 80V and 100 V, a frequency up to 5MHz and a measured driving strength of 1.75 V/ns with the CMUT connected. The total on-chip area occupied by the transmitting circuit is 0.18 mm2 and the power consumption...

  1. High-voltage pulse generator synchronous with LINAC

    International Nuclear Information System (INIS)

    Muto, M.; Hiratsuka, Yoshio; Niimura, Nobuo

    1974-01-01

    High-voltage pulse generator (H.V. Flip-Flop) No.2, an improved type of No.1, is described, which is used in the structural analysis of transient phenomena in materials through the neutron TOF with a Linac. The method of producing positive and negative high-voltage pulses synchronous with the Linac is identical with that in No.1. However, No.2 has outstanding features as follows: (1) The rise time of output pulses is reduced to 0.3 msec, due to the improvement of switching circuit and the winding of a step-up transformer; (2) The widths of positive and negative pulses are variable up to maximum 8 and 16 frames, respectively (One frame = 10 msec); (3) The distribution of TOF signals from a BF 3 counter to a time analyzer is possible even in the negative voltage duration. The panel is provided with the switches for choosing pulse width and the frame for analysis, as well as the dials for setting positive/negative pulse voltage values and the respective indicating meters. (Mori, K)

  2. Volume transport data from a submarine cable in the Florida Strait from 2015 (NCEI Accession 0140278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily mean and raw voltage volume transport data of the Florida Current collected with a submarine cable spanning from South Florida to the Grand Bahama Island in...

  3. Volume transport data from a submarine cable in the Florida Strait from 2016 (NCEI Accession 0159429)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily mean and raw voltage volume transport data of the Florida Current collected with a submarine cable spanning from South Florida to the Grand Bahama Island in...

  4. Volume transport data from a submarine cable in the Florida Strait in 2014 (NODC Accession 0125429)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily mean and raw voltage volume transport data of the Florida Current collected with a submarine cable spanning from South Florida to the Grand Bahama Island in...

  5. Cable aging tests

    International Nuclear Information System (INIS)

    Hubbard, G.

    1993-01-01

    This paper describes the results from aging, condition monitoring, and loss-of-coolant accident (LOCA) testing of class 1E electrical cables, per NUREG/CR-5772. This test was designed to test the performance of cables which had been aged with simultaneous radiation and thermal exposure. The tested cables included crosslinked polyolefin cables, ethylene propylene rubber cables, and miscellaneous cable types. Cables were exposed to 20, 40, and 60 years equivalent aging, and then exposed to LOCA tests at the end of their qualified life to determine the minimum insulation thickness needed for survival of the test. Failures were found in a large number of the tested cables. As a result the NRC has sent information notices to the industry regarding potential insulation problems. The results have raised the question of whether the artificial aging methods provide adequate testing methods. As a result of this testing the NRC is reviewing the artificial aging procedures, the adequacy of environmental qualification requirements for cable safety, and reexamining data from condition monitoring of installed cables

  6. Quench characteristics of a two-strand superconducting cable and the influence of its length

    NARCIS (Netherlands)

    Mulder, G.B.J.; Mulder, G.B.J.; Krooshoop, Hendrikus J.G.; Vysotski, V.S.; Vysotski, V.S.; van de Klundert, L.J.M.; van de Klundert, L.J.M.

    1992-01-01

    The quench process of a multi-strand cable was investigated using the simplest system: two twisted wires. Several properties of the quench, such as the commutation of currents, the time scale, the resistance rate, and the maximum voltage, were determined experimentally or by calculation. Particular

  7. 30 CFR 18.54 - High-voltage continuous mining machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage continuous mining machines. 18.54... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with an...

  8. Cable line engineering

    International Nuclear Information System (INIS)

    Jang, Hak Sin; Kim, Sin Yeong

    1998-02-01

    This book is about cable line engineering. It is comprised of nine chapters, which deals with summary of cable communication such as way, process of cable communication and optical communication, Line constant of transmission on primary constant, reflection and crosstalk, communication cable line of types like flat cable, coaxial cable and loaded cable, Install of communication line with types and facility of aerial line, construction method of communication line facility, Measurement of communication line, Carrier communication of summary, PCM communication with Introduction, regeneration relay system sampling and quantization and Electric communication service and general information network with mobile communication technique and satellite communication system.

  9. Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model

    International Nuclear Information System (INIS)

    Yuan Yi; Li Xiao-Li

    2015-01-01

    Transcranial Hall-effect stimulation (THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field (due to Lorentz force). In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then, based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders. (paper)

  10. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Xiao, Dong-Dong; Ge, Mingyuan; Yu, Xiqian; Chu, Yong; Huang, Xiaojing; Zhang, Xu-Dong; Yin, Ya-Xia; Yang, Xiao-Qing; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2018-03-01

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg -1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    International Nuclear Information System (INIS)

    Kalsia, Mohit; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao

    2017-01-01

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T_c > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific heat

  12. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Kalsia, Mohit [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, PVK Institute of Technology, Anantpur, 515 001 (India)

    2017-05-15

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T{sub c} > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific

  13. Initial tension loss in cerclage cables.

    Science.gov (United States)

    Ménard, Jérémie; Émard, Maxime; Canet, Fanny; Brailovski, Vladimir; Petit, Yvan; Laflamme, George Y

    2013-10-01

    Cerclage cables, frequently used in the management of fractures and osteotomies, are associated with a high failure rate and significant loosening during surgery. This study compared the capacity to maintain tension of different types of orthopaedic cable systems. Multifilament Cobalt-Chrome (CoCr) cables with four different crimp/clamp devices (DePuy, Stryker, Zimmer and Smith&Nephew) and one non-metallic Nylon (Ny) cable from Kinamed were instrumented with a load cell to measure tension during insertion. Significant tension loss was observed with crimping for all cables (Ptensioner led to an additional unexpected tension loss (CoCr-DePuy: 18%, CoCr-Stryker: 29%, CoCr-Smith&Nephew: 33%, Ny: 46%, and CoCr-Zimmer: 52%). The simple CoCr (DePuy) cable system outperformed the more sophisticated locking devices due to its significantly better ability to prevent tension loss. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. First high-voltage measurements using Ca{sup +} ions at the ALIVE experiment

    Energy Technology Data Exchange (ETDEWEB)

    König, K., E-mail: kkoenig@ikp.tu-darmstadt.de [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Geppert, Ch. [Universität Mainz, Institut für Kernchemie (Germany); Krämer, J.; Maaß, B. [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Otten, E. W. [Universität Mainz, Institut für Physik (Germany); Ratajczyk, T.; Nörtershäuser, W. [Technische Universität Darmstadt, Institut für Kernphysik (Germany)

    2017-11-15

    Many physics experiments depend on accurate high-voltage measurements to determine for example the exact retardation potential of an electron spectrometer as in the KATRIN experiment or the acceleration voltage of the ions at ISOL facilities. Until now only precision high-voltage dividers can be used to measure voltages up to 65 kV with an accuracy of 1 ppm. However, these dividers need frequent calibration and cross-checking and the direct traceability is not given. In this article we will describe the status of an experiment which aims to measure high voltages using collinear laser spectroscopy and which has the potential to provide a high-voltage standard and hence, a calibration source for precision high-voltage dividers on the 1 ppm level.

  15. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  16. Technical advancements in the integration of online partial discharge monitoring in distribution cable networks

    NARCIS (Netherlands)

    Wagenaars, P.; Wouters, P.A.A.F.; Wielen, van der P.C.J.M.; Steennis, F.

    2009-01-01

    Online partial discharge (PD) detection and location systems for medium-voltage (MV) cables have been developed over the past years and are currently introduced by utilities on an increasingly large scale. This paper addresses a few of the new challenges related to the integration of these systems

  17. High voltage switches having one or more floating conductor layers

    Science.gov (United States)

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  18. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  19. V-I transition and n-value of multifilamentary LTS and HTS wires and cables

    International Nuclear Information System (INIS)

    Ghosh, Arup K.

    2004-01-01

    For low T c multifilamentary conductors like NbTi and Nb 3 Sn, the V-I transition to the normal state is typically quantified by the parameter, n, defined by (ρ/ρ c )=(I/I c ) n . For NbTi, this parameterization has been very useful in the development of high J c wires, where the n-value is regarded as an index of the filament quality. In copper-matrix wires with undistorted filaments, the n-value at 5 T is ∼40-60, and drops monotonically with increasing field. However, n can vary significantly in conductors with higher resistivity matrices and those with a low copper fraction. Usually high n-values are associated with unstable resistive behavior and premature quenching. The n-value in NbTi Rutherford cables, when compared to that in the wires is useful in evaluating cabling degradation of the critical current due to compaction at the edges of the cable. In Nb 3 Sn wires, n-value has been a less useful tool, since often the resistive transition shows small voltages ∼ a few μV prior to quenching. However, in 'well behaved' wires, n is ∼30-40 at 12 T and also shows a monotonic behavior with field. Strain induced I c degradation in these wires is usually associated with lower n-values. For high T c multifilamentary wires and tapes, a similar power law often describes the resistive transition. At 4.2 K, Bi-2223 tapes as well as Bi-2212 wires exhibit n-values ∼15-20. In either case, n does not change appreciably with field. Rutherford cables of Bi-2212 wire show lower values of n than the virgin wire

  20. A compact, all solid-state LC high voltage generator.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  1. Recycling potential for low voltage and high voltage high rupturing capacity fuse links.

    Science.gov (United States)

    Psomopoulos, Constantinos S; Barkas, Dimitrios A; Kaminaris, Stavros D; Ioannidis, George C; Karagiannopoulos, Panagiotis

    2017-12-01

    Low voltage and high voltage high-rupturing-capacity fuse links are used in LV and HV installations respectively, protecting mainly the LV and HV electricity distribution and transportation networks. The Waste Electrical and Electronic Equipment Directive (2002/96/EC) for "Waste of electrical and electronic equipment" is the main related legislation and as it concerns electrical and electronic equipment, it includes electric fuses. Although, the fuse links consist of recyclable materials, only small scale actions have been implemented for their recycling around Europe. This work presents the possibilities for material recovery from this specialized industrial waste for which there are only limited volume data. Furthermore, in order to present the huge possibilities and environmental benefits, it presents the potential for recycling of HRC fuses used by the Public Power Corporation of Greece, which is the major consumer for the country, but one of the smallest ones in Europe and globally, emphasizing in this way in the issue. According to the obtained results, fuse recycling could contribute to the effort for minimize the impacts on the environment through materials recovery and reduction of the wastes' volume disposed of in landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Design and test of low-capacitance, air-insulated, 80-kV, 0.5-sec source cables for MFTF sustaining-neutral-beam power supples

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Wilson, J.H.; Caldwell, W.J.; Watson, T.F.; Jenkins, J.W. Jr.

    1981-01-01

    The design of air-insulated cables, which meet strict requirements, is described. Inductance, heat transfer, and electrostatic computer codes are used in design. Tests include electric circiut parameters, dc voltage holdoff, impulse voltage holdoff, heat rise at greater than peak duty, and shield mechanical strength

  3. Development of radiation resistant PEEK insulation cable

    International Nuclear Information System (INIS)

    Mio, Keigo; Ogiwara, Norio; Hikichi, Yusuke; Furukori, Hisayoshi; Arai, Hideyuki; Nishizawa, Daiji; Nishidono, Toshiro

    2009-04-01

    Material characterization and development has been carried out for cable insulation suitable for use in the J-PARC 3-GeV RCS radiation environment. In spite of its high cost, PEEK (polyether-ether-ketone) has emerged as the leading candidate satisfying requirements of being non-halogen based, highly incombustible and with radiation resistant at least 10 MGy, along with the usual mechanical characteristics such as good elongation at break, which are needed in a cable insulation. Gamma-ray irradiation tests have been done in order to study radiation resistance of PEEK cable. Further, mechanical, electrical and fire retardant characteristics of a complete cable such as would be used at the J-PARC RCS were investigated. As a result, PEEK cables were shown to be not degraded by radiation up to at least 10 MGy, and thus could be expected to operate stably under the 3-GeV RCS radiation environment. (author)

  4. Development of environmental-friendly wire and cable

    International Nuclear Information System (INIS)

    Ueno, Keiji

    1996-01-01

    The electron beam technology has been used in many industrial fields as a method of conventional polymer modification or optimum processability. The main industrial fields of radiation crosslinking are wire and cable, heat shrinkable tubings, plastic foams, precuring of tires, floppy disk curing, foods packaging films, and so on. The radiation crosslinking of wire and cable was started in 1961 in Japan and 15 wire and cable companies are now using electron beam accelerators for production or R and D. The dominant characteristics of crosslinking of insulation materials are application at high temperature, good oil and chemical resistibility and high mechanical properties. These radiation crosslinking wire and cable are applied widely in electronics equipments and automobiles. Recently, electronics manufacturers have indicated deep concern over the effects on the environment. Wire and cable also are required to be applicable for environmental preservation. (J.P.N.)

  5. Superconducting ac cable

    International Nuclear Information System (INIS)

    Schmidt, F.

    1980-01-01

    The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.) [de

  6. 30 CFR 18.53 - High-voltage longwall mining systems.

    Science.gov (United States)

    2010-07-01

    ...-starter enclosure, with the exception of a controller on a high-voltage shearer, the disconnect device...) shielding between the primary and secondary windings. The shielding must be connected to equipment ground by... with a disconnect device installed to deenergize all high-voltage power conductors extending from the...

  7. Parallel monostrand stay cable bending fatigue

    DEFF Research Database (Denmark)

    Winkler, Jan Pawel

    This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... of damage and replacement of bridge stay cables due to wind and traffic-induced fatigue. The understanding of fatigue mechanisms in most steel structures is well established. However, in the case of cables composed of steel strands, many important aspects related with bending fatigue remain to be clarified...... associated with variable loading, and different testing procedures. As most of the contemporary stay cables are comprised of a number of individual highstrength steel monostrands, the research study started with an extensive experimental work on the fatigue response of a single monostrand to cyclic flexural...

  8. Effect of electric field in the characterization of pultruded GFRP boron-free composite insulator for the extra high voltage by the ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Hissae; Silva Junior, Edmilson Jose; Shinohara, Armando Hideki [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Xavier, Gustavo Jose Vasconcelos [CHESF, Recife, PE (Brazil); Costa, Edson Guedes [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Lott Neto, Henrique Batista Duffles Teixeira; Britto, Paulo Roberto Ranzan; Fontan, Marcio A.B. [Sistema de Transmissao do Nordeste S.A., Recife, PE (Brazil)

    2016-07-01

    Full text: The pultruded boron-free glass fiber reinforced polymer (GFRP) composite has been widely used material for the electrical insulators in the high, extra and ultra high voltage overhead lines worldwide. In terms of design, the composite insulator has a highly complex geometry and large size. Aging of materials begin as soon as the insulators start their operation due to the strong electric field, mechanical load due to the weight of conductor cables, environment, corona discharge, generation of acids, and as a result, GFRP can fail mechanically by the stress corrosion crack (SCC) and electrical breakdown known as flashover. In order to mitigate the mechanical and electrical failures, the insulators in the field are frequently monitored by visual inspection, infrared thermography, UV detection, variation of measurement of distribution of electric field variation. However, new technologies for characterization and inspection of the composite insulator in the field are required for reliable operation. Imaging characterization using ionizing radiation (X-ray or g-ray) is an interesting technique, however, it can reduce drastically breakdown voltage due to the Townsend discharge, which free electrons are accelerated by an electric field, collide with gas molecules of air, and free additional electrons resulting in an avalanche multiplication that allows an electrical conduction through the air. In this study, in order to evaluate the potential application of ionization radiation for characterization of composite insulator under electric field, testing were conducted in high voltage laboratory by applying voltages up to 640 kV and varying radiation area of the composite insulator. As a result, even though there was an occurrence of flame on Imaging Plate (IP) detector case when it was located near the phase, corona discharge, but no breakdown discharge (flashover) occurred and high quality imaging of radiography could be obtained when X-ray source was employed

  9. Analysis of the electrodynamics of subcable current distribution in the superconducting POLO coil cable

    International Nuclear Information System (INIS)

    Sihler, C.; Heller, R.; Maurer, W.; Ulbricht, A.; Wuechner, F.

    1995-10-01

    Unexpected ramp rate limitations (RRL) found in superconducting magnets during the development of magnet systems can be attributed to a current imbalance amongst the cabled strands which leads to a lower than expected quench current. In superconducting magnets the current distribution in the cable during ramping depends mainly on the electromagnetic properties of the system. A detailed analysis of principle causes for RRL phenomena was performed with a model for one half of the POLO coil considering the complete inductance matrix of the cable and the fact that all turns are mutually coupled. The main results of these calculations are that unequal contact resistances can not be responsible for RRL phenomena in coils with parameters comparable to those of the POLO coil and that already minor geometrical disturbances in the cable structure can lead to major and lasting imbalances in the current distribution of cables with insulated and non-insulated strands. During the POLO experiment the half-coil model was employed to get a better understanding of the measured compensated subcable voltages during quench. The good agreement of the calculated and measured results demonstrates the validity of the model for RRL analyses. (orig.)

  10. Line Differential Protection Scheme Modelling for Underground 420 kV Cable Systems

    DEFF Research Database (Denmark)

    Sztykiel, Michal; Bak, Claus Leth; Dollerup, Sebastian

    2011-01-01

    Based on the analysis of a specific relay model and an HVAC (High Voltage Alternating Current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to create complex and accurate relay models derived from the original algorithms. Relay...... models can be applied with various systems, allowing to obtain the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP......-simulated and real world generated current signals connected to the relay....

  11. Line Differential Protection Scheme Modelling for Underground 420 kV Cable Systems

    DEFF Research Database (Denmark)

    Sztykiel, Michal; Bak, Claus Leth; Wiechowski, Wojciech

    2010-01-01

    Based on the analysis of a specific relay model and an HVAC (High Voltage Alternating Current) cable system, a new approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to create complex and accurate relay models derived from the original algorithms. Relay models...... can be applied with various systems, allowing to obtain the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP......-simulated and real world generated current signals connected to the relay....

  12. Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables

    Directory of Open Access Journals (Sweden)

    Xu Xie

    2014-06-01

    Full Text Available In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance.

  13. Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables.

    Science.gov (United States)

    Xie, Xu; Li, Xiaozhang; Shen, Yonggang

    2014-06-23

    In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance.

  14. Design, processing, and properties of Bi 2212\\/Ag Rutherford cables

    CERN Document Server

    Collings, E W; Scanlan, R M; Dietderich, D R; Motowidlo, L R; Sokolowski, R S; Aoki, Y; Hasegawa, T

    1999-01-01

    In a program intended to explore the use of high temperature superconducting (HTSC) cables in high field synchrotron dipole magnets model Bi:2212/Ag Rutherford cables were designed bearing in mind the needs for mechanical integrity, relatively high tensile strength, and low coupling losses. To satisfy these needs a core-type cable design was selected and a readily available heat-resistant core material acquired. Cables were wound for critical current- and AC loss measurement. Both winding-induced (mechanical) and core-induced (chemical) critical current degradation was examined. Interstrand coupling loss was measured calorimetrically on model cable samples with bare- and oxide-coated cores. From the results it was predicted that the losses of full-scale Bi:2212/Ag-wound LHC-type Rutherford cables would fall close to the acceptability range for the windings of high-field accelerator dipoles. (10 refs).

  15. Square-Wave Voltage Injection Algorithm for PMSM Position Sensorless Control With High Robustness to Voltage Errors

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2017-01-01

    relationship with the magnetic field distortion. Position estimation errors caused by higher order harmonic inductances and voltage harmonics generated by the SVPWM are also discussed. Both simulations and experiments are carried out based on a commercial PMSM to verify the superiority of the proposed method......Rotor position estimated with high-frequency (HF) voltage injection methods can be distorted by voltage errors due to inverter nonlinearities, motor resistance, and rotational voltage drops, etc. This paper proposes an improved HF square-wave voltage injection algorithm, which is robust to voltage...... errors without any compensations meanwhile has less fluctuation in the position estimation error. The average position estimation error is investigated based on the analysis of phase harmonic inductances, and deduced in the form of the phase shift of the second-order harmonic inductances to derive its...

  16. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized surface high-voltage lines... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be repaired... on power circuits with a phase-to-phase nominal voltage no greater than 15,000 volts; (3) Such...

  17. THE TECHNOLOGICAL AND EXPLOITATIVE FACTORS OF LOCAL INCREASE OF ELECTRIC FIELD STRENGTH IN THE POWER CABLE OF COAXIAL DESIGN

    Directory of Open Access Journals (Sweden)

    G. V. Bezprozvannych

    2016-12-01

    Full Text Available Introduction. Reliability of high voltage power cables in the process of long-term operation is largely due to the intensity of polymeric insulation aging. It is now established that the aging of polyethylene, which is the main material for the insulation of high voltage power cables, under the action of the electric field is determined primarily by the presence of structural heterogeneity arising both during cable production and during use. The cable is always there deviations from the ideal structure, which manifest in a deviation of diameters of conductors from nominal values; in the arrangement of the conductor and the insulation is not strictly coaxially and eccentrically; in elliptic (oval core and insulation; change in relative dielectric constant and thickness of insulation on cable length force the formation of low molecular weight products (including water in the flow at the manufacturing stage crosslinked polyethylene insulation and moisture during operation. Such defects are structural, technological and operational irregularities, which lead to a local change in the electric field. Purpose. Analysis of the influence of the eccentricity, elliptic and spherical inclusions in the electric field distribution in the power cable of a coaxial design with cross-linked polyethylene insulation, based on numerical simulation. Methodology. The bases of the numerical method of calculation of the electrical field strength are Fredholm integral equations of the first and second kind (method of secondary sources for an axially symmetric field. Analysis of the influence of irregularities, including water treeing, the shape of the sounding signal is made using the method of discrete resistive circuit inductance and capacitance of substitution with the initial conditions. Solving systems of linear algebraic equations nodal analysis performed by the sweep method. Results. The presence of the eccentricity and ellipticity in the construction of cable has

  18. Planning aspects of ac extra high voltage lines

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, H

    1964-01-01

    The technical points arising in any project for application of higher voltages on power grids in Europe are discussed. The cost aspects of two alternative ways of extending the voltage level of existing systems are discussed in detail. The short-circuit current in a high-power system with isolated or grounded neutral point and its relation to the mode of grounding is examined. For a transmission distance of 200 kVm, operating cost for each kWh transmitted are shown on curves for voltages of 220, 380 and 700 kV against transmitted energy. This shows that for any rated voltage there is a range of energy values which can be transmitted economically. Factors to be considered in maintaining, selecting or rejecting transformers and switchgear of other systems for higher voltage purposes are mentioned.

  19. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  20. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  1. Low Friction Cryostat for HTS Power Cable of Dutch Project

    NARCIS (Netherlands)

    Chevtchenko, O.; Zuijderduin, R.; Smit, J.; Willen, D.; Lentge, H.; Thidemann, C.; Traeholt, C.

    2012-01-01

    Particulars of 6 km long HTS AC power cable for Amsterdam project are: a cable has to fit in an annulus of 160 mm, with only two cooling stations at the cable ends [1]. Application of existing solutions for HTS cables would result in excessively high coolant pressure drop in the cable, possibly

  2. Development of Integrated Assessment System for Underground Power Cable Performance: A Case Study

    Science.gov (United States)

    Turan, Faiz Mohd; Johan, Kartina; Soliha Sahimi, Nur; Nor, Nik Hisyamudin Muhd

    2017-08-01

    The basic operation of any electrical machines that is catered to serve needs of civilization involves electrical power which is the main source to trigger the internal mechanism in the machines then transfer the power to other form of energy such as mechanical, light, sound and etc. The supplies of electrical does not happen just by providing the source itself, it has load carrying agent which in many cases, user would refer to it as cable. Specifically, it is the power cable which its ampacity depends significantly on the operation temperature and load stress on it. Apart from having to focus on providing improvement on improving efficiency on the source itself, power cable plays and important role because without it, current ranging from low to high could not be transmitted and hence a failure of the power system generally. Studies have conducted to discuss whether which factor contributes relatively more to the causes of power cable failure or breakdown. Such factors can be narrowed down to the three major causes which are over temperature, over voltage and stress caused by over current. Over current is one of the factor which is depends on the usage of the power system itself. The higher the usage of the power system, higher the chances of over current to take place. This will then produce load stress on the cable which eventually destroy the insulator of the cable and slowly reach the core of the cable. It is believed that an assessment method should be implemented in order to predict the performance and failure rate of the power cable and use this prediction as reference rather than just letting power failure to happen anytime unpredictable which cause huge inconvenience to users and industries. Not only do a method should be implemented, it should be as easy to be used and understood by large range of users and integrated by a graphical user interface to be used. Therefore, this research will further narrow down on the approaches to do so and the location

  3. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    Science.gov (United States)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  4. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    Science.gov (United States)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  5. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  6. A low knee voltage and high breakdown voltage of 4H-SiC TSBS employing poly-Si/Ni Schottky scheme

    Science.gov (United States)

    Kim, Dong Young; Seok, Ogyun; Park, Himchan; Bahng, Wook; Kim, Hyoung Woo; Park, Ki Cheol

    2018-02-01

    We report a low knee voltage and high breakdown voltage 4H-SiC TSBS employing poly-Si/Ni dual Schottky contacts. A knee voltage was significantly improved from 0.75 to 0.48 V by utilizing an alternative low work-function material of poly-Si as an anode electrode. Also, reverse breakdown voltage was successfully improved from 901 to 1154 V due to a shrunk low-work-function Schottky region by a proposed self-align etching process between poly-Si and SiC. SiC TSBS with poly-Si/Ni dual Schottky scheme is a suitable structure for high-efficiency rectification and high-voltage blocking operation.

  7. Ship nuclear power device of cable aging management

    International Nuclear Information System (INIS)

    Wei Hua; Chen Miao; Chen Tao

    2012-01-01

    Cable for marine nuclear power plant continuous delivery of electrical energy. Cable is mostly in the high temperature and strong radiation and harsh working environment, and can not be replaced in the lifetime This should be the cable aging management methods through research, maintenance and repair program to provide a scientific basis. Cable aging management approach for a number of different levels of cable management at different levels, relying on computers and other modern tools, the use of information management database software maintenance of the cable through the science of aging control. Cable Aging Management including the scope of cable aging management, classification management basis and used for different levels of management supervision and implementation of means testing approach. Application of the ship that has the operational management science, both planned maintenance to improve the science, but also improves the efficiency of aging management. This management method can be extended to nuclear power plants of cable aging management. (authors)

  8. Application of high voltage electric field (HVEF) drying technology in potato chips

    International Nuclear Information System (INIS)

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-01-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  9. X-ray spectral meter of high voltages for X-ray apparatuses

    International Nuclear Information System (INIS)

    Zubkov, I.P.; Larchikov, Yu.V.

    1993-01-01

    Design of the X-ray spectral meter of high voltages (XRSMHV) for medical X-ray apparatuses permitting to conduct the voltage measurements without connection to current circuits. The XRSMHV consists of two main units: the detector unit based on semiconductor detector and the LP4900B multichannel analyzer (Afora, Finland). The XRSMYV was tested using the pilot plant based on RUM-20 X-ray diagnostic apparatus with high-voltage regulator. It was shown that the developed XRSMHV could be certify in the range of high constant voltages form 40 up to 120 kV with the basic relative error limits ±0.15%. The XRSMHV is used at present as the reference means for calibration of high-voltage medical X-ray equipment

  10. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Xu; Liu Ming; Li Peng; Chen Hongda

    2014-01-01

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm 2 . Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26–100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators. (semiconductor integrated circuits)

  11. Sensitivity Analysis of the Influence of Structural Parameters on Dynamic Behaviour of Highly Redundant Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    B. Asgari

    2013-01-01

    Full Text Available The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.

  12. High voltage diagnostics on electrical insulation of supersonducting magnets

    International Nuclear Information System (INIS)

    Irmisch, M.

    1995-12-01

    The high voltage (HV) performance of superconducting magnets of large dimensions, e.g. as needed in fusion reactors, is a challange in the field of high voltage technology, i.e. especially in the field of cryogenic high voltage components and with respect to questions of HV insulation diagnostics at low temperature. By using the development of POLO - a superconducting prototype coil of a tokamak poloidal field coil - as an example, this work deals with special problems of how to get use of conventional HV test techniques for diagnostics under special cryogenic boundary conditions. As a first approach to gain experience in the field of phase resolved partial discharge (PRPD) measurements during operation of a superconductive coil, the POLO coil was subject to several high voltage tests. Compared with DC insulation resistance measurements and capacitive impulse voltage discharges to the coil, the AC PD measurements have been the only way to observe special characteristics of the electrical insulation with respect to the cooling down of the coil from 300 K to 4.2 K. The PRPD measurement technique thereby has proofed as a suitable diagnostic tool. This work can serve as basic data to be comparable within further projects of electrical insulation diagnostics at cryogenic temperatures. (orig.)

  13. Static and Dynamic Mechanical Properties of Long-Span Cable-Stayed Bridges Using CFRP Cables

    Directory of Open Access Journals (Sweden)

    Mei Kuihua

    2017-01-01

    Full Text Available The elastic modulus and deadweight of carbon fiber-reinforced polymer (CFRP cables are different from those of steel cables. Thus, the static and dynamic behaviors of cable-stayed bridges using CFRP cables are different from those of cable-stayed bridges using steel cables. The static and dynamic performances of the two kinds of bridges with a span of 1000 m were studied using the numerical method. The effects of geometric nonlinear factors on static performance of the two kinds of cable-stayed bridges were analyzed. The live load effects and temperature effects of the two cable-stayed bridges were also analyzed. The influences of design parameters, including different structural systems, the numbers of auxiliary piers, and the space arrangement types of cable, on the dynamic performance of the cable-stayed bridge using CFRP cables were also studied. Results demonstrate that sag effect of the CFRP cable is much smaller than that of steel cable. The temperature effects of CFRP cable-stayed bridge are less than those of steel cable-stayed bridge. The vertical bending natural vibration frequency of the CFRP cable-stayed bridge is generally lower than that of steel cable-stayed bridge, whereas the torsional natural vibration frequency of the former is higher than that of the latter.

  14. Holbrook Substation Superconductor Cable System, Long Island, New York Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, James; McNamara, Joseph

    2010-06-25

    The LIPA Superconductor project broke ground on July 4, 2006, was first energized on April 22, 2008 (Earth Day) and was commissioned on June 25, 2008. Since commissioning, up until early March, 2009, there were numerous refrigeration events that impacted steady state operations. This led to the review of the alarms that were being generated and a rewrite of the program logic in order to decrease the hypersensitivity surrounding these alarms. The high temperature superconductor (HTS) cable was energized on March 5, 2009 and ran uninterrupted until a human error during a refrigeration system switchover knocked the cable out of the grid in early February 2010. The HTS cable was in the grid uninterrupted from March 5, 2009 to February 4, 2010. Although there have been refrigeration events (propagated mainly by voltage sags/surges) during this period, the system was able to automatically switch over from the primary to the backup refrigeration system without issue as required during this period. On February 4, 2010, when switching from the backup over to the primary refrigeration system, two rather than one liquid nitrogen pumps were started inadvertently by a human error (communication) causing an overpressure in the cable cooling line. This in turn activated the pressure relief valve located in the grounding substation. The cable was automatically taken out of the grid without any damage to the components or system as a result of signals sent from the AMSC control cabinet to the LIPA substation. The cable was switched back into the grid again on March 16, 2010 without incident and has been operational since that time. Since switching from the backup to the primary is not an automatic process, a recent improvement was added to the refrigeration operating system to allow remote commands to return the system from backup to primary cooling. This improvement makes the switching procedure quicker since travel to the site to perform this operation is no longer necessary and

  15. On the Minimum Cable Tensions for the Cable-Based Parallel Robots

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2014-01-01

    Full Text Available This paper investigates the minimum cable tension distributions in the workspace for cable-based parallel robots to find out more information on the stability. First, the kinematic model of a cable-based parallel robot is derived based on the wrench matrix. Then, a noniterative polynomial-based optimization algorithm with the proper optimal objective function is presented based on the convex optimization theory, in which the minimum cable tension at any pose is determined. Additionally, three performance indices are proposed to show the distributions of the minimum cable tensions in a specified region of the workspace. An important thing is that the three performance indices can be used to evaluate the stability of the cable-based parallel robots. Furthermore, a new workspace, the Specified Minimum Cable Tension Workspace (SMCTW, is introduced, within which all the minimum tensions exceed a specified value, therefore meeting the specified stability requirement. Finally, a camera robot parallel driven by four cables for aerial panoramic photographing is selected to illustrate the distributions of the minimum cable tensions in the workspace and the relationship between the three performance indices and the stability.

  16. Precision High-Voltage DC Dividers and Their Calibration

    Czech Academy of Sciences Publication Activity Database

    Dragounová, Naděžda

    2005-01-01

    Roč. 54, č. 5 (2005), s. 1911-1915 ISSN 0018-9456 R&D Projects: GA AV ČR KSK1048102; GA ČR GA202/03/0889 Keywords : calibration * dc voltage * high voltage (HV) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.665, year: 2005

  17. Universal Cable Brackets

    Science.gov (United States)

    Vanvalkenburgh, C.

    1985-01-01

    Concept allows routing easily changed. No custom hardware required in concept. Instead, standard brackets cut to length and installed at selected locations along cable route. If cable route is changed, brackets simply moved to new locations. Concept for "universal" cable brackets make it easy to route electrical cable around and through virtually any structure.

  18. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  19. Process engineering of high voltage alginate encapsulation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Pogozhykh, Denys; Zernetsch, Holger; Hofmann, Nicola; Mueller, Thomas; Glasmacher, Birgit

    2014-01-01

    Encapsulation of stem cells in alginate beads is promising as a sophisticated drug delivery system in treatment of a wide range of acute and chronic diseases. However, common use of air flow encapsulation of cells in alginate beads fails to produce beads with narrow size distribution, intact spherical structure and controllable sizes that can be scaled up. Here we show that high voltage encapsulation (≥ 15 kV) can be used to reproducibly generate spherical alginate beads (200–400 μm) with narrow size distribution (± 5–7%) in a controlled manner under optimized process parameters. Flow rate of alginate solution ranged from 0.5 to 10 ml/h allowed producing alginate beads with a size of 320 and 350 μm respectively, suggesting that this approach can be scaled up. Moreover, we found that applied voltages (15–25 kV) did not alter the viability and proliferation of encapsulated mesenchymal stem cells post-encapsulation and cryopreservation as compared to air flow. We are the first who employed a comparative analysis of electro-spraying and air flow encapsulation to study the effect of high voltage on alginate encapsulated cells. This report provides background in application of high voltage to encapsulate living cells for further medical purposes. Long-term comparison and work on alginate–cell interaction within these structures will be forthcoming. - Highlights: • High voltage alginate encapsulation of mesenchymal stem cells (MSCs) was designed. • Reproducible and spherical alginate beads were generated via high voltage. • Air flow encapsulation was utilized as a comparative approach to high voltage. • High voltage did not alter the viability and proliferation of encapsulated MSCs. • High voltage encapsulation can be scaled up and applied in cell-based therapy

  20. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.

    Science.gov (United States)

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.

  1. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Javaid Ahmad

    2015-01-01

    Full Text Available Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.

  2. High voltage power network construction

    CERN Document Server

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  3. NEPO cable system aging management programs

    International Nuclear Information System (INIS)

    Toman, G.

    2002-01-01

    Full text: Cable polymer aging and condition monitoring is being studied in detail under the Nuclear Energy Plant Optimization Program (NEPO) that is co-sponsored by the U.S. Department of Energy and EPRI. Significant advances in modeling of polymer aging and condition monitoring have occurred and continue to be developed. The activities include: Analysis of the linearity of the Arrhenius model to room temperature; Development of a wear-out technique for determining remaining life of cable polymers; Determination of the aging fragility point for composite EPR/CSPE insulation with respect to LOCA function; Development of visual/tactile training aids for cable assessment; Development of a totally new nuclear magnetic resonance condition monitoring technique; Assessment of existing techniques with regard to repeatability, accuracy and ease of use. Through use of highly precise oxygen consumption experiments, the linearity of the Arrhenius model is being evaluated. In these experiments, polymer is placed in vials with a known amount of oxygen and aged at much lower temperatures than is possible with standard accelerated aging techniques. aging results are possible at room temperature. The technique is being applied to commonly used insulation and jacket polymers. The wear-out technique allows highly non-linear aging behavior to be made linear. The wearout point of a polymer is determined through high-rate aging and use of a condition monitoring technique to establish the end point. Then, micro-samples of cable that have been naturally aged are subjected to high rate aging to the same end point. The ratio of the remaining high rate aging period to the total high rate aging time provides a linear indication of the remaining service time. Initial screening of nuclear plant cable systems can use visual/tactile techniques to identify cable that has aged significantly. Training aids have been developed by developing sets of specimens with accelerated aging ranging from none

  4. High Bandwidth Zero Voltage Injection Method for Sensorless Control of PMSM

    DEFF Research Database (Denmark)

    Ge, Xie; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2014-01-01

    High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses to be inj......High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses...... in a fast current regulation performance. Injection of zero voltage also minimizes the inverter voltage error effects caused by the dead-time....

  5. Characteristics and Breakdown Behaviors of Polysilicon Resistors for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Tang

    2015-01-01

    Full Text Available With the rapid development of the power integrated circuit technology, polysilicon resistors have been widely used not only in traditional CMOS circuits, but also in the high voltage applications. However, there have been few detailed reports about the polysilicon resistors’ characteristics, like voltage and temperature coefficients and breakdown behaviors which are critical parameters of high voltage applications. In this study, we experimentally find that the resistance of the polysilicon resistor with a relatively low doping concentration shows negative voltage and temperature coefficients, while that of the polysilicon resistor with a high doping concentration has positive voltage and temperature coefficients. Moreover, from the experimental results of breakdown voltages of the polysilicon resistors, it could be deduced that the breakdown of polysilicon resistors is thermally rather than electrically induced. We also proposed to add an N-type well underneath the oxide to increase the breakdown voltage in the vertical direction when the substrate is P-type doped.

  6. Digitally Programmable High-Q Voltage Mode Universal Filter

    Directory of Open Access Journals (Sweden)

    D. Singh

    2013-12-01

    Full Text Available A new low-voltage low-power CMOS current feedback amplifier (CFA is presented in this paper. This is used to realize a novel digitally programmable CFA (DPCFA using transistor arrays and MOS switches. The proposed realizations nearly allow rail-to-rail swing capability at all the ports. Class-AB output stage ensures low power dissipation and high current drive capability. The proposed CFA/ DPCFA operates at supply voltage of ±0.75 V and exhibits bandwidth better than 95 MHz. An application of the DPCFA to realize a novel voltage mode high-Q digitally programmable universal filter (UF is given. Performances of all the proposed circuits are verified by PSPICE simulation using TSMC 0.25μm technology parameters.

  7. FOCEX: A fiber-optic extender for a high speed parallel RS485 data cable

    International Nuclear Information System (INIS)

    Meadows, J.T.; Anderson, J.T.; Cooper, P.S.; Engelfried, J.; Franzen, J.W.; Forster, B.G.; Levinson, F.; Rawls, J.; Haber, S.

    1995-05-01

    For longer-distant, high speed data links, optical fibre becomes most cost-effective than copper or other hard wire cable systems. Fermilab supplied to Finisar Corp. of Menlo Park, CA., a set of specifications for card functions, sizes and interconnector pin assignments. Finisar designed and assembled a set of fiber optical P.C. cards using 100 megabyte/sec commercial optoelectronics and a serialization and deserialization HOT-ROD chipset designed by GAZELLE Microcircuits, Inc. (A Tri Quint Semiconductors company). The cooperative effort between Fermilab and Finisar has allowed Fermilab to created a reliable 50 Megabytes/sec (40 bit parallel RS485 DART data bus) cable to cable extender using a virtually invisible Fiber Channel point-to-point(FC-0) fiber optical single-simplex system. The system is easily capable of sustaining a 50 megabytes/sec of data, control and status line throughput at distances of 1625 feet (500 meters) using standard multi-mode fiber

  8. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Science.gov (United States)

    2010-07-01

    ...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits extending... which shall be grounded through a suitable resistor at the source transformers, and a grounding circuit...

  9. Development of high voltage PEEK wire with radiation-resistance and cryogenic characteristics

    International Nuclear Information System (INIS)

    Fujita, T.; Hirata, T.; Araki, S.; Ohara, H.; Nishimura, H.

    1989-01-01

    High voltage electric wires insulated with highly-refined polyetheretherketone (PEEK) have been developed for the wiring in fusion reactors, where the wire is required to withstand high voltage under high vacuum up to 10 -5 Torr. The PEEK wires having the advantages of PEEK resin including superior radiation resistance and cryogenic characteristics are usable over a wide range of temperature and in radiation fields. The results of withstand voltage tests proved that the PEEK wires exceeding 0.8 mm in insulation thickness withstand such specified high voltage conditions as 24 kV for 1 minutes by 10 times and 6.6 kV for 110 hours. The results also revealed that the withstand voltage is improved by providing a jacket layer over the insulation and decreased by periodical voltage charge, by bending of the specimen and by water in the conductor. This paper deal with the withstand voltage test results under varied conditions of the PEEK wires. (author)

  10. Wind-induced cable vibrations and countermeasures of cables of PC cable-stayed bridge. PC syachokyo keburu no kaze ni yoru shindo to sono taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, M. (Kawada Industries Inc., Tokyo (Japan))

    1994-05-01

    In recent years, long span of cable-stayed bridges is remarkable. The wind-induced cable vibration called as line vibration and wake galloping was given as an important problem not only in the steel cable-stayed bridges but also in the PC cable-stayed bridges. The technical engineers in design of the cable-stayed bridges have many times to confront the problems on the vibration control of cables, it is considered that sufficient understand of the wind-induced vibration and countermeasures for cables of the PC cable-stayed bridges is necessary. Many reports on the countermeasure examples and trend of vibration control centred on cables of the cable-stayed bridges have been published. In this paper, the wind-induced vibration of cables in the cable-stayed bridges was reviewed, the examples of countermeasures of vibration control on cables in the PC cable-stayed bridges was mainly introduced. The remaining tasks and future prospects on vibration control of the PC cable-stayed bridges were described. 14 refs., 13 figs., 4 tabs.

  11. Copper wire theft and high voltage electrical burns

    OpenAIRE

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresenc...

  12. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  13. An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Vijith Vijayakumaran Nair

    2015-06-01

    Full Text Available In near-field wireless-powered biomedical implants, the receiver voltage largely overrides the compliance of low-voltage power receiver systems. To limit the induced voltage, generally, low-voltage topologies utilize limiter circuits, voltage clippers or shunt regulators, which are power-inefficient methods. In order to overcome the voltage limitation and improve power efficiency, we propose an integrated chip high-voltage power receiver based on the step down approach. The topology accommodates voltages as high as 30 V and comprises a high-voltage semi-active rectifier, a voltage reference generator and a series regulator. Further, a battery management circuit that enables safe and reliable implant battery charging based on analog control is proposed and realized. The power receiver is fabricated in 0.35-μm high-voltage Bipolar-CMOS-DMOStechnology based on the LOCOS0.35-μm CMOS process. Measurement results indicate 83.5% power conversion efficiency for a rectifier at 2.1 mA load current. The low drop-out regulator based on the current buffer compensation and buffer impedance attenuation scheme operates with low quiescent current, reduces the power consumption and provides good stability. The topology also provides good power supply rejection, which is adequate for the design application. Measurement results indicate regulator output of 4 ± 0.03 V for input from 5 to 30 V and 10 ± 0.05 V output for input from 11 to 30 V with load current 0.01–100 mA. The charger circuit manages the charging of the Li-ion battery through all if the typical stages of the Li-ion battery charging profile.

  14. Design and development of high voltage and high frequency center tapped transformer for HVDC test generator

    International Nuclear Information System (INIS)

    Thaker, Urmil; Saurabh Kumar; Amal, S.; Baruah, U.K.; Bhatt, Animesh

    2015-01-01

    A High Voltage center tapped transformer for high frequency application had been designed, fabricated, and tested. It was designed as a part of 200 kV HVDC Test Generator. The High Frequency operation of transformer increases power density. Therefore it is possible to reduce power supply volume. The step up ratio in High Voltage transformer is limited due to stray capacitance and leakage inductance. The limit was overcome by winding multi secondary outputs. Switching frequency of transformer was 15.8 kHz. Input and output voltages of transformer were 270V and 16.5kV-0V-16.5kV respectively. Power rating of transformer is 7kVA. High Voltage transformer with various winding and core arrangement was fabricated to check variation in electrical characteristics. The transformer used a ferrite core (E Type) and nylon insulated primary and secondary bobbins. Two set of E-E geometry cores had been stacked in order to achieve the estimated core volume. Compared with traditional high voltage transformer, this transformer had good thermal behavior, good line insulation properties and a high power density. In this poster, design procedures, development stages and test results of high voltage and high frequency transformer are presented. Results of various parameters such as transformer loss, temperature rise, insulation properties, impedance of primary and secondary winding, and voltage regulation are discussed. (author)

  15. Innovation of High Voltage Supply Adjustment Device on Diagnostic X-Ray Machine

    International Nuclear Information System (INIS)

    Sujatno; Wiranto Budi Santoso

    2010-01-01

    Innovation of high voltage supply adjustment device on diagnostic x-ray machine has been carried out. The innovation is conducted by utilizing an electronic circuit as a high voltage adjustment device. Usually a diagnostic x-ray machine utilizes a transformer or an auto-transformer as a high voltage supply adjustment device. A high power diagnostic x-ray machine needs a high power transformer which has big physical dimension. Therefore a box control where the transformer is located has to have big physical dimension. Besides, the price of the transformer is expensive and hardly found in local markets. In this innovation, the transformer is replaced by an electronic circuit. The main component of the electronic circuit is Triac BTA-40. As adjustment device, the triac is controlled by a variable resistor which is coupled by a stepper motor. A step movement of stepper motor varies a value of resistor. The resistor value determines the triac gate voltage. Furthermore the triac will open according to the value of electrical current flowing to the gate. When the gate is open, electrical voltage and current will flow from cathode to anode of the triac. The value of these electrical voltage and current depend on gate open condition. Then this triac output voltage is feed to diagnostic x-ray machine high voltage supply. Therefore the high voltage value of diagnostic x-ray machine is adjusted by the output voltage of the electronic circuit. By using this electronic circuit, the physical dimension of diagnostic x-ray machine box control and the price of the equipment can be reduced. (author)

  16. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  17. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  18. submitter On Roebel Cable Geometry for Accelerator Magnet

    CERN Document Server

    Fleiter, J; Ballarino, A

    2016-01-01

    Roebel-type cables made of a ReBCO conductor are potential candidates for high-field accelerator magnets. The necessity to promote a large effective transverse section in a Roebel cable to avoid local overstress leading to degradation in electrical performance has been recently addressed. In this paper, a new geometry of meander tapes for a Roebel cable that enhances both the transverse effective section and the current margin at crossing segments is discussed. As Roebel cables are bent at the coil ends, the modulation of the bending radius of strands along the cable pitch leads to a shift of the strands with respect to each other. The shift magnitude is analytically investigated in this paper as a function of both cable features and coil geometry. Finally, the minimum transposition pitch of Roebel cables is determined on the basis of coil characteristics.

  19. Copper wire theft and high voltage electrical burns.

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale.

  20. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  1. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  2. Final configuration with assembly assessment of the 100 kV high voltage bushing for the Indian test facility

    International Nuclear Information System (INIS)

    Sharma, Dheeraj Kumar; Shah, Sejal; Venkata Nagaraju, M.; Bandyopadhyay, Mainak; Rotti, Chandramouli; Chakraborty, Arun Kumar

    2015-01-01

    The Indian Test Facility (INTF) of Neutral Beam (NB) system is an Indian voluntary effort for the full characterization of the diagnostic neutral beam which is the part of ITER's neutral beam system. The design activities of INTF NB system are completed. The INTF High Voltage Bushing (HVB), which is one of the component of NB system, is designed to connect all the required feedlines, e.g. electrical busbars, RF co-axial lines, diagnostic lines and hydraulic and gas feed lines, carried by the transmission line from the HV deck to the Beam Source of NB system. It forms the primary vacuum boundary and provides 100 kV isolation for INTF beam operation. The entire feedlines pass through a metallic plate of HVB called Dished Head (DH) where all the feedlines converge. The overall diameter of DH is 847 mm which is governed by the diameter of the Porcelain insulator which is meant for 100 kV isolation. The effective diameter where all the feedlines converge at the dished head is ∼ 600 mm which is quite a challenge to accommodate 26 feedlines each of average diameter 60 mm. Electrical feedlines require Vacuum-Electrical feedthroughs for voltage isolation whereas water and gas lines are considered to be directly welded with the DH except one water line which requires 12 kV voltage isolation with respect to DH. For RF lines, different scheme is considered which includes separate Electrical Feedthrough and Vacuum Barrier. To provide connection to electrical cables of heaters and thermocouples, 4 numbers of multipin vacuum compatible electrical feedthroughs are provided which can accommodate ∼250 cables. Due to space constraints, Vacuum-Electrical Feedthroughs are considered to be welded with the DH and therefore they shall be of metal-ceramic-metal configuration to allow welding. To avoid undue loading on the ceramic part, the feedlines are supported additionally at DH using vacuum compatible and electrically insulating material. One more important aspect of the INTF

  3. A High Voltage Swing 1.9 GHz PA in Standard CMOS

    NARCIS (Netherlands)

    Aartsen, W.A.J.; Annema, Anne J.; Nauta, Bram

    2002-01-01

    A circuit technique for RF power amplifiers that reliably handle voltage peaks well above the nominal supply voltage is presented. To achieve this high-voltage tolerance the circuit implements switched-cascode transistors that yield reliable operation for voltages up to 7V at RF frequencies in a

  4. High voltage series protection of neutral injectors with crossed-field tubes

    International Nuclear Information System (INIS)

    Hofmann, G.A.; Thomas, D.G.

    1976-01-01

    High voltage neutral beam injectors for fusion machines require either parallel or series protection schemes to limit fault currents in case of arcing to safe levels. The protection device is usually located between the high voltage supply and beam injector and either crowbars (parallel protection) or disconnects (series protection) the high voltage supply when a fault occurs. Because of its isolating property, series protection is preferred. The Hughes crossed-field tube is uniquely suited for series protection schemes. The tube can conduct 40 A continuously upon application of voltage (approximately 300 V) and a static magnetic field (approximately 100 G). It is also capable of interrupting currents of 1000 A within 10 μs and withstand voltage of more than 120 kV. Experiments were performed to simulate the duty of a crossed-field tube as a series protection element in a neutral injector circuit under fault conditions. Results of on-switching tests under high and low voltage and interruption of fault currents are presented. An example of a possible protection circuit with crossed-field tubes is discussed

  5. High-voltage pixel sensors for ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Perić, I., E-mail: ivan.peric@ziti.uni-heidelberg.de [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Kreidl, C.; Fischer, P. [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M. [CPPM, Marseille (France); Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B. [CERN, Geneve (Switzerland); Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A. [University of Geneve (Switzerland); and others

    2014-11-21

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  6. Development of superior radiation resistant materials and cables. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ikehara, Junichiro; Kanemitsuya, Kazuhiko; Ohara, Hideo; Araki, Syogo; Hamachi, Katsuhiko [Mitsubishi Cable Industries Ltd., Tokyo (Japan)

    1996-01-01

    Many nuclear power plants have been constructed in Japan and electric power generation is now highly dependent on this technology. Therefore, the needs for facilities that will enrich and reprocess nuclear fuel from nuclear power stations will be high. As there are areas with high levels of radiation, the cables which can be used in these environments are needed. We have developed a superior radiation-resistant cable which uses halogen flame-retardant materials. This radiation-resistant cable consists of Ethylene-propylene rubber (EPDM) insulation and Chlorosulfonated polyethylene (CSM) sheath can be safely used in areas with high levels of radiation. We developed this product to aid in disaster prevention. Non-halogen, flame-retardant EPDM is used for the insulation, and low-halogen, flame-retardant CSM and new non-halogen, flame-retardant materials are used for the sheath. These cables have superior flame-retardant properties and generate little smoke on corrosive gas. This products can hence reduce the danger of a secondary disaster in a fire. We expect that these cables will find application in areas with high levels of radiation. (author).

  7. Development of superior radiation resistant materials and cables. 2

    International Nuclear Information System (INIS)

    Ikehara, Junichiro; Kanemitsuya, Kazuhiko; Ohara, Hideo; Araki, Syogo; Hamachi, Katsuhiko

    1996-01-01

    Many nuclear power plants have been constructed in Japan and electric power generation is now highly dependent on this technology. Therefore, the needs for facilities that will enrich and reprocess nuclear fuel from nuclear power stations will be high. As there are areas with high levels of radiation, the cables which can be used in these environments are needed. We have developed a superior radiation-resistant cable which uses halogen flame-retardant materials. This radiation-resistant cable consists of Ethylene-propylene rubber (EPDM) insulation and Chlorosulfonated polyethylene (CSM) sheath can be safely used in areas with high levels of radiation. We developed this product to aid in disaster prevention. Non-halogen, flame-retardant EPDM is used for the insulation, and low-halogen, flame-retardant CSM and new non-halogen, flame-retardant materials are used for the sheath. These cables have superior flame-retardant properties and generate little smoke on corrosive gas. This products can hence reduce the danger of a secondary disaster in a fire. We expect that these cables will find application in areas with high levels of radiation. (author)

  8. Cables for nuclear power generating stations, (6)

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Asakawa, Naoki; Yamamoto, Tomotaka; Watanabe, Mikio; Shingo, Yoshioki.

    1981-01-01

    New inorganic material insulated flexible triaxial cables have been developed for the purpose of applying around the primary circuit of fast breeder reactor (FBR). These cables were tested at high temperature and high #betta#-ray radiation environment, and they showed good electrical properties. Other noted results were that they showed good fire proof and flame resistant properties. (author)

  9. Numerical analysis of the stability of HTS power cable under fault current considering the gaps in the cable

    International Nuclear Information System (INIS)

    Fang, J.; Li, H.F.; Zhu, J.H.; Zhou, Z.N.; Li, Y.X.; Shen, Z.; Dong, D.L.; Yu, T.; Li, Z.M.; Qiu, M.

    2013-01-01

    Highlights: •The equivalent circuit equations and the heat balance equations were established. •The current distributions of the HTS cable under fault current were obtained. •The temperature curves of conductor layers under fault current were obtained. •The effect of the gap liquid nitrogen on the thermal characteristics was studied. -- Abstract: During the operation of a high temperature superconducting power cable in a real grid, the power cable can be impacted inevitably by large fault current. The study on current distribution and thermal characteristics in the cable under fault current is the foundation to analyze its stability. To analyze the operation situation of 110 kV/3 kA class superconducting cable under the fault current of 25 kA rms for 3 s, the equivalent circuit equations and heat balance equations were established. The current distribution curves and the temperature distribution curves were obtained. The liquid nitrogen which exists in the gaps of HTS cable was taken into consideration, the influence of gap liquid nitrogen on the thermal characteristics was investigated. The analysis results can be used to estimate the security and stability of the superconducting cable

  10. Numerical analysis of the stability of HTS power cable under fault current considering the gaps in the cable

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li, H.F. [School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhu, J.H.; Zhou, Z.N. [China Electric Power Research Institute, Beijing 100192 (China); Li, Y.X.; Shen, Z.; Dong, D.L.; Yu, T. [School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li, Z.M.; Qiu, M. [China Electric Power Research Institute, Beijing 100192 (China)

    2013-11-15

    Highlights: •The equivalent circuit equations and the heat balance equations were established. •The current distributions of the HTS cable under fault current were obtained. •The temperature curves of conductor layers under fault current were obtained. •The effect of the gap liquid nitrogen on the thermal characteristics was studied. -- Abstract: During the operation of a high temperature superconducting power cable in a real grid, the power cable can be impacted inevitably by large fault current. The study on current distribution and thermal characteristics in the cable under fault current is the foundation to analyze its stability. To analyze the operation situation of 110 kV/3 kA class superconducting cable under the fault current of 25 kA{sub rms} for 3 s, the equivalent circuit equations and heat balance equations were established. The current distribution curves and the temperature distribution curves were obtained. The liquid nitrogen which exists in the gaps of HTS cable was taken into consideration, the influence of gap liquid nitrogen on the thermal characteristics was investigated. The analysis results can be used to estimate the security and stability of the superconducting cable.

  11. High-voltage short-fall pulse generator

    International Nuclear Information System (INIS)

    Dolbilov, G.V.; Fateev, A.A.; Petrov, V.A.

    1986-01-01

    Powerful high-voltage pulses with short fall times and relatively low afterpulse amplitude are required for the deflection systems of accelerators. A generator is described that provides, into a 75-ohm load, a voltage pulse of up to 100 kV with a fall time of less than 1 nsec and a relative afterpulse amplitude of less than or equal to 15%. The generator employs a short-circuited ferrite-filled line in which shock waves are formed. A magnetic section is used to increase power. The switch is a TGI1-2500/50 thyratron. The main causes of afterpulses and methods for reducing their amplitude are examined

  12. Copper wire theft and high voltage electrical burns

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  13. Microparticles in high-voltage accelerator tubes

    International Nuclear Information System (INIS)

    Griffith, G.L.; Eastham, D.A.

    1979-01-01

    Microparticles with radii greater than 2 μm have been observed in a high voltage vacuum accelerator tube. The charge acquired by most of the particles is similar to the contact charging of a conducting sphere on a plane. (author)

  14. Research on material of high temperature cable and wire insulation by γ-rays

    International Nuclear Information System (INIS)

    Jia Shaojin; Zhang Zhicheng; Xu Xiangling; Ge Xuewu; Ye qiang; Wang Feng

    2000-01-01

    Radiation-crosslinking improves a number of essential properties of polymers, so the high -temperature-resistance of polyethylene (PE) was increased by irradiation. The national products of High -density-polyethylene (HDPE), crosslinking promoters, flame-retardant, antioxidants, Si rubber, and Ethylene-propylene-monomer (EPDM) were used as cable insulation. After -irradiation, thermal-endurance can get above 135, and high flame retardance was firmed, Oxygen index can get above 32 by crosslinking

  15. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  16. An inverted-geometry, high voltage polarized electron gun with UHV load lock

    International Nuclear Information System (INIS)

    Breidenbach, M.; Foss, M.; Hodgson, J.; Kulikov, A.; Odian, A.; Putallaz, G.; Rogers, H.; Schindler, R.; Skarpaas, K.; Zolotorev, M.

    1994-01-01

    The design of a high voltage electron source with a GaAs photocathode and a load lock system is described. The inverted high voltage structure of the gun permits a compact and simple design. Test results demonstrate that the load lock system provides a reliable way to achieve high quantum efficiency of the photocathode in a high voltage device. ((orig.))

  17. Integrated reconfigurable high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2015-01-01

    In this paper a high-voltage transmitting circuit aimed for capacitive micromachined ultrasonic transducers (CMUTs) used in scanners for medical applications is designed and implemented in a 0.35 μm high-voltage CMOS process. The transmitting circuit is reconfigurable externally making it able...... to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes with voltages up to 100 V, maximum pulse range of 50 V, frequencies up to 5 MHz and different driving slew rates. Measurements are performed on the circuit in order to assess its functionality and power consumption...... performance. The design occupies an on-chip area of 0.938 mm2 and the power consumption of a 128-element transmitting circuit array that would be used in an portable ultrasound scanner is found to be a maximum of 181 mW....

  18. Cable Supported Bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    Cable supported bridges in the form of suspension bridges and cable-stayed bridges are distinguished by their ability to overcome large spans.The book concentrates on the synthesis of cable supported bridges, covering both design and construction aspects. The analytical part covers simple methods...... to quantify the different structural configurations and allows a preliminary optimization of the main structure.Included are the most recent advances in structural design, corrosion protection of cables, aerodynamic safety, and erection procedures....

  19. Recent development of the Cu/Nb-Ti superconducting cables for SSC in Hitachi Cable, Ltd

    International Nuclear Information System (INIS)

    Sakai, S.; Iwaki, G.; Sawada, Y.; Moriai, H.; Ishigami, Y.

    1989-01-01

    In these few years, Cu/Nb-Ti superconducting cables for the dipole magnets of SSC projects have been developed in the industrial scale in Hitachi Cable, Ltd. The features of these developed conductors are as follows. (1) The diameter of Nb-Ti filaments is very small, 4-6 μm. (2) The critical current density (J c ) is very high, 2,850-3,050 A/mm 2 at 5 T on wires, 2750-2950 A/mm 2 at 5 T on cables in industrial scale. The champion J c of wires is 3,460 A/mm 2 at 5 T in the laboratory scale. (3) The RRR Residual Resistivity Ratio values of developed cables is very high, approximately 200, due to the newly developed high purity Oxygen Free Copper (OFC). (4) The conductors have been wound to the 1 m length dipole magnet in Hitachi Ltd., and it has generated 6.7 T in the central magnetic field at 6,595 A. The Cu/Cu-Mn/Nb-Ti composite wires which avoid the possibility of electrical coupling of the filaments have been produced in laboratory scale. The RRR of the copper stabilizer and J c properties have not degraded because of no metallurgical reactions between Cu and Mn, Nb-Ti and Mn. 7 refs., 9 figs., 4 tabs

  20. The research of high voltage switchgear detecting unit

    Science.gov (United States)

    Ji, Tong; Xie, Wei; Wang, Xiaoqing; Zhang, Jinbo

    2017-07-01

    In order to understand the status of the high voltage switch in the whole life circle, you must monitor the mechanical and electrical parameters that affect device health. So this paper gives a new high voltage switchgear detecting unit based on ARM technology. It can measure closing-opening mechanical wave, storage motor current wave and contactor temperature to judge the device’s health status. When something goes wrong, it can be on alert and give some advice. The practice showed that it can meet the requirements of circuit breaker mechanical properties temperature online detection.

  1. The effect of transverse loads up to 300 MPa on the critical currents of Nb3Sn cables

    International Nuclear Information System (INIS)

    Boschman, H.; Verweij, A.P.; Wessel, S.; ten Kate, H.H.J.; van de Klundert, L.J.M.

    1991-01-01

    In the framework of the development of an experimental 10 T Nb 3 Sn dipole coil for the LHC at CERN the effects of transverse stress on Rutherford type of Nb 3 Sn cables have been investigated. For this purpose a special facility was designed and taken into operation in which the voltage-current behavior of short pieces of Nb 3 Sn cables can be investigated in a background field up to 11 T and an applied stress of 300 MPa. The repulsive Lorentz force of 250 kN, generated by a set of superconducting coils, is used to impress the cable over an area of 20 x 42 mm 2 maximum, in presence of a transport current up to 40 kA. In this paper the testing equipment is described and the first results of the observed critical current degradation of two Nb 3 Sn cables are discussed

  2. High-voltage direct-current circuit breakers

    International Nuclear Information System (INIS)

    Yoshioka, Y.; Hirasawa, K.

    1991-01-01

    This paper reports that in 1954 the first high-voltage direct-current (HVDC) transmission system was put into operation between Gotland and the mainland of Sweden. Its system voltage and capacity were 100 kV and 20 MW, respectively. Since then many HVDC transmission systems have been planned, constructed, or commissioned in more than 30 places worldwide, and their total capacity is close to 40 GW. Most systems commissioned to date are two-terminal schemes, and HVDC breakers are not yet used in the high-potential main circuit of those systems, because the system is expected to perform well using only converter/inverter control even at a fault stage of the transmission line. However, even in a two-terminal scheme there are not a few merits in using an HVDC breaker when the system has two parallel transmission lines, that is, when it is a double-circuit system

  3. Statistical characteristics of transient enclosure voltage in ultra-high-voltage gas-insulated switchgear

    Science.gov (United States)

    Cai, Yuanji; Guan, Yonggang; Liu, Weidong

    2017-06-01

    Transient enclosure voltage (TEV), which is a phenomenon induced by the inner dielectric breakdown of SF6 during disconnector operations in a gas-insulated switchgear (GIS), may cause issues relating to shock hazard and electromagnetic interference to secondary equipment. This is a critical factor regarding the electromagnetic compatibility of ultra-high-voltage (UHV) substations. In this paper, the statistical characteristics of TEV at UHV level are collected from field experiments, and are analyzed and compared to those from a repeated strike process. The TEV waveforms during disconnector operations are recorded by a self-developed measurement system first. Then, statistical characteristics, such as the pulse number, duration of pulses, frequency components, magnitude and single pulse duration, are extracted. The transmission line theory is introduced to analyze the TEV and is validated by the experimental results. Finally, the relationship between the TEV and the repeated strike process is analyzed. This proves that the pulse voltage of the TEV is proportional to the corresponding breakdown voltage. The results contribute to the definition of the standard testing waveform of the TEV, and can aid the protection of electronic devices in substations by minimizing the threat of this phenomenon.

  4. Design of auto-control high-voltage control system of pulsed neutron generator

    International Nuclear Information System (INIS)

    Lv Juntao

    2008-01-01

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  5. Wide-band cable systems at SLAC

    International Nuclear Information System (INIS)

    Struven, W.

    1983-01-01

    SLAC's first cable TV system was installed in 1979 to remotely monitor a narrow pulse which was generated in the west end of the klystron gallery. When Stanford Linear Collider (SLC) experimental work started at the west end of the accelerator, the original 1979 cable was upgraded to a bidirectional system so that 2 MBaud point-to-point data and several video and 9600 baud channels could be transmitted. The implementation of the SLC requires a complete upgrading of the accelerator control system. The system is based on a distributed processing configuration using a PDP11/780 VAX in the Main Control Center (MCC) and Intel single-board computers in a multibus configuration along the accelerator. The high-speed data linking is supplied by a 1 MBaud Time Division Multiple Access (TDMA) Network. The same cable is used to provide video, low-speed data, voice and high-speed point-to-point data services. The transmission system will utilize a wideband midsplit cable facility to collect and distribute signals to all parts of the network

  6. Correlation of electrical reactor cable failure with materials degradation

    International Nuclear Information System (INIS)

    Stuetzer, O.M.

    1986-03-01

    Complete circuit failure (shortout) of electrical cables typically used in nuclear power plant containments is investigated. Failure modes are correlated with the mechanical deterioration of the elastomeric cable materials. It is found that for normal reactor operation, electrical cables are reliable and safe over very long periods. During high temperature excursions, however, cables pulled across corners under high stress may short out due to conductor creep. Severe cracking will occur in short times during high temperatures (>150 0 C) and in times of the order of years at elevated temperatures (100 0 C to 140 0 C). A theoretical treatment of stress distribution responsible for creep and for cracking by J.E. Reaugh of Science Applications, Inc. is contained in the Appendix. 29 refs., 32 figs

  7. High voltage switch triggered by a laser-photocathode subsystem

    Science.gov (United States)

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  8. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Science.gov (United States)

    2010-07-01

    ... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary... or splices that heat or spark under load shall not be used. ...

  9. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges.

    Science.gov (United States)

    Sun, Bing-nan; Wang, Zhi-gang; Ko, J M; Ni, Y Q

    2003-01-01

    This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.

  10. Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone.

    Directory of Open Access Journals (Sweden)

    Kemal Alpay

    Full Text Available Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl-dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.

  11. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  12. Magnet cable manufacturing

    International Nuclear Information System (INIS)

    Royet, J.

    1985-07-01

    The superconducting magnets used in the construction of particle accelerators are mostly built from flat, multistrand cables with rectangular or keystoned cross sections. The superconducting strands are mostly circular but a design of a cable made of preflattened wires was proposed a few years ago under the name of Berkeley flat; such cable shows some interesting characteristics. Another design consists of a few smaller precabled wires (e.g. 6 around 1). This configuration allows smaller filaments and a better transposition of the current elements. The Superconducting Super Collider project involves the largest amount of superconducting cable ever envisaged for a single machine. Furthermore, the design calls for exceptional accuracy and improved characteristics of the cable. A part of the SSC research and development program is focused on these important questions. In this paper we emphasize the difference between the conventional cabling and wires with superconducting. A new concept for the tooling will be introduced as well as the necessary characteristics of a specialized cabler. 5 figs

  13. Simulation of rectifier voltage malfunction on OWECS, four-level converter, HVDC light link: Smart grid context tool

    International Nuclear Information System (INIS)

    Seixas, M.; Melício, R.; Mendes, V.M.F.

    2015-01-01

    Highlights: • Floating offshore wind turbine in deep water. • DC link and voltage malfunction. • Converter topology considered is four-level. • Controllers are based on fractional-order. • Smart grid context. - Abstract: This paper presents a model for the simulation of an offshore wind system having a rectifier input voltage malfunction at one phase. The offshore wind system model comprises a variable-speed wind turbine supported on a floating platform, equipped with a permanent magnet synchronous generator using full-power four-level neutral point clamped converter. The link from the offshore floating platform to the onshore electrical grid is done through a light high voltage direct current submarine cable. The drive train is modeled by a three-mass model. Considerations about the smart grid context are offered for the use of the model in such a context. The rectifier voltage malfunction domino effect is presented as a case study to show capabilities of the model

  14. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  15. Loss and Inductance Investigation in Superconducting Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten

    1999-01-01

    An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC......-loss was measured on cable #2 to 0.6W/mxphase. This is, to our knowledge, the lowest AC-loss (at 2kA and 77K) of a high temperature superconducting cable conductor reported so far....

  16. Benchmark Analysis for Condition Monitoring Test Techniques of Aged Low Voltage Cables in Nuclear Power Plants. Final Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2017-10-01

    This publication provides information and guidelines on how to monitor the performance of insulation and jacket materials of existing cables and establish a programme of cable degradation monitoring and ageing management for operating reactors and the next generation of nuclear facilities. This research was done through a coordinated research project (CRP) with participants from 17 Member States. This group of experts compiled the current knowledge in a report together with areas of future research and development to cover aging mechanisms and means to identify and manage the consequences of aging. They established a benchmarking programme using cable samples aged under thermal and/or radiation conditions, and tested before and after ageing by various methods and organizations. In particular, 12 types of cable insulation or jacket material were tested, each using 14 different condition monitoring techniques. Condition monitoring techniques yield usable and traceable results. Techniques such as elongation at break, indenter modulus, oxidation induction time and oxidation induction temperature were found to work reasonably well for degradation trending of all materials. However, other condition monitoring techniques, such as insulation resistance, were only partially successful on some cables and other methods like ultrasonic or Tan δ were either unsuccessful or failed to provide reliable information to qualify the method for degradation trending or ageing assessment of cables. The electrical in situ tests did not show great promise for cable degradation trending or ageing assessment, although these methods are known to be very effective for finding and locating faults in cable insulation material. In particular, electrical methods such as insulation resistance and reflectometry techniques are known to be rather effective for locating insulation damage, hot spots or other faults in essentially all cable types. The advantage of electrical methods is that they can be

  17. Dynamic tensile test of single PET textile cables

    Directory of Open Access Journals (Sweden)

    Pasco F.

    2012-08-01

    Full Text Available The tyres conception involves for certain applications, the use of textile cables as reinforcement. During its use, the tyre undergoes temperatures variations and dynamic loading rates. The consideration of these conditions during the numeric simulations requires the knowledge of the sensitivity of the mechanical behaviour to loading rate and temperature. In this paper, we developed an experimental methodology for testing textile cable up to high strain rate. The main difficulty of testing cables is the optimization of cable fixing on the machine. For that purpose, we adapted the solution of fixing by progressive binding already used in quasi-static, while taking into account constraints inherent to high strain tests. Firstly, the mass of grips was decreased in order to get force signal less sensitive to grips inertia. The method was developed on a high speed hydraulic machine equipped with a thermal enclosure. The investigated temperatures and strain rates range from room temperature to 373 ∘K (100 ∘C and from 0,01 to 100/s, respectively. In addition, the hydraulic machine was equipped with a high speed video camera. The obtained images were analysed by a tracking technique to measure the average strain in the cable (from 50 to 20000 f/s.

  18. Cable strengthened arches

    NARCIS (Netherlands)

    Kamerling, M.W.

    2013-01-01

    The structural efficiency of arches, subjected to several variable loads, can be increased by strengthening these arches with cables. For these structures it can be necessary, especially in case the permanent load is small, to post-tension the cables to avoid any compression acting on the cables. A

  19. High voltage calibration of the TANSY-KM5 neutron detectors

    International Nuclear Information System (INIS)

    Grosshoeg, G.; Belle, P. van; Wilson, D.

    1996-11-01

    We have developed a procedure for the high voltage calibration of the TANSY neutron detectors. The procedure is based on the work done during the construction of the spectrometer. A program is written for the measurement of the sensitivity of the neutron detectors as a function of the high voltage. The data are transferred to a PC for evaluation. We use a Cobalt source for the calibration. With the PC the voltage corresponding to the effective Compton edge is found. The voltage settings for the neutron detectors are calculated and stored in a file suitable for input to a program that is used to control the instrument. A measurement is reported that shows that the reproducibility of the measurement is good. 4 refs

  20. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.

    Science.gov (United States)

    Asgari, B; Osman, S A; Adnan, A

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  1. Nonlinear Analysis of Cable Vibration of a Multispan Cable-Stayed Bridge under Transverse Excitation

    Directory of Open Access Journals (Sweden)

    Kun Lin

    2014-01-01

    Full Text Available The nonlinear vibrations of cable in a multispan cable-stayed bridge subjected to transverse excitation are investigated. The MECS (multielements cable system model, where multielements per cable stay are used, is built up and used to analyze the model properties of the multispan cable-stayed bridges. Then, a simplified two-degrees-of-freedom (2-DOFs model, where the tower or the deck is reduced to a beam, is proposed to analyze the nonlinear dynamic behaviors of the beam and cable. The results of MECS model analysis show that the main tower in the multispan cable-stayed bridge is prone to the transverse vibration, and the local vibration of cables only has a little impact on the frequency values of the global modes. The results of simplified model analysis show that the energy can be transformed between the modes of the beam and cable when the nature frequencies of them are very close. On the other hand, with the transverse excitation changing, the cable can exhibit richer quasi-periodic or chaotic motions due to the nonlinear terms caused by the coupled mode between the beam and cable.

  2. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    B. Asgari

    2014-01-01

    Full Text Available Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM. The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  3. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  4. A microcontroller application as X-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    A micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x-ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive a stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-8051 compiler. The test results show that the stepper motor could rotate according to an input value (author)

  5. Advances in high voltage engineering

    CERN Document Server

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  6. Compact, Lightweight, High Voltage Propellant Isolators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TA&T, Inc. proposes an enabling fabrication process for high voltage isolators required in high power solar electric and nuclear electric propulsion (SEP and...

  7. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    Science.gov (United States)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  8. Characteristic analysis of DC electric railway systems with superconducting power cables connecting power substations

    International Nuclear Information System (INIS)

    Ohsaki, H; Matsushita, N; Koseki, T; Tomita, M

    2014-01-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  9. Cavitation as a Precursor to Breakdown of Mass-Impregnated HVDC Cables

    Energy Technology Data Exchange (ETDEWEB)

    Evenset, Gunnar

    1999-09-01

    Thermal cycling has proven to be a critical test for mass-impregnated HVDC cables. The dielectric strength of the insulation is significantly reduced during the first part of the cooling. This decrease of the dielectric strength limits the development of mass-impregnated cables for higher operating voltages and higher power transfer capacities. The decrease of the dielectric strength during cooling has been assumed to be caused by formation of cavities in the mass because the thermal contraction of the mass is larger than that of the paper. Cavities have previously been observed in thermally cycled cables, but their actual formation and growth have not been studied. The fact that breakdown usually occurs a few hours into the cooling period indicates that the dynamics of the growth is important. This work studies the dynamic phenomena occurring in mass-impregnated cables during thermal cycling. In experiments on a system of mass and insulating paper, cavities were observed near the paper surface, probably caused by heterogeneous nucleation. Knowing the tensile stress at cavity formation is important because it controls the size of the cavities and the distance between independently formed cavities in a cable insulation. A test cell was designed to investigate cavitation in models of lapped insulation. The formation, growth and collapse of the cavities could be visually observed while the insulation was electrically stressed and partial discharges were measured. The first cavity generally formed in one of the butt gaps and grew both along the butt gap and into the mass layers between the papers towards adjacent butt gaps. When the cavity between the papers grew into an adjacent butt gap, the gas/vapour filled channel connecting the butt gaps was closed. In this way, one cavity grew into several butt gaps. The extent of cavities between the papers was observed to depend on the interfacial pressure. Considerable less tension is required to suck the menisci of a cavity

  10. Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties

    International Nuclear Information System (INIS)

    Protopapadaki, Christina; Saelens, Dirk

    2017-01-01

    Highlights: • Comprehensive method includes variability in building and feeder characteristics. • Detailed, 10-min, Modelica-based simulation of buildings, heat pumps and networks. • Overloading and voltage issues appear from 30% heat pumps in rural Belgian feeders. • Analysis of load profiles reveals great impact of heat pump back-up heaters. • High correlation of building neighborhood properties with grid impact indicators. - Abstract: Heating electrification powered by distributed renewable energy generation is considered among potential solutions towards mitigation of greenhouse gas emissions. Roadmaps propose a wide deployment of heat pumps and photovoltaics in the residential sector. Since current distribution grids are not designed to accommodate these loads, potential benefits of such policies might be compromised. However, in large-scale analyses, often grid constraints are neglected. On the other hand, grid impact of heat pumps and photovoltaics has been investigated without considering the influence of building characteristics. This paper aims to assess and quantify in a probabilistic way the impact of these technologies on the low-voltage distribution grid, as a function of building and district properties. The Monte Carlo approach is used to simulate an assortment of Belgian residential feeders, with varying size, cable type, heat pump and PV penetration rates, and buildings of different geometry and insulation quality. Modelica-based models simulate the dynamic behavior of both buildings and heating systems, as well as three-phase unbalanced loading of the network. Additionally, stochastic occupant behavior is taken into account. Analysis of neighborhood load profiles puts into perspective the importance of demand diversity in terms of building characteristics and load simultaneity, highlighting the crucial role of back-up electrical loads. It is shown that air-source heat pumps have a greater impact on the studied feeders than PV, in terms

  11. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, A., E-mail: kriegea@uni-mainz.d [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Geppert, Ch. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Catherall, R. [CERN, CH-1211 Geneve 23 (Switzerland); Hochschulz, F. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Kraemer, J.; Neugart, R. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Rosendahl, S. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Schipper, J.; Siesling, E. [CERN, CH-1211 Geneve 23 (Switzerland); Weinheimer, Ch. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Yordanov, D.T. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Noertershaeuser, W. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany)

    2011-03-11

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the high-voltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequency-comb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  12. Alternating current loss calculation in a high-TC superconducting transmission cable considering the magnetic field distribution

    International Nuclear Information System (INIS)

    Noji, H; Haji, K; Hamada, T

    2003-01-01

    We have calculated the alternating current (ac) losses of a 114 MVA high-T C superconducting (HTS) transmission cable using an electric-circuit (EC) model. The HTS cable is fabricated by Tokyo Electric Power Company and Sumitomo Electric Industries, Ltd. The EC model is comprised of a resistive part and an inductive part. The resistive part is obtained by the approximated Norris equation for a HTS tape. The Norris equation indicates hysteresis losses due to self-fields. The inductive part has two components, i.e. inductances related to axial fields and those related to circumferential fields. The layer currents and applied fields of each layer were calculated by the EC model. By using both values, the ac losses of the one-phase HTS cable were obtained by calculation considering the self-field, the axial field and the circumferential field of the HTS tape. The measured ac loss transporting 1 kA rms is 0.7 W m -1 ph -1 , which is equal to the calculation. The distribution of each layer loss resembles in shape the distribution of the circumferential field in each layer, which indicates that the circumferential fields strongly influence the ac losses of the HTS cable

  13. Fast response double series resonant high-voltage DC-DC converter

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2012-01-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  14. Line Differential Protection Scheme Modelling for Underground 420 kV Cable Systems, EMTDC/PSCAD Relays Modelling

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Sztykiel, Michal; Dollerup, Sebastian

    2011-01-01

    Based on the analysis of a specific relay model and an HVAC (High Voltage Alternating Current) cable system, a new approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows creating complex and accurate relay models derived from the original algorithms. Relay models...... can be applied with various systems, allowing obtaining the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP......-simulated and real world generated current signals connected to the relay....

  15. Correlation of electrical reactor cable failure with materials degradation

    Energy Technology Data Exchange (ETDEWEB)

    Stuetzer, O.M.

    1986-03-01

    Complete circuit failure (shortout) of electrical cables typically used in nuclear power plant containments is investigated. Failure modes are correlated with the mechanical deterioration of the elastomeric cable materials. It is found that for normal reactor operation, electrical cables are reliable and safe over very long periods. During high temperature excursions, however, cables pulled across corners under high stress may short out due to conductor creep. Severe cracking will occur in short times during high temperatures (>150/sup 0/C) and in times of the order of years at elevated temperatures (100/sup 0/C to 140/sup 0/C). A theoretical treatment of stress distribution responsible for creep and for cracking by J.E. Reaugh of Science Applications, Inc. is contained in the Appendix. 29 refs., 32 figs.

  16. Operation experiences with a 30 kV/100 MVA high temperature superconducting cable system

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Däumling, Manfred; Jensen, Kim Høj

    2004-01-01

    of this demonstration project is to gain experience with HTS cables under realistic conditions in a live distribution network. Approximately 50 000 utility customers have their electric power supplied through the HTS cable. The cable system has delivered 226 GW h of energy and reached a maximum operating current......A superconducting cable based on Bi-2223 tape technology has been developed, installed and operated in the public network of Copenhagen Energy in a two-year period between May 2001 and May 2003. This paper gives a brief overview of the system and analyses some of the operation experiences. The aim...

  17. New trends in design and fabrication of signal and power cables to increase nuclear safety

    International Nuclear Information System (INIS)

    Salmen, Florin; Florescu, Gheorghe; Ionescu, Aurel

    2007-01-01

    Based on NPP operating experiences in the past, it was found that the inadequate management of aging degradation caused shortening of the lifetime of equipment, which in turn, hindered plant life extension. Aging degradation of plant structures and components should be properly managed to ensure the designated safety function of plant systems during design life and extended life. From a safety perspective, aging management means maintaining the aging degradation level in major equipment and structures below the allowable limit and holding the capacity to sustain abnormal operating condition. Cable aging was not considered as a significant factor in relation to the nuclear power plant maintenance due to its long life which is almost the same as the plant design life. Attempts to extend the lifetime of NPP has become one of the major concern in the nuclear industry world wide. Consequently, life evaluation and lifetime management of cables to survive over 40 years has become major topic of discussion. In connection to this, accelerated aging must be studied in detail in order to simulate the natural aging in NPP. Test results for evaluating aging degradation after accelerated aging of polyethylene jacket will be described herein.There are hundred types of cables in NPPs. These cables can be classified as medium/low voltage cable, low power cable, instrument and control cable, panel connect line cable, special cable, security line cable, phone line cable and ground cable. Insulation and jacket material in electrical cables are fabricated of polymer materials combined with a number of additives and filler to provide the required mechanical, electrical and fire retardant proprieties. The most commonly used insulation materials are XLPE/EPR/EPDM and PVC. PVC has been widely used as an insulation material, particularly in old plants, but it is less used in modern plants. Neoprene/CSPE/PVC are commonly used material for nuclear cable jacket. The old types of cables

  18. Fault Management of a Cold Dielectric HTS Power Transmission Cable

    International Nuclear Information System (INIS)

    Maguire, J; Allais, A; Yuan, J; Schmidt, F; Hamber, F; Welsh, Tom

    2006-01-01

    High temperature superconductor (HTS) power transmission cables offer significant advantages in power density over conventional copper-based cables. As with conventional cables, HTS cables must be safe and reliable when abnormal conditions, such as local and through faults, occur in the power grid. Due to the unique characteristics of HTS power cables, the fault management of an HTS cable is different from that of a conventional cable. Issues, such as nitrogen bubble formation within lapped dielectric material, need to be addressed. This paper reviews the efforts that have been performed to study the fault conditions of a cold dielectric HTS power cable. As a result of the efforts, a fault management scheme has been developed, which provides both local and through faults system protection. Details of the fault management scheme with examples are presented

  19. Advances in high voltage insulation and arc interruption in SF6 and vacuum

    CERN Document Server

    Maller, V N

    1982-01-01

    Advances in High Voltage Insulation and Arc Interruption in SF6 and Vacuum deals with high voltage breakdown and arc extinction in sulfur hexafluoride (SF6) and high vacuum, with special emphasis on the application of these insulating media in high voltage power apparatus and devices. The design and developmental aspects of various high voltage power apparatus using SF6 and high vacuum are highlighted. This book is comprised of eight chapters and opens with a discussion on electrical discharges in SF6 and high vacuum, along with the properties and handling of SF6 gas. The following chapters fo

  20. Sizewell 'B' cable installation

    International Nuclear Information System (INIS)

    Gemmell, D.R.

    1992-01-01

    N G Bailey and Co. Ltd., UK were awarded the contract for the procurement, manufacture, works testing, works finishing, supply, delivery, off-loading, storage, installation, site finishing, preservation, setting to work and site testing of the following; the main cable installation throughout the Station including the addition of the Radioactive Waste Building, earthing and lightning protection installation, cable supporting steelwork and carriers and glanding and termination of cables. The cabling installation comprises power distribution, control and instrumentation cabling including all the associated cabling accessories, terminal boxes and similar components. The way that the contract was set-up, awarded and is now being carried out is described. Planning and industrial relations have been key features of the contract. (Author)