WorldWideScience

Sample records for high virulence subspecies

  1. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies.

    Directory of Open Access Journals (Sweden)

    Mia D Champion

    2009-05-01

    Full Text Available Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.: the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB (FTT0961, which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS and components of the Type IV secretion systems (T4SS. One of the genes, msrA2 (FTT1797c, is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of

  2. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    Science.gov (United States)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  3. Rapid and accurate identification of Streptococcus equi subspecies by MALDI-TOF MS

    DEFF Research Database (Denmark)

    Kudirkiene, Egle; Welker, Martin; Knudsen, Nanna Reumert

    2015-01-01

    phenotypic and sequence similarity between three subspecies their discrimination remains difficult. In this study, we aimed to design and validate a novel, Superspectra based, MALDI-TOF MS approach for reliable, rapid and cost-effective identification of SEE and SEZ, the most frequent S. equi subspecies.......3±7.5%). This result may be attributed to the highly clonal population structure of SEE, as opposed to the diversity of SEZ seen in horses. Importantly strains with atypical colony appearance both within SEE and SEZ did not affect correct identification of the strains by MALDI-TOF MS. Atypical colony variants...... are often associated with a higher persistence or virulence of S. equi, thus their correct identification using the current method strengthens its potential use in routine clinical diagnostics. In conclusion, reliable identification of S. equi subspecies was achieved by combining a MALDI-TOF MS method...

  4. A comprehensive review of non-enterica subspecies of Salmonella enterica.

    Science.gov (United States)

    Lamas, Alexandre; Miranda, José Manuel; Regal, Patricia; Vázquez, Beatriz; Franco, Carlos Manuel; Cepeda, Alberto

    2018-01-01

    Salmonella is a major foodborne pathogen with a complex nomenclature. This genus is composed of two species, S. enterica and S. bongori. S. enterica is divided into six subspecies. S. enterica subspecies enterica is composed of more than 1500 serotypes with some of great importance, such as S. Typhimurium and S. Enteritidis. S. enterica subsp. enterica is responsible of more than 99% of human salmonellosis and therefore it is widely studied. However, the non-enterica subspecies of S. enterica have been little studied. These subspecies are considered to be related to cold-blooded animals and their pathogenicity is very limited. Phenotype and genotype information generated from different studies of non-enterica subspecies reveal poor ability to invade host cells and the absence or modification of important virulence factors. Also, the great majority of human infections due to non-enterica subspecies are related to a previous depressed immune system. Therefore, we propose to treat these subspecies only as opportunistic pathogens. For establish this premise, the present review evaluated, among other things, the genomic characteristics, prevalence, antimicrobial resistance and reported human cases of the non-enterica subspecies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Role of pathogenicity determinant protein C (PdpC in determining the virulence of the Francisella tularensis subspecies tularensis SCHU.

    Directory of Open Access Journals (Sweden)

    Akihiko Uda

    Full Text Available Francisella tularensis subspecies tularensis, the etiological agent of tularemia, is highly pathogenic to humans and animals. However, the SCHU strain of F. tularensis SCHU P0 maintained by passaging in artificial media has been found to be attenuated. To better understand the molecular mechanisms behind the pathogenicity of F. tularensis SCHU, we attempted to isolate virulent bacteria by serial passages in mice. SCHU P5 obtained after 5th passages in mice remained avirulent, while SCHU P9 obtained after 9th passages was completely virulent in mice. Moreover, SCHU P9 grew more efficiently in J774.1 murine macrophages compared with that in the less pathogenic SCHU P0 and P5. Comparison of the nucleotide sequences of the whole genomes of SCHU P0, P5, and P9 revealed only 1 nucleotide difference among P0, P5 and P9 in 1 of the 2 copies of pathogenicity determinant protein C (pdpC gene. An adenine residue deletion was observed in the pdpC1 gene of SCHU P0, P5, and P9 and in the pdpC2 gene of SCHU P0, and P5, while P9 was characterized by the wild type pdpC2 gene. Thus, SCHU P0 and P5 expressed only truncated forms of PdpC protein, while SCHU P9 expressed both wild type and truncated versions. To validate the pathogenicity of PdpC, both copies of the pdpC gene in SCHU P9 have been inactivated by Targetron mutagenesis. SCHU P9 mutants with inactivated pdpC gene showed low intracellular growth in J774.1 cells and did not induce severe disease in experimentally infected mice, while virulence of the mutants was restored by complementation with expression of the intact PdpC. These results demonstrate that PdpC is crucial in determining the virulence of F. tularensis SCHU.

  6. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides.

    Science.gov (United States)

    Li, Charles H; Cervantes, Maria; Springer, Deborah J; Boekhout, Teun; Ruiz-Vazquez, Rosa M; Torres-Martinez, Santiago R; Heitman, Joseph; Lee, Soo Chan

    2011-06-01

    Mucor circinelloides is a zygomycete fungus and an emerging opportunistic pathogen in immunocompromised patients, especially transplant recipients and in some cases otherwise healthy individuals. We have discovered a novel example of size dimorphism linked to virulence. M. circinelloides is a heterothallic fungus: (+) sex allele encodes SexP and (-) sex allele SexM, both of which are HMG domain protein sex determinants. M. circinelloides f. lusitanicus (Mcl) (-) mating type isolates produce larger asexual sporangiospores that are more virulent in the wax moth host compared to (+) isolates that produce smaller less virulent sporangiospores. The larger sporangiospores germinate inside and lyse macrophages, whereas the smaller sporangiospores do not. sexMΔ mutants are sterile and still produce larger virulent sporangiospores, suggesting that either the sex locus is not involved in virulence/spore size or the sexP allele plays an inhibitory role. Phylogenetic analysis supports that at least three extant subspecies populate the M. circinelloides complex in nature: Mcl, M. circinelloides f. griseocyanus, and M. circinelloides f. circinelloides (Mcc). Mcc was found to be more prevalent among clinical Mucor isolates, and more virulent than Mcl in a diabetic murine model in contrast to the wax moth host. The M. circinelloides sex locus encodes an HMG domain protein (SexP for plus and SexM for minus mating types) flanked by genes encoding triose phosphate transporter (TPT) and RNA helicase homologs. The borders of the sex locus between the three subspecies differ: the Mcg sex locus includes the promoters of both the TPT and the RNA helicase genes, whereas the Mcl and Mcc sex locus includes only the TPT gene promoter. Mating between subspecies was restricted compared to mating within subspecies. These findings demonstrate that spore size dimorphism is linked to virulence of M. circinelloides species and that plasticity of the sex locus and adaptations in pathogenicity have

  7. Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I and S. pasteurianus ATCC 43144 (biotype II.2. The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92% and 1607 (86% of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops.

  8. Type IV pili in Francisella – A virulence trait in an intracellular pathogen

    Directory of Open Access Journals (Sweden)

    Emelie eNäslund Salomonsson

    2011-02-01

    Full Text Available Francisella tularensis is a highly virulent intracellular human pathogen that is capable of rapid proliferation in the infected host. Mutants affected in intracellular survival and growth are highly attenuated which highlights the importance of the intracellular phase of the infection. Genomic analysis has revealed that Francisella encodes all genes required for expression of functional type IV pili (Tfp, and in this focused review we summarise recent findings regarding this system in the pathogenesis of tularemia. Tfp are dynamic adhesive structures that have been identified as major virulence determinants in several human pathogens, but it is not obvious what role these structures could have in an intracellular pathogen like Francisella. In the human pathogenic strains, genes required for secretion and assembly of Tfp and one pilin, PilA, have shown to be required for full virulence. Importantly, specific genetic differences have been identified between the different Francisella subspecies where in the most pathogenic type A variants all genes are intact while several Tfp genes are pseudogenes in the less pathogenic type B strains. This suggests that there has been a selection for expression of Tfp with different properties in the different subspecies. There is also a possibility that the genetic differences reflect adaption to different environmental niches of the subspecies and plays a role in transmission of tularemia. This is also in line with recent findings where Tfp pilins are found to be glycosylated which could reflect a role for Tfp in the environment to promote survival and transmission. We are still far from understanding the role of Tfp in virulence and transmission of tularemia, but with the genomic information and genetic tools available we are in a good position to address these issues in the future.

  9. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis

    NARCIS (Netherlands)

    Broekhuijsen, M.P.; Larsson, P.; Johansson, A.; Byström, M.; Eriksson, U.; Larsson, E.; Prior, R.G.; Sjöstedt, A.; Titball, R.W.; Forsman, M.

    2003-01-01

    Francisella tularensis is a potent pathogen and a possible bioterrorism agent. Little is known, however, to explain the molecular basis for its virulence and the distinct differences in virulence found between the four recognized subspecies, F. tularensis subsp. tularensis, F. tularensis subsp.

  10. Shedding subspecies: The influence of genetics on reptile subspecies taxonomy.

    Science.gov (United States)

    Torstrom, Shannon M; Pangle, Kevin L; Swanson, Bradley J

    2014-07-01

    The subspecies concept influences multiple aspects of biology and management. The 'molecular revolution' altered traditional methods (morphological traits) of subspecies classification by applying genetic analyses resulting in alternative or contradictory classifications. We evaluated recent reptile literature for bias in the recommendations regarding subspecies status when genetic data were included. Reviewing characteristics of the study, genetic variables, genetic distance values and noting the species concepts, we found that subspecies were more likely elevated to species when using genetic analysis. However, there was no predictive relationship between variables used and taxonomic recommendation. There was a significant difference between the median genetic distance values when researchers elevated or collapsed a subspecies. Our review found nine different concepts of species used when recommending taxonomic change, and studies incorporating multiple species concepts were more likely to recommend a taxonomic change. Since using genetic techniques significantly alter reptile taxonomy there is a need to establish a standard method to determine the species-subspecies boundary in order to effectively use the subspecies classification for research and conservation purposes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Campylobacter fetus subspecies: Comparative genomics and prediction of potential virulence targets

    DEFF Research Database (Denmark)

    Ali, Amjad; Soares, Siomar C.; Santos, Anderson R.

    2012-01-01

    . The potential candidate factors identified for attenuation and/or subunit vaccine development against C. fetus subspecies contain: nucleoside diphosphate kinase (Ndk), type IV secretion systems (T4SS), outer membrane proteins (OMP), substrate binding proteins CjaA and CjaC, surface array proteins, sap gene......, and cytolethal distending toxin (CDT). Significantly, many of those genes were found in genomic regions with signals of horizontal gene transfer and, therefore, predicted as putative pathogenicity islands. We found CRISPR loci and dam genes in an island specific for C. fetus subsp. fetus, and T4SS and sap genes...

  12. Proteogenomic biomarkers for identification of Francisella species and subspecies by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Durighello, Emie; Bellanger, Laurent; Ezan, Eric; Armengaud, Jean

    2014-10-07

    Francisella tularensis is the causative agent of tularemia. Because some Francisella strains are very virulent, this species is considered by the Centers for Disease Control and Prevention to be a potential category A bioweapon. A mass spectrometry method to quickly and robustly distinguish between virulent and nonvirulent Francisella strains is desirable. A combination of shotgun proteomics and whole-cell matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry on the Francisella tularensis subsp. holarctica LVS defined three protein biomarkers that allow such discrimination: the histone-like protein HU form B, the 10 kDa chaperonin Cpn10, and the 50S ribosomal protein L24. We established that their combined detection by whole-cell MALDI-TOF spectrum could enable (i) the identification of Francisella species, and (ii) the prediction of their virulence level, i.e., gain of a taxonomical level with the identification of Francisella tularensis subspecies. The detection of these biomarkers by MALDI-TOF mass spectrometry is straightforward because of their abundance and the absence of other abundant protein species closely related in terms of m/z. The predicted molecular weights for the three biomarkers and their presence as intense peaks were confirmed with MALDI-TOF/MS spectra acquired on Francisella philomiragia ATCC 25015 and on Francisella tularensis subsp. tularensis CCUG 2112, the most virulent Francisella subspecies.

  13. Prior Inoculation with Type B Strains of Francisella tularensis Provides Partial Protection against Virulent Type A Strains in Cottontail Rabbits.

    Directory of Open Access Journals (Sweden)

    Vienna R Brown

    Full Text Available Francisella tularensis is a highly virulent bacterium that is capable of causing severe disease (tularemia in a wide range of species. This organism is characterized into two distinct subspecies: tularensis (type A and holarctica (type B which vary in several crucial ways, with some type A strains having been found to be considerably more virulent in humans and laboratory animals. Cottontail rabbits have been widely implicated as a reservoir species for this subspecies; however, experimental inoculation in our laboratory revealed type A organisms to be highly virulent, resulting in 100% mortality following challenge with 50-100 organisms. Inoculation of cottontail rabbits with the same number of organisms from type B strains of bacteria was found to be rarely lethal and to result in a robust humoral immune response. The objective of this study was to characterize the protection afforded by a prior challenge with type B strains against a later inoculation with a type A strain in North American cottontail rabbits (Sylvilagus spp. Previous infection with a type B strain of organism was found to lengthen survival time and in some cases prevent death following inoculation with a type A2 strain of F. tularensis. In contrast, inoculation of a type A1b strain was uniformly lethal in cottontail rabbits irrespective of a prior type B inoculation. These findings provide important insight about the role cottontail rabbits may play in environmental maintenance and transmission of this organism.

  14. SALMONELLA ENTERICA SUBSPECIES ENTERICA SEROVAR ENTERITIDIS – ACTUALITIES AND IMPORTANCE

    Directory of Open Access Journals (Sweden)

    Predrag Stojanović

    2010-09-01

    Full Text Available Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis has been recently recognized as a prevalent cause of alimentary toxi-infection worldwide. Its widespread presence could be explained by intensification and globalization of traffic, global trade, and the rest of socioeconomic processes. However, no matter to global spreading of S. Enteritidis, there is unequal distribution of certain phage types (PT where PT 4 and 8 are predominant. Salmonella is considered as a cause of various diseases from acute enterocolitis to typhoid fever. All bacteria from this species have numerous virulence factors such as: adhesins, toxins, virulence plasmids, and cell wall lipopolysaccharides (LPS. Similar to other salmonella serotypes, S. Enteritidis has a virulence plasmid. It allows a bacterium to persist inside the reticuloendothelial cells, while strains without it are eliminated quickly. In the last few years several virulent S. Enteritidis strains of PT 4 were described and considered to be of the same origin. The domination of PT 4 is probably subjected to the resistance of certain strains to nitrofurantoin which is used in poultry rising. The increased significance of S. Enteritidis refers not only to its association with pandemic problems but to frequent reports about extraintestinal infectious processes caused by this bacterium. Taking into consideration that eggs are very important source of infection besides poultry meat, the advised efficient preventive measures, among others, should be some changes in poultry meat preparation, investigation of outbreak-related flocks and devastation of infected ones, as well as egg pasteurization.

  15. TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations.

    Directory of Open Access Journals (Sweden)

    Dawn N Birdsell

    Full Text Available Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis, therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays

  16. Threatened and endangered subspecies with vulnerable ecological traits also have high susceptibility to sea level rise and habitat fragmentation.

    Directory of Open Access Journals (Sweden)

    Allison M Benscoter

    Full Text Available The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies level when resources are limited and several factors affect conservation success.

  17. Further Characterization of the Capsule-Like Complex (CLC Produced by Francisella tularensis Subspecies tularensis: Protective Efficacy and Similarity to Outer Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Anna E. Champion

    2018-06-01

    Full Text Available Francisella tularensis is the etiologic agent of tularemia, and subspecies tularensis (type A is the most virulent subspecies. The live vaccine strain (LVS of subspecies holarctica produces a capsule-like complex (CLC that consists of a large variety of glycoproteins. Expression of the CLC is greatly enhanced when the bacteria are subcultured in and grown on chemically defined medium. Deletion of two genes responsible for CLC glycosylation in LVS results in an attenuated mutant that is protective against respiratory tularemia in a mouse model. We sought to further characterize the CLC composition and to determine if a type A CLC glycosylation mutant would be attenuated in mice. The CLCs isolated from LVS extracted with 0.5% phenol or 1 M urea were similar, as determined by gel electrophoresis and Western blotting, but the CLC extracted with urea was more water-soluble. The CLC extracted with either 0.5% phenol or 1 M urea from type A strains was also similar to the CLC of LVS in antigenic properties, electrophoretic profile, and by transmission electron microscopy (TEM. The solubility of the CLC could be further enhanced by fractionation with Triton X-114 followed by N-Lauroylsarcosine detergents; the largest (>250 kDa molecular size component appeared to be an aggregate of smaller components. Outer membrane vesicles/tubules (OMV/T isolated by differential centrifugation and micro-filtration appeared similar to the CLC by TEM, and many of the proteins present in the OMV/T were also identified in soluble and insoluble fractions of the CLC. Further investigation is warranted to assess the relationship between OMV/T and the CLC. The CLC conjugated to keyhole limpet hemocyanin or flagellin was highly protective against high-dose LVS intradermal challenge and partially protective against intranasal challenge. A protective response was associated with a significant rise in cytokines IL-12, IL-10, and IFN-γ. However, a type A CLC glycosylation mutant

  18. Genetic subspecies diversity of the chimpanzee CD4 virus-receptor gene

    DEFF Research Database (Denmark)

    Hvilsom, Christina; Carlsen, Frands; Siegismund, Hans R

    2008-01-01

    six among the subspecies of chimpanzees. We found the CD4 receptor to be conserved in individuals belonging to the P. t. verus subspecies and divergent from the other three subspecies, which harbored highly variable CD4 receptors. The CD4 receptor of chimpanzees differed from that of humans. We...... question whether the observed diversity can explain the species-specific differences in susceptibility to and pathogenicity of SIV/HIV....

  19. High-Density Lipoproteins-Associated Proteins and Subspecies Related to Arterial Stiffness in Young Adults with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Xiaoting Zhu

    2018-01-01

    Full Text Available Lower plasma levels of high-density lipoproteins (HDL in adolescents with type 2 diabetes (T2D have been associated with a higher pulse wave velocity (PWV, a marker of arterial stiffness. Evidence suggests that HDL proteins or particle subspecies are altered in T2D and these may drive these relationships. In this work, we set out to reveal any specific proteins and subspecies that are related to arterial stiffness in youth with T2D from proteomics data. Plasma and PWV measurements were previously acquired from lean and T2D adolescents. Each plasma sample was separated into 18 fractions and evaluated by mass spectrometry. Then, we applied a validated network-based computational approach to reveal HDL subspecies associated with PWV. Among 68 detected phospholipid-associated proteins, we found that seven were negatively correlated with PWV, indicating that they may be atheroprotective. Conversely, nine proteins show positive correlation with PWV, suggesting that they may be related to arterial stiffness. Intriguingly, our results demonstrate that apoA-I and histidine-rich glycoprotein may reverse their protective roles and become antagonistic in the setting of T2D. Furthermore, we revealed two arterial stiffness-associated HDL subspecies, each of which contains multiple PWV-related proteins. Correlation and disease association analyses suggest that these HDL subspecies might link T2D to its cardiovascular-related complications.

  20. Natural epigenetic variation within and among six subspecies of the house sparrow, Passer domesticus.

    Science.gov (United States)

    Riyahi, Sepand; Vilatersana, Roser; Schrey, Aaron W; Ghorbani Node, Hassan; Aliabadian, Mansour; Senar, Juan Carlos

    2017-11-01

    Epigenetic modifications can respond rapidly to environmental changes and can shape phenotypic variation in accordance with environmental stimuli. One of the most studied epigenetic marks is DNA methylation. In the present study, we used the methylation-sensitive amplified polymorphism (MSAP) technique to investigate the natural variation in DNA methylation within and among subspecies of the house sparrow, Passer domesticus We focused on five subspecies from the Middle East because they show great variation in many ecological traits and because this region is the probable origin for the house sparrow's commensal relationship with humans. We analysed house sparrows from Spain as an outgroup. The level of variation in DNA methylation was similar among the five house sparrow subspecies from the Middle East despite high phenotypic and environmental variation, but the non-commensal subspecies was differentiated from the other four (commensal) Middle Eastern subspecies. Further, the European subspecies was differentiated from all other subspecies in DNA methylation. Our results indicate that variation in DNA methylation does not strictly follow subspecies designations. We detected a correlation between methylation level and some morphological traits, such as standardized bill length, and we suggest that part of the high morphological variation in the native populations of the house sparrow is influenced by differentially methylated regions in specific loci throughout the genome. We also detected 10 differentially methylated loci among subspecies and three loci that differentiated between commensal or non-commensal status. Therefore, the MSAP technique detected larger scale differences among the European and non-commensal subspecies, but did not detect finer scale differences among the other Middle Eastern subspecies. © 2017. Published by The Company of Biologists Ltd.

  1. The original descriptions of reptiles and their subspecies.

    Science.gov (United States)

    Uetz, Peter; Stylianou, Alexandrea

    2018-01-24

    By August 2017 an estimated 13,047 species and subspecies of extant reptiles have been described by a total of 6,454 papers and books which are listed in a supplementary file. For 1,052 species a total of 2,452 subspecies (excluding nominate subspecies) had been described by 2017, down from 1,295 species and 4,411 subspecies in 2009, due to the elevation of many subspecies to species. Here we summarize the history of these taxon description beginning with Linnaeus in 1758. While it took 80 years to reach the first 1,000 species in 1838, new species and subspecies descriptions since then have been added at a roughly constant rate of 1000 new taxa every 12-17 years. The only exception were the decades during World Wars I and II and the beginning of this millennium when the rate of descriptions increased to now about 7 years for the last 1,000 taxa. The top 101 most productive herpetologists (in terms of "taxon output") have described more than 8,000 species and subspecies, amounting to over 60% of all currently valid taxa. More than 90% of all species were described in either English (68.2%), German (12.7%) or French (9.3%).

  2. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Tim J Bull

    Full Text Available BACKGROUND: Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. METHODS: We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5 and Modified Vaccinia Ankara (MVA delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. PRINCIPAL FINDINGS: Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. CONCLUSIONS/SIGNIFICANCE: A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium

  3. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly

  4. The complete mitochondrial genome of a Chinese rufous horseshoe bat subspecies, Rhinolophus sinicus sinicus (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Sun, Haijian; Dong, Ji; Shi, Huizhen; Ren, Min; Hua, Panyu

    2016-09-01

    There are two subspecies of Rhinolophus sinicus currently recognized in China. In this study, using next generation sequencing approaches, the complete mitochondrial genome of one subspecies R. s. sinicus was obtained. The total length of the genome sequence is 16,898 bp. The arrangement and contents of R. s. sinicus mitochondrial genes exhibit high similarity with other bats of family Rhinolophida. Phylogenetic reconstructions support the sister relationship of the two subspecies and confirm the subspecies status of our specimen.

  5. The impact of subspecialization on postgraduate medical education in neurosurgery.

    Science.gov (United States)

    Toyota, Brian D

    2005-11-01

    Medical subspecialization is a response to rapidly expanding technology and knowledge. Although beneficial to patient care, it poses a challenge to the current infrastructure of resident education. This article analyzes the advent of subspecialization, the current template of postgraduate neurosurgical education, the impact of subspecialization on postgraduate neurosurgical education, and, finally, suggests strategies to optimize professional education in the face of an increasingly subspecialized field.

  6. Natural Selection in Virulence Genes of Francisella tularensis.

    Science.gov (United States)

    Gunnell, Mark K; Robison, Richard A; Adams, Byron J

    2016-06-01

    A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution

  7. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts.

    Science.gov (United States)

    Freimoser, Florian M; Screen, Steven; Bagga, Savita; Hu, Gang; St Leger, Raymond J

    2003-01-01

    Expressed sequence tag (EST) libraries for Metarhizium anisopliae, the causative agent of green muscardine disease, were developed from the broad host-range pathogen Metarhizium anisopliae sf. anisopliae and the specific grasshopper pathogen, M. anisopliae sf. acridum. Approximately 1,700 5' end sequences from each subspecies were generated from cDNA libraries representing fungi grown under conditions that maximize secretion of cuticle-degrading enzymes. Both subspecies had ESTs for virtually all pathogenicity-related genes cloned to date from M. anisopliae, but many novel genes encoding potential virulence factors were also tagged. Enzymes with potential targets in the insect host included proteases, chitinases, phospholipases, lipases, esterases, phosphatases and enzymes producing toxic secondary metabolites. A diverse array of proteases composed 36 % of all M. anisopliae sf. anisopliae ESTs. Eighty percent of the ESTs that could be clustered into functional groups had significant matches (Ehistory of this clade.

  8. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies

    Directory of Open Access Journals (Sweden)

    Joon L. Tan

    2017-10-01

    Full Text Available Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a recombination has affected the M. abscessus complex more than mutation and positive selection; (b recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the

  9. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies

    Science.gov (United States)

    Tan, Joon L.; Ng, Kee P.; Ong, Chia S.; Ngeow, Yun F.

    2017-01-01

    Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii) are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site) identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a) recombination has affected the M. abscessus complex more than mutation and positive selection; (b) recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c) the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the diversification

  10. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  11. Spectrophotometry of Artemisia tridentata to quantitatively determine subspecies

    Science.gov (United States)

    Richardson, Bryce; Boyd, Alicia; Tobiasson, Tanner; Germino, Matthew

    2018-01-01

    Ecological restoration is predicated on our abilities to discern plant taxa. Taxonomic identification is a first step in ensuring that plants are appropriately adapted to the site. An example of the need to identify taxonomic differences comes from big sagebrush (Artemisia tridentata). This species is composed of three predominant subspecies occupying distinct environmental niches, but overlap and hybridization are common in ecotones. Restoration of A. tridentata largely occurs using wildland collected seed, but there is uncertainty in the identification of subspecies or mix of subspecies from seed collections. Laboratory techniques that can determine subspecies composition would be desirable to ensure that subspecies match the restoration site environment. In this study, we use spectrophotometry to quantify chemical differences in the water-soluble compound, coumarin. Ultraviolet (UV) absorbance of A. tridentata subsp. vaseyana showed distinct differences among A.t. tridentata and wyomingensis. No UV absorbance differences were detected between A.t. tridentata and wyomingensis. Analyses of samples from > 600 plants growing in two common gardens showed that UV absorbance was unaffected by environment. Moreover, plant tissues (leaves and seed chaff) explained only a small amount of the variance. UV fluorescence of water-eluted plant tissue has been used for many years to indicate A.t. vaseyana; however, interpretation has been subjective. Use of spectrophotometry to acquire UV absorbance provides empirical results that can be used in seed testing laboratories using the seed chaff present with the seed to certify A. tridentata subspecies composition. On the basis of our methods, UV absorbance values 3.1 would indicate either A.t. tridentata or wyomingensis. UV absorbance values between 2.7 and 3.1 would indicate a mixture of A.t. vaseyana and the other two subspecies.

  12. Interplay among Resistance Profiles, High-Risk Clones, and Virulence in the Caenorhabditis elegans Pseudomonas aeruginosa Infection Model.

    Science.gov (United States)

    Sánchez-Diener, Irina; Zamorano, Laura; López-Causapé, Carla; Cabot, Gabriel; Mulet, Xavier; Peña, Carmen; Del Campo, Rosa; Cantón, Rafael; Doménech-Sánchez, Antonio; Martínez-Martínez, Luis; Arcos, Susana C; Navas, Alfonso; Oliver, Antonio

    2017-12-01

    The increasing prevalence of nosocomial infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa is frequently linked to widespread international strains designated high-risk clones. In this work, we attempted to decipher the interplay between resistance profiles, high-risk clones, and virulence, testing a large ( n = 140) collection of well-characterized P. aeruginosa isolates from different sources (bloodstream infections, nosocomial outbreaks, cystic fibrosis, and the environment) in a Caenorhabditis elegans infection model. Consistent with previous data, we documented a clear inverse correlation between antimicrobial resistance and virulence in the C. elegans model. Indeed, the lowest virulence was linked to XDR profiles, which were typically linked to defined high-risk clones. However, virulence varied broadly depending on the involved high-risk clone; it was high for sequence type 111 (ST111) and ST235 but very low for ST175. The highest virulence of ST235 could be attributed to its exoU + type III secretion system (TTSS) genotype, which was found to be linked with higher virulence in our C. elegans model. Other markers, such as motility or pigment production, were not essential for virulence in the C. elegans model but seemed to be related with the higher values of the statistical normalized data. In contrast to ST235, the ST175 high-risk clone, which is widespread in Spain and France, seems to be associated with a particularly low virulence in the C. elegans model. Moreover, the previously described G154R AmpR mutation, prevalent in ST175, was found to contribute to the reduced virulence, although it was not the only factor involved. Altogether, our results provide a major step forward for understanding the interplay between P. aeruginosa resistance profiles, high-risk clones, and virulence. Copyright © 2017 American Society for Microbiology.

  13. Virulence differences among Francisella tularensis subsp. tularensis clades in mice.

    Directory of Open Access Journals (Sweden)

    Claudia R Molins

    Full Text Available Francisella tularensis subspecies tularensis (type A and holarctica (type B are of clinical importance in causing tularemia. Molecular typing methods have further separated type A strains into three genetically distinct clades, A1a, A1b and A2. Epidemiological analyses of human infections in the United States suggest that A1b infections are associated with a significantly higher mortality rate as compared to infections caused by A1a, A2 and type B. To determine if genetic differences as defined by molecular typing directly correlate with differences in virulence, A1a, A1b, A2 and type B strains were compared in C57BL/6 mice. Here we demonstrate significant differences between survival curves for infections caused by A1b versus A1a, A2 and type B, with A1b infected mice dying earlier than mice infected with A1a, A2 or type B; these results were conserved among multiple strains. Differences were also detected among type A clades as well as between type A clades and type B with respect to bacterial burdens, and gross anatomy in infected mice. Our results indicate that clades defined within F. tularensis subsp. tularensis by molecular typing methods correlate with virulence differences, with A1b strains more virulent than A1a, A2 and type B strains. These findings indicate type A strains are not equivalent with respect to virulence and have important implications for public health as well as basic research programs.

  14. A new subspecies of Typhlosaurus lineatus Boulenger 1887 ...

    African Journals Online (AJOL)

    1986-10-01

    Oct 1, 1986 ... totale ventrale skubteliings. Geografiese afsondering is oak duidelik. Introduction. The genus TyphlosauTlls Wiegmann. 1834 has recently been revised by Broadley (1968). He lists 12 species and subspecies including three subspecies of Tlinealus. One of these, T. I. subtaenialus Broadley. differs from the.

  15. Multiple plasmid-borne virulence genes of Clavibacter michiganensis ssp. capsici critical for disease development in pepper.

    Science.gov (United States)

    Hwang, In Sun; Oh, Eom-Ji; Kim, Donghyuk; Oh, Chang-Sik

    2018-02-01

    Clavibacter michiganensis ssp. capsici is a Gram-positive plant-pathogenic bacterium causing bacterial canker disease in pepper. Virulence genes and mechanisms of C. michiganensis ssp. capsici in pepper have not yet been studied. To identify virulence genes of C. michiganensis ssp. capsici, comparative genome analyses with C. michiganensis ssp. capsici and its related C. michiganensis subspecies, and functional analysis of its putative virulence genes during infection were performed. The C. michiganensis ssp. capsici type strain PF008 carries one chromosome (3.056 Mb) and two plasmids (39 kb pCM1 Cmc and 145 kb pCM2 Cmc ). The genome analyses showed that this bacterium lacks a chromosomal pathogenicity island and celA gene that are important for disease development by C. michiganensis ssp. michiganensis in tomato, but carries most putative virulence genes in both plasmids. Virulence of pCM1 Cmc -cured C. michiganensis ssp. capsici was greatly reduced compared with the wild-type strain in pepper. The complementation analysis with pCM1 Cmc -located putative virulence genes showed that at least five genes, chpE, chpG, ppaA1, ppaB1 and pelA1, encoding serine proteases or pectate lyase contribute to disease development in pepper. In conclusion, C. michiganensis ssp. capsici has a unique genome structure, and its multiple plasmid-borne genes play critical roles in virulence in pepper, either separately or together. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States.

    Science.gov (United States)

    Randall, Jennifer J; Goldberg, Natalie P; Kemp, John D; Radionenko, Maxim; French, Jason M; Olsen, Mary W; Hanson, Stephen F

    2009-09-01

    Xylella fastidiosa, the causal agent of several scorch diseases, is associated with leaf scorch symptoms in Chitalpa tashkentensis, a common ornamental landscape plant used throughout the southwestern United States. For a number of years, many chitalpa trees in southern New Mexico and Arizona exhibited leaf scorch symptoms, and the results from a regional survey show that chitalpa trees from New Mexico, Arizona, and California are frequently infected with X. fastidiosa. Phylogenetic analysis of multiple loci was used to compare the X. fastidiosa infecting chitalpa strains from New Mexico, Arizona, and trees imported into New Mexico nurseries with previously reported X. fastidiosa strains. Loci analyzed included the 16S ribosome, 16S-23S ribosomal intergenic spacer region, gyrase-B, simple sequence repeat sequences, X. fastidiosa-specific sequences, and the virulence-associated protein (VapD). This analysis indicates that the X. fastidiosa isolates associated with infected chitalpa trees in the Southwest are a highly related group that is distinct from the four previously defined taxons X. fastidiosa subsp. fastidiosa (piercei), X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, and X. fastidiosa subsp. pauca. Therefore, the classification proposed for this new subspecies is X. fastidiosa subsp. tashke.

  17. Phylogenetic and Diversity Analysis of Dactylis glomerata Subspecies Using SSR and IT-ISJ Markers.

    Science.gov (United States)

    Yan, Defei; Zhao, Xinxin; Cheng, Yajuan; Ma, Xiao; Huang, Linkai; Zhang, Xinquan

    2016-10-31

    The genus Dactylis , an important forage crop, has a wide geographical distribution in temperate regions. While this genus is thought to include a single species, Dactylis glomerata , this species encompasses many subspecies whose relationships have not been fully characterized. In this study, the genetic diversity and phylogenetic relationships of nine representative Dactylis subspecies were examined using SSR and IT-ISJ markers. In total, 21 pairs of SSR primers and 15 pairs of IT-ISJ primers were used to amplify 295 polymorphic bands with polymorphic rates of 100%. The average polymorphic information contents (PICs) of SSR and IT-ISJ markers were 0.909 and 0.780, respectively. The combined data of the two markers indicated a high level of genetic diversity among the nine D. glomerata subspecies, with a Nei's gene diversity index value of 0.283 and Shannon's diversity of 0.448. Preliminarily phylogenetic analysis results revealed that the 20 accessions could be divided into three groups (A, B, C). Furthermore, they could be divided into five clusters, which is similar to the structure analysis with K = 5. Phylogenetic placement in these three groups may be related to the distribution ranges and the climate types of the subspecies in each group. Group A contained eight accessions of four subspecies, originating from the west Mediterranean, while Group B contained seven accessions of three subspecies, originating from the east Mediterranean.

  18. Taxonomic considerations in listing subspecies under the U.S. Endangered Species Act.

    Science.gov (United States)

    Haig, Susan M; Beever, Erik A; Chambers, Steven M; Draheim, Hope M; Dugger, Bruce D; Dunham, Susie; Elliott-Smith, Elise; Fontaine, Joseph B; Kesler, Dylan C; Knaus, Brian J; Lopes, Iara F; Loschl, Pete; Mullins, Thomas D; Sheffield, Lisa M

    2006-12-01

    The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.

  19. Comparison of acute infection of calves exposed to a high-virulence or low-virulence bovine viral diarrhea virus or a HoBi-like virus

    Science.gov (United States)

    The objective of this research was to compare clinical presentation following acute infection of cattle with either a high virulence (HV) BVDV or a low virulence (LV) BVDV to clinical presentation following infection with a viral strain that belongs to an emerging species of pestivirus. The viral st...

  20. Subspecies distribution and macrolide and fluoroquinolone resistance genetics of Mycobacterium abscessus in Korea.

    Science.gov (United States)

    Kim, J; Sung, H; Park, J-S; Choi, S-H; Shim, T-S; Kim, M-N

    2016-01-01

    Treating Mycobacterium abscessus infections with antimicrobials remains difficult, possibly due to drug resistance. To investigate the subspecies distribution of M. abscessus and its correlation with antibiotic susceptibility and the genetics of antibiotic resistance, focusing on macrolides and fluoroquinolones, in the Republic of Korea. A total of 53 M. abscessus isolates were identified to the subspecies level by sequencing of hsp65 and erm(41). The minimal inhibitory concentrations (MICs) of clarithromycin (CLM) and ciprofloxacin (CFX) were determined using Sensititre™ RAPMYCO plates. The rrl, gyrA and gyrB genes were sequenced to elucidate the molecular mechanisms of macrolide and fluoroquinolone resistance. Isolates included 22 M. abscessus subsp. abscessus and 31 M. abscessus subsp. bolletii. erm(41) sequences showing subspecies-specific deletions and sequence variations in the 28th nucleotide were concordant with inducible CLM resistance; however, mutations in rrl were not detected. Low- and high-level CFX resistance was observed in respectively 19 (35.8%) and 10 (18.9%) of the 53 clinical isolates, regardless of subspecies. However, no non-synonymous mutations were detected in gyrA or gyrB. Sequencing of the erm gene and subspeciation of M. abscessus may be used to predict inducible macrolide susceptibility. Further studies of the relationship between specific mutations in gyrA or gyrB to MIC change are required.

  1. Galleria mellonella model identifies highly virulent strains among all major molecular types of Cryptococcus gattii.

    Directory of Open Access Journals (Sweden)

    Carolina Firacative

    Full Text Available Cryptococcosis is mainly caused by Cryptococcus neoformans. However, the number of cases due to C. gattii is increasing, affecting mainly immunocompetent hosts. C. gattii is divided into four major molecular types, VGI to VGIV, which differ in their host range, epidemiology, antifungal susceptibility and geographic distribution. Besides studies on the Vancouver Island outbreak strains, which showed that the subtype VGIIa is highly virulent compared to the subtype VGIIb, little is known about the virulence of the other major molecular types. To elucidate the virulence potential of the major molecular types of C. gattii, Galleria mellonella larvae were inoculated with ten globally selected strains per molecular type. Survival rates were recorded and known virulence factors were studied. One VGII, one VGIII and one VGIV strain were more virulent (p 0.05, 21 (five VGI, five VGII, four VGIII and seven VGIV were less virulent (p <0.05 while one strain of each molecular type were avirulent. Cell and capsule size of all strains increased markedly during larvae infection (p <0.001. No differences in growth rate at 37°C were observed. Melanin synthesis was directly related with the level of virulence: more virulent strains produced more melanin than less virulent strains (p <0.05. The results indicate that all C. gattii major molecular types exhibit a range of virulence, with some strains having the potential to be more virulent. The study highlights the necessity to further investigate the genetic background of more and less virulent strains in order to recognize critical features, other than the known virulence factors (capsule, melanin and growth at mammalian body temperature, that maybe crucial for the development and progression of cryptococcosis.

  2. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.

    Science.gov (United States)

    Tanigawa, Kana; Watanabe, Koichi

    2011-03-01

    Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.

  3. Novel molecular markers differentiate Oncorhynchus mykiss (rainbow trout and steelhead) and the O. clarki (cutthroat trout) subspecies

    Science.gov (United States)

    Ostberg, C.O.; Rodriguez, R.J.

    2002-01-01

    A suite of 26 PCR-based markers was developed that differentiates rainbow (Oncorhynchus mykiss) and coastal cutthroat trout (O. clarki clarki). The markers also differentiated rainbow from other cutthroat trout subspecies (O. clarki), and several of the markers differentiated between cutthroat trout subspecies. This system has numerous positive attributes, including: nonlethal sampling, high species-specificity and products that are easily identified and scored using agarose gel electrophoresis. The methodology described for developing the markers can be applied to virtually any system in which numerous markers are desired for identifying or differentiating species or subspecies.

  4. Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes

    Directory of Open Access Journals (Sweden)

    Suat Moi Puah

    2016-02-01

    Full Text Available Staphylococcus aureus is one of the leading causes of food poisoning. Its pathogenicity results from the possession of virulence genes that produce different toxins which result in self-limiting to severe illness often requiring hospitalization. In this study of 200 sushi and sashimi samples, S. aureus contamination was confirmed in 26% of the food samples. The S. aureus isolates were further characterized for virulence genes and antibiotic susceptibility. A high incidence of virulence genes was identified in 96.2% of the isolates and 20 different virulence gene profiles were confirmed. DNA amplification showed that 30.8% (16/52 of the S. aureus carried at least one SE gene which causes staphylococcal food poisoning. The most common enterotoxin gene was seg (11.5% and the egc cluster was detected in 5.8% of the isolates. A combination of hla and hld was the most prevalent coexistence virulence genes and accounted for 59.6% of all isolates. Antibiotic resistance studies showed tetracycline resistance to be the most common at 28.8% while multi-drug resistance was found to be low at 3.8%. In conclusion, the high rate of S. aureus in the sampled sushi and sashimi indicates the need for food safety guidelines.

  5. Morphometric and molecular differentiation between quetzal subspecies of Pharomachrus mocinno (Trogoniformes: Trogonidae).

    Science.gov (United States)

    Solórzano, Sofía; Oyama, Ken

    2010-03-01

    The resplendent Quetzal (Pharomachrus mocinno) is an endemic Mesoamerican bird species of conservation concern. Within this species, the subspecies P. m. costaricensis and P. m. mocinno, have been recognized by apparent morphometric differences; however, presently there is no sufficient data for confirmation. We analyzed eight morphometric attributes of the body from 41 quetzals: body length, tarsus and cord wing, as well as the length, wide and depth of the bill, body weight; and in the case of the males, the length of the long upper-tail cover feathers. We used multivariate analyses to discriminate morphometric differences between subspecies and contrasted each morphometric attribute between and within subspecies with paired non-parametric Wilcoxon test. In order to review the intraspecific taxonomic status of this bird, we added phylogenetic analysis, and genetic divergence and differentiation based on nucleotide variations in four sequences of mtDNA. The nucleotide variation was estimated in control region, subunit NDH6, and tRNAGlu and tRNAPhe in 26 quetzals from eight localities distributed in five countries. We estimated the genetic divergence and differentiation between subspecies according to a mutation-drift equilibrium model. We obtained the best mutation nucleotide model following the procedure implemented in model test program. We constructed the phylogenetic relationships between subspecies by maximum parsimony and maximum likelihood using PAUP, as well as with Bayesian statistics. The multivariate analyses showed two different morphometric groups, and individuals clustered according to the subspecies that they belong. The paired comparisons between subspecies showed strong differences in most of the attributes analyzed. Along the four mtDNA sequences, we identified 32 nucleotide positions that have a particular nucleotide according to the quetzals subspecies. The genetic divergence and the differentiation was strong and markedly showed two groups

  6. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    Science.gov (United States)

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  7. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia.

    Directory of Open Access Journals (Sweden)

    Alexander eRakin

    2012-11-01

    Full Text Available Low molecular weight siderophores are used by many living organisms to scavenge scarcely available ferric iron. Presence of at least a single siderophore-based iron acquisition system is usually acknowledged as a virulence-associated trait and a prerequisite to become an efficient and successful pathogen. Currently it is assumed that yersiniabactin (Ybt is the solely functional endogenous siderophore iron uptake system in highly virulent Yersinia (Yersinia pestis, Y. pseudotuberculosis and Y. enterocolitica biotype 1B. Genes responsible for biosynthesis, transport and regulation of the yersiniabactin (ybt production are clustered on a mobile genetic element, the High Pathogenicity Island (HPI that is responsible for broad dissemination of the ybt genes in Enterobacteriaceae. However, the ybt gene cluster is absent from nearly half of Y. pseudotuberculosis O3 isolates and epidemic Y. pseudotuberculosis O1 isolates responsible for the Far East Scarlet-like Fever. Several potential siderophore-mediated iron uptake gene clusters are documented in Yersinia genomes, however neither of them have been proven to be functional. It has been suggested that at least two siderophores alternative to Ybt may operate in the highly virulent Yersinia pestis / Y. pseudotuberculosis group, and are referred to as pseudochelin (Pch and yersiniachelin (Ych. Furthermore, most sporadic Y. pseudotuberculosis O1 strains possess gene clusters encoding all three iron scavenging systems. Thus, the Ybt system appears not to be the sole endogenous siderophore iron uptake system in the highly virulent yersiniae and may be efficiently substituted and / or supplemented by alternative iron scavenging systems.

  8. Reconstructing the highly virulent Classical Swine Fever Virus strain Koslov

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Nielsen, Jens

    -prone nature of the RNA-dependent RNA polymerase resulting in the majority of circulating forms being non-functional. However, since any infectious virus particle should necessarily be the offspring of a functional virus, we hypothesized that it should be possible to synthesize a highly virulent form...

  9. Genospecies and virulence factors of Aeromonas species in different sources in a North African country

    Directory of Open Access Journals (Sweden)

    Khalifa Sifaw Ghenghesh

    2014-09-01

    Full Text Available Introduction: Aeromonads of medical importance have been reported from numerous clinical, food, and water sources, but identification of genospecies and virulence factors of Aeromonas species from countries in North Africa and the Middle East are few. Methods: In total 99 Aeromonas species isolates from different sources (diarrheal children [n=23], non-diarrheal children [n=16], untreated drinking water from wells [n=32], and chicken carcasses [n=28] in Tripoli, Libya, were included in the present investigation. Genus identification was confirmed by biochemical analysis, and genospecies were determined using a combination of 16S rDNA variable region and gyrB sequence analysis. Polymerase chain reaction (PCR was used to detect genes encoding toxins from 52 of the isolates. Results: We identified 44 isolates (44% as A. hydrophila (3 [3.0%] subspecies anaerogenes, 23 [23%] subspecies dhakensis, and 18 [18%] subspecies ranae; 27 isolates (27% as A. veronii; 23 isolates (23% as A. caviae; and 5 isolates (5.0% as other genospecies. The genes encoding aerolysin (aer, cytolytic enterotoxin (act, and A. hydrophila isolate SSU enterotoxin (ast were detected in 45 (87%, 4 (7.7%, and 9 (17% of the 52 isolates tested, respectively. The gene encoding an extracellular lipase (alt was not detected. Conclusion: The majority of aeromonads from Libya fall within three genospecies (i.e. A. hydrophila, A. veronii, and A. caviae, and genes coding for toxin production are common among them.

  10. Streptococcal toxic-shock syndrome due to Streptococcus dysgalactiae subspecies equisimilis in breast cancer-related lymphedema: a case report.

    Science.gov (United States)

    Sumazaki, Makoto; Saito, Fumi; Ogata, Hideaki; Yoshida, Miho; Kubota, Yorichika; Magoshi, Syunsuke; Kaneko, Hironori

    2017-07-14

    Breast cancer-related lymphedema often causes cellulitis and is one of the most common complications after breast cancer surgery. Streptococci are the major pathogens underlying such cellulitis. Among the streptococci, the importance of the Lancefield groups C and G is underappreciated; most cases involve Streptococcus dysgalactiae subspecies equisimilis. Despite having a relatively weak toxicity compared with group A streptococci, Streptococcus dysgalactiae subspecies equisimilis is associated with a mortality rate that is as high as that of group A streptococci in cases of invasive infection because Streptococcus dysgalactiae subspecies equisimilis mainly affects elderly individuals who already have various comorbidities. An 83-year-old Japanese woman with breast cancer-related lymphedema in her left upper limb was referred to our hospital with high fever and acute pain with erythema in her left arm. She showed septic shock with disseminated intravascular coagulation. Blood culture showed positive results for Streptococcus dysgalactiae subspecies equisimilis, confirming a diagnosis of streptococcal toxic-shock syndrome. She survived after successful intensive care. To the best of our knowledge, this case represents the first report of Streptococcus dysgalactiae subspecies equisimilis-induced streptococcal toxic-shock syndrome in a patient with breast cancer-related lymphedema. Breast cancer-related lymphedema is a common problem, and we must pay attention to invasive streptococcal soft tissue infections, particularly in elderly patients with chronic disease.

  11. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    Science.gov (United States)

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  12. Russian isolates enlarge the known geographic diversity of Francisella tularensis subsp. mediasiatica.

    Directory of Open Access Journals (Sweden)

    Vitalii Timofeev

    Full Text Available Francisella tularensis, a small Gram-negative bacterium, is capable of infecting a wide range of animals, including humans, and causes a plague-like disease called tularemia-a highly contagious disease with a high mortality rate. Because of these characteristics, F. tularensis is considered a potential agent of biological terrorism. Currently, F. tularensis is divided into four subspecies, which differ in their virulence and geographic distribution. Two of them, subsp. tularensis (primarily found in North America and subsp. holarctica (widespread across the Northern Hemisphere, are responsible for tularemia in humans. Subsp. novicida is almost avirulent in humans. The fourth subspecies, subsp. mediasiatica, is the least studied because of its limited distribution and impact in human health. It is found only in sparsely populated regions of Central Asia. In this report, we describe the first focus of naturally circulating F. tularensis subsp. mediasiatica in Russia. We isolated and characterized 18 strains of this subspecies in the Altai region. All strains were highly virulent in mice. The virulence of subsp. mediasiatica in a vaccinated mouse model is intermediate between that of subsp. tularensis and subsp. holarctica. Based on a multiple-locus variable number tandem repeat analysis (MLVA, we show that the Altaic population of F. tularensis subsp. mediasiatica is genetically distinct from the classical Central Asian population, and probably is endemic to Southern Siberia. We propose to subdivide the mediasiatica subspecies into three phylogeographic groups, M.I, M.II and M.III.

  13. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.

    Science.gov (United States)

    Ren, Jun; Prescott, John F

    2004-11-15

    An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.

  14. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Hwang, Byung Ho; Nou, Ill-Sup

    2016-10-24

    Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea . Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA) and salicylic acid (SA) treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS) in cabbage and kale and of neoglucobrassicin (NGBS) in broccoli compared to controls. Notably higher expression of ST5a (Bol026200), CYP81F1 (Bol028913, Bol028914) and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286), ST5b , ST5c , AOP2 , FMOGS-OX5 (Bol031350) and GSL-OH (Bol033373) was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea

  15. The complete mitochondrial DNA genome of a greater horseshoe bat subspecies, Rhinolophus ferrumequinum quelpartis (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Yoon, Kwang Bae; Kim, Ji Young; Kim, Hye Ri; Cho, Jae Youl; Park, Yung Chul

    2013-02-01

    There are two subspecies of Rhinolophus ferrumequinum currently recognized in South Korea. The Korean greater horseshoe bat subspecies, Rhinolophus ferrumequinum quelpartis, is distributed only in Jeju Island. The complete mitochondrial genome of the island subspecies was determined and revealed 99.7% similarity to the mainland subspecies Rhinolophus ferrumequinum korai. If d-loop region is excluded, similarity of the two genomes was 99.9%.

  16. Experimental studies of adaptation in Clarkia xantiana. III. Phenotypic selection across a subspecies border.

    Science.gov (United States)

    Anderson, Jill T; Eckhart, Vincent M; Geber, Monica A

    2015-09-01

    Sister taxa with distinct phenotypes often occupy contrasting environments in parapatric ranges, yet we generally do not know whether trait divergence reflects spatially varying selection. We conducted a reciprocal transplant experiment to test whether selection favors "native phenotypes" in two subspecies of Clarkia xantiana (Onagraceae), an annual plant in California. For four quantitative traits that differ between subspecies, we estimated phenotypic selection in subspecies' exclusive ranges and their contact zone in two consecutive years. We predicted that in the arid, pollinator-scarce eastern region, selection favors phenotypes of the native subspecies parviflora: small leaves, slow leaf growth, early flowering, and diminutive flowers. In the wetter, pollinator-rich, western range of subspecies xantiana, we expected selection for opposite phenotypes. We investigated pollinator contributions to selection by comparing naturally pollinated and pollen-supplemented individuals. For reproductive traits and for subspecies xantiana, selection generally matched expectations. The contact zone sometimes showed distinctive selection, and in ssp. parviflora selection sometimes favored nonnative phenotypes. Pollinators influenced selection on flowering time but not on flower size. Little temporal variation in selection occurred, possibly because of plastic trait responses across years. Though there were exceptions and some causes of selection remain obscure, phenotypic differentiation between subspecies appears to reflect spatially variable selection. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  17. Differentiation of Melipona quadrifasciata L. (Hymenoptera, Apidae, Meliponini subspecies using cytochrome b PCR-RFLP patterns

    Directory of Open Access Journals (Sweden)

    Rogério O. Souza

    2008-01-01

    Full Text Available Melipona quadrifasciata quadrifasciata and M. quadrifasciata anthidioides are subspecies of M. quadrifasciata, a stingless bee species common in coastal Brazil. These subspecies are discriminated by the yellow stripe pattern of the abdominal tergites. We found Vsp I restriction patterns in the cytochrome b region closely associated to each subspecies in 155 M. quadrifasciata colonies of different geographical origin. This mitochondrial DNA molecular marker facilitates diagnosis of M. quadrifasciata subspecies matrilines and can be used to establish their natural distribution and identify hybrid colonies.

  18. Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA

    Directory of Open Access Journals (Sweden)

    Trebesius Karlheinz

    2010-03-01

    Full Text Available Abstract Background Francisella (F. tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR have been developed but are restricted to reference laboratories. Results The complete 23S rRNA genes of representative strains of F. philomiragia and all subspecies of F. tularensis were sequenced. Single nucleotide polymorphisms on species and subspecies level were confirmed by partial amplification and sequencing of 24 additional strains. Fluorescent In Situ Hybridization (FISH assays were established using species- and subspecies-specific probes. Different FISH protocols allowed the positive identification of all 4 F. philomiragia strains, and more than 40 F. tularensis strains tested. By combination of different probes, it was possible to differentiate the F. tularensis subspecies holarctica, tularensis, mediasiatica and novicida. No cross reactivity with strains of 71 clinically relevant bacterial species was observed. FISH was also successfully applied to detect different F. tularensis strains in infected cells or tissue samples. In blood culture systems spiked with F. tularensis, bacterial cells of different subspecies could be separated within single samples. Conclusion We could show that FISH targeting the 23S rRNA gene is a rapid and versatile method for the identification and differentiation of F. tularensis isolates from both laboratory cultures and clinical samples.

  19. A Molecular Method for the Identification of Honey Bee Subspecies Used by Beekeepers in Russia

    Science.gov (United States)

    Syromyatnikov, Mikhail Y.; Borodachev, Anatoly V.; Kokina, Anastasia V.; Popov, Vasily N.

    2018-01-01

    Apis mellifera L. includes several recognized subspecies that differ in their biological properties and agricultural characteristics. Distinguishing between honey bee subspecies is complicated. We analyzed the Folmer region of the COX1 gene in honey bee subspecies cultivated at bee farms in Russia and identified subspecies-specific SNPs. DNA analysis revealed two clearly distinct haplogroups in A. mellifera mellifera. The first one was characterized by multiple cytosine-thymine (thymine–cytosine) transitions, one adenine-guanine substitution, and one thymine–adenine substitution. The nucleotide sequence of the second haplogroup coincided with sequences from other subspecies, except the unique C/A SNP at position 421 of the 658-bp Folmer region. A. mellifera carnica and A. mellifera carpatica could be distinguished from A. mellifera mellifera and A. mellifera caucasica by the presence of the A/G SNP at position 99 of the 658-bp Folmer region. The G/A SNP at position 448 was typical for A. mellifera carnica. A. mellifera caucasica COX1 sequence lacked all the above-mentioned sites. We developed a procedure for rapid identification of honey bee subspecies by PCR with restriction fragment length polymorphism (RFLP) using mutagenic primers. The developed molecular method for honey bee subspecies identification is fast and inexpensive. PMID:29382048

  20. Palynological characteristics of the heterostylous subspecies of Linum mucronatum Bertol

    Directory of Open Access Journals (Sweden)

    Talebi, S. M.

    2014-12-01

    Full Text Available Linum mucronatum is a heterostylous species from sect. Syllinum with four subspecies in Iran. The present study examines palynological characteristics of the heterostylous subspecies of Linum mucronatum, pollen characters of brevistylous individuals (pins as well as longistylous individuals (thrums of these plants by scanning electron microscope and light microscope using the prolonged acetolysis procedure. Sixteen qualitative and quantitative characters were investigated. Pollen equatorial shapes varied between pin and thrum individuals of each subspecies with the exception of L. mucronatum subsp. assyriacum. Pollen sculptures varied between pin and thrum samples of each subspecies and were seen in the gemmate, clavate and baculate shapes. In addition, quantitative palynological characters differed between plants and ANOVA test showed significant variations for traits such as equatorial length, colpi width and apocolpium diameter. Hetrostylous individuals of each subspecies were separated from others in the UPGMA tree and also in the PCO and PCA plots. This study confirmed variations in pollen features between pin and thrum individuals of each subspecies.Linum mucronatum es una especie con heterostilia, que pertenece a la sección Syllinum del género Linum, y tiene cuatro subespecies en Irán. En el presente estudio se examinan las características palinológicas de las subespecies heterostilas de Linum mucronatum Bertol., así como los caracteres polínicos de individuos de los morfos brevistilo (pin y longistilo (thrum de estas plantas, mediante microscopía electrónica de scanning y microscopía óptica usando el método de acetolisis prolongada. Se estudiaron un total de 16 caracteres cualitativos y cuantitativos. La forma ecuatorial del polen varía entre los morfos pin y thrum en todas las subspecies, excepto en L. mucronatum subsp. assyriacum. La ornamentación también varía entre las muestras de morfos pin y thrum de cada subespecie

  1. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    Science.gov (United States)

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  2. Responses to playback of different subspecies songs in the Reed Bunting (Emberiza s. schoeniclus)

    DEFF Research Database (Denmark)

    Matessi, Giuliano; Dabelsteen, Torben; Pilastro, A.

    2000-01-01

    Populations of Reed Buntings Emberiza schoeniclus in the western Palearctic are classified in two major subspecies groups according to morphology: northern migratory schoeniclus and Mediterranean resident intermedia. Songs of the two groups differ mainly in complexity and syllable structure......, with intermedia songs being more complex. We explored the possibilities of song as a subspecies isolating mechanism by testing if male schoeniclus Reed Buntings reacted differently to field playbacks of songs from their own subspecies group, from the foreign subspecies group and from a control species...

  3. Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies.

    Science.gov (United States)

    Castro, Edgar Neri; Lomonte, Bruno; del Carmen Gutiérrez, María; Alagón, Alejandro; Gutiérrez, José María

    2013-07-11

    The composition and toxicological profile of the venom of the rattlesnake Crotalus simus in Mexico was analyzed at the subspecies and individual levels. Venoms of the subspecies C. s. simus, C. s. culminatus and C. s. tzabcan greatly differ in the expression of the heterodimeric neurotoxin complex 'crotoxin', with highest concentrations in C. s. simus, followed by C. s. tzabcan, whereas the venom of C. s. culminatus is almost devoid of this neurotoxic PLA2. This explains the large variation in lethality (highest in C. s. simus, which also exerts higher myotoxicity). Coagulant activity on plasma and fibrinogen occurs with the venoms of C. s. simus and C. s. tzabcan, being absent in C. s. culminatus which, in turn, presents higher crotamine-like activity. Proteomic analysis closely correlates with toxicological profiles, since the venom of C. s. simus has high amounts of crotoxin and of serine proteinases, whereas the venom of C. s. culminatus presents higher amounts of metalloproteinases and crotamine. This complex pattern of intraspecies venom variation provides valuable information for the diagnosis and clinical management of envenoming by this species in Mexico, as well as for the preparation of venom pools for the production and quality control of antivenoms. This study describes the variation in venom composition and activities of the three subspecies of Crotalus simus from Mexico. Results demonstrate that there is a notorious difference in these venoms, particularly regarding the content of the potent neurotoxic phospholipase A2 complex 'crotoxin'. In addition, other differences were observed regarding myotoxic and coagulant activities, and expression of the myotoxin 'crotamine'. These findings have implications in, at least, three levels: (a) the adaptive role of variations in venom composition; (b) the possible differences in the clinical manifestations of envenomings by these subspecies in Mexico; and (c) the design of venom mixtures for the preparation of

  4. Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: potential candidates involved in speciation

    Science.gov (United States)

    Hurst, Jane L.; Beynon, Robert J.; Armstrong, Stuart D.; Davidson, Amanda J.; Roberts, Sarah A.; Gómez-Baena, Guadalupe; Smadja, Carole M.; Ganem, Guila

    2017-01-01

    When hybridisation carries a cost, natural selection is predicted to favour evolution of traits that allow assortative mating (reinforcement). Incipient speciation between the two European house mouse subspecies, Mus musculus domesticus and M.m.musculus, sharing a hybrid zone, provides an opportunity to understand evolution of assortative mating at a molecular level. Mouse urine odours allow subspecific mate discrimination, with assortative preferences evident in the hybrid zone but not in allopatry. Here we assess the potential of MUPs (major urinary proteins) as candidates for signal divergence by comparing MUP expression in urine samples from the Danish hybrid zone border (contact) and from allopatric populations. Mass spectrometric characterisation identified novel MUPs in both subspecies involving mostly new combinations of amino acid changes previously observed in M.m.domesticus. The subspecies expressed distinct MUP signatures, with most MUPs expressed by only one subspecies. Expression of at least eight MUPs showed significant subspecies divergence both in allopatry and contact zone. Another seven MUPs showed divergence in expression between the subspecies only in the contact zone, consistent with divergence by reinforcement. These proteins are candidates for the semiochemical barrier to hybridisation, providing an opportunity to characterise the nature and evolution of a putative species recognition signal. PMID:28337988

  5. Subspecies composition and founder contribution of the captive U.S. chimpanzee (Pan troglodytes) population.

    Science.gov (United States)

    Ely, John J; Dye, Brent; Frels, William I; Fritz, Jo; Gagneux, Pascal; Khun, Henry H; Switzer, William M; Lee, D Rick

    2005-10-01

    Chimpanzees are presently classified into three subspecies: Pan troglodytes verus from west Africa, P.t. troglodytes from central Africa, and P.t. schweinfurthii from east Africa. A fourth subspecies (P.t. vellerosus), from Cameroon and northern Nigeria, has been proposed. These taxonomic designations are based on geographical origins and are reflected in sequence variation in the first hypervariable region (HVR-I) of the mtDNA D-loop. Although advances have been made in our understanding of chimpanzee phylogenetics, little has been known regarding the subspecies composition of captive chimpanzees. We sequenced part of the mtDNA HVR-I region in 218 African-born population founders and performed a phylogenetic analysis with previously characterized African sequences of known provenance to infer subspecies affiliations. Most founders were P.t. verus (95.0%), distantly followed by the troglodytes schweinfurthii clade (4.6%), and a single P.t. vellerosus (0.4%). Pedigree-based estimates of genomic representation in the descendant population revealed that troglodytes schweinfurthii founder representation was reduced in captivity, vellerosus representation increased due to prolific breeding by a single male, and reproductive variance resulted in uneven representation among male P.t.verus founders. No increase in mortality was evident from between-subspecies interbreeding, indicating a lack of outbreeding depression. Knowledge of subspecies and their genomic representation can form the basis for phylogenetically informed genetic management of extant chimpanzees to preserve rare genetic variation for research, conservation, or possible future breeding. Copyright 2005 Wiley-Liss, Inc.

  6. Invasion thresholds and the evolution of nonequilibrium virulence.

    Science.gov (United States)

    Bull, James J; Ebert, Dieter

    2008-02-01

    The enterprise of virulence management attempts to predict how social practices and other factors affect the evolution of parasite virulence. These predictions are often based on parasite optima or evolutionary equilibria derived from models of host-parasite dynamics. Yet even when such models accurately capture the parasite optima, newly invading parasites will typically not be at their optima. Here we show that parasite invasion of a host population can occur despite highly nonoptimal virulence. Fitness improvements soon after invasion may proceed through many steps with wide changes in virulence, because fitness depends on transmission as well as virulence, and transmission improvements can overwhelm nonoptimal virulence. This process is highly sensitive to mutation supply and the strength of selection. Importantly, the same invasion principle applies to the evolution of established parasites, whenever mutants arise that overcome host immunity/resistance. A host population may consequently experience repeated invasions of new parasite variants and possible large shifts in virulence as it evolves in an arms race with the parasite. An experimental study of phage lysis time and examples of mammalian viruses matching some of these characteristics are reviewed.

  7. Spatial genetic structure across a hybrid zone between European rabbit subspecies

    Directory of Open Access Journals (Sweden)

    Fernando Alda

    2014-09-01

    Full Text Available The Iberian Peninsula is the only region in the world where the two existing subspecies of the European rabbit (Oryctolagus cuniculus naturally occur and hybridize. In this study we explore the relative roles of historical and contemporary processes in shaping the spatial genetic structure of the rabbit across its native distribution range, and how they differently affect each subspecies and the hybrid zone. For that purpose we obtained multilocus genotypes and mitochondrial DNA data from 771 rabbits across most of the distribution range of the European rabbit in Spain. Based on the nuclear markers we observed a hierarchical genetic structure firstly comprised by two genetic groups, largely congruent with the mitochondrial lineages and subspecies distributions (O. c. algirus and O. c. cuniculus, which were subsequently subdivided into seven genetic groups. Geographic distance alone emerged as an important factor explaining genetic differentiation across the whole range, without the need to invoke for the effect for geographical barriers. Additionally, the significantly positive spatial correlation up to a distance of only 100 km supported the idea that differentiation at a local level is of greater importance when considering the species overall genetic structure. When looking at the subspecies, northern populations of O. c. cuniculus showed more spatial genetic structure and differentiation than O. c. algirus. This could be due to local geographic barriers, limited resources, soil type and/or social behavior limiting dispersal. The hybrid zone showed similar genetic structure to the southern populations but a larger introgression from the northern lineage genome. These differences have been attributed to selection against the hybrids rather than to behavioral differences between subspecies. Ultimately, the genetic structure of the rabbit in its native distribution range is the result of an ensemble of factors, from geographical and ecological

  8. Evidence for Bergmann's Rule and Not Allopatric Subspeciation in the Threatened Kaka (Nestor meridionalis).

    Science.gov (United States)

    Dussex, Nic; Sainsbury, James; Moorhouse, Ron; Jamieson, Ian G; Robertson, Bruce C

    2015-01-01

    Species of conservation concern characterized by small and declining populations greatly benefit from proactive management approaches such as population translocations. Because they often show intra-specific genetic and phenotypic variation, which can result from drift or differential selective pressures between habitats, understanding the distribution of such variation and its underlying processes is a prerequisite to develop effective management guidelines. Indeed, translocations among genetically differentiated populations potentially locally adapted are discouraged in order to avoid outbreeding depression, while translocations among populations characterized by high gene flow with no evidence for local adaptation are encouraged. Here, we first test whether 2 recognized subspecies, the North Island kaka (Nestor meridionalis septentrionalis) and South Island kaka (Nestor meridionalis meridionalis) of New Zealand fit a scenario of allopatric subspeciation following the separation of the North and South Islands at the end of the Pleistocene using 1 mtDNA (n = 96) and 9 microsatellite markers (n = 126). We then test whether morphological differences among the 2 subspecies support a pattern of local adaptation, comparing phenotypic divergence (P ST) and the level of divergence by drift alone (F ST) among populations. We find little population structure between islands, ruling out allopatric subspeciation in kaka. Further, P ST exceeds F ST, supporting an adaptive latitudinal size cline consistent with Bergmann's rule. These results therefore suggest that using neutral genetic diversity alone can be misleading when identifying management units and that the nature of phenotypic variation should be considered in translocations efforts. We finally discuss North and South Island management units but suggest that cross-island translocation be allowed. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola.

    Science.gov (United States)

    Sanz-Martín, José M; Pacheco-Arjona, José Ramón; Bello-Rico, Víctor; Vargas, Walter A; Monod, Michel; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-09-01

    Colletotrichum graminicola causes maize anthracnose, an agronomically important disease with a worldwide distribution. We have identified a fungalysin metalloprotease (Cgfl) with a role in virulence. Transcriptional profiling experiments and live cell imaging show that Cgfl is specifically expressed during the biotrophic stage of infection. To determine whether Cgfl has a role in virulence, we obtained null mutants lacking Cgfl and performed pathogenicity and live microscopy assays. The appressorium morphology of the null mutants is normal, but they exhibit delayed development during the infection process on maize leaves and roots, showing that Cgfl has a role in virulence. In vitro chitinase activity assays of leaves infected with wild-type and null mutant strains show that, in the absence of Cgfl, maize leaves exhibit increased chitinase activity. Phylogenetic analyses show that Cgfl is highly conserved in fungi. Similarity searches, phylogenetic analysis and transcriptional profiling show that C. graminicola encodes two LysM domain-containing homologues of Ecp6, suggesting that this fungus employs both Cgfl-mediated and LysM protein-mediated strategies to control chitin signalling. © 2015 BSPP and John Wiley & Sons Ltd.

  10. Use of UV absorption for identifying subspecies of Artemisia tridentata

    International Nuclear Information System (INIS)

    Spomer, G.G.; Henderson, D.M.

    1988-01-01

    Use of UV absorption spectra for identifying subspecies of Artemisia tridentata Nutt. was investigated by analyzing the relative optical densities of alcohol extracts from herbarium and fresh plant material at 240 nm, 250 nm, and 265 nm. In all but 1 comparison, mean relative optical densities were significantly different (p=0.95) between subspecies, but intraplant and intrasubspecies variation and overlap was found to be too large to permit use of UV absorbance alone for identifying individual specimens. These results held whether dry or fresh leaves were extracted, or whether methanol or ethanol was used as the extracting solvent. (author)

  11. Mitochondrial genome diversity and population structure of two western honey bee subspecies in the Republic of South Africa.

    Science.gov (United States)

    Eimanifar, Amin; Kimball, Rebecca T; Braun, Edward L; Ellis, James D

    2018-01-22

    Apis mellifera capensis Eschscholtz and A.m. scutellata Lepeletier are subspecies of western honey bees that are indigenous to the Republic of South Africa (RSA). Both subspecies have invasive potential and are organisms of concern for areas outside their native range, though they are important bees to beekeepers, agriculture, and the environment where they are native. The aim of the present study was to examine genetic differentiation among these subspecies and estimate their phylogenetic relationships using complete mitochondrial genomes sequences. We used 25 individuals that were either assigned to one of the subspecies or designated hybrids using morphometric analyses. Phylogenetic analyses of mitogenome sequences by maximum likelihood (ML) and Bayesian inference identified a monophyletic RSA clade, subdivided into two clades. A haplotype network was consistent with the phylogenetic trees. However, members of both subspecies occurred in both clades, indicating that A.m. capensis and A.m. scutellata are neither reciprocally monophyletic nor do they exhibit paraphyly with one subspecies nested within the other subspecies. Furthermore, no mitogenomic features were diagnostic to either subspecies. All bees analyzed from the RSA expressed a substantial level of haplotype diversity (most samples had unique haplotypes) but limited nucleotide diversity. The number of variable codons across protein-coding genes (PCGs) differed among loci, with CO3 exhibiting the most variation and ATP6 the least.

  12. Comparative Transcriptional Analyses of Francisella tularensis and Francisella novicida.

    Directory of Open Access Journals (Sweden)

    Siva T Sarva

    Full Text Available Francisella tularensis is composed of a number of subspecies with varied geographic distribution, host ranges, and virulence. In view of these marked differences, comparative functional genomics may elucidate some of the molecular mechanism(s behind these differences. In this study a shared probe microarray was designed that could be used to compare the transcriptomes of Francisella tularensis subsp. tularensis Schu S4 (Ftt, Francisella tularensis subsp. holarctica OR960246 (Fth, Francisella tularensis subsp. holarctica LVS (LVS, and Francisella novicida U112 (Fn. To gain insight into expression differences that may be related to the differences in virulence of these subspecies, transcriptomes were measured from each strain grown in vitro under identical conditions, utilizing a shared probe microarray. The human avirulent Fn strain exhibited high levels of transcription of genes involved in general metabolism, which are pseudogenes in the human virulent Ftt and Fth strains, consistent with the process of genome decay in the virulent strains. Genes encoding an efflux system (emrA2 cluster of genes, siderophore (fsl operon, acid phosphatase, LPS synthesis, polyamine synthesis, and citrulline ureidase were all highly expressed in Ftt when compared to Fn, suggesting that some of these may contribute to the relative high virulence of Ftt. Genes expressed at a higher level in Ftt when compared to the relatively less virulent Fth included genes encoding isochorismatases, cholylglycine hydrolase, polyamine synthesis, citrulline ureidase, Type IV pilus subunit, and the Francisella Pathogenicity Island protein PdpD. Fth and LVS had very few expression differences, consistent with the derivation of LVS from Fth. This study demonstrated that a shared probe microarray designed to detect transcripts in multiple species/subspecies of Francisella enabled comparative transcriptional analyses that may highlight critical differences that underlie the relative

  13. Chemical Diversity in Volatiles of Helichrysum plicatum DC. Subspecies in Turkey

    Directory of Open Access Journals (Sweden)

    Bintuğ Öztürk

    2014-07-01

    Full Text Available In the present work three subspecies of Helichrysum plicatum DC. (Helichrysum plicatum DC. subsp. plicatum, Helichrysum plicatum DC. subsp. polyphillum (Ledeb P.H.Davis & Kupicha and Helichrysum plicatum DC. subsp. isauricum Parolly were investigated for the essential oil chemical compositions. The volatiles were obtained by conventional hydrodistillation of aerial parts and microdistillation of inflorescences. Subsequent gas chromatography (GC-FID and gas chromatography coupled to mass spectrometry (GC/MS revealed chemical diversity in compositions of the volatiles analyzed. A total of 199 compounds were identified representing 73.9-98.3% of the volatiles compositions. High abundance of fatty acids and their esters (24.9-70.8% was detected in the herb volatiles of H. plicatum subsp. polyphyllum and H. plicatum subsp. isauricum. The inflorescences of Helichrysum subspecies were found to be rich in monoterpenes (15.0-93.1%, fatty acids (0.1-36.3% and sesquiterpenes (1.1-25.5%. The inflorescence volatiles of H. plicatum subsp. isauricum were distinguished by predomination of monoterpene hydrocarbons (93.1% with fenchene (88.3% as the major constituent

  14. Molecular and morphological differentiation of Secret Toad-headed agama, Phrynocephalus mystaceus, with the description of a new subspecies from Iran (Reptilia, Agamidae).

    Science.gov (United States)

    Solovyeva, Evgeniya N; Dunayev, Evgeniy N; Nazarov, Roman A; Mehdi Radjabizadeh; Poyarkov, Nikolay A

    2018-01-01

    The morphological and genetic variation of a wide-ranging Secret Toad-headed agama, Phrynocephalus mystaceus that inhabits sand deserts of south-eastern Europe, Middle East, Middle Asia, and western China is reviewed. Based on the morphological differences and high divergence in COI (mtDNA) gene sequences a new subspecies of Ph. mystaceus is described from Khorasan Razavi Province in Iran. Partial sequences of COI mtDNA gene of 31 specimens of Ph. mystaceus from 17 localities from all major parts of species range were analyzed. Genetic distances show a deep divergence between Ph. mystaceus khorasanus ssp. n. from Khorasan Razavi Province and all other populations of Ph. mystaceus . The new subspecies can be distinguished from other populations of Ph. mystaceus by a combination of several morphological features. Molecular and morphological analyses do not support the validity of other Ph. mystaceus subspecies described from Middle Asia and Caspian basin. Geographic variations in the Ph. mystaceus species complex and the status of previously described subspecies were discussed.

  15. Molecular determinants of Ebola virus virulence in mice.

    Directory of Open Access Journals (Sweden)

    Hideki Ebihara

    2006-07-01

    Full Text Available Zaire ebolavirus (ZEBOV causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV, here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection.

  16. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification

    Science.gov (United States)

    Jezbera, Jan; Jezberová, Jitka; Brandt, Ulrike; Hahn, Martin W

    2011-01-01

    The subspecies Polynucleobacter necessarius asymbioticus (> 99% 16S rRNA similarity) has a cosmopolitan distribution and a ubiquitous occurrence in lentic freshwater habitats. We tested if the observed ubiquity of these free-living planktonic freshwater bacteria results from a euryoecious (generalist) adaptation of P. n. asymbioticus strains, or from ecological diversification within the subspecies. We developed a reverse line blot hybridization assay enabling the cultivation-independent detection of 13 groups within the subspecies in environmental samples. A set of 121 lentic freshwater habitats, spanning a broad variety of habitat types (e.g. pH levels ranging from 3.8 to 8.5) was investigated for the presence of these 13 P. n. asymbioticus groups. Statistical analyses of the reverse line blot hybridization detections revealed pronounced differences in habitat preferences of several of the groups. Their preferences differed regarding pH, conductivity, dissolved organic carbon and oxygen concentration of habitats. For some groups, differences in environmental preferences resulted even in complete niche separation between them. The revealed differences in habitat preferences suggest that the previously reported ubiquity of P. n. asymbioticus results from ecological diversification within the taxon and not from generalist adaptation of strains. PMID:21208356

  17. Spinal subspecialization in post-graduate neurosurgical education.

    Science.gov (United States)

    Toyota, Brian D

    2004-05-01

    The growing science and technology of various neurosurgical areas fosters subspecialization. The transmission of this expanding knowledge base to the neurosurgical resident becomes an increasing challenge. A survey of neurosurgical residency program directors was undertaken to evaluate their response to the budding subspecialization of spine surgery within general neurosurgery. A survey requesting background data, educational infrastructure and prevailing opinion was distributed to all 13 neurosurgical program directors in Canada. The responses were tabulated and results recorded. It is upon these results that conclusions and proposed directions are based. The current practice of the overwhelming majority of Canadian academic neurosurgical centers is to have neurosurgical spinal subspecialists working under the umbrella of the general neurosurgical division. A large percentage of neurosurgical program directors in Canada believe that the management of spinal disease, including both intradural procedures and instrumentation, is and should remain an integral part of general neurosurgical training. A consensus statement regarding the requirements of neurosurgical training in spinal disorders is the expressed desire of almost all program directors. A proposed direction and resolution is discussed.

  18. Differentiation of highly virulent strains of Streptococcus suis serotype 2 according to glutamate dehydrogenase electrophoretic and sequence type.

    Science.gov (United States)

    Kutz, Russell; Okwumabua, Ogi

    2008-10-01

    The glutamate dehydrogenase (GDH) enzymes of 19 Streptococcus suis serotype 2 strains, consisting of 18 swine isolates and 1 human clinical isolate from a geographically varied collection, were analyzed by activity staining on a nondenaturing gel. All seven (100%) of the highly virulent strains tested produced an electrophoretic type (ET) distinct from those of moderately virulent and nonvirulent strains. By PCR and nucleotide sequence determination, the gdh genes of the 19 strains and of 2 highly virulent strains involved in recent Chinese outbreaks yielded a 1,820-bp fragment containing an open reading frame of 1,344 nucleotides, which encodes a protein of 448 amino acid residues with a calculated molecular mass of approximately 49 kDa. The nucleotide sequences contained base pair differences, but most were silent. Cluster analysis of the deduced amino acid sequences separated the isolates into three groups. Group I (ETI) consisted of the seven highly virulent isolates and the two Chinese outbreak strains, containing Ala(299)-to-Ser, Glu(305)-to-Lys, and Glu(330)-to-Lys amino acid substitutions compared with groups II and III (ETII). Groups II and III consisted of moderately virulent and nonvirulent strains, which are separated from each other by Tyr(72)-to-Asp and Thr(296)-to-Ala substitutions. Gene exchange studies resulted in the change of ETI to ETII and vice versa. A spectrophotometric activity assay for GDH did not show significant differences between the groups. These results suggest that the GDH ETs and sequence types may serve as useful markers in predicting the pathogenic behavior of strains of this serotype and that the molecular basis for the observed differences in the ETs was amino acid substitutions and not deletion, insertion, or processing uniqueness.

  19. A new Neotibicen cicada subspecies (Hemiptera: Cicadidae) from the southeastern USA forms hybrid zones with a widespread relative despite a divergent male calling song.

    Science.gov (United States)

    Marshall, David C; Hill, Kathy B R

    2017-05-31

    A morphologically cryptic subspecies of Neotibicen similaris (Smith and Grossbeck) is described from forests of the Apalachicola region of the southeastern United States. Although the new form exhibits a highly distinctive male calling song, it hybridizes extensively where it meets populations of the nominate subspecies in parapatry, by which it is nearly surrounded. This is the first reported example of hybridization between North American nonperiodical cicadas. Acoustic and morphological characters are added to the original description of the nominate subspecies, and illustrations of complex hybrid song phenotypes are presented. The biogeography of N. similaris is discussed in light of historical changes in forest composition on the southeastern Coastal Plain.

  20. Association of staphylococcus cohnii subspecies urealyticum infection with recurrence of renal staghorn stone.

    Science.gov (United States)

    Shahandeh, Zahra; Shafi, Hamid; Sadighian, Farahnaz

    2015-01-01

    Stphylococcus cohnii is an organism of coagulase negative species which is considered as normal flora. However, it has been isolated from urinary tract infections and surgical prostheses but its relation with staghorn stones has not been reported, yet. A 50-years-old woman presented with left renal staghorn stone in June 2014. She had bilateral staghorn stones 7 years ago. Staphylococcus cohnii subspecies urealyticum were detected from a removed stone. After 7 years, recurrence staghorn stone in her left kidney was diagnosed and patient underwent another surgery. The patient had several attacks of cystitis during these 7 years. The results of stone and urine cultures revealed staphylococcus cohnii subspecies urealyticum. This case report emphasizes a possible association between staphylococcus cohnii subspecies urealyticum infection and recurrence renal staghhorn stone.

  1. Subspecies identification of captive Orang Utan in Melaka based on D-loop mitochondria DNA

    Science.gov (United States)

    Kamaluddin, Siti Norsyuhada; Yaakop, Salmah; Idris, Wan Mohd Razi; Rovie-Ryan, Jeffrine Japning; Md-Zain, Badrul Munir

    2018-04-01

    Mitochondrial DNA of Bornean Orang Utan populations suggests that there are three different subspecies (Pongo pygmaeus pygmaeus; Sarawak & Northwest Kalimantan, P. p. wurmbii; Southern West Kalimantan and Central Kalimantan, P. p. morio; East Kalimantan and Sabah). The subspecies of Orang Utans in captivity are difficult to determine through morphological observation. Thus, misidentification by ranger or zoo staffs leads to unwanted consequences especially towards conservation efforts of Orang Utan. The main objective of this study was to identify the subspecies and the geographic origin of 10 Orang Utans in Zoo Melaka and A' Famosa by using partial mitochondrial D-loop gene sequences. DNA of all individuals was extracted from FTA Card. Data analyses were performed using Maximum Parsimony, MP and Neighbor Joining, NJ. Molecular phylogeny analysis revealed that all the samples likely belong to one species of Sumatran Orang Utan (P. abelii) and three different subspecies of Bornean Orang Utans (P. p. pygmaeus, P. p. morio, and P. p. wurmbii). The results obtained in this study indirectly help the management of zoos in term of conservation and visitor's education.

  2. Tracing genomic variations in two highly virulent Yersinia enterocolitica strains with unequal ability to compete for host colonization

    OpenAIRE

    Garzetti, Debora; Bouabe, Hicham; Heesemann, Juergen; Rakin, Alexander

    2012-01-01

    Abstract Background Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness pro...

  3. Molecular and morphological differentiation of Secret Toad-headed agama, Phrynocephalus mystaceus, with the description of a new subspecies from Iran (Reptilia, Agamidae

    Directory of Open Access Journals (Sweden)

    Evgeniya N. Solovyeva

    2018-04-01

    Full Text Available The morphological and genetic variation of a wide-ranging Secret Toad-headed agama, Phrynocephalus mystaceus that inhabits sand deserts of south-eastern Europe, Middle East, Middle Asia, and western China is reviewed. Based on the morphological differences and high divergence in COI (mtDNA gene sequences a new subspecies of Ph. mystaceus is described from Khorasan Razavi Province in Iran. Partial sequences of COI mtDNA gene of 31 specimens of Ph. mystaceus from 17 localities from all major parts of species range were analyzed. Genetic distances show a deep divergence between Ph. mystaceus khorasanus ssp. n. from Khorasan Razavi Province and all other populations of Ph. mystaceus. The new subspecies can be distinguished from other populations of Ph. mystaceus by a combination of several morphological features. Molecular and morphological analyses do not support the validity of other Ph. mystaceus subspecies described from Middle Asia and Caspian basin. Geographic variations in the Ph. mystaceus species complex and the status of previously described subspecies were discussed.

  4. Ecotype evolution in Glossina palpalis subspecies, major vectors of sleeping sickness.

    Directory of Open Access Journals (Sweden)

    Thierry De Meeûs

    2015-03-01

    Full Text Available The role of environmental factors in driving adaptive trajectories of living organisms is still being debated. This is even more important to understand when dealing with important neglected diseases and their vectors.In this paper, we analysed genetic divergence, computed from seven microsatellite loci, of 614 tsetse flies (Glossina palpalis gambiensis and Glossina palpalis palpalis, major vectors of animal and human trypanosomes from 28 sites of West and Central Africa. We found that the two subspecies are so divergent that they deserve the species status. Controlling for geographic and time distances that separate these samples, which have a significant effect, we found that G. p. gambiensis from different landscapes (Niayes of Senegal, savannah and coastal environments were significantly genetically different and thus represent different ecotypes or subspecies. We also confirm that G. p. palpalis from Ivory Coast, Cameroon and DRC are strongly divergent.These results provide an opportunity to examine whether new tsetse fly ecotypes might display different behaviour, dispersal patterns, host preferences and vectorial capacities. This work also urges a revision of taxonomic status of Glossina palpalis subspecies and highlights again how fast ecological divergence can be, especially in host-parasite-vector systems.

  5. Bacteraemia due to Streptococcus gallolyticus subspecies pasteurianus is associated with digestive tract malignancies and resistance to macrolides and clindamycin.

    Science.gov (United States)

    Sheng, Wang-Huei; Chuang, Yu-Chung; Teng, Lee-Jene; Hsueh, Po-Ren

    2014-08-01

    This study was intended to delineate the association between digestive tract malignancies and bacteraemia due to Streptococcus gallolyticus subspecies pasteurianus. We reviewed the medical records and microbiological results of patients with bacteraemia due to Streptococcus bovis during the period 2000-2012. Species and subspecies identification of isolates originally classified as S. bovis was confirmed by 16S rRNA sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) assays. Minimum inhibitory concentrations of antimicrobial agents were determined by the broth microdilution method. Of the 172 S. bovis complex isolates obtained from 172 patients (age range, Streptococcus infantarius. The majority (n = 104, 60%) of patients were male and had underlying malignancies (n = 87, 51%). Bacteraemia due to S. gallolyticus subspecies gallolyticus was significantly associated with endocarditis while S. gallolyticus subspecies pasteurianus was more likely to be associated with malignancies of the digestive tract, including gastric, pancreatic, hepatobiliary and colorectal cancers. Septic shock at presentation was the only factor associated with mortality among patients with bacteraemia due to either subspecies of S. bovis. Isolates of S. gallolyticus subspecies pasteurianus had higher rates of resistance to macrolides and clindamycin than isolates of S. gallolyticus subspecies gallolyticus. Extensive diagnostic work-up for digestive tract malignancies and trans-esophageal echocardiogram should be investigated in patients with bacteraemia caused by S. gallolyticus. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    Science.gov (United States)

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  7. 77 FR 73769 - Endangered and Threatened Wildlife and Plants; Listing Four Subspecies of Mazama Pocket Gopher...

    Science.gov (United States)

    2012-12-11

    ... genetic data and morphological features. The candidate status for the nine Washington subspecies of Mazama... time) genetic data and morphological features and based on the presumption that this subspecies was a... natural or manmade factors, including low genetic diversity, small or isolated populations, low...

  8. Building a DNA barcode reference library for the true butterflies (Lepidoptera) of Peninsula Malaysia: what about the subspecies?

    Science.gov (United States)

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity.

  9. Building a DNA Barcode Reference Library for the True Butterflies (Lepidoptera) of Peninsula Malaysia: What about the Subspecies?

    Science.gov (United States)

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity. PMID:24282514

  10. Building a DNA barcode reference library for the true butterflies (Lepidoptera of Peninsula Malaysia: what about the subspecies?

    Directory of Open Access Journals (Sweden)

    John-James Wilson

    Full Text Available The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92% and revealed that most subspecies possessed unique DNA barcodes (84%. In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity.

  11. A new subspecies of Nitokra affinis Gurney, 1927 (Copepoda, Harpacticoida) from the Caribbean coast of Colombia

    Science.gov (United States)

    Fuentes-Reinés, Juan M.; Suárez-Morales, Eduardo

    2014-01-01

    Abstract Plankton samples from Laguna Navio Quebrado, La Guajira, northern Colombia, yielded male and female specimens of an harpacticoid copepod that was first identified as the widely distributed species Nitokra affinis Gurney, 1927 for which at least four subspecies have been described from different geographic areas. A more detailed examination of the Colombian specimens revealed that it differs from the other morphs so far considered as subspecies. The Colombian specimens differ from the other four known subspecies in the following aspects: (1) rostrum with long projection, (2) relatively long exopod of P1, almost as long as first endopodal segment, (3) endopodal and exopodal rami of P2 equally long, (4) a reduced number of endopodal setal elements of the male P5. It also differs from N. a. californica Lang in details of the ornamentation of the urosomites. Descriptions and illustrations of this new subspecies, the first one described from the Neotropical region, are presented together with a key to the five known subspecies of Nitokra affinis. As in many other cases of presumedly widespread species of harpacticoids, it is possible that N. affinis represents a species complex with more restricted distributional patterns, a notion that certainly deserves further study. PMID:24574850

  12. Comparison of high and low virulence serotypes of Actinobacillus pleuropneumoniae by quantitative real-time PCR

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Angen, Øystein; Boye, Mette

    PCR data. Preliminary results showed that in both serotype 2 and serotype 6, the toxin producing gene apxIV was the most highly expressed of the investigated genes. The major difference observed between the two serotypes was that apfA, involved in type IV vili production, was significantly upregulated...... of high virulence while serotype 6 strains are normally found to be less pathogenic. To gain an understanding of the differential virulence of serotype 2 and 6, the expression of a panel of Ap genes during infection of porcine epithelial lung cells (SJPL) were examined by quantitative real-time PCR (q...... to be important for early establishment of the bacteria in the host were examined by qPCR. The genes examined were apfA, coding for a subunit of Type IV pili, kdsB coding for a gene involved in lippopolysacceride biosynthesis, and pgaB which is involved in biofilm formation, all three believed to be important...

  13. [Analysis of virulence factors of Porphyromonas endodontalis based on comparative proteomics technique].

    Science.gov (United States)

    Li, H; Ji, H; Wu, S S; Hou, B X

    2016-12-09

    Objective: To analyze the protein expression profile and the potential virulence factors of Porphyromonas endodontalis (Pe) via comparison with that of two strains of Porphyromonas gingivalis (Pg) with high and low virulences, respectively. Methods: Whole cell comparative proteomics of Pe ATCC35406 was examined and compared with that of high virulent strain Pg W83 andlow virulent strain Pg ATCC33277, respectively. Isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano liquid chromatography-tandem mass spectrometry (Nano-LC-MS/MS) were adopted to identify and quantitate the proteins of Pe and two strains of Pg with various virulences by using the methods of isotopically labeled peptides, mass spectrometric detection and bioinformatics analysis. The biological functions of similar proteins expressed by Pe ATCC35406 and two strains of Pg were quantified and analyzed. Results: Totally 1 210 proteins were identified while Pe compared with Pg W83. There were 130 proteins (10.74% of the total proteins) expressed similarly, including 89 known functional proteins and 41 proteins of unknown functions. Totally 1 223 proteins were identified when Pe compared with Pg ATCC33277. There were 110 proteins (8.99% of the total proteins) expressed similarly, including 72 known functional proteins and 38 proteins of unknown functions. The similarly expressed proteins in Pe and Pg strains with various virulences mainly focused on catalytic activity and binding function, including recombination activation gene (RagA), lipoprotein, chaperonin Dnak, Clp family proteins (ClpC and ClpX) and various iron-binding proteins. They were involved in metabolism and cellular processes. In addition, the type and number of similar virulence proteins between Pe and high virulence Pg were higher than those between Pe and low virulence Pg. Conclusions: Lipoprotein, oxygen resistance protein, iron binding protein were probably the potential virulence factors of Pe ATCC35406. It was

  14. Francisella tularensis subsp. novicida isolated from a human in Arizona

    Directory of Open Access Journals (Sweden)

    Birdsell Dawn N

    2009-11-01

    Full Text Available Abstract Background Francisella tularensis is the etiologic agent of tularemia and is classified as a select agent by the Centers for Disease Control and Prevention. Currently four known subspecies of F. tularensis that differ in virulence and geographical distribution are recognized:tularensis (type A, holarctica (type B, mediasiatica, and novicida. Because of the Select Agent status and differences in virulence and geographical location, the molecular analysis of any clinical case of tularemia is of particular interest. We analyzed an unusual Francisella clinical isolate from a human infection in Arizona using multiple DNA-based approaches. Findings We report that the isolate is F. tularensis subsp. novicida, a subspecies that is rarely isolated. Conclusion The rarity of this novicida subspecies in clinical settings makes each case study important for our understanding of its role in disease and its genetic relationship with other F. tularensis subspecies.

  15. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    Science.gov (United States)

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  16. Mercury in Nelson's Sparrow subspecies at breeding sites.

    Directory of Open Access Journals (Sweden)

    Virginia L Winder

    Full Text Available BACKGROUND: Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson's Sparrows (Ammodramus nelsoni use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson's Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies. METHODOLOGY/PRINCIPAL FINDINGS: From 2009 to 2011, we captured adult Nelson's Sparrows at sites within the breeding range of each subspecies (A. n. nelsoni: Grand Forks and Upham, North Dakota; A. n. alterus: Moosonee, Ontario; and A. n. subvirgatus: Grand Manan Island, New Brunswick and sampled breast feathers, the first primary feather (P1, and blood for total mercury analysis. Mean blood mercury in nelsoni individuals captured near Grand Forks ranged from 0.84 ± 0.37 to 1.65 ± 1.02 SD ppm among years, between 2.0 and 4.9 times as high as concentrations at the other sites (P<0.01. Breast feather mercury did not vary among sites within a given sampling year (site means ranged from 0.98 ± 0.69 to 2.71 ± 2.93 ppm. Mean P1 mercury in alterus (2.96 ± 1.84 ppm fw was significantly lower than in any other sampled population (5.25 ± 2.24-6.77 ± 3.51 ppm; P ≤ 0.03. CONCLUSIONS/SIGNIFICANCE: Our study further characterized mercury in Nelson's Sparrows near Grand Forks; we documented localized and potentially harmful mercury concentrations, indicating that this area may represent a biological mercury hotspot. This finding warrants further research to determine if wildlife populations of conservation or recreational interest in this area may be experiencing negative effects due to mercury exposure. We present preliminary conclusions about the risk of each sampled population to mercury exposure.

  17. Mercury in Nelson's Sparrow Subspecies at Breeding Sites

    Science.gov (United States)

    Winder, Virginia L.; Emslie, Steven D.

    2012-01-01

    Background Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson's Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson's Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies. Methodology/Principal Findings From 2009 to 2011, we captured adult Nelson's Sparrows at sites within the breeding range of each subspecies (A. n. nelsoni: Grand Forks and Upham, North Dakota; A. n. alterus: Moosonee, Ontario; and A. n. subvirgatus: Grand Manan Island, New Brunswick) and sampled breast feathers, the first primary feather (P1), and blood for total mercury analysis. Mean blood mercury in nelsoni individuals captured near Grand Forks ranged from 0.84±0.37 to 1.65±1.02 SD ppm among years, between 2.0 and 4.9 times as high as concentrations at the other sites (Pmercury did not vary among sites within a given sampling year (site means ranged from 0.98±0.69 to 2.71±2.93 ppm). Mean P1 mercury in alterus (2.96±1.84 ppm fw) was significantly lower than in any other sampled population (5.25±2.24–6.77±3.51 ppm; P≤0.03). Conclusions/Significance Our study further characterized mercury in Nelson's Sparrows near Grand Forks; we documented localized and potentially harmful mercury concentrations, indicating that this area may represent a biological mercury hotspot. This finding warrants further research to determine if wildlife populations of conservation or recreational interest in this area may be experiencing negative effects due to mercury exposure. We present preliminary conclusions about the risk of each sampled population to mercury exposure. PMID:22384194

  18. Exploring potential virulence regulators in Paracoccidioides brasiliensis isolates of varying virulence through quantitative proteomics.

    Science.gov (United States)

    Castilho, Daniele G; Chaves, Alison F A; Xander, Patricia; Zelanis, André; Kitano, Eduardo S; Serrano, Solange M T; Tashima, Alexandre K; Batista, Wagner L

    2014-10-03

    Few virulence factors have been identified for Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. In this study, we quantitatively evaluated the protein composition of P. brasiliensis in the yeast phase using minimal and rich media to obtain a better understanding of its virulence and to gain new insights into pathogen adaptation strategies. This analysis was performed on two isolates of the Pb18 strain showing distinct infection profiles in B10.A mice. Using liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis, we identified and quantified 316 proteins in minimal medium, 29 of which were overexpressed in virulent Pb18. In rich medium, 29 out of 295 proteins were overexpressed in the virulent fungus. Three proteins were found to be up-regulated in both media, suggesting the potential roles of these proteins in virulence regulation in P. brasiliensis. Moreover, genes up-regulated in virulent Pb18 showed an increase in its expression after the recovery of virulence of attenuated Pb18. Proteins up-regulated in both isolates were grouped according to their functional categories. Virulent Pb18 undergoes metabolic reorganization and increased expression of proteins involved in fermentative respiration. This approach allowed us to identify potential virulence regulators and provided a foundation for achieving a molecular understanding of how Paracoccidioides modulates the host-pathogen interaction to its advantage.

  19. Wintering ecology of sympatric subspecies of Sandhill Crane: Correlations between body size, site fidelity, and movement patterns

    Science.gov (United States)

    Ivey, Gary L.; Dugger, Bruce D.; Herziger, Caroline P.; Casazza, Michael L.; Fleskes, Joseph P.

    2015-01-01

    Body size is known to correlate with many aspects of life history in birds, and this knowledge can be used to manage and conserve bird species. However, few studies have compared the wintering ecology of sympatric subspecies that vary significantly in body size. We used radiotelemetry to examine the relationship between body size and site fidelity, movements, and home range in 2 subspecies of Sandhill Crane (Grus canadensis) wintering in the Sacramento–San Joaquin Delta of California, USA. Both subspecies showed high interannual return rates to the Delta study area, but Greater Sandhill Cranes (G. c. tabida) showed stronger within-winter fidelity to landscapes in our study region and to roost complexes within landscapes than did Lesser Sandhill Cranes (G. c. canadensis). Foraging flights from roost sites were shorter for G. c. tabida than for G. c. canadensis (1.9 ± 0.01 km vs. 4.5 ± 0.01 km, respectively) and, consequently, the mean size of 95% fixed-kernel winter home ranges was an order of magnitude smaller for G. c. tabida than for G. c. canadensis (1.9 ± 0.4 km2 vs. 21.9 ± 1.9 km2, respectively). Strong site fidelity indicates that conservation planning to manage for adequate food resources around traditional roost sites can be effective for meeting the habitat needs of these cranes, but the scale of conservation efforts should differ by subspecies. Analysis of movement patterns suggests that conservation planners and managers should consider all habitats within 5 km of a known G. c. tabida roost and within 10 km of a G. c. canadensis roost when planning for habitat management, mitigation, acquisition, and easements.

  20. Mechanisms of disease: Helicobacter pylori virulence factors.

    Science.gov (United States)

    Yamaoka, Yoshio

    2010-11-01

    Helicobacter pylori plays an essential role in the development of various gastroduodenal diseases; however, only a small proportion of people infected with H. pylori develop these diseases. Some populations that have a high prevalence of H. pylori infection also have a high incidence of gastric cancer (for example, in East Asia), whereas others do not (for example, in Africa and South Asia). Even within East Asia, the incidence of gastric cancer varies (decreasing in the south). H. pylori is a highly heterogeneous bacterium and its virulence varies geographically. Geographic differences in the incidence of gastric cancer can be explained, at least in part, by the presence of different types of H. pylori virulence factor, especially CagA, VacA and OipA. However, it is still unclear why the pathogenicity of H. pylori increased as it migrated from Africa to East Asia during the course of evolution. H. pylori infection is also thought to be involved in the development of duodenal ulcer, which is at the opposite end of the disease spectrum to gastric cancer. This discrepancy can be explained in part by the presence of H. pylori virulence factor DupA. Despite advances in our understanding of the development of H. pylori-related diseases, further work is required to clarify the roles of H. pylori virulence factors.

  1. Identical metabolic rate and thermal conductance in Rock Sandpiper (Calidris ptilocnemis) subspecies with contrasting nonbreeding life histories

    Science.gov (United States)

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; Piersma, Theunis

    2013-01-01

    Closely related species or subspecies can exhibit metabolic differences that reflect site-specific environmental conditions. Whether such differences represent fixed traits or flexible adjustments to local conditions, however, is difficult to predict across taxa. The nominate race of Rock Sandpiper (Calidris ptilocnemis) exhibits the most northerly nonbreeding distribution of any shorebird in the North Pacific, being common during winter in cold, dark locations as far north as upper Cook Inlet, Alaska (61°N). By contrast, the tschuktschorum subspecies migrates to sites ranging from about 59°N to more benign locations as far south as ~37°N. These distributional extremes exert contrasting energetic demands, and we measured common metabolic parameters in the two subspecies held under identical laboratory conditions to determine whether differences in these parameters are reflected by their nonbreeding life histories. Basal metabolic rate and thermal conductance did not differ between subspecies, and the subspecies had a similar metabolic response to temperatures below their thermoneutral zone. Relatively low thermal conductance values may, however, reflect intrinsic metabolic adaptations to northerly latitudes. In the absence of differences in basic metabolic parameters, the two subspecies’ nonbreeding distributions will likely be more strongly influenced by adaptations to regional variation in ecological factors such as prey density, prey quality, and foraging habitat.

  2. Descriptions of a new species and subspecies of Halysidota Hübner, [1819] from Mexico (Lepidoptera: Erebidae: Arctiinae)

    OpenAIRE

    Benoît Vincent; Michel Laguerre

    2017-01-01

    A new species and subspecies of the genus Halysidota are described from Mexico and Guadeloupe respectively: Halysidota witti sp. nov. and Halysidota leda guadulpensis ssp. nov. Details of the new species and subspecies descriptions are based upon morphological and molecular characters as well as distributional data.

  3. Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes.

    Science.gov (United States)

    Valero-Jiménez, Claudio A; Faino, Luigi; Spring In't Veld, Daphne; Smit, Sandra; Zwaan, Bas J; van Kan, Jan A L

    2016-12-01

    Entomopathogenic fungi such as Beauveria bassiana are promising biological agents for control of malaria mosquitoes. Indeed, infection with B. bassiana reduces the lifespan of mosquitoes in the laboratory and in the field. Natural isolates of B. bassiana show up to 10-fold differences in virulence between the most and the least virulent isolate. In this study, we sequenced the genomes of five isolates representing the extremes of low/high virulence and three RNA libraries, and applied a genome comparison approach to uncover genetic mechanisms underpinning virulence. A high-quality, near-complete genome assembly was achieved for the highly virulent isolate Bb8028, which was compared to the assemblies of the four other isolates. Whole genome analysis showed a high level of genetic diversity between the five isolates (2.85-16.8 SNPs/kb), which grouped into two distinct phylogenetic clusters. Mating type gene analysis revealed the presence of either the MAT1-1-1 or the MAT1-2-1 gene. Moreover, a putative new MAT gene (MAT1-2-8) was detected in the MAT1-2 locus. Comparative genome analysis revealed that Bb8028 contains 163 genes exclusive for this isolate. These unique genes have a tendency to cluster in the genome and to be often located near the telomeres. Among the genes unique to Bb8028 are a Non-Ribosomal Peptide Synthetase (NRPS) secondary metabolite gene cluster, a polyketide synthase (PKS) gene, and five genes with homology to bacterial toxins. A survey of candidate virulence genes for B. bassiana is presented. Our results indicate several genes and molecular processes that may underpin virulence towards mosquitoes. Thus, the genome sequences of five isolates of B. bassiana provide a better understanding of the natural variation in virulence and will offer a major resource for future research on this important biological control agent.

  4. Characterization of a highly virulent and antimicrobial-resistant Acinetobacter baumannii strain isolated from diseased chicks in China.

    Science.gov (United States)

    Liu, Dong; Liu, Zeng-Shan; Hu, Pan; Hui, Qi; Fu, Bao-Quan; Lu, Shi-Ying; Li, Yan-Song; Zou, De-Ying; Li, Zhao-Hui; Yan, Dong-Ming; Ding, Yan-Xia; Zhang, Yuan-Yuan; Zhou, Yu; Liu, Nan-Nan; Ren, Hong-Lin

    2016-08-01

    Poultry husbandry is a very important aspect of the agricultural economy in China. However, chicks are often susceptible to infectious disease microorganisms, such as bacteria, viruses and parasites, causing large economic losses in recent years. In the present study, we isolated an Acinetobacter baumannii strain, CCGGD201101, from diseased chicks in the Jilin Province of China. Regression analyses of virulence and LD50 tests conducted using healthy chicks confirmed that A. baumannii CCGGD201101, with an LD50 of 1.81 (±0.11) × 10(4) CFU, was more virulent than A. baumannii ATCC17978, with an LD50 of 1.73 (±0.13) × 10(7) CFU. Moreover, TEM examination showed that the pili of A. baumannii CCGGD201101 were different from those of ATCC17978. Antibiotic sensitivity analyses showed that A. baumannii CCGGD201101 was sensitive to rifampicin but resistant to most other antibiotics. These results imply that A. baumannii strain CCGGD201101 had both virulence enhancement and antibiotic resistance characteristics, which are beneficial for A. baumannii survival under adverse conditions and enhance fitness and invasiveness in the host. A. baumannii CCGGD20101, with its high virulence and antimicrobial resistance, may be one of the pathogens causing death of diseased chicks. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  5. Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation.

    Science.gov (United States)

    Pragman, Alexa A; Schlievert, Patrick M

    2004-10-01

    Staphylococcus aureus is a pathogenic microorganism that is responsible for a wide variety of clinical infections. These infections can be relatively mild, but serious, life-threatening infections may result from the expression of staphylococcal virulence factors that are coordinated by virulence regulators. Much work has been done to characterize the actions of staphylococcal virulence regulators in broth culture. Recently, several laboratories showed that transcriptional analyses of virulence regulators in in vivo animal models or in human infection did not correlate with transcriptional analyses accomplished in vitro. In describing the differences between in vitro and in vivo transcription of staphylococcal virulence regulators, we hope to encourage investigators to study virulence regulators using infection models whenever possible.

  6. The dominant Australian community-acquired methicillin-resistant Staphylococcus aureus clone ST93-IV [2B] is highly virulent and genetically distinct.

    Directory of Open Access Journals (Sweden)

    Kyra Y L Chua

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA USA300 has spread rapidly across North America, and CA-MRSA is also increasing in Australia. However, the dominant Australian CA-MRSA strain, ST93-IV [2B] appears distantly related to USA300 despite strikingly similar clinical and epidemiological profiles. Here, we compared the virulence of a recent Australian ST93 isolate (JKD6159 to other MRSA, including USA300, and found that JKD6159 was the most virulent in a mouse skin infection model. We fully sequenced the genome of JKD6159 and confirmed that JKD6159 is a distinct clone with 7616 single nucleotide polymorphisms (SNPs distinguishing this strain from all other S. aureus genomes. Despite its high virulence there were surprisingly few virulence determinants. However, genes encoding α-hemolysin, Panton-Valentine leukocidin (PVL and α-type phenol soluble modulins were present. Genome comparisons revealed 32 additional CDS in JKD6159 but none appeared to encode new virulence factors, suggesting that this clone's enhanced pathogenicity could lie within subtler genome changes, such as SNPs within regulatory genes. To investigate the role of accessory genome elements in CA-MRSA epidemiology, we next sequenced three additional Australian non-ST93 CA-MRSA strains and compared them with JKD6159, 19 completed S. aureus genomes and 59 additional S. aureus genomes for which unassembled genome sequence data was publicly available (82 genomes in total. These comparisons showed that despite its distinctive genotype, JKD6159 and other CA-MRSA clones (including USA300 share a conserved repertoire of three notable accessory elements (SSCmecIV, PVL prophage, and pMW2. This study demonstrates that the genetically distinct ST93 CA-MRSA from Australia is highly virulent. Our comparisons of geographically and genetically diverse CA-MRSA genomes suggest that apparent convergent evolution in CA-MRSA may be better explained by the rapid

  7. Life history attributes of Arizona Grasshopper Sparrow (Ammodramus savannarum ammolegus) and comparisons with other North American subspecies

    Science.gov (United States)

    Ruth, Janet M.

    2017-01-01

    Ammodramus savannarum ammolegus—commonly referred to as the Arizona Grasshopper Sparrow—occurs in the desert and plains grasslands of southeastern Arizona, southwestern New Mexico, and northern Sonora, Mexico. Although a subspecies of conservation concern, this is the first intensive study of its life history and breeding ecology, providing baseline data and facilitating comparisons with other North American Grasshopper Sparrow subspecies. Specifically, I found A. s. ammolegus males generally weighed less than other subspecies (16.0 ± 0.8 g) but with intermediate exposed culmen length (11.6 ± 0.5 mm) and wing chord length similar to the other two migratory subspecies (62.7 ± 1.5 mm). Territory size for A. s. ammolegus was 0.72 ± 0.37 ha, with some variation between sites and among years, possibly indicating variation in habitat quality across spatial and temporal scales. The return rate for A. s. ammolegus males was 39.2%. Nest initiation for A. s. ammolegus was early to mid-July after the monsoons had begun. Domed nests were constructed on the ground, primarily under native bunch grasses, and frequently with a tunnel extending beyond the nest rim, with nest openings oriented north. Clutch size was 3.97 ± 0.68, with no evidence of Brown-headed Cowbird (Molothrus ater) nest parasitism. Extreme climate factors in the arid Southwest may have affected the life history and morphology of A. s. ammolegus as compared to other subspecies, influencing body size and mass, culmen length, breeding phenology, and nest orientation. Other geographic variation occurred in return rates, clutch size, and nest parasitism rates. The baseline data for A. s. ammolegus obtained in this study will inform future taxonomic and ecological studies as well as conservation planning. Comparisons of A. s. ammolegus morphometrics with those of other subspecies will assist field biologists in distinguishing among subspecies where they overlap, especially on wintering grounds.

  8. Virulence comparisons of high-temperature-adapted Heterorhabditis bacteriophora, Steinernema feltiae and S. carpocapsae

    Directory of Open Access Journals (Sweden)

    Susurluk I. A.

    2015-06-01

    Full Text Available Entomopathogenic nematodes (EPNs are environmentally safe alternative control agents. Nematodes in the Heterorhabditidae and Steinernematidae families are widely used in biological control frameworks, especially for soil-inhabiting insect pests. In this experiment, Heterorhabditis bacteriophora (Poinar, 1976, Steinernema feltiae (Filipjev, 1934 and S. carpocapsae (Weiser, 1955 adapted at high temperature were assessed in order to detect differences in virulence between adapted and non-adapted populations. All species were exposed to 38 °C for 2 h. After this treatment, live infective juveniles (IJs were used to infect to last instar Galleria mellonella (Linnaeus, 1758. larvae at the following doses: 1, 2, 3, 4 and 5 IJs/larva. The LD50 and LD90 were obtained for these species. Non-adapted populations of the nematode species were used as controls for this experiment. The results indicated that differences in S. feltiae and S. carpocapsae virulence between the adapted and non-adapted populations were significant; no significant difference was observed between the adapted and non-adapted H. bacteriophora populations.

  9. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis

    Science.gov (United States)

    Jia, Qingmei; Horwitz, Marcus A.

    2018-01-01

    Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed “Foshay” vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals—especially mice—but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated—but not killed or subunit—vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development—safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the

  10. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes.

    Science.gov (United States)

    Shapiro-Ilan, David; Raymond, Ben

    2016-03-01

    Cooperative secretion of virulence factors by pathogens can lead to social conflict when cheating mutants exploit collective secretion, but do not contribute to it. If cheats outcompete cooperators within hosts, this can cause loss of virulence. Insect parasitic nematodes are important biocontrol tools that secrete a range of significant virulence factors. Critically, effective nematodes are hard to maintain without live passage, which can lead to virulence attenuation. Using experimental evolution, we tested whether social cheating might explain unstable virulence in the nematode Heterorhabditis floridensis by manipulating relatedness via multiplicity of infection (MOI), and the scale of competition. Passage at high MOI, which should reduce relatedness, led to loss of fitness: virulence and reproductive rate declined together and all eight independent lines suffered premature extinction. As theory predicts, relatedness treatments had more impact under stronger global competition. In contrast, low MOI passage led to more stable virulence and increased reproduction. Moreover, low MOI lineages showed a trade-off between virulence and reproduction, particularly for lines under stronger between-host competition. Overall, this study indicates that evolution of virulence theory is valuable for the culture of biocontrol agents: effective nematodes can be improved and maintained if passage methods mitigate possible social conflicts.

  11. Leukotriene signaling in the extinct human subspecies Homo denisovan and Homo neanderthalensis. Structural and functional comparison with Homo sapiens.

    Science.gov (United States)

    Adel, Susan; Kakularam, Kumar Reddy; Horn, Thomas; Reddanna, Pallu; Kuhn, Hartmut; Heydeck, Dagmar

    2015-01-01

    Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. IPNV with high and low virulence: host immune responses and viral mutations during infection

    Directory of Open Access Journals (Sweden)

    Skjesol Astrid

    2011-08-01

    Full Text Available Abstract Background Infectious pancreatic necrosis virus (IPNV is an aquatic member of the Birnaviridae family that causes widespread disease in salmonids. IPNV is represented by multiple strains with markedly different virulence. Comparison of isolates reveals hyper variable regions (HVR, which are presumably associated with pathogenicity. However little is known about the rates and modes of sequence divergence and molecular mechanisms that determine virulence. Also how the host response may influence IPNV virulence is poorly described. Methods In this study we compared two field isolates of IPNV (NFH-Ar and NFH-El. The sequence changes, replication and mortality were assessed following experimental challenge of Atlantic salmon. Gene expression analyses with qPCR and microarray were applied to examine the immune responses in head kidney. Results Significant differences in mortality were observed between the two isolates, and viral load in the pancreas at 13 days post infection (d p.i. was more than 4 orders of magnitude greater for NFH-Ar in comparison with NFH-El. Sequence comparison of five viral genes from the IPNV isolates revealed different mutation rates and Ka/Ks ratios. A strong tendency towards non-synonymous mutations was found in the HRV of VP2 and in VP3. All mutations in VP5 produced precocious stop codons. Prior to the challenge, NFH-Ar and NFH-El possessed high and low virulence motifs in VP2, respectively. Nucleotide substitutions were noticed already during passage of viruses in CHSE-214 cells and their accumulation continued in the challenged fish. The sequence changes were notably directed towards low virulence. Co-ordinated activation of anti-viral genes with diverse functions (IFN-a1 and c, sensors - Rig-I, MDA-5, TLR8 and 9, signal transducers - Srk2, MyD88, effectors - Mx, galectin 9, galectin binding protein, antigen presentation - b2-microglobulin was observed at 13 d p.i. (NFH-Ar and 29 d p.i. (both isolates

  13. Newcastle Disease Viruses Causing Recent Outbreaks Worldwide Show Unexpectedly High Genetic Similarity to Historical Virulent Isolates from the 1940s

    Science.gov (United States)

    Dimitrov, Kiril M.; Lee, Dong-Hun; Williams-Coplin, Dawn; Olivier, Timothy L.; Miller, Patti J.

    2016-01-01

    Virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), a devastating disease of poultry and wild birds. Phylogenetic analyses clearly distinguish historical isolates (obtained prior to 1960) from currently circulating viruses of class II genotypes V, VI, VII, and XII through XVIII. Here, partial and complete genomic sequences of recent virulent isolates of genotypes II and IX from China, Egypt, and India were found to be nearly identical to those of historical viruses isolated in the 1940s. Phylogenetic analysis, nucleotide distances, and rates of change demonstrate that these recent isolates have not evolved significantly from the most closely related ancestors from the 1940s. The low rates of change for these virulent viruses (7.05 × 10−5 and 2.05 × 10−5 per year, respectively) and the minimal genetic distances existing between these and historical viruses (0.3 to 1.2%) of the same genotypes indicate an unnatural origin. As with any other RNA virus, Newcastle disease virus is expected to evolve naturally; thus, these findings suggest that some recent field isolates should be excluded from evolutionary studies. Furthermore, phylogenetic analyses show that these recent virulent isolates are more closely related to virulent strains isolated during the 1940s, which have been and continue to be used in laboratory and experimental challenge studies. Since the preservation of viable viruses in the environment for over 6 decades is highly unlikely, it is possible that the source of some of the recent virulent viruses isolated from poultry and wild birds might be laboratory viruses. PMID:26888902

  14. Effects of contact structure on the transient evolution of HIV virulence.

    Directory of Open Access Journals (Sweden)

    Sang Woo Park

    2017-03-01

    Full Text Available Early in an epidemic, high densities of susceptible hosts select for relatively high parasite virulence; later in the epidemic, lower susceptible densities select for lower virulence. Thus over the course of a typical epidemic the average virulence of parasite strains increases initially, peaks partway through the epidemic, then declines again. However, precise quantitative outcomes, such as the peak virulence reached and its timing, may depend sensitively on epidemiological details. Fraser et al. proposed a model for the eco-evolutionary dynamics of HIV that incorporates the tradeoffs between transmission and virulence (mediated by set-point viral load, SPVL and their heritability between hosts. Their model used implicit equations to capture the effects of partnership dynamics that are at the core of epidemics of sexually transmitted diseases. Our models combine HIV virulence tradeoffs with a range of contact models, explicitly modeling partnership formation and dissolution and allowing for individuals to transmit disease outside of partnerships. We assess summary statistics such as the peak virulence (corresponding to the maximum value of population mean log10 SPVL achieved throughout the epidemic across models for a range of parameters applicable to the HIV epidemic in sub-Saharan Africa. Although virulence trajectories are broadly similar across models, the timing and magnitude of the virulence peak vary considerably. Previously developed implicit models predicted lower virulence and slower progression at the peak (a maximum of 3.5 log10 SPVL compared both to more realistic models and to simple random-mixing models with no partnership structure at all (both with a maximum of ≈ 4.7 log10 SPVL. In this range of models, the simplest random-mixing structure best approximates the most realistic model; this surprising outcome occurs because the dominance of extra-pair contact in the realistic model swamps the effects of partnership structure.

  15. Vaccination with a Plasmodium chabaudi adami multivalent DNA vaccine cross-protects A/J mice against challenge with P. c. adami DK and virulent Plasmodium chabaudi chabaudi AS parasites.

    Science.gov (United States)

    Scorza, T; Grubb, K; Cambos, M; Santamaria, C; Tshikudi Malu, D; Spithill, T W

    2008-06-01

    A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31-40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30-39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-gamma production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.

  16. Spatial Variation and Survival of Salmonella enterica Subspecies in a Population of Australian Sleepy Lizards (Tiliqua rugosa).

    Science.gov (United States)

    Parsons, Sandra K; Bull, C Michael; Gordon, David M

    2015-09-01

    The life cycles of many enteric bacterial species require a transition between two very distinct environments. Their primary habitat is the gastrointestinal tract of the host, while their secondary habitat, during transmission from one host to another, consists of environments external to the host, such as soil, water, and sediments. Consequently, both host and environmental factors shape the genetic structure of enteric bacterial populations. This study examined the distribution of four Salmonella enterica subspecies in a population of sleepy lizards, Tiliqua rugosa, in a semiarid region of South Australia. The lizards living within the 1,920-m by 720-m study site were radio tracked, and their enteric bacteria were sampled at regular intervals throughout their active seasons in the years 2001, 2002, and 2006. Four of the six subspecies of S. enterica were present in this population and were nonrandomly distributed among the lizards. In particular, S. enterica subsp. diarizonae was restricted to lizards living in the most shaded parts of the study site with an overstorey of Casuarina trees. Experiments undertaken to investigate the survival of S. enterica cells under seminatural conditions revealed that cell survival decreased with increased exposure to elevated temperatures and UV light. Among the three S. enterica subspecies tested, S. enterica subsp. diarizonae consistently had an average expected life span that was shorter than that observed for the other two subspecies. There was no indication in the data that there was any competitive dominance hierarchy among the S. enterica subspecies within individual hosts. Thus, the nonrandom distribution of S. enterica subspecies in this population of lizards appears to be driven by their different survival characteristics in the external environment. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Investigating concordance among genetic data, subspecies circumscriptions and hostplant use in the nymphalid butterfly Polygonia faunus.

    Directory of Open Access Journals (Sweden)

    Ullasa Kodandaramaiah

    Full Text Available Subspecies are commonly used taxonomic units to formally describe intraspecific geographic variation in morphological traits. However, the concept of subspecies is not clearly defined, and there is little agreement about what they represent in terms of evolutionary units, and whether they can be used as reliably useful units in conservation, evolutionary theory and taxonomy. We here investigate whether the morphologically well-characterized subspecies in the North American butterfly Polygonia faunus are supported by genetic data from mitochondrial sequences and eight microsatellite loci. We also investigate the phylogeographic structure of P. faunus and test whether similarities in host-plant use among populations are related to genetic similarity. Neither the nuclear nor the mitochondrial data corroborated subspecies groupings. We found three well defined genetic clusters corresponding to California, Arizona and (New Mexico+Colorado. There was little structuring among the remaining populations, probably due to gene flow across populations. We found no support for the hypothesis that similarities in host use are related to genetic proximity. The results indicate that the species underwent a recent rapid expansion, probably from two glacial refugia in western North America. The mitochondrial haplotype network indicates at least two independent expansion phases into eastern North America. Our results clearly demonstrate that subspecies in P. faunus do not conform to the structuring of genetic variation. More studies on insects and other invertebrates are needed to better understand the scope of this phenomenon. The results of this study will be crucial in designing further experiments to understand the evolution of hostplant utilization in this species.

  18. Interest in Providing Multiple Sclerosis Care and Subspecializing in Multiple Sclerosis Among Neurology Residents

    Science.gov (United States)

    Teixeira-Poit, Stephanie; Kane, Heather L.; Frost, A. Corey; Keating, Michael; Olmsted, Murrey

    2014-01-01

    Background: Although detailed knowledge regarding treatment options for multiple sclerosis (MS) patients is largely limited to neurologists, shortages in the neurologist workforce, including MS subspecialists, are predicted. Thus, MS patients may have difficulties in gaining access to appropriate care. No systematic evaluation has yet been performed of the number of neurology residents planning to pursue MS subspecialization. This study identifies factors affecting interest in providing MS patient care or MS subspecialization among current neurology residents. Methods: We randomly selected half of all Accreditation Council of Graduate Medical Education–certified neurology residency programs in the continental United States to receive the neurology resident survey. Completed surveys were received from 218 residents. Results: Residents were significantly more likely to have increased interest in MS care when they participated in MS research, were interested in teaching, and indicated that the “ability to improve patient outcomes and quality of life” was a positive factor influencing their desire to provide MS patient care. Residents who were interested in providing MS care, interested in teaching, and indicated that “research opportunities” was a positive factor for providing MS patient care were significantly more likely to express interest in MS subspecialization. Conclusions: Increasing opportunities to interact with MS patients, learn about MS care, and participate in MS research may increase interest in MS care and subspecialization among neurology residents. Opportunities to educate residents regarding MS patient care may affect residents’ attitudes. PMID:24688352

  19. Morphometric and molecular differentiation between quetzal subspecies of Pharomachrus mocinno (Trogoniformes: Trogonidae

    Directory of Open Access Journals (Sweden)

    Sofía Solórzano

    2010-03-01

    Full Text Available The resplendent Quetzal (Pharomachrus mocinno is an endemic Mesoamerican bird species of conservation concern. Within this species, the subspecies P. m. costaricensis and P. m. mocinno, have been recognized by apparent morphometric differences; however, presently there is no sufficient data for confirmation. We analyzed eight morphometric attributes of the body from 41 quetzals: body length, tarsus and cord wing, as well as the length, wide and depth of the bill, body weight; and in the case of the males, the length of the long upper-tail cover feathers. We used multivariate analyses to discriminate morphometric differences between subspecies and contrasted each morphometric attribute between and within subspecies with paired non-parametric Wilcoxon test. In order to review the intraspecific taxonomic status of this bird, we added phylogenetic analysis, and genetic divergence and differentiation based on nucleotide variations in four sequences of mtDNA. The nucleotide variation was estimated in control region, subunit NDH6, and tRNA Glu and tRNA Phe in 26 quetzals from eight localities distributed in five countries. We estimated the genetic divergence and differentiation between subspecies according to a mutation-drift equilibrium model. We obtained the best mutation nucleotide model following the procedure implemented in model test program. We constructed the phylogenetic relationships between subspecies by maximum parsimony and maximum likelihood using PAUP, as well as with Bayesian statistics. The multivariate analyses showed two different morphometric groups, and individuals clustered according to the subspecies that they belong. The paired comparisons between subspecies showed strong differences in most of the attributes analyzed. Along the four mtDNA sequences, we identified 32 nucleotide positions that have a particular nucleotide according to the quetzals subspecies. The genetic divergence and the differentiation was strong and markedly

  20. Investigating the ?Trojan Horse? Mechanism of Yersinia pestis Virulence

    Energy Technology Data Exchange (ETDEWEB)

    McCutchen-Maloney, S L; Fitch, J P

    2005-02-08

    Yersinia pestis, the etiological agent of plague, is a Gram-negative, highly communicable, enteric bacterium that has been responsible for three historic plague pandemics. Currently, several thousand cases of plague are reported worldwide annually, and Y. pestis remains a considerable threat from a biodefense perspective. Y. pestis infection can manifest in three forms: bubonic, septicemic, and pneumonic plague. Of these three forms, pneumonic plague has the highest fatality rate ({approx}100% if left untreated), the shortest intervention time ({approx}24 hours), and is highly contagious. Currently, there are no rapid, widely available vaccines for plague and though plague may be treated with antibiotics, the emergence of both naturally occurring and potentially engineered antibiotic resistant strains makes the search for more effective therapies and vaccines for plague of pressing concern. The virulence mechanism of this deadly bacterium involves induction of a Type III secretion system, a syringe-like apparatus that facilitates the injection of virulence factors, termed Yersinia outer membrane proteins (Yops), into the host cell. These virulence factors inhibit phagocytosis and cytokine secretion, and trigger apoptosis of the host cell. Y. pestis virulence factors and the Type III secretion system are induced thermally, when the bacterium enters the mammalian host from the flea vector, and through host cell contact (or conditions of low Ca{sup 2+} in vitro). Apart from the temperature increase from 26 C to 37 C and host cell contact (or low Ca{sup 2+} conditions), other molecular mechanisms that influence virulence induction in Y. pestis are largely uncharacterized. This project focused on characterizing two novel mechanisms that regulate virulence factor induction in Y. pestis, immunoglobulin G (IgG) binding and quorum sensing, using a real-time reporter system to monitor induction of virulence. Incorporating a better understanding of the mechanisms of virulence

  1. Plasmid transferability of KPC into a virulent K2 serotype Klebsiella pneumoniae.

    Science.gov (United States)

    Siu, Leung-Kei Kristopher; Huang, David B; Chiang, Tom

    2014-03-31

    KPC-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are associated with high mortality; however, their virulence determinants are not well defined. We investigated the virulence and plasmid transferability among KPC-containing K. pneumoniae isolates. KPC-2 and -3 were successfully conjugated and retained by a virulent K2 K. pneumoniae recipient isolate. Antimicrobial susceptibility testing showed KPC-2 and -3 donor strains were resistant to more than four classes of antibiotics while the K2 isolate was only initially resistant to ampicillin. After conjugation of KPC-2 and -3, the K2 K. pneumoniae transconjugants became resistant to all beta-lactams. Additionally, the KPC K2 K. pneumoniae transconjugants continued to retain its high serum resistance and murine lethality. Conjugation and retainment of KPC by virulent K2 K. pneumoniae and the ability of the tranconjugants to maintain its high serum resistance and murine lethality after conjugation was demonstrated in this study. These findings are concerning for the potential of KPC-like genes to disseminate among virulent K. pneumoniae isolates.

  2. Morpho- biochemical evaluation of Brassica rapa sub-species for salt tolerance

    Directory of Open Access Journals (Sweden)

    Jan Sohail Ahmad

    2016-01-01

    Full Text Available Salt stress is one of the key abiotic stresses that affect both the qualitative and quantitative characters of many Brassica rapa sub-species by disturbing its normal morphobiochemical processes. Therefore, the present research work was designed to study the effect of different NaCl events (0, 50,100 and 150 mmol on morphological and biochemical characters and to screen salt tolerant genotypes among brown, yellow and toria types of B. rapa sub-species. The plants were grown in test tubes with addition of four level of NaCl (0, 50,100 and 150 mmol. The effect of salinity on shoot and root length, shoot/ root fresh and dry weight, relative water content (RWC, proline and chlorophyll a, b, a+b contents was recorded after 4 weeks of sowing. The genotype 22861 (brown type showed excellent morphological and biochemical performance at all stress levels followed by Toria-Sathi and Toria-A respectively as compared to Check variety TS-1. The genotype 26158 (yellow type gave very poor performance and retard growth. The %RWC values and chlorophyll a, b and a+b contents were decreased several folds with the increase of salt concentration. While, the proline contents was increased with raising of salt stress. The brown and toria types showed maximum tolerance to salt stress at early germination stages as compare to yellows one. The present study will serve as model to develop quick salt tolerant genotypes among different plant sub-species against salt stress.

  3. Structure and amount of genetic variation at minisatellite loci within the subspecies complex of Phoca vitulina (the harbour seal)

    NARCIS (Netherlands)

    Kappe, A.L.; Bijlsma, R.; Osterhaus, ADME; van Delden, W.; van de Zande, L.

    The structure and amount of genetic variation within and between three subspecies of the harbour seal Phoca vitulina was assessed by multilocus DNA fingerprinting. Bandsharing similarity indicates that the subspecies Phoca vitulina richarhsi (Alaska, East Pacific) is clearly separated from the other

  4. A morphological review of subspecies of the Asian box turtle, Cuora amboinensis (Testudines, Geomydidae)

    Science.gov (United States)

    Ernst, Carl H.; Laemmerzahl, Arndt F.; Lovich, Jeffrey E.

    2016-01-01

    The turtle Cuora amboinensis has an extensive distribution covering most of southern mainland Asia, Indonesia, and extending to the Philippine Islands. Unlike many species, C. amboinensis occurs on both sides of Wallace's Line separating Asian and Australian flora and fauna. Four subspecies are currently recognized; Cuora a. kamaroma (southern continental Asia, Java and the northern Philippines [introduced]), C. a. lineata (Kachin Province, Myanmar [Burma] and adjacent Yunnan Province, China), C. a. couro (Sumatra, Java, Sumbawa, and adjacent smaller Indonesian islands); and C. a. amboinensis (Moluccas, Sulawesi, Philippines). Five pattern and 33 morphological characters were examined for variation in 691 individuals from throughout the species' range. Our analyses suggest that only two presently recognized subspecies are valid: amboinensis andkamaroma. Neither couro nor lineata are supported by our analysis. We recommend that C. a. couroshould be synonymized with the species C. amboinensis and C. a. lineata with the subspecies C. a. kamaroma.

  5. Psychology Baccalaureates at Work: Major Area Subspecializations, Earnings, and Occupations

    Science.gov (United States)

    Rajecki, D. W.

    2012-01-01

    A Census Bureau national survey identified baccalaureates aged up to 64 years having major area subspecializations labeled "psychology," "industrial/organizational (I/O) psychology," and "counseling psychology." Median 2009 earnings of all such types of baccalaureate psychology alumni were well below the distribution mean of the 153 fields in the…

  6. Use of intron-exonic marker in assessment of genetic diversity of two subspecies of Thymus daenensis

    Directory of Open Access Journals (Sweden)

    Ahmad Ismaili

    2013-11-01

    Full Text Available Study of genetic diversity in medicinal plant is very important for improvement and evolutionary variations. In this study, assessment of genetic diversity in two subspecies of Thymus daenensis was evaluated, using intron-exonic markers. Thirty primers produced 633 polymorphic bands (98% polymorphism. The highest polymorphic information content (PIC included ISJ5 and ISJ9 primers and the lowest PIC also included IT15-32 primer. The highest marker index (MI produced by IT10-6 primer. Results of Analysis of Molecular Variance (AMOVA showed that intra-sub specific variation was more than inter-sub specific variation. Dendrogram obtained from Cluster analysis, using NTSYS-pc software and UPGMA method based on Dice's similarity matrix, divided accessions into 4 groups. The maximum range of genetic similarity was observed between two accessions of sub-species daenensis. Two accessions of Fars and Semnan formed a separate group. Results showed that clustering based on molecular data and principal coordinate analysis had a medium alignment. Grouping based on cluster analysis also could separate two subspecies of Thymus daenensis. Results obtained from this study showed that intron-exonic markers had an effective potential in assessment of genetic relationships between the two sub-species of daenensis.

  7. Biofilm formation of beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis isolates and its association with emm polymorphism.

    Science.gov (United States)

    Ma, Jui-Shan; Chen, Sin-Yu; Lo, Hsueh-Hsia

    2017-11-01

    Biofilm formation has been well known as a determinant of bacterial virulence. Group G Streptococcus dysgalactiae subspecies equisimilis (SDSE), a relevant pathogen with increasing medical importance, was evaluated for the biofilm-forming potential. Microtiter plate assay was used to assess the most feasible medium for group G SDSE to form a biofilm. Among 246 SDSE isolates examined, 46.7%, 43.5%, 33.3%, and 26.4% of isolates showed moderate or strong biofilm-forming abilities using tryptic soy broth (TSB), brain heart infusion broth (BHI), Todd-Hewitt broth (THB), and C medium with 30 mM glucose (CMG), respectively. The addition of glucose significantly increased the biofilm-forming ability of group G SDSE. FCT (fibronectin-collagen-T-antigen) typing of SDSE was first undertaken and 11 FCT types were found. Positive associations of stG10.0 or negative associations of stG245.0, stG840.0, and stG6.1 with biofilm-forming ability of SDSE were, respectively, found. This was the first investigation demonstrating biofilm-forming potential in clinical group G SDSE isolates; also, some significant associations of biofilm-forming ability with certain emm types were presented. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  8. Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting

    NARCIS (Netherlands)

    Agbo, E.E.C.; Majiwa, P.A.O.; Claassen, H.J.H.M.; Pas, te M.F.W.

    2002-01-01

    Genetic analysis of Trypanosoma spp. depends on the detection of variation between strains. We have used the amplified fragment length polymorphism (AFLP) technique to develop a convenient and reliable method for genetic characterization of Trypanosome (sub)species. AFLP accesses multiple

  9. Invasion thresholds and the evolution of nonequilibrium virulence

    OpenAIRE

    Bull, J. J.; Ebert, D.

    2008-01-01

    Abstract The enterprise of virulence management attempts to predict how social practices and other factors affect the evolution of parasite virulence. These predictions are often based on parasite optima or evolutionary equilibria derived from models of host-parasite dynamics. Yet even when such models accurately capture the parasite optima, newly invading parasites will typically not be at their optima. Here we show that parasite invasion of a host population can occur despite highly nonopti...

  10. Subspecies identification of Chimpanzees Pan troglodytes (Primates: Hominidae from the National Zoo of the Metropolitan Park of Santiago, Chile, using mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    J.A. Vega

    2014-05-01

    Full Text Available Natural populations of Chimpanzees Pan troglodytes are declining because of hunting and illegal live animal trafficking. Four subspecies of Chimpanzee have been reported: Pan troglodytes troglodytes, P.t. schweinfurthii, P.t. verus and P.t. ellioti, which have remained geographically separated by natural barriers such as the rivers Niger, Sanaga and Ubangi in central Africa. Sequence analysis of mitochondrial DNA (mtDNA has been used for the determination of these subspecies, which indirectly can also suggest their geographic origin. It was decided to identify the subspecies and the geographic origin of three captive chimpanzees of the National Zoo of the Metropolitan Park of Santiago (Chile, by analyzing their mitochondrial DNA. DNA was extracted from the saliva of three adult chimpanzees (two males and one female. After the analysis of sequences of the mitochondrial hypervariable region (HVI, a phylogenetic tree was constructed using mitochondrial sequences of known Pan troglodytes subspecies. Molecular phylogeny analysis revealed that the chimpanzees are likely to belong to three different subspecies: P.t. schweinfurthii, P.t. verus and P.t. troglodytes. Identification of subspecies of the three chimpanzees of the National Zoo of the Metropolitan Park of Santiago (Chile was possible due to mtDNA analysis. Future identification of chimpanzees will allow the development of a studbook for the chimpanzee subspecies in other Latin American zoos.

  11. Genome-wide sequence variations among Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Chung-Yi eHsu

    2011-12-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (M. ap, the causative agent of Johne’s disease (JD, infects many farmed ruminants, wildlife animals and humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole genome sequences of several M. ap and M. avium subspecies avium (M. avium strains isolated from various hosts and environments. Using Next-generation sequencing technology, all 6 M. ap isolates showed a high percentage of homology (98% to the reference genome sequence of M. ap K-10 isolated from cattle. However, 2 M. avium isolates (DT 78 and Env 77 showed significant sequence diversity from the reference strain M. avium 104. The genomes of M. avium isolates DT 78 and Env 77 exhibited only 87% and 40% homology, respectively, to the M. avium 104 reference genome. Within the M. ap isolates, genomic rearrangements (insertions/deletions, Indels were not detected, and only unique single nucleotide polymorphisms (SNPs were observed among the 6 M. ap strains. While most of the SNPs (~100 in M. ap genomes were non-synonymous, a total of ~ 6000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomic analysis showed that isolates from goat and Oryx are closely related to the cattle (K-10 strain while the human isolate (M. ap 4B is closely related to the environmental strains, indicating environmental source to human infections. Overall, SNPs were the most common variations among M. ap isolates while SNPs in addition to Indels were prevalent among M. avium isolates. Genomic variations will be useful in designing host-specific markers for the analysis of mycobacterial evolution and for developing novel diagnostics directed against Johne’s disease in animals.

  12. A molecular marker distinguishes the subspecies Melipona quadrifasciata quadrifasciata and Melipona quadrifasciata anthidioides (Hymenoptera: Apidae, Meliponinae)

    OpenAIRE

    Ana M. Waldschmidt; Everaldo G. de Barros; Lucio A.O. Campos

    2000-01-01

    The stingless bee species Melipona quadrifasciata includes two subspecies, Melipona quadrifasciata anthidioids and Melipona quadrifasciata quadrifasciata. The morphological difference between the two subspecies is the presence of three to five continuous yellow stripes on the terga on the 3rd to 6th segments in workers and males of M. q. quadrifasciata, and two to five interrupted bands in M. q. anthidioides. We identified a DNA marker which is present in M. q. quadrifasciata and absent in M....

  13. A theoretical model of the evolution of virulence in sexually transmitted HIV/AIDS

    Directory of Open Access Journals (Sweden)

    FAB Coutinho

    1999-08-01

    Full Text Available INTRODUCTION: The evolution of virulence in host-parasite relationships has been the subject of several publications. In the case of HIV virulence, some authors suggest that the evolution of HIV virulence correlates with the rate of acquisition of new sexual partners. In contrast some other authors argue that the level of HIV virulence is independent of the sexual activity of the host population. METHODS: Provide a mathematical model for the study of the potential influence of human sexual behaviour on the evolution of virulence of HIV is provided. RESULTS: The results indicated that, when the probability of acquisition of infection is a function both of the sexual activity and of the virulence level of HIV strains, the evolution of HIV virulence correlates positively with the rate of acquisition of new sexual partners. CONCLUSION: It is concluded that in the case of a host population with a low (high rate of exchange of sexual partners the evolution of HIV virulence is such that the less (more virulent strain prevails.

  14. A theoretical model of the evolution of virulence in sexually transmitted HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Coutinho FAB

    1999-01-01

    Full Text Available INTRODUCTION: The evolution of virulence in host-parasite relationships has been the subject of several publications. In the case of HIV virulence, some authors suggest that the evolution of HIV virulence correlates with the rate of acquisition of new sexual partners. In contrast some other authors argue that the level of HIV virulence is independent of the sexual activity of the host population. METHODS: Provide a mathematical model for the study of the potential influence of human sexual behaviour on the evolution of virulence of HIV is provided. RESULTS: The results indicated that, when the probability of acquisition of infection is a function both of the sexual activity and of the virulence level of HIV strains, the evolution of HIV virulence correlates positively with the rate of acquisition of new sexual partners. CONCLUSION: It is concluded that in the case of a host population with a low (high rate of exchange of sexual partners the evolution of HIV virulence is such that the less (more virulent strain prevails.

  15. Evolution of viral virulence: empirical studies

    Science.gov (United States)

    Kurath, Gael; Wargo, Andrew R.

    2016-01-01

    The concept of virulence as a pathogen trait that can evolve in response to selection has led to a large body of virulence evolution theory developed in the 1980-1990s. Various aspects of this theory predict increased or decreased virulence in response to a complex array of selection pressures including mode of transmission, changes in host, mixed infection, vector-borne transmission, environmental changes, host vaccination, host resistance, and co-evolution of virus and host. A fundamental concept is prediction of trade-offs between the costs and benefits associated with higher virulence, leading to selection of optimal virulence levels. Through a combination of observational and experimental studies, including experimental evolution of viruses during serial passage, many of these predictions have now been explored in systems ranging from bacteriophage to viruses of plants, invertebrates, and vertebrate hosts. This chapter summarizes empirical studies of viral virulence evolution in numerous diverse systems, including the classic models myxomavirus in rabbits, Marek's disease virus in chickens, and HIV in humans. Collectively these studies support some aspects of virulence evolution theory, suggest modifications for other aspects, and show that predictions may apply in some virus:host interactions but not in others. Finally, we consider how virulence evolution theory applies to disease management in the field.

  16. High virulence of Wolbachia after host switching: when autophagy hurts.

    Directory of Open Access Journals (Sweden)

    Winka Le Clec'h

    Full Text Available Wolbachia are widespread endosymbionts found in a large variety of arthropods. While these bacteria are generally transmitted vertically and exhibit weak virulence in their native hosts, a growing number of studies suggests that horizontal transfers of Wolbachia to new host species also occur frequently in nature. In transfer situations, virulence variations can be predicted since hosts and symbionts are not adapted to each other. Here, we describe a situation where a Wolbachia strain (wVulC becomes a pathogen when transfected from its native terrestrial isopod host species (Armadillidium vulgare to another species (Porcellio d. dilatatus. Such transfer of wVulC kills all recipient animals within 75 days. Before death, animals suffer symptoms such as growth slowdown and nervous system disorders. Neither those symptoms nor mortalities were observed after injection of wVulC into its native host A. vulgare. Analyses of wVulC's densities in main organs including Central Nervous System (CNS of both naturally infected A. vulgare and transfected P. d. dilatatus and A. vulgare individuals revealed a similar pattern of host colonization suggesting an overall similar resistance of both host species towards this bacterium. However, for only P. d. dilatatus, we observed drastic accumulations of autophagic vesicles and vacuoles in the nerve cells and adipocytes of the CNS from individuals infected by wVulC. The symptoms and mortalities could therefore be explained by this huge autophagic response against wVulC in P. d. dilatatus cells that is not triggered in A. vulgare. Our results show that Wolbachia (wVulC can lead to a pathogenic interaction when transferred horizontally into species that are phylogenetically close to their native hosts. This change in virulence likely results from the autophagic response of the host, strongly altering its tolerance to the symbiont and turning it into a deadly pathogen.

  17. Chimpanzee subspecies and ‘robust’ australopithecine holotypes, in the context of comments by Darwin

    Directory of Open Access Journals (Sweden)

    S. Prat

    2010-02-01

    Full Text Available On the basis of comparative anatomy (including chimpanzees, gorillas and other primates, Darwin1 suggested that Africa was the continent from which ‘progenitors’ of humankind evolved. Hominin fossils from this continent proved him correct. We present the results of morphometric analyses based on cranial data obtained from chimpanzee taxa currently recognised as distinct subspecies, namely Pan troglodytes troglodytes and Pan troglodytes schweinfurthii, as well as Pan paniscus (bonobo. Our objective was to use a morphometric technique2 to quantify the degree of similarity between pairs of specimens, in the context of a statistical (probabilistic definition of a species.3–5 Results obtained from great apes, including two subspecies of chimpanzee, were assessed in relation to same-scale comparisons between the holotypes of ‘robust’ australopithecine (Plio-Pleistocene hominin taxa which have traditionally been distinguished at a species level, notably Paranthropus robustus from South Africa, and Paranthropus (Australopithecus/ Zinjanthropus boisei from East Africa. The question arises as to whether the holotypes of these two taxa, TM 1517 from Kromdraai6 and OH 5 from Olduvai,7 respectively, are different at the subspecies rather than at the species level.

  18. A new subspecies of Nitokra affinis Gurney, 1927 (Copepoda, Harpacticoida from the Caribbean coast of Colombia

    Directory of Open Access Journals (Sweden)

    Juan Fuentes

    2014-02-01

    Full Text Available Plankton samples from Laguna Navio Quebrado, La Guajira, northern Colombia, yielded male and female specimens of an harpacticoid copepod that was first identified as the widely distributed species Nitokra affinis Gurney, 1927 for which at least four subspecies have been described from different geographic areas. A more detailed examination of the Colombian specimens revealed that it differs from the other morphs so far considered as subspecies. The Colombian specimens differ from the other four known subspecies in the following aspects: (1 rostrum with long projection, (2 relatively long exopod of P1, almost as long as first endopodal segment, (3 endopodal and exopodal rami of P2 equally long, (4 a reduced number of endopodal setal elements of the male P5. It also differs from N. a. californica Lang in details of the ornamentation of the urosomites. Descriptions and illustrations of this new subspecies, the first one described from the Neotropical region, are presented together with a key to the five known subspecies of Nitokra affinis. As in many other cases of presumedly widespread species of harpacticoids, it is possible that N. affinis represents a species complex with more restricted distributional patterns, a notion that certainly deserves further study.

  19. Rapid discrimination of sea buckthorn berries from different H. rhamnoides subspecies by multi-step IR spectroscopy coupled with multivariate data analysis

    Science.gov (United States)

    Liu, Yue; Zhang, Ying; Zhang, Jing; Fan, Gang; Tu, Ya; Sun, Suqin; Shen, Xudong; Li, Qingzhu; Zhang, Yi

    2018-03-01

    As an important ethnic medicine, sea buckthorn was widely used to prevent and treat various diseases due to its nutritional and medicinal properties. According to the Chinese Pharmacopoeia, sea buckthorn was originated from H. rhamnoides, which includes five subspecies distributed in China. Confusion and misidentification usually occurred due to their similar morphology, especially in dried and powdered forms. Additionally, these five subspecies have vital differences in quality and physiological efficacy. This paper focused on the quick classification and identification method of sea buckthorn berry powders from five H. rhamnoides subspecies using multi-step IR spectroscopy coupled with multivariate data analysis. The holistic chemical compositions revealed by the FT-IR spectra demonstrated that flavonoids, fatty acids and sugars were the main chemical components. Further, the differences in FT-IR spectra regarding their peaks, positions and intensities were used to identify H. rhamnoides subspecies samples. The discrimination was achieved using principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). The results showed that the combination of multi-step IR spectroscopy and chemometric analysis offered a simple, fast and reliable method for the classification and identification of the sea buckthorn berry powders from different H. rhamnoides subspecies.

  20. Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies

    DEFF Research Database (Denmark)

    Hum, S.; Quinn, K.; Brunner, J.

    1997-01-01

    methods were attributed to methodological differences used in various laboratories. Conclusion Our results indicate that misidentification of C fetus in routine diagnostic laboratories may be relatively common. The PCR assay evaluated gave rapid and reproducible results and is thus a valuable adjunctive......Objective To evaluate a polymerase chain reaction assay for identification of Campylobacter fetus and differentiation of the defined subspecies. Design Characterisation of bacterial strains by traditional phenotyping, polymerase chain reaction, a probabilistic identification scheme...... by traditional phenotypic methods and the PCR assay was found to be 80.8%. The polymerase chain reaction proved to be a reliable technique for the species and subspecies identification of C fetus; equivocal results were obtained in only two instances. Initial misidentifications by conventional phenotyping...

  1. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.; Gritsenko, Marina A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2011-06-28

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.

  2. Helicobacter pylori virulence and cancer pathogenesis.

    Science.gov (United States)

    Yamaoka, Yoshio; Graham, David Y

    2014-06-01

    Helicobacter pylori is human gastric pathogen that causes chronic and progressive gastric mucosal inflammation and is responsible for the gastric inflammation-associated diseases, gastric cancer and peptic ulcer disease. Specific outcomes reflect the interplay between host-, environmental- and bacterial-specific factors. Progress in understanding putative virulence factors in disease pathogenesis has been limited and many false leads have consumed scarce resources. Few in vitro-in vivo correlations or translational applications have proved clinically relevant. Reported virulence factor-related outcomes reflect differences in relative risk of disease rather than specificity for any specific outcome. Studies of individual virulence factor associations have provided conflicting results. Since virulence factors are linked, studies of groups of putative virulence factors are needed to provide clinically useful information. Here, the authors discuss the progress made in understanding the role of H. pylori virulence factors CagA, vacuolating cytotoxin, OipA and DupA in disease pathogenesis and provide suggestions for future studies.

  3. Is dolphin morbillivirus virulent for white-beaked dolphins (Lagenorhynchus albirostris)?

    Science.gov (United States)

    van Elk, C E; van de Bildt, M W G; Jauniaux, T; Hiemstra, S; van Run, P R W A; Foster, G; Meerbeek, J; Osterhaus, A D M E; Kuiken, T

    2014-11-01

    The virulence of morbilliviruses for toothed whales (odontocetes) appears to differ according to host species. In 4 species of odontocetes, morbilliviruses are highly virulent, causing large-scale epizootics with high mortality. In 8 other species of odontocetes, including white-beaked dolphins (Lagenorhynchus albirostris), morbilliviruses have been found as an incidental infection. In these species, the virulence of morbilliviruses is not clear. Therefore, the admission of 2 white-beaked dolphins with morbillivirus infection into a rehabilitation center provided a unique opportunity to investigate the virulence of morbillivirus in this species. By phylogenetic analysis, the morbilliviruses in both animals were identified as a dolphin morbillivirus (DMV) most closely related to that detected in a white-beaked dolphin in Germany in 2007. Both animals were examined clinically and pathologically. Case No. 1 had a chronic neural DMV infection, characterized by polioencephalitis in the cerebrum and morbillivirus antigen expression limited to neurons and glial cells. Surprisingly, no nervous signs were observed in this animal during the 6 months before death. Case No. 2 had a subacute systemic DMV infection, characterized by interstitial pneumonia, leucopenia, lymphoid depletion, and DMV antigen expression in mononuclear cells and syncytia in the lung and in mononuclear cells in multiple lymphoid organs. Cause of death was not attributed to DMV infection in either animal. DMV was not detected in 2 contemporaneously stranded white-beaked dolphins. Stranding rate did not increase in the region. These results suggest that DMV is not highly virulent for white-beaked dolphins. © The Author(s) 2013.

  4. Genetic relationships among some subspecies of the Peregrine Falcon (Falco peregrinus L.), inferred from mitochondrial DNA control-region sequences

    Science.gov (United States)

    White, Clayton M.; Sonsthagen, Sarah A.; Sage, George K.; Anderson, Clifford; Talbot, Sandra L.

    2013-01-01

    The ability to successfully colonize and persist in diverse environments likely requires broad morphological and behavioral plasticity and adaptability, and this may partly explain why the Peregrine Falcon (Falco peregrinus) exhibits a large range of morphological characteristics across their global distribution. Regional and local differences within Peregrine Falcons were sufficiently variable that ∼75 subspecies have been described; many were subsumed, and currently 19 are generally recognized. We used sequence information from the control region of the mitochondrial genome to test for concordance between genetic structure and representatives of 12 current subspecies and from two areas where subspecies distributions overlap. Haplotypes were broadly shared among subspecies, and all geographic locales shared a widely distributed common haplotype (FalconCR2). Haplotypes were distributed in a star-like phylogeny, consistent with rapid expansion of a recently derived species, with observed genetic patterns congruent with incomplete lineage sorting and/or differential rates of evolution on morphology and neutral genetic characters. Hierarchical analyses of molecular variance did not uncover genetic partitioning at the continental level, despite strong population-level structure (FST = 0.228). Similar analyses found weak partitioning, albeit significant, among subspecies (FCT = 0.138). All reconstructions placed the hierofalcons' (Gyrfalcon [F. rusticolus] and Saker Falcon [F. cherrug]) haplotypes in a well-supported clade either basal or unresolved with respect to the Peregrine Falcon. In addition, haplotypes representing Taita Falcon (F. fasciinucha) were placed within the Peregrine Falcon clade.

  5. The plasmid-encoded Ipf and Klf fimbriae display different expression and varying roles in the virulence of Salmonella enterica serovar Infantis in mouse vs. avian hosts.

    Directory of Open Access Journals (Sweden)

    Gili Aviv

    2017-08-01

    Full Text Available Salmonella enterica serovar Infantis is one of the prevalent Salmonella serovars worldwide. Different emergent clones of S. Infantis were shown to acquire the pESI virulence-resistance megaplasmid affecting its ecology and pathogenicity. Here, we studied two previously uncharacterized pESI-encoded chaperone-usher fimbriae, named Ipf and Klf. While Ipf homologs are rare and were found only in S. enterica subspecies diarizonae and subspecies VII, Klf is related to the known K88-Fae fimbria and klf clusters were identified in seven S. enterica subspecies I serovars, harboring interchanging alleles of the fimbria major subunit, KlfG. Regulation studies showed that the klf genes expression is negatively and positively controlled by the pESI-encoded regulators KlfL and KlfB, respectively, and are activated by the ancestral leucine-responsive regulator (Lrp. ipf genes are negatively regulated by Fur and activated by OmpR. Furthermore, induced expression of both klf and ipf clusters occurs under microaerobic conditions and at 41°C compared to 37°C, in-vitro. Consistent with these results, we demonstrate higher expression of ipf and klf in chicks compared to mice, characterized by physiological temperature of 41.2°C and 37°C, respectively. Interestingly, while Klf was dispensable for S. Infantis colonization in the mouse, Ipf was required for maximal colonization in the murine ileum. In contrast to these phenotypes in mice, both Klf and Ipf contributed to a restrained infection in chicks, where the absence of these fimbriae has led to moderately higher bacterial burden in the avian host. Taken together, these data suggest that physiological differences between host species, such as the body temperature, can confer differences in fimbriome expression, affecting Salmonella colonization and other host-pathogen interplays.

  6. Mycobacterium avium subspecies paratuberculosis recombinant proteins modulate antimycobacterial functions of bovine macrophages

    Science.gov (United States)

    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinan...

  7. Using Molecular Genetic Markers to Resolve a Subspecies Boundary: The Northern Boundary of the Southwestern Willow Flycatcher in the Four-Corner States

    Science.gov (United States)

    Paxton, Eben H.; Sogge, Mark K.; Theimer, Tad C.; Girard, Jessica; Keim, Paul

    2008-01-01

    *Executive Summary* The northern boundary of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) is currently approximated as running through southern Colorado and Utah, but the exact placement is uncertain because this subspecies shares a border with the more northern and non-endangered E. t. adastus. To help resolve this issue, we evaluated the geographic distribution of mitochondrial and nuclear DNA by sampling breeding sites across the four-corner states (Arizona, Colorado, New Mexico, and Utah). We found that breeding sites clustered into two major groups generally consistent with the currently designated boundary, with the exception of three sites situated along the current boundary. However, delineating a precise boundary that would separate the two subspecies is made difficult because (1) we found evidence for a region of intergradation along the boundary area, suggesting the boundary is not discreet, and (2) the boundary region is sparsely populated, with too few extant breeding populations to precisely locate a boundary. The boundary region encompasses an area where elevation changes markedly over relatively short distances, with low elevation deserts to the south and more mesic, higher elevation habitats to the north. We hypothesized that latitudinal and elevational differences and their concomitant ecological effects could form an ecological barrier that inhibited gene flow between the subspecies, forming the basis for the subspecies boundary. We modeled changes in geographic patterns of genetic markers as a function of latitude and elevation finding significant support for this relationship. The model was brought into a GIS environment to create multiple subspecies boundaries, with the strength of each predicted boundary evaluated on the basis of how much genetic variation it explained. The candidate boundary that accounted for the most genetic variation was situated generally near the currently recognized subspecies boundary

  8. Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen.

    Science.gov (United States)

    Graupner, Katharina; Scherlach, Kirstin; Bretschneider, Tom; Lackner, Gerald; Roth, Martin; Gross, Harald; Hertweck, Christian

    2012-12-21

    Caught in the act: imaging mass spectrometry of a button mushroom infected with the soft rot pathogen Janthinobacterium agaricidamnosum in conjunction with genome mining revealed jagaricin as a highly antifungal virulence factor that is not produced under standard cultivation conditions. The structure of jagaricin was rigorously elucidated by a combination of physicochemical analyses, chemical derivatization, and bioinformatics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert; Sardans, J.; Hodar, Jose A.; Garcia-Porta, Joan; Guenther, Alex B.; Pasa Tolic, Ljiljana; Oravec, Michal; Urban, Otmar; Penuelas, Josep

    2017-09-25

    The metabolome, the chemical phenotype of an organism, should be shaped by evolution. Metabolomes depend on genetic composition and expression, which can be sources of evolutionary inertia, so most aspects of metabolomes should be similar in closely related sympatric species. We examined the metabolomes of two sympatric subspecies of Pinus sylvestris in Sierra Nevada (southern Iberian Peninsula), one introduced (ssp. iberica) and one autochthonous (ssp. nevadensis), in summer and winter and exposed to folivory by the pine processionary moth. The overall metabolomes differed between the subspecies but both tended to respond more similarly to folivory. The metabolomes of the subspecies were more dissimilar in summer than in winter, and iberica trees had higher concentrations of metabolites directly related to drought stress. Our results suggest that certain plant metabolic responses associated with folivory have been conserved throughout evolutionary history. The larger divergence between subspecies metabolomes in summer is likely due to the warmer and drier conditions that the northern iberica subspecies experience in Sierra Nevada. Our results provide crucial insights into how iberica populations would respond to the predicted conditions of climate change under an increased defoliation, two recent severe issues in the Mediterranean Basin.

  10. Virulence Gene Pool Detected in Bovine Group C Streptococcus dysgalactiae subsp. dysgalactiae Isolates by Use of a Group A S. pyogenes Virulence Microarray ▿

    Science.gov (United States)

    Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.

    2011-01-01

    A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223

  11. Virulence Genotyping of Pasteurella multocida Isolated from Multiple Hosts from India

    Directory of Open Access Journals (Sweden)

    Laxmi Narayan Sarangi

    2014-01-01

    Full Text Available In this study, 108 P. multocida isolates recovered from various host animals such as cattle, buffalo, swine, poultry (chicken, duck, and emu and rabbits were screened for carriage of 8 virulence associated genes. The results revealed some unique information on the prevalence of virulence associated genes among Indian isolates. With the exception of toxA gene, all other virulence associated genes were found to be regularly distributed among host species. Association study between capsule type and virulence genes suggested that pfhA, nanB, and nanH genes were regularly distributed among all serotypes with the exception of CapD, whereas toxA gene was found to be positively associated with CapD and CapA. The frequency of hgbA and nanH genes among swine isolates of Indian origin was found to be less in comparison to its equivalents around the globe. Interestingly, very high prevalence of tbpA gene was observed among poultry, swine, and rabbit isolates. Likewise, very high prevalence of pfhA gene (95.3% was observed among Indian isolates, irrespective of host species origin.

  12. Virulence genotyping of Pasteurella multocida isolated from multiple hosts from India.

    Science.gov (United States)

    Sarangi, Laxmi Narayan; Priyadarshini, Adyasha; Kumar, Santosh; Thomas, Prasad; Gupta, Santosh Kumar; Nagaleekar, Viswas Konasagara; Singh, Vijendra Pal

    2014-01-01

    In this study, 108 P. multocida isolates recovered from various host animals such as cattle, buffalo, swine, poultry (chicken, duck, and emu) and rabbits were screened for carriage of 8 virulence associated genes. The results revealed some unique information on the prevalence of virulence associated genes among Indian isolates. With the exception of toxA gene, all other virulence associated genes were found to be regularly distributed among host species. Association study between capsule type and virulence genes suggested that pfhA, nanB, and nanH genes were regularly distributed among all serotypes with the exception of CapD, whereas toxA gene was found to be positively associated with CapD and CapA. The frequency of hgbA and nanH genes among swine isolates of Indian origin was found to be less in comparison to its equivalents around the globe. Interestingly, very high prevalence of tbpA gene was observed among poultry, swine, and rabbit isolates. Likewise, very high prevalence of pfhA gene (95.3%) was observed among Indian isolates, irrespective of host species origin.

  13. A new subspecies of Phascolion Theel, 1875 (Sipuncula: Golfingiidae) from Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Saiz, J.I.; Bustamante, M.; Tajadura, J.; Vijapure, T.; Sukumaran, S.

    , vol.3931(3); 2015; 433-437 A new subspecies of Phascolion Théel, 1875 (Sipuncula: Golfingiidae) from Indian waters JOSÉ I. SAIZ1, MARIA BUSTAMANTE1, JAVIER TAJADURA1, TEJAL VIJAPURE2 & SONIYA SUKUMARAN2 1 Universidad del País Vasco / EHU, 48080...

  14. Complete mitochondrial genomes of two subspecies (Rhinolophus ferrumequinum nippon and Rhinolophus ferrumequinum tragatus) of the greater horseshoe bat (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Xiao, Yanhong; Sun, Keping; Feng, Jiang

    2017-01-01

    Rhinolophus ferrumequinum nippon and Rhinolophus ferrumequinum tragatus are two subspecies of Rhinolophus ferrumequinum currently recognized in China. In this study, their mitochondrial genomes were completely sequenced and annotated. Phylogenetic analyses indicated that R. f. nippon has a close relationship with two subspecies of R. ferrumequinum from Korea with 0.1% divergence, which indicated they are synonyms.

  15. Aureusimines in Staphylococcus aureus are not involved in virulence.

    Science.gov (United States)

    Sun, Fei; Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; He, Chuan; Bae, Taeok

    2010-12-29

    Recently, dipeptide aureusimines were reported to activate expression of staphylococcal virulence genes, such as alpha-hemolysin, and increase S. aureus virulence. Surprisingly, most of the virulence genes affected by aureusimines form part of the regulon of the SaeRS two component system (TCS), raising the possibility that SaeRS might be directly or indirectly involved in the aureusimine-dependent signaling process. Using HPLC analyses, we confirmed that a transposon mutant of ausA, the gene encoding the aureusimine dipeptide synthesis enzyme, does not produce dipeptides. However, the transposon mutant showed normal hemolysis activity and alpha-hemolysin/SaeP production. Furthermore, the P1 promoter of the sae operon, one of the targets of the SaeRS TCS, showed normal transcription activity. Moreover, in contrast to the original report, the ausA transposon mutant did not exhibit attenuated virulence in an animal infection model. DNA sequencing revealed that the ausA deletion mutant used in the original study has an 83 nt-duplication in saeS. Hemolysis activity of the original mutant was restored by a plasmid carrying the sae operon. A mutant of the sae operon showed elevated resistance to chloramphenicol and erythromycin, two antibiotics widely used during staphylococcal mutagenesis. At 43°C in the presence of erythromycin and aeration, the conditions typically employed for staphylococcal mutagenesis, an saeR transposon mutant grew much faster than a control mutant and the saeR mutant was highly enriched in a mixed culture experiment. Our results show that the previously reported roles of aureusimines in staphylococcal gene regulation and virulence were due to an unintended mutation in saeS, which was likely selected due to elevated resistance of the mutant to environmental stresses. Thus, there is no evidence indicating that the dipeptide aureusimines play a role in sae-mediated virulence factor production or contribute to staphylococcal virulence.

  16. Aureusimines in Staphylococcus aureus are not involved in virulence.

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2010-12-01

    Full Text Available Recently, dipeptide aureusimines were reported to activate expression of staphylococcal virulence genes, such as alpha-hemolysin, and increase S. aureus virulence. Surprisingly, most of the virulence genes affected by aureusimines form part of the regulon of the SaeRS two component system (TCS, raising the possibility that SaeRS might be directly or indirectly involved in the aureusimine-dependent signaling process.Using HPLC analyses, we confirmed that a transposon mutant of ausA, the gene encoding the aureusimine dipeptide synthesis enzyme, does not produce dipeptides. However, the transposon mutant showed normal hemolysis activity and alpha-hemolysin/SaeP production. Furthermore, the P1 promoter of the sae operon, one of the targets of the SaeRS TCS, showed normal transcription activity. Moreover, in contrast to the original report, the ausA transposon mutant did not exhibit attenuated virulence in an animal infection model. DNA sequencing revealed that the ausA deletion mutant used in the original study has an 83 nt-duplication in saeS. Hemolysis activity of the original mutant was restored by a plasmid carrying the sae operon. A mutant of the sae operon showed elevated resistance to chloramphenicol and erythromycin, two antibiotics widely used during staphylococcal mutagenesis. At 43°C in the presence of erythromycin and aeration, the conditions typically employed for staphylococcal mutagenesis, an saeR transposon mutant grew much faster than a control mutant and the saeR mutant was highly enriched in a mixed culture experiment.Our results show that the previously reported roles of aureusimines in staphylococcal gene regulation and virulence were due to an unintended mutation in saeS, which was likely selected due to elevated resistance of the mutant to environmental stresses. Thus, there is no evidence indicating that the dipeptide aureusimines play a role in sae-mediated virulence factor production or contribute to staphylococcal

  17. Differentiation of Xylella fastidiosa Strains via Multilocus Sequence Analysis of Environmentally Mediated Genes (MLSA-E)

    OpenAIRE

    Parker, Jennifer K.; Havird, Justin C.; De La Fuente, Leonardo

    2012-01-01

    Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of enviro...

  18. Sample collection of virulent and non-virulent B. anthracis and Y. pestis for bioforensics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory; Valdez, Yolanda E [Los Alamos National Laboratory; Shou, Yulin [Los Alamos National Laboratory; Yoshida, Thomas M [Los Alamos National Laboratory; Marrone, Babetta L [Los Alamos National Laboratory; Dunbar, John [Los Alamos National Laboratory

    2009-01-01

    Validated sample collection methods are needed for recovery of microbial evidence in the event of accidental or intentional release of biological agents into the environment. To address this need, we evaluated the sample recovery efficiencies of two collection methods -- swabs and wipes -- for both non-virulent and virulent strains of B. anthracis and Y. pestis from four types of non-porous surfaces: two hydrophilic surfaces, stainless steel and glass, and two hydrophobic surfaces, vinyl and plastic. Sample recovery was quantified using Real-time qPCR to assay for intact DNA signatures. We found no consistent difference in collection efficiency between swabs or wipes. Furthermore, collection efficiency was more surface-dependent for virulent strains than non-virulent strains. For the two non-virulent strains, B. anthracis Sterne and Y. pestis A1122, collection efficiency was approximately 100% and 1 %, respectively, from all four surfaces. In contrast, recovery of B. anthracis Ames spores and Y. pestis C092 from vinyl and plastic was generally lower compared to collection from glass or stainless steel, suggesting that surface hydrophobicity may playa role in the strength of pathogen adhesion. The surface-dependent collection efficiencies observed with the virulent strains may arise from strain-specific expression of capsular material or other cell surface receptors that alter cell adhesion to specific surfaces. These findings contribute to validation of standard bioforensics procedures and emphasize the importance of specific strain and surface interactions in pathogen detection.

  19. A theoretical model of the evolution of virulence in sexually transmitted HIV/AIDS Modelo teórico da evolucão da virulência do HIV/AIDS transmitido sexualmente

    Directory of Open Access Journals (Sweden)

    FAB Coutinho

    1999-08-01

    Full Text Available INTRODUCTION: The evolution of virulence in host-parasite relationships has been the subject of several publications. In the case of HIV virulence, some authors suggest that the evolution of HIV virulence correlates with the rate of acquisition of new sexual partners. In contrast some other authors argue that the level of HIV virulence is independent of the sexual activity of the host population. METHODS: Provide a mathematical model for the study of the potential influence of human sexual behaviour on the evolution of virulence of HIV is provided. RESULTS: The results indicated that, when the probability of acquisition of infection is a function both of the sexual activity and of the virulence level of HIV strains, the evolution of HIV virulence correlates positively with the rate of acquisition of new sexual partners. CONCLUSION: It is concluded that in the case of a host population with a low (high rate of exchange of sexual partners the evolution of HIV virulence is such that the less (more virulent strain prevails.INTRODUÇÃO: A evolução da virulência na relação hospedeiro-parasita tem sido objeto de várias publicações. No caso do HIV, alguns autores sugerem que a evolução da virulência do HIV correlaciona-se com a taxa de aquisição de novos parceiros sexuais. Por outro lado, outros autores argumentam que o nível de virulência do HIV é independente da atividade sexual da população hospedeira. MÉTODOS: Propõe-se um modelo matemático para estudar a influência potencial que o comportamento sexual humano possa ter na evolução da virulência do HIV. RESULTADOS: Os resultados indicam que, quando a probabilidade de aquisição da infecção pelo HIV é uma função tanto da atividade sexual da população humana quanto da virulência das cepas de HIV, a evolução da virulência do HIV correlaciona-se positivamente com a taxa de aquisição de novos parceiros sexuais. CONCLUSÃO: Concluiu-se que no caso de uma popula

  20. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Ramon Wahl

    2010-02-01

    Full Text Available Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1 from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host.

  1. Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila.

    Science.gov (United States)

    Grim, Christopher J; Kozlova, Elena V; Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Kirtley, Michelle L; van Lier, Christina J; Tiner, Bethany L; Erova, Tatiana E; Joseph, Sandeep J; Read, Timothy D; Shak, Joshua R; Joseph, Sam W; Singletary, Ed; Felland, Tracy; Baze, Wallace B; Horneman, Amy J; Chopra, Ashok K

    2014-07-01

    The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Evaluation of Veterinary-Specific Interpretive Criteria for Susceptibility Testing of Streptococcus equi Subspecies with Trimethoprim-Sulfamethoxazole and Trimethoprim-Sulfadiazine

    DEFF Research Database (Denmark)

    Sadaka, Carmen; Kanellos, Theo; Guardabassi, Luca

    2017-01-01

    Antimicrobial susceptibility test results for trimethoprim-sulfadiazine with Streptococcus equi subspecies are interpreted based on human data for trimethoprim-sulfamethoxazole. The veterinary-specific data generated in this study support a single breakpoint for testing trimethoprim-sulfamethoxaz......Antimicrobial susceptibility test results for trimethoprim-sulfadiazine with Streptococcus equi subspecies are interpreted based on human data for trimethoprim-sulfamethoxazole. The veterinary-specific data generated in this study support a single breakpoint for testing trimethoprim...

  3. Masking of the contribution of V protein to sendai virus pathogenesis in an infection model with a highly virulent field isolate

    International Nuclear Information System (INIS)

    Sakaguchi, Takemasa; Kiyotani, Katsuhiro; Watanabe, Hitoshi; Huang Cheng; Fukuhara, Noriko; Fujii, Yutaka; Shimazu, Yukie; Sugahara, Fumihiro; Nagai, Yoshiyuki; Yoshida, Tetsuya

    2003-01-01

    Sendai virus V protein is not essential for virus replication in cultured cells but is essential for efficient virus replication and pathogenesis in mice, indicating that the V protein has a luxury function to facilitate virus propagation in mice. This was discovered in the Z strain, an egg-adapted avirulent laboratory strain. In the present study, we reexamined the function of Sendai virus V protein by generating a V-knockout Sendai virus derived from the Hamamatsu strain, a virulent field isolate, which is an appropriate model for studying the natural course of Sendai virus infection in mice. We unexpectedly found that the V-knockout virus propagated efficiently in mice and was as virulent as the wild-type virus. Switching of the functionally important V unique region demonstrated that this region of the Hamamatsu strain was also functional in a Z strain background. It thus appears that the V protein is nonsense in a field isolate of Sendai virus. However, the V protein was required for virus growth and pathogenesis of the Hamamatsu strain in mice when the virulence of the virus was attenuated by introducing mutations that had been found in an egg-adapted, avirulent virus. The V protein therefore seems to be potentially functional in the highly virulent Hamamatsu strain and to be prominent if virus replication is restricted

  4. Staphylococcus aureus requires less virulence to establish an infection in diabetic hosts.

    Science.gov (United States)

    Tuchscherr, Lorena; Korpos, Èva; van de Vyver, Hélène; Findeisen, Clais; Kherkheulidze, Salome; Siegmund, Anke; Deinhardt-Emmer, Stefanie; Bach, Olaf; Rindert, Martin; Mellmann, Alexander; Sunderkötter, Cord; Peters, Georg; Sorokin, Lydia; Löffler, Bettina

    2018-05-22

    Staphylococcus aureus is the most frequent pathogen causing diabetic foot infections. Here, we investigated the degree of bacterial virulence required to establish invasive tissue infections in diabetic organisms. Staphylococcal isolates from diabetic and non-diabetic foot ulcers were tested for their virulence in in vitro functional assays of host cell invasion and cytotoxicity. Isolates from diabetes mellitus type I/II patients exhibited less virulence than isolates from non-diabetic patients, but were nevertheless able to establish severe infections. In some cases, non-invasive isolates were detected deep within diabetic wounds, even though the strains were non-pathogenic in cell culture models. Testing of defined isolates in murine footpad injection models revealed that both low- and high-virulent bacterial strains persisted in higher numbers in diabetic compared to non-diabetic hosts, suggesting that hyperglycemia favors bacterial survival. Additionally, the bacterial load was higher in NOD mice, which have a compromised immune system, compared to C57Bl/6 mice. Our results reveal that high as well as low-virulent staphylococcal strains are able to cause soft tissue infections and to persist in diabetic humans and mice, suggesting a reason for the frequent and endangering infections in patients with diabetes. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00.

    Directory of Open Access Journals (Sweden)

    Ravi D Barabote

    Full Text Available Francisella tularensis subspecies holarctica FTNF002-00 strain was originally obtained from the first known clinical case of bacteremic F. tularensis pneumonia in Southern Europe isolated from an immunocompetent individual. The FTNF002-00 complete genome contains the RD(23 deletion and represents a type strain for a clonal population from the first epidemic tularemia outbreak in Spain between 1997-1998. Here, we present the complete sequence analysis of the FTNF002-00 genome. The complete genome sequence of FTNF002-00 revealed several large as well as small genomic differences with respect to two other published complete genome sequences of F. tularensis subsp. holarctica strains, LVS and OSU18. The FTNF002-00 genome shares >99.9% sequence similarity with LVS and OSU18, and is also approximately 5 MB smaller by comparison. The overall organization of the FTNF002-00 genome is remarkably identical to those of LVS and OSU18, except for a single 3.9 kb inversion in FTNF002-00. Twelve regions of difference ranging from 0.1-1.5 kb and forty-two small insertions and deletions were identified in a comparative analysis of FTNF002-00, LVS, and OSU18 genomes. Two small deletions appear to inactivate two genes in FTNF002-00 causing them to become pseudogenes; the intact genes encode a protein of unknown function and a drug:H(+ antiporter. In addition, we identified ninety-nine proteins in FTNF002-00 containing amino acid mutations compared to LVS and OSU18. Several non-conserved amino acid replacements were identified, one of which occurs in the virulence-associated intracellular growth locus subunit D protein. Many of these changes in FTNF002-00 are likely the consequence of direct selection that increases the fitness of this subsp. holarctica clone within its endemic population. Our complete genome sequence analyses lay the foundation for experimental testing of these possibilities.

  6. cipC is important for Aspergillus fumigatus virulence.

    Science.gov (United States)

    Canela, Heliara Maria Spina; Takami, Luciano Akira; da Silva Ferreira, Márcia Eliana

    2017-02-01

    Aspergillus fumigatus is the main causative agent of invasive aspergillosis, a disease that affects immunocompromised patients and has a high mortality rate. We previously observed that the transcription of a cipC-like gene was increased when A. fumigatus encountered an increased CO 2 concentration, as occurs during the infection process. CipC is a protein of unknown function that might be associated with fungal pathogenicity. In this study, the cipC gene was disrupted in A. fumigatus to evaluate its importance for fungal pathogenicity. The gene was replaced, and the germination, growth phenotype, stress responses, and virulence of the resultant mutant were assessed. Although cipC was not essential, its deletion attenuated A. fumigatus virulence in a low-dose murine infection model, suggesting the involvement of the cipC gene in the virulence of this fungus. This study is the first to disrupt the cipC gene in A. fumigatus. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  7. Streptococcus equi subspecies zooepidemicus Infections in Humans by Zoonotic Transmission from Horses

    Centers for Disease Control (CDC) Podcasts

    2013-06-12

    Dr. Mike Miller reads an abridged version of the Emerging Infectious Diseases’ article, Streptococcus equi subspecies zooepidemicus Infections in Humans by Zoonotic Transmission from Horses.  Created: 6/12/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 7/3/2013.

  8. Immunoreactivity of protein tyrosine phosphatase A (PtpA) in sera from sheep infected with Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; Bach, Horacio; Whittington, Richard J

    2014-07-15

    Evasion of host defense mechanisms and survival inside infected host macrophages are features of pathogenic mycobacteria including Mycobacterium avium subspecies paratuberculosis, the causative agent of Johne's disease in ruminants. Protein tyrosine phosphatase A (PtpA) has been identified as a secreted protein critical for survival of mycobacteria within infected macrophages. The host may mount an immune response to such secreted proteins. In this study, the humoral immune response to purified recombinant M. avium subsp. paratuberculosis PtpA was investigated using sera from a cohort of sheep infected with M. avium subsp. paratuberculosis and compared with uninfected healthy controls. A significantly higher level of reactivity to PtpA was observed in sera collected from M. avium subspecies paratuberculosis infected sheep when compared to those from uninfected healthy controls. PtpA could be a potential candidate antigen for detection of humoral immune responses in sheep infected with M. avium subspecies paratuberculosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Morphological differentiations of the gills of two Gymnocypris przewa-lskii subspecies in different habitats and their functional adaptations].

    Science.gov (United States)

    Zhang, Ren-Yi; Li, Guo-Gang; Zhang, Cun-Fang; Tang, Yong-Tao; Zhao, Kai

    2013-08-01

    Gill morphologies of two subspecies of Gymnocypris przewalskii (Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii ganzihonensis) in different habitats were analyzed under scanning electron microscope. Results indicated that G. p. przewalskii had numerous long and dense-lined gill rakers while G. p. ganzihonensis had few short and scatter-lined gill rakers. There were no significant differences in distance between gill filaments (DBF) and distance gill lamella (DBL) between the two subspecies, but gill filaments of G. p. przewalskii were longer than in G. p. ganzihonensis. The electron microscopic study indicated that the pavement epithelium cells of G. p. przewalskii were well defined as irregular ovals, but were hexagonal in G. p. ganzihonensis. Moreover, G. p. przewalskii had more chloride cells than G. p. ganzihonensis, and mucous cells were only found on the surface of gill filaments of G. p. przewalskii. The morphological differences between the two subspecies of G. przewalskii are adaptations to their corresponding diets and habitats.

  10. Application of Chemical Genomics to Plant-Bacteria Communication: A High-Throughput System to Identify Novel Molecules Modulating the Induction of Bacterial Virulence Genes by Plant Signals.

    Science.gov (United States)

    Vandelle, Elodie; Puttilli, Maria Rita; Chini, Andrea; Devescovi, Giulia; Venturi, Vittorio; Polverari, Annalisa

    2017-01-01

    The life cycle of bacterial phytopathogens consists of a benign epiphytic phase, during which the bacteria grow in the soil or on the plant surface, and a virulent endophytic phase involving the penetration of host defenses and the colonization of plant tissues. Innovative strategies are urgently required to integrate copper treatments that control the epiphytic phase with complementary tools that control the virulent endophytic phase, thus reducing the quantity of chemicals applied to economically and ecologically acceptable levels. Such strategies include targeted treatments that weaken bacterial pathogens, particularly those inhibiting early infection steps rather than tackling established infections. This chapter describes a reporter gene-based chemical genomic high-throughput screen for the induction of bacterial virulence by plant molecules. Specifically, we describe a chemical genomic screening method to identify agonist and antagonist molecules for the induction of targeted bacterial virulence genes by plant extracts, focusing on the experimental controls required to avoid false positives and thus ensuring the results are reliable and reproducible.

  11. Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States.

    Science.gov (United States)

    Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard

    2013-04-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.

  12. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins

    DEFF Research Database (Denmark)

    Nielsen, Lene Nørby; Luijkx, Thomas A.; Vegge, Christina Skovgaard

    2012-01-01

    With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes was trans......With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes...

  13. Harbouring public good mutants within a pathogen population can increase both fitness and virulence.

    Science.gov (United States)

    Lindsay, Richard J; Kershaw, Michael J; Pawlowska, Bogna J; Talbot, Nicholas J; Gudelj, Ivana

    2016-12-28

    Existing theory, empirical, clinical and field research all predict that reducing the virulence of individuals within a pathogen population will reduce the overall virulence, rendering disease less severe. Here, we show that this seemingly successful disease management strategy can fail with devastating consequences for infected hosts. We deploy cooperation theory and a novel synthetic system involving the rice blast fungus Magnaporthe oryzae . In vivo infections of rice demonstrate that M. oryzae virulence is enhanced, quite paradoxically, when a public good mutant is present in a population of high-virulence pathogens. We reason that during infection, the fungus engages in multiple cooperative acts to exploit host resources. We establish a multi-trait cooperation model which suggests that the observed failure of the virulence reduction strategy is caused by the interference between different social traits. Multi-trait cooperative interactions are widespread, so we caution against the indiscriminant application of anti-virulence therapy as a disease-management strategy.

  14. In Vivo fitness associated with high virulence in a vertebrate virus is a complex trait regulated by host entry, replication, and shedding

    Science.gov (United States)

    Wargo, Andrew R.; Kurath, Gael

    2011-01-01

    The relationship between pathogen fitness and virulence is typically examined by quantifying only one or two pathogen fitness traits. More specifically, it is regularly assumed that within-host replication, as a precursor to transmission, is the driving force behind virulence. In reality, many traits contribute to pathogen fitness, and each trait could drive the evolution of virulence in different ways. Here, we independently quantified four viral infection cycle traits, namely, host entry, within-host replication, within-host coinfection fitness, and shedding, in vivo, in the vertebrate virus Infectious hematopoietic necrosis virus (IHNV). We examined how each of these stages of the viral infection cycle contributes to the fitness of IHNV genotypes that differ in virulence in rainbow trout. This enabled us to determine how infection cycle fitness traits are independently associated with virulence. We found that viral fitness was independently regulated by each of the traits examined, with the largest impact on fitness being provided by within-host replication. Furthermore, the more virulent of the two genotypes of IHNV we used had advantages in all of the traits quantified. Our results are thus congruent with the assumption that virulence and within-host replication are correlated but suggest that infection cycle fitness is complex and that replication is not the only trait associated with virulence.

  15. Phenotypic Characteristics Associated with Virulence of Clinical Isolates from the Sporothrix Complex

    Science.gov (United States)

    Almeida-Paes, Rodrigo; de Oliveira, Luã Cardoso; Oliveira, Manoel Marques Evangelista; Gutierrez-Galhardo, Maria Clara; Nosanchuk, Joshua Daniel; Zancopé-Oliveira, Rosely Maria

    2015-01-01

    The Sporothrix complex members cause sporotrichosis, a subcutaneous mycosis with a wide spectrum of clinical manifestations. Several specific phenotypic characteristics are associated with virulence in many fungi, but studies in this field involving the Sporothrix complex species are scarce. Melanization, thermotolerance, and production of proteases, catalase, and urease were investigated in 61 S. brasiliensis, one S. globosa, and 10 S. schenckii strains. The S. brasiliensis strains showed a higher expression of melanin and urease compared with S. schenckii. These two species, however, presented similar thermotolerances. Our S. globosa strain had low expression of all studied virulence factors. The relationship between these phenotypes and clinical aspects of sporotrichosis was also evaluated. Strains isolated from patients with spontaneous regression of infection were heavily melanized and produced high urease levels. Melanin was also related to dissemination of internal organs and protease production was associated with HIV-coinfection. A murine sporotrichosis model showed that a S. brasiliensis strain with high expression of virulence factors was able to disseminate and yield a high fungal burden in comparison with a control S. schenckii strain. Our results show that virulence-related phenotypes are variably expressed within the Sporothrix complex species and might be involved in clinical aspects of sporotrichosis. PMID:25961005

  16. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  17. Role of dupA in virulence of Helicobacter pylori.

    Science.gov (United States)

    Talebi Bezmin Abadi, Amin; Perez-Perez, Guillermo

    2016-12-14

    Helicobacter pylori ( H. pylori ) is a gastric human pathogen associated with acute and chronic gastritis, 70% of all gastric ulcers, 85% of all duodenal ulcers, and both forms of stomach cancer, mucosal-associated lymphoid tissue (MALT) lymphoma and adenocarcinoma. Recently, attention has focused on possible relationship between presence of certain virulence factor and H. pylori -associated diseases. Some contradictory data between this bacterium and related disorders has been observed since not all the colonized individuals develop to severe disease. The reported diseases plausibility related to H. pylori specific virulence factors became an interesting story about this organism. Although a number of putative virulence factors have been identified including cytotoxin-associated gene a ( cagA ) and vacA , there are conflicting data about their actual participation as specific risk factor for H. pylori -related diseases. Duodenal ulcer promoting gene a ( dupA ) is a virulence factor of H. pylori that is highly associated with duodenal ulcer development and reduced risk of gastric cancer. The prevalence of dupA in H. pylori strains isolated from western countries is relatively higher than in H. pylori strains from Asian countries. Current confusing epidemiological reports will continue unless future sophisticated and molecular studies provide data on functional and complete dupA cluster in H. pylori infected individuals. This paper elucidates available knowledge concerning role of dupA in virulence of H. pylori after a decade of its discovery.

  18. Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella.

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Yoon, Hyunjin; Nakayasu, Ernesto S.; Metz, Thomas O.; Hyduke, Daniel R.; Kidwai, Afshan S.; Palsson, Bernhard O.; Adkins, Joshua N.; Heffron, Fred

    2011-04-01

    Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated a large amount of data and driven development of computational approaches required for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird’s eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.

  19. Identification of genes preferentially expressed by highly virulent piscine Streptococcus agalactiae upon interaction with macrophages.

    Directory of Open Access Journals (Sweden)

    Chang-Ming Guo

    Full Text Available Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood-brain barrier (BBB. The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB.

  20. Identification of Genes Preferentially Expressed by Highly Virulent Piscine Streptococcus agalactiae upon Interaction with Macrophages

    Science.gov (United States)

    Guo, Chang-Ming; Chen, Rong-Rong; Kalhoro, Dildar Hussain; Wang, Zhao-Fei; Liu, Guang-Jin; Lu, Cheng-Ping; Liu, Yong-Jie

    2014-01-01

    Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood–brain barrier (BBB). The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS) was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB. PMID:24498419

  1. Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.: genetic evidence for revision of subspecies.

    Directory of Open Access Journals (Sweden)

    Frederick I Archer

    Full Text Available There are three described subspecies of fin whales (Balaenoptera physalus: B. p. physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica Burmeister, 1865. The discrete distribution in the North Pacific and North Atlantic raises the question of whether a single Northern Hemisphere subspecies is valid. We assess phylogenetic patterns using ~16 K base pairs of the complete mitogenome for 154 fin whales from the North Pacific, North Atlantic--including the Mediterranean Sea--and Southern Hemisphere. A Bayesian tree of the resulting 136 haplotypes revealed several well-supported clades representing each ocean basin, with no haplotypes shared among ocean basins. The North Atlantic haplotypes (n = 12 form a sister clade to those from the Southern Hemisphere (n = 42. The estimated time to most recent common ancestor (TMRCA for this Atlantic/Southern Hemisphere clade and 81 of the 97 samples from the North Pacific was approximately 2 Ma. 14 of the remaining North Pacific samples formed a well-supported clade within the Southern Hemisphere. The TMRCA for this node suggests that at least one female from the Southern Hemisphere immigrated to the North Pacific approximately 0.37 Ma. These results provide strong evidence that North Pacific and North Atlantic fin whales should not be considered the same subspecies, and suggest the need for revision of the global taxonomy of the species.

  2. Spatiotemporal variation in the reproductive ecology of two parapatric subspecies of Oenothera cespitosa (Onagraceae).

    Science.gov (United States)

    Artz, Derek R; Villagra, Cristian A; Raguso, Robert A

    2010-09-01

    • Flowering plants that rely on pollinators for most of their reproduction may experience unpredictable and inconsistent availability of effective pollinators throughout their reproductive lifetime. We investigated the reproductive ecology of two subspecies of the tufted evening primrose, Oenothera cespitosa, which occupy geographically and edaphically distinct habitats in western North America: O. cespitosa subsp. navajoensis inhabits sandstone soils on open sites or rocky slopes in the Colorado Plateau and O. cespitosa subsp. cespitosa grows in clay soils on talus slopes and exposed rocky ridges in the western Great Plains and northern Rocky Mountains of the United States. • Pollen augmentation and selfing experiments, floral visitor observations, and single-visit effectiveness experiments were conducted over 4 years to examine the breeding system and spatiotemporal variation in pollinator behavior, assemblage, and abundance at different populations for each subspecies. • Both subspecies of O. cespitosa were self-incompatible and pollen-limited, suggesting that the relative abundance, effectiveness, and movement patterns of different insects as pollinators influenced the quality and quantity of seed production in these plants. Medium-sized vespertine hawkmoths (Hyles lineata, Sphinx vashti) were effective pollinators when present, as were large matinal bees (Anthophora affabilis, A. dammersi, Xylocopa tabaniformis androleuca), whereas small oligolectic Lasioglossum bees primarily functioned as pollen thieves in the evening and morning. • These findings highlight the importance of variability of pollinator composition and abundance in the evolution of plant breeding systems and reproductive success at varying spatial and temporal scales.

  3. Viability and Virulence of Entomopathogenic Nematodes Exposed to Ultraviolet Radiation.

    Science.gov (United States)

    Shapiro-Ilan, David I; Hazir, Selcuk; Lete, Luis

    2015-09-01

    Entomopathogenic nematodes (EPNs) can be highly effective biocontrol agents, but their efficacy can be reduced due to exposure to environmental stress such as from ultraviolet (UV) radiation. Our objectives were to 1) compare UV tolerance among a broad array of EPN species, and 2) investigate the relationship between reduced nematode viability (after exposure to UV) and virulence. Nematodes exposed to a UV radiation (254 nm) for 10 or 20 min were assessed separately for viability (survival) and virulence to Galleria mellonella. We compared 9 different EPN species and 15 strains: Heterorhabditis bacteriophora (Baine, fl11, Oswego, and Vs strains), H. floridensis (332), H. georgiana (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All, Cxrd, DD136, and Sal strains), S. feltiae (SN), S. rarum (17C&E), and S. riobrave (355). In viability assessments, steinernematids, particularly strains of S. carpocapsae, generally exhibited superior UV tolerance compared with the heterorhabditids. However, some heterorhabditids tended to be more tolerant than others, e.g., H. megidis and H. bacteriophora (Baine) were most susceptible and H. bacteriophora (Vs) was the only heterorhabditid that did not exhibit a significant effect after 10 min of exposure. All heterorhabditids experienced reduced viability after 20 min exposure though several S. carpocapsae strains did not. In total, after 10 or 20 min exposure, the viability of seven nematode strains did not differ from their non-UV exposed controls. In virulence assays, steinernematids (particularly S. carpocapsae strains) also tended to exhibit higher UV tolerance. However, in contrast to the viability measurements, all nematodes experienced a reduction in virulence relative to their controls. Correlation analysis revealed that viability among nematode strains is not necessarily related to virulence. In conclusion, our results indicate that the impact of UV varies substantially among EPNs, and viability alone

  4. Lack of Mitochondrial DNA Sequence Divergence between Two Subspecies of the Siberian Weasel from Korea: Mustela sibirica coreanus from the Korean Peninsula and M. s. quelpartis from Jeju Island

    Directory of Open Access Journals (Sweden)

    Hung Sun Koh

    2012-04-01

    Full Text Available The objective of this study was to determine the degree of mitochondrial DNA (mtDNA divergence between two subspecies of Mustela sibirica from Korea (M. s. coreanus on the Korean Peninsula and M. s. quelpartis on Jeju Island and to examine the taxonomic status of M. s. quelpartis. Thus, we obtained complete sequences of mtDNA cytochrome b gene (1,140 bp from the two subspecies, and these sequences were compared to a corresponding haplotype of M. s. coreanus, downloaded from GenBank. From this analysis, it was observed that the sequences from monogenic M. s. quelpartis on Jeju Island were identical to the sequences of four M. s. coreanus from four locations across the Korean Peninsula, and that the two subspecies formed a single clade; the average nucleotide distance between the two subspecies was 0.26% (range, 0.00 to 0.53%. We found that the subspecies quelpartis is not genetically distinct from the subspecies coreanus, and that this cytochrome b sequencing result does not support the current classification, distinguishing these two subspecies by pelage color. Further systematic analyses using morphometric characters and other DNA markers are necessary to confirm the taxonomic status of M. s. quelpartis.

  5. The Central Metabolism Regulator EIIAGlc Switches Salmonella from Growth Arrest to Acute Virulence through Activation of Virulence Factor Secretion

    Directory of Open Access Journals (Sweden)

    Alain Mazé

    2014-06-01

    Full Text Available The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2 involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism.

  6. Subspecies of Hypolepis rugosula (Dennstaedtiaceae; Pteridophyta around the world: morphological and biogeographic perspectives

    Directory of Open Access Journals (Sweden)

    Pedro Bond Schwartsburd

    2014-06-01

    Full Text Available The "Hypolepis rugosula complex" has been the subject of great debate among pteridologists: some have considered H. rugosula a single subcosmopolitan (or circum-Antarctic species, whereas others have considered it a species-complex, encompassing several species. In the 1920s and 1930s, four geographically distinct varietiesof H. rugosula were recognized. In this work, we present a new taxonomy (with new combinations and statuses, as well as typification and full synonymy, together with complete distribution data for the species, with an infraspecific classification based on morphological and biogeographic perspectives. Hypolepis rugosula occurs in southern temperate regions and high-elevation tropical regions of the Americas, Africa (including Madagascar, Oceania and the Philippines, as well as in some isolated oceanic volcanic islands (e.g., Saint Helena and Tristan da Cunha. Here, 15 geographically distinct subspecies are recognized. All subspecies are geographically segregated from each other, except in New Zealand, where two occur sympatrically-possibly due to two different arrival and colonization times. Four patterns of "indument" (referring to catenate and glandular hairs collectively are distinguished. Different lineages are successful in their respective habitats; we observed two lineages with different ploidy levels (tetraploid and octoploid. Although long-distance dispersal is the best explanation for the extant distribution of H. rugosula;we do not exclude vicariance as a possible explanation for their occurrence on the land masses that were once united as Gondwana. Therefore, we are assuming that a fern species could remain unchanged for more than 70 Myr, and we are adopting the refugia theory, albeit with a different focus.

  7. Predominance of clarithromycin-susceptible Mycobacterium massiliense subspecies: Characterization of the Mycobacterium abscessus complex at a tertiary acute care hospital.

    Science.gov (United States)

    Chew, Ka Lip; Cheng, Janet W S; Hudaa Osman, Nurul; Lin, Raymond T P; Teo, Jeanette W P

    2017-10-01

    To characterize members of the Mycobacterium abscessus complex, with an emphasis on the correlation between species identification and clarithromycin associated genetic polymorphisms that contribute to inducible and constitutive macrolide resistance. PCR and sequencing analysis was used to elucidate the subspecies, erm(41) genotypes and the presence of rrl mutations. M. abscessus subsp. massiliense was the dominant subspecies (70.2 %), followed by M. abscessus subsp. abscessus (23.8 %) and M. abscessus subsp. bolletii (5.9 %). The majority of M. abscessus and M. bolletii isolates possessed T28 erm(41) sequevar and were inducibly resistant to clarithromycin. All M. massiliense carried the truncated erm(41) and were largely clarithromycin-susceptible (98.3 %). Constitutive resistance involving rrl mutations was rare and seen in only 2 isolates (2.2 %). Subspecies identification was insufficient to predict clarithromycin susceptibility and required the genetic resistance to be determined via sequencing. In our context, rrl mutations were uncommon and may not be an essential test.

  8. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae.

    Science.gov (United States)

    Karki, Hari S; Shrestha, Bishnu K; Han, Jae Woo; Groth, Donald E; Barphagha, Inderjit K; Rush, Milton C; Melanson, Rebecca A; Kim, Beom Seok; Ham, Jong Hyun

    2012-01-01

    Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR.

  9. To be or not to be a subspecies: description of Saperda populnea lapponica ssp. n. (Coleoptera, Cerambycidae) developing in downy willow (Salix lapponum L.)

    Science.gov (United States)

    Wallin, Henrik; Kvamme, Torstein; Bergsten, Johannes

    2017-01-01

    Abstract A new subspecies of the European cerambycid Saperda populnea (Linnaeus, 1758) is described: Saperda populnea lapponica ssp. n. based on specimens from Scandinavia. The male genitalia characters were examined and found to provide support for this separation, as well as differences in morphology, geographical distribution and bionomy. The preferred host tree for the nominate subspecies S. populnea populnea is Populus tremula L., whereas S. populnea lapponica ssp. n. is considered to be monophagous on Salix lapponum L. DNA sequence data of mitochondrial cytochrome oxidase subunit I (COI) was generated from Scandinavian specimens of S. populnea populnea and specimens representing S. populnea lapponica ssp. n. The two subspecies were not reciprocally monophyletic and genetic distances in COI were small. All synonyms of S. populnea populnea have been considered, and species similar to S. populnea populnea have been examined, and not found to be related to S. populnea lapponica ssp. n. A male lectotype has been designated for each of the two following synonyms: Cerambyx decempunctatus De Geer, 1775, and Saperda salicis Zetterstedt, 1818. The synonymised species from Asia, S. balsamifera (Motshulsky, 1860), is elevated to subspecies: S. populnea balsamifera stat. n. We end with a discussion on the definition of subspecies under the unified species concept. PMID:29187784

  10. Detection of Mycobacterium avium subspecies paratuberculosis in Drinking Water and Biofilms Using Quantitative PCR

    Science.gov (United States)

    Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne’s disease in domestic animals and has been implicated in Crohn’s disease in humans. This bacterium is a slow growing, gram-positive, acid-fast organism which can be difficult to culture from the environment. For ...

  11. Mitochondrial genome of the bullet tuna Auxis rochei from Indo-West Pacific collection provides novel genetic information about two subspecies.

    Science.gov (United States)

    Li, Mingming; Guo, Liang; Zhang, Heng; Yang, Sen; Chen, Xinghan; Lin, Haoran; Meng, Zining

    2016-09-01

    Previously morphological studies supported the division of the bullet tuna into the two subspecies, Auxis rochei rochei and A. rochei eudorax. As a cosmopolitan species, A. rochei rochei ranges in the Indo-West Pacific and Atlantic oceans, while A. rochei eudorax inhabits in eastern Pacific region. Here, we used the HiSeq next-generation sequencing technique to determine the mitochondrial genome (mitogenome) of A. rochei from Indo-West Pacific collection, and then compared our data with mitogenomic sequences of the Atlantic and eastern Pacific retrieved from NCBI database. Results showed the mitogenome of A. rochei from three geographic collections shared the same genes and gene order, similar to typical teleosts. Also, we examined a low level of nucleotide diversity among these mitogenomic sequences. Interestingly, nucleotide diversity of intra-subspecies (Atlantic versus Indo-West) was higher than that of inter-subspecies (Atlantic versus eastern Pacific, Indo-West versus eastern Pacific).

  12. How Listeria monocytogenes organizes its surface for virulence

    Science.gov (United States)

    Carvalho, Filipe; Sousa, Sandra; Cabanes, Didier

    2014-01-01

    Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host. PMID:24809022

  13. Glucose starvation boosts Entamoeba histolytica virulence.

    Directory of Open Access Journals (Sweden)

    Ayala Tovy

    2011-08-01

    Full Text Available The unicellular parasite, Entamoeba histolytica, is exposed to numerous adverse conditions, such as nutrient deprivation, during its life cycle stages in the human host. In the present study, we examined whether the parasite virulence could be influenced by glucose starvation (GS. The migratory behaviour of the parasite and its capability to kill mammalian cells and to lyse erythrocytes is strongly enhanced following GS. In order to gain insights into the mechanism underlying the GS boosting effects on virulence, we analyzed differences in protein expression levels in control and glucose-starved trophozoites, by quantitative proteomic analysis. We observed that upstream regulatory element 3-binding protein (URE3-BP, a transcription factor that modulates E.histolytica virulence, and the lysine-rich protein 1 (KRiP1 which is induced during liver abscess development, are upregulated by GS. We also analyzed E. histolytica membrane fractions and noticed that the Gal/GalNAc lectin light subunit LgL1 is up-regulated by GS. Surprisingly, amoebapore A (Ap-A and cysteine proteinase A5 (CP-A5, two important E. histolytica virulence factors, were strongly down-regulated by GS. While the boosting effect of GS on E. histolytica virulence was conserved in strains silenced for Ap-A and CP-A5, it was lost in LgL1 and in KRiP1 down-regulated strains. These data emphasize the unexpected role of GS in the modulation of E.histolytica virulence and the involvement of KRiP1 and Lgl1 in this phenomenon.

  14. Differentiation of Cannabis subspecies by THCA synthase gene analysis using RFLP.

    Science.gov (United States)

    Cirovic, Natasa; Kecmanovic, Miljana; Keckarevic, Dusan; Keckarevic Markovic, Milica

    2017-10-01

    Cannabis sativa subspecies, known as industrial hemp (C. sativa sativa) and marijuana (C. sativa indica) show no evident morphological distinctions, but they contain different levels of psychoactive Δ-9-tetrahidrocanabinol (THC), with considerably higher concentration in marijuana than in hemp. C. sativa subspecies differ in sequence of tetrahydrocannabinolic acid (THCA) synthase gene, responsible for THC production, and only one active copy of the gene, distinctive for marijuana, is capable of producing THC in concentration more then 0,3% in dried plants, usually punishable by the law. Twenty different samples of marijuana that contain THC in concentration more then 0,3% and three varieties of industrial hemp were analyzed for presence of an active copy of THCA synthase gene using in-house developed restriction fragment length polymorphism (RFLP) method All twenty samples of marijuana were positive for the active copy of THCA synthase gene, 16 of them heterozygous. All three varieties of industrial hemp were homozygous for inactive copy. An algorithm for the fast and accurate forensic analysis of samples suspected to be marijuana was constructed, answering the question if an analyzed sample is capable of producing THC in concentrations higher than 0.3%. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.) : Genetic evidence for revision of subspecies

    NARCIS (Netherlands)

    Archer, Frederick I.; Morin, Phillip A.; Hancock-Hanser, Brittany L.; Robertson, Kelly M.; Leslie, Matthew S.; Bérubé, Martine; Panigada, Simone; Taylor, Barbara L.

    2013-01-01

    There are three described subspecies of fin whales (Balaenoptera physalus): B. p. physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica Burmeister, 1865. The discrete distribution in the North

  16. Myxomatosis: the virulence of field strains of myxoma virus in a population of wild rabbits (Oryctolagus cuniculus L.) with high resistance to myxomatosis.

    Science.gov (United States)

    Edmonds, J W; Nolan, I F; Shepherd, R C; Gocs, A

    1975-06-01

    The virulence of field strains of myxoma virus is increasing in the Mallee region of Victoria where the resistance of the rabbit to myxomatosis is high. This suggests that the climax association will be a moderately severe disease.

  17. Anaerobiosis induced virulence of Salmonella typhi

    DEFF Research Database (Denmark)

    Kapoor, Sarika; Singh, R D; Sharma, P C

    2002-01-01

    , we examined the effect of anaerobiosis on the virulence of Salmonella Typhi, a Gram negative bacteria which invades through the gut mucosa and is responsible for typhoid fever. METHODS: Salmonella Typhi (ty2) was cultured in aerobic and anaerobic conditions to compare its virulence by rabbit ileal...

  18. Virulence Types of Magnaporthe oryzae to Hybrid Rice in Sichuan, China

    Directory of Open Access Journals (Sweden)

    Yu-lian BAI

    2012-12-01

    Full Text Available A total of 638 isolates of rice blast (Magnaporthe oryzae were isolated in 2002–2009 from different rice varieties in different regions of Sichuan, China and inoculated onto seven rice varieties (Lijiangxintuanheigu, IR24, Minghui 63, Duohui 1, Chenghui 448, Neihui 99-14 and RHR-1 to differentiate the virulence types of the fungus and trace the changes. The virulence to the seven varieties was respectively scored at 1, 2, 4, 8, 16, 32 and 64. The total scores of individual M. grisea isolates which were the sum of scores infecting differential varieties could, in turn, be used for the nomenclature of the virulence types due to their accordance to the special virulence patterns. The 638 tested isolates were then differentiated into 56 different virulence types. Type 15 virulent to Lijiangxintuanheigu, IR24 and Minghui 63, and Type 127 virulent to all of the seven varieties were the most dominant virulence types respectively with the occurrence frequencies of 15.99% and 15.83%. Type 19 and other seven virulence types were not monitored during 2002–2009. Type 15 was the predominant virulence type in 2002, 2003, 2004 and 2007, whereas Type 127 had been the most dominant virulence type after 2005 except for the year 2007 when the province underwent severe drought. Five hundred and seven out of the 638 tested isolates were virulent to Minghui 63, and 89.58% of the 384 isolates virulent to either Duohui 1, Chenghui 448 or Neihui 99-14 were virulent to Minghui 63, which indicated the impact of the extensive plantation of hybrid rice Minghui 63 as the restorer line on the virulence evolution of M. oryzae in Sichuan. The virulence pattern of the dominant virulence types suggested that the acquiring of virulence to all the major resistant restorer lines was the main routes of the evolution in virulence of M. oryzae to hybrid rice in Sichuan. The virulence frequencies of the 638 tested isolates to IR24, Minghui 63, Duohui 1, Chenghui 448, Neihui 99

  19. Environmental pollutants in endangered vs. increasing subspecies of the lesser black-backed gull on the Norwegian Coast

    International Nuclear Information System (INIS)

    Bustnes, Jan Ove; Helberg, Morten; Strann, Karl-Birger; Skaare, Janneche Utne

    2006-01-01

    Organochlorine (OC) residues were measured in eggs and blood of different subspecies of the lesser black-backed gull, Larus fuscus, on the Norwegian coast: a) increasing L. f. intermedius in the North Sea; b) endangered L. f. fuscus near the Arctic Circle; c) L. f. fuscus and greyish-mantled gulls, with a L. f. intermedius appearance, in the Barents Sea region. The dominating OCs in lesser black-backed gulls were polychlorinated biphenyls (PCB) and p,p'-dichlorodiphenyldichloroethylene (DDE). DDE and β-hexachlorocyclohexane (β-HCH) residues were higher in L. f. fuscus compared to L. f. intermedius and greyish-mantled birds in the Barents Sea region. In the latter area, blood residues of PCB and DDE in lesser black-backed gulls were as high as in great black-backed gulls, Larus marinus, while in the other regions they were lower. The higher DDE residues in endangered L. f. fuscus compared to increasing L. f. intermedius and greyish-mantled birds, which are invading northern Norway, suggest that OCs may have played a role in the population decline of L. f. fuscus, possibly in combination with nutrient stress. - DDE and β-HCH residues were higher in an endangered compared to an increasing subspecies of lesser black-backed gulls in Norway

  20. The link between morphotype transition and virulence in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Linqi Wang

    Full Text Available Cryptococcus neoformans is a ubiquitous human fungal pathogen. This pathogen can undergo morphotype transition between the yeast and the filamentous form and such morphological transition has been implicated in virulence for decades. Morphotype transition is typically observed during mating, which is governed by pheromone signaling. Paradoxically, components specific to the pheromone signaling pathways play no or minimal direct roles in virulence. Thus, the link between morphotype transition and virulence and the underlying molecular mechanism remain elusive. Here, we demonstrate that filamentation can occur independent of pheromone signaling and mating, and both mating-dependent and mating-independent morphotype transition require the transcription factor Znf2. High expression of Znf2 is necessary and sufficient to initiate and maintain sex-independent filamentous growth under host-relevant conditions in vitro and during infection. Importantly, ZNF2 overexpression abolishes fungal virulence in murine models of cryptococcosis. Thus, Znf2 bridges the sex-independent morphotype transition and fungal pathogenicity. The impacts of Znf2 on morphological switch and pathogenicity are at least partly mediated through its effects on cell adhesion property. Cfl1, a Znf2 downstream factor, regulates morphogenesis, cell adhesion, biofilm formation, and virulence. Cfl1 is the first adhesin discovered in the phylum Basidiomycota of the Kingdom Fungi. Together with previous findings in other eukaryotic pathogens, our findings support a convergent evolution of plasticity in morphology and its impact on cell adhesion as a critical adaptive trait for pathogenesis.

  1. The expression and evolution of virulence in multiple infections: the role of specificity, relative virulence and relative dose.

    Science.gov (United States)

    Ben-Ami, Frida; Routtu, Jarkko

    2013-05-03

    Multiple infections of the same host by different strains of the same microparasite species are believed to play a crucial role during the evolution of parasite virulence. We investigated the role of specificity, relative virulence and relative dose in determining the competitive outcome of multiple infections in the Daphnia magna-Pasteuria ramosa host-parasite system. We found that infections by P. ramosa clones (single genotype) were less virulent and produced more spores than infections by P. ramosa isolates (possibly containing multiple genotypes). We also found that two similarly virulent isolates of P. ramosa differed considerably in their within-host competitiveness and their effects on host offspring production when faced with coinfecting P. ramosa isolates and clones. Although the relative virulence of a P. ramosa isolate/clone appears to be a good indicator of its competitiveness during multiple infections, the relative dose may alter the competitive outcome. Moreover, spore counts on day 20 post-infection indicate that the competitive outcome is largely decided early in the parasite's growth phase, possibly mediated by direct interference or apparent competition. Our results emphasize the importance of epidemiology as well as of various parasite traits in determining the outcome of within-host competition. Incorporating realistic epidemiological and ecological conditions when testing theoretical models of multiple infections, as well as using a wider range of host and parasite genotypes, will enable us to better understand the course of virulence evolution.

  2. Salmonella-secreted Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin; Kidwai, Afshan S.; Brown, Roslyn N.; McDermott, Jason E.; Smith, Richard D.; Adkins, Joshua N.

    2011-05-01

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellent reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.

  3. Toxin-independent virulence of Bacillus anthracis in rabbits.

    Directory of Open Access Journals (Sweden)

    Haim Levy

    Full Text Available The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play a major role in pathogenicity. In the guinea pig (GP model we have previously shown that deletion of all three toxin components results in a relatively moderate attenuation in virulence, indicating that B. anthracis possesses an additional toxin-independent virulence mechanism. To characterize this toxin-independent mechanism in anthrax disease, we developed a new rabbit model by intravenous injection (IV of B. anthracis encapsulated vegetative cells, artificially creating bacteremia. Using this model we were able to demonstrate that also in rabbits, B. anthracis mutants lacking the toxins are capable of killing the host within 24 hours. This virulent trait depends on the activity of AtxA in the presence of pXO2, as, in the absence of the toxin genes, deletion of either component abolishes virulence. Furthermore, this IV virulence depends mainly on AtxA rather than the whole pXO1. A similar pattern was shown in the GP model using subcutaneous (SC administration of spores of the mutant strains, demonstrating the generality of the phenomenon. The virulent strains showed higher bacteremia levels and more efficient tissue dissemination; however our interpretation is that tissue dissemination per se is not the main determinant of virulence whose exact nature requires further elucidation.

  4. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have......Kos (with the SL motif). The results indicate that the E2 residues 763-64 play an important role in CSFV virulence....

  5. Virulence Factors of Streptococcus mutans.

    Science.gov (United States)

    1986-08-01

    763512/715242 Final Report U VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS U Samuel Rosen Department of Oral Biology For the Period April 1, 1983 - June 30...00 FINAL REPORT VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS Sam Rosen, Irving Shklair, E. X. Beck and F. M. Beck Ohio State University Columbus,Oh and...206-212. Johnson CP, Gorss S, Hillman JD (1978). Cariogenic properties of LDH deficient mutants of streptococcus mutans . J Dent Res 57, Special Issue

  6. Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China.

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    Full Text Available Haemophilus parasuis can be either a commensal bacterium of the porcine respiratory tract or an opportunistic pathogen causing Glässer's disease, a severe systemic disease that has led to significant economical losses in the pig industry worldwide. We determined the complete genomic sequence of H. parasuis SH0165, a highly virulent strain of serovar 5, which was isolated from a hog pen in North China. The single circular chromosome was 2,269,156 base pairs in length and contained 2,031 protein-coding genes. Together with the full spectrum of genes detected by the analysis of metabolic pathways, we confirmed that H. parasuis generates ATP via both fermentation and respiration, and possesses an intact TCA cycle for anabolism. In addition to possessing the complete pathway essential for the biosynthesis of heme, this pathogen was also found to be well-equipped with different iron acquisition systems, such as the TonB system and ABC-type transport complexes, to overcome iron limitation during infection and persistence. We identified a number of genes encoding potential virulence factors, such as type IV fimbriae and surface polysaccharides. Analysis of the genome confirmed that H. parasuis is naturally competent, as genes related to DNA uptake are present. A nine-mer DNA uptake signal sequence (ACAAGCGGT, identical to that found in Actinobacillus pleuropneumoniae and Mannheimia haemolytica, followed by similar downstream motifs, was identified in the SH0165 genome. Genomic and phylogenetic comparisons with other Pasteurellaceae species further indicated that H. parasuis was closely related to another swine pathogenic bacteria A. pleuropneumoniae. The comprehensive genetic analysis presented here provides a foundation for future research on the metabolism, natural competence and virulence of H. parasuis.

  7. Inference of purifying and positive selection in three subspecies of chimpanzees (Pan troglodytes) from exome sequencing

    DEFF Research Database (Denmark)

    Bataillon, Thomas; Duan, Jinjie; Hvilsom, Christina

    2015-01-01

    of recent gene flow from Western into Eastern chimpanzees. The striking contrast in X-linked vs. autosomal polymorphism and divergence previously reported in Central chimpanzees is also found in Eastern and Western chimpanzees. We show that the direction of selection (DoS) statistic exhibits a strong non......-monotonic relationship with the strength of purifying selection S, making it inappropriate for estimating S. We instead use counts in synonymous vs. non-synonymous frequency classes to infer the distribution of S coefficients acting on non-synonymous mutations in each subspecies. The strength of purifying selection we...... infer is congruent with the differences in effective sizes of each subspecies: Central chimpanzees are undergoing the strongest purifying selection followed by Eastern and Western chimpanzees. Coding indels show stronger selection against indels changing the reading frame than observed in human...

  8. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Science.gov (United States)

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  9. Yersinia enterocolitica: Mode of Transmission, Molecular Insights of Virulence, and Pathogenesis of Infection

    Directory of Open Access Journals (Sweden)

    Yeasmin Sabina

    2011-01-01

    Full Text Available Although Yersinia enterocolitica is usually transmitted through contaminated food and untreated water, occasional transmission such as human-to-human, animal-to-human and blood transfusion associated transmission have also identified in human disease. Of the six Y. enterocolitica biotypes, the virulence of the pathogenic biotypes, namely, 1B and 2–5 is attributed to the presence of a highly conserved 70-kb virulence plasmid, termed pYV/pCD and certain chromosomal genes. Some biotype 1A strains, despite lacking virulence plasmid (pYV and traditional chromosomal virulence genes, are isolated frequently from humans with gastrointestinal diseases similar to that produced by isolates belonging known pathogenic biotypes. Y. enterocolitica pathogenic biotypes have evolved two major properties: the ability to penetrate the intestinal wall, which is thought to be controlled by plasmid genes, and the production of heat-stable enterotoxin, which is controlled by chromosomal genes.

  10. A new subspecies of Accipiter virgatus (Temminck) from Flores, Lesser Sunda Islands, Indonesia (Aves: Accipitridae)

    NARCIS (Netherlands)

    Mees, G.F.

    1984-01-01

    A new subspecies of Accipiter virgatus (Temminck) is described from Flores (Lesser Sunda Islands). In addition some notes are given on the distribution of A. virgatus in south-eastern Burma and adjacent parts of Thailand, supplementary to an earlier paper (Mees, 1981).

  11. Description of two new plasmids isolated from Francisella philomiragia strains and construction of shuttle vectors for the study of Francisella tularensis.

    Science.gov (United States)

    Le Pihive, E; Blaha, D; Chenavas, S; Thibault, F; Vidal, D; Valade, E

    2009-11-01

    Francisella tularensis is the causative agent of tularemia, a zoonotic disease often transmitted to humans by infected animals. The lack of useful specific genetic tools has long hampered the study of F. tularensis subspecies. We identified and characterized two new plasmids, pF242 and pF243, isolated from Francisella philomiragia strains ATCC 25016 and ATCC 25017, respectively. Sequence analysis revealed that pF242 and pF243 are closely related to pC194 and pFNL10 plasmids, respectively. Two generations of pF242- and pF243-based shuttle vectors, harboring several antibiotic resistance markers, were developed. We used the first generation to compare transformation efficiencies in two virulent F. tularensis subspecies. We found that electroporation was more efficient than cryotransformation: almost all vectors tested were successfully introduced by electroporation into Francisella strains with a high level of efficiency. The second generation of shuttle vectors, containing a multiple cloning site and/or gfp gene downstream of Francisella groES promotor, was used for GFP production in F. tularensis. The development of new shuttle vectors offers new perspectives in the genetic manipulation of F. tularensis, helping to elucidate the mechanisms underlying its virulence.

  12. From the Outside-In: the Francisella tularensis Envelope and Virulence

    Directory of Open Access Journals (Sweden)

    Hannah M. Rowe

    2015-12-01

    Full Text Available Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.

  13. Critical role of LuxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion.

    Science.gov (United States)

    Plummer, Paul; Sahin, Orhan; Burrough, Eric; Sippy, Rachel; Mou, Kathy; Rabenold, Jessica; Yaeger, Mike; Zhang, Qijing

    2012-02-01

    Previous studies on Campylobacter jejuni have demonstrated the role of LuxS in motility, cytolethal distending toxin production, agglutination, and intestinal colonization; however, its direct involvement in virulence has not been reported. In this study, we demonstrate a direct role of luxS in the virulence of C. jejuni in two different animal hosts. The IA3902 strain, a highly virulent sheep abortion strain recently described by our laboratory, along with its isogenic luxS mutant and luxS complement strains, was inoculated by the oral route into both a pregnant guinea pig virulence model and a chicken colonization model. In both cases, the IA3902 luxS mutant demonstrated a complete loss of ability to colonize the intestinal tract. In the pregnant model, the mutant also failed to induce abortion, while the wild-type strain was highly abortifacient. Genetic complementation of the luxS gene fully restored the virulent phenotype in both models. Interestingly, when the organism was inoculated into guinea pigs by the intraperitoneal route, no difference in virulence (abortion induction) was observed between the luxS mutant and the wild-type strain, suggesting that the defect in virulence following oral inoculation is likely associated with a defect in colonization and/or translocation of the organism out of the intestine. These studies provide the first direct evidence that LuxS plays an important role in the virulence of C. jejuni using an in vivo model of natural disease.

  14. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  15. Infection with Photobacterium damselae subspecies damselae and Vibrio harveyi in snapper, Pagrus auratus with bloat.

    Science.gov (United States)

    Stephens, F J; Raidal, S R; Buller, N; Jones, B

    2006-05-01

    To diagnose the cause of chronic, low mortality associated with bloat in tanks of snapper at an aquaculture facility. A clinical, pathological and microbiological investigation into the cause of a low number of ongoing mortalities associated with bloat in snapper at an aquaculture facility is outlined. Necropsy, histology, microbiology and a comparison of haematology and water analysis from affected and unaffected fish and holding tanks, respectively were conducted. Affected moribund fish were found in lateral or dorsal recumbency floating on the water surface within 24 hours of death. Photobacterium damselae subspecies damselae was isolated from intestinal contents and Vibrio harveyi from the blood of affected fish and both were isolated from culture water. Both V harveyi and P damselae subspecies damselae isolates were sensitive to tetracycline, ciprofloxacin and sulphamethoxazole plus trimethoprim. Environmental parameters such as pH and dissolved oxygen were similar in tanks of affected and unaffected fish. Affected fish had gas distended swimbladders, anaemia, and the intestines were diffusely distended with a clear, pale yellowish fluid. Livers were mottled tan and green in a zonal pattern. Histologically the intestines of fish from tanks suffering mortality had a moderate granulocytic enteritis with oedema and infiltrations with eosinophilic granule cells that were also present as an infiltrate in the gills. There were elevated numbers of melanomacrophage centres and haemosiderin deposits in the spleen, kidney and liver of affected fish. Vibrio harveyi and Photobacterium damselae subspecies damselae infection should be recognised as potential pathogens of snapper held in water of less than optimal quality.

  16. Production Of Some Virulence Factors Under Different Growth ...

    African Journals Online (AJOL)

    Production Of Some Virulence Factors Under Different Growth Conditions And Antibiotic Susceptibility Pattern Of ... Animal Research International ... Keywords: Virulence, Haemolytic activity, Susceptibility, Antibiotics, Aeromonas hydrophila

  17. Temperate and virulent Lactobacillus delbrueckii bacteriophages: comparison of their thermal and chemical resistance.

    Science.gov (United States)

    Ebrecht, Ana C; Guglielmotti, Daniela M; Tremmel, Gustavo; Reinheimer, Jorge A; Suárez, Viviana B

    2010-06-01

    The aim of this work was to study the efficiency of diverse chemical and thermal treatments usually used in dairy industries to control the number of virulent and temperate Lactobacillus delbrueckii bacteriophages. Two temperate (Cb1/204 and Cb1/342) and three virulent (BYM, YAB and Ib3) phages were studied. The thermal treatments applied were: 63 degrees C for 30 min (low temperature--long time, LTLT), 72 degrees C for 15 s (high temperature--short time, HTST), 82 degrees C for 5 min (milk destined to yogurt elaboration) and 90 degrees C for 15 min (FIL-IDF). The chemical agents studied were: sodium hypochlorite, ethanol, isopropanol, peracetic acid, biocides A (quaternary ammonium chloride), B (hydrogen peroxide, peracetic acid and peroctanoic acid), C (alkaline chloride foam), D (p-toluensulfonchloroamide, sodium salt) and E (ethoxylated nonylphenol and phosphoric acid). The kinetics of inactivation were drew and T(99) (time necessary to eliminate the 99% of phage particles) calculated. Results obtained showed that temperate phages revealed lower resistance than the virulent ones to the treatment temperatures. Biocides A, C, E and peracetic acid showed a notable efficiency to inactivate high concentrations of temperate and virulent L. delbrueckii phages. Biocide B evidenced, in general, a good capacity to eliminate the phage particles. Particularly for this biocide virulent phage Ib3 showed the highest resistance in comparison to the rest of temperate and virulent ones. On the contrary, biocide D and isopropanol presented a very low capacity to inactivate all phages studied. The efficiency of ethanol and hypochlorite was variable depending to the phages considered. These results allow a better knowledge and give useful information to outline more effective treatments to reduce the phage infections in dairy plants. 2009 Elsevier Ltd. All rights reserved.

  18. Activation of persistent Streptococcus equi subspecies zooepidemicus in mares with subclinical endometritis

    DEFF Research Database (Denmark)

    Petersen, Morten Rønn; Skive, Bolette; Christoffersen, Mette

    2015-01-01

    Endometritis in horses caused by Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) may be underdiagnosed due to traditional diagnostic methods lacking sensitivity and specificity. We serendipitously identified a bacterial growth medium (bActivate) that appeared capable of inducing...

  19. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    Science.gov (United States)

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence' while revealing novel features of CodY-mediated regulation. PMID:25430920

  20. Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt.

    Science.gov (United States)

    Lee, Soo Chan; Billmyre, R Blake; Li, Alicia; Carson, Sandra; Sykes, Sean M; Huh, Eun Young; Mieczkowski, Piotr; Ko, Dennis C; Cuomo, Christina A; Heitman, Joseph

    2014-07-08

    Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (-) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. Importance: The U.S. FDA reported that yogurt products were contaminated with M

  1. Virulence Factors IN Fungi OF Systemic Mycoses

    Directory of Open Access Journals (Sweden)

    KUROKAWA Cilmery Suemi

    1998-01-01

    Full Text Available Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.

  2. Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates.

    Science.gov (United States)

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.

  3. Wide Distribution of Virulence Genes among Enterococcus faecium and Enterococcus faecalis Clinical Isolates

    Directory of Open Access Journals (Sweden)

    Sara Soheili

    2014-01-01

    Full Text Available Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%, and the extended temperatures between 5°C and 65°C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.

  4. In vitro susceptibility of Pasteurella multocida subspecies multocida strains isolated from swine to 42 antimicrobial agents.

    Science.gov (United States)

    Gutiérrez Martin, C B; Rodríguez Ferri, E F

    1993-08-01

    The minimal inhibitory concentrations (MICs) of 42 antimicrobial agents were determined against 59 strains of Pasteurella multocida subspecies multocida, all isolated from swine lungs with lesions indicative of pneumonia. Penicillins (except cloxacillin), aminoglycosides, tetracyclines, erythromycin, josamycin, thiamphenicol, colistin, rifampin and mupirocin showed good activities, with ranging resistance between 0 and 6.8%. Higher resistance was observed for spiramycin and fosfomycin. Tylosin, vancomycin, metronidazole, dapsone and tiamulin, to which strains showed high rates of resistance, were ineffective. Cephalosporins (especially the third-generation cephalosporins) and quinolones (especially the fluorinated quinolones) were the most effective antimicrobial agents against P. multocida subsp. multocida strains and they might be of value for in vivo use.

  5. Genetic diversity and virulence genes in Streptococcus uberis strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Rafael Ambrósio Loures

    2017-08-01

    Full Text Available Mastitis is one of the most common and costly infectious diseases in dairy cattle worldwide. This is a multifactorial illness caused by different microorganisms, including virus, yeasts, algae, parasites, and several species of bacteria. Among these bacteria, Streptococcus uberis is an important environmental pathogen that is responsible for a large range of clinical and subclinical mammary infections, especially in intensively managed herds. Despite the increasing importance of this pathogen in the etiology of bovine mastitis, data on its virulence and diversity in Brazilian dairy herds are scarce. The aims of the present study were to investigate the virulence characteristics of S. uberis isolated from bovine mastitis and to assess the molecular epidemiology of the Brazilian isolates using pulsed-field gel electrophoresis (PFGE. In this work, 46 strains of S. uberis isolated from bovine mastitis from 26 Brazilian dairy herds were evaluated regarding their genetic diversity by PFGE using with the SmaI enzyme. Additionally, the presence of the virulence genes skc and pauA, which encode plasminogen activators, and the gene sua, which encodes an adhesion molecule in mammary epithelial cells, were assessed by PCR. Our results showed a high genetic diversity in the population, displaying many different patterns in the PFGE analysis. A high proportion of strains was positive for virulence genes in the sampled population (sua [100%], pauA [91%], and skc [91%]. The high frequency of skc, pauA, and sua genes among the studied strains suggests the importance of these virulence factors, possibly helping S. uberis in the colonization of the bovine mammary gland. Surveys of the genetic and molecular characteristics of this pathogen can improve our knowledge of bacterial activity and identify molecules that have roles in the establishment of the infection. This might help in the development of more effective measures to control and prevent bovine mastitis.

  6. High-throughput identification of chemical inhibitors of E. coli Group 2 capsule biogenesis as anti-virulence agents.

    Directory of Open Access Journals (Sweden)

    Carlos C Goller

    Full Text Available Rising antibiotic resistance among Escherichia coli, the leading cause of urinary tract infections (UTIs, has placed a new focus on molecular pathogenesis studies, aiming to identify new therapeutic targets. Anti-virulence agents are attractive as chemotherapeutics to attenuate an organism during disease but not necessarily during benign commensalism, thus decreasing the stress on beneficial microbial communities and lessening the emergence of resistance. We and others have demonstrated that the K antigen capsule of E. coli is a preeminent virulence determinant during UTI and more invasive diseases. Components of assembly and export are highly conserved among the major K antigen capsular types associated with UTI-causing E. coli and are distinct from the capsule biogenesis machinery of many commensal E. coli, making these attractive therapeutic targets. We conducted a screen for anti-capsular small molecules and identified an agent designated "C7" that blocks the production of K1 and K5 capsules, unrelated polysaccharide types among the Group 2-3 capsules. Herein lies proof-of-concept that this screen may be implemented with larger chemical libraries to identify second-generation small-molecule inhibitors of capsule biogenesis. These inhibitors will lead to a better understanding of capsule biogenesis and may represent a new class of therapeutics.

  7. Similar local, but different systemic, metabolomics responses of closely related pine subspecies to folivory by caterpillars of the processionary moth

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, A. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia Spain; Cerdanyola del Vallès, CREAF, Catalonia Spain; Sardans, J. [CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia Spain; Cerdanyola del Vallès, CREAF, Catalonia Spain; Hódar, J. A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, Granada Spain; Garcia-Porta, J. [Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona Spain; Guenther, A. [Department of Earth System Science, University of California, Irvine CA USA; Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno Czech Republic; Oravec, M. [Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno Czech Republic; Urban, O. [Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno Czech Republic; Peñuelas, J. [CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia Spain; Cerdanyola del Vallès, CREAF, Catalonia Spain; Leiss, K.

    2016-05-16

    Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-herbivore relationships at elemental and molecular levels have focused on nutrients or/and certain molecular compounds or specific families of defensive metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and to avoid those with higher levels of phenolics and terpenes. Unfortunately, the defensive role of phenolics in conifers is still unclear. We performed stoichiometric and metabolomics, local and systemic, analyses in two subspecies of Pinus sylvestris under the herbivorous attack by the caterpillars of the pine processionary moth, an important pest in the Mediterranean Basin. Herbivorous attack was not associated with any of the elements analyzed. Both pine subspecies responded locally to folivory mainly by increasing the concentrations of various terpenes and phenolics. Systemic responses differed between subspecies and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Contrary as usually thought, foliar nutrient concentrations did not show to be a main factor of an alleged plant selection by adult female processionary moths for oviposition. Local increases in phenolics were more associated with antioxidant function for protection against oxidative damage produced by folivory. On the other hand, terpenes were directly related to defense against herbivores. Herbivory attack produced a general systemic shift in pines, including both primary and secondary metabolisms, that was, however, less intense and chemically different from the local responses. Subspecies responded similarly locally but differently to folivory at systemic level.

  8. Full genome sequence of a Danish isolate of Mycobacterium avium subspecies paratuberculosis, strain Ejlskov2007

    DEFF Research Database (Denmark)

    Afzal, Mamuna; Abidi, Soad; Mikkelsen, Heidi

    We have sequenced a Danish isolate of Mycobacterium avium subspecies paratuberculosis, strain Ejlskov2007. The strain was isolated from faecal material of a 48 month old second parity Danish Holstein cow, with clinical symptoms of chronic diarrhoea and emaciation. The cultures were grown on Löwen......We have sequenced a Danish isolate of Mycobacterium avium subspecies paratuberculosis, strain Ejlskov2007. The strain was isolated from faecal material of a 48 month old second parity Danish Holstein cow, with clinical symptoms of chronic diarrhoea and emaciation. The cultures were grown......, consisting of 4317 unique gene families. Comparison with M. avium paratuberculosis strain K10 revealed only 3436 genes in common (~70%). We have used GenomeAtlases to show conserved (and unique) regions along the Ejlskov2007 chromosome, compared to 2 other Mycobacterium avium sequenced genomes. Pan......-genome analyses of the sequenced Mycobacterium genomes reveal a surprisingly open and diverse set of genes for this bacterial genera....

  9. Plasma membrane lipids and their role in fungal virulence.

    Science.gov (United States)

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  10. Virulence-associated gene profiling of Streptococcus suis isolates by PCR

    NARCIS (Netherlands)

    Silva, L.M.G.; Baums, C.G.; Rehm, T.; Wisselink, H.J.; Goethe, R.; Valentin-Weigand, P.

    2006-01-01

    Definition of virulent Streptococcus suis strains is controversial. One successful approach for identification of virulent European strains is differentiation of capsular serotypes (or the corresponding cps types) and subsequent detection of virulence-associated factors, namely the extracellular

  11. [Virulent gene prevalence of foodborne Listeria monocytogenes in China in 2005].

    Science.gov (United States)

    Yang, Yang; Fu, Ping; Guo, Yun-Chang; Pei, Xiao-Yan; Liu, Xiu-Mei

    2010-12-01

    To study the virulent gene prevalence of foodborne Listeria monocytogenes (LM) isolated from China. 78 LM isolates derived from raw meat, cooked food, aquatic products and vegetables of 13 provinces and cities.LM isolates were investigated for prevalence of virulence genes (LIPI-1 (prfA, plcA, hly, mpl, actA, plcB); LIPI-2 (inlA, inlB), and iap) by PCR method. 87.2% (68/78) of the isolates were prfA positive, 98.7% (77/78) of the isolates were plcA, actA and plcB positive, 97.4% (76/78) of the isolates were hly positive, 87.2% (68/78) of the isolates were mpl positive, 92.3% (72/78) of the isolates were inlA positive, 100% (78/78) of the isolates were inlB positive, 98.7% (77/78) of the isolates were iap positive. Among 21 virulent gene negative isolates, there was 7 isolates lack of two or more virulence genes. The rate of virulence genes deletion isolates from cooked meat was 31.3% (10/32), the rate of virulence genes deletion isolates from raw meat was 16.1% (5/31), the rate of virulence genes deletion isolates from vegetables was 36.4% (4/11) and rate of virulence genes deletion isolates from seafood was 50% (2/4). No significant difference was found (χ(2) = 3.721, P > 0.05). The virulence gene array-1 strains were dominant among these isolates. Among 78 LM isolates, prevalent of virulent genes were different except inlB, virulence genes of LIP-1 were deleted prevalently among isolates, virulence gene deletion patterns were diverse.

  12. Patterns of variation at Ustilago maydis virulence clusters 2A and 19A largely reflect the demographic history of its populations.

    Directory of Open Access Journals (Sweden)

    Ronny Kellner

    Full Text Available The maintenance of an intimate interaction between plant-biotrophic fungi and their hosts over evolutionary times involves strong selection and adaptative evolution of virulence-related genes. The highly specialised maize pathogen Ustilago maydis is assigned with a high evolutionary capability to overcome host resistances due to its high rates of sexual recombination, large population sizes and long distance dispersal. Unlike most studied fungus-plant interactions, the U. maydis - Zea mays pathosystem lacks a typical gene-for-gene interaction. It exerts a large set of secreted fungal virulence factors that are mostly organised in gene clusters. Their contribution to virulence has been experimentally demonstrated but their genetic diversity within U. maydis remains poorly understood. Here, we report on the intraspecific diversity of 34 potential virulence factor genes of U. maydis. We analysed their sequence polymorphisms in 17 isolates of U. maydis from Europe, North and Latin America. We focused on gene cluster 2A, associated with virulence attenuation, cluster 19A that is crucial for virulence, and the cluster-independent effector gene pep1. Although higher compared to four house-keeping genes, the overall levels of intraspecific genetic variation of virulence clusters 2A and 19A, and pep1 are remarkably low and commensurate to the levels of 14 studied non-virulence genes. In addition, each gene is present in all studied isolates and synteny in cluster 2A is conserved. Furthermore, 7 out of 34 virulence genes contain either no polymorphisms or only synonymous substitutions among all isolates. However, genetic variation of clusters 2A and 19A each resolve the large scale population structure of U. maydis indicating subpopulations with decreased gene flow. Hence, the genetic diversity of these virulence-related genes largely reflect the demographic history of U. maydis populations.

  13. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    Science.gov (United States)

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. [Virulence and its relationship to antibiotic resistance].

    Science.gov (United States)

    Joly-Guillou, M L

    1998-12-01

    PATHOGENIC ISLANDS: Certain DNA blocks inserted into the chromosome of most Gram negative bacteria originated in pathogens found in plants. VIRULENCE-ANTIBIOTIC INTERACTIONS: During the invasive phase, the bacterial cell covers itself with adhesins which facilitate its adherence to tissues. The bacterial cell produces a fibronectin which protects its defense systems. Antibiotics favor bacterial resistance by increasing the expression of surface adhesins and fibronectin production. PENICILLIN RESISTANT PNEUMOCOCCI: Experimental models have demonstrated that mortality in mice and host resistance to pneumococcal infection are related to the type of capsule and not to antibiotic resistance. QUORUM SENSING: The bacterial inoculum regulates the production of virulence factors in vivo via quorum sensing. This regulation can play an important role in Pseudomonas aeruginosa infections. ACINETOBACTER BAUMANNI VIRULENCE: Long poorly understood, factors favoring A. baumanni virulence appear to result from bacterial production of IROMPs in the extracellular growth medium in response to iron depletion during the exponential growth phase.

  15. Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments.

    Science.gov (United States)

    Lovell, Charles R

    2017-03-01

    Vibrio parahaemolyticus is a commonly encountered and highly successful organism in marine ecosystems. It is a fast-growing, extremely versatile copiotroph that is active over a very broad range of conditions. It frequently occurs suspended in the water column (often attached to particles or zooplankton), and is a proficient colonist of submerged surfaces. This organism is an important pathogen of animals ranging from microcrustaceans to humans and is a causative agent of seafood-associated food poisoning. This review examines specific ecological adaptations of V. parahaemolyticus, including its broad tolerances to temperature and salinity, its utilization of a wide variety of organic carbon and energy sources, and its pervasive colonization of suspended and stationary materials that contribute to its success and ubiquity in temperate and tropical estuarine ecosystems. Several virulence-related features are examined, in particular the thermostable direct hemolysin (TDH), the TDH-related hemolysin (TRH), and the type 3 secretion system, and the possible importance of these features in V. parahaemolyticus pathogenicity is explored. The impact of new and much more effective PCR primers on V. parahaemolyticus detection and our views of virulent strain abundance are also described. It is clear that strains carrying the canonical virulence genes are far more common than previously thought, which opens questions regarding the role of these genes in pathogenesis. It is also clear that virulence is an evolving feature of V. parahaemolyticus and that novel combinations of virulence factors can lead to emergent virulence in which a strain that is markedly more pathogenic evolves and propagates to produce an outbreak. The effects of global climate change on the frequency of epidemic disease, the geographic distribution of outbreaks, and the human impacts of V. parahaemolyticus are increasing and this review provides information on why this ubiquitous human pathogen has

  16. Distribution of Helicobacter pylori virulence markers in patients with gastroduodenal diseases in a region at high risk of gastric cancer.

    Science.gov (United States)

    Wang, Ming-yi; Chen, Cheng; Gao, Xiao-zhong; Li, Jie; Yue, Jing; Ling, Feng; Wang, Xiao-chun; Shao, Shi-he

    2013-01-01

    Helicobacter pylori (H. pylori) is a major human pathogen that is responsible for various gastroduodenal diseases. We investigated the prevalence of H. pylori virulence markers in a region at high risk of gastric cancer. One hundred and sixteen H. pylori strains were isolated from patients with gastroduodenal diseases. cagA, the cagA 3' variable region, cagPAI genes, vacA, and dupA genotypes were determined by PCR, and some amplicons of the cagA 3' variable region, cagPAI genes and dupA were sequenced. cagA was detected in all strains. The cagA 3' variable region of 85 strains (73.3%) was amplified, and the sequences of 24 strains were obtained including 22 strains possessing the East Asian-type. The partial cagPAI presented at a higher frequency in chronic gastritis (44.4%) than that of the severe clinical outcomes (9.7%, p dupA and sequencing of dupA revealed an ORF of 2449-bp. The prevalence of dupA was significantly higher in strains from patients with the severe clinical outcomes (40.3%) than that from chronic gastritis (20.4%, p = 0.02). The high rate of East Asian-type cagA, intact cagPAI, virulent vacA genotypes, and the intact long-type dupA may underlie the high risk of gastric cancer in the region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Pacific and Atlantic Lepeophtheirus salmonis (Krøyer, 1838) are allopatric subspecies: Lepeophtheirus salmonis salmonis and L. salmonis oncorhynchi subspecies novo.

    Science.gov (United States)

    Skern-Mauritzen, Rasmus; Torrissen, Ole; Glover, Kevin Alan

    2014-03-14

    The salmon louse Lepeophtheirus salmonis is a parasitic copepod that infects salmonids in the Pacific and Atlantic oceans. Although considered as a single species, morphological and biological differences have been reported between lice from the two oceans. Likewise, studies based on nucleotide sequencing have demonstrated that sequence differences between Atlantic and Pacific L. salmonis are highly significant, albeit smaller than the divergence observed between congeneric copepod species. We demonstrated reproductive compatibility between L. salmonis from the two oceans and successfully established F2 hybrid strains using separate maternal lines from both the Pacific and Atlantic. The infection success for the F2 hybrid strains were similar to results typically observed for non hybrid lice strains in the rearing facility used. Lepeophtheirus salmonis COI and 16S sequences divergence between individuals from the Pacific and the Atlantic oceans was high compared to what may be expected within a copepod species and phylogenetic analysis showed that they consistently formed monophyletic clades representing their origin from the Pacific or Atlantic oceans. Lepeophtheirus salmonis from the Pacific and Atlantic oceans are reproductively compatible at least until adults at the F2 hybrid stage, and should not be regarded as separate species based on reproductive segregation or sequence divergence levels. Reported biological and genetic differences in L. salmonis seen in conjunction with the reported genetic diversity commonly observed between and within species demonstrate that Atlantic and Pacific L. salmonis should be regarded as two subspecies: Lepeophtheirus salmonis salmonis and L. salmonis oncorhynchi subsp. nov.

  18. Identification of Staphylococcus species and subspecies with the MicroScan Pos ID and Rapid Pos ID panel systems.

    Science.gov (United States)

    Kloos, W E; George, C G

    1991-01-01

    The accuracies of the MicroScan Pos ID and Rapid Pos ID panel systems (Baxter Diagnostic Inc., MicroScan Division, West Sacramento, Calif.) were compared with each other and with the accuracies of conventional methods for the identification of 25 Staphylococcus species and 4 subspecies. Conventional methods included those used in the original descriptions of species and subspecies and DNA-DNA hybridization. The Pos ID panel uses a battery of 18 tests, and the Rapid Pos ID panel uses a battery of 42 tests for the identification of Staphylococcus species. The Pos ID panel has modified conventional and chromogenic tests that can be read after 15 to 48 h of incubation; the Rapid Pos ID panel has tests that use fluorogenic substrates or fluorometric indicators, and test results can be read after 2 h of incubation in the autoSCAN-W/A. Results indicated that both MicroScan systems had a high degree of congruence (greater than or equal to 90%) with conventional methods for the species S. capitis, S. aureus, S. auricularis, S. saprophyticus, S. cohnii, S. arlettae, S. carnosus, S. lentus, and S. sciuri and, in particular, the subspecies S. capitis subsp. capitis and S. cohnii subsp. cohnii. The Rapid Pos ID panel system also had greater than or equal to 90% congruence with conventional methods for S. epidermidis, S. caprae, S. warneri subsp. 2, S. xylosus, S. kloosii, and S. caseolyticus. For both MicroScan systems, congruence with conventional methods was 80 to 90% for S. haemolyticus subsp. 1, S. equorum, S. intermedius, and S. hyicus; and in addition, with the Rapid Pos ID panel system congruence was 80 to 89% for S. capitis subsp. ureolyticus, S. warneri subsp. 1, S. hominis, S. cohnii subsp. urealyticum, and S. simulans. The MicroScan systems identified a lower percentage (50 to 75%) of strains of S. lugdunensis, S. gallinarum, S. schleiferi, and S. chromogenes, although the addition of specific tests to the systems might increase the accuracy of identification

  19. Virulence, serotype and phylogenetic groups of diarrhoeagenic ...

    African Journals Online (AJOL)

    Dr DADIE Thomas

    2014-02-17

    Feb 17, 2014 ... The virulence, serotype and phylogenetic traits of diarrhoeagenic Escherichia coli were detected in 502 strains isolated during digestive infections. Molecular detection of the target virulence genes, rfb gene of operon O and phylogenetic grouping genes Chua, yjaA and TSPE4.C2 was performed.

  20. Virulence evolution at the front line of spreading epidemics.

    Science.gov (United States)

    Griette, Quentin; Raoul, Gaël; Gandon, Sylvain

    2015-11-01

    Understanding and predicting the spatial spread of emerging pathogens is a major challenge for the public health management of infectious diseases. Theoretical epidemiology shows that the speed of an epidemic is governed by the life-history characteristics of the pathogen and its ability to disperse. Rapid evolution of these traits during the invasion may thus affect the speed of epidemics. Here we study the influence of virulence evolution on the spatial spread of an epidemic. At the edge of the invasion front, we show that more virulent and transmissible genotypes are expected to win the competition with other pathogens. Behind the front line, however, more prudent exploitation strategies outcompete virulent pathogens. Crucially, even when the presence of the virulent mutant is limited to the edge of the front, the invasion speed can be dramatically altered by pathogen evolution. We support our analysis with individual-based simulations and we discuss the additional effects of demographic stochasticity taking place at the front line on virulence evolution. We confirm that an increase of virulence can occur at the front, but only if the carrying capacity of the invading pathogen is large enough. These results are discussed in the light of recent empirical studies examining virulence evolution at the edge of spreading epidemics. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  1. Bacterial Human Virulence Genes across Diverse Habitats As Assessed by In silico Analysis of Environmental Metagenomes

    DEFF Research Database (Denmark)

    Søborg, Ditte A; Hendriksen, Niels B; Kilian, Mogens

    2016-01-01

    of natural environments in the evolution of bacterial virulence. Twenty four bacterial virulence genes were analyzed in 46 diverse environmental metagenomic datasets, representing various soils, seawater, freshwater, marine sediments, hot springs, the deep-sea, hypersaline mats, microbialites, gutless worms......The occurrence and distribution of clinically relevant bacterial virulence genes across natural (non-human) environments is not well understood. We aimed to investigate the occurrence of homologs to bacterial human virulence genes in a variety of ecological niches to better understand the role...... in non-human environments point to an important ecological role of the genes for the activity and survival of environmental bacteria. Furthermore, the high degree of sequence conservation between several of the environmental and clinical genes suggests common ancestral origins....

  2. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species.

    Science.gov (United States)

    Marcelletti, Simone; Scortichini, Marco

    2016-10-01

    A total of 21 Xylella fastidiosa strains were assessed by comparing their genomes to infer their taxonomic relationships. The whole-genome-based average nucleotide identity and tetranucleotide frequency correlation coefficient analyses were performed. In addition, a consensus tree based on comparisons of 956 core gene families, and a genome-wide phylogenetic tree and a Neighbor-net network were constructed with 820,088 nucleotides (i.e., approximately 30-33 % of the entire X. fastidiosa genome). All approaches revealed the occurrence of three well-demarcated genetic clusters that represent X. fastidiosa subspecies fastidiosa, multiplex and pauca, with the latter appeared to diverge. We suggest that the proposed but never formally described subspecies 'sandyi' and 'morus' are instead members of the subspecies fastidiosa. These analyses support the view that the Xylella strain isolated from Pyrus pyrifolia in Taiwan is likely to be a new species. A widely used multilocus sequence typing analysis yielded conflicting results.

  3. Isolation of Mycobacterium avium subspecies paratuberculosis Reactive T-cells from Intestinal Biopsies of Crohn's Disease Patients

    Science.gov (United States)

    Crohn’s disease (CD) is a chronic granulomatous inflammation of the intestine. The etiology is still unknown. One hypothesis is that CD is caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP) in genetically predisposed individuals. MAP causes a similar disease in ruminants,...

  4. Intraspecific bovine herpesvirus 1 recombinants carrying glycoprotein E deletion as a vaccine marker are virulent in cattle.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; Farnir, Frédéric; Pourchet, Aldo; Bardiau, Marjorie; Gogev, Sacha; Thiry, Julien; Cuisenaire, Adeline; Vanderplasschen, Alain; Thiry, Etienne

    2006-08-01

    Vaccines used in control programmes of Bovine herpesvirus 1 (BoHV-1) utilize highly attenuated BoHV-1 strains marked by a deletion of the glycoprotein E (gE) gene. Since BoHV-1 recombinants are obtained at high frequency in experimentally coinfected cattle, the consequences of recombination on the virulence of gE-negative BoHV-1 were investigated. Thus, gE-negative BoHV-1 recombinants were generated in vitro from several virulent BoHV-1 and one mutant BoHV-1 deleted in the gC and gE genes. Four gE-negative recombinants were tested in the natural host. All the recombinants were more virulent than the gE-negative BoHV-1 vaccine and the gC- and gE-negative parental BoHV-1. The gE-negative recombinant isolated from a BoHV-1 field strain induced the highest severe clinical score. Latency and reactivation studies showed that three of the recombinants were reexcreted. Recombination can therefore restore virulence of gE-negative BoHV-1 by introducing the gE deletion into a different virulence background.

  5. Karyotypic evolution of ribosomal sites in buffalo subspecies and their crossbreed

    Directory of Open Access Journals (Sweden)

    Tiago Marafiga Degrandi

    2014-06-01

    Full Text Available Domestic buffaloes are divided into two group based on cytogenetic characteristics and habitats: the "river buffaloes" with 2n = 50 and the "swamp buffaloes", 2n = 48. Nevertheless, their hybrids are viable, fertile and identified by a 2n = 49. In order to have a better characterization of these different cytotypes of buffaloes, and considering that NOR-bearing chromosomes are involved in the rearrangements responsible for the karyotypic differences, we applied silver staining (Ag-NOR and performed fluorescent in situ hybridization (FISH experiments using 18S rDNA as probe. Metaphases were obtained through blood lymphocyte culture of 21 individuals, including river, swamp and hybrid cytotypes. Ag-NOR staining revealed active NORs on six chromosome pairs (3p, 4p, 6, 21, 23, 24 in the river buffaloes, whereas the swamp buffaloes presented only five NOR-bearing pairs (4p, 6, 20, 22, 23. The F1 crossbreed had 11 chromosomes with active NORs, indicating expression of both parental chromosomes. FISH analysis confirmed the numerical divergence identified with Ag-NOR. This result is explained by the loss of the NOR located on chromosome 4p in the river buffalo, which is involved in the tandem fusion with chromosome 9 in this subspecies. A comparison with the ancestral cattle karyotype suggests that the NOR found on the 3p of the river buffalo may have originated from a duplication of ribosomal genes, resulting in the formation of new NOR sites in this subspecies.

  6. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  7. Virulence Factors Associated with Enterococcus Faecalis Infective Endocarditis

    DEFF Research Database (Denmark)

    Madsen, Kristian T; Skov, Marianne N; Gill, Sabine

    2017-01-01

    INTRODUCTION: The enterococci are accountable for up to 20% of all cases of infective endocarditis, with Enterococcus faecalis being the primary causative isolate. Infective endocarditis is a life-threatening infection of the endocardium that results in the formation of vegetations. Based...... on a literature review, this paper provides an overview of the virulence factors associated with E. faecalis infective endocarditis. Furthermore, it reports the effects of active or passive immunization against some of these involved factors. INDIVIDUAL VIRULENCE FACTORS: Nine virulence factors have in particular...... been associated with E. faecalis infective endocarditis. Absence of these factors entailed attenuation of strains in both mixed- and mono-bacterial infection endocarditis models as well as in in vitro and ex vivo assays when compared to their virulence factor expressing parental strains. PATHOGENESIS...

  8. Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence.

    Science.gov (United States)

    Fang, Xiangling; Barbetti, Martin J

    2014-08-28

    This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis.

    Directory of Open Access Journals (Sweden)

    Trung Anh Trieu

    2017-01-01

    Full Text Available Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies.

  10. Sequence Analysis of Hypothetical Proteins from 26695 to Identify Potential Virulence Factors

    Directory of Open Access Journals (Sweden)

    Ahmad Abu Turab Naqvi

    2016-09-01

    Full Text Available Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP. This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

  11. Comparison of virulence factors and capsular types of Streptococcus agalactiae isolated from human and bovine infections.

    Science.gov (United States)

    Emaneini, Mohammad; Khoramian, Babak; Jabalameli, Fereshteh; Abani, Samira; Dabiri, Hossein; Beigverdi, Reza

    2016-02-01

    Streptococcus agalactiae is a leading cause of human and bovine infections. A total of 194 S. agalactiae isolates, 55 isolates from bovines and 139 from humans, were analyzed for capsular types, virulence genes (scpB, hly, rib, bca and bac) and mobile genetic elements (IS1548 and GBSi1) using polymerase chain reaction (PCR) and multiplex PCR. Capsular type III was predominant (61%), followed by types V, II, Ib, and IV. The scpB, hly, bca and bac virulence genes were only found among human isolates. Twelve and 2 distinct virulence gene profiles were identified among human and bovine isolates respectively. The virulence gene profiles scpB- hly- IS1548- rib-bca (51%) and scpB- hly- IS1548- bca (19%) were only predominant among human isolates. The rib gene was the most common virulence gene in both human and bovine isolates. The study showed a high prevalence of virulence genes in S. agalactiae strains isolated from human infections, these result can support the idea that S. agalactiae isolated from humans and bovines are generally unrelated and probably belonged to separate populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A polymerase chain reaction assay for detection of virulent and attenuated strains of duck plague virus.

    Science.gov (United States)

    Xie, Liji; Xie, Zhixun; Huang, Li; Wang, Sheng; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Luo, Sisi

    2017-11-01

    Sequence analysis of duck plague virus (DPV) revealed that there was a 528bp (B fragment) deletion within the UL2 gene of DPV attenuated vaccine strain in comparison with field virulent strains. The finding of gene deletion provides a potential differentiation test between DPV virulent strain and attenuated strain based on their UL2 gene sizes. Thus we developed a polymerase chain reaction (PCR) assay targeting to the DPV UL2 gene for simultaneous detection of DPV virulent strain and attenuated strain, 827bp for virulent strain and 299bp for attenuated strain. This newly developed PCR for DPV was highly sensitive and specific. It detected as low as 100fg of DNA on both DPV virulent and attenuated strains, no same size bands were amplified from other duck viruses including duck paramyxovirus, duck tembusu virus, duck circovirus, Muscovy duck parvovirus, duck hepatitis virus type I, avian influenza virus and gosling plague virus. Therefore, this PCR assay can be used for the rapid, sensitive and specific detection of DPV virulent and attenuated strains affecting ducks. Copyright © 2017. Published by Elsevier B.V.

  13. A new subspecies of Celastrus (Celastraceae from the Palni hills of South India

    Directory of Open Access Journals (Sweden)

    S. John Britto

    2017-08-01

    Full Text Available Celastrus paniculatus Willd. ssp. angladeanus S.J. Britto, B. Mani and S. Thomas new subspecies from the Palni hills, Western Ghats of Tamilnadu, South India is described and illustrated. The new ssp. is similar to Celastrus paniculatus ssp. aggregatus but differs in flame-coloured branchlets, terminal, erect and stiff panicles exceeding leaves, prominent gibbous and oblique capsules, flowers polygamous but predominantly pistillate and 3-seeded capsules.

  14. [Mechanisms of subspecies differentiation in a filial generation of rice indica-japonica hybridization under different ecological conditions].

    Science.gov (United States)

    Wang, He-Tong; Jin, Feng; Jiang, Yi-Jun; Lin, Qing-Shan; Xu, Hai; Chen, Wen-Fu; Xu, Zheng-Jin

    2013-11-01

    Indica-japonica hybridization is one of the most important breeding methods in China, whereas identifying subspecies differentiation mechanisms is the key in indica-japonica hybridization breeding. By using InDels (Insert/Deletion) and ILPs (Intron Length Polymorphism), an analysis was made on the F6 populations derived from the hybridization of indica-japonica (Qishanzhan/Akihikari) planted in Liaoning and Guangdong provinces and generated by bulk harvesting (BM), single-seed descent methods (SSD), and pedigree method (PM). No segregation distortion was observed for the BM and SSD populations. The frequency distribution of japonica kinship percentage (Dj) was concentrated in 40%-60%. The PM populations in the two provinces presented indica-deviated distribution (30%-55%), with significant difference between Guangdong (38%) and Liaoning (42%). In addition, there was a significant positive correlation between the Dj and the kinship of functional gene regions in the BM and SSD populations. However, part of the positive correlation was broken in the PM populations that showed a regular distribution in the genotype patterns of indica and japonica loci. The above results demonstrated that artificial selection could be the main factor affecting the population differentiation in indica-japonica hybridization, and, with the synergistic effect of natural selection, induced the phenomenon of segregation distortion. There existed a close relationship between the differentiation of subspecies and the important agronomic traits, which could be the main reason why indica-japonica hybridiation breeding could not achieve the expected effect of combining the two subspecies advantages.

  15. Genetic and environmental effects on seed weight in subspecies of big sagebrush: Applications for restoration

    Science.gov (United States)

    Bryce A. Richardson; Hector G. Ortiz; Stephanie L. Carlson; Deidre M. Jaeger; Nancy L. Shaw

    2015-01-01

    The sagebrush steppe is a patchwork of species and subspecies occupying distinct environmental niches across the intermountain regions of western North America. These ecosystems face degradation from disturbances and exotic weeds. Using sagebrush seed that is matched to its appropriate niche is a critical component to successful restoration, improving habitat for the...

  16. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.

    Directory of Open Access Journals (Sweden)

    Rhonda L Feinbaum

    Full Text Available Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700 were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.

  17. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.

    Science.gov (United States)

    Feinbaum, Rhonda L; Urbach, Jonathan M; Liberati, Nicole T; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.

  18. Expression of virulence factors by Staphylococcus aureus grown in serum.

    Science.gov (United States)

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-11-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl₃ into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.

  19. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties

    Directory of Open Access Journals (Sweden)

    Elena Zanni

    2017-06-01

    Full Text Available Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.

  20. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties.

    Science.gov (United States)

    Zanni, Elena; Schifano, Emily; Motta, Sara; Sciubba, Fabio; Palleschi, Claudio; Mauri, Pierluigi; Perozzi, Giuditta; Uccelletti, Daniela; Devirgiliis, Chiara; Miccheli, Alfredo

    2017-01-01

    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus , lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans , with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis . Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.

  1. Mutations induced by ultraviolet radiation affecting virulence in Puccinia striiformis

    International Nuclear Information System (INIS)

    Shang Hongsheng; Jing Jinxue; Li Zhenqi

    1994-01-01

    Uredospores of parent culture, cy 29-1, were treated by ultraviolet radiation and mutations to virulent were tested on resistant wheat cultivars inoculated with treated spores. 7 mutant cultures virulent to the test cultivars were developed with estimated mutation rate 10~6~10~4. The virulence of mutant cultures was different from the all known races of stripe rust. Resistance segregation to mutant cultures was detected in two test cultivars. The results suggested that mutation was important mechanism of virulence variation operative in asexual population of rust fungi

  2. Regulation of Yersina pestis Virulence by AI-2 Mediated Quorum Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Segelke, B; Hok, S; Lao, V; Corzett, M; Garcia, E

    2010-03-29

    The proposed research was motivated by an interest in understanding Y. pestis virulence mechanisms and bacteria cell-cell communication. It is expected that a greater understanding of virulence mechanisms will ultimately lead to biothreat countermeasures and novel therapeutics. Y. pestis is the etiological agent of plague, the most devastating disease in human history. Y. pestis infection has a high mortality rate and a short incubation before mortality. There is no widely available and effective vaccine for Y. pestis and multi-drug resistant strains are emerging. Y. pestis is a recognized biothreat agent based on the wide distribution of the bacteria in research laboratories around the world and on the knowledge that methods exist to produce and aerosolize large amounts of bacteria. We hypothesized that cell-cell communication via signaling molecules, or quorum sensing, by Y. pestis is important for the regulation of virulence factor gene expression during host invasion, though a causative link had never been established. Quorum sensing is a mode of intercellular communication which enables orchestration of gene expression for many bacteria as a function of population density and available evidence suggests there may be a link between quorum sensing and regulation of Y. pesits virulence. Several pathogenic bacteria have been shown to regulate expression of virulence factor genes, including genes encoding type III secretion, via quorum sensing. The Y. pestis genome encodes several cell-cell signaling pathways and the interaction of at least three of these are thought to be involved in one or more modes of host invasion. Furthermore, Y. pestis gene expression array studies carried out at LLNL have established a correlation between expression of known virulence factors and genes involved in processing of the AI-2 quorum sensing signal. This was a basic research project that was intended to provide new insights into bacterial intercellular communication and how it is

  3. Staphylococcus cohnii subspecies: Staphylococcus cohnii subsp. cohnii subsp. nov. and Staphylococcus cohnii subsp. urealyticum subsp. nov.

    Science.gov (United States)

    Kloos, W E; Wolfshohl, J F

    1991-04-01

    Two major subspecies of Staphylococcus cohnii, namely S. cohnii subsp. cohnii, from humans, and S. cohnii subsp. urealyticum, from humans and other primates, are described on the basis of a study of 14 to 25 strains and 18 to 33 strains, respectively. DNA-DNA hybridization studies conducted in our laboratory in 1983 (W. E. Kloos and J. F. Wolfshohl, Curr. Microbiol. 8:115-121, 1983) demonstrated that strains representing the different subspecies were significantly divergent. S. cohnii subsp. urealyticum can be distinguished from S. cohnii subsp. cohnii on the basis of its greater colony size; pigmentation; positive urease, beta-glucuronidase, and beta-galactosidase activities; delayed alkaline phosphatase activity; ability to produce acid aerobically from alpha-lactose; and fatty acid profile. The type strain of S. cohnii subsp. cohnii is ATCC 29974, the designated type strain of S. cohnii Schleifer and Kloos 1975b, 55. The type strain of S. cohnii subsp. urealyticum is ATCC 49330.

  4. Identical metabolic rate and thermal conductance in Rock Sandpiper (Calidris ptilocnemis) subspecies with contrasting nonbreeding life histories

    NARCIS (Netherlands)

    Ruthrauff, Dan; Dekinga, Anne; Gill, Robert E.; Piersma, Theunis

    Closely related species or subspecies can exhibit metabolic differences that reflect site-specific environmental conditions. Whether such differences represent fixed traits or flexible adjustments to local conditions, however, is difficult to predict across taxa. The nominate race of Rock Sandpiper

  5. Genotypic and Phenotypic Diversity of Cryptococcus gattii VGII Clinical Isolates and Its Impact on Virulence

    Directory of Open Access Journals (Sweden)

    Vanessa A. Barcellos

    2018-02-01

    Full Text Available The Cryptococcus gattii species complex harbors the main etiological agents of cryptococcosis in immunocompetent patients. C. gattii molecular type VGII predominates in the north and northeastern regions of Brazil, leading to high morbidity and mortality rates. C. gattii VGII isolates have a strong clinical relevance and phenotypic variations. These phenotypic variations among C. gattii species complex isolates suggest that some strains are more virulent than others, but little information is available related to the pathogenic properties of those strains. In this study, we analyzed some virulence determinants of C. gattii VGII strains (CG01, CG02, and CG03 isolated from patients in the state of Piauí, Brazil. The C. gattii R265 VGIIa strain, which was isolated from the Vancouver outbreak, differed from C. gattii CG01, CG02 and CG03 isolates (also classified as VGII when analyzed the capsular dimensions, melanin production, urease activity, as well as the glucuronoxylomannan (GXM secretion. Those differences directly reflected in their virulence potential. In addition, CG02 displayed higher virulence compared to R265 (VGIIa strain in a cryptococcal murine model of infection. Lastly, we examined the genotypic diversity of these strains through Multilocus Sequence Type (MLST and one new subtype was described for the CG02 isolate. This study confirms the presence and the phenotypic and genotypic diversity of highly virulent strains in the Northeast region of Brazil.

  6. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence

    Directory of Open Access Journals (Sweden)

    Shawn Lewenza

    2014-08-01

    Full Text Available Caenorhabditis elegans is commonly used as an infection model for pathogenesis studies in Pseudomonas aeruginosa. The standard virulence assays rely on the slow and fast killing or paralysis of nematodes but here we developed a behaviour assay to monitor the preferred bacterial food sources of C. elegans. We monitored the food preferences of nematodes fed the wild type PAO1 and mutants in the type III secretion (T3S system, which is a conserved mechanism to inject secreted effectors into the host cell cytosol. A ΔexsEΔpscD mutant defective for type III secretion served as a preferred food source, while an ΔexsE mutant that overexpresses the T3S effectors was avoided. Both food sources were ingested and observed in the gastrointestinal tract. Using the slow killing assay, we showed that the ΔexsEΔpscD had reduced virulence and thus confirmed that preferred food sources are less virulent than the wild type. Next we developed a high throughput feeding behaviour assay with 48 possible food colonies in order to screen a transposon mutant library and identify potential virulence genes. C. elegans identified and consumed preferred food colonies from a grid of 48 choices. The mutants identified as preferred food sources included known virulence genes, as well as novel genes not identified in previous C. elegans infection studies. Slow killing assays were performed and confirmed that several preferred food sources also showed reduced virulence. We propose that C. elegans feeding behaviour can be used as a sensitive indicator of virulence for P. aeruginosa PAO1.

  7. A candidate subspecies discrimination system involving a vomeronasal receptor gene with different alleles fixed in M. m. domesticus and M. m. musculus.

    Directory of Open Access Journals (Sweden)

    Robert C Karn

    2010-09-01

    Full Text Available Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s, also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO, by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24 are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(subspecific polymorphism but no inter(subspecific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive

  8. Virulence of Rhodococcus equi Isolated from Cats and Dogs

    OpenAIRE

    Takai, Shinji; Martens, Ronald J.; Julian, Alan; Garcia Ribeiro, Márcio; Rodrigues de Farias, Marconi; Sasaki, Yukako; Inuzuka, Kazuho; Kakuda, Tsutomu; Tsubaki, Shiro; Prescott, John F.

    2003-01-01

    Nine cat isolates and nine dog isolates of Rhodococcus equi from clinical material were investigated for the presence of the virulence-associated antigens (VapA and VapB) and virulence plasmids. Five of the cat isolates and one dog isolate were VapA positive and contained an 85-kb type I or an 87-kb type I plasmid. The remaining 12 isolates were avirulent R. equi strains and contained no virulence plasmids.

  9. 77 FR 56858 - Endangered and Threatened Wildlife and Plants; Draft Recovery Plan for Four Subspecies of Island Fox

    Science.gov (United States)

    2012-09-14

    ... particular species. Species' History We listed four of the six subspecies of island fox endemic to the... consistent with long-term viability; and 2. Land managers are able to respond in a timely fashion to...

  10. Potential drivers of virulence evolution in aquaculture

    Science.gov (United States)

    Kennedy, David A.; Kurath, Gael; Brito, Ilana L.; Purcell, Maureen K.; Read, Andrew F.; Winton, James R.; Wargo, Andrew R.

    2016-01-01

    Infectious diseases are economically detrimental to aquaculture, and with continued expansion and intensification of aquaculture, the importance of managing infectious diseases will likely increase in the future. Here, we use evolution of virulence theory, along with examples, to identify aquaculture practices that might lead to the evolution of increased pathogen virulence. We identify eight practices common in aquaculture that theory predicts may favor evolution toward higher pathogen virulence. Four are related to intensive aquaculture operations, and four others are related specifically to infectious disease control. Our intention is to make aquaculture managers aware of these risks, such that with increased vigilance, they might be able to detect and prevent the emergence and spread of increasingly troublesome pathogen strains in the future.

  11. Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors.

    Directory of Open Access Journals (Sweden)

    Roderick F Felsheim

    2009-12-01

    Full Text Available Rickettsia peacockii, also known as the East Side Agent, is a non-pathogenic obligate intracellular bacterium found as an endosymbiont in Dermacentor andersoni ticks in the western USA and Canada. Its presence in ticks is correlated with reduced prevalence of Rickettsia rickettsii, the agent of Rocky Mountain Spotted Fever. It has been proposed that a virulent SFG rickettsia underwent changes to become the East Side Agent. We determined the genome sequence of R. peacockii and provide a comparison to a closely related virulent R. rickettsii. The presence of 42 chromosomal copies of the ISRpe1 transposon in the genome of R. peacockii is associated with a lack of synteny with the genome of R. rickettsii and numerous deletions via recombination between transposon copies. The plasmid contains a number of genes from distantly related organisms, such as part of the glycosylation island of Pseudomonas aeruginosa. Genes deleted or mutated in R. peacockii which may relate to loss of virulence include those coding for an ankyrin repeat containing protein, DsbA, RickA, protease II, OmpA, ScaI, and a putative phosphoethanolamine transferase. The gene coding for the ankyrin repeat containing protein is especially implicated as it is mutated in R. rickettsii strain Iowa, which has attenuated virulence. Presence of numerous copies of the ISRpe1 transposon, likely acquired by lateral transfer from a Cardinium species, are associated with extensive genomic reorganization and deletions. The deletion and mutation of genes possibly involved in loss of virulence have been identified by this genomic comparison. It also illustrates that the introduction of a transposon into the genome can have varied effects; either correlating with an increase in pathogenicity as in Francisella tularensis or a loss of pathogenicity as in R. peacockii and the recombination enabled by multiple transposon copies can cause significant deletions in some genomes while not in others.

  12. Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis.

    Science.gov (United States)

    Della Terra, Paula Portella; Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; Nishikaku, Angela Satie; Burger, Eva; de Camargo, Zoilo Pires

    2017-08-01

    Sporotrichosis is a polymorphic chronic infection of humans and animals classically acquired after traumatic inoculation with soil and plant material contaminated with Sporothrix spp. propagules. An alternative and successful route of transmission is bites and scratches from diseased cats, through which Sporothrix yeasts are inoculated into mammalian tissue. The development of a murine model of subcutaneous sporotrichosis mimicking the alternative route of transmission is essential to understanding disease pathogenesis and the development of novel therapeutic strategies. To explore the impact of horizontal transmission in animals (e.g., cat-cat) and zoonotic transmission on Sporothrix fitness, the left hind footpads of BALB/c mice were inoculated with 5×106 yeasts (n = 11 S. brasiliensis, n = 2 S. schenckii, or n = 1 S. globosa). Twenty days post-infection, our model reproduced both the pathophysiology and symptomology of sporotrichosis with suppurating subcutaneous nodules that progressed proximally along lymphatic channels. Across the main pathogenic members of the S. schenckii clade, S. brasiliensis was usually more virulent than S. schenckii and S. globosa. However, the virulence in S. brasiliensis was strain-dependent, and we demonstrated that highly virulent isolates disseminate from the left hind footpad to the liver, spleen, kidneys, lungs, heart, and brain of infected animals, inducing significant and chronic weight loss (losing up to 15% of their body weight). The weight loss correlated with host death between 2 and 16 weeks post-infection. Histopathological features included necrosis, suppurative inflammation, and polymorphonuclear and mononuclear inflammatory infiltrates. Immunoblot using specific antisera and homologous exoantigen investigated the humoral response. Antigenic profiles were isolate-specific, supporting the hypothesis that different Sporothrix species can elicit a heterogeneous humoral response over time, but cross reaction was observed

  13. Empirical support for optimal virulence in a castrating parasite.

    Directory of Open Access Journals (Sweden)

    Knut Helge Jensen

    2006-07-01

    Full Text Available The trade-off hypothesis for the evolution of virulence predicts that parasite transmission stage production and host exploitation are balanced such that lifetime transmission success (LTS is maximised. However, the experimental evidence for this prediction is weak, mainly because LTS, which indicates parasite fitness, has been difficult to measure. For castrating parasites, this simple model has been modified to take into account that parasites convert host reproductive resources into transmission stages. Parasites that kill the host too early will hardly benefit from these resources, while postponing the killing of the host results in diminished returns. As predicted from optimality models, a parasite inducing castration should therefore castrate early, but show intermediate levels of virulence, where virulence is measured as time to host killing. We studied virulence in an experimental system where a bacterial parasite castrates its host and produces spores that are not released until after host death. This permits estimating the LTS of the parasite, which can then be related to its virulence. We exposed replicate individual Daphnia magna (Crustacea of one host clone to the same amount of bacterial spores and followed individuals until their death. We found that the parasite shows strong variation in the time to kill its host and that transmission stage production peaks at an intermediate level of virulence. A further experiment tested for the genetic basis of variation in virulence by comparing survival curves of daphniids infected with parasite spores obtained from early killing versus late killing infections. Hosts infected with early killer spores had a significantly higher death rate as compared to those infected with late killers, indicating that variation in time to death was at least in part caused by genetic differences among parasites. We speculate that the clear peak in lifetime reproductive success at intermediate killing times

  14. Characterization of the inflammatory phenotype of Mycobacterium avium subspecies paratuberculosis using a novel cell culture passage model

    Science.gov (United States)

    Understanding the pathogenic mechanisms and host responses to Johne’s disease, a chronic enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP), is complicated by the multifaceted disease progression, late-onset host reaction, and the lack of ex vivo infection models ...

  15. The development and validation of a single SNaPshot multiplex for tiger species and subspecies identification--implications for forensic purposes.

    Science.gov (United States)

    Kitpipit, Thitika; Tobe, Shanan S; Kitchener, Andrew C; Gill, Peter; Linacre, Adrian

    2012-03-01

    The tiger (Panthera tigris) is currently listed on Appendix I of the Convention on the International Trade in Endangered Species of Wild Fauna and Flora; this affords it the highest level of international protection. To aid in the investigation of alleged illegal trade in tiger body parts and derivatives, molecular approaches have been developed to identify biological material as being of tiger in origin. Some countries also require knowledge of the exact tiger subspecies present in order to prosecute anyone alleged to be trading in tiger products. In this study we aimed to develop and validate a reliable single assay to identify tiger species and subspecies simultaneously; this test is based on identification of single nucleotide polymorphisms (SNPs) within the tiger mitochondrial genome. The mitochondrial DNA sequence from four of the five extant putative tiger subspecies that currently exist in the wild were obtained and combined with DNA sequence data from 492 tiger and 349 other mammalian species available on GenBank. From the sequence data a total of 11 SNP loci were identified as suitable for further analyses. Five SNPs were species-specific for tiger and six amplify one of the tiger subspecies-specific SNPs, three of which were specific to P. t. sumatrae and the other three were specific to P. t. tigris. The multiplex assay was able to reliably identify 15 voucher tiger samples. The sensitivity of the test was 15,000 mitochondrial DNA copies (approximately 0.26 pg), indicating that it will work on trace amounts of tissue, bone or hair samples. This simple test will add to the DNA-based methods currently being used to identify the presence of tiger within mixed samples. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Evolutionary mechanisms involved in the virulence of infectious salmon anaemia virus (ISAV), a piscine orthomyxovirus

    International Nuclear Information System (INIS)

    Markussen, Turhan; Jonassen, Christine Monceyron; Numanovic, Sanela; Braaen, Stine; Hjortaas, Monika; Nilsen, Hanne; Mjaaland, Siri

    2008-01-01

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing a multisystemic, emerging disease in Atlantic salmon. Here we present, for the first time, detailed sequence analyses of the full-genome sequence of a presumed avirulent isolate displaying a full-length hemagglutinin-esterase (HE) gene (HPR0), and compare this with full-genome sequences of 11 Norwegian ISAV isolates from clinically diseased fish. These analyses revealed the presence of a virulence marker right upstream of the putative cleavage site R 267 in the fusion (F) protein, suggesting a Q 266 → L 266 substitution to be a prerequisite for virulence. To gain virulence in isolates lacking this substitution, a sequence insertion near the cleavage site seems to be required. This strongly suggests the involvement of a protease recognition pattern at the cleavage site of the fusion protein as a determinant of virulence, as seen in highly pathogenic influenza A virus H5 or H7 and the paramyxovirus Newcastle disease virus

  17. Screening for spontaneous virulent mutants of barley powdery mildew (Erysiphe graminis DC)

    International Nuclear Information System (INIS)

    Torp, J.; Jensen, H.P.

    1989-01-01

    Full text: Seedlings of 4 barley lines possessing resistance genes M1-a6, M1-a12 or M1-g were inoculated with powdery mildew culture CR3, which is a-virulent to the 4 host lines. In total, 50 million conidia were screened for the occurrence of virulent mutants, 43 putative virulent mutants were found. They could be grouped into 5 genotypes according to the virulence spectrum. They might have originated by one of the following events: 1. admixture, 2. physiological events that allow a few conidia to establish colonies in spite of the presence of a functional gene for resistance, 3. mutation in a gene for specificity, 4. deletion or mutation in some kind of suppressing element in which case more than one virulence may be affected. Based upon the virulence spectra, mating type, biochemical tests and analysis of test crosses, 3 of the genotypes were clearly classified as not being of mutational origin. Of the two remaining genotypes one differed in 4 virulences, the other by two virulences and one avirulence. Based upon expectations from the gene-for-gene concept, it is concluded that both were not of mutational origin. If in fact there are derived from a mutation, the concept of gene-for-gene interactions would have to be revised. Assuming that no mutations for virulence were found in this experiment, the spontaneous mutation frequency from avirulence to virulence would be below 2x10 -8 . (author)

  18. The effects of multiple infections on the expression and evolution of virulence in a Daphnia-endoparasite system.

    Science.gov (United States)

    Ben-Ami, Frida; Mouton, Laurence; Ebert, Dieter

    2008-07-01

    Multiple infections of a host by different strains of the same microparasite are common in nature. Although numerous models have been developed in an attempt to predict the evolutionary effects of intrahost competition, tests of the assumptions of these models are rare and the outcome is diverse. In the present study we examined the outcome of mixed-isolate infections in individual hosts, using a single clone of the waterflea Daphnia magna and three isolates of its semelparous endoparasite Pasteuria ramosa. We exposed individual Daphnia to single- and mixed-isolate infection treatments, both simultaneously and sequentially. Virulence was assessed by monitoring host mortality and fecundity, and parasite spore production was used as a measure of parasite fitness. Consistent with most assumptions, in multiply infected hosts we found that the virulence of mixed infections resembled that of the more virulent competitor, both in simultaneous multiple infections and in sequential multiple infections in which the virulent isolate was first to infect. The more virulent competitor also produced the vast majority of transmission stages. Only when the less virulent isolate was first to infect, the intrahost contest resembled scramble competition, whereby both isolates suffered by producing fewer transmission stages. Surprisingly, mixed-isolate infections resulted in lower fecundity-costs for the hosts, suggesting that parasite competition comes with an advantage for the host relative to single infections. Finally, spore production correlated positively with time-to-host-death. Thus, early-killing of more competitive isolates produces less transmission stages than less virulent, inferior isolates. Our results are consistent with the idea that less virulent parasite lines may be replaced by more virulent strains under conditions with high rates of multiple infections.

  19. Antibiotic Resistance and Virulence Properties in Escherichia coli ...

    African Journals Online (AJOL)

    This study determined E. coli resistance to commonly used antibiotics together with their virulence properties in Ile-Ife, Nigeria. A total of 137 E. coli isolates from cases of urinary tract infection were tested for their sensitivity to commonly used antibiotics and possession of virulence factors using standard methods.

  20. Three new species and one new subspecies of Deserticossus Yakovlev, 2006 (Lepidoptera: Cossidae) from Kazakhstan, Kyrgyzstan and Russia, with world catalogue of the genus.

    Science.gov (United States)

    Yakovlev, Roman V; Witt, Thomas J

    2017-05-23

    Three new species and one new subspecies of the genus Deserticossus Yakovlev, 2006 are described: Deserticossus doroshkini Yakovlev & Witt sp. nov. from eastern Kazakhstan (Tarbagatai Mts.), D. selevini Yakovlev & Witt sp. nov. from southeastern Kazakhstan (Malye Boguty Mts.), D. kamelini Yakovlev & Witt sp. nov. from Kyrgyzstan (Fergana Valley), and D. tsingtauana didenkoi Yakovlev & Witt subsp. nov. from Russia (Southern Siberia, Buryatia Republic). The described species and subspecies of Deserticossus are listed, with notes on the type material, synonymies, and distribution for each taxon.

  1. Association of staphylococcus cohnii subspecies urealyticum infection with recurrence of renal staghorn stone

    OpenAIRE

    Shahandeh, Zahra; Shafi, Hamid; Sadighian, Farahnaz

    2015-01-01

    Background: Stphylococcus cohnii is an organism of coagulase negative species which is considered as normal flora. However, it has been isolated from urinary tract infections and surgical prostheses but its relation with staghorn stones has not been reported, yet. Case Presentation: A 50-years-old woman presented with left renal staghorn stone in June 2014. She had bilateral staghorn stones 7 years ago. Staphylococcus cohnii subspecies urealyticum were detected from a removed stone. After 7 y...

  2. Cyt toxin expression reveals an inverse regulation of insect and plant virulence factors of Dickeya dadantii.

    Science.gov (United States)

    Costechareyre, Denis; Dridi, Bedis; Rahbé, Yvan; Condemine, Guy

    2010-12-01

    The plant pathogenic bacteria Dickeya dadantii is also a pathogen of the pea aphid Acyrthosiphon pisum. The genome of the bacteria contains four cyt genes, encoding homologues of Bacillus thuringiensis Cyt toxins, which are involved in its pathogenicity to insects. We show here that these genes are transcribed as an operon, and we determined the conditions necessary for their expression. Their expression is induced at high temperature and at an osmolarity equivalent to that found in the plant phloem sap. The regulators of cyt genes have also been identified: their expression is repressed by H-NS and VfmE and activated by PecS. These genes are already known to regulate plant virulence factors, but in an opposite way. When tested in a virulence assay by ingestion, the pecS mutant was almost non-pathogenic while hns and vfmE mutants behaved in the same way as the wild-type strain. Mutants of other regulators of plant virulence, GacA, OmpR and PhoP, that do not control Cyt toxin production, also showed reduced pathogenicity. In an assay by injection of bacteria, the gacA strain was less pathogenic but, surprisingly, the pecS mutant was slightly more virulent. These results show that Cyt toxins are not the only virulence factors required to kill aphids, and that these factors act at different stages of the infection. Moreover, their production is controlled by general virulence regulators known for their role in plant virulence. This integration could indicate that virulence towards insects is a normal mode of life for D. dadantii. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients.

    Science.gov (United States)

    Amissah, Nana Ama; Chlebowicz, Monika A; Ablordey, Anthony; Tetteh, Caitlin S; Prah, Isaac; van der Werf, Tjip S; Friedrich, Alex W; van Dijl, Jan Maarten; Stienstra, Ymkje; Rossen, John W

    2017-06-01

    Buruli ulcer (BU) is a necrotizing infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. BU wounds may also be colonized with other microorganisms including Staphylococcus aureus. This study aimed to characterize the virulence factors of S. aureus isolated from BU patients. Previously sequenced genomes of 21 S. aureus isolates from BU patients were screened for the presence of virulence genes. The results show that all S. aureus isolates harbored on their core genomes genes for known virulence factors like α-hemolysin, and the α- and β-phenol soluble modulins. Besides the core genome virulence genes, mobile genetic elements (MGEs), i.e. prophages, genomic islands, pathogenicity islands and a Staphylococcal cassette chromosome (SCC) were found to carry different combinations of virulence factors, among them genes that are known to encode factors that promote immune evasion, superantigens and Panton-Valentine Leucocidin. The present observations imply that the S. aureus isolates from BU patients harbor a diverse repertoire of virulence genes that may enhance bacterial survival and persistence in the wound environment and potentially contribute to delayed wound healing. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Molecular and morphological differentiation of Secret Toad-headed agama, Phrynocephalus mystaceus, with the description of a new subspecies from Iran (Reptilia, Agamidae)

    OpenAIRE

    N. Solovyeva, Evgeniya; N. Dunayev, Evgeniy; A. Nazarov, Roman; Rajabizadeh, Mehdi; Poyarkov Jr., Nikolay A.

    2018-01-01

    The morphological and genetic variation of a wide-ranging Secret Toad-headed agama, Phrynocephalus mystaceus that inhabits sand deserts of south-eastern Europe, Middle East, Middle Asia, and western China is reviewed. Based on the morphological differences and high divergence in COI (mtDNA) gene sequences a new subspecies of Ph. mystaceus is described from Khorasan Razavi Province in Iran. Partial sequences of COI mtDNA gene of 31 specimens of Ph. mystaceus from 17 localities from all major p...

  5. Virulence of oral Candida isolated from HIV-positive women with oral candidiasis and asymptomatic carriers.

    Science.gov (United States)

    Owotade, Foluso J; Patel, Mrudula

    2014-10-01

    This study compared the virulence of oral Candida species isolated from human immunodeficiency virus (HIV)-positive women with and without oral candidiasis. Candida species were isolated from 197 women, and their virulence attributes were measured. Of the 197 women, 117 (59.4%) carried Candida. Of these, 15 (12.8%) had symptoms of oral candidiasis. Among highly active antiretroviral therapy (HAART)-naive patients, 33% were diagnosed with oral candidiasis, whereas 5.9% were asymptomatic carriers (P oral candidiasis had higher levels of Candida (P = .02) than asymptomatic carriers. There was no difference in the CD4 counts and the virulence attributes of Candida from both the groups. This study indicates that oral candidiasis is mainly caused by high counts of C. albicans and suggests the importance of therapies targeting Candida counts in the oral cavity even in patients on HAART to reduce the development of infections. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. MORPHOLOGICAL AND ANATOMICAL STUDY ON ENDEMIC CROCUS OLIVIERI GAY SUBSP. ISTANBULENSIS MATHEW SUBSPECIES (IRIDACEAE

    Directory of Open Access Journals (Sweden)

    Kadriye Yetişen

    2013-02-01

    Full Text Available In this study, morphological and anatomical properties of Crocus olivieri Gay subsp. istanbulensis Mathew were investigated. Cross-sections of root, scape and leaf parts of the plant were examined anddemonstrated by photographs. Most of the anatomical properties are similar to the other member of Iridaceae family. Sclerenchyma groups were observed around to leaf vascular bundle. Morphological and anatomical findings compared with other two subspecies of Crocus olivieri.

  7. Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus

    Directory of Open Access Journals (Sweden)

    Lifeng Zhou

    2016-09-01

    Full Text Available Bursaphelenchus mucronatus (B. mucronatus isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus’ pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future.

  8. CD4 T Cells From Intestinal Biopsies of Crohn's Disease Patients React to Mycobacterium avium subspecies paratuberculosis

    Science.gov (United States)

    The role of Mycobacterium avium subspecies paratuberculosis (MAP) in Crohn’s disease (CD) remains controversial. One issue that has been raised is the lack of data showing a cellular immune response to MAP. Earlier studies have mostly focused on responses in peripheral blood which have several limit...

  9. OrfX, a Nucleomodulin Required for Listeria monocytogenes Virulence

    Directory of Open Access Journals (Sweden)

    Andrzej Prokop

    2017-10-01

    Full Text Available Listeria monocytogenes is a bacterial pathogen causing severe foodborne infections in humans and animals. Listeria can enter into host cells and survive and multiply therein, due to an arsenal of virulence determinants encoded in different loci on the chromosome. Several key Listeria virulence genes are clustered in Listeria pathogenicity island 1. This important locus also contains orfX (lmo0206, a gene of unknown function. Here, we found that OrfX is a small, secreted protein whose expression is positively regulated by PrfA, the major transcriptional activator of Listeria virulence genes. We provide evidence that OrfX is a virulence factor that dampens the oxidative response of infected macrophages, which contributes to intracellular survival of bacteria. OrfX is targeted to the nucleus and interacts with the regulatory protein RybP. We show that in macrophages, the expression of OrfX decreases the level of RybP, which controls cellular infection. Collectively, these data reveal that Listeria targets RybP and evades macrophage oxidative stress for efficient infection. Altogether, OrfX is after LntA, the second virulence factor acting directly in the nucleus.

  10. Helicobacter pylori virulence factors in development of gastric carcinoma.

    Science.gov (United States)

    Wang, Ming-Yi; Liu, Xiao-Fei; Gao, Xiao-Zhong

    2015-01-01

    Helicobacter pylori plays a vital role in the pathogenesis of gastric carcinoma. However, only a relatively small proportion of individuals infected with H. pylori develop gastric carcinoma. Differences in the incidence of gastric carcinoma among infected individuals can be explained, at least partly, by the different genotypes of H. pylori virulence factors. Thus far, many virulence factors of H. pylori, such as Cag PAI, VacA, OMPs and DupA, have been reported to be involved in the development of gastric cancer. The risk of developing gastric cancer during H. pylori infection is affected by specific host-microbe interactions that are independent of H. pylori virulence factors. In this review, we discuss virulence factors of H. pylori and their role in the development of gastric carcinoma that will provide further understanding of the biological interactions of H. pylori with the host.

  11. Virulence factor genes possessing Enterococcus faecalis strains from rabbits and their sensitivity to enterocins

    Directory of Open Access Journals (Sweden)

    M. Pogány Simonová

    2017-03-01

    Full Text Available Information concerning the virulence factor genes and antibiotic resistance of rabbit enterococci is limited, so in this study we tested the virulence factor genes in Enterococcus faecalis strains from rabbits. Moreover, their resistance/sensitivity to antibiotics and sensitivity to enterocins was also tested, with the aim of contributing to our enterocin spectra study and to indicate the possibility of enterocin application in prevention or contaminant elimination in rabbit husbandry. A total of 144 rabbit samples were treated using a standard microbiological method. Thirty-one pure colonies of the species Enterococcus faecalis were identified, using the MALDI-TOF identification system and confirmed using phenotyping, among which 15 strains were virulence factor gene absent. The gelE gene was the most detected (42%; however, the expression of gelatinase phenotype did not always correlate with the detection of gelE. Strains did not show ß-haemolysis and were mostly resistant to tested antibiotics, but sensitive to enterocins (Ent, mainly to Ents EK13=A (P, 2019 and Ent M. Rabbit E. faecalis strains displayed antibiotic resistant traits and the presence of expressed and silent virulence genes, but they showed high levels of sensitivity to natural antimicrobials-enterocins, which indicates the possible prevention of multidrug and virulent enterococcal contaminants by enterocins.

  12. Microarray Evaluation of Antimicrobial Resistance and Virulence of Escherichia coli Isolates from Portuguese Poultry

    Directory of Open Access Journals (Sweden)

    Nuno Mendonça

    2016-01-01

    Full Text Available The presence of antimicrobial resistance and virulence factors of 174 Escherichia coli strains isolated from healthy Portuguese Gallus gallus was evaluated. Resistance profiles were determined against 33 antimicrobials by microbroth dilution. Resistance was prevalent for tetracycline (70% and ampicillin (63%. Extended-spectrum beta-lactamase (ESBL phenotype was observed in 18% of the isolates. Multidrug resistance was found in 56% of isolates. A subset of 74 isolates were screened by DNA microarrays for the carriage of 88 antibiotic resistance genes and 62 virulence genes. Overall, 37 different resistance genes were detected. The most common were tet(A (72%, blaTEM (68%, and sul1 (47%, while 21% isolates harbored an ESBL gene (blaCTX-M group 1, group 2, or group 9. Of these, 96% carried the increased serum survival (iss virulence gene, while 89% presented the enterobactin siderophore receptor protein (iroN, 70% the temperature-sensitive hemagglutinin (tsh, and 68% the long polar fimbriae (lpfA virulence genes associated with extraintestinal pathogenic E. coli. In conclusion, prevalence of antibiotic resistant E. coli from the microbiota of Portuguese chickens was high, including to extended spectrum cephalosporins. The majority of isolates seems to have the potential to trigger extraintestinal human infection due to the presence of some virulence genes. However, the absence of genes specific for enteropathogenic E. coli reduces the risk for human intestinal infection.

  13. Virulence Genes of S. aureus from Dairy Cow Mastitis and Contagiousness Risk.

    Science.gov (United States)

    Magro, Giada; Biffani, Stefano; Minozzi, Giulietta; Ehricht, Ralf; Monecke, Stefan; Luini, Mario; Piccinini, Renata

    2017-06-21

    Staphylococcus aureus ( S. aureus ) is a major agent of dairy cow intramammary infections: the different prevalences of mastitis reported might be related to a combination of S. aureus virulence factors beyond host factors. The present study considered 169 isolates from different Italian dairy herds that were classified into four groups based on the prevalence of S. aureus infection at the first testing: low prevalence (LP), medium-low (MLP), medium-high (MHP) and high (HP). We aimed to correlate the presence of virulence genes with the prevalence of intramammary infections in order to develop new strategies for the control of S. aureus mastitis. Microarray data were statistically evaluated using binary logistic regression and correspondence analysis to screen the risk factors and the relationship between prevalence group and gene. The analysis showed: (1) 24 genes at significant risk of being detected in all the herds with infection prevalence >5%, including genes belonging to microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), immune evasion and serine proteases; and (2) a significant correlation coefficient between the genes interacting with the host immune response and HP isolates against LP ones. These results support the hypothesis that virulence factors, in addition to cow management, could be related to strain contagiousness, offering new insights into vaccine development.

  14. Virulence Genes of S. aureus from Dairy Cow Mastitis and Contagiousness Risk

    Directory of Open Access Journals (Sweden)

    Giada Magro

    2017-06-01

    Full Text Available Staphylococcus aureus (S. aureus is a major agent of dairy cow intramammary infections: the different prevalences of mastitis reported might be related to a combination of S. aureus virulence factors beyond host factors. The present study considered 169 isolates from different Italian dairy herds that were classified into four groups based on the prevalence of S. aureus infection at the first testing: low prevalence (LP, medium–low (MLP, medium–high (MHP and high (HP. We aimed to correlate the presence of virulence genes with the prevalence of intramammary infections in order to develop new strategies for the control of S. aureus mastitis. Microarray data were statistically evaluated using binary logistic regression and correspondence analysis to screen the risk factors and the relationship between prevalence group and gene. The analysis showed: (1 24 genes at significant risk of being detected in all the herds with infection prevalence >5%, including genes belonging to microbial surface components recognizing adhesive matrix molecules (MSCRAMMs, immune evasion and serine proteases; and (2 a significant correlation coefficient between the genes interacting with the host immune response and HP isolates against LP ones. These results support the hypothesis that virulence factors, in addition to cow management, could be related to strain contagiousness, offering new insights into vaccine development.

  15. A molecular marker distinguishes the subspecies Melipona quadrifasciata quadrifasciata and Melipona quadrifasciata anthidioides (Hymenoptera: Apidae, Meliponinae

    Directory of Open Access Journals (Sweden)

    Ana M. Waldschmidt

    2000-09-01

    Full Text Available The stingless bee species Melipona quadrifasciata includes two subspecies, Melipona quadrifasciata anthidioids and Melipona quadrifasciata quadrifasciata. The morphological difference between the two subspecies is the presence of three to five continuous yellow stripes on the terga on the 3rd to 6th segments in workers and males of M. q. quadrifasciata, and two to five interrupted bands in M. q. anthidioides. We identified a DNA marker which is present in M. q. quadrifasciata and absent in M. q. anthidioides. Only one among the M. q. quadrifasciata colonies did not present the marker. It was also absent in bees collected in northern Minas Gerais State (Brazil, despite their morphological resemblance to M. q. quadrifasciata. The marker can be used for studying the genetic structure of the hybridization zone formed by the intercrossing of the two subspecies.A espécie de abelha sem ferrão Melipona quadrifasciata apresenta duas subespécies, Melipona quadrifasciata quadrifasciata Lep. e Melipona quadrifasciata anthidioides Lep. A diferença morfológica entre as duas subespécies é a presença de três a cinco bandas tergais amarelas do 3º ao 6º segmentos em operárias e machos de M. q. quadrifasciata e duas a cinco bandas interrompidas em M. q. anthidioides. Nós identificamos um marcador de DNA que está presente em M. q. quadrifasciata e ausente em M. q. anthidioides. Este marcador está ausente em abelhas coletadas no norte do Estado de Minas Gerais (Brasil, embora esses indivíduos apresentem morfologia similar à de M. q. quadrifasciata. Este marcador poderá ser utilizado em estudos da zona de hibridação entre as subespécies.

  16. Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus.

    Science.gov (United States)

    Hartman, Amy L; Bird, Brian H; Towner, Jonathan S; Antoniadou, Zoi-Anna; Zaki, Sherif R; Nichol, Stuart T

    2008-03-01

    Zaire ebolavirus causes a rapidly progressing hemorrhagic disease with high mortality. Identification of the viral virulence factors that contribute to the severity of disease induced by Ebola virus is critical for the design of therapeutics and vaccines against the disease. Given the rapidity of disease progression, virus interaction with the innate immune system early in the course of infection likely plays an important role in determining the outcome of the disease. The Ebola virus VP35 protein inhibits the activation of IRF-3, a critical transcription factor for the induction of early antiviral immunity. Previous studies revealed that a single amino acid change (R312A) in VP35 renders the protein unable to inhibit IRF-3 activation. A reverse-genetics-generated, mouse-adapted, recombinant Ebola virus that encodes the R312A mutation in VP35 was produced. We found that relative to the case for wild-type virus containing the authentic VP35 sequence, this single amino acid change in VP35 renders the virus completely attenuated in mice. Given that these viruses differ by only a single amino acid in the IRF-3 inhibitory domain of VP35, the level of alteration of virulence is remarkable and highlights the importance of VP35 for the pathogenesis of Ebola virus.

  17. Catheter-related infections caused by Pseudomonas aeruginosa: virulence factors involved and their relationships.

    Science.gov (United States)

    Olejnickova, Katerina; Hola, Veronika; Ruzicka, Filip

    2014-11-01

    The nosocomial pathogen Pseudomonas aeruginosa is equipped with a large arsenal of cell-associated and secreted virulence factors which enhance its invasive potential. The complex relationships among virulence determinants have hitherto not been fully elucidated. In the present study, 175 catheter-related isolates were observed for the presence of selected virulence factors, namely extracellular enzymes and siderophore production, biofilm formation, resistance to antibiotics, and motility. A high percentage of the strains produced most of the tested virulence factors. A positive correlation was identified between the production of several exoproducts, and also between the formation of both types of biofilm. An opposite trend was observed between the two types of biofilm and the production of siderophores. Whereas the relationship between the submerged biofilm production (i.e. the biofilm formed on the solid surface below the water level) and the siderophore secretion was negative, the production of air-liquid interface (A-L) biofilm (i.e. the biofilm floating on the surface of the cultivation medium) and the siderophore secretion were positively correlated. All correlations were statistically significant at the level P = 0.05 with the correlation coefficient γ ≥ 0.50. Our results suggest that: (1) the co-production of the lytic enzymes and siderophores can play an important role in the pathogenesis of the catheter-related infections and should be taken into account when the virulence potential is assessed; (2) biofilm-positive strains are capable of forming both submerged and non-attached A-L biofilms; and (3) the different micro-environment in the submerged biofilm and A-L biofilm layers have opposite consequences for the production of other virulence factors. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence.

    Directory of Open Access Journals (Sweden)

    Anna C Llewellyn

    Full Text Available Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI, validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and

  19. Evaluating Different Virulence Traits of Klebsiella pneumoniae Using Dictyostelium discoideum and Zebrafish Larvae as Host Models

    Directory of Open Access Journals (Sweden)

    Andrés E. Marcoleta

    2018-02-01

    Full Text Available Multiresistant and invasive hypervirulent Klebsiella pneumoniae strains have become one of the most urgent bacterial pathogen threats. Recent analyses revealed a high genomic plasticity of this species, harboring a variety of mobile genetic elements associated with virulent strains, encoding proteins of unknown function whose possible role in pathogenesis have not been addressed. K. pneumoniae virulence has been studied mainly in animal models such as mice and pigs, however, practical, financial, ethical and methodological issues limit the use of mammal hosts. Consequently, the development of simple and cost-effective experimental approaches with alternative host models is needed. In this work we described the use of both, the social amoeba and professional phagocyte Dictyostelium discoideum and the fish Danio rerio (zebrafish as surrogate host models to study K. pneumoniae virulence. We compared three K. pneumoniae clinical isolates evaluating their resistance to phagocytosis, intracellular survival, lethality, intestinal colonization, and innate immune cells recruitment. Optical transparency of both host models permitted studying the infective process in vivo, following the Klebsiella-host interactions through live-cell imaging. We demonstrated that K. pneumoniae RYC492, but not the multiresistant strains 700603 and BAA-1705, is virulent to both host models and elicits a strong immune response. Moreover, this strain showed a high resistance to phagocytosis by D. discoideum, an increased ability to form biofilms and a more prominent and irregular capsule. Besides, the strain 700603 showed the unique ability to replicate inside amoeba cells. Genomic comparison of the K. pneumoniae strains showed that the RYC492 strain has a higher overall content of virulence factors although no specific genes could be linked to its phagocytosis resistance, nor to the intracellular survival observed for the 700603 strain. Our results indicate that both zebrafish

  20. The Toxin and Virulence Database: A Resource for Signature Development and Analysis of Virulence

    National Research Council Canada - National Science Library

    Wolinsky, Murray A

    2004-01-01

    In this joint effort with the University of Alabama at Birmingham, Walter Reed, MITRE and USAMRIID, we are developing a comprehensive database for microbial toxins and virulence factors (www.tvfac.lanl.gov...

  1. Virulence genes and subclone status as markers of experimental virulence in a murine sepsis model among Escherichia coli sequence type 131 clinical isolates from Spain.

    Directory of Open Access Journals (Sweden)

    Irene Merino

    Full Text Available To assess experimental virulence among sequence type 131 (ST131 Escherichia coli bloodstream isolates in relation to virulence genotype and subclone.We analysed 48 Spanish ST131 bloodstream isolates (2010 by PCR for ST131 subclone status (H30Rx, H30 non-Rx, or non-H30, virulence genes (VGs, and O-type. Then we compared these traits with virulence in a murine sepsis model, as measured by illness severity score (ISS and rapid lethality (mean ISS ≥ 4.Of the 48 study isolates, 65% were H30Rx, 21% H30 non-Rx, and 15% non-H30; 44% produced ESBLs, 98% were O25b, and 83% qualified as extraintestinal pathogenic E. coli (ExPEC. Of 49 VGs, ibeA and iss were associated significantly with non-H30 isolates, and sat, iha and malX with H30 isolates. Median VG scores differed by subclone, i.e., 12 (H30Rx, 10 (H30 non-Rx, and 11 (non-H30 (p < 0.01. Nearly 80% of isolates represented a described virotype. In mice, H30Rx and non-H30 isolates were more virulent than H30 non-Rx isolates (according to ISS [p = 0.03] and rapid lethality [p = 0.03], as were ExPEC isolates compared with non-ExPEC isolates (median ISS, 4.3 vs. 2.7: p = 0.03. In contrast, most individual VGs, VG scores, VG profiles, and virotypes were not associated with mouse virulence.ST131 subclone and ExPEC status, but not individual VGs, VG scores or profiles, or virotypes, predicted mouse virulence. Given the lower virulence of non-Rx H30 isolates, hypervirulence probably cannot explain the ST131-H30 clade's epidemic emergence.

  2. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  3. Phylogenetic variation of the green muscadine fungus, Metarhizium anisopliae (Metchnikoff Sorokin, and its virulence to larvae of the sugarcane longhorn stem borer, Dorysthenes buqueti Guerin (Coleoptera: Cerambycidae

    Directory of Open Access Journals (Sweden)

    Nichanun Kernasa

    2016-11-01

    Full Text Available The sugarcane longhorn stem borer (SLSB, Dorysthenes buqueti Guerin (Coleoptera: Cerambycidae has recently become a serious insect pest of sugarcane in Thailand and effective biological control agent must be evaluated. The green muscadine fungus (GMF, Metarhizium anisopliae (Metchnikoff Sorokin is a species complex of entomopathogenic fungi, which includes many cryptic subspecies and species. It has been reported that GMF infects and kills the sugarcane longhorn stem borer (SLSB, D. buqueti Guerin, so that GMF is a possible biological control agent of SLSB. Molecular analyses were conducted to gain a better understanding of the taxonomic position of GMF Thai strains. Virulence bioassays were carried out on four isolates of GMF to 5th–9th instars of SLSB. This study revealed that an isolate from Khon Kaen (KK showed the highest virulence to 5th–9th instars of SLSB. In biological control, an aqueous suspension containing 1 × 108 conidia/mL of KK isolate was best from the viewpoint of a tradeoff between the economic cost/benefit of the mass production cost and the consequent mortality after application. Comparing suspensions containing 1 × 108 conidia/mL with those containing 1 × 1013 conidia/mL, 100,000 times as much quantity of suspension can be obtained from the same quantity of conidia, though the difference in the D. buqueti mortality was relatively small. Six isolates of GMF from SLSB in Thailand were likely a cryptic species, although further molecular analysis using factor 1-alpha sequences is needed.

  4. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh.

    Science.gov (United States)

    Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro

    2017-10-01

    This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007-2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al.Clin Infect Dis 2012;55:S232-S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes.

  5. Two new species and one new subspecies of the South American catfish genus Corydoras (Pisces, Siluriformes, Callichthyidae)

    NARCIS (Netherlands)

    Nijssen, H.

    1971-01-01

    This paper contains descriptions and figures of two new species of Corydoras Lacépède, 1803, C. weitzmani from Peru, and C. blochi from Guyana, Brazil, and Venezuela. The latter species is represented by two subspecies, C. blochi blochi from the Amazonas, Branco, Orinoco, and Essequibo drainages,

  6. Detection of virulence-associated genes in Brucella melitensis ...

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    2018-03-20

    Mar 20, 2018 ... isolated from goats. This discrepancies may indicate that B. melitensis field strains prevailing in Egypt are more virulent than the strains of B. melitensis isolated from caprines in Iran. As, it was emphasized that the. T4SS of Brucella encoded by the virB operon is a major virulence factor (Delrue et al., 2005).

  7. Use of Metarhizium anisopliae Chitinase Genes for Genotyping and Virulence Characterization

    Directory of Open Access Journals (Sweden)

    Saliou Niassy

    2013-01-01

    Full Text Available Virulence is the primary factor used for selection of entomopathogenic fungi (EPF for development as biopesticides. To understand the genetic mechanisms underlying differences in virulence of fungal isolates on various arthropod pests, we compared the chitinase genes, chi2 and chi4, of 8 isolates of Metarhizium anisopliae. The clustering of the isolates showed various groups depending on their virulence. However, the analysis of their chitinase DNA sequences chi2 and chi4 did not reveal major divergences. Although their protein translates have been implicated in fungal virulence, the predicted protein structure of chi2 was identical for all isolates. Despite the critical role of chitin digestion in fungal infection, we conclude that chi2 and chi4 genes cannot serve as molecular markers to characterize observed variations in virulence among M. anisopliae isolates as previously suggested. Nevertheless, processes controlling the efficient upregulation of chitinase expression might be responsible for different virulence characteristics. Further studies using comparative “in vitro” chitin digestion techniques would be more appropriate to compare the quality and the quantity of chitinase production between fungal isolates.

  8. Correlation between virulence markers of Helicobacter pylori in the oral cavity and gastric biopsies

    Directory of Open Access Journals (Sweden)

    Myriam Lucrecia MEDINA

    2017-07-01

    Full Text Available ABSTRACT BACKGROUND: The clinical outcome of Helicobacter pylori infection has been associated with virulence factors. The presence of these factors is useful as molecular markers in the identification of the high risk for developing severe gastric pathologies. OBJECTIVE: To correlate the presence of virulence markers cagA and bab2A of H. pylori in oral and gastric biopsy samples. METHODS: An observational, prospective, descriptive, and cross-sectional study was carried out between September 2011 and September 2012. Patients suffering dyspepsia with indication for upper gastrointestinal video endoscopy who attended the Gastroenterology Service of the Hospital Dr. Julio C. Perrando were included. Epidemiological investigation was completed. To detect the bacteria and their virulence genes, samples of saliva, dental plaque and gastric biopsy were taken and processed by PCR. RESULTS: Sixty-one patients were selected for this study (30 women and 31 men. H. pylori was detected in 31 gastric biopsies and 31 oral samples. Significant difference between oral and gastric samples was found in cagA genotype. Agreement between oral and gastric genotypes was found in 38.7% of samples from the same patient. CONCLUSION: This study is the first in provide information about the genotypes of the Argentinean Northeast H. pylori strains. Despite the high prevalence of H. pylori infection, the most of patients had less virulent genotypes in oral cavity and gastric tissue. The cagA / babA2 combination was not frequent in the samples studied. There was not a statistical correlation between the virulence genes and gastroduodenal or oral diseases. Although in some patients the same genotype was found both in oral and gastric samples, it cannot be ensure that they corresponding to the same strain because a DNA sequencing was not performed.

  9. Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence in Acinetobacter baumannii.

    Science.gov (United States)

    Saranathan, Rajagopalan; Pagal, Sudhakar; Sawant, Ajit R; Tomar, Archana; Madhangi, M; Sah, Suresh; Satti, Annapurna; Arunkumar, K P; Prashanth, K

    2017-10-03

    Acinetobacter baumannii is an important human pathogen and considered as a major threat due to its extreme drug resistance. In this study, the genome of a hyper-virulent MDR strain PKAB07 of A. baumannii isolated from an Indian patient was sequenced and analyzed to understand its mechanisms of virulence, resistance and evolution. Comparative genome analysis of PKAB07 revealed virulence and resistance related genes scattered throughout the genome, instead of being organized as an island, indicating the highly mosaic nature of the genome. Many intermittent horizontal gene transfer events, insertion sequence (IS) element insertions identified were augmenting resistance machinery and elevating the SNP densities in A. baumannii eventually aiding in their swift evolution. ISAba1, the most widely distributed insertion sequence in A. baumannii was found in multiple sites in PKAB07. Out of many ISAba1 insertions, we identified novel insertions in 9 different genes wherein insertional inactivation of adeN (tetR type regulator) was significant. To assess the significance of this disruption in A. baumannii, adeN mutant and complement strains were constructed in A. baumannii ATCC 17978 strain and studied. Biofilm levels were abrogated in the adeN knockout when compared with the wild type and complemented strain of adeN knockout. Virulence of the adeN knockout mutant strain was observed to be high, which was validated by in vitro experiments and Galleria mellonella infection model. The overexpression of adeJ, a major component of AdeIJK efflux pump observed in adeN knockout strain could be the possible reason for the elevated virulence in adeN mutant and PKB07 strain. Knocking out of adeN in ATCC strain led to increased resistance and virulence at par with the PKAB07. Disruption of tetR type regulator adeN by ISAba1 consequently has led to elevated virulence in this pathogen.

  10. Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle.

    Science.gov (United States)

    Arzt, Jonathan; Pacheco, Juan M; Stenfeldt, Carolina; Rodriguez, Luis L

    2017-05-02

    of the mutant is more responsible for attenuation than differences in host immunological factors. These results complement previous studies by providing data of high-granularity describing tissue-specific tropism of FMDV and by demonstrating microscopic localization of virulent and attenuated clones of the same field-strain FMDV.

  11. Molecular investigation of virulence factors of Brucella melitensis and Brucella abortus strains isolated from clinical and non-clinical samples.

    Science.gov (United States)

    Mirnejad, Reza; Jazi, Faramarz Masjedian; Mostafaei, Shayan; Sedighi, Mansour

    2017-08-01

    Brucella is zoonotic pathogen that induces abortion and sterility in domestic mammals and chronic infections in humans called Malta fever. It is a facultative intracellular potential pathogen with high infectivity. The virulence of Brucella is dependent upon its potential virulence factors such as enzymes and cell envelope associated virulence genes. The aim of this study was to investigate the Brucella virulence factors among strains isolated from humans and animals in different parts of Iran. Seventy eight strains of Brucella species isolated from suspected human and animal cases from several provinces of Iran during 2015-2016 and identified by phenotypic and molecular methods. The multiplex-PCR (M-PCR) assay was performed in order to detect the ure, wbkA, omp19, mviN, manA and perA genes by using gene specific primers. Out of 78 isolates of Brucella spp., 57 (73%) and 21 (27%) isolates were detected as B. melitensis and B. abortus, respectively, by molecular method. The relative frequency of virulence genes ure, wbkA, omp19, mviN, manA and perA were 74.4%, 89.7%, 93.6%, 94.9%, 100% and 92.3%, respectively. Our results indicate that the most of Brucella strains isolated from this region possess high percent of virulence factor genes (ure, wbkA, omp19, mviN, manA and perA) in their genome. So, each step of infection can be mediated by a number of virulence factors and each strain may have a unique combination of these factors that affected the rate of bacterial pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Stress tolerant virulent strains of Cronobacter sakazakii from food

    Directory of Open Access Journals (Sweden)

    Md Fakruddin

    2014-01-01

    Full Text Available BACKGROUND: Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh. RESULT: Six (6 Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp. specific genes (esak, gluA, zpx, ompA, ERIC, BOX-AIR and sequencing. These strains were found to have moderately high antibiotic resistance against common antibiotics and some are ESBL producer. Most of the C. sakazakii isolates were capable of producing biofilm (strong biofilm producer, extracellular protease and siderophores, curli expression, haemolysin, haemagglutinin, mannose resistant haemagglutinin, had high cell surface hydrophobicity, significant resistance to human serum, can tolerate high concentration of salt, bile and DNase production. Most of them produced enterotoxins of different molecular weight. The isolates pose significant serological cross-reactivity with other gram negative pathogens such as serotypes of Salmonella spp., Shigella boydii, Shigella sonnei, Shigella flexneri and Vibrio cholerae. They had significant tolerance to high temperature, low pH, dryness and osmotic stress. CONCLUSION: Special attention should be given in ensuring hygiene in production and post-processing to prevent contamination of food with such stress-tolerant virulent Cronobacter sakazakii.

  13. Regulators Involved in Dickeya solani Virulence, Genetic Conservation and Functional Variability.

    Science.gov (United States)

    Potrykus, Marta; Golanowska, Małgorzata; Hugouvieux-Cotte-Pattat, Nicole; Lojkowska, Ewa

    2015-01-01

    Bacteria from the genus Dickeya (formerly Erwinia chrysanthemi) are plant pathogens causing severe diseases in many economically important crops. A majority of the strains responsible for potato disease in Europe belong to a newly identified Dickeya solani species. Although some ecological and epidemiological studies have been carried out, little is known about the regulation of D. solani virulence. The characterization of four D. solani strains indicates significant differences in their virulence on potato although they are genetically similar based on genomic fingerprinting profiles. A phenotypic examination included an analysis of virulence on potato, growth rate in culture, motility, Fe 3+ chelation, and pectate lyase, cellulase, protease, biosurfactant and blue pigment production. Mutants of four D. solani strains were constructed by inactivating the genes coding either for one of the main negative regulators of D. dadantii virulence (kdgR, pecS and pecT) or for the synthesis and perception of signaling molecules (expI and expR). Analysis of these mutants indicated that PecS, PecT and KdgR play a similar role in both species, repressing to different degrees the synthesis of virulence factors. The thermoregulator PecT seems to be a major regulator of D. solani virulence. This work also reveals the role of quorum sensing mediated by ExpI and ExpR in D. solani virulence on potato.

  14. Phenotypical and Molecular Characterisation of Fusarium circinatum: Correlation with Virulence and Fungicide Sensitivity

    Directory of Open Access Journals (Sweden)

    Martin Mullett

    2017-11-01

    Full Text Available Fusarium circinatum, causing pine pitch canker, is one of the most damaging pathogens of Pinus species. This study investigated the use of phenotypical and molecular characteristics to delineate groups in a worldwide collection of isolates. The groups correlated with virulence and fungicide sensitivity, which were tested in a subset of isolates. Virulence tests of twenty isolates on P. radiata, P. sylvestris and P. pinaster demonstrated differences in host susceptibility, with P. radiata most susceptible and P. sylvestris least susceptible. Sensitivity to the fungicides fludioxonil and pyraclostrobin varied considerably between isolates from highly effective (half-maximal effective concentration (EC50 < 0.1 ppm to ineffective (EC50 > 100 ppm. This study demonstrates the potential use of simply acquired phenotypical (cultural, morphological and molecular metrics to gain a preliminary estimate of virulence and sensitivity to certain fungicides. It also highlights the necessity of including a range of isolates in fungicide tests and host susceptibility assays, particularly of relevance to tree breeding programmes.

  15. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.

    Science.gov (United States)

    Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa

    2016-02-01

    A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    Directory of Open Access Journals (Sweden)

    Ann Ray

    2016-07-01

    Full Text Available Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells.

  17. The significance of virulence factors in Helicobacter pylori.

    Science.gov (United States)

    Shiota, Seiji; Suzuki, Rumiko; Yamaoka, Yoshio

    2013-07-01

    Helicobacter pylori (H. pylori) infection is linked to various gastroduodenal diseases; however, only a small fraction of these patients develop associated diseases. Despite the high prevalence of H. pylori infection in Africa and South Asia, the incidence of gastric cancer in these areas is much lower than those in other countries. The incidence of gastric cancer tends to decrease from north to south in East Asia. Such geographical differences in the pathology can be explained, at least in part, by the presence of different types of H. pylori virulence factors in addition to host and environmental factors. Virulence factors of H. pylori, such as CagA, VacA, DupA, IceA, OipA and BabA, have been demonstrated to be the predictors of severe clinical outcomes. Interestingly, a meta-analysis showed that CagA seropositivity was associated with gastric cancer compared with gastritis, even in East Asian countries where almost the strains possess cagA. Another meta-analysis also confirmed the significance of vacA, dupA and iceA. However, it is possible that additional important pathogenic genes may exist because H. pylori consists of approximately 1600 genes. Despite the advances in our understanding of the development of H. pylori infection-related diseases, further work is required to clarify the roles of H. pylori virulence factors. © 2013 The Authors. Journal of Digestive Diseases © 2013 Wiley Publishing Asia Pty Ltd and Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine.

  18. Taxonomic revision of Phascogale tapoatafa (Meyer, 1793) (Dasyuridae; Marsupialia), including descriptions of two new subspecies and confirmation of P. pirata Thomas, 1904 as a ‘Top End’ endemic

    Science.gov (United States)

    Aplin, K. P.; Rhind, S. G.; Ten Have, J.; Chesser, R. Terry

    2015-01-01

    The Australian Brush-tailed Phascogale (Phascogale tapoatafa sensu lato) has a broad but highly fragmented distribution around the periphery of the Australian continent and all populations are under significant ongoing threat to survival. A new appraisal of morphological and molecular diversity within the group reveals that the population in the ‘Top End’ of the Northern Territory is specifically distinct from all others, including those in the Kimberley region of Western Australia to the west and on Cape York of Queensland to the east. The name P. pirata Thomas, 1904 is available for the ‘Top End’ taxon. Three geographically disjunct populations are distinguished at subspecies level within P. tapoatafa on a suite of external and cranio-dental features; these are found in southeast Australia from South Australia to mid-coastal Queensland (nominotypical tapoatafa), southwest Western Australia (wambenger subsp. nov.), and the Kimberley region of Western Australia (kimberleyensis subsp. nov.). A potential fourth subspecies occurs on Cape York but remains too poorly represented in collections for adequate characterization. Molecular divergence estimates based on partial sequences of the mitochondrial cytochrome b gene indicate that the range disjunction across southern Australia probably dates from the Late Pliocene, with the multiple disjunctions across northern Australia being more recent though almost certainly exceeding 400,000 years. An argument is made for the continued use of the subspecies rank in Australian mammalogy, despite a general lack of consistency in its current application.

  19. Experimental studies of adaptation in Clarkia xantiana. II. Fitness variation across a subspecies border.

    Science.gov (United States)

    Geber, Monica A; Eckhart, Vincent M

    2005-03-01

    Because the range boundary is the locale beyond which a taxon fails to persist, it provides a unique opportunity for studying the limits on adaptive evolution. Adaptive constraints on range expansion are perplexing in view of widespread ecotypic differentiation by habitat and region within a species' range (regional adaptation) and rapid evolutionary response to novel environments. In this study of two parapatric subspecies, Clarkia xantiana ssp. xantiana and C. x. ssp. parviflora, we compared the fitness of population transplants within their native region, in a non-native region within the native range, and in the non-native range to assess whether range expansion might be limited by a greater intensity of selection on colonists of a new range versus a new region within the range. The combined range of the two subspecies spans a west-to-east gradient of declining precipitation in the Sierra Nevada of California, with ssp. xantiana in the west being replaced by ssp. parviflora in the east. Both subspecies had significantly higher fitness in the native range (range adaptation), whereas regional adaptation was weak and was found only in the predominantly outcrossing ssp. xantiana but was absent in the inbreeding ssp. parvifilora. Because selection intensity on transplants was much stronger in the non-native range relative to non-native regions, there is a larger adaptive barrier to range versus regional expansion. Three of five sequential fitness components accounted for regional and range adaptation, but only one of them, survivorship from germination to flowering, contributed to both. Flower number contributed to regional adaptation in ssp. xantiana and fruit set (number of fruits per flower) to range adaptation. Differential survivorship of the two taxa or regional populations of ssp. xantiana in non-native environments was attributable, in part, to biotic interactions, including competition, herbivory, and pollination. For example, low fruit set in ssp. xantiana

  20. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus.

    Science.gov (United States)

    Zhang, Jing; Suo, Yujuan; Zhang, Daofeng; Jin, Fangning; Zhao, Hang; Shi, Chunlei

    2018-01-01

    Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus , is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD 450 ) of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST), and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM . Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs) and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59%) and ST25 (13%). Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus , non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus .

  1. Brucella abortus: pathogenicity and gene regulation of virulence

    Directory of Open Access Journals (Sweden)

    Olga Rivas-Solano

    2015-06-01

    Full Text Available Brucella abortus is a zoonotic intracellular facultative pathogen belonging to the subdivision α2 of class Proteobacteria. It causes a worldwide distributed zoonotic disease called brucellosis. The main symptoms are abortion and sterility in cattle, as well as an undulant febrile condition in humans. In endemic regions like Central America, brucellosis has a high socioeconomic impact. A basic research project was recently conducted at the ITCR with the purpose of studying gene regulation of virulence, structure and immunogenicity in B. abortus. The present review was written as part of this project. B. abortus virulence seems to be determined by its ability to invade, survive and replicate inside professional and non-professional phagocytes. It reaches its intracellular replicative niche without the activation of host antimicrobial mechanisms of innate immunity. It also has gene regulation mechanisms for a rapid adaptation to an intracellular environment such as the two-component signal transduction system BvrR/BvrS and the quorum sensing regulator called Vjbr, as well as other transcription factors. All of them integrate a complex gene regulation network.

  2. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Science.gov (United States)

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-01-01

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations. PMID:24556669

  3. [Virulence markers of Escherichia coli O1 strains].

    Science.gov (United States)

    Makarova, M A; Kaftyreva, L A; Grigor'eva, N S; Kicha, E V; Lipatova, L A

    2011-01-01

    To detect virulence genes in clinical isolates of Escherichia coli O1 using polymerase chain reaction (PCR). One hundred and twenty strains of E.coli O1 strains isolated from faeces of patients with acute diarrhea (n = 45) and healthy persons (n = 75) were studied. PCR with primers for rfb and fliC genes, which control synthesis of O- and H- antigens respectively, was used. Fourteen virulence genes (pap, aaf, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, st, and aer) were detected by PCR primers. K1-antigen was determined by Pastorex Meningo B/E. coli O1 kit (Bio-Rad). rfb gene controlling O-antigen synthesis in serogroup O1 as well as fliC gene controlling synthesis of H7 and K1 antigens were detected in all strains. Thus all E. coli strains had antigenic structure O1:K1 :H-:F7. Virulence genes aafl, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, and st were not detected. All strains owned pap and aer genes regardless of the presence of acute diarrhea symptoms. It was shown that E. coli O1:KI:H-:F7 strains do not have virulence genes which are characteristic for diarrhea-causing Escherichia. In accordance with the presence of pap and aer genes they could be attributed to uropathogenic Escherichia (UPEC) or avian-pathogenic Escherichia (APEC). It is necessary to detect virulence factors in order to determine E. coli as a cause of intestinal infection.

  4. Development of a High Resolution Virulence Allelic Profiling (HReVAP) Approach Based on the Accessory Genome of Escherichia coli to Characterize Shiga-Toxin Producing E. coli (STEC)

    Science.gov (United States)

    Michelacci, Valeria; Orsini, Massimiliano; Knijn, Arnold; Delannoy, Sabine; Fach, Patrick; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Shiga-toxin producing Escherichia coli (STEC) strains possess a large accessory genome composed of virulence genes existing in multiple allelic variants, which sometimes segregate with specific STEC subpopulations. We analyzed the allelic variability of 91 virulence genes of STEC by Real Time PCR followed by melting curves analysis in 713 E. coli strains including 358 STEC. The 91 genes investigated were located on the locus of enterocyte effacement (LEE), OI-57, and OI-122 pathogenicity islands and displayed a total of 476 alleles in the study population. The combinations of the 91 alleles of each strain were termed allelic signatures and used to perform cluster analyses. We termed such an approach High Resolution Virulence Allelic Profiling (HReVAP) and used it to investigate the phylogeny of STEC of multiple serogroups. The dendrograms obtained identified groups of STEC segregating approximately with the serogroups and allowed the identification of subpopulations within the single groups. The study of the allelic signatures provided further evidence of the coevolution of the LEE and OI-122, reflecting the occurrence of their acquisition through a single event. The HReVAP analysis represents a sensitive tool for studying the evolution of LEE-positive STEC. PMID:26941726

  5. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA

    Directory of Open Access Journals (Sweden)

    HANIF KHADEMI

    2016-04-01

    Full Text Available Abstract. Khademi H, Mehregan I, Assadi M, Nejadsatari T, Zarre S. 2015. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA. Biodiversitas 17: 16-23. This study was carried out on the Acer monspessulanum complex growing wild in Iran. Internal transcribed spacer (ITS sequences for 75 samples representing five different subspecies of Acer monspessulanum were analyzed. Beside this, 86 previously published ITS sequences from GenBank were used to test the monophyly of the complex worldwide. Phylogenetic analyses were conducted using Bayesian inference and maximum parsimony. The results indicate that most samples of A. monspessulanum species from Iran were part of a monophyletic clade with 8 samples of A. ibericum from Georgia, A. hyrcanum from Iran and one of A. sempervirens from Greece (PP= 1; BS= 79%. Our results indicate that use of morphological characteristics coupled with molecular data will be most effective.

  6. Virulence factors of the Mycobacterium tuberculosis complex

    Science.gov (United States)

    Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana

    2013-01-01

    The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359

  7. Presence and distribution of two sub-species of Eurema agave (Lepidoptera, Pieridae in Costa Rica

    Directory of Open Access Journals (Sweden)

    Jim Cordoba-Alfaro

    2011-06-01

    Full Text Available Austin (1992 reported Eurema a. agave (Cramer 1775 to the Caribbean of Costa Rica. However, he actually had found E. a. millerorum, described by Bousquets & Luis-Martinez (1987 for the Caribbean of Mexico. The presence of Eurema a. agave is confirmed on this paper with information of specimens collected in the Pacific and Atlantic slopes of Costa Rica. Aspects on distribution of both subspecies are included.

  8. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    Directory of Open Access Journals (Sweden)

    Shi-qi An

    2014-10-01

    Full Text Available Bis-(3',5' cyclic di-guanylate (cyclic di-GMP is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc. This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d∼2 µM. Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.

  9. Host adaptation of Chlamydia pecorum towards low virulence evident in co-evolution of the ompA, incA, and ORF663 Loci.

    Science.gov (United States)

    Mohamad, Khalil Yousef; Kaltenboeck, Bernhard; Rahman, Kh Shamsur; Magnino, Simone; Sachse, Konrad; Rodolakis, Annie

    2014-01-01

    Chlamydia (C.) pecorum, an obligate intracellular bacterium, may cause severe diseases in ruminants, swine and koalas, although asymptomatic infections are the norm. Recently, we identified genetic polymorphisms in the ompA, incA and ORF663 genes that potentially differentiate between high-virulence C. pecorum isolates from diseased animals and low-virulence isolates from asymptomatic animals. Here, we expand these findings by including additional ruminant, swine, and koala strains. Coding tandem repeats (CTRs) at the incA locus encoded a variable number of repeats of APA or AGA amino acid motifs. Addition of any non-APA/AGA repeat motif, such as APEVPA, APAVPA, APE, or APAPE, associated with low virulence (PincA CTRs (P = 0.0028). In ORF663, high numbers of 15-mer CTRs correlated with low virulence (P = 0.0001). Correction for ompA phylogram position in ORF663 and incA abolished the correlation between genetic changes and virulence, demonstrating co-evolution of ompA, incA, and ORF663 towards low virulence. Pairwise divergence of ompA, incA, and ORF663 among isolates from healthy animals was significantly higher than among strains isolated from diseased animals (P≤10-5), confirming the longer evolutionary path traversed by low-virulence strains. All three markers combined identified 43 unique strains and 4 pairs of identical strains among all 57 isolates tested, demonstrating the suitability of these markers for epidemiological investigations.

  10. The correct name for a subspecies of Oenothera fruticosa L. (Onagraceae).

    Science.gov (United States)

    Wagner, Warren L

    2014-01-01

    In 1978 when Straley adopted the name Oenothera fruticosa L. subsp. glauca (Michx.) Straley for one of the two recognized subspecies of O. fruticosa it was the correct name for this taxon; however, since that time the botanical code has changed so that now an autonym is treated as having priority over the name or names of the same date and rank that established it. This change means that since 1981 O. fruticosa subsp. glauca was no longer the correct name. The appropriate combination for it is made here as O. fruticosa L. subsp. tetragona (Roth) W.L. Wagner. Original material for the basionym, O. tetragona, is no longer extant so a neotype is designated.

  11. Virulence profile of different phylogenetic groups of locally isolated community acquired uropathogenic E. coli from Faisalabad region of Pakistan

    Directory of Open Access Journals (Sweden)

    Bashir Saira

    2012-08-01

    Full Text Available Abstract Background Uropathogenic E.coli (UPEC are among major pathogens causing urinary tract infections. Virulence factors are mainly responsible for the severity of these emerging infections. This study was planned to investigate the distribution of virulence genes and cytotoxic effects of UPEC isolates with reference to phylogenetic groups (B2, B1, D and A to understand the presence and impact of virulence factors in the severity of infection in Faisalabad region of Pakistan. Methods In this study phylogenetic analysis, virulence gene identification and cytotoxicity of 59 uropathogenic E.coli isolates obtained from non-hospitalized patients was studied. Results Among 59 isolates, phylogenetic group B2 (50% was most dominant followed by groups A, B1 (19% each and D (12%. Isolates present in group D showed highest presence of virulence genes. The prevalence hlyA (37% was highest followed by sfaDE (27%, papC (24%, cnf1 (20%, eaeA (19% and afaBC3 (14%. Highly hemolytic and highly verotoxic isolates mainly belonged to group D and B2. We also found two isolates with simultaneous presence of three fimbrial adhesin genes present on pap, afa, and sfa operons. This has not been reported before and underlines the dynamic nature of these UPEC isolates. Conclusions It was concluded that in local UPEC isolates from non-hospitalized patients, group B2 was more prevalent. However, group D isolates were most versatile as all were equipped with virulence genes and showed highest level of cytotoxicity.

  12. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2018-04-01

    Full Text Available Staphyloxanthin (STX, a golden carotenoid pigment produced by Staphylococcus aureus, is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD450 of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST, and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM. Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59% and ST25 (13%. Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus, non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus.

  13. Screening of virulence genes in Staphylococcus aureus isolates from rabbits

    Directory of Open Access Journals (Sweden)

    David Viana Martín

    2015-09-01

    Full Text Available Staphylococcus aureus is a versatile pathogen able to cause disease in both humans and animals. In rabbits, this bacterium infects animals of different ages, producing several purulent lesions. The ability of S. aureus to cause disease depends on a combination of virulence factors. The aim of this study was therefore to investigate the distribution of bacterial virulence determinants in 69 S. aureus isolates from rabbits. Some virulence factors (7 adhesins, 1 toxin and 1 protease were positive in all rabbit S. aureus isolates analysed, while others (1 adhesin and 10 toxins were always negative. The remaining virulence factors were more variable among isolates. An association between genotype and the different profiles of virulence factors was observed, but not with the type of lesion (P<0.05. One strain of each genotype was further analysed by multilocus sequence typing, generating ST121, ST96 and ST2951, determining a greater number of enterotoxins in ST121 isolates compared to ST96 and ST2951 isolates, which could justify the different pathogenicity between strains. 

  14. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii

    Science.gov (United States)

    Kröger, Carsten; Kary, Stefani C.; Schauer, Kristina; Cameron, Andrew D. S.

    2016-01-01

    Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance. PMID:28036056

  15. Assessment of deep myometrial invasion of endometrial cancer on MRI: added value of second-opinion interpretations by radiologists subspecialized in gynaecologic oncology

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sungmin [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kim, Sang Youn [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Cho, Jeong Yeon; Kim, Seung Hyup [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine and Kidney Research Institute, Seoul (Korea, Republic of)

    2017-05-15

    To investigate the added value of secondary reports issued by radiologists subspecializing in gynaecologic imaging for determining deep myometrial invasion of endometrial cancer on MRI. Initial (from referring institutions) and secondary (by subspecialized radiologists) interpretations of MRI of 55 patients with endometrial cancer were retrospectively reviewed. A radiologist blinded to clinicopathological information assessed both reports for the presence of deep myometrial invasion. Reference standard was based on hysterectomy specimens. Kappa coefficients (k) were used to measure their concordance. McNemar testing and receiver operating characteristic (ROC) analysis was used to compare sensitivities, specificities and areas under the curves (AUCs). Deep myometrial invasion was present in 25 (45.5 %) patients. Among 27.3 % (15/55; k = 0.458) patients with discrepant results, secondary interpretations were correct in 10 (66.7 %) cases. Sensitivity was higher in secondary than in initial reports (76.0 % vs. 48.0 %, p = 0.039) while no significant difference was seen in specificity (70.0 % vs. 76.7 %, p = 0.668). At ROC analysis, there was a tendency for higher AUCs in secondary reports (0.785 vs 0.669, p = 0.096). Secondary readings of MRI by subspecialized gynaecologic oncologic radiologists may provide incremental value in determining deep myometrial invasion of endometrial cancer. (orig.)

  16. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh

    DEFF Research Database (Denmark)

    Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia

    2017-01-01

    Purpose. This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative...... virulence genes and/or antimicrobial resistance.Methodology. The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007-2011 in the rural setting...... between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average...

  17. Polyamines Are Required for Virulence in Salmonella enterica Serovar Typhimurium

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Thomsen, Line Elnif; Wallrodt, Inke

    2012-01-01

    for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study......, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion...

  18. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence and cellular fitness

    Directory of Open Access Journals (Sweden)

    Zheng eWang

    2013-12-01

    Full Text Available Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA has been demonstrated to increase stress resistance, persistence and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly repressed in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  19. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness.

    Science.gov (United States)

    Wang, Zheng; Lin, Baochuan; Mostaghim, Anahita; Rubin, Robert A; Glaser, Evan R; Mittraparp-Arthorn, Pimonsri; Thompson, Janelle R; Vuddhakul, Varaporn; Vora, Gary J

    2013-01-01

    Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA) has been demonstrated to increase stress resistance, persistence, and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism, and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia, and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid, and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly less abundant in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  20. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    Directory of Open Access Journals (Sweden)

    Samuel A Shelburne

    2010-03-01

    Full Text Available Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS suggested that the transcriptional regulator catabolite control protein A (CcpA influences many of the same genes as the control of virulence (CovRS two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection.

  1. Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes.

    Science.gov (United States)

    Valero-Jiménez, Claudio A; Debets, Alfons J M; van Kan, Jan A L; Schoustra, Sijmen E; Takken, Willem; Zwaan, Bas J; Koenraadt, Constantianus J M

    2014-12-06

    Insecticide resistance is greatly hampering current efforts to control malaria and therefore alternative methods are needed. Entomopathogenic fungi have been proposed as an alternative with a special focus on the cosmopolitan species Beauveria bassiana. However, few studies have analysed the effects of natural variation within fungal isolates on mosquito survival, and the implications and possible exploitation for malaria control. Laboratory bioassays were performed on adult female mosquitoes (Anopheles coluzzii) with spores from 29 isolates of B. bassiana, originating from different parts of the world. In addition, phenotypic characteristics of the fungal isolates such as sporulation, spore size and growth rate were studied to explore their relationship with virulence. All tested isolates of B. bassiana killed An. coluzzii mosquitoes, and the rate at which this happened differed significantly among the isolates. The risk of mosquitoes dying was around ten times higher when they were exposed to the most virulent as compared to the least virulent isolate. There was significant variation among isolates in spore size, growth rate and sporulation, but none of these morphological characteristics were correlated, and thus predictive, for the ability of the fungal isolate to kill malaria mosquitoes. This study shows that there is a wide natural variation in virulence of isolates of B. bassiana, and that selecting an appropriate fungal isolate is highly relevant in killing and thus controlling malaria mosquitoes, particularly if used as part of an integrated vector management strategy. Also, the wide variation observed in virulence offers the opportunity to better understand the molecular and genetic mechanisms that drive this variation and thus to address the potential development of resistance against entomopathogenic fungi.

  2. Molecular and Conventional Analysis of Acute Diarrheal Isolates Identifies Epidemiological Trends, Antibiotic Resistance and Virulence Profiles of Common Enteropathogens in Shanghai

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2018-02-01

    Full Text Available Objective: To investigate prevalence of acute diarrhea in Shanghai and analyze virulence associated-genes and antibiotic resistance of major enteropathogens using combination of conventional and molecular epidemiology methods.Method: The 412 stool specimens were obtained by systematic sampling from diarrhea patients throughout entire year 2016. Bacterial and viral pathogens were identified and bacterial isolates were cultured and screened for antibiotic resistance profiles. Two most prevalent bacteria, Vibrio parahaemolyticus and Salmonella were further typed by multi-locus sequence typing (MLST and analyzed for presence of virulence-associated genes. The association between virulence genes, resistance phenotypes and genetic diversities was analyzed.Results: Among stool specimens testing positive for pathogens (23.1%, 59 bacterial and 36 viral pathogens were identified. V. parahaemolyticus (27/412, 6.6%, Salmonella (23/412, 5.6% and norovirus GII (21/412, 5.1% were three most-commonly found. Most bacterial isolates exhibited high levels of antibiotic resistance with high percentage of MDR. The drug resistance rates of V. parahaemolyticus and Salmonella isolates to cephalosporins were high, such as 100.0 and 34.8% to CFX, 55.6 and 43.4% to CTX, 92.6 and 95.7% to CXM, respectively. The most common resistance combination of V. parahaemolyticus and Salmonella was cephalosporins and quinolone. The dominant sequence types (STs of V. parahaemolyticus and Salmonella were ST3 (70.4% and ST11 (43.5%, respectively. The detection rates of virulence genes in V. parahaemolyticus were tlh (100% and tdh (92.6%, without trh and ureR. Most of the Salmonella isolates were positive for the Salmonella pathogenicity islands (SPIs genes (87–100%, and some for Salmonella plasmid virulence (SPV genes (34.8% for spvA and spvB, 43.5% for spvC. In addition, just like the drug resistance, virulence genes exhibited wide-spread distribution among the different STs albeit

  3. Determination of virulence factors and biofilm formation among isolates of vulvovaginal candidiasis

    Directory of Open Access Journals (Sweden)

    Tapan Majumdar

    2016-01-01

    Full Text Available Context: Under morphogenesis-inducing conditions, Candida spp. begins to undergo yeast-to-hypha switch. This shift from commensal to pathogenic state is dependent on several virulence factors. Aim: To find out whether the isolated Candida spp. were pathogens causing vulvovaginal candidiasis or mere bystanders. Settings and Design: Cross-sectional observational study conducted on 275 symptomatic hospital patients in Tripura between August 2012 and April 2015. Subjects and Methods: Discharge was collected from patients and identified by Grams staining and wet mount test. Culturing was done in Sabouraud dextrose agar followed by speciation. To test for virulence factors, assays for adherence, plasma coagulase, phospholipase, lipase, protease, hemolysin, and biofilm formation were carried out. Statistical Analysis Used: Significance between two groups was compared using one-way analysis of variance along with Tukey test, and Chi-square 2 × 2 contingency table at 95% confidence interval. Results: Fifty-six Candida spp. could be isolated in the study which was used for further virulence tests. One hundred percent of isolates expressed adherence. Among other virulence factors, maximum virulence 25 (45% was shown through protease production. Hemolysin production and biofilm formation were the second most 22 (39% expressed virulence factors. In a comparison of virulence factors between biofilm-forming isolates and planktonic cells, significant difference was seen for plasma coagulase and hemolysin production. Conclusions: All the isolates expressed one or more virulence factors. Adherence was expressed in all isolates but highest number was observed for Candida albicans. Furthermore, C. albicans strain number was highest for protease, hemolysin and coagulase expression and biofilm formation. Candida krusei isolates were the least in number for expressing any of the virulence factors. Significantly higher number of biofilm forming isolates produced

  4. Expression of Virulence Factors by Staphylococcus aureus Grown in Serum▿†

    OpenAIRE

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-01-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of...

  5. Aerococcus viridans var. homari: The presence of capsule and the relationship to virulence in American lobster (Homarus americanus).

    Science.gov (United States)

    Clark, K Fraser; Wadowska, Dorota; Greenwood, Spencer J

    2016-01-01

    The relationship between virulence and encapsulation of Aerococcus viridans var. homari was evaluated by growing virulent (Rabin's) and avirulent (ATCC 10400) strains under varying culture conditions, and during challenge trials. Changes in capsule thickness were monitored using a modified lysine-ruthenium red (LRR) fixation method and transmission electron microscopy. The virulent Rabin's strain possessed a prominent capsule of 0.252 μm±0.061 μm that was diminished by in vitro growth conditions to 0.206 μm±0.076 μm. The ATCC 10400 strain capsule thickness decreased from 0.157 μm±0.043 μm to 0.117 μm±0.043 μm after 10 in vitro passages. The virulent Rabin's strain capsule was significantly thicker than the avirulent ATCC 10400 strain under all growth conditions. Rabin's strain, regardless of pre-challenge growth conditions or dose (high dose 10(7) or low dose 10(2)), was able to kill lobsters in 7 days at 15°C. ATCC 10400 strain, regardless of pre-challenge growth conditions, killed lobster only at high doses (10(7)) with varying median time to death of ∼15 days, while at low doses (10(2)) all lobsters survived and no bacteria were present after 42 days. This work demonstrates the importance of the thickness of the A. viridans capsule to virulence in the American lobster. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Distribution Patterns of Polyphosphate Metabolism Pathway and Its Relationships With Bacterial Durability and Virulence

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2018-04-01

    Full Text Available Inorganic polyphosphate (polyP is a linear polymer of orthophosphate residues. It is reported to be present in all life forms. Experimental studies showed that polyP plays important roles in bacterial durability and virulence. Here we investigated the relationships of polyP with bacterial durability and virulence theoretically. Bacterial lifestyle, environmental persistence, virulence factors (VFs, and species evolution are all included in the analysis. The presence of seven genes involved in polyP metabolism (ppk1, ppk2, pap, surE, gppA, ppnK, and ppgK and 2595 core VFs were verified in 944 bacterial reference proteomes for distribution patterns via HMMER. Proteome size and VFs were compared in terms of gain and loss of polyP pathway. Literature mining and phylogenetic analysis were recruited to support the study. Our analyzes revealed that the presence of polyP metabolism is positively correlated with bacterial proteome size and the number of virulence genes. A potential relationship of polyP in bacterial lifestyle and environmental durability is suggested. Evolutionary analysis shows that polyP genes are randomly lost along the phylogenetic tree. In sum, based on our theoretical analysis, we confirmed that bacteria with polyP metabolism are associated with high environmental durability and more VFs.

  7. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  8. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Directory of Open Access Journals (Sweden)

    David Šmajs

    Full Text Available Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp, arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51. In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84 affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9% of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  9. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2017-11-01

    Full Text Available The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald’s (2004 review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/- and durability (+/- phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++, vector-borne pathogens (+-, obligate-intracellular bacteria (--, and free-living bacteria (-+. After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher

  10. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

    DEFF Research Database (Denmark)

    Bartell, Jennifer; Blazier, Anna S; Yen, Phillip

    2017-01-01

    Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes t...

  11. Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Larsen, M. H.; Gram, Lone

    2010-01-01

    Listeria monocytogenes is a food-borne human pathogen that causes listeriosis, a relatively rare infection with a high fatality rate. The regulation of virulence gene expression is influenced by several environmental factors, and the aim of the present study was to determine how disinfectants use......, such as antibiotic resistance....... by Northern blot analysis. Eleven disinfectants representing four different groups of active components were evaluated in this study. Disinfectants with the same active ingredients had a similar effect on gene expression. Peroxy and chlorine compounds reduced the expression of the virulence genes...

  12. Candida albicans isolated from urine: Phenotypic and molecular identification, virulence factors and antifungal susceptibility

    Directory of Open Access Journals (Sweden)

    Laura Wiebusch

    2017-07-01

    Conclusions: C. albicans isolates from urine have a high capacity for virulence and can be associated with infectious processes. Furthermore, the high percentage of isolates resistant to itraconazole is important because this antifungal agent is commonly used to treat fungal infections in the hospital environment.

  13. The Influence of Infective Dose on the Virulence of a Generalist Pathogen in Rainbow Trout (Oncorhynchus mykiss and Zebra Fish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Hanna Kinnula

    Full Text Available Pathogen density and genetic diversity fluctuate in the outside-host environment during and between epidemics, affecting disease emergence and the severity and probability of infections. Although the importance of these factors for pathogen virulence and infection probability has been acknowledged, their interactive effects are not well understood. We studied how an infective dose in an environmentally transmitted opportunistic fish pathogen, Flavobacterium columnare, affects its virulence both in rainbow trout, which are frequently infected at fish farms, and in zebra fish, a host that is not naturally infected by F. columnare. We used previously isolated strains of confirmed high and low virulence in a single infection and in a co-infection. Infection success (measured as host morbidity correlated positively with dose when the hosts were exposed to the high-virulence strain, but no response for the dose increase was found when the hosts were exposed to the low-virulence strain. Interestingly, the co-infection resulted in poorer infection success than the single infection with the high-virulence strain. The rainbow trout were more susceptible to the infection than the zebra fish but, in both species, the effects of the doses and the strains were qualitatively similar. We suggest that as an increase in dose can lead to increased host morbidity, both the interstrain interactions and differences in infectivity in different hosts may influence the severity and consequently the evolution of disease. Our results also confirm that the zebra fish is a good laboratory model to study F. columnare infection.

  14. Nigribactin, a Novel Siderophore from Vibrio nigripulchritudo, Modulates Staphylococcus aureus Virulence Gene Expression

    DEFF Research Database (Denmark)

    Nielsen, Anita; Månsson, Maria; Wietz, Matthias

    2012-01-01

    Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathea...... 3 expedition, a strain collection was established comprising bacteria that express antimicrobial activity against Vibrio anguillarum and/or Staphylococcus aureus. Within this collection we searched colony material, culture supernatants, and cell extracts for virulence modulating activity showing......, enterobactin, failed to influence S. aureus virulence gene expression. This study shows that marine microorganisms produce compounds with potential use in therapeutic strategies targeting virulence rather than viability of human pathogens....

  15. Inhibitors of Mycobacterium marinum virulence identified in a Dictyostelium discoideum host model.

    Directory of Open Access Journals (Sweden)

    Hajer Ouertatani-Sakouhi

    Full Text Available Tuberculosis remains one of the major threats to public health worldwide. Given the prevalence of multi drug resistance (MDR in Mycobacterium tuberculosis strains, there is a strong need to develop new anti-mycobacterial drugs with modes of action distinct from classical antibiotics. Inhibitors of mycobacterial virulence might target new molecular processes and may represent a potential new therapeutic alternative. In this study, we used a Dictyostelium discoideum host model to assess virulence of Mycobacterium marinum and to identify compounds inhibiting mycobacterial virulence. Among 9995 chemical compounds, we selected 12 inhibitors of mycobacterial virulence that do not inhibit mycobacterial growth in synthetic medium. Further analyses revealed that 8 of them perturbed functions requiring an intact mycobacterial cell wall such as sliding motility, bacterial aggregation or cell wall permeability. Chemical analogs of two compounds were analyzed. Chemical modifications altered concomitantly their effect on sliding motility and on mycobacterial virulence, suggesting that the alteration of the mycobacterial cell wall caused the loss of virulence. We characterized further one of the selected compounds and found that it inhibited the ability of mycobacteria to replicate in infected cells. Together these results identify new antimycobacterial compounds that represent new tools to unravel the molecular mechanisms controlling mycobacterial pathogenicity. The isolation of compounds with anti-virulence activity is the first step towards developing new antibacterial treatments.

  16. Isolation, characterization, virulence and immunogenicity testing of field isolates of Pasteurella multocida, Staphylococcus aureus, and Streptococcus agalactiae in laboratory settings.

    Science.gov (United States)

    Qudratullah; Muhammad, G; Saqib, M; Bilal, M Qamar

    2017-08-01

    The present study was designed to investigate isolation, characterization, virulence and immunogenicity testing of field isolates of Pasteurella multocida, Staphylococcus aureus, and Streptococcus agalactiae in rabbits and mice. Isolates of P. multocida, S. aureus and Str. agalactiae recovered from field cases of Hemorragic septicemia and mastitis were scrutinized for virulence/pathogenicity and immunogenicity. Mouse LD 50 of P. multocida showed that P. multocida isolate No.1 was more virulent than isolates No. 2 and 3. Virulence of isolate No.1S. aureus and Str. agalactiae revealed that 100, 80% rabbits died within 18h of inoculation. Seven-digit numerical profiles of these 4 isolates with API ® Staph test strips isolates, No.1 (6736153) showed good identification (S. aureus id=90.3%). Indirect ELISA-based serum antibody titers to P. multocida isolate No.1, S. aureus No.1, Str. agalactiae, isolate No.1 elicited high antibody titers 1.9, 1.23, 1.12 respectively. All the pathogens of Isolate No. 1 (P. multocida, S. aureus Str. agalactiae), were high antibody than others isolates. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus

    OpenAIRE

    Jing Zhang; Yujuan Suo; Daofeng Zhang; Fangning Jin; Hang Zhao; Chunlei Shi

    2018-01-01

    Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus, is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to...

  18. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Directory of Open Access Journals (Sweden)

    Devyn D Gilette

    2014-04-01

    Full Text Available Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.

  19. Virulence assessment of Portuguese isolates of potato cyst nematodes (Globodera spp.

    Directory of Open Access Journals (Sweden)

    Maria José M. DA CUNHA

    2012-05-01

    Full Text Available Identification of species and virulence groups of potato cyst nematodes (PCN, Globodera pallida and G. rostochiensis, present in field populations is important in the control of these nematodes by means of resistant cultivars. In order to characterize the virulence of Globodera spp. isolates from Portugal, 43 G. rostochiensis and three G. pallida isolates were evaluated by measuring their multiplication rates on a susceptible potato cultivar and five differential potato genotypes in a growth chamber pot experiment. Principal Component Analysis and Hierarchical Cluster Analysis showed that the reproduction rates were different in terms of both the numbers of eggs and the numbers of cysts produced. Portuguese isolates of PCN were more virulent on genotypes derived from Solanum vernei than on genotypes derived from other Solanum resistance sources, and there was a significant nematode isolate × host genotype interaction. The virulence bioassay clearly distinguished the two PCN species but failed to differentiate isolates into pathotypes. There was a wide and continuous range of virulence to the resistant genotypes, especially in G. rostochiensis isolates.

  20. The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus.

    Science.gov (United States)

    Hodille, Elisabeth; Rose, Warren; Diep, Binh An; Goutelle, Sylvain; Lina, Gerard; Dumitrescu, Oana

    2017-10-01

    Staphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease. Copyright © 2017 American Society for Microbiology.

  1. Metabolic Genetic Screens Reveal Multidimensional Regulation of Virulence Gene Expression in Listeria monocytogenes and an Aminopeptidase That Is Critical for PrfA Protein Activation.

    Science.gov (United States)

    Friedman, Sivan; Linsky, Marika; Lobel, Lior; Rabinovich, Lev; Sigal, Nadejda; Herskovits, Anat A

    2017-06-01

    Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence. Copyright © 2017 American Society for Microbiology.

  2. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.

    Science.gov (United States)

    Bland, David M; Eisele, Nicholas A; Keleher, Lauren L; Anderson, Paul E; Anderson, Deborah M

    2011-03-02

    Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP) pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX) operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.

  3. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    David M Bland

    2011-03-01

    Full Text Available Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.

  4. Virulence Factors of Erwinia amylovora: A Review

    Directory of Open Access Journals (Sweden)

    Núria Piqué

    2015-06-01

    Full Text Available Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS, the exopolysaccharide (EPS amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3′-5′-cyclic di-GMP (c-di-GMP and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus, have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.

  5. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Directory of Open Access Journals (Sweden)

    A. S. Hora

    2016-01-01

    Full Text Available Feline infectious peritonitis virus (FIPV is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP, whereas feline enteric coronavirus (FECV is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  6. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3.

    Science.gov (United States)

    Sirena, Dominique; Ruzsics, Zsolt; Schaffner, Walter; Greber, Urs F; Hemmi, Silvio

    2005-12-20

    Human adenovirus (Ad) serotype 3 causes respiratory infections. It is considered highly virulent, accounting for about 13% of all Ad isolates. We report here the complete Ad3 DNA sequence of 35,343 base pairs (GenBank accession DQ086466). Ad3 shares 96.43% nucleotide identity with Ad7, another virulent subspecies B1 serotype, and 82.56 and 62.75% identity with the less virulent species B2 Ad11 and species C Ad5, respectively. The genomic organization of Ad3 is similar to the other human Ads comprising five early transcription units, E1A, E1B, E2, E3, and E4, two delayed early units IX and IVa2, and the major late unit, in total 39 putative and 7 hypothetical open reading frames. A recombinant E1-deleted Ad3 was generated on a bacterial artificial chromosome. This prototypic virus efficiently transduced CD46-positive rodent and human cells. Our results will help in clarifying the biology and pathology of adenoviruses and enhance therapeutic applications of viral vectors in clinical settings.

  7. An attemp at reversibility and increase of the virulence of axenic strains of Entamoeba histolytica Tentativa de reversibilidade e aumento de virulência de cepas axônicas de Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Gomes

    1993-12-01

    Full Text Available In this study we have tried to verify whether the interaction "in vitro" with bacteria or small pieces of normal hamster liver would modify the pathogenic behavior of axenic strains of E. histolytica: avirulent ones (ICB-32 and ICB-RPS, of attenuated virulence (ICB-CSP and HM1 and of mean virulence (ICB-462. Every attempt to render virulent, recover or increase the virulence of axenic strains of E. histolytica has failedNeste trabalho procuramos verificar se a interação "in vitro" com bactérias e fragmentos de fígado de hamster normal, modificaria o comportamento patogênico de cepas axênicas de E. histolytica avirulentas (ICB-32 e ICB-RPS; virulentas, porém atenuadas (ICB-CSP e HM1 e de média virulência (ICB-462. Todas as tentativas de tornar virulentas, restabelecer ou aumentar a virulência das cepas axênicas de E. histolytica utilizadas fracassaram

  8. Host age modulates parasite infectivity, virulence and reproduction.

    Science.gov (United States)

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  9. [Histo-anatomical researches of two subspecies of Lavandula angustifolia Mill].

    Science.gov (United States)

    Robu, Silvia; Galeş, Ramona; Toma, C; Stănescu, Ursula

    2011-01-01

    The structure of the inflorescences of two subspecies of Lavandula angustifolia sL. angustifolia ssp. angustifolia and. L. angustifolia ssp. pyrenaica (D.C.) Guineaţ was studied to determine the range of variation in certain histo-anatomical characters. The flower and leaf structure has been analysed on cross and superficial section using the usual techniques and methods applied in plant histo-anatomical research. In cross-section, inflorescence axis has a squared-shape contour, with four proeminent ribs. On the epiderme of inflorescence axis there are present stomata, trichoms and secretory hairs. The trichoms are pluricelullar and T-branched. The secretory hairs have a short pedicel and a uni-or bicellular head. The study revealed that there are only quantitative differences, referring to the degree of sclerification and lignification of mechanical elements and the size of the vascular bundles.

  10. Effect of salt and acidic pH on the stability of virulence plasmid (pYV) in Yersinia enterocolitica and expression of virulence-associated characteristics

    Science.gov (United States)

    The stability of the Yersinia enterocolitica virulence plasmid (pYV) under different NaCl concentrations and under acidic pH conditions was investigated. Exposure of five strains representing five serotypes of pYV-bearing virulent Y. enterocolitica to 0.5, 2 and 5% NaCl and under conditions of pH 4...

  11. A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence.

    Science.gov (United States)

    Nuss, Aaron Mischa; Schuster, Franziska; Roselius, Louisa; Klein, Johannes; Bücker, René; Herbst, Katharina; Heroven, Ann Kathrin; Pisano, Fabio; Wittmann, Christoph; Münch, Richard; Müller, Johannes; Jahn, Dieter; Dersch, Petra

    2016-12-01

    Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis) as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer's patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host's intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies.

  12. A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence.

    Directory of Open Access Journals (Sweden)

    Aaron Mischa Nuss

    2016-12-01

    Full Text Available Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer's patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host's intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies.

  13. Genotypes and pathogenicity of cellulitis isolates reveal traits that modulate APEC virulence.

    Directory of Open Access Journals (Sweden)

    Nicolle Lima Barbieri

    Full Text Available We characterized 144 Escherichia coli isolates from severe cellulitis lesions in broiler chickens from South Brazil. Analysis of susceptibility to 15 antimicrobials revealed frequencies of resistance of less than 30% for most antimicrobials except tetracycline (70% and sulphonamides (60%. The genotyping of 34 virulence-associated genes revealed that all the isolates harbored virulence factors related to adhesion, iron acquisition and serum resistance, which are characteristic of the avian pathogenic E. coli (APEC pathotype. ColV plasmid-associated genes (cvi/cva, iroN, iss, iucD, sitD, traT, tsh were especially frequent among the isolates (from 66.6% to 89.6%. According to the Clermont method of ECOR phylogenetic typing, isolates belonged to group D (47.2%, to group A (27.8%, to group B2 (17.4% and to group B1 (7.6%; the group B2 isolates contained the highest number of virulence-associated genes. Clonal relationship analysis using the ARDRA method revealed a similarity level of 57% or higher among isolates, but no endemic clone. The virulence of the isolates was confirmed in vivo in one-day-old chicks. Most isolates (72.9% killed all infected chicks within 7 days, and 65 isolates (38.1% killed most of them within 24 hours. In order to analyze differences in virulence among the APEC isolates, we created a pathogenicity score by combining the times of death with the clinical symptoms noted. By looking for significant associations between the presence of virulence-associated genes and the pathogenicity score, we found that the presence of genes for invasins ibeA and gimB and for group II capsule KpsMTII increased virulence, while the presence of pic decreased virulence. The fact that ibeA, gimB and KpsMTII are characteristic of neonatal meningitis E. coli (NMEC suggests that genes of NMEC in APEC increase virulence of strains.

  14. Systemic infection of Mycobacterium avium subspecies hominissuis and fungus in a pet dog.

    Science.gov (United States)

    Kim, Myung-Chul; Kim, JaeMyung; Kang, WoonKi; Jang, Yunho; Kim, Yongbaek

    2016-01-01

    A 3-year-old neutered female poodle with a long history of dermatophytic skin disease was presented with lethargy, anorexia and progressive weight loss. Abdominal ultrasonography revealed markedly enlarged mesenteric lymph nodes and multiple hypoechoic foci in the spleen. Cytology of the mesenteric lymph nodes and spleen showed granulomatous inflammation with fungal organisms and negatively stained intracytoplasmic bacterial rods consistent with Mycobacteria spp. Based on culture, multiplex polymerase chain reaction and sequence analysis, the bacterium was identified as Mycobacterium avium subspecies hominissuis. Despite treatment with antibiotics, the dog's condition deteriorated, and it died approximately 3 weeks after first presentation.

  15. Sub-specialization in plastic surgery in Sub-saharan Africa: capacities, gaps and opportunities

    Science.gov (United States)

    Ibrahim, Abdulrasheed

    2014-01-01

    The skill set of a plastic surgeon, which addresses a broad range of soft tissue conditions that are prevalent in sub-Saharan Africa, remains relevant in the unmet need for surgical care. Recently, there has being a major paradigm shift from discipline-based to disease-based care, resulting in an emerging component of patient-centered care; adequate access to subspecialty care in plastic and reconstructive surgery. Given the need for an evolution in sub-specialization, this article focuses on the benefits and future role of differentiation of plastic surgeons into sub-specialty training pathways in sub-Saharan Africa. PMID:25584125

  16. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation.

    Science.gov (United States)

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M.

  17. The host-encoded Heme Regulated Inhibitor (HRI facilitates virulence-associated activities of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Niraj Shrestha

    Full Text Available Here we show that cells lacking the heme-regulated inhibitor (HRI are highly resistant to infection by bacterial pathogens. By examining the infection process in wild-type and HRI null cells, we found that HRI is required for pathogens to execute their virulence-associated cellular activities. Specifically, unlike wild-type cells, HRI null cells infected with the gram-negative bacterial pathogen Yersinia are essentially impervious to the cytoskeleton-damaging effects of the Yop virulence factors. This effect is due to reduced functioning of the Yersinia type 3 secretion (T3S system which injects virulence factors directly into the host cell cytosol. Reduced T3S activity is also observed in HRI null cells infected with the bacterial pathogen Chlamydia which results in a dramatic reduction in its intracellular proliferation. We go on to show that a HRI-mediated process plays a central role in the cellular infection cycle of the Gram-positive pathogen Listeria. For this pathogen, HRI is required for the post-invasion trafficking of the bacterium to the infected host cytosol. Thus by depriving Listeria of its intracellular niche, there is a highly reduced proliferation of Listeria in HRI null cells. We provide evidence that these infection-associated functions of HRI (an eIF2α kinase are independent of its activity as a regulator of protein synthesis. This is the first report of a host factor whose absence interferes with the function of T3S secretion and cytosolic access by pathogens and makes HRI an excellent target for inhibitors due to its broad virulence-associated activities.

  18. Four new species and one new subspecies of Asteroidea (Echinodermata) collected by the “Siboga” Expedition in the Indo-Malayan region

    NARCIS (Netherlands)

    Aziz, Aznam; Jangoux, Michel

    1985-01-01

    Four new species and one new subspecies of asteroids collected by the “Siboga” Expedition in the Indo-Malayan region are described. They are deep-water species belonging to the families Goniasteridae, Solasteridae, Ganeriidae, Asteriidae and Brisingidae.

  19. Estimating Divergence Time and Ancestral Effective Population Size of Bornean and Sumatran Orangutan Subspecies Using a Coalescent Hidden Markov Model

    DEFF Research Database (Denmark)

    Mailund, Thomas; Dutheil, Julien; Hobolth, Asger

    2011-01-01

    event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may......, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus......) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report...

  20. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes

    Science.gov (United States)

    Cooperative secretion of virulence factors by pathogens can often lead to social conflict as cheating mutants that benefit from collective action, but do not contribute to it, can arise and locally outcompete cooperators within hosts, leading to loss of virulence. There is a wide range of in vivo st...

  1. Detection of Mycobacterium avium subspecies in the gut associated lymphoid tissue of slaughtered rabbits.

    Science.gov (United States)

    Arrazuria, Rakel; Sevilla, Iker A; Molina, Elena; Pérez, Valentín; Garrido, Joseba M; Juste, Ramón A; Elguezabal, Natalia

    2015-06-11

    Rabbits are susceptible to infection by different species of the genus Mycobacterium. Particularly, development of specific lesions and isolation of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis, both subspecies of the M. avium complex, has been reported in wildlife conditions. Although, rabbit meat production worldwide is 200 million tons per year, microbiological data on this source of meat is lacking and more specifically reports of mycobacterial presence in industrially reared rabbit for human consumption have not been published. To this end, we sought mycobacteria by microbiological and histopathological methods paying special attention to Mycobacterium avium subsp. paratuberculosis in rabbits from commercial rabbitries from the North East of Spain. M. avium subsp. paratuberculosis was not detected either by culture or PCR. However, Mycobacterium avium subsp. avium was detected in 15.15% (10/66) and Mycobacterium avium subsp. hominissuis was detected in 1.51% (1/66) of gut associated lymphoid tissue of sampled animals by PCR, whereas caecal contents were negative. 9% (6/66) of the animals presented gross lesions suggestive of lymphoid activation, 6% (4/66) presented granulomatous lesions and 3% (2/66) contained acid fast bacilli. Mycobacterial isolation from samples was not achieved, although colonies of Thermoactinomycetes sp. were identified by 16s rRNA sequencing in 6% (4/66) of sampled animals. Apparently healthy farmed rabbits that go to slaughter may carry M. avium subspecies in gut associated lymphoid tissue.

  2. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi.

    Science.gov (United States)

    Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M

    2007-07-27

    Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.

  3. Type VI Secretion is a Major Virulence Determinant in Burkholderia Mallei

    National Research Council Canada - National Science Library

    Schell, Mark A; Ulrich, Ricky L; Ribot, Wilson J; Brueggemann, Ernst E; Hines, Harry B; Chen, Dan; Lipscomb, Lyla; Kim, H. S; Mrazek, Jan; Nierman, William C; DeShazer, David

    2007-01-01

    Burkholderia mallei is a host-adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two-component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown...

  4. Life history trade-offs and relaxed selection can decrease bacterial virulence in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Lauri Mikonranta

    Full Text Available Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.

  5. Increased pediatric sub-specialization is associated with decreased surgical complication rates for inpatient pediatric urology procedures

    Science.gov (United States)

    Tejwani, R.; Wang, H-H. S.; Young, B. J.; Greene, N. H.; Wolf, S.; Wiener, J. S.; Routh, J. C.

    2016-01-01

    Summary Introduction Increased case volumes and training are associated with better surgical outcomes. However, the impact of pediatric urology sub-specialization on perioperative complication rates is unknown. Objectives To determine the presence and magnitude of difference in rates of common postoperative complications for elective pediatric urology procedures between specialization levels of urologic surgeons. The Nationwide Inpatient Sample (NIS), a nationally representative administrative database, was used. Study Design The NIS (1998–2009) was retrospectively reviewed for pediatric (≤18 years) admissions, using ICD-9-CM codes to identify urologic surgeries and National Surgical Quality Improvement Program (NSQIP) inpatient postoperative complications. Degree of pediatric sub-specialization was calculated using a Pediatric Proportion Index (PPI), defined as the ratio of children to total patients operated on by each provider. The providers were grouped into PPI quartiles: Q1, 0–25% specialization; Q2, 25–50%; Q3, 50–75%; Q4, 75–100%. Weighted multivariate analysis was performed to test for associations between PPI and surgical complications. Results A total of 71,479 weighted inpatient admissions were identified. Patient age decreased with increasing specialization: Q1, 7.9 vs Q2, 4.8 vs Q3, 4.8 vs Q4, 4.6 years, PSpecialization was not associated with race (P>0.20), gender (P>0.50), or comorbidity scores (P=0.10). Mortality (1.5% vs 0.2% vs 0.3% vs 0.4%, Pspecialization. Patients treated by more highly specialized surgeons incurred slightly higher costs (Q2, +4%; Q3, +1%; Q4 + 2%) but experienced shorter length of hospital stay (Q2, –5%; Q3, –10%; Q4, –3%) compared with the least specialized providers. A greater proportion of patients treated by Q1 and Q3 specialized urologists had CCS ≥2 than those seen by Q2 or Q4 urologists (12.5% and 12.2%, respectively vs 8.4% and 10.9%, respectively, P=0.04). Adjusting for confounding effects

  6. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    International Nuclear Information System (INIS)

    Whittingham, Jean L.; Blagova, Elena V.; Finn, Ciaran E.; Luo, Haixia; Miranda-CasoLuengo, Raúl; Turkenburg, Johan P.; Leech, Andrew P.; Walton, Paul H.; Murzin, Alexey G.; Meijer, Wim G.; Wilkinson, Anthony J.

    2014-01-01

    VapD is one of a set of highly homologous virulence-associated proteins from the multi-host pathogen Rhodococcus equi. The crystal structure reveals an eight-stranded β-barrel with a novel fold and a glycine rich ‘bald’ surface. Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vap proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins

  7. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    Energy Technology Data Exchange (ETDEWEB)

    Whittingham, Jean L.; Blagova, Elena V. [University of York, Heslington, York YO10 5DD (United Kingdom); Finn, Ciaran E.; Luo, Haixia; Miranda-CasoLuengo, Raúl [University College Dublin, Dublin (Ireland); Turkenburg, Johan P.; Leech, Andrew P.; Walton, Paul H. [University of York, Heslington, York YO10 5DD (United Kingdom); Murzin, Alexey G. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Meijer, Wim G. [University College Dublin, Dublin (Ireland); Wilkinson, Anthony J., E-mail: tony.wilkinson@york.ac.uk [University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-08-01

    VapD is one of a set of highly homologous virulence-associated proteins from the multi-host pathogen Rhodococcus equi. The crystal structure reveals an eight-stranded β-barrel with a novel fold and a glycine rich ‘bald’ surface. Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vap proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins.

  8. Evaluating virulence of waterborne and clinical Aeromonas isolates using gene expression and mortality in neonatal mice followed by assessing cell culture’s ability to predict virulence based on transcriptional response

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S L; Rodgers, M R; Lye, D J; Stelma, G N; McKinstry, Craig A.; Malard, Joel M.; Vesper, Sephen J.

    2007-10-01

    Aims: To assess the virulence of Aeromonas spp. using two models, a neonatal mouse assay and a mouse intestinal cell culture. Methods and Results: After artificial infection with a variety of Aeromonas spp., mRNA extracts from the two models were processed and hydridized to murine microarrays to determine host gene response. Definition of virulence was determined based on host mRNA production in murine neonatal intestinal tissue and mortality of infected animals. Infections of mouse intestinal cell cultures were then performed to determine whether this simpler model system’s mRNA responses correlated to neonatal results and therefore be predictive of virulence of Aeromonas spp. Virulent aeromonads up-regulated transcripts in both models including multiple host defense gene products (chemokines, regulation of transcription and apoptosis and cell signalling). Avirulent species exhibited little or no host response in neonates. Mortality results correlated well with both bacterial dose and average fold change of up-regulated transcripts in the neonatal mice. Conclusions: Cell culture results were less discriminating but showed promise as potentially being able to be predictive of virulence. Jun oncogene up-regulation in murine cell culture is potentially predictive of Aeromonas virulence. Significance and Impact of the Study: Having the ability to determine virulence of waterborne pathogens quickly would potentially assist public health officials to rapidly assess exposure risks.

  9. [A new subspecies of Heraclides androgeus (Lepidoptera: Papilionidae) and its biogeographical aspects].

    Science.gov (United States)

    Vargas-Fernández, Isabel; Luis-Martínez, Armando; Llorente-Bousquets, Jorge

    2013-06-01

    A new subspecies of Heraclides androgeus (Lepidoptera: Papilionidae) and its biogeographical aspects. Heraclides androgeus epidaurus was described and illustrated by Godman & Salvin in 1890 based on specimens obtained in Veracruz, indicating that their distribution encompassed both the Pacific and Atlantic sides of Mexico. Later authors commented that there were morphological differences between the male wings from both populations. We analyzed, described and nominated Heraclides androgeus reyesorum ssp. nov. Vargas, Llorente & Luis distributed in the Mexican Pacific coast, based on 62 specimens, and compared it with H a. epidaurus from the Gulf of Mexico, based on more than 200 specimens housed at UNAM: Museo de Zoología, Facultad de Ciencias and the Colección Nacional de Insectos of the Instituto de Biologia, as well as some collections from the USA. The main characters were the width of the yellow and black bands on forewings in males, which had a significant difference between the populations of both sides of Mexico, although some characters were variable and showed partial overlap. In the hindwings, the differences were the extent of the subterminal lunules in dorsal and ventral view. We also analyzed the male genitalia, finding notorious differences in both sclerotic processes of the harpe. Subspecific differences between females refer to the brightness and extent of green spots on the hindwings and the extent of lunules in the ventral view. The greatest abundance of H. a. reyesorum ssp. nov. was in the tropical deciduous forest, with gallery forest and in the lower range of the cloud forest, present at altitudes of 500-800 m and 1000-1 750 m, respectively. We discussed the pattern of endemism due to historical vicariant processes and explain the presence of the new subspecies of H. androgeus and other taxa of specific level.

  10. Cell Density Control of Staphylococcal Virulence Mediated by an Octapeptide Pheromone

    Science.gov (United States)

    Ji, Guangyong; Beavis, Ronald C.; Novick, Richard P.

    1995-12-01

    Some bacterial pathogens elaborate and secrete virulence factors in response to environmental signals, others in response to a specific host product, and still others in response to no discernible cue. In this study, we have demonstrated that the synthesis of Staphylococcus aureus virulence factors is controlled by a density-sensing system that utilizes an octapeptide produced by the organism itself. The octapeptide activates expression of the agr locus, a global regulator of the virulence response. This response involves the reciprocal regulation of genes encoding surface proteins and those encoding secreted virulence factors. As cells enter the postexponential phase, surface protein genes are repressed by agr and secretory protein genes are subsequently activated. The intracellular agr effector is a regulatory RNA, RNAIII, whose transcription is activated by an agr-encoded signal transduction system for which the octapeptide is the ligand.

  11. Low virulent oral Candida albicans strains isolated from smokers.

    Science.gov (United States)

    de Azevedo Izidoro, Ana Claudia Santos; Semprebom, Andressa Marafon; Baboni, Fernanda Brasil; Rosa, Rosimeire Takaki; Machado, Maria Angela Naval; Samaranayake, Lakshman Perera; Rosa, Edvaldo Antonio Ribeiro

    2012-02-01

    It is widely accepted that tabagism is a predisposing factor to oral candidosis and cumulate data suggest that cigarette compounds may increase candidal virulence. To verify if enhanced virulence occurs in Candida albicans from chronic smokers, a cohort of 42 non-smokers and other of 58 smokers (all with excellent oral conditions and without signs of candidosis) were swabbed on tong dorsum and jugal mucosa. Results showed that oral candidal loads do not differ between smoker and non-smokers. Activities of secreted aspartyl-protease (Sap), phospholipase, chondroitinase, esterase-lipase, and haemolysin secretions were screened for thirty-two C. albicans isolates. There were detected significant increments in phospholipasic and chondroitinasic activities in isolates from non-smokers. For other virulence factors, no differences between both cohorts were achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Mexorchestia: a new genus of talitrid amphipod (Crustacea, Amphipoda, Talitridae) from the Gulf of Mexico and Caribbean Sea, with the description of a new species and two new subspecies.

    Science.gov (United States)

    Wildish, David J; Lecroy, Sara E

    2014-08-26

    Two species of supralittoral Tethorchestia were reported by Bousfield (1984) to occur on the shores of the Gulf of Mexico and closely adjacent waters: T. antillensis Bousfield, 1984 from Quintana Roo, Mexico and an undescribed species, Tethorchestia sp. B of Bousfield (1984), from Florida and the U.S. Gulf coast. In this paper, we rediagnose and illustrate the former taxon based on material from Goodland Bay, Florida, which represents a range extension for that species. We examined the latter taxon from many locations throughout the Gulf of Mexico using classical morphology, epidermal pigment pattern recognition and allometry, reinforced by molecular markers (mitochondrial cytochrome oxidase I, Radulovici 2012), determining that Tethorchestia sp. B represents a new genus and species, comprising two subspecies. The nominate subspecies, Mexorchestia carpenteri carpenteri n. gen., sp. and subsp., is described from Tiger Tail Beach, Florida, based on conventional morphological criteria and its distinctive epidermal pigment patterns. The Tiger Tail Beach ecotope of M. c. carpenteri n. gen., sp. and subsp. was distinct from that of other locations examined in Florida and was associated with epidermal pigment pattern polymorphism, absent at other locations. A second subspecies, distinguished by differences in size, number of articles in the flagellum of antenna 2, the number of marginal setae on oostegite 2 of the female and the number of distal dorsolateral robust setae on the telson, was found in samples from Belize and Mexico. This subspecies is described from material collected at Turneffe Island, Belize, as Mexorchestia carpenteri raduloviciae n. gen., sp. and subsp. Like M. c. carpenteri n. gen., sp. and subsp., this taxon is also associated with epidermal pigment pattern polymorphism. A key is provided for the three currently described species of Tethorchestia (two extant) and two new subspecies of Mexorchestia n.gen. 

  13. Presence of virulent Newcastle disease virus in vaccinated chickens in farms in Pakistan

    Science.gov (United States)

    The sites where virulent Newcastle disease virus persists in endemic countries are unknown. Evidence presented here shows that the same strain that caused a previous outbreak was present in both apparently healthy and sick vaccinated birds from multiple farms that had high average specific antibody...

  14. Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii.

    Directory of Open Access Journals (Sweden)

    Hussein M Abkallo

    2015-02-01

    Full Text Available In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii.

  15. Flight activity and responses to climatic conditions of two subspecies of Melipona marginata Lepeletier (Apidae, Meliponinae)

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert-Giovannini, A; Imperatriz-Fonseca, V L

    1986-01-01

    The flight activity of two colonies of M. m. marginata and six colonies of M. m. obscurior was studied in Sao Paulo, Brazil during three periods in 1981-1983. All colonies were hived except for one colony of M. m. obscurior which nested in a hollow tree. The two subspecies showed the same responses to the climatic factors analyzed. Flight activity was correlated positively with temperature and negatively with RH. In favorable conditions foraging took place throughout the day but both species were most active between 11 and 13 h. In the last observation period (October 1982-January 1983), when only two obscurior colonies were studied, flight activity was not correlated to RH, occurring even when RH was unfavorably high. This was a very rainy season, and it is suggested that the behavior of the bees indicates a flexible response to prevailing weather conditions.

  16. The correct name for a subspecies of Oenothera fruticosa L. (Onagraceae

    Directory of Open Access Journals (Sweden)

    Warren Wagner

    2014-01-01

    Full Text Available In 1978 when Straley adopted the name Oenothera fruticosa L. subsp. glauca (Michx. Straley for one of the two recognized subspecies of O. fruticosa it was the correct name for this taxon; however, since that time the botanical code has changed so that now an autonym is treated aspriority over the name or names of the same date and rank that established it. This change means that since 1981 O. fruticosa subsp. glauca was no longer the correct name. The appropriate combination for it is made here as O. fruticosa L. subsp. tetragona (Roth W.L. Wagner. Original material for the basionym, O. tetragona, is no longer extant so a neotype is designated.

  17. Virulence of a Klebsiella pneumoniae strain carrying the New Delhi metallo-beta-lactamase-1 (NDM-1)

    DEFF Research Database (Denmark)

    Fuursted, Kurt; Schøler, Lone; Hansen, Frank

    2011-01-01

    , and in vitro virulence by assessing various virulence factors. The NDM-1 carrying K. pneumoniae isolate was the most virulent in the murine sepsis model but there was no clear cut correlation to in vitro virulence factors or killing in C. elegans. It is concluded that K. pneumoniae carrying NDM-1 have......The aim of the study was to compare and evaluate virulence in five strains of Klebsiella pneumoniae, including an isolate carrying New Delhi metallo-beta-lactamase-1 (NDM-1). In vivo virulence was assessed using a murine sepsis model and using the nematode Caenorhabditis elegans killing model...

  18. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    Science.gov (United States)

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  19. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    Directory of Open Access Journals (Sweden)

    Shengli Jing

    Full Text Available Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens is the most destructive rice (Oryza sativa pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5 and 14 (Qgr14. This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for

  20. How Do the Virulence Factors of Shigella Work Together to Cause Disease?

    Science.gov (United States)

    Mattock, Emily; Blocker, Ariel J

    2017-01-01

    Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae , and S. boydii , which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella 's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan- Shigella vaccine.

  1. Distribution of virulence determinants among antimicrobial-resistant and antimicrobial-susceptible Escherichia coli implicated in urinary tract infections.

    Science.gov (United States)

    Stephenson, Sam; Brown, P D

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) rely on the correlation of virulence expression with antimicrobial resistance to persist and cause severe urinary tract infections (UTIs). We assessed the virulence pattern and prevalence among UPEC strains susceptible and resistant to multiple antimicrobial classes. A total of 174 non-duplicate UPEC strains from patients with clinically significant UTIs were analysed for susceptibility to aminoglycoside, antifolate, cephalosporin, nitrofuran and quinolone antibiotics for the production of extended-spectrum β-lactamases and for the presence of six virulence determinants encoding adhesins (afimbrial, Type 1 fimbriae, P and S-fimbriae) and toxins (cytotoxic necrotising factor and haemolysin). Relatively high resistance rates to nalidixic acid, ciprofloxacin, cephalothin and trimethoprim-sulfamethoxazole (82%, 78%, 62% and 59%, respectively) were observed. Fourteen distinct patterns were identified for the virulence determinants such as afaBC, cnfI, fimH, hylA, papEF and sfaDE. The toxin gene, cnfI (75.3%), was the second most prevalent marker to the adhesin, fimH (97.1%). The significant association of sfaDE/hylA (P < 0.01) among antimicrobial resistant and susceptible strains was also observed notwithstanding an overall greater occurrence of virulence factors among the latter. This study provides a snapshot of UPEC complexity in Jamaica and highlights the significant clonal heterogeneity among strains. Such outcomes emphasise the need for evidence-based strategies in the effective management and control of UTIs.

  2. Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi

    Science.gov (United States)

    Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.

    1999-01-01

    Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested with restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII, and the digestion patterns that resulted divided the plasmids of virulent isolates into five closely related types. Three of the five types had already been reported in Canadian and Japanese isolates, and the two new types had been found in French and Japanese isolates. Therefore, we tentatively designated these five types 85-kb type I (pREAT701), 85-kb type II (a new type), 87-kb type I (EcoRI and BamHI type 2 [V. M. Nicholson and J. F. Prescott, J. Clin. Microbiol. 35:738–740, 1997]), 87-kb type II (a new type), and 90-kb (pREL1) plasmids. The 85-kb type I plasmid was found in isolates from Argentina, Australia, Canada, and France. Plasmid 87-kb type I was isolated in specimens from Argentina, Canada, and France. The 85-kb type II plasmid appeared in isolates from France. On the other hand, plasmids 87-kb type II and 90-kb were found only in isolates from Japan. These results revealed geographic differences in the distribution of the virulence plasmids found in the five countries and suggested that the restriction fragment length polymorphism of virulence plasmids might be useful to elucidate the molecular epidemiology of virulent R. equi in the world. PMID:10488224

  3. Evolutionary characteristics of morbilliviruses during serial passages in vitro: Gradual attenuation of virus virulence.

    Science.gov (United States)

    Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Zou, Yanli; Liu, Shan; Wang, Zhiliang

    2016-08-01

    The genus Morbillivirus is classified into the family Paramyxoviridae, and is composed of 6 members, namely measles virus (MV), rinderpest virus (RPV), peste-des-petits-ruminants virus (PPRV), canine distemper virus (CDV), phocine distemper virus (PDV) and cetacean morbillivirus (CeMV). The MV, RPV, PPRV and CDV have been successfully attenuated through their serial passages in vitro for the production of live vaccines. It has been demonstrated that the morbilliviral virulence in animals was progressively attenuated with their consecutive passages in vitro. However, only a few reports were involved in explanation of an attenuation-related mechanism on them until many years after the establishment of a quasispecies theory. RNA virus quasispecies arise from rapid evolution of viruses with high mutation rate during genomic replication, and play an important role in gradual loss of viral virulence by serial passages. Here, we overviewed the development of live-attenuated vaccine strains against morbilliviruses by consecutive passages in vitro, and further discussed a related mechanism concerning the relationship between virulence attenuation and viral evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Virulence of Xanthomonas translucens pv. poae Isolated from Poa annua

    Directory of Open Access Journals (Sweden)

    Arielle Chaves

    2013-03-01

    Full Text Available Bacterial wilt is a vascular wilt disease caused by Xanthomonas translucens pv. poae that infects Poa annua, a grass that is commonly found on golf course greens throughout the world. Bacterial wilt causes symptoms of etiolation, wilting, and foliar necrosis. The damage is most prevalent during the summer and the pathogen can kill turf under conditions optimal for disease development. Fifteen isolates of X. translucens pv. poae were collected from northern regions in the United States and tested for virulence against P. annua. All 15 isolates were pathogenic on P. annua, but demonstrated variable levels of virulence when inoculated onto P. annua under greenhouse conditions. The isolates were divided into two virulence groups. The first group containing four isolates generally resulted in less than 40% mortality following inoculation. The second group, containing the other eleven isolates, produced between 90 and 100% mortality following inoculation. These results suggest that differences in the virulence of bacterial populations present on a golf course may result in more or less severe amounts of observed disease.

  5. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Eleftherios Mylonakis

    2007-07-01

    Full Text Available Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.

  6. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Flore Samaran

    Full Text Available Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four "acoustic populations" occur. Three of these are pygmy blue whale (B.m. brevicauda populations while the fourth is the Antarctic blue whale (B.m. intermedia. Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.

  7. Brucella, nitrogen and virulence.

    Science.gov (United States)

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  8. Candida Species From Eye Infections: Drug Susceptibility, Virulence Factors, and Molecular Characterization.

    Science.gov (United States)

    Ranjith, Konduri; Sontam, Bhavani; Sharma, Savitri; Joseph, Joveeta; Chathoth, Kanchana N; Sama, Kalyana C; Murthy, Somasheila I; Shivaji, Sisinthy

    2017-08-01

    To determine the type of Candida species in ocular infections and to investigate the relationship of antifungal susceptibility profile to virulence factors. Fifty isolates of yeast-like fungi from patients with keratitis, endophthalmitis, and orbital cellulitis were identified by Vitek-2 compact system and DNA sequencing of ITS1-5.8S-ITS2 regions of the rRNA gene, followed by phylogenetic analysis for phenotypic and genotypic identification, respectively. Minimum inhibitory concentration of six antifungal drugs was determined by E test/microbroth dilution methods. Phenotypic and genotypic methods were used to determine the virulence factors. Phylogenetic analysis showed the clustering of all isolates into eight distinct groups with a major cluster formed Candida parapsilosis (n = 21), which was the most common species by both Vitek 2 and DNA sequencing. Using χ2 test no significant difference was noted between the techniques except that Vitek 2 did not identify C. viswanathii, C. orthopsilosis, and two non-Candida genera. Of 43 tested Candida isolates high susceptibility to amphotericin B (39/43, 90.6%) and natamycin (43/43, 100%) was noted. While none of the isolates produced coagulase, all produced esterase and catalase. The potential to form biofilm was detected in 23/43 (53.4%) isolates. Distribution of virulence factors by heat map analysis showed difference in metabolic activity of biofilm producers from nonbiofilm producers. Identified by Vitek 2 and DNA sequencing methods C. parapsilosis was the most common species associated with eye infections. Irrespective of the virulence factors elaborated, the Candida isolates were susceptible to commonly used antifungal drugs such as amphotericin B and natamycin.

  9. Riboregulators: Fine-Tuning Virulence in Shigella.

    Science.gov (United States)

    Fris, Megan E; Murphy, Erin R

    2016-01-01

    Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.

  10. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

    Science.gov (United States)

    Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A

    2012-08-16

    Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Pathogenomic inference of virulence-associated genes in Leptospira interrogans.

    Science.gov (United States)

    Lehmann, Jason S; Fouts, Derrick E; Haft, Daniel H; Cannella, Anthony P; Ricaldi, Jessica N; Brinkac, Lauren; Harkins, Derek; Durkin, Scott; Sanka, Ravi; Sutton, Granger; Moreno, Angelo; Vinetz, Joseph M; Matthias, Michael A

    2013-01-01

    Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.

  12. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    Directory of Open Access Journals (Sweden)

    Emma Sáez-López

    Full Text Available Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (p<0.0001. Sixty-five percent of the strains were ampicillin-resistant. The E. coli isolates causing obstetric infections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001. The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the

  13. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    Science.gov (United States)

    Sáez-López, Emma; Guiral, Elisabet; Fernández-Orth, Dietmar; Villanueva, Sonia; Goncé, Anna; López, Marta; Teixidó, Irene; Pericot, Anna; Figueras, Francesc; Palacio, Montse; Cobo, Teresa; Bosch, Jordi; Soto, Sara M

    2016-01-01

    Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (pinfections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001). The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the aetiological link between maternal carriage and obstetric and subsequent puerperal infections.

  14. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development.

    Science.gov (United States)

    Blakeway, Luke V; Tan, Aimee; Peak, Ian R A; Seib, Kate L

    2017-10-01

    Moraxella catarrhalis is a human-restricted opportunistic bacterial pathogen of the respiratory mucosa. It frequently colonizes the nasopharynx asymptomatically, but is also an important causative agent of otitis media (OM) in children, and plays a significant role in acute exacerbations of chronic obstructive pulmonary disease (COPD) in adults. As the current treatment options for M. catarrhalis infection in OM and exacerbations of COPD are often ineffective, the development of an efficacious vaccine is warranted. However, no vaccine candidates for M. catarrhalis have progressed to clinical trials, and information regarding the distribution of M. catarrhalis virulence factors and vaccine candidates is inconsistent in the literature. It is largely unknown if virulence is associated with particular strains or subpopulations of M. catarrhalis, or if differences in clinical manifestation can be attributed to the heterogeneous expression of specific M. catarrhalis virulence factors in the circulating population. Further investigation of the distribution of M. catarrhalis virulence factors in the context of carriage and disease is required so that vaccine development may be targeted at relevant antigens that are conserved among disease-causing strains. The challenge of determining which of the proposed M. catarrhalis virulence factors are relevant to human disease is amplified by the lack of a standardized M. catarrhalis typing system to facilitate direct comparisons of worldwide isolates. Here we summarize and evaluate proposed relationships between M. catarrhalis subpopulations and specific virulence factors in the context of colonization and disease, as well as the current methods used to infer these associations.

  15. Frequency of virulence factors in Helicobacter pylori-infected patients with gastritis.

    Science.gov (United States)

    Salimzadeh, Loghman; Bagheri, Nader; Zamanzad, Behnam; Azadegan-Dehkordi, Fatemeh; Rahimian, Ghorbanali; Hashemzadeh-Chaleshtori, Morteza; Rafieian-Kopaei, Mahmoud; Sanei, Mohammad Hossein; Shirzad, Hedayatollah

    2015-03-01

    The outcome of Helicobacter pylori infection has been related to specific virulence-associated bacterial genotypes. The vacuolating cytotoxin (vacA), cagA gene, oipA and babA2 gene are important virulence factor involving gastric diseases. The objective of this study was to assess the relationship between virulence factors of H. pylori and histopathological findings. Gastroduodenoscopy was performed in 436 dyspeptic patients. Antrum biopsy was obtained for detection of H. pylori, virulence factors and for histopathological assessment. The polymerase chain reaction was used to detect virulence factors of H. pylori using specific primers. vacA genotypes in patients infected with H. pylori were associated with cagA, iceA1 and iceA2. In the patients with H. pylori infection there was a significant relationship between cagA positivity and neutrophil activity (P = 0.004) and chronic inflammation (P = 0.013) and with H. pylori density (P = 0.034). Neutrophil infiltration was found to be more severe in the s1 group than in the s2 group (P = 0.042). Also was a significant relationship between oipA positivity and neutrophil activity (P = 0.004) and with H. pylori density (P = 0.018). No significant relationships were observed between other vacA genotypes and histopathological parameters. H. pylori strains showing cagA, vacA s1 and oipA positivity are associated with more severe gastritis in some histological features but virulence factors of H. pylori do not appear to determine the overall pattern of gastritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Jennifer M Bomberger

    2009-04-01

    Full Text Available Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane-derived vesicles (OMV secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including beta-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP-mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.

  17. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Atreya, Raja; Bülte, Michael; Gerlach, Gerald-F; Goethe, Ralph; Hornef, Mathias W; Köhler, Heike; Meens, Jochen; Möbius, Petra; Roeb, Elke; Weiss, Siegfried

    2014-10-01

    Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (Johne's disease [JD]), a chronic granulomatous enteritis in ruminants. JD is one of the most widespread bacterial diseases of domestic animals with significant economic impact. The histopathological picture of JD resembles that of Crohn's disease (CD), a human chronic inflammatory bowel disease of still unresolved aetiology. An aetiological relevance of MAP for CD has been proposed. This and the ambiguity of other published epidemiological findings raise the question whether MAP represents a zoonotic agent. In this review, we will discuss evidence that MAP has zoonotic capacity. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. The Role of TonB Gene in Edwardsiella ictaluri Virulence

    Directory of Open Access Journals (Sweden)

    Hossam Abdelhamed

    2017-12-01

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen that causes enteric septicemia in catfish (ESC. Stress factors including poor water quality, poor diet, rough handling, overcrowding, and water temperature fluctuations increase fish susceptibility to ESC. The TonB energy transducing system (TonB-ExbB-ExbD and TonB-dependent transporters of Gram-negative bacteria support active transport of scarce resources including iron, an essential micronutrient for bacterial virulence. Deletion of the tonB gene attenuates virulence in several pathogenic bacteria. In the current study, the role of TonB (NT01EI_RS07425 in iron acquisition and E. ictaluri virulence were investigated. To accomplish this, the E. ictaluri tonB gene was in-frame deleted. Growth kinetics, iron utilization, and virulence of the EiΔtonB mutant were determined. Loss of TonB caused a significant reduction in bacterial growth in iron-depleted medium (p > 0.05. The EiΔtonB mutant grew similarly to wild-type E. ictaluri when ferric iron was added to the iron-depleted medium. The EiΔtonB mutant was significantly attenuated in catfish compared with the parent strain (21.69 vs. 46.91% mortality. Catfish surviving infection with EiΔtonB had significant protection against ESC compared with naïve fish (100 vs. 40.47% survival. These findings indicate that TonB participates in pathogenesis of ESC and is an important E. ictaluri virulence factor.

  19. Elements in the canine distemper virus M 3' UTR contribute to control of replication efficiency and virulence.

    Directory of Open Access Journals (Sweden)

    Danielle E Anderson

    Full Text Available Canine distemper virus (CDV is a negative-sense, single-stranded RNA virus within the genus Morbillivirus and the family Paramyxoviridae. The Morbillivirus genome is composed of six transcriptional units that are separated by untranslated regions (UTRs, which are relatively uniform in length, with the exception of the UTR between the matrix (M and fusion (F genes. This UTR is at least three times longer and in the case of CDV also highly variable. Exchange of the M-F region between different CDV strains did not affect virulence or disease phenotype, demonstrating that this region is functionally interchangeable. Viruses carrying the deletions in the M 3' UTR replicated more efficiently, which correlated with a reduction of virulence, suggesting that overall length as well as specific sequence motifs distributed throughout the region contribute to virulence.

  20. Method for Screening Compounds That Influence Virulence Gene Expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Nielsen, A.; Nielsen, Kristian Fog; Frees, D.

    2010-01-01

    We present a simple assay to examine effects of compounds on virulence gene expression in the human pathogen Staphylococcus aureus. The assay employs transcriptional reporter strains carrying lacZ fused to central virulence genes. Compounds affecting virulence gene expression and activity...... of the agr locus are scored based on color change in the presence of a chromogenic beta-galactosidase substrate. The assay can be used to screen for novel antivirulence compounds from many different sources, such as fungi, as demonstrated here....

  1. Assessment of Listeria monocytogenes virulence in the Galleria mellonella insect larvae model.

    Directory of Open Access Journals (Sweden)

    Mira Rakic Martinez

    Full Text Available Several animal models have been used to understand the molecular basis of the pathogenicity, infectious dose and strain to strain variation of Listeria monocytogenes. The greater wax worm Galleria mellonella, as an alternative model, provides some useful advantages not available with other models and has already been described as suitable for the virulence assessment of various pathogens including L. monocytogenes. The objectives of this study are: 1 confirming the usefulness of this model with a wide panel of Listeria spp. including non-pathogenic L. innocua, L. seeligeri, L. welshimeri and animal pathogen L. ivanovii; 2 assessment of virulence of several isogenic in-frame deletion mutants in virulence and stress related genes of L. monocytogenes and 3 virulence assessment of paired food and clinical isolates of L. monocytogenes from 14 major listeriosis outbreaks occurred worldwide between 1980 and 2015. Larvae injected with different concentrations of Listeria were incubated at 37°C and monitored over seven days for time needed to kill 50% of larvae (LT50 and to determine change of bacterial population in G. mellonella, 2 and 24 hours post-inoculation. Non-pathogenic members of Listeria and L. ivanovii showed significantly (P < 0.05 higher LT50 (lower virulence than the wild type L. monocytogenes strains. Isogenic mutants of L. monocytogenes with the deletions in prfA, plcA, hly, actA and virR genes, also showed significantly (P < 0.05 higher LT50 than the wild type strain at the inoculum of 106CFU/larva. Food isolates had significantly (P < 0.05 lower virulence than the paired clinical isolates, at all three inoculum concentrations. L. monocytogenes strains related to non-invasive (gastroenteritis outbreaks of listeriosis showed significantly (P < 0.05 lower virulence than isolates of the same serotype obtained from outbreaks with invasive symptoms. The difference, however, was dose and strain- dependent. No significant differences in

  2. Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors.

    Science.gov (United States)

    Dashper, Stuart G; Mitchell, Helen L; Seers, Christine A; Gladman, Simon L; Seemann, Torsten; Bulach, Dieter M; Chandry, P Scott; Cross, Keith J; Cleal, Steven M; Reynolds, Eric C

    2017-01-01

    Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (Kgp cat I and Kgp cat II) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.

  3. A nonluminescent and highly virulent Vibrio harveyi strain is associated with "bacterial white tail disease" of Litopenaeus vannamei shrimp.

    Directory of Open Access Journals (Sweden)

    Junfang Zhou

    Full Text Available Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by "white tail" and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905 was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN, white tail disease (WTD or penaeid white tail disease (PWTD. To differentiate from such diseases as with a sign of "white tail" but of non-bacterial origin, the present disease was named as "bacterial white tail disease (BWTD". Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system.

  4. Causation of Crohn’s Disease by Mycobacterium avium Subspecies Paratuberculosis

    Directory of Open Access Journals (Sweden)

    John Hermon-Taylor

    2000-01-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (MAP is a member of the M avium complex (MAC. It differs genetically from other MAC in having 14 to 18 copies of IS900 and a single cassette of DNA involved in the biosynthesis of surface carbohydrate. Unlike other MAC, MAP is a specific cause of chronic inflammation of the intestine in many animal species, including primates. The disease ranges from pluribacillary to paucimicrobial, with chronic granulomatous inflammation like leprosy in humans. MAP infection can persist for years without causing clinical disease. The herd prevalence of MAP infection in Western Europe and North America is reported in the range 21% to 54%. These subclinically infected animals shed MAP in their milk and onto pastures. MAP is more robust than tuberculosis, and the risk that is conveyed to human populations in retail milk and in domestic water supplies is high. MAP is harboured in the ileocolonic mucosa of a proportion of normal people and can be detected in a high proportion of full thickness samples of inflamed Crohn’s disease gut by improved culture systems and IS900 polymerase chain reaction if the correct methods are used. MAP in Crohn’s disease is present in a protease-resistant nonbacillary form, can evade immune recognition and probably causes an immune dysregulation. As with other MAC, MAP is resistant to most standard antituberculous drugs. Treatment of Crohn’s disease with combinations of drugs more active against MAC such as rifabutin and clarithromycin can bring about a profound improvement and, in a few cases, apparent disease eradication. New drugs as well as effective MAP vaccines for animals and humans are needed. The problems caused by MAP constitute a public health issue of tragic proportions for which a range of remedial measures are urgently needed.

  5. Virulence of geographically different Cryptosporidium parvum isolates in experimental animal model

    Science.gov (United States)

    Sayed, Fatma G.; Hamza, Amany I.; Galal, Lamia A.; Sayed, Douaa M.; Gaber, Mona

    2016-10-01

    Cryptosporidium parvum is a coccidian parasite which causes gastrointestinal disease in humans and a variety of other mammalian species. Several studies have reported different degrees of pathogenicity and virulence among Cryptosporidium species and isolates of the same species as well as evidence of variation in host susceptibility to infection. The study aimed to investigate infectivity and virulence of two Cryptosporidium parvum “Iowa isolate” (CpI) and a “local water isolate” (CpW). Thirty-three Swiss albino mice have been divided into three groups: Negative control Group (C), the CpI group infected with “Iowa isolate “and the CpW group infected with C. parvum oocysts isolated from a local water supply. Infectivity and virulence have been measured by evaluating clinical, parasitological and histological aspects of infection. Significant differences were detected regarding oocysts shedding rate, clinical outcomes, and the histopathological picture of the intestine, lung, and brain. It was concluded that the local water isolate is significantly more virulent than the exported one.

  6. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities

    Science.gov (United States)

    Friman, Ville-Petri; Buckling, Angus

    2014-01-01

    The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085

  7. The worm has turned--microbial virulence modeled in Caenorhabditis elegans.

    Science.gov (United States)

    Sifri, Costi D; Begun, Jakob; Ausubel, Frederick M

    2005-03-01

    The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense.

  8. Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Furuta

    Full Text Available Helicobacter pylori, a bacterial pathogen that can infect human stomach causing gastritis, ulcers and cancer, is known to have a high degree of genome/epigenome diversity as the result of mutation and recombination. The bacteria often infect in childhood and persist for the life of the host. One of the reasons of the rapid evolution of H. pylori is that it changes its genome drastically for adaptation to a new host. To investigate microevolution and adaptation of the H. pylori genome, we undertook whole genome sequencing of the same or very similar sequence type in multi-locus sequence typing (MLST with seven genes in members of the same family consisting of parents and children in Japan. Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous (amino acid changing mutations were found in virulence-related genes (cag genes, vacA, hcpDX, tnfα, ggt, htrA and the collagenase gene, outer membrane protein (OMP genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes. We reconstructed various pathways by which H. pylori can adapt to a new human host, and our results raised the possibility that the mutational changes in virulence-related genes have a role in adaptation to a child host. Changes in restriction-modification genes might remodel the methylome and transcriptome to help adaptation. This study has provided insights into H. pylori transmission and virulence and has implications for basic research as well as clinical practice.

  9. Sortase A: an ideal target for anti-virulence drug development.

    Science.gov (United States)

    Cascioferro, Stella; Totsika, Makrina; Schillaci, Domenico

    2014-12-01

    Sortase A is a membrane enzyme responsible for the anchoring of surface-exposed proteins to the cell wall envelope of Gram-positive bacteria. As a well-studied member of the sortase subfamily catalysing the cell wall anchoring of important virulence factors to the surface of staphylococci, enterococci and streptococci, sortase A plays a critical role in Gram-positive bacterial pathogenesis. It is thus considered a promising target for the development of new anti-infective drugs that aim to interfere with important Gram-positive virulence mechanisms, such as adhesion to host tissues, evasion of host defences, and biofilm formation. The additional properties of sortase A as an enzyme that is not required for Gram-positive bacterial growth or viability and is conveniently located on the cell membrane making it more accessible to inhibitor targeting, constitute additional reasons reinforcing the view that sortase A is an ideal target for anti-virulence drug development. Many inhibitors of sortase A have been identified to date using high-throughput or in silico screening of compound libraries (synthetic or natural), and while many have proved useful tools for probing the action model of the enzyme, several are also promising candidates for the development into potent inhibitors. This review is focused on the most promising sortase A inhibitor compounds that are currently in development as leads towards a new class of anti-infective drugs that are urgently needed to help combat the alarming increase in antimicrobial resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Description of a new species and subspecies of Idalus Walker from Costa Rica, Honduras and Guatemala (Lepidoptera, Erebidae, Arctiinae, Arctiini)

    Science.gov (United States)

    Espinoza, Bernardo A.; Janzen, Daniel H.; Winnie Hallwachs;  J. Bolling Sullivan

    2013-01-01

    Abstract A new species and subspecies of Idalus Walker are described from Costa Rica, Honduras and Guatemala. Images of males and females and their genitalia are provided. Locality information and distribution maps for Costa Rica and for Guatemala are included. The biology and phylogeny of Idalus are discussed. PMID:23730178

  11. Protocols for screening antimicrobial peptides that influence virulence gene expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Baldry, Mara; Ingmer, Hanne

    2017-01-01

    Compounds that inhibit virulence gene expression in bacterial pathogens have received increasing interest as possible alternatives to the traditional antibiotic treatment of infections. For the human pathogen Staphylococcus aureus, we have developed two simple assays based on reporter gene fusions...... to central virulence genes that are easily applicable for screening various sources of natural and synthetic peptides for anti-virulence effects. The plate assay is qualitative but simultaneously assesses the effect of gradient concentrations of the investigated compound, whereas the liquid assay...... is quantitative and can be employed to address whether a compound is acting on the central quorum sensing regulatory system, agr, that controls a large number of virulence genes in S. aureus....

  12. CK2 Secreted by Leishmania braziliensis Mediates Macrophage Association Invasion: A Comparative Study between Virulent and Avirulent Promastigotes

    Directory of Open Access Journals (Sweden)

    Ana Madeira Brito Zylbersztejn

    2015-01-01

    Full Text Available CK2 is a protein kinase distributed in different compartments of Leishmania braziliensis: an externally oriented ecto-CK2, an intracellular CK2, and a secreted CK2. This latter form is constitutively secreted from the parasite (CsCK2, but such secretion may be highly enhanced by the association of specific molecules, including enzyme substrates, which lead to a higher enzymatic activity, called inductively secreted CK2 (IsCK2. Here, we examined the influence of secreted CK2 (sCK2 activity on the infectivity of a virulent L. braziliensis strain. The virulent strain presented 121-fold higher total CK2 activity than those found in an avirulent strain. The use of specific CK2 inhibitors (TBB, DRB, or heparin inhibited virulent parasite growth, whereas no effect was observed in the avirulent parasites. When these inhibitors were added to the interaction assays between the virulent L. braziliensis strain and macrophages, association index was drastically inhibited. Polyamines enhanced sCK2 activity and increased the association index between parasites and macrophages. Finally, sCK2 and the supernatant of the virulent strain increased the association index between the avirulent strain and macrophages, which was inhibited by TBB. Thus, the kinase enzyme CK2 seems to be important to invasion mechanisms of L. braziliensis.

  13. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes.

    Science.gov (United States)

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Payam; Behzadi, Elham

    2015-01-01

    The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes.

  14. Pathogenomic inference of virulence-associated genes in Leptospira interrogans.

    Directory of Open Access Journals (Sweden)

    Jason S Lehmann

    Full Text Available Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.

  15. The combined effects of starvation and pH on the virulence of ...

    African Journals Online (AJOL)

    ACER

    2013-04-17

    Apr 17, 2013 ... the virulence of Shigella sonnei ATCC25931. Ali Ellafi* .... P-values of < 0.05 were considered as significant. ..... Virulence factors of Escherichia coli O157:H7 and other ... gene expression in Porphyromonas gingivalis. Infect.

  16. Virulence Factors of Aeromonas hydrophila: in the Wake of Reclassification

    Directory of Open Access Journals (Sweden)

    Cody R Rasmussen-Ivey

    2016-08-01

    Full Text Available The ubiquitous jack-of-all-trades, Aeromonas hydrophila, is a freshwater, Gram-negative bacterial pathogen under revision in regard to its phylogenetic and functional affiliation with other aeromonads. While virulence factors are expectedly diverse across A. hydrophila strains and closely related species, our mechanistic knowledge of the vast majority of these factors is based on the molecular characterization of the strains A. hydrophila AH-3 and SSU, which were reclassified as A. piscicola AH-3 in 2009 and A. dhakensis SSU in 2013. Individually, these reclassifications raise important questions involving the applicability of previous research on A. hydrophila virulence mechanisms; however, this issue is exacerbated by a lack of genomic data on other research strains. Collectively, these changes represent a fundamental gap in the literature on A. hydrophila and confirm the necessity of biochemical, molecular, and morphological techniques in the classification of research strains that are used as a foundation for future research. This review revisits what is known about virulence in A. hydrophila and the feasibility of using comparative genomics in light of this phylogenetic revision. Conflicting data between virulence factors, secretion systems, quorum sensing, and their effect on A. hydrophila pathogenicity appears to be an artifact of inappropriate taxonomic comparisons and/or be due to the fact that these properties are strain-specific. This review audits emerging data on dominant virulence factors that are present in both A. dhakensis and A. hydrophila in order to synthesize existing data with the aim of locating where future research is needed.

  17. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Valero-Jiménez, Claudio A; Wiegers, Harm; Zwaan, Bas J; Koenraadt, Constantianus J M; van Kan, Jan A L

    2016-01-01

    Pest insects cause severe damage to global crop production and pose a threat to human health by transmitting diseases. Traditionally, chemical pesticides (insecticides) have been used to control such pests and have proven to be effective only for a limited amount of time because of the rapid spread of genetic insecticide resistance. The basis of this resistance is mostly caused by (co)dominant mutations in single genes, which explains why insecticide use alone is an unsustainable solution. Therefore, robust solutions for insect pest control need to be sought in alternative methods such as biological control agents for which single-gene resistance is less likely to evolve. The entomopathogenic fungus Beauveria bassiana has shown potential as a biological control agent of insects, and insight into the mechanisms of virulence is essential to show the robustness of its use. With the recent availability of the whole genome sequence of B. bassiana, progress in understanding the genetics that constitute virulence toward insects can be made more quickly. In this review we divide the infection process into distinct steps and provide an overview of what is currently known about genes and mechanisms influencing virulence in B. bassiana. We also discuss the need for novel strategies and experimental methods to better understand the infection mechanisms deployed by entomopathogenic fungi. Such knowledge can help improve biocontrol agents, not only by selecting the most virulent genotypes, but also by selecting the genotypes that use combinations of virulence mechanisms for which resistance in the insect host is least likely to develop. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Association between virulence and triazole tolerance in the phytopathogenic fungus Mycosphaerella graminicola.

    Directory of Open Access Journals (Sweden)

    Lina Yang

    Full Text Available Host resistance and synthetic antimicrobials such as fungicides are two of the main approaches used to control plant diseases in conventional agriculture. Although pathogens often evolve to overcome host resistance and antimicrobials, the majority of reports have involved qualitative host - pathogen interactions or antimicrobials targeting a single pathogen protein or metabolic pathway. Studies that consider jointly the evolution of virulence, defined as the degree of damage caused to a host by parasite infection, and antimicrobial resistance are rare. Here we compared virulence and fungicide tolerance in the fungal pathogen Mycosphaerella graminicola sampled from wheat fields across three continents and found a positive correlation between virulence and tolerance to a triazole fungicide. We also found that quantitative host resistance selected for higher pathogen virulence. The possible mechanisms responsible for these observations and their consequences for sustainable disease management are discussed.

  19. NEW VIRULENCE FACTORS OF STREPTOCOCCUS PNEUMONIAE

    NARCIS (Netherlands)

    Hermans, Peter Wilhelmus Maria; Bootsma, Jeanette Hester; Burghout, Pieter Jan; Kuipers, Oscar; Bijlsma, Johanna Jacoba Elisabeth; Kloosterman, Tomas Gerrit; Andersen, Christian O.

    2011-01-01

    The present invention provides proteins/genes, which are essential for survival, and consequently, for virulence of Streptococcus pneumoniae in vivo, and thus are ideal vaccine candidates for a vaccine preparation against pneumococcal infection. Further, also antibodies against said protein(s) are

  20. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans

    Science.gov (United States)

    Wang, Yufei; Wang, Xiuqing; Jiang, Wentao; Wang, Kun; Luo, Junyuan; Li, Wei; Zhou, Xuedong; Zhang, Linglin

    2018-01-01

    ABSTRACT Cariogenic virulence factors of Streptococcus mutans include acidogenicity, aciduricity, and extracellular polysaccharides (EPS) synthesis. The de novo designed antimicrobial peptide GH12 has shown bactericidal effects on S. mutans, but its interaction with virulence and regulatory systems of S. mutans remains to be elucidated. The objectives were to investigate the effects of GH12 on virulence factors of S. mutans, and further explore the function mechanisms at enzymatic and transcriptional levels. To avoid decrease in bacterial viability, we limited GH12 to subinhibitory levels. We evaluated effects of GH12 on acidogenicity of S. mutans by pH drop, lactic acid measurement and lactate dehydrogenase (LDH) assay, on aciduricity through survival rate at pH 5.0 and F1F0-ATPase assay, and on EPS synthesis using quantitative measurement, morphology observation, vertical distribution analyses and biomass calculation. Afterwards, we conducted quantitative real-time PCR to acquire the expression profile of related genes. GH12 at 1/2 MIC (4 mg/L) inhibited acid production, survival rate, EPS synthesis, and biofilm formation. The enzymatic activity of LDH and F1F0-ATPase was inhibited, and ldh, gtfBCD, vicR, liaR, and comDE genes were significantly downregulated. In conclusion, GH12 inhibited virulence factors of S. mutans, through reducing the activity of related enzymes, downregulating virulence genes, and inactivating specific regulatory systems. PMID:29503706

  1. Virulence patterns in a murine sepsis model of ST131 Escherichia coli clinical isolates belonging to serotypes O25b:H4 and O16:H5 are associated to specific virotypes.

    Directory of Open Access Journals (Sweden)

    Azucena Mora

    Full Text Available Escherichia coli sequence type (ST131 is an emerging disseminated public health threat implicated in multidrug-resistant extraintestinal infections worldwide. Although the majority of ST131 isolates belong to O25b:H4 serotype, new variants with different serotypes, STs using the discriminative multilocus sequence typing scheme of Pasteur Institute, and virulence-gene profiles (virotypes have been reported with unknown implications on the pattern of spread, persistence and virulence. The aim of the present study was to compare virulence in a mouse subcutaneous sepsis model of representative ST131 clinical isolates belonging to 2 serotypes (O25b:H4, O16:H5 and nine virotypes and subtypes (A, B, C, D1, D2, D3, D4, D5 and E. Fourteen out of the 23 ST131 isolates tested (61% killed 90 to 100% of mice challenged, and 18 of 23 (78% at least 50%. Interestingly, different virulence patterns in association with virotypes were observed, from highly rapid lethality (death in less than 24 h to low final lethality (death at 7 days but with presence of an acute inflammation. This is the first study to assess virulence of ST131 isolates belonging to serotype O16:H5, which exhibited virotype C. In spite of their low virulence-gene score, O16:H5 isolates did not show significant differences in final lethality compared with highly virulent O25b:H4 isolates of virotypes A, B and C, but killed mice less rapidly. Significant differences were found, however, between virotypes A, B, C (final lethality ≥80% of mice challenged and virotypes D, E. Particularly unexpected was the low lethality of the newly assigned virotype E taking into account that it exhibited high virulence-gene score, and the same clonotype H30 as highly virulent O25b:H4 isolates of virotypes A, B and C. In vivo virulence diversity reported in this study would reflect the genetic variability within ST131 clonal group evidenced by molecular typing.

  2. Ecto-5′-Nucleotidase: A Candidate Virulence Factor in Streptococcus sanguinis Experimental Endocarditis

    OpenAIRE

    Fan, Jingyuan; Zhang, Yongshu; Chuang-Smith, Olivia N.; Frank, Kristi L.; Guenther, Brian D.; Kern, Marissa; Schlievert, Patrick M.; Herzberg, Mark C.

    2012-01-01

    Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5′-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, ...

  3. Ultraviolet light-induced mutants of Streptococcus lactis subspecies diacetylactis with enhanced acid- or flavor-producing abilities

    International Nuclear Information System (INIS)

    Kuila, R.K.; Ranganathan, B.

    1978-01-01

    A strain of Streptococcus lactis subspecies diacetylactis S 1 isolated from fresh milk was exposed to 7200 ergs/mm 2 of ultraviolet radiation. Over 8100 colonies surviving from 7.4 x 10 6 cells exposed to radiation were screened on citrate agar for detection and isolation of mutants with increased flavor and/or acid production. Of the survivors, 960 were type-I mutants that exhibited clear zone on citrate agar after 18 h (presumed to be high diacetyl producers), and 288 were type-II mutants which did not exhibit clear zones on citrate agar for up to 72 h (high acid producers). Type-II mutants produced an average .93 percent titratable acidity which was 34 percent more than the .69 percent of the parent. Reduction in titratable acidity (56 percent less) was considerable in type-I mutants, compared with the parent culture. Diacetyl + acetoin production by type-I mutants was 137.9 ppM which has 4.5 times more than that of the parental strain. Acetaldehyde production in the mutants varied from 1.5 to 34.5 ppM (parent culture 3.0 ppM). The mutants with increased acid and high acetoin plus diacetyl production were stable after 50 subcultures in milk

  4. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline.

    Science.gov (United States)

    Piovia-Scott, Jonah; Pope, Karen; Worth, S Joy; Rosenblum, Erica Bree; Poorten, Thomas; Refsnider, Jeanine; Rollins-Smith, Louise A; Reinert, Laura K; Wells, Heather L; Rejmanek, Dan; Lawler, Sharon; Foley, Janet

    2015-07-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.

  5. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells.

    Science.gov (United States)

    Mussá, Tufária; Rodríguez-Cariño, Carolina; Sánchez-Chardi, Alejandro; Baratelli, Massimiliano; Costa-Hurtado, Mar; Fraile, Lorenzo; Domínguez, Javier; Aragon, Virginia; Montoya, María

    2012-11-16

    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.

  6. Luminescence, virulence and quorum sensing signal production by pathogenic Vibrio campbellii and Vibrio harveyi isolates.

    Science.gov (United States)

    Defoirdt, T; Verstraete, W; Bossier, P

    2008-05-01

    To study the relationship between luminescence, autoinducer production and virulence of pathogenic vibrios. Luminescence, quorum sensing signal production and virulence towards brine shrimp nauplii of 13 Vibrio campbellii and Vibrio harveyi strains were studied. Although only two of the tested strains were brightly luminescent, all of them were shown to produce the three different types of quorum sensing signals known to be produced by Vibrio harveyi. Cell-free culture fluids of all strains significantly induced bioluminescence in the cholerae autoinducer 1, autoinducer 2 and harveyi autoinducer 1 reporter strains JAF375, JMH597 and JMH612, respectively. There was no relation between luminescence and signal production and virulence towards brine shrimp. There is a large difference between different strains of Vibrio campbellii and Vibrio harveyi with respect to bioluminescence. However, this is not reflected in signal production and virulence towards gnotobiotic brine shrimp. Moreover, there seems to be no relation between quorum sensing signal production and virulence towards brine shrimp. The results presented here indicate that strains that are most brightly luminescent are not necessarily the most virulent ones and that the lower virulence of some of the strains is not due to a lack of autoinducer production.

  7. Genotypes, Virulence Factors and Antimicrobial Resistance Genes of Staphylococcus aureus Isolated in Bovine Subclinical Mastitis from Eastern China

    Directory of Open Access Journals (Sweden)

    Javed Memon§, Yongchun Yang§, Jam Kashifa, Muhammad Yaqoob, Rehana Buriroa, Jamila Soomroa, Wang Liping and Fan Hongjie*

    2013-11-01

    Full Text Available This study was carried out to determine the genotypes, virulence factors and antimicrobial resistance traits of 34 Staphylococcus aureus isolated from subclinical mastitis in Eastern China. Minimal inhibitory concentration (MIC results showed resistance to erythromycin in all isolates. A high frequency of Methicillin resistant S. aureus (MRSA; 29% was observed and these isolates were also highly resistant to penicillin, oxacillin, oxytetracycline and chloramphenicol than methicillin sensitive S. aureus (MSSA isolates. Thirteen pathogenic factors and seven resistance genes including mecA and blaZ gene were checked through PCR. The spaX gene was found in all isolates, whereas cna, spaIg, nuc, clfA, fnbpB, hlA, hlB and seA were present in 35, 79, 85, 59, 35, 85, 71 and 38% isolates, respectively. Nine isolates carried a group of 8 different virulence genes. Moreover, macrolide resistance genes ermB and ermC were present in all isolates. High resistance rate against methicillin was found but no isolate was positive for mecA gene, whereas blaZ and tetK were detected in 82 and 56% isolates, respectively. Genes; fnbpA, seB, seC, seD, dfrK and tetM were not found in any isolate. The statistical association between phenotypic resistance and virulence genes showed, clfA, fnbpB, hlB and seA, were potentially associated with penicillin G, ciprofloxacin, methicillin, chloramphenicol, trimethoprim and oxytetracycline resistance (P≤0.05. REP-PCR based genotyping showed seven distinct genotypes (A-G prevalent in this region. This study reports the presence of multidrug resistant S. aureus in sub-clinical mastitis which were also highly virulent that could be a major obstacle in the treatment of mastitis in this region of China.

  8. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies.

    Science.gov (United States)

    Ben-Ami, F; Rigaud, T; Ebert, D

    2011-06-01

    In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less-virulent parasite may protect the host against the more-virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood-infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less-virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  9. Bacteriological and virulence study of a Mycobacterium chimaera isolate from a patient in China.

    Science.gov (United States)

    Liu, Guan; Chen, Su-Ting; Yu, Xia; Li, Yu-Xun; Ling, Ying; Dong, Ling-Ling; Zheng, Su-Hua; Huang, Hai-Rong

    2015-04-01

    A clinical isolate from a patient was identified as Mycobacterium chimaera, a recently identified species of nontuberculous Mycobacteria. The biochemical and molecular identity, drug sensitivity and virulence of this isolated strain were investigated. 16S rRNA, the 16S-23S ITS, hsp65 and rpoB were amplified, and their sequence similarities with other mycobacteria were analyzed. The minimum inhibitory concentrations of 22 anti-microbial agents against this isolate were established, and the virulence of the isolate was evaluated by intravenous injection into C57BL/6 mice using Mycobacterium tuberculosis H37Rv as a control strain. Growth and morphological characteristics and mycolic acid profile analysis revealed that this isolated strain was a member of the Mycobacterium avium complex. BLAST analysis of the amplified sequences showed that the isolated strain was closely related to M. chimaera. Susceptibility testing showed that the isolate was sensitive to rifabutin, rifapentine, clarithromycin, azithromycin, imipenem and cefoxitin. Bacterial load determination and tissue histopathology of the infected mice indicated that the isolate was highly virulent. The first case of M. chimaera infection in China was evaluated. The information derived from this case may offer valuable guidance for clinical diagnosis and treatment.

  10. Susceptibility of Staphylococcus species and subspecies to teicoplanin.

    Science.gov (United States)

    Bannerman, T L; Wadiak, D L; Kloos, W E

    1991-01-01

    Twenty-four Staphylococcus species and their subspecies were examined for their susceptibilities to teicoplanin by disk diffusion (30-micrograms disk) and agar dilution for the determination of MICs. Moderately susceptible and resistant clinical strains were further tested for their susceptibilities to oxacillin and vancomycin. Teicoplanin resistance was not observed in the reference strains of the various Staphylococcus species isolated from healthy volunteers or animals. However, the novobiocin-resistant species Staphylococcus saprophyticus, Staphylococcus cohnii, Staphylococcus xylosus, Staphylococcus arlettae, Staphylococcus kloosii, and Staphylococcus gallinarum were less susceptible to teicoplanin (MIC, 2 to 8 micrograms/ml) than most of the novobiocin-susceptible species were (MIC, 0.5 to 4 micrograms/ml). Clinical isolates of coagulase-negative species were generally less susceptible to teicoplanin than were reference strains. Seven percent of the Staphylococcus epidermidis clinical strains were moderately susceptible (MIC, 16 micrograms/ml) to teicoplanin. Of these strains, 70% were oxacillin resistant. For Staphylococcus haemolyticus strains, 11% were resistant (MIC, greater than 16 micrograms/ml) and 21% were moderately susceptible to teicoplanin. Of these strains, 95% were oxacillin resistant, No strains of S. epidermidis or S. haemolyticus were intermediate or resistant to vancomycin. Teicoplanin appears to be less active in vitro against oxacillin-resistant S. haemolyticus. However, teicoplanin is an effective antimicrobial agent against many Staphylococcus species. PMID:1835340

  11. Susceptibility of Staphylococcus species and subspecies to fleroxacin.

    Science.gov (United States)

    Bannerman, T L; Wadiak, D L; Kloos, W E

    1991-01-01

    Twenty-four Staphylococcus species or subspecies were examined for their susceptibilities to the fluoroquinolone fleroxacin (Ro 23-6240) by disk diffusion (5-micrograms disk) and by agar dilution for the determination of MICs. Resistant strains were further tested for their susceptibilities to oxacillin and the fluoroquinolone ciprofloxacin. Reference strains of the novobiocin-resistant species (Staphylococcus saprophyticus, Staphylococcus cohnii, Staphylococcus xylosus, Staphylococcus arlettae, and Staphylococcus gallinarum) had an intrinsic intermediate susceptibility (MIC, 4 micrograms/ml) to fleroxacin. Fleroxacin resistance was not observed in the reference strains of the novobiocin-susceptible species (MIC, 0.5 to 2.0 micrograms/ml). Clinical isolates of coagulase-negative species were generally less susceptible to fleroxacin than were reference strains. Seven percent of the Staphylococcus epidermidis clinical strains were resistant (MIC, greater than or equal to 8 micrograms/ml) to fleroxacin. Of these strains, 77% were resistant to oxacillin and 50% were resistant to ciprofloxacin. Thirty-four percent of the Staphylococcus haemolyticus clinical strains were resistant to fleroxacin, and 9% had intermediate susceptibility. Of the resistant strains, 95% were resistant to oxacillin and 77% were resistant to ciprofloxacin, while 23% had intermediate susceptibility to ciprofloxacin. Fleroxacin is an effective antimicrobial agent against most staphylococci. PMID:1759838

  12. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  13. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans.

    Science.gov (United States)

    Zhang, Jianying; Liu, Jia; Ling, Junqi; Tong, Zhongchun; Fu, Yun; Liang, Min

    2016-01-01

    Inhibition of enzymes required for bacterial cell wall synthesis is often lethal or leads to virulence defects. Glutamate racemase (MurI), an essential enzyme in peptidoglycan biosynthesis, has been an attractive target for therapeutic interventions. Streptococcus mutans, one of the many etiological factors of dental caries, possesses a series of virulence factors associated with cariogenicity. However, little is known regarding the mechanism by which MurI influences pathogenesis of S. mutans. In this work, a stable mutant of S. mutans deficient in glutamate racemase (S. mutans FW1718) was constructed to investigate the impact of murI inactivation on cariogenic virulence in S. mutans UA159. Microscopy revealed that the murI mutant exhibited an enlarged cell size, longer cell chains, diminished cell⬜cell aggregation, and altered cell surface ultrastructure compared with the wild-type. Characterization of this mutant revealed that murI deficiency weakened acidogenicity, aciduricity, and biofilm formation ability of S. mutans (Pmutans virulence properties, making MurI a potential target for controlling dental caries. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment

    Directory of Open Access Journals (Sweden)

    Mohamed I. Azzam

    2017-10-01

    Full Text Available This study aims to determine the impact of five main drains as sources of antibiotics resistant bacteria in River Nile at Rosetta branch, and to generate a baseline data on their virulence ability. Out of 212 bacterial isolates, 39.2% and 60.8% were recovered from drains and Rosetta branch, respectively. Susceptibility of bacteria to different antibiotics showed multiple antibiotics resistances (MAR for the majority of isolates. Meanwhile, sensitivity was mostly directed to ofloxacin and norfloxacin antibiotics. Calculated MAR index values (>0.25 classified area of study as potentially health risk environment. Testing virulence ability of bacteria from drains showed positive results (65%. Contrastively, virulent strains in Rosetta branch were mostly lacking in this study. Concluding remarks justify the strong correlation (r = +0.82 between MAR and virulence of bacteria in polluted aquatic ecosystems, and highlight the potential of drains as reactors for their amplification and dissemination. The study suggests regular monitoring for antibiotics resistance in native bacteria of River Nile, prohibition of unregulated use of antibiotics, and proper management for wastes disposal.

  15. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    Science.gov (United States)

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies

    Science.gov (United States)

    Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi

    2015-01-01

    The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...

  17. The OmpA-like protein Loa22 is essential for leptospiral virulence.

    Directory of Open Access Journals (Sweden)

    Paula Ristow

    2007-07-01

    Full Text Available Pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetic manipulations of pathogenic species. In this study, we characterized a mutant obtained by insertion of the transposon Himar1 into a gene encoding a putative lipoprotein, Loa22, which has a predicted OmpA domain based on sequence identity. The resulting mutant did not express Loa22 and was attenuated in virulence in the guinea pig and hamster models of leptospirosis, whereas the genetically complemented strain was restored in Loa22 expression and virulence. Our results show that Loa22 was expressed during host infection and exposed on the cell surface. Loa22 is therefore necessary for virulence of L. interrogans in the animal model and represents, to our knowledge, the first genetically defined virulence factor in Leptospira species.

  18. Assessment of deep myometrial invasion of endometrial cancer on MRI: added value of second-opinion interpretations by radiologists subspecialized in gynaecologic oncology.

    Science.gov (United States)

    Woo, Sungmin; Kim, Sang Youn; Cho, Jeong Yeon; Kim, Seung Hyup

    2017-05-01

    To investigate the added value of secondary reports issued by radiologists subspecializing in gynaecologic imaging for determining deep myometrial invasion of endometrial cancer on MRI. Initial (from referring institutions) and secondary (by subspecialized radiologists) interpretations of MRI of 55 patients with endometrial cancer were retrospectively reviewed. A radiologist blinded to clinicopathological information assessed both reports for the presence of deep myometrial invasion. Reference standard was based on hysterectomy specimens. Kappa coefficients (k) were used to measure their concordance. McNemar testing and receiver operating characteristic (ROC) analysis was used to compare sensitivities, specificities and areas under the curves (AUCs). Deep myometrial invasion was present in 25 (45.5 %) patients. Among 27.3 % (15/55; k = 0.458) patients with discrepant results, secondary interpretations were correct in 10 (66.7 %) cases. Sensitivity was higher in secondary than in initial reports (76.0 % vs. 48.0 %, p = 0.039) while no significant difference was seen in specificity (70.0 % vs. 76.7 %, p = 0.668). At ROC analysis, there was a tendency for higher AUCs in secondary reports (0.785 vs 0.669, p = 0.096). Secondary readings of MRI by subspecialized gynaecologic oncologic radiologists may provide incremental value in determining deep myometrial invasion of endometrial cancer. • Deep myometrial invasion is an important prognostic factor in endometrial cancer. • Assessment of deep myometrial invasion is often discrepant between initial and secondary reports. • Secondary reports showed higher sensitivity and accuracy. • Secondary review of MRI may provide incremental value in endometrial cancer patients.

  19. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae): XI. Plant-insect interactions in reciprocal transplant gardens

    Science.gov (United States)

    John H. Graham; E. Durant McArthur; D. Carl Freeman

    2001-01-01

    Basin big sagebrush (Artemisia tridentata ssp. tridentata) and mountain big sagebrush (A. t. ssp. vaseyana) hybridize in a narrow zone near Salt Creek, Utah. Reciprocal transplant experiments in this hybrid zone demonstrate that hybrids are more fit than either parental subspecies, but only in the hybrid zone. Do hybrids experience greater, or lesser, use by...

  20. C. elegans as a virulence model for E. coli strain 042

    OpenAIRE

    Kjærbo, Rasmus E. R.; Godballe, Troels; Hansen, Klaus G.; Petersen, Pernille D.; Tikander, Emil

    2010-01-01

    During the last decade the nematode Caenorhabditis elegans has been used to model the pathogenesis of several bacterial species. The emerging pathogen enteroaggregative Escherichia coli (EAEC) is a considerable cause of both acute and persistent diarrhea worldwide. Travellers to developing countries, immunocompromised people and young children are high-risk groups prone to infection. Virulence models using C. elegans might provide valuable information about the host-pathogen interactions whic...

  1. Escherichia coli isolates from calf diarrhea in Korea and their virulent genetic characteristics.

    Science.gov (United States)

    Hur, Jin; Jeon, Byung Woo; Kim, Yeong Ju; Oh, In Gyeong; Lee, John Hwa

    2013-05-02

    Escherichia coli strains were isolated from the feces of 130 diarrheic calves at different farms locations in Korea. The presence of the virulence genes, such as fanC, f41, f17a, eaeA, clpG, afa-8D, sta, stx1 and stx2, in each E. coli isolate was examined. Among the 314 isolates, 157 carried one or more of the virulence genes tested in this study. The most prevalent virulence gene was clpG (45.9%), although f17A (36.9%) and afa-8D (21.7%) were also frequently observed. The sta, stx1 and eaeA genes were detected in between approximately 13 and 17% of the isolates, and the fanC and fim41a genes were detected to a lesser extent. Collectively, our data indicated that diarrhea in calves in these locations can be ascribed to various virulence factors, and the pathogenesis may be more related to virulence genes such as, clpG, f17A, and afa-8D.

  2. Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi.

    Science.gov (United States)

    Pei, Yanlong; Dupont, Chris; Sydor, Tobias; Haas, Albert; Prescott, John F

    2006-12-20

    To analyze further the role in virulence of the prominent cholesterol oxidase (ChoE) of Rhodococcus equi, an allelic exchange choE mutant from strain 103+ was constructed and assessed for virulence in macrophages, in mice, and in foals. There was no difference between the mutant and parent strain in cytotoxic activity for macrophages or in intra-macrophage multiplication. No evidence of attenuation was obtained in macrophages and in mice, but there was slight attenuation apparent in four intra-bronchially infected foals compared to infection of four foals with the virulent parent strain, based on a delayed rise in temperature of the choE-mutant infected foals. However, bacterial colony counts in the lung 2 weeks after infection were not significantly different, although there was a slight but non-significant (P=0.12) difference in lung:body weight ratio of the choE mutant versus virulent parent infected foals (mean 2.67+/-0.25% compared to 4.58+/-0.96%). We conclude that the cholesterol oxidase is not important for the virulence of R. equi.

  3. The Three Lineages of the Diploid Hybrid Verticillium longisporum Differ in Virulence and Pathogenicity.

    Science.gov (United States)

    Novakazi, Fluturë; Inderbitzin, Patrik; Sandoya, German; Hayes, Ryan J; von Tiedemann, Andreas; Subbarao, Krishna V

    2015-05-01

    Verticillium longisporum is an economically important vascular pathogen of Brassicaceae crops in different parts of the world. V. longisporum is a diploid hybrid that consists of three different lineages, each of which originated from a separate hybridization event between two different sets of parental species. We used 20 isolates representing the three V. longisporum lineages and the relative V. dahliae, and performed pathogenicity tests on 11 different hosts, including artichoke, cabbage, cauliflower, cotton, eggplant, horseradish, lettuce, linseed, oilseed rape (canola), tomato, and watermelon. V. longisporum was overall more virulent on the Brassicaceae crops than V. dahliae, which was more virulent than V. longisporum across the non-Brassicaceae crops. There were differences in virulence between the three V. longisporum lineages. V. longisporum lineage A1/D1 was the most virulent lineage on oilseed rape, and V. longisporum lineage A1/D2 was the most virulent lineage on cabbage and horseradish. We also found that on the non-Brassicaceae hosts eggplant, tomato, lettuce, and watermelon, V. longisporum was more or equally virulent than V. dahliae. This suggests that V. longisporum may have a wider potential host range than currently appreciated.

  4. Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens

    Directory of Open Access Journals (Sweden)

    de Rochefort Anna

    2009-10-01

    Full Text Available Abstract Background New and improved antimicrobial countermeasures are urgently needed to counteract increased resistance to existing antimicrobial treatments and to combat currently untreatable or new emerging infectious diseases. We demonstrate that computational comparative genomics, together with experimental screening, can identify potential generic (i.e., conserved across multiple pathogen species and novel virulence-associated genes that may serve as targets for broad-spectrum countermeasures. Results Using phylogenetic profiles of protein clusters from completed microbial genome sequences, we identified seventeen protein candidates that are common to diverse human pathogens and absent or uncommon in non-pathogens. Mutants of 13 of these candidates were successfully generated in Yersinia pseudotuberculosis and the potential role of the proteins in virulence was assayed in an animal model. Six candidate proteins are suggested to be involved in the virulence of Y. pseudotuberculosis, none of which have previously been implicated in the virulence of Y. pseudotuberculosis and three have no record of involvement in the virulence of any bacteria. Conclusion This work demonstrates a strategy for the identification of potential virulence factors that are conserved across a number of human pathogenic bacterial species, confirming the usefulness of this tool.

  5. Fatores de virulência de Bacillus thuringiensis: o que existe além das proteínas Cry

    Directory of Open Access Journals (Sweden)

    Gislayne Vilas-Bôas

    2012-03-01

    Virulence Factors of Bacillus thuringiensis Berliner: Something Beyond of Cry Proteins? Abstract. The Cry proteins produced by the entomopathogenic bacterium Bacillus thuringiensis Berliner are widely known due to its high toxicity against a variety of insects. The mode of action of these proteins is specific and becomes B. thuringiensis-based products the most used in biological control programs of insect pests in agriculture and of important human disease vectors. However, while the Cry proteins are the best-known insect-specific virulence factor, strains of B. thuringiensis show also a wide range of other virulence factors, which allow the bacteria to achieve the hemolymph and colonize efficiently the insect host. Among these factors, we highlight the Vip proteins, Cyt, enterotoxins, hemolysins, phospholipases, proteases and enzymes of degradation, in addition to the recently described parasporin. This review explores the action of these virulence factors, as well as, the characterization and control of expression of their genes. Additionally, we discuss aspects related to the ecological niche of the bacteria with emphasis on the characteristics involved in the biosafety of the use of B. thuringiensis-based products for biological control of target insects.

  6. Ecto-5'-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis.

    Directory of Open Access Journals (Sweden)

    Jingyuan Fan

    Full Text Available Streptococcus sanguinis is the most common cause of infective endocarditis (IE. Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5'-nucleotidase (Nt5e, as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05 to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P=0.98. In the absence of nt5e, S. sanguinis caused IE (4 d in a rabbit model with significantly decreased mass of vegetations (P<0.01 and recovered bacterial loads (log(10CFU, P=0.01, suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE.

  7. Virulence potential of Escherichia coli strains causing asymptomatic bacteriuria during pregnancy.

    Science.gov (United States)

    Lavigne, Jean-Philippe; Boutet-Dubois, Adeline; Laouini, Dorsaf; Combescure, Christophe; Bouziges, Nicole; Marès, Pierre; Sotto, Albert

    2011-11-01

    We compared the virulence properties of a collection of asymptomatic bacteriuria (ABU) Escherichia coli strains to urinary tract infection (UTI) strains isolated from pregnant women in a university hospital over 1 year. The in vitro and in vivo studies suggest that ABU strains presented a virulence behavior similar to that of strains isolated from cases of cystitis.

  8. Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections

    Directory of Open Access Journals (Sweden)

    Gunnar Dahlén

    2012-02-01

    Full Text Available This study evaluates the presence of virulence factors and antibiotic susceptibility among enterococcal isolates from oral mucosal and deep infections. Forty-three enterococcal strains from oral mucosal lesions and 18 from deep infections were isolated from 830 samples that were sent during 2 years to Oral Microbiology, University of Gothenburg, for analysis. The 61 strains were identified by 16S rDNA, and characterized by the presence of the virulence genes efa A (endocarditis gene, gel E (gelatinase gene, ace (collagen binding antigen gene, asa (aggregation substance gene, cyl A (cytolysin activator gene and esp (surface adhesin gene, tested for the production of bacteriocins and presence of plasmids. MIC determination was performed using the E-test method against the most commonly used antibiotics in dentistry, for example, penicillin V, amoxicillin and clindamycin. Vancomycin was included in order to detect vancomycin-resistant enterococci (VRE strains. Sixty strains were identified as Enterococcus faecalis and one as Enterococcus faecium. All the virulence genes were detected in more than 93.3% (efa A and esp of the E. faecalis strains, while the presence of phenotypic characteristics was much lower (gelatinase 10% and hemolysin 16.7%. Forty-six strains produced bacteriocins and one to six plasmids were detected in half of the isolates. Enterococcal strains from oral infections had a high virulence capacity, showed bacteriocin production and had numerous plasmids. They were generally susceptible to ampicillins but were resistant to clindamycin, commonly used in dentistry, and no VRE-strain was found.

  9. Virulence of Fusarium oxysporum and F. commune to Douglas-fir (Pseudotsuga menziesii) seedlings

    Science.gov (United States)

    J. E. Stewart; Z. Abdo; R. K. Dumroese; N. B. Klopfenstein; M. -S. Kim

    2012-01-01

    Fusarium species can cause damping-off and root rot of young conifer seedlings, resulting in severe crop and economic losses in forest nurseries. Disease control within tree nurseries is difficult because of the inability to characterize and quantify Fusarium spp. populations with regard to disease potential because of high variability in isolate virulence. Fusarium...

  10. Virulence Studies of Different Sequence Types and Geographical Origins of Streptococcus suis Serotype 2 in a Mouse Model of Infection

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Auger

    2016-07-01

    Full Text Available Multilocus sequence typing previously identified three predominant sequence types (STs of Streptococcus suis serotype 2: ST1 strains predominate in Eurasia while North American (NA strains are generally ST25 and ST28. However, ST25/ST28 and ST1 strains have also been isolated in Asia and NA, respectively. Using a well-standardized mouse model of infection, the virulence of strains belonging to different STs and different geographical origins was evaluated. Results demonstrated that although a certain tendency may be observed, S. suis serotype 2 virulence is difficult to predict based on ST and geographical origin alone; strains belonging to the same ST presented important differences of virulence and did not always correlate with origin. The only exception appears to be NA ST28 strains, which were generally less virulent in both systemic and central nervous system (CNS infection models. Persistent and high levels of bacteremia accompanied by elevated CNS inflammation are required to cause meningitis. Although widely used, in vitro tests such as phagocytosis and killing assays require further standardization in order to be used as predictive tests for evaluating virulence of strains. The use of strains other than archetypal strains has increased our knowledge and understanding of the S. suis serotype 2 population dynamics.

  11. Comparative Genomics of Mycoplasma bovis Strains Reveals That Decreased Virulence with Increasing Passages Might Correlate with Potential Virulence-Related Factors

    Directory of Open Access Journals (Sweden)

    Muhammad A. Rasheed

    2017-05-01

    Full Text Available Mycoplasma bovis is an important cause of bovine respiratory disease worldwide. To understand its virulence mechanisms, we sequenced three attenuated M. bovis strains, P115, P150, and P180, which were passaged in vitro 115, 150, and 180 times, respectively, and exhibited progressively decreasing virulence. Comparative genomics was performed among the wild-type M. bovis HB0801 (P1 strain and the P115, P150, and P180 strains, and one 14.2-kb deleted region covering 14 genes was detected in the passaged strains. Additionally, 46 non-sense single-nucleotide polymorphisms and indels were detected, which confirmed that more passages result in more mutations. A subsequent collective bioinformatics analysis of paralogs, metabolic pathways, protein-protein interactions, secretory proteins, functionally conserved domains, and virulence-related factors identified 11 genes that likely contributed to the increased attenuation in the passaged strains. These genes encode ascorbate-specific phosphotransferase system enzyme IIB and IIA components, enolase, L-lactate dehydrogenase, pyruvate kinase, glycerol, and multiple sugar ATP-binding cassette transporters, ATP binding proteins, NADH dehydrogenase, phosphate acetyltransferase, transketolase, and a variable surface protein. Fifteen genes were shown to be enriched in 15 metabolic pathways, and they included the aforementioned genes encoding pyruvate kinase, transketolase, enolase, and L-lactate dehydrogenase. Hydrogen peroxide (H2O2 production in M. bovis strains representing seven passages from P1 to P180 decreased progressively with increasing numbers of passages and increased attenuation. However, eight mutants specific to eight individual genes within the 14.2-kb deleted region did not exhibit altered H2O2 production. These results enrich the M. bovis genomics database, and they increase our understanding of the mechanisms underlying M. bovis virulence.

  12. Virulence Characterization of Salmonella enterica by a New Microarray: Detection and Evaluation of the Cytolethal Distending Toxin Gene Activity in the Unusual Host S. Typhimurium.

    Directory of Open Access Journals (Sweden)

    Rui Figueiredo

    Full Text Available Salmonella enterica is a zoonotic foodborne pathogen that causes acute gastroenteritis in humans. We assessed the virulence potential of one-hundred and six Salmonella strains isolated from food animals and products. A high through-put virulence genes microarray demonstrated Salmonella Pathogenicity Islands (SPI and adherence genes were highly conserved, while prophages and virulence plasmid genes were variably present. Isolates were grouped by serotype, and virulence plasmids separated S. Typhimurium in two clusters. Atypical microarray results lead to whole genome sequencing (WGS of S. Infantis Sal147, which identified deletion of thirty-eight SPI-1 genes. Sal147 was unable to invade HeLa cells and showed reduced mortality in Galleria mellonella infection model, in comparison to a SPI-1 harbouring S. Infantis. Microarray and WGS of S. Typhimurium Sal199, established for the first time in S. Typhimurium presence of cdtB and other Typhi-related genes. Characterization of Sal199 showed cdtB genes were upstream of transposase IS911, and co-expressed with other Typhi-related genes. Cell cycle arrest, cytoplasmic distension, and nuclear enlargement were detected in HeLa cells infected by Sal199, but not with S. Typhimurium LT2. Increased mortality of Galleria was detected on infection with Sal199 compared to LT2. Thus, Salmonella isolates were rapidly characterized using a high through-put microarray; helping to identify unusual virulence features which were corroborated by further characterisation. This work demonstrates that the use of suitable screening methods for Salmonella virulence can help assess the potential risk associated with certain Salmonella to humans. Incorporation of such methodology into surveillance could help reduce the risk of emergence of epidemic Salmonella strains.

  13. Virulence Genes and Antibiotic Susceptibilities of Uropathogenic E. coli Strains.

    Science.gov (United States)

    Uzun, Cengiz; Oncül, Oral; Gümüş, Defne; Alan, Servet; Dayioğlu, Nurten; Küçüker, Mine Anğ

    2015-01-01

    The aim of this study is to detect the presence of and possible relation between virulence genes and antibiotic resistance in E. coli strains isolated from patients with acute, uncomplicated urinary tract infections (UTI). 62 E. coli strains isolated from patients with acute, uncomplicated urinary tract infections (50 strains isolated from acute uncomplicated cystitis cases (AUC); 12 strains from acute uncomplicated pyelonephritis cases (AUP)) were screened for virulence genes [pap (pyelonephritis-associated pili), sfa/foc (S and F1C fimbriae), afa (afimbrial adhesins), hly (hemolysin), cnf1 (cytotoxic necrotizing factor), aer (aerobactin), PAI (pathogenicity island marker), iroN (catecholate siderophore receptor), ompT (outer membrane protein T), usp (uropathogenic specific protein)] by PCR and for antimicrobial resistance by disk diffusion method according to CLSI criteria. It was found that 56 strains (90.3%) carried at least one virulence gene. The most common virulence genes were ompT (79%), aer (51.6%), PAI (51.6%) and usp (56.5%). 60% of the strains were resistant to at least one antibiotic. The highest resistance rates were against ampicillin (79%) and co-trimoxazole (41.9%). Fifty percent of the E. coli strains (31 strains) were found to be multiple resistant. Eight (12.9%) out of 62 strains were found to be ESBL positive. Statistically significant relationships were found between the absence of usp and AMP - SXT resistance, iroN and OFX - CIP resistance, PAI and SXT resistance, cnf1 and AMP resistance, and a significant relationship was also found between the presence of the afa and OFX resistance. No difference between E. coli strains isolated from two different clinical presentations was found in terms of virulence genes and antibiotic susceptibility.

  14. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen

    2009-01-01

    residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded......2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P...

  15. Mixed infections reveal virulence differences between host-specific bee pathogens.

    Science.gov (United States)

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  16. Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome.

    Directory of Open Access Journals (Sweden)

    Biju Joseph

    Full Text Available BACKGROUND: Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH and multilocus sequence typing (MLST of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. PRINCIPAL FINDINGS: We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. CONCLUSIONS: Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.

  17. Ecto-5'-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis.

    Science.gov (United States)

    Fan, Jingyuan; Zhang, Yongshu; Chuang-Smith, Olivia N; Frank, Kristi L; Guenther, Brian D; Kern, Marissa; Schlievert, Patrick M; Herzberg, Mark C

    2012-01-01

    Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5'-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (PS. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (PS. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE.

  18. Molecular Characterization of Putative Virulence Determinants in Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Suat Moi Puah

    2014-01-01

    Full Text Available The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P=0.049 at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.

  19. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Tricia Fraser

    2017-05-01

    Full Text Available Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere and ligB and mce (for Jules were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and

  20. The sensor kinase MprB is required for Rhodococcus equi virulence.

    Science.gov (United States)

    MacArthur, Iain; Parreira, Valeria R; Lepp, Dion; Mutharia, Lucy M; Vazquez-Boland, José A; Prescott, John F

    2011-01-10

    Rhodococcus equi is a soil bacterium and, like Mycobacterium tuberculosis, a member of the mycolata. Through possession of a virulence plasmid, it has the ability to infect the alveolar macrophages of foals, resulting in pyogranulomatous bronchopneumonia. The virulence plasmid has an orphan two-component system (TCS) regulatory gene, orf8, mutation of which completely attenuates virulence. This study attempted to find the cognate sensor kinase (SK) of orf8. Annotation of the R. equi strain 103 genome identified 23 TCSs encoded on the chromosome, which were used in a DNA microarray to compare TCS gene transcription in murine macrophage-like cells to growth in vitro. This identified six SKs as significantly up-regulated during growth in macrophages. Mutants of these SKs were constructed and their ability to persist in macrophages was determined with one SK, MprB, found to be required for intracellular survival. The attenuation of the mprB- mutant, and its complementation, was confirmed in a mouse virulence assay. In silico analysis of the R. equi genome sequence identified an MprA binding box motif homologous to that of M. tuberculosis, on mprA, pepD, sigB and sigE. The results of this study also show that R. equi responds to the macrophage environment differently from M. tuberculosis. MprB is the first SK identified as required for R. equi virulence and intracellular survival. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Virulence and genetic diversity among isolates of Mycosphaerella fijiensis in two regions of Brazil.

    Science.gov (United States)

    Silva, G F; Santos, V S; Sousa, N R; Hanada, R E; Gasparotto, L

    2016-04-27

    Black sigatoka, caused by the fungus Mycosphaerella fijiensis (anamorphic stage: Paracercospora fijiensis), was first detected in Brazil in early 1998 in the Benjamin Constant and Tabatinga municipalities in the State of Amazonas, near to where the borders of Brazil, Colombia, and Peru converge. Understanding how cultivars react to the pathogen, and characterizing the genetic variability of isolates from two distant and distinct banana-producing regions, are important for determining the virulence of M. fijiensis. In the present study, the genetic diversity of 22 M. fijiensis isolates was assessed using simple sequence repeats (SSR) markers, and their virulence was determined following inoculation on three different banana tree cultivars. All 22 isolates caused symptoms of the disease in the Maçã and Prata Comum cultivars 45 days after inoculation, and at least two virulence groups were identified for the Maçã and Prata Comum cultivars. For the D'Angola cultivars, two virulence groups were observed only after 60 days post-inoculation, and three of the isolates were not virulent. Using SSR markers, the isolates from two different regions of Brazil were placed into two genetic groups, both genetically distant from the Mf 138 isolate collected in Leticia, Colombia. There was no evidence of correlation between the virulence groups and the genetic diversity groups. These results demonstrate variability in virulence between isolates as measured by the severity of black sigatoka in the analyzed cultivars.

  2. A novel anti-virulence gene revealed by proteomic analysis in Shigella flexneri 2a

    Directory of Open Access Journals (Sweden)

    Ying Tianyi

    2010-06-01

    Full Text Available Abstract Background Shigella flexneri is a gram-negative, facultative pathogen that causes the majority of communicable bacterial dysenteries in developing countries. The virulence factors of S. flexneri have been shown to be produced at 37 degrees C but not at 30 degrees C. To discover potential, novel virulence-related proteins of S. flexneri, we performed differential in-gel electrophoresis (DIGE analysis to measure changes in the expression profile that are induced by a temperature increase. Results The ArgT protein was dramatically down-regulated at 37 degrees C. In contrast, the ArgT from the non-pathogenic E. coli did not show this differential expression as in S. flexneri, which suggested that argT might be a potential anti-virulence gene. Competitive invasion assays in HeLa cells and in BALB/c mice with argT mutants were performed, and the results indicated that the over-expression of ArgTY225D would attenuate the virulence of S. flexneri. A comparative proteomic analysis was subsequently performed to investigate the effects of ArgT in S. flexneri at the molecular level. We show that HtrA is differentially expressed among different derivative strains. Conclusion Gene argT is a novel anti-virulence gene that may interfere with the virulence of S. flexneri via the transport of specific amino acids or by affecting the expression of the virulence factor, HtrA.

  3. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors.

    Science.gov (United States)

    Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw

    2017-08-18

    Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.

  4. A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    Science.gov (United States)

    Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

    2012-01-01

    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

  5. A Revision of Lasionycta Aurivillius (Lepidoptera: Noctuidae) for North America and notes on Eurasian species, with descriptions of 17 new species, 6 new subspecies, a new genus, and two new species of Tricholita Grote

    OpenAIRE

    Crabo,Lars; Lafontaine,Donald

    2009-01-01

    The North American species of Lasionycta Aurivillius are revised to include 43 species and 13 subspecies using traditional methods and mitochondrial cytochrome oxidase subunit 1 (CO1) DNA sequence (barcode) analysis. Seven species-groups are recognized, and one group is further divided into seven sub-groups. Seventeen species and six subspecies of Lasionycta are described: L. anthracina Crabo & Lafontaine, L. benjamini medaminosa Crabo & Lafontaine, L. brunnea Crabo & Lafontaine, ...

  6. Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1.

    Science.gov (United States)

    Lim, Jeong-A; Shin, Hakdong; Lee, Dong Hwan; Han, Sang-Wook; Lee, Ju-Hoon; Ryu, Sangryeol; Heu, Sunggi

    2014-08-01

    PM1, a novel virulent bacteriophage that infects Pectobacterium carotovorum subsp. carotovorum, was isolated. Its morphological features were examined by electron microscopy, which indicated that this phage belongs to the family Myoviridae. It has a 55,098-bp genome, including a 2,665-bp terminal repeat. A total of 63 open reading frames (ORFs) were predicted, but only 20 ORFs possessed homology with functional proteins. There is one tRNA coding region, and the GC-content of the genome is 44.9 %. Most ORFs in bacteriophage PM1 showed high homology to enterobacteria phage ΦEcoM-GJ1 and Erwinia phage νB EamM-Y2. Like these bacteriophages, PM1 encodes an RNA polymerase, which is a hallmark of T7-like phages. There is no integrase or repressor, suggesting that PM1 is a virulent bacteriophage.

  7. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae

    OpenAIRE

    Zhu, Jun; Miller, Melissa B.; Vance, Russell E.; Dziejman, Michelle; Bassler, Bonnie L.; Mekalanos, John J.

    2002-01-01

    The production of virulence factors including cholera toxin and the toxin-coregulated pilus in the human pathogen Vibrio cholerae is strongly influenced by environmental conditions. The well-characterized ToxR signal transduction cascade is responsible for sensing and integrating the environmental information and controlling the virulence regulon. We show here that, in addition to the known components of the ToxR signaling circuit, quorum-sensing regulators are involved in regulation of V. ch...

  8. The HtrA-Like Protease CD3284 Modulates Virulence of Clostridium difficile

    NARCIS (Netherlands)

    Bakker, Dennis; Buckley, Anthony M.; de Jong, Anne; van Winden, Vincent J. C.; Verhoeks, Joost P. A.; Kuipers, Oscar P.; Douce, Gillian R.; Kuijper, Ed J.; Smits, Wiep Klaas; Corver, Jeroen

    2014-01-01

    In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis. Besides the two main virulence factors toxin A and toxin B, other virulence factors are likely to play a role in the

  9. Identification of genomic differences between Campylobacter jejuni subsp. jejuni and C. jejuni subsp. doylei at the nap locus leads to the development of a C. jejuni subspeciation multiplex PCR method

    Directory of Open Access Journals (Sweden)

    Heath Sekou

    2007-02-01

    Full Text Available Abstract Background The human bacterial pathogen Campylobacter jejuni contains two subspecies: C. jejuni subsp. jejuni (Cjj and C. jejuni subsp. doylei (Cjd. Although Cjd strains are isolated infrequently in many parts of the world, they are obtained primarily from human clinical samples and result in an unusual clinical symptomatology in that, in addition to gastroenteritis, they are associated often with bacteremia. In this study, we describe a novel multiplex PCR method, based on the nitrate reductase (nap locus, that can be used to unambiguously subspeciate C. jejuni isolates. Results Internal and flanking napA and napB primer sets were designed, based on existing C. jejuni and Campylobacter coli genome sequences to create two multiplex PCR primer sets, nap mpx1 and nap mpx2. Genomic DNA from 161 C. jejuni subsp. jejuni (Cjj and 27 C. jejuni subsp. doylei (Cjd strains were amplified with these multiplex primer sets. The Cjd strains could be distinguished clearly from the Cjj strains using either nap mpx1 or mpx2. In addition, combination of either nap multiplex method with an existing lpxA speciation multiplex method resulted in the unambiguous and simultaneous speciation and subspeciation of the thermophilic Campylobacters. The Cjd nap amplicons were also sequenced: all Cjd strains tested contained identical 2761 bp deletions in napA and several Cjd strains contained deletions in napB. Conclusion The nap multiplex PCR primer sets are robust and give a 100% discrimination of C. jejuni subspecies. The ability to rapidly subspeciate C. jejuni as well as speciate thermophilic Campylobacter species, most of which are pathogenic in humans, in a single amplification will be of value to clinical laboratories in strain identification and the determination of the environmental source of campylobacterioses caused by Cjd. Finally, the sequences of the Cjd napA and napB loci suggest that Cjd strains arose from a common ancestor, providing clues as to

  10. Genetic recombination and Cryptosporidium hominis virulent subtype IbA10G2.

    Science.gov (United States)

    Li, Na; Xiao, Lihua; Cama, Vitaliano A; Ortega, Ynes; Gilman, Robert H; Guo, Meijin; Feng, Yaoyu

    2013-10-01

    Little is known about the emergence and spread of virulent subtypes of Cryptosporidium hominis, the predominant species responsible for human cryptosporidiosis. We conducted sequence analyses of 32 genetic loci of 53 C. hominis specimens isolated from a longitudinally followed cohort of children living in a small community. We identified by linkage disequilibrium and recombination analyses only limited genetic recombination, which occurred exclusively within the 60-kDa glycoprotein gene subtype IbA10G2, a predominant subtype for outbreaks in industrialized nations and a virulent subtype in the study community. Intensive transmission of virulent subtype IbA10G2 in the study area might have resulted in genetic recombination with other subtypes. Moreover, we identified selection for IbA10G2 at a 129-kb region around the 60-kDa glycoprotein gene in chromosome 6. These findings improve our understanding of the origin and evolution of C. hominis subtypes and the spread of virulent subtypes.

  11. The evolution of intermediate castration virulence and ant coexistence in a spatially structured environment.

    Science.gov (United States)

    Szilágyi, András; Scheuring, István; Edwards, David P; Orivel, Jerome; Yu, Douglas W

    2009-12-01

    Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca. Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca, selects for higher castration virulence in Allomerus, because seeds from Azteca-inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.

  12. Microbial virulence and interactions with metals

    DEFF Research Database (Denmark)

    German, N.; Lüthje, Freja Lea; Hao, X.

    2016-01-01

    Transition metals, such as iron, copper, zinc, and manganese play an important role in many bacterial biological processes that add to an overall evolutional fitness of bacteria. They are often involved in regulation of bacterial virulence as a mechanism of host invasion. However, the same transi...

  13. Calcineurin Targets Involved in Stress Survival and Fungal Virulence.

    Directory of Open Access Journals (Sweden)

    Hee-Soo Park

    2016-09-01

    Full Text Available Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Calcineurin is activated by increased Ca2+ levels caused by stress, and transduces signals by dephosphorylating protein substrates. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic TiO2 enrichment and quantitative mass spectrometry. The identified targets include the transactivator Crz1 as well as novel substrates whose functions are linked to P-bodies/stress granules (PBs/SGs and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and Crz1 localization and transcriptional activity are controlled by calcineurin. We previously demonstrated that thermal and other stresses trigger calcineurin localization to PBs/SGs. Several calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, contribute to stress resistance and virulence individually or in conjunction with Crz1. Moreover, Pbp1 is also required for sexual development. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings support a model whereby calcineurin controls stress and virulence, at the transcriptional level via Crz1, and post-transcriptionally by localizing to PBs/SGs and acting on targets involved in mRNA metabolism. The calcineurin targets identified in this study share little overlap with known calcineurin substrates, with the exception of Crz1. In particular, the mRNA binding proteins and PBs/SGs residents comprise a cohort of novel calcineurin targets that have not been previously linked to calcineurin in mammals or in Saccharomyces cerevisiae. This study suggests either extensive evolutionary rewiring of the calcineurin pathway, or alternatively that these novel calcineurin targets have yet

  14. A novel pAA virulence plasmid encoding toxins and two distinct variants of the fimbriae of enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Jønsson, Rie; Struve, Carsten; Boll, Erik J.

    2017-01-01

    phylogenetically distinct, strains harboring the major pilin subunits from both AAF/III and AAF/V. Whole-genome and plasmid sequencing revealed that in these six strains the agg3A and agg5A genes were located on a novel pAA plasmid variant. Moreover, the plasmid also encoded several other virulence genes including...... some not previously found on pAA plasmids. Thus, this plasmid endows the host strains with a remarkably high number of EAEC associated virulence genes hereby likely promoting strain pathogenicity....

  15. Dissemination of a highly virulent pathogen: tracking the early events that define infection.

    Directory of Open Access Journals (Sweden)

    Rodrigo J Gonzalez

    2015-01-01

    Full Text Available The series of events that occurs immediately after pathogen entrance into the body is largely speculative. Key aspects of these events are pathogen dissemination and pathogen interactions with the immune response as the invader moves into deeper tissues. We sought to define major events that occur early during infection of a highly virulent pathogen. To this end, we tracked early dissemination of Yersinia pestis, a highly pathogenic bacterium that causes bubonic plague in mammals. Specifically, we addressed two fundamental questions: (1 do the bacteria encounter barriers in disseminating to draining lymph nodes (LN, and (2 what mechanism does this nonmotile bacterium use to reach the LN compartment, as the prevailing model predicts trafficking in association with host cells. Infection was followed through microscopy imaging in addition to assessing bacterial population dynamics during dissemination from the skin. We found and characterized an unexpected bottleneck that severely restricts bacterial dissemination to LNs. The bacteria that do not pass through this bottleneck are confined to the skin, where large numbers of neutrophils arrive and efficiently control bacterial proliferation. Notably, bottleneck formation is route dependent, as it is abrogated after subcutaneous inoculation. Using a combination of approaches, including microscopy imaging, we tested the prevailing model of bacterial dissemination from the skin into LNs and found no evidence of involvement of migrating phagocytes in dissemination. Thus, early stages of infection are defined by a bottleneck that restricts bacterial dissemination and by neutrophil-dependent control of bacterial proliferation in the skin. Furthermore, and as opposed to current models, our data indicate an intracellular stage is not required by Y. pestis to disseminate from the skin to draining LNs. Because our findings address events that occur during early encounters of pathogen with the immune response

  16. The effect of surgical subspecialization on outcomes in peptic ulcer disease complicated by perforation and bleeding.

    Science.gov (United States)

    Robson, Andrew J; Richards, Jennifer M J; Ohly, Nicholas; Nixon, Stephen J; Paterson-Brown, Simon

    2008-07-01

    Emergency surgical services in Edinburgh were restructured in July 2002 to deliver subspecialist management of colorectal and upper-gastrointestinal emergencies on separate sites. The effect of emergency subspecialization on outcome from perforated and bleeding peptic ulceration was assessed. All patients admitted with complicated peptic ulceration (January 2000-February 2005) were identified from a prospectively compiled database. Perforation: 148 patients were admitted with perforation before the service reorganization (period A - 31 months) of whom 126 (85.1%) underwent surgery; 135 patients were admitted in period B (31 months) of whom 114 (84.4%) were managed operatively. The in-hospital mortality was lower in period B (14/135, 10.4%) than period A (30/148, 20.3%; P = 0.023; relative risk (RR), 0.51; 95% confidence interval (CI), 0.28-0.91). There was a significantly higher rate of gastric resection in the second half of the study (period A 1/126 vs. period B 8/114; P = 0.015; RR, 8.84; 95% CI, 1.48-54.34). Length of hospital stay was similar for both groups. Bleeding: 51 patients underwent operative management of bleeding peptic ulceration in period A and 51 in period B. There were no differences in length of stay or mortality between these two groups. Restructuring of surgical services with emergency subspecialization was associated with lower mortality for perforated peptic ulceration. Subspecialist experience, intraoperative decision-making, and improved postoperative care have all contributed to this improvement.

  17. Ubiquitous distribution of fluorescent protein in muscles of four species and two subspecies of eel (genus Anguilla).

    Science.gov (United States)

    Funahashi, Aki; Itakura, Takao; Hassanin Abeer, A I; Komatsu, Masaharu; Hayashi, Seiichi; Kaminishi, Yoshio

    2017-03-01

    In this study, the localization of fluorescent protein (FP) was characterized in the muscles of four species and two subspecies of eels Anguilla anguilla, A. australis, A. bicolor bicolor (b.), A. bicolor pacifica (p.) and A. mossambica in addition to the previously reported A. japonica. The open reading frame of each eel FP was 417 bp encoding 139 amino acid residues. The deduced amino acid sequences among the four species and two subspecies exhibited 91.4-100% identity, and belonged to the fatty-acid-binding protein (FABP) family. The gene structure of eel FPs in A. japonica, A. anguilla, A. australis, A. bicolor b., A. bicolor p. and A. mossambica have four exons and three introns, and were common to that of FABP family. The apo eel FPs expressed by Escherichia coli with recombinant eel FP genes were analysed for the fluorescent properties in the presence of bilirubin. The excitation and emission spectra of holo eel FPs had the maximum wavelengths of 490-496 and 527-530 nm, respectively. The holo eel FPs indicated that the fluorescent intensities were stronger in A. japonica and A. bicolor than in A. mossambica, A. australis and A. anguilla. The comparison of amino acid sequences revealed two common substitutions in A. mossambica, A. australis and A. anguilla with weak fluorescent intensity.

  18. Evaluation of Veterinary-Specific Interpretive Criteria for Susceptibility Testing of Streptococcus equi Subspecies with Trimethoprim-Sulfamethoxazole and Trimethoprim-Sulfadiazine.

    Science.gov (United States)

    Sadaka, Carmen; Kanellos, Theo; Guardabassi, Luca; Boucher, Joseph; Watts, Jeffrey L

    2017-01-01

    Antimicrobial susceptibility test results for trimethoprim-sulfadiazine with Streptococcus equi subspecies are interpreted based on human data for trimethoprim-sulfamethoxazole. The veterinary-specific data generated in this study support a single breakpoint for testing trimethoprim-sulfamethoxazole and/or trimethoprim-sulfadiazine with S. equi This study indicates trimethoprim-sulfamethoxazole as an acceptable surrogate for trimethoprim-sulfadiazine with S. equi. Copyright © 2016 Sadaka et al.

  19. Assessment of Listeria monocytogenes virulence in the Galleria mellonella insect larvae model.

    Science.gov (United States)

    Rakic Martinez, Mira; Wiedmann, Martin; Ferguson, Martine; Datta, Atin R

    2017-01-01

    Several animal models have been used to understand the molecular basis of the pathogenicity, infectious dose and strain to strain variation of Listeria monocytogenes. The greater wax worm Galleria mellonella, as an alternative model, provides some useful advantages not available with other models and has already been described as suitable for the virulence assessment of various pathogens including L. monocytogenes. The objectives of this study are: 1) confirming the usefulness of this model with a wide panel of Listeria spp. including non-pathogenic L. innocua, L. seeligeri, L. welshimeri and animal pathogen L. ivanovii; 2) assessment of virulence of several isogenic in-frame deletion mutants in virulence and stress related genes of L. monocytogenes and 3) virulence assessment of paired food and clinical isolates of L. monocytogenes from 14 major listeriosis outbreaks occurred worldwide between 1980 and 2015. Larvae injected with different concentrations of Listeria were incubated at 37°C and monitored over seven days for time needed to kill 50% of larvae (LT50) and to determine change of bacterial population in G. mellonella, 2 and 24 hours post-inoculation. Non-pathogenic members of Listeria and L. ivanovii showed significantly (P monocytogenes strains. Isogenic mutants of L. monocytogenes with the deletions in prfA, plcA, hly, actA and virR genes, also showed significantly (P monocytogenes strains related to non-invasive (gastroenteritis) outbreaks of listeriosis showed significantly (P < 0.05) lower virulence than isolates of the same serotype obtained from outbreaks with invasive symptoms. The difference, however, was dose and strain- dependent. No significant differences in virulence were observed among the serotype tested in this study.

  20. Virulence characterisation of Salmonella enterica isolates of differing antimicrobial resistance recovered from UK livestock and imported meat samples.

    Directory of Open Access Journals (Sweden)

    Roderick eCard

    2016-05-01

    Full Text Available Salmonella enterica is a foodborne zoonotic pathogen of significant public health concern. We have characterised the virulence and antimicrobial resistance gene content of 95 Salmonella isolates from 11 serovars by DNA microarray recovered from UK livestock or imported meat. Genes encoding resistance to sulphonamides (sul1, sul2, tetracycline (tet(A, tet(B, streptomycin (strA, strB, aminoglycoside (aadA1, aadA2, beta-lactam (blaTEM, and trimethoprim (dfrA17 were common. Virulence gene content differed between serovars; S. Typhimurium formed two subclades based on virulence plasmid presence. Thirteen isolates were selected by their virulence profile for pathotyping using the Galleria mellonella pathogenesis model. Infection with a chicken invasive S. Enteritidis or S. Gallinarum isolate, a multidrug resistant S. Kentucky, or a S. Typhimurium DT104 isolate resulted in high mortality of the larvae; notably presence of the virulence plasmid in S. Typhimurium was not associated with increased larvae mortality. Histopathological examination showed that infection caused severe damage to the Galleria gut structure. Enumeration of intracellular bacteria in the larvae 24 hours post-infection showed increases of up to 7 log above the initial inoculum and transmission electron microscopy (TEM showed bacterial replication in the haemolymph. TEM also revealed the presence of vacuoles containing bacteria in the haemocytes, similar to Salmonella containing vacuoles observed in mammalian macrophages; although there was no evidence from our work of bacterial replication within vacuoles. This work shows that microarrays can be used for rapid virulence genotyping of S. enterica and that the Galleria animal model replicates some aspects of Salmonella infection in mammals. These procedures can be used to help inform on the pathogenicity of isolates that may be antibiotic resistant and have scope to aid the assessment of their potential public and animal health risk.