WorldWideScience

Sample records for high transmittance sic

  1. Deposition of low stress, high transmittance SiC as an x-ray mask membrane using ECR plasma CVD

    CERN Document Server

    Lee, S Y; Lim, S T; Ahn, J H

    1998-01-01

    SiC for x-ray mask membrane is deposited by Electron Cyclotron Resonance plasma Chemical Vapor Deposition from SiH sub 4 /CH sub 4 Ar mixtures. Stoichiometric SiC is deposited at SiH sub 4 /CH sub 4 ratio of 0.4, deposition temperature of 600.deg.C and microwave power of 500 W with +- 5% thickness uniformity, As-deposited film has compressive residual stress, very smooth surface (31 A rms) and high optical transmittance of 90% at 633 nm wavelength. The microstructure of this film consists of the nanocrystalline particle (100 A approx 200A) embedded in amorphous matrix. Residual stress can be turned to tensile stress via Rapid Thermal Annealing in N sub 2 atmosphere, while suppressing structural change during annealing, As a result, smooth (37 A rms) SiC film with moderate tensile stress and high optical transmittance (85% at 633 nm wavelength) is obtained.

  2. High density plasma via hole etching in SiC

    International Nuclear Information System (INIS)

    Cho, H.; Lee, K.P.; Leerungnawarat, P.; Chu, S.N.G.; Ren, F.; Pearton, S.J.; Zetterling, C.-M.

    2001-01-01

    Throughwafer vias up to 100 μm deep were formed in 4H-SiC substrates by inductively coupled plasma etching with SF 6 /O 2 at a controlled rate of ∼0.6 μm min-1 and use of Al masks. Selectivities of >50 for SiC over Al were achieved. Electrical (capacitance-voltage: current-voltage) and chemical (Auger electron spectroscopy) analysis techniques showed that the etching produced only minor changes in reverse breakdown voltage, Schottky barrier height, and near surface stoichiometry of the SiC and had high selectivity over common frontside metallization. The SiC etch rate was a strong function of the incident ion energy during plasma exposure. This process is attractive for power SiC transistors intended for high current, high temperature applications and also for SiC micromachining

  3. Development of High-Temperature, High-Power, High-Efficiency, High-Voltage Converters Using Silicon Carbide (SiC) Delivery Order 0003: SiC High Voltage Converters, N-Type Ohmic Contract Development for SiC Power Devices

    National Research Council Canada - National Science Library

    Cheng, Lin; Mazzola, Michael S

    2006-01-01

    ... ? SiC interfaces and silicide top surfaces is important for producing uniformly low contact resistances to achieve device operation at high-current levels without hot spot formation and contact degradation...

  4. Localized Surface Plasmon on 6H SiC with Ag Nanoparticles

    DEFF Research Database (Denmark)

    Wei, Yi; Fadil, Ahmed; Ou, Haiyan

    2017-01-01

    ) of the emissions of the donor-acceptor pairs of the SiC substrate. Roomtemperature measurements of photoluminescence (PL), transmittance and time-resolved photoluminescence (TRPL) were applied to characterize the LSP resonances. Through the finitedifference time-domain (FDTD) simulation of the LSP resonance...

  5. High temperature oxidation behavior of SiC coating in TRISO coated particles

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Bing; Zhang, Kaihong; Liu, Malin; Shao, Youlin; Tang, Chunhe

    2014-01-01

    Highlights: • High temperature oxidation tests of SiC coating in TRISO particles were carried out. • The dynamic oxidation process was established. • Oxidation mechanisms were proposed. • The existence of silicon oxycarbides at the SiO 2 /SiC interface was demonstrated. • Carbon was detected at the interface at high temperatures and long oxidation time. - Abstract: High temperature oxidation behavior of SiC coatings in tristructural-isotropic (TRISO) coated particles is crucial to the in-pile safety of fuel particles for a high temperature gas cooled reactor (HTGR). The postulated accident condition of air ingress was taken into account in evaluating the reliability of the SiC layer. Oxidation tests of SiC coatings were carried out in the ranges of temperature between 800 and 1600 °C and time between 1 and 48 h in air atmosphere. Based on the microstructure evolution of the oxide layer, the mechanisms and kinetics of the oxidation process were proposed. The existence of silicon oxycarbides (SiO x C y ) at the SiO 2 /SiC interface was demonstrated by X-ray photospectroscopy (XPS) analysis. Carbon was detected by Raman spectroscopy at the interface under conditions of very high temperatures and long oxidation time. From oxidation kinetics calculation, activation energies were 145 kJ/mol and 352 kJ/mol for the temperature ranges of 1200–1500 °C and 1550–1600 °C, respectively

  6. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C

  7. Growth and characterization of high-purity SiC single crystals

    Science.gov (United States)

    Augustine, G.; Balakrishna, V.; Brandt, C. D.

    2000-04-01

    High-purity SiC single crystals with diameter up to 50 mm have been grown by the physical vapor transport method. Finite element analysis was used for thermal modeling of the crystal growth cavity in order to reduce stress in the grown crystal. Crystals are grown in high-purity growth ambient using purified graphite furniture and high-purity SiC sublimation sources. Undoped crystals up to 50 mm in diameter with micropipe density less than 100 cm -2 have been grown using this method. These undoped crystals exhibit resistivities in the 10 3 Ω cm range and are p-type due to the presence of residual acceptor impurities, mainly boron. Semi-insulating SiC material is obtained by doping the crystal with vanadium. Vanadium has a deep donor level located near the middle of the band gap, which compensates the residual acceptor resulting in semi-insulating behavior.

  8. High Performance Design of 100Gb/s DPSK Optical Transmitter

    DEFF Research Database (Denmark)

    Das, Bhagwan; Abdullah, M.F.L; Shah, Nor Shahihda Mohd

    2016-01-01

    and optical transmitter have taken plenty of time for transmitting signal. When proposed design is operated at 1 GHz, 5 GHz, 10 GHz and 20 GHz using time constraint technique, it is observed that among all these frequencies, at 10 GHz high performance output is achieved for designed optical transmitter....... This high performance design of optical transmitter has zero timing error, low timing score and high slack time due to synchronization between input data and clock frequency. It is also determined that 99% timing score is reduced in comparison with 1 GHz frequency that has high jitters, high timing error......, high time score and low slack time. The high performance design is realized without disturbing actual bandwidth, power consumption and other parameters of the design. The proposed high performance design of 100Gb/s optical transmitter can be used with existing optical communication system to develop...

  9. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang

    2015-01-23

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  10. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang; Ying, Pengzhan; Wang, Lin; Wei, Guodong; Gao, Fengmei; Zheng, Jinju; Shang, Minhui; Yang, Zuobao; Yang, Weiyou; Wu, Tao

    2015-01-01

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  11. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  12. Switching Performance Evaluation of Commercial SiC Power Devices (SiC JFET and SiC MOSFET) in Relation to the Gate Driver Complexity

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    and JFETs. The recent introduction of SiC MOSFET has proved that it is possible to have highly performing SiC devices with a minimum gate driver complexity; this made SiC power devices even more attractive despite their device cost. This paper presents an analysis based on experimental results...... of the switching losses of various commercially available Si and SiC power devices rated at 1200 V (Si IGBTs, SiC JFETs and SiC MOSFETs). The comparison evaluates the reduction of the switching losses which is achievable with the introduction of SiC power devices; this includes analysis and considerations...

  13. SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures

    Science.gov (United States)

    Abdollahi, Alireza; Ehsani, Naser; Valefi, Zia; Khalifesoltani, Ali

    2017-05-01

    A SiC nanoparticle toughened-SiC/MoSi2-SiC functionally graded oxidation protective coating on graphite was prepared by reactive melt infiltration (RMI) at 1773 and 1873 K under argon atmosphere. The phase composition and anti-oxidation behavior of the coatings were investigated. The results show that the coating was composed of MoSi2, α-SiC and β-SiC. By the variations of Gibbs free energy (calculated by HSC Chemistry 6.0 software), it could be suggested that the SiC coating formed at low temperatures by solution-reprecipitation mechanism and at high temperatures by gas-phase reactions and solution-reprecipitation mechanisms simultaneously. SiC nanoparticles could improve the oxidation resistance of SiC/MoSi2-SiC multiphase coating. Addition of SiC nanoparticles increases toughness of the coating and prevents spreading of the oxygen diffusion channels in the coating during the oxidation test. The mass loss and oxidation rate of the SiC nanoparticle toughened-SiC/MoSi2-SiC-coated sample after 10-h oxidation at 1773 K were only 1.76% and 0.32 × 10-2 g/cm3/h, respectively.

  14. High efficiency three-phase power factor correction rectifier using SiC switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper presents designing procedure of a high efficiency 5 kW silicon-carbide (SiC) based threephase power factor correction (PFC). SiC switches present low capacitive switching loss compared to the alternative Si switches. Therefore, the switching frequency can be increased and hence the siz...

  15. Palladium transport in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2012-01-01

    Highlights: ► We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. ► The high temperature mobility of palladium silicides within polycrystalline SiC was studied. ► Corrosion of SiC by Pd was seen in all cases. ► The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. ► The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd 2 Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  16. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    Science.gov (United States)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-11-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  17. High efficiency battery converter with SiC devices for residential PV systems

    DEFF Research Database (Denmark)

    Pham, Cam; Teodorescu, Remus; Kerekes, Tamas

    2013-01-01

    The demand for high efficiency and higher power density is a challenge for Si-based semiconductors due to the physical characteristics of material. These can be overcome by employing wide-band-gap materials like SiC. This paper compares a second generator SiC MOSFETs against a normally-on Trench...

  18. Palladium transport in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. Black-Right-Pointing-Pointer The high temperature mobility of palladium silicides within polycrystalline SiC was studied. Black-Right-Pointing-Pointer Corrosion of SiC by Pd was seen in all cases. Black-Right-Pointing-Pointer The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. Black-Right-Pointing-Pointer The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd{sub 2}Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  19. Behaviors of SiC fibers at high temperature

    International Nuclear Information System (INIS)

    Colin, C.; Falanga, V.; Gelebart, L.

    2010-01-01

    On the one hand, considering the improvements of mechanical and thermal behaviours of the last generation of SiC fibers (Hi-Nicalon S, Tyranno SA3); on the other hand, regarding physical and chemical properties and stability under irradiation, SiC/SiC composites are potential candidates for nuclear applications in advanced fission and fusion reactors. CEA must characterize and optimize these composites before their uses in reactors. In order to study this material, CEA is developing a multi-scale approach by modelling from fibers to bulk composite specimen: fibres behaviours must be well known in first. Thus, CEA developed a specific tensile test device on single fibers at high temperature, named MecaSiC. Using this device, we have already characterized the thermoelastic and thermoelectric behaviours of SiC fibers. Additional results about the plastic properties at high temperatures were also obtained. Indeed, we performed tensile tests between 1200 degrees C up to 1700 degrees C to characterize this plastic behaviour. Some thermal annealing, up to 3 hours at 1700 degrees C, had been also performed. Furthermore, we compare the mechanical behaviours with the thermal evolution of the electric resistivity of these SiC fibers. Soon, MecaSiC will be coupled to a new charged particle accelerator. Thus, in this configuration, we will be able to study in-situ irradiation effects on fibre behaviours, as swelling or creep for example

  20. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  1. New High-Performance SiC Fiber Developed for Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.; Yun, Hee Mann

    2002-01-01

    Sylramic-iBN fiber is a new type of small-diameter (10-mm) SiC fiber that was developed at the NASA Glenn Research Center and was recently given an R&D 100 Award for 2001. It is produced by subjecting commercially available Sylramic (Dow Corning, Midland, MI) SiC fibers, fabrics, or preforms to a specially designed high-temperature treatment in a controlled nitrogen environment for a specific time. It can be used in a variety of applications, but it currently has the greatest advantage as a reinforcement for SiC/SiC ceramic composites that are targeted for long-term structural applications at temperatures higher than the capability of metallic superalloys. The commercial Sylramic SiC fiber, which is the precursor for the Sylramic-iBN fiber, is produced by Dow Corning, Midland, Michigan. It is derived from polymers at low temperatures and then pyrolyzed and sintered at high temperatures using boron-containing sintering aids (ref. 1). The sintering process results in very strong fibers (>3 GPa) that are dense, oxygen-free, and nearly stoichiometric. They also display an optimum grain size that is beneficial for high tensile strength, good creep resistance, and good thermal conductivity (ref. 2). The NASA-developed treatment allows the excess boron in the bulk to diffuse to the fiber surface where it reacts with nitrogen to form an in situ boron nitride (BN) coating on the fiber surface (thus the product name of Sylramic-iBN fiber). The removal of boron from the fiber bulk allows the retention of high tensile strength while significantly improving creep resistance and electrical conductivity, and probably thermal conductivity since the grains are slightly larger and the grain boundaries cleaner (ref. 2). Also, as shown in the graph, these improvements allow the fiber to display the best rupture strength at high temperatures in air for any available SiC fiber. In addition, for CMC applications under oxidizing conditions, the formation of an in situ BN surface layer

  2. High temperature flow behaviour of SiC reinforced lithium

    Indian Academy of Sciences (India)

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline ...

  3. Origin of the high p-doping in F intercalated graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2011-08-04

    The atomic and electronic structures of F intercalated epitaxialgraphene on a SiC(0001) substrate are studied by first-principles calculations. A three-step fluorination process is proposed. First, F atoms are intercalated between the graphene and the SiC, which restores the Dirac point in the band structure. Second, saturation of the topmost Si dangling bonds introduces p-doping up to 0.37 eV. Third, F atoms bond covalently to the graphene to enhance the p-doping. Our model explains the highly p-doped state of graphene on SiC after fluorination [A. L. Walter et al., Appl. Phys. Lett. 98, 184102 (2011)].

  4. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  5. High Temperature Memories in SiC Technology

    OpenAIRE

    Ekström, Mattias

    2014-01-01

    This thesis is part of the Working On Venus (WOV) project. The aim of the project is to design electronics in silicon carbide (SiC) that can withstand the extreme surface environmen  of Venus. This thesis investigates some possible computer memory technologies that could survive on the surface of Venus. A memory must be able to function at 460 °C and after a total radiation dose of at least 200 Gy (SiC). This thesis is a literature survey. The thesis covers several Random-Access Memory (RAM) ...

  6. High power RF performance test of an improved SiC load

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.H.; Kim, S.H.; Park, Y.J. [Pohang Accelerator Lab., Pohang Inst. of Sceince and Technology, Pohang (KR)] [and others

    1998-11-01

    Two prototypes of SiC loads sustaining a maximum peak power of 50 MW were fabricated by Nihon Koshuha Co. in Japan. The PAL conducted the high power RF performance tests of SiC loads to verify the operation characteristics for the application to the PLS Linac. The in-situ facility for the K 12 module was used for the test, which consists of a modulator and klystron system, waveguide network, vacuum and cooling system, and RF analyzing equipment. As the test results, no breakdown appeared up to 50 MW peak power of 1 {mu}s pulse width at a repetition rate of 50 Hz. However, as the peak power increased above 20 MW at 4 {mu}s with 10 Hz, the breakdown phenomena has been observed. Analysing the test results with the current operation power level of PLS Linac, it is confirmed that the SiC loads well satisfy the criteria of the PLS Linac operation. (author)

  7. Effect of Reactant Concentration on the Microstructure of SiC Nano wires Grown In Situ within SiC Fiber Preforms

    International Nuclear Information System (INIS)

    Kim, Weon Ju; Kang, Seok Min; Park, Ji Yeon; Ryu, Woo Seog

    2006-01-01

    Silicon carbide fiber-reinforced silicon carbide matrix (SiC f /SiC) composites are considered as advanced materials for control rods and other in-core components of high-temperature gas cooled reactors. Although the carbon fiber-reinforced carbon matrix (C f /C) composites are more mature and have advantages in cost, manufacturability and some thermomechanical properties, the SiC f /SiC composites have a clear advantage in irradiation stability, specifically a lower level of swelling and retention of mechanical properties. This offers a lifetime component for control rod application to HTGRs while the Cf/C composites would require 2-3 replacements over the reactor lifetime. In general, the chemical vapor infiltration (CVI) technique has been used most widely to produce SiC f /SiC composites. Although the technique produces a highly pure SiC matrix, it requires a long processing time and inevitably contains large interbundle pores. The present authors have recently developed 'whisker growing-assisted process,' in which one-dimensional SiC nano structures with high aspect ratios such as whiskers, nano wires and nano rods are introduced into the fiber preform before the matrix infiltration step. This novel method can produce SiC f /SiC composites with a lower porosity and an uniform distribution of pores when compared with the conventional CVI. This would be expected to increase mechanical and thermal properties of the SiC f /SiC composites. In order to take full advantage of the whisker growing strategy, however, a homogeneous growth of long whiskers is required. In this study, we applied the atmospheric pressure CVI process without metallic catalysts for the growth of SiC nano wires within stacked SiC fiber fabrics. We focused on the effect of the concentration of a reactant gas on the growth behavior and microstructures of the SiC nano wires and discussed a controlling condition for the homogenous growth of long SiC nano wires

  8. Micromechanics of fiber pull-out and crack bridging in SCS-6 SiC- CVD SiC composite system at high-temperature

    International Nuclear Information System (INIS)

    El-Azab, A.; Ghoniem, N.M.

    1993-01-01

    A micro mechanical model is developed to study fiber pull-out and crack bridging in fiber reinforced SiC-SiC composites with time dependent thermal creep. By analyzing the creep data for monolithic CVD SiC (matrix) and the SCS-6 SiC fibers in the temperature range 900-1250 degrees C, it is found that the matrix creep rates can be ignored in comparison to those of fibers. Two important relationships are obtained: (1) a time dependent relation between the pull-out stress and the relative sliding distance between the fiber and matrix for the purpose of analyzing pull-out experiments, and (2) the relation between the bridging stress and the crack opening displacement to be used in studying the mechanics and stability of matrix crack bridged by fibers at high temperatures. The present analysis can also be applied to Nicalon-reinforced CVD SiC matrix system since the Nicalon fibers exhibit creep characteristics similar to those of the SCS-6 fibers

  9. High-temperature mechanical and material design for SiC composites

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1992-01-01

    Silicon Carbide (SiC) fiber reinforced composites (FRC's) are strong potential candidate structural and high heat flux materials for fusion reactors. During this past decade, they have been vigorously developed for use in aerospace and transportation applications. Recent fusion reactor systems studies, such as ARIES, have concluded that further development of SiC composites will result in significant safety, operational, and waste disposal advantages for fusion systems. A concise discussion of the main material and design issues related to the use of SiC FRC's as structural materials in future fusion systems is given in this paper. The status of material processing of SiC/SiC composites is first reviewed. The advantages and shortcomings of the leading processing technology, known as Chemical Vapor Infiltration are particularly highlighted. A brief outline of the design-relevant physical, mechanical, and radiation data base is then presented. SiC/SiC FRC's possess the advantage of increased apparent toughness under mechanical loading conditions. This increased toughness, however, is associated with the nucleation and propagation of small crack patterns in the structure. Design approaches and failure criteria under these conditions are discussed

  10. SiC Power MOSFET with Improved Gate Dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, Nick M. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Spencer, Michael G. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Chandrashekhar, Chandra M.V. S. [Structured Materials Industries, Inc., Piscataway, NJ (United States)

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  11. Research on SiC Whisker Prepared by H-PSO

    Directory of Open Access Journals (Sweden)

    WANG Yao

    2017-10-01

    Full Text Available SiC whiskers were prepared on the matrix of graphite by using high hydrogenous silicone oil(PSO as raw material. The effect of surface conditions of graphite and heating temperature on the growth of SiC whisker was mainly studied in this paper. The main factor which affects the nucleation and growth of SiC whisker is the heating temperature, with the heating temperature rising, the production of SiC whisker increases. The surface condition of graphite matrix also influences the growth of SiC whisker. With the nucleation points provided by graphite matrix defects increasing, the production of SiC whisker incleases and SiC whisker starts to overlap with each other. The formation process of SiC whisker includes two steps:nucleation and growth. SiC whisker nucleates at low temperature and grows at high temperature, which follows the VLS (vapor-liquid-solid growth mechanism.

  12. High Temperature Telemetry Transmitter for Venus Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed S-band telemetry transmitter will operate in the exterior Venusian corrosive, high pressure, 460oC ambient atmosphere without being contained in a...

  13. High Temperature Telemetry Transmitter for Venus Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed S-band telemetry transmitter will operate in the exterior Venusian high pressure, 465?aC ambient atmosphere without being contained in a thermally...

  14. Simulation and design of omni-directional high speed multibeam transmitter system

    Science.gov (United States)

    Tang, Jaw-Luen; Jui, Ping-Chang; Wang, Sun-Chen

    2006-09-01

    For future high speed indoor wireless communication, diffuse wireless optical communications offer more robust optical links against shadowing than line-of-sight links. However, their performance may be degraded by multipath dispersion resulting from surface reflections. We have developed a multipath diffusive propagation model capable of providing channel impulse responses data. It is aimed to design and simulate any multi-beam transmitter under a variety of indoor environments. In this paper, a multi-beam transmitter system with semi-sphere structure is proposed to combat the diverse effects of multipath distortion albeit, at the cost of increased laser power and cost. Simulation results of multiple impulse responses showed that this type of multi-beam transmitter can significantly improve the performance of BER suitable for high bit rate application. We present the performance and simulation results for both line-of-sight and diffuse link configurations.

  15. Laser processing for bevel termination of high voltage pn junction in SiC

    International Nuclear Information System (INIS)

    Kubiak, A; Ruta, Ł; Rosowski, A; French, P

    2016-01-01

    Proper edge termination of the p-n junction in silicon carbide is a key requirement in the fabrication of discrete devices able to withstand high voltages in reverse polarization. Due to the hardness of SiC the creation of the bevel termination remains difficult using mechanical machining. The use of laser beam sources with medium wavelength (532 nm) gives new possibilities in the machining of the silicon carbide. The paper presents the fabrication of the bevel termination structure in SiC using a green DPSS laser equipped with scanner and dedicated rotating sample holder. Characterization of the resulting structures proves the high potential of the proposed approach. (paper)

  16. Phenomenological inelastic constitutive equations for SiC and SiC fibers under irradiation

    International Nuclear Information System (INIS)

    El-Azab, A.; Ghoniem, N.M.

    1994-01-01

    Experimental data on irradiation-induced dimensional changes and creep in β-SiC and SiC fibers is analyzed, with the objective of studying the constitutive behavior of these materials under high-temperature irradiation. The data analysis includes empirical representation of irradiation-induced dimensional changes in SiC matrix and SiC fibers as function of time and irradiation temperature. The analysis also includes formulation of simple scaling laws to extrapolate the existing data to fusion conditions on the basis of the physical mechanisms of radiation effects on crystalline solids. Inelastic constitutive equations are then developed for SCS-6 SiC fibers, Nicalon fibers and CVD SiC. The effects of applied stress, temperature, and irradiation fields on the deformation behavior of this class of materials are simultaneously represented. Numerical results are presented for the relevant creep functions under the conditions of the fusion reactor (ARIES IV) first wall. The developed equations can be used in estimating the macro mechanical properties of SiC-SiC composite systems as well as in performing time-dependent micro mechanical analysis that is relevant to slow crack growth and fiber pull-out under fusion conditions

  17. Design of an Omnidirectional Multibeam Transmitter for High-Speed Indoor Wireless Communications

    Directory of Open Access Journals (Sweden)

    Tang Jaw-Luen

    2010-01-01

    Full Text Available For future high speed indoor wireless communication, diffuse wireless optical communications offer more robust optical links against shadowing than line-of-sight links. However, their performance may be degraded by multipath dispersion arising from surface reflections. We have developed a multipath diffusive propagation model capable of providing channel impulse responses data. It is aimed to design and simulate any multibeam transmitter under a variety of indoor environments. In this paper, a multi-beam transmitter system associated with hemisphere structure is proposed to fight against the diverse effects of multipath distortion albeit, at the cost of increased laser power and cost. Simulation results of multiple impulse responses showed that this type of multi-beam transmitter can significantly improve the performance of BER suitable for high bit rate application. We present the performance and simulation results for both line-of-sight and diffuse link configurations. We propose a design of power radiation pattern for a transmitter in achieving uniform and full coverage of power distributions for diffuse indoor optical wireless systems.

  18. Matrix densification of SiC composites by sintering process

    International Nuclear Information System (INIS)

    Kim, Young-Wook; Jang, Doo-Hee; Eom, Jung-Hye; Chun, Yong-Seong

    2007-02-01

    The objectives of this research are to develop a process for dense SiC fiber-SiC composites with a porosity of 5% or less and to develop high-strength SiC fiber-SiC composites with a strength of 500 MPa or higher. To meet the above objectives, the following research topics were investigated ; new process development for the densification of SiC fiber-SiC composites, effect of processing parameters on densification of SiC fiber-SiC composites, effect of additive composition on matrix microstructure, effects of additive composition and content on densification of SiC fiber-SiC composites, mechanical properties of SiC fiber-SiC composites, effect of fiber coating on densification and strength of SiC fiber-SiC composites, development of new additive composition. There has been a great deal of progress in the development of technologies for the processing and densification of SiC fiber-SiC composites and in better understanding of additive-densification-mechanical property relations as results of this project. Based on the progress, dense SiC fiber-SiC composites (≥97%) and high strength SiC fiber-SiC composites (≥600 MPa) have been developed. Development of 2D SiC fiber-SiC composites with a relative density of ≥97% and a strength of ≥600 MPa can be counted as a notable achievement

  19. Packaging Technologies for 500C SiC Electronics and Sensors

    Science.gov (United States)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  20. SiC Seeded Crystal Growth

    Science.gov (United States)

    Glass, R. C.; Henshall, D.; Tsvetkov, V. F.; Carter, C. H., Jr.

    1997-07-01

    The availability of relatively large (30 mm) SiC wafers has been a primary reason for the renewed high level of interest in SiC semiconductor technology. Projections that 75 mm SiC wafers will be available in 2 to 3 years have further peaked this interest. Now both 4H and 6H polytypes are available, however, the micropipe defects that occur to a varying extent in all wafers produced to date are seen by many as preventing the commercialization of many types of SiC devices, especially high current power devices. Most views on micropipe formation are based around Frank's theory of a micropipe being the hollow core of a screw dislocation with a huge Burgers vector (several times the unit cell) and with the diameter of the core having a direct relationship with the magnitude of the Burgers vector. Our results show that there are several mechanisms or combinations of these mechanisms which cause micropipes in SiC boules grown by the seeded sublimation method. Additional considerations such as polytype variations, dislocations and both impurity and diameter control add to the complexity of producing high quality wafers. Recent results at Cree Research, Inc., including wafers with micropipe densities of less than 1 cm - 2 (with 1 cm2 areas void of micropipes), indicate that micropipes will be reduced to a level that makes high current devices viable and that they may be totally eliminated in the next few years. Additionally, efforts towards larger diameter high quality substrates have led to production of 50 mm diameter 4H and 6H wafers for fabrication of LEDs and the demonstration of 75 mm wafers. Low resistivity and semi-insulating electrical properties have also been attained through improved process and impurity control. Although challenges remain, the industry continues to make significant progress towards large volume SiC-based semiconductor fabrication.

  1. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business of Innovation Research Phase I proposal seeks to investigate and prove the feasibility of developing highly efficient, ultra-lightweight SiC...

  2. Influence of defects in SiC (0001) on epitaxial graphene

    International Nuclear Information System (INIS)

    Guo Yu; Guo Li-Wei; Lu Wei; Huang Jiao; Jia Yu-Ping; Sun Wei; Li Zhi-Lin; Wang Yi-Fei

    2014-01-01

    Defects in silicon carbide (SiC) substrate are crucial to the properties of the epitaxial graphene (EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC (0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG. (rapid communication)

  3. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  4. Improved thermoelectric performance of CdO by adding SiC fibers versus by adding SiC nanoparticles inclusions

    Science.gov (United States)

    Liang, S.; Li, Longjiang

    2018-03-01

    We report the improved thermoelectric (TE) performance of CdO by alloying with SiC fibers. In contrast to the lowered thermoelectric figure of merit (ZT) in a CdO matrix with SiC nanoparticle composites, an appreciable ZT value increment of about 36% (from 0.32 to 0.435) at 1000 K was obtained in the CdO matrix with SiC fiber composites. Both kinds of composites show substantially decreased thermal conductivity due to additional phonon scattering by the nano-inclusions. Compared to the very high electrical resistivity (ρ ˜ 140 μΩ m) for 5 at. % SiC nanoparticle composites, SiC fiber composites favorably maintained a very low ρ (˜30 μΩ m) even with 5 at. % SiC at 1000 K. We think the substantial difference of specific surface areas of these two nano-inclusions (30 m2/g for fibers vs 300 m2/g for nanoparticles) might play a crucial role to fine tune the TE performance. Larger interface could be inductive to diffusion and electron acceptor activation, which affect carrier mobility considerably. This work might hint at an alternative approach to improve TE materials' performance.

  5. SiC as an oxidation-resistant refractory material. Pt. 1

    International Nuclear Information System (INIS)

    Schlichting, J.

    1979-01-01

    Uses his own investigations and gives a literature survey on the oxidation and corrosion behaviour of SiC (in the form of a pure SiC powder, hot-pressed and reaction-sintered materials). The excellent stability of SiC in oxidizing atmosphere is due to the development of protective SiO 2 coatings. Any changes in these protective coatings (e.g. due to impurities with corrosive media, high porosity of SiC, etc.) lead in most cases to increased rates of oxidation and thus restrict the field of application of SiC. (orig.) [de

  6. Temperature Dependence of Mechanical Properties of TRISO SiC Coatings

    International Nuclear Information System (INIS)

    Kim, Do Kyung; Park, Kwi Il; Lee, Hyeon Keun; Seong, Young Hoon; Lee, Seung Jun

    2009-04-01

    SiC coating layer has been introduced as protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to excellent mechanical stability at high temperature. It is important to study for high temperature stability in SiC coating layers, because TRISO fuel particles were operating at high temperature around 1000 .deg. C. In this study, the nanoindentation test and micro tensile test were conducted in order to measure the mechanical properties of SiC coating layers at elevated temperature. SiC coating film was fabricated on the carbon substrate using chemical vapor deposition process with different microstructures and thicknesses. Nanoindentation test was performed for the analysis of the hardness, modulus and creep properties up to 500 .deg. C. Impression creep method applied to nanoindentation and creep properties of SiC coating layers were characterized by nanoindentation creep test. The fracture strength of SiC coating layers was measured by the micro tensile method at room temperature and 500 .deg. C. From the results, we can conclude that the hardness and fracture strength are decreased with temperature and no significant change in the modulus is observed with increase in temperature. The deformation mechanism for indentation creep and creep rate changes as the testing temperature increased

  7. Effects of SiC amount on phase compositions and properties of Ti3SiC2-based composites

    Institute of Scientific and Technical Information of China (English)

    蔡艳芝; 殷小玮; 尹洪峰

    2015-01-01

    The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%−30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/TiC−SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15%than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/TiC−SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78μm, was near a half of that of T, 2715μm, at 1500 °C for 20 h. Ti3SiC2/TiC composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC−SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20%SiC added amount.

  8. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanis...

  9. SiC for microwave power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, S.; Siergiej, R.R.; Clarke, R.C.; Agarwal, A.K.; Brandt, C.D. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-16

    The advantages of SiC for high power, microwave devices are discussed. The design considerations, fabrication, and experimental results are described for SiC MESFETs and SITs. The highest reported f{sub max} for a 0.5 {mu}m MESFET using semi-insulating 4H-SiC is 42 GHz. These devices also showed a small signal gain of 5.1 dB at 20 GHz. Other 4H-SiC MESFETs have shown a power density of 3.3 W/mm at 850 MHz. The largest SiC power transistor reported is a 450 W SIT measured at 600 MHz. The power output density of this SIT is 2.5 times higher than that of comparable silicon devices. SITs have been designed to operate as high as 3.0 GHz, with a 3 cm periphery part delivering 38 W of output power. (orig.) 28 refs.

  10. Origin of the high p-doping in F intercalated graphene on SiC

    KAUST Repository

    Cheng, Yingchun; Kaloni, T. P.; Huang, G. S.; Schwingenschlö gl, Udo

    2011-01-01

    and the SiC, which restores the Dirac point in the band structure. Second, saturation of the topmost Si dangling bonds introduces p-doping up to 0.37 eV. Third, F atoms bond covalently to the graphene to enhance the p-doping. Our model explains the highly p

  11. Bulk Thermoelectric Materials Reinforced with SiC Whiskers

    Science.gov (United States)

    Akao, Takahiro; Fujiwara, Yuya; Tarui, Yuki; Onda, Tetsuhiko; Chen, Zhong-Chun

    2014-06-01

    SiC whiskers have been incorporated into Zn4Sb3 compound as reinforcements to overcome its extremely brittle nature. The bulk samples were prepared by either hot-extrusion or hot-pressing techniques. The obtained products containing 1 vol.% to 5 vol.% SiC whiskers were confirmed to exhibit sound appearance, high density, and fine-grained microstructure. Mechanical properties such as the hardness and fracture resistance were improved by the addition of SiC whiskers, as a result of dispersion strengthening and microstructural refinement induced by a pinning effect. Furthermore, crack deflection and/or bridging/pullout mechanisms are invoked by the whiskers. Regarding the thermoelectric properties, the Seebeck coefficient and electrical resistivity values comparable to those of the pure compound are retained over the entire range of added whisker amount. However, the thermal conductivity becomes large with increasing amount of SiC whiskers because of the much higher conductivity of SiC relative to the Zn4Sb3 matrix. This results in a remarkable degradation of the dimensionless figure of merit in the samples with addition of SiC whiskers. Therefore, the optimum amount of SiC whiskers in the Zn4Sb3 matrix should be determined by balancing the mechanical properties and thermoelectric performance.

  12. Deep Reactive Ion Etching (DRIE) of High Aspect Ratio SiC Microstructures using a Time-Multiplexed Etch-Passivate Process

    Science.gov (United States)

    Evans, Laura J.; Beheim, Glenn M.

    2006-01-01

    High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.

  13. Contribution of x-ray topography and high-resolution diffraction to the study of defects in SiC

    International Nuclear Information System (INIS)

    Dudley, Michael; Huang Xianrong; Vetter, William M

    2003-01-01

    A short review is presented of the various synchrotron white beam x-ray topography (SWBXT) imaging techniques developed for characterization of silicon carbide (SiC) crystals and thin films. These techniques, including back-reflection topography, reticulography, transmission topography, and a set of section topography techniques, are demonstrated to be particularly powerful for imaging hollow-core screw dislocations (micropipes) and closed-core threading screw dislocations, as well as other defects, in SiC. The geometrical diffraction mechanism commonly underlying these imaging processes is emphasized for understanding the nature and origins of these defects. Also introduced is the application of SWBXT combined with high-resolution x-ray diffraction techniques to complete characterization of 3C/4H or 3C/6H SiC heterostructures, including polytype identification, 3C variant mapping, and accurate lattice mismatch measurements

  14. SiC nanoparticles as potential carriers for biologically active substances

    Science.gov (United States)

    Guevara-Lora, Ibeth; Czosnek, Cezary; Smycz, Aleksandra; Janik, Jerzy F.; Kozik, Andrzej

    2009-01-01

    Silicon carbide SiC thanks to its many advantageous properties has found numerous applications in diverse areas of technology. In this regard, its nanosized forms often with novel properties have been the subject of intense research in recent years. The aim of this study was to investigate the binding of biologically active substances onto SiC nanopowders as a new approach to biomolecule immobilization in terms of their prospective applications in medicine or for biochemical detection. The SiC nanoparticles were prepared by a two-stage aerosol-assisted synthesis from neat hexamethyldisiloxane. The binding of several proteins (bovine serum albumin, high molecular weight kininogen, immunoglobulin G) on SiC particle surfaces was demonstrated at the levels of 1-2 nanograms per mg of SiC. These values were found to significantly increase after suitable chemical modifications of nanoparticle surfaces (by carbodiimide or 3-aminopropyltrietoxysilane treatment). The study of SiC biocompatibility showed a lack of cytotoxicity against macrophages-like cells below the concentration of 1 mg nanoparticles per mL. In summary, we demonstrated the successful immobilization of the selected substances on the SiC nanoparticles. These results including the cytotoxicity study make nano-SiC highly attractive for potential applications in medicine, biotechnology or molecular detection.

  15. [Application of Raman spectroscopy to investigation of CVD-SIC fiber].

    Science.gov (United States)

    Liu, Bin; Yang, Yan-Qing; Luo, Xian; Huang, Bin

    2011-11-01

    The CVD-SiC fiber was studied by using laser Raman spectra. It was found that the sharp TO peak exists in the first SiC deposit layer, indicating the larger SiC grains. But the second SiC deposit layer is with small grains. Raman peak of carbon and silicon was detected respectively in the first and second layer. Compared with that of the single SiC fiber, the TO peaks move to the high wave number for the SiC fiber in SiC(f)/Ti-6Al-4V composite. It indicates that the compressive thermal residual stress is present in the SiC fiber during the fabrication of the composite because of the mismatched coefficient of thermal expansion between Ti-6Al-4V matrix and SiC fiber. The average thermal residual stress of the SiC fiber in SiC(f)/Ti-6Al-4V composite was calculated to be 318 MPa and the residual stress in first deposit layer is 436 MPa which is much higher than that in the second layer.

  16. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  17. Comparative Study of Si and SiC MOSFETs for High Voltage Class D Audio Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Silicon (Si) Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) are traditional utilised in class D audio amplifiers. It has been proposed to replace the traditional inefficient electrodynamic transducer with the electrostatic transducer. This imposes new high voltage requirements...... on the MOSFETs of class D amplifiers, and significantly reduces the selection of suitable MOSFETs. As a consequence it is investigated, if Silicon-Carbide (SiC) MOSFETs could represent a valid alternative. The theory of pulse timing errors are revisited for the application of high voltage and capactive loaded...... class D amplifiers. It is shown, that SiC MOSFETs can compete with Si MSOFETs in terms of THD. Validation is done using simulations and a 500 V amplifier driving a 100 nF load. THD+N below 0.3 % is reported...

  18. Determining the fracture resistance of advanced SiC fiber reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Nozawa, T.; Katoh, Y.; Kishimoto, H.

    2007-01-01

    Full text of publication follows: One of the perceived advantages for highly-crystalline and stoichiometric silicon carbide (SiC) and SiC composites, e.g., advanced SiC fiber reinforced chemically-vapor-infiltrated (CVI) SiC matrix composites, is the retention of fast fracture properties after neutron irradiation at high-temperatures (∼1000 deg. C) to intermediate-doses (∼15 dpa). Accordingly, it has been clarified that the maximum allowable stress (or strain) limit seems unaffected in certain irradiation conditions. Meanwhile, understanding the mechanism of crack propagation from flaws, as potential weakest link to cause composite failure, is somehow lacking, despite that determining the strength criterion based on the fracture mechanics will eventually become important considering the nature of composites' fracture. This study aims to evaluate crack propagation behaviors of advanced SiC/SiC and to provide fundamentals on fracture resistance of the composites to define the strength limit for the practical component design. For those purposes, the effects of irreversible energies related to interfacial de-bonding, fiber bridging, and microcrack forming on the fracture resistance were evaluated. Two-dimensional SiC/SiC composites were fabricated by CVI or nano-infiltration and transient-eutectic-phase (NITE ) methods. Hi-Nicalon TM Type-S or Tyranno TM -SA fibers were used as reinforcements. In-plane mode-I fracture resistance was evaluated by the single edge notched bend technique. The key finding is the continuous Load increase with the crack growth for any types of advanced composites, while many studies specified the gradual load decrease for the conventional composites once the crack initiates. This high quasi-ductility appeared due primarily to high friction (>100 MPa) at the fiber/matrix interface using rough SiC fibers. The preliminary analysis based on the linear elastic fracture mechanics, which does not consider the effects of irreversible energy

  19. InP-based photonic integrated circuit platform on SiC wafer.

    Science.gov (United States)

    Takenaka, Mitsuru; Takagi, Shinichi

    2017-11-27

    We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 μm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO 2 /Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.

  20. SYLRAMICTM SiC fibers for CMC reinforcement

    International Nuclear Information System (INIS)

    Jones, Richard E.; Petrak, Dan; Rabe, Jim; Szweda, Andy

    2000-01-01

    Dow Corning researchers developed SYLRAMIC SiC fiber specifically for use in ceramic-matrix composite (CMC) components for use in turbine engine hot sections where excellent thermal stability, high strength and high thermal conductivity are required. This is a stoichiometric SiC fiber with a high degree of crystallinity, high tensile strength, high tensile modulus and good thermal conductivity. Owing to the small diameter, this textile-grade fiber can be woven into 2-D and 3-D structures for CMC fabrication. These properties are also of high interest to the nuclear community. Some initial studies have shown that SYLRAMIC fiber shows very good dimensional stability in a neutron flux environment, which offers further encouragement. This paper will review the properties of SYLRAMIC SiC fiber and then present the properties of polymer impregnation and pyrolysis (PIP) processed CMC made with this fiber at Dow Corning. While these composites may not be directly applicable to applications of interest to this audience, we believe that the properties shown will give good evidence that the fiber should be suitable for high temperature structural applications in the nuclear arena

  1. Microwave joining of SiC ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Silberglitt, R.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States); Katz, J.D. [Los Alamos National Lab., NM (United States)

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  2. Performance improvement of 100 kW high frequency transmitter for CW operation

    International Nuclear Information System (INIS)

    Kwak, J. G.; Yoon, J. S.; Bae, Y. D.; Cho, C. G.; Wang, S. J.; Lee, K. D.

    2001-08-01

    For the plasma heating of KSTAR(Korea Superconducting Tokamak Advanced Research)by using ICH(Ion Cyclotron Heating), it is designed that the selective ion heating and current drive are performed by the transmitter with the rf power of 8 MW in the frequency range of 25-60 MHz. 100 kW HF transmitter was constructed for the high voltage/current test of ICH antenna and HF transmission components. The output power is about 100 kW around 30 MHz. Thomson 581 tetrode is used for the final amplifier whose cavity type is ground cathode. Overall gain is above 15 dB and the bandwidth is about 100 kHz

  3. High Temperature All Silicon-Carbide (SiC) DC Motor Drives for Venus Exploration Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project seeks to prove the feasibility of creating high-temperature silicon-carbide (SiC) based motor drives for...

  4. Characterisation of 10 kV 10 A SiC MOSFET

    DEFF Research Database (Denmark)

    Eni, Emanuel-Petre; Incau, Bogdan Ioan; Munk-Nielsen, Stig

    2015-01-01

    The objective of this paper is to characterize and evaluate the static and dynamic performances of 10 kV 10 A 4H-SIC MOSFETs at high temperatures. The results show good electrical performances of the SiC MOSFETs for high temperature operations. The double-pulse test results showed interesting...

  5. Recent progress of ultrahigh voltage SiC devices for particle accelerator

    International Nuclear Information System (INIS)

    Fukuda, Kenji; Tsuji, Takashi; Shiomi, Hiromu; Mizushima, Tomonori; Yonezawa, Yoshiyuki; Kondo, Chikara; Otake, Yuji

    2016-01-01

    Silicon carbide (SiC) is the promising material for next power electronics technology used in the field such as HEV, EV, and railway, electric power infrastructure. SiC enables power devices with low loss to easily operate in an ultrahigh-voltage region because of the high breakdown electric field of SiC. In this paper, we report static and dynamic electric performances of 3300 V class SiC SBDs, IE-MOSFETs, >10 kV PiN diodes and IE-IGBTs. Especially, the electrical characteristics of IE-IGBT with the blocking voltage of 16.5 kV indicate the sufficient ability to convert the thyratron in high power RF system of an accelerator. (author)

  6. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  7. Digital transmitter for data bus communications system

    Science.gov (United States)

    Proch, G. E. (Inventor)

    1975-01-01

    An improved digital transmitter for transmitting serial pulse code modulation (pcm) data at high bit rates over a transmission line is disclosed. When not transmitting, the transmitter features a high output impedance which prevents the transmitter from loading the transmission line. The pcm input is supplied to a logic control circuit which produces two discrete logic level signals which are supplied to an amplifier. The amplifier, which is transformer coupled to the output isolation circuitry, converts the discrete logic level signals to two high current level, ground isolated signals in the secondary windings of the coupling transformer. The latter signals are employed as inputs to the isolation circuitry which includes two series transistor pairs operating into a hybrid transformer functioning to isolate the transmitter circuitry from the transmission line.

  8. A High Frequency (HF) Inductive Power Transfer Circuit for High Temperature Applications Using SiC Schottky Diodes

    Science.gov (United States)

    Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.

    2018-01-01

    Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.

  9. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  10. Topology optimised photonic crystal waveguide intersections with high-transmittance and low crosstalk

    DEFF Research Database (Denmark)

    Ikeda, N; Sugimoto, Y; Watanabe, Y

    2006-01-01

    Numerical and experimental studies on the photonic crystal waveguide intersection based on the topology optimisation design method are reported and the effectiveness of this technique is shown by achieving high transmittance spectra with low crosstalk for the straightforward beam-propagation line...

  11. Improvement of microstructure and mechanical properties of high dense SiC ceramics manufactured by high-speed hot pressing

    International Nuclear Information System (INIS)

    Voyevodin, V.; Sayenko, S.; Lobach, K.; Tarasov, R.; Zykova, A.; Svitlychnyi, Ye.; Surkov, A.; Abelentsev, V.; Ghaemi, H.; Szkodo, M.; Gajowiec, G.; Kmiec, M.; Antoszkiewicz, M.

    2017-01-01

    Non-oxide ceramics possess high physical-mechanical properties, corrosion and radiation resistance, which can be used as a protective materials for radioactive wastes disposal. The aim of the present study was the manufacturing of high density SiC ceramics with advanced physical and mechanical parameters. The high performance on the properties of produced ceramics was determined by the dense and monolithic structure. The densified silicon carbide samples possessed good mechanical strength, with a high Vickers micro hardness up to 28.5 GPa.

  12. Research Progress on Preparation for Biomass-based SiC Ceramic

    Directory of Open Access Journals (Sweden)

    CUI He-shuai

    2017-08-01

    Full Text Available Silicon carbide (SiC ceramics prepared by the conventional process has excellent properties and wide application prospects, but the increased cost of high-temperature preparation process restricts its further development. In contrast, the abundant porous structure of biomass makes itself to be ideal replacement of SiC ceramic prepared at low temperature. This paper reviewed the structure characteristics, preparation methods, pyrolysis mechanism and influence parameters of biomass-based SiC ceramic, and eventually explored the current problems and development trends of the pretreatment of carbon source and silicon source, the pyrolysis process and the application research on the preparation for biomass-based SiC ceramic.

  13. A Highly intense DC muon source, MuSIC and muon CLFV search

    International Nuclear Information System (INIS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N.H.; Hashim, I.H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-01-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10 8 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion

  14. Pd/CeO2/SiC Chemical Sensors

    Science.gov (United States)

    Lu, Weijie; Collins, W. Eugene

    2005-01-01

    The incorporation of nanostructured interfacial layers of CeO2 has been proposed to enhance the performances of Pd/SiC Schottky diodes used to sense hydrogen and hydrocarbons at high temperatures. If successful, this development could prove beneficial in numerous applications in which there are requirements to sense hydrogen and hydrocarbons at high temperatures: examples include monitoring of exhaust gases from engines and detecting fires. Sensitivity and thermal stability are major considerations affecting the development of high-temperature chemical sensors. In the case of a metal/SiC Schottky diode for a number of metals, the SiC becomes more chemically active in the presence of the thin metal film on the SiC surface at high temperature. This increase in chemical reactivity causes changes in chemical composition and structure of the metal/SiC interface. The practical effect of the changes is to alter the electronic and other properties of the device in such a manner as to degrade its performance as a chemical sensor. To delay or prevent these changes, it is necessary to limit operation to a temperature sensor structures. The present proposal to incorporate interfacial CeO2 films is based partly on the observation that nanostructured materials in general have potentially useful electrical properties, including an ability to enhance the transfer of electrons. In particular, nanostructured CeO2, that is CeO2 with nanosized grains, has shown promise for incorporation into hightemperature electronic devices. Nanostructured CeO2 films can be formed on SiC and have been shown to exhibit high thermal stability on SiC, characterized by the ability to withstand temperatures somewhat greater than 700 C for limited times. The exchanges of oxygen between CeO2 and SiC prevent the formation of carbon and other chemical species that are unfavorable for operation of a SiC-based Schottky diode as a chemical sensor. Consequently, it is anticipated that in a Pd/CeO2/SiC Schottky

  15. Residual stress and mechanical properties of SiC ceramic by heat treatment

    International Nuclear Information System (INIS)

    Yoon, H.K.; Kim, D.H.; Shin, B.C.

    2007-01-01

    Full text of publication follows: Silicon carbide is a compound of relatively low density, high hardness, elevated thermal stability and good thermal conductivity, resulting in good thermal shock resistance. Because of these properties, SiC materials are widely used as abrasives and refractories. In this study, SiC single and poly crystals was grown by the sublimation method using the SiC seed crystal and SiC powder as the source material. Mechanical properties of SiC single and poly crystals are carried out by using the nano-indentation method and small punch test after the heat treatment. As a result, mechanical properties of SiC poly crystal had over double than single. And SiC single and poly crystals were occurred residual stress, but residual stress was shown relaxant properties by the effect of heat treatment. (authors)

  16. Comparative study of SiC- and Si-based photovoltaic inverters

    Science.gov (United States)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio

    2017-01-01

    This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.

  17. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching

    International Nuclear Information System (INIS)

    Choi, J H; Bano, E; Latu-Romain, L; Dhalluin, F; Chevolleau, T; Baron, T

    2012-01-01

    In this paper, we demonstrate a top-down fabrication technique for nanometre scale silicon carbide (SiC) pillars using inductively coupled plasma etching. A set of experiments in SF 6 -based plasma was carried out in order to realize high aspect ratio SiC nanopillars. The etched SiC nanopillars using a small circular mask pattern (115 nm diameter) show high aspect ratio (7.4) with a height of 2.2 µm at an optimum bias voltage (300 V) and pressure (6 mTorr). Under the optimal etching conditions using a large circular mask pattern with 370 nm diameter, the obtained SiC nanopillars exhibit high anisotropy features (6.4) with a large etch depth (>7 µm). The etch characteristic of the SiC nanopillars under these conditions shows a high etch rate (550 nm min -1 ) and a high selectivity (over 60 for Ni). We also studied the etch profile of the SiC nanopillars and mask evolution over the etching time. As the mask pattern size shrinks in nanoscale, vertical and lateral mask erosion plays a crucial role in the etch profile of the SiC nanopillars. Long etching process makes the pillars appear with a hexagonal shape, coming from the crystallographic structure of α-SiC. It is found that the feature of pillars depends not only on the etching process parameters, but also on the crystallographic structure of the SiC phase. (paper)

  18. About SIC POVMs and discrete Wigner distributions

    International Nuclear Information System (INIS)

    Colin, Samuel; Corbett, John; Durt, Thomas; Gross, David

    2005-01-01

    A set of d 2 vectors in a Hilbert space of dimension d is called equiangular if each pair of vectors encloses the same angle. The projection operators onto these vectors define a POVM which is distinguished by its high degree of symmetry. Measures of this kind are called symmetric informationally complete, or SIC POVMs for short, and could be applied for quantum state tomography. Despite its simple geometrical description, the problem of constructing SIC POVMs or even proving their existence seems to be very hard. It is our purpose to introduce two applications of discrete Wigner functions to the analysis of the problem at hand. First, we will present a method for identifying symmetries of SIC POVMs under Clifford operations. This constitutes an alternative approach to a structure described before by Zauner and Appleby. Further, a simple and geometrically motivated construction for an SIC POVM in dimensions two and three is given (which, unfortunately, allows no generalization). Even though no new structures are found, we hope that the re-formulation of the problem may prove useful for future inquiries

  19. Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method

    Directory of Open Access Journals (Sweden)

    Omid Yaghobizadeh

    2017-03-01

    Full Text Available The material Cf-C-SiC-Ti3SiC2 is promising for high temperature application. Due to the laminated structure and special properties, the Ti3SiC2 is one of the best reinforcements for Cf-C-SiC composites. In this paper, Cf-C-SiC-Ti3SiC2 composites were fabricated by liquid silicon infiltration (LSI method; the effect of the TiC amount on the various composites properties were studied. For samples with 0, 50 and 90 vol.% of TiC, the results show that bending strength are 168, 190, and 181 MPa; porosities are 3.2, 4.7, and 9%; the fracture toughness are 6.1, 8.9, and 7.8 MPa∙m1/2; interlaminar shear strength are 27, 36, and 30 MPa; the amount of the MAX phase are 0, 8.5, and 5.6 vol.%, respectively. These results show that amount of TiC is not the main effective parameter in synthesis of Ti3SiC2. The existence of carbon promotes the synthesis of Ti3SiC2 indicating that only sufficient carbon content can lead to the appearance of Ti3SiC2 in the LSI process.

  20. Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET

    Directory of Open Access Journals (Sweden)

    Frederick Ojiemhende Ehiagwina

    2016-09-01

    Full Text Available Properties of Silicon Carbide Junction Field Effect Transistor (SiC JFET such as high switching speed, low forward voltage drop and high temperature operation have attracted the interest of power electronic researchers and technologists, who for many years developed devices based on Silicon (Si.  A number of power system Engineers have made efforts to develop more robust equipment including circuits or modules with higher power density. However, it was realized that several available power semiconductor devices were approaching theoretical limits offered by Si material with respect to capability to block high voltage, provide low on-state voltage drop and switch at high frequencies. This paper presents an overview of the current applications of SiC JFET in circuits such as inverters, rectifiers and amplifiers. Other areas of application reviewed include; usage of the SiC JFET in pulse signal circuits and boost converters. Efforts directed toward mitigating the observed increase in electromagnetic interference were also discussed. It also presented some areas for further research, such as having more applications of SiC JFET in harsh, high temperature environment. More work is needed with regards to SiC JFET drivers so as to ensure stable and reliable operation, and reduction in the prices of SiC JFETs through mass production by industries.

  1. Single-source-precursor Synthesis and High-temperature Behavior of SiC Ceramics Containing Boron

    Science.gov (United States)

    Gui, Miaomiao; Fang, Yunhui; Yu, Zhaoju

    2014-12-01

    In this paper, a hyperbranched polyborocarbosilane (HPBCS) was prepared by a one-pot synthesis with Cl2Si(CH3)CH2Cl, Cl3SiCH2Cl and BCl3 as the starting materials. The obtained HPBCS was characterized by GPC, FT-IR and NMR, and was confirmed to have hyperbranched structures. The thermal property of the resulting HPBCS was investigated by TGA. The ceramic yield of the HPBCS is about 84% and that of the counterpart hyperbranched hydridopolycarbosilane is only 45%, indicating that the introduction of boron into the preceramic polymer significantly improved the ceramic yield. With the polymer-derived ceramic route, the final ceramics were annealed at 1800 °C in argon atmosphere for 2 h in order to characterize the microstructure and to evaluate the high-temperature behavior. The final ceramic microstructure was studied by XRD and SEM, indicating that the introduction of boron dramatically inhibits SiC crystallization. The boron-containing SiC ceramic shows excellent high-temperature behavior against decomposition and crystallization at 1800 °C.

  2. Fabrication of Multi-Layerd SiC Composite Tube for LWR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong; Jung, Choonghwan; Kim, Weonju; Park, Jiyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Jongmin [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, the chemical vapor deposition (CVD) and chemical vapor infiltration (CVI) methods were employed for the fabrication of the composite tubes. SiC ceramics and SiC-based composites have recently been studied for LWR fuel cladding applications because of good mechanical/physical properties, neutron irradiation resistance and excellent compatibility with coolant under severe accident. A multi-layered SiC composite tube as the nuclear fuel cladding is composed of the monolith SiC inner layer, SiC/SiC composite intermediate layer, and monolith SiC outer layer. Since all constituents should be highly pure, stoichiometric to achieve the good properties, it has been considered that the chemical process is a well-suited technique for the fabrication of the SiC phases.

  3. SiC Coating Process Development Using H-PCS in Supercritical CO2

    International Nuclear Information System (INIS)

    Park, Kwangheon; Jung, Wonyoung

    2013-01-01

    We tried SiC coating using supercritical fluids. Supercritical fluids are the substance exists over critical temperature and critical pressure. It is hard to expect that there would be a big change as single-solvent as the fluid is incompressible and the space between the molecules is almost steady. But the fluid which is being supercritical can bring a great change when it is changed its pressure near its critical point, showing its successive change in the density, viscosity, diffusion coefficient and the polarity. We have tested the 'H-PCS into SiC' coating experiment with supercritical CO 2 which has the high penetration, low viscosity as well as the high density and the high solubility that shows the property of the fluid. This experiment is for SiC coating using H-PCS in supercritical CO 2 . It shows the clear difference that the penetration of H-PCS into the SiC between dip coating method and using the supercritical CO 2 If we can make a metal cladding with SiC composites as a protective layer, the use of the cladding will be very broad and diverse. Inherent safe nuclear fuels can be possible that can stand under severe accident conditions. SiC is known to be one of a few materials that maintain very corrosion-resistant properties under tough corrosive environments. The metal cladding with SiC composites as a protective layer will be a high-tech product that can be used in many applications including chemical, material, and nuclear engineering and etc

  4. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    Unknown

    Verdier (1996) explored the effect of SiC particulate rein- forcements in oxynitride glasses. Like in silicate compo- sites, non-Newtonian behaviour was observed in oxynitride glasses but instead of shear thinning they observed shear thickening. This was attributed to change in composition of grain boundary glass coupled ...

  5. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  6. SIC Industriemonitor najaar 2003

    NARCIS (Netherlands)

    Brouwer, N.; de Nooij, M.; Pomp, M.

    2003-01-01

    In juni 2000 publiceerde de Stichting voor Economisch Onderzoek (SEO) van de Universiteit van Amsterdam in opdracht van Stichting voor Industriebeleid en Communicatie (SIC) een ontwerp voor een SIC industriemonitor met een voorstel voor de inhoud en de structuur van een dergelijke monitor. Op dat

  7. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  8. Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications

    Science.gov (United States)

    Ko, Hyunseok

    Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding

  9. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports. Keywords. Biomimetic synthesis; carbonaceous biopreform; biomorphic Si–SiC ceramic composites; porous cellular SiC ceramics. 1. Introduction. In recent years, there has been tremendous ...

  10. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  11. Properties of SiC semiconductor detector of fast neutrons investigated using MCNPX code

    International Nuclear Information System (INIS)

    Sedlakova, K.; Sagatova, A.; Necas, V.; Zatko, B.

    2013-01-01

    The potential of silicon carbide (SiC) for use in semiconductor nuclear radiation detectors has been long recognized. The wide bandgap of SiC (3.25 eV for 4H-SiC polytype) compared to that for more conventionally used semiconductors, such as silicon (1.12 eV) and germanium (0.67 eV), makes SiC an attractive semiconductor for use in high dose rate and high ionization nuclear environments. The present work focused on the simulation of particle transport in SiC detectors of fast neutrons using statistical analysis of Monte Carlo radiation transport code MCNPX. Its possibilities in detector design and optimization are presented.(authors)

  12. Performance Analysis of Multiradio Transmitter with Polar or Cartesian Architectures Associated with High Efficiency Switched-Mode Power Amplifiers (invited paper

    Directory of Open Access Journals (Sweden)

    F. Robert

    2010-12-01

    Full Text Available This paper deals with wireless multi-radio transmitter architectures operating in the frequency band of 800 MHz – 6 GHz. As a consequence of the constant evolution in the communication systems, mobile transmitters must be able to operate at different frequency bands and modes according to existing standards specifications. The concept of a unique multiradio architecture is an evolution of the multistandard transceiver characterized by a parallelization of circuits for each standard. Multi-radio concept optimizes surface and power consumption. Transmitter architectures using sampling techniques and baseband ΣΔ or PWM coding of signals before their amplification appear as good candidates for multiradio transmitters for several reasons. They allow using high efficiency power amplifiers such as switched-mode PAs. They are highly flexible and easy to integrate because of their digital nature. But when the transmitter efficiency is considered, many elements have to be taken into account: signal coding efficiency, PA efficiency, RF filter. This paper investigates the interest of these architectures for a multiradio transmitter able to support existing wireless communications standards between 800 MHz and 6 GHz. It evaluates and compares the different possible architectures for WiMAX and LTE standards in terms of signal quality and transmitter power efficiency.

  13. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  14. High-energy, 2µm laser transmitter for coherent wind LIDAR

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.

    2017-11-01

    A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.

  15. Qualification of SiC materials for fusion and fission reactors

    International Nuclear Information System (INIS)

    Ryazanov, Alexander

    2009-01-01

    Ceramic materials such as silicon carbide (SiC) and SiC/SiC composites are both considered, due to their high-temperature strength, pseudo-ductile fracture behavior and low-induced radioactivity, as candidate materials for fusion reactor (test blanket module for ITER) and high temperature gas-cooled reactors (HTGR). The radiation swelling and creep of SiC are very important physical phenomena that determine the radiation resistance of them in these reactors. Other important problem which exists especially in fusion reactor is an effect of accumulation of high concentrations of helium atoms in SiC (up to 15000-20000 at.ppm) due to (n,α) nuclear reaction on physical mechanical properties. An understanding of the physical mechanism of this phenomenon is very important for the investigations of helium atom effect on radiation swelling in SiC. In this report a compilation of non-irradiated and irradiated properties of SiC are provided and analyzed in terms of their application to fusion and high temperature gas cooled reactors. Special topic of this report is oriented on the micro structural changes in chemically vapor-deposited (CVD) high-purity beta-SiC during neutron and ion irradiations at elevated temperatures. The evolutions of various radiation induced defects including dislocation loops, network dislocations and cavities are presented here as a function of irradiation temperature and fluencies. These observations are discussed in relation with such irradiation phenomena in SiC as low temperature swelling and cavity swelling. One of the main difficulties in the radiation damage studies of SiC materials lies in the absence of theoretical models and interpretation of many physical mechanisms of radiation phenomena including the radiation swelling and creep. The point defects in ceramic materials are characterized by the charge states and they can have an effective charge. The internal effective electrical field is formed due to the accumulation of charged point

  16. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic

    International Nuclear Information System (INIS)

    Reau, A.

    2008-01-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC f /SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC f /SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  17. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    Science.gov (United States)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  18. The miniature optical transmitter and transceiver for the High-Luminosity LHC (HL-LHC) experiments

    International Nuclear Information System (INIS)

    Liu, C; Zhao, X; Deng, B; Gong, D; Guo, D; Li, X; Liang, F; Liu, G; Liu, T; Xiang, A C; Ye, J; Chen, J; Huang, D; Hou, S; Teng, P-K

    2013-01-01

    We present the design and test results of the Miniature optical Transmitter (MTx) and Transceiver (MTRx) for the high luminosity LHC (HL-LHC) experiments. MTx and MTRx are Transmitter Optical Subassembly (TOSA) and Receiver Optical Subassembly (ROSA) based. There are two major developments: the Vertical Cavity Surface Emitting Laser (VCSEL) driver ASIC LOCld and the mechanical latch that provides the connection to fibers. In this paper, we concentrate on the justification of this work, the design of the latch and the test results of these two modules with a Commercial Off-The-Shelf (COTS) VCSEL driver

  19. SiC Composite for Fuel Structure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yueh, Ken [Electric Power Research Inst. (EPRI), Charlotte, NC (United States)

    2017-12-22

    Extensive evaluation was performed to determine the suitability of using SiC composite as a boiling water reactor (BWR) fuel channel material. A thin walled SiC composite box, 10 cm in dimension by approximately 1.5 mm wall thickness was fabricated using chemical vapor deposition (CVD) for testing. Mechanical test results and performance evaluations indicate the material could meet BWR channel mechanical design requirement. However, large mass loss of up to 21% was measured in in-pile corrosion test under BWR-like conditions in under 3 months of irradiation. A fresh sister sample irradiated in a follow-up cycle under PWR conditions showed no measureable weight loss and thus supports the hypothesis that the oxidizing condition of the BWR-like coolant chemistry was responsible for the high corrosion rate. A thermodynamic evaluation showed SiC is not stable and the material may oxidize to form SiO2 and CO2. Silica has demonstrated stability in high temperature steam environment and form a protective oxide layer under severe accident conditions. However, it does not form a protective layer in water under normal BWR operational conditions due to its high solubility. Corrosion product stabilization by modifying the SiC CVD surface is an approach evaluated in this study to mitigate the high corrosion rate. Titanium and zirconium have been selected as stabilizing elements since both TiSiO4 and ZrSiO4 are insoluble in water. Corrosion test results in oxygenated water autoclave indicate TiSiO4 does not form a protective layer. However, zirconium doped test samples appear to form a stable continuous layer of ZrSiO4 during the corrosion process. Additional process development is needed to produce a good ZrSiC coating to verify functionality of the mitigation concept.

  20. Growth of graphene from SiC{0001} surfaces and its mechanisms

    International Nuclear Information System (INIS)

    Norimatsu, Wataru; Kusunoki, Michiko

    2014-01-01

    Graphene, a one-atom-layer carbon material, can be grown by thermal decomposition of SiC. On Si-terminated SiC(0001), graphene nucleates at steps and grows layer-by-layer, and as a result a homogeneous monolayer or bilayer can be obtained. We demonstrate this mechanism both experimentally and theoretically. On the C-face (000 1-bar ), multilayer graphene nucleates not only at steps, but also on the terraces. These differences reflect the distinct differences in the reactivity of these faces. Due to its high quality and structural controllability, graphene on SiC{0001} surfaces will be a platform for high-speed graphene device applications. (paper)

  1. Power plant design study of a high aspect ratio Tokamak using a SiC composite structure

    International Nuclear Information System (INIS)

    Murakami, Y.; Takase, H.; Shinya, K.

    1998-01-01

    The DREAM (drastically easy maintenance) tokamak is a fusion power plant which is designed from the viewpoint of maintenance feasibility. For this purpose, the DREAM reactor uses a plasma with a very high aspect ratio (A) and adopts SiC as a structural material. The choice of SiC affects the design of the core plasma, i.e. large inboard shield thickness, low synchrotron radiation reflectivity, and small plasma elongation for positional stability. The objectives of this study are to explore the feasibility of a high-A device, such as a power plant, and to clarify the technological impact of SiC material on the plasma design. Plasma size is optimized by the physics guidelines similar to ITER. The plasma major and minor radii of DREAM are 16 m and 2 m, respectively, and the average neutron wall load is 2.5 MW m -2 , the maximum toroidal field is 20 T, and the fusion power is 5.5 GW. Steady-state operation is obtained with 50 MW of external current-drive power and 90% bootstrap current. The divertor heat load is estimated to be about 10 MW m -2 . A radiative divertor concept is adopted to achieve a low divertor plasma temperature. The DREAM tokamak concept is found to be a possible candidate for a future power plant with more than 5 GW of fusion power and an acceptable divertor condition. (orig.)

  2. The annealing effects on irradiated SiC piezo resistive pressure sensor

    International Nuclear Information System (INIS)

    Almaz, E.; Blue, T. E.; Zhang, P.

    2009-01-01

    The effects of temperature on annealing of Silicon Carbide (SiC) piezo resistive pressure sensor which was broken after high fluence neutron irradiation, were investigated. Previously, SiC piezo resistive sensor irradiated with gamma ray and fast neutron in the Co-60 gamma-ray irradiator and Beam Port 1 (BP1) and Auxiliary Irradiation Facility (AIF) at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) respectively. The Annealing temperatures were tested up to 400 C. The Pressure-Output voltage results showed recovery after annealing process on SiC piezo resistive pressure sensor. The bridge resistances of the SiC pressure sensor stayed at the same level up to 300 C. After 400 C annealing, the resistance values changed dramatically.

  3. Nanocrystalline SiC film thermistors for cryogenic applications

    Science.gov (United States)

    Mitin, V. F.; Kholevchuk, V. V.; Semenov, A. V.; Kozlovskii, A. A.; Boltovets, N. S.; Krivutsa, V. A.; Slepova, A. S.; Novitskii, S. V.

    2018-02-01

    We developed a heat-sensitive material based on nanocrystalline SiC films obtained by direct deposition of carbon and silicon ions onto sapphire substrates. These SiC films can be used for resistance thermometers operating in the 2 K-300 K temperature range. Having high heat sensitivity, they are relatively low sensitive to the magnetic field. The designs of the sensors are presented together with a discussion of their thermometric characteristics and sensitivity to magnetic fields.

  4. SIC POVMs and Clifford groups in prime dimensions

    International Nuclear Information System (INIS)

    Zhu Huangjun

    2010-01-01

    We show that in prime dimensions not equal to 3, each group covariant symmetric informationally complete positive operator valued measure (SIC POVM) is covariant with respect to a unique Heisenberg-Weyl (HW) group. Moreover, the symmetry group of the SIC POVM is a subgroup of the Clifford group. Hence, two SIC POVMs covariant with respect to the HW group are unitarily or antiunitarily equivalent if and only if they are on the same orbit of the extended Clifford group. In dimension 3, each group covariant SIC POVM may be covariant with respect to three or nine HW groups, and the symmetry group of the SIC POVM is a subgroup of at least one of the Clifford groups of these HW groups, respectively. There may exist two or three orbits of equivalent SIC POVMs for each group covariant SIC POVM, depending on the order of its symmetry group. We then establish a complete equivalence relation among group covariant SIC POVMs in dimension 3, and classify inequivalent ones according to the geometric phases associated with fiducial vectors. Finally, we uncover additional SIC POVMs by regrouping of the fiducial vectors from different SIC POVMs which may or may not be on the same orbit of the extended Clifford group.

  5. Bond formation in hafnium atom implantation into SiC induced by high-energy electron irradiation

    International Nuclear Information System (INIS)

    Yasuda, H.; Mori, H.; Sakata, T.; Naka, M.; Fujita, H.

    1992-01-01

    Bilayer films of Hf (target atoms)/α-SiC (substrate) were irradiated with 2 MeV electrons in an ultra-high voltage electron microscope (UHVEM), with the electron beam incident on the hafnium layer. As a result of the irradiation, hafnium atoms were implanted into the SiC substrate. Changes in the microstructure and valence electronic states associated with the implantation were studied by a combination of UHVEM and Auger valence electron spectroscopy. The implantation process is summarized as follows. (1) Irradiation with 2 MeV electrons first induces a crystalline-to-amorphous transition in α-SiC. (2) Hafnium atoms which have been knocked-off from the hafnium layer by collision with the 2 MeV electrons are implanted into the resultant amorphous SiC. (3) The implanted hafnium atoms make preferential bonding to carbon atoms. (4) With continued irradiation, the hafnium atoms repeat the displacement along the beam direction and the subsequent bonding with the dangling hybrids of carbon and silicon. The repetition of the displacement and subsequent bonding lead to the deep implantation of hafnium atoms into the SiC substrate. It is concluded that implantation successfully occurs when the bond strength between a constituent atom of a substrate and an injected atom is stronger than that between constituent atoms of a substrate. (Author)

  6. Effect of high temperature annealing on the microstructure of SCS-6 SiC fibers

    Science.gov (United States)

    Ning, X. J.; Pirouz, P.; Bhatt, R. T.

    1992-01-01

    The effect of annealing the SCS-6 SiC fiber for one hour at 2000 C in an argon atmosphere is reported. The SiC grains in the fiber coarsen appreciably and the intergranular carbon films segregate to the grain junctions. It would appear that grain growth in the outer part of the fiber is primarily responsible for the loss in fiber strength and improvement in fiber creep resistance.

  7. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  8. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    International Nuclear Information System (INIS)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-01-01

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of β-SiC with traces of α-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time

  9. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-04-25

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of {beta}-SiC with traces of {alpha}-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time.

  10. Feasibility study on the application of carbide (ZrC, SiC) for VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog; Kim, Si Hyeong; Jang, Moon Hee; Lee, Young Woo

    2006-08-15

    A feasibility study on the coating process of ZrC for the TRISO nuclear fuel and applications of SiC as high temperature materials for the core components has performed to develop the fabrication process for the advanced ZrC TRISO fuels and the high temperature structural components for VHTR, respectively. In the case of ZrC coating, studies were focused on the comparisons of the developed coating processes for screening of our technology, the evaluations of the reactions parameters for a ZrC deposition by the thermodynamic calculations and the preliminary coating experiments by the chloride process. With relate to SiC ceramics, our interesting items are as followings; an analysis of applications and specifications of the SiC components and collections of the SiC properties and establishments of data base. For these purposes, applications of SiC ceramics for the GEN-IV related components as well as the fusion reactor related ones were reviewed. Additionally, the on-going activities with related to the ZrC clad and the SiC composites discussed in the VHTR GIF-PMB, were reviewed to make the further research plans at the section 1 in chapter 3.

  11. Deposition of SiC thin films by PECVD

    CERN Document Server

    Cho, N I; Kim, C K

    1999-01-01

    The SiC films were deposited on Si substrate by the decomposition of CH sub 3 SiCl sub 3 (methylthrichlorosilane) molecules in a high frequency discharge field. From the Raman spectra, it is conjectured that the deposited film are formed into the polycrystalline structure. The photon absorption measurement reveal that the band gap of the electron energy state are to be 2.4 eV for SiC, and 2.6 eV for Si sub 0 sub . sub 4 C sub 0 sub . sub 6 , respectively. In the high power density regime, methyl-radicals decompose easily and increases the carbon concentration in plasma and result in the growing films.

  12. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers

    International Nuclear Information System (INIS)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-01-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [es

  13. TWT transmitter fault prediction based on ANFIS

    Science.gov (United States)

    Li, Mengyan; Li, Junshan; Li, Shuangshuang; Wang, Wenqing; Li, Fen

    2017-11-01

    Fault prediction is an important component of health management, and plays an important role in the reliability guarantee of complex electronic equipments. Transmitter is a unit with high failure rate. The cathode performance of TWT is a common fault of transmitter. In this dissertation, a model based on a set of key parameters of TWT is proposed. By choosing proper parameters and applying adaptive neural network training model, this method, combined with analytic hierarchy process (AHP), has a certain reference value for the overall health judgment of TWT transmitters.

  14. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  15. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    Directory of Open Access Journals (Sweden)

    Sciuto Antonella

    2018-01-01

    Full Text Available Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2 producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2. Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  16. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    Science.gov (United States)

    Sciuto, Antonella; Torrisi, Lorenzo; Cannavò, Antonino; Mazzillo, Massimo; Calcagno, Lucia

    2018-01-01

    Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2) producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2). Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse) current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  17. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers; Las tensiones residuales y las propiedades mecánicas de compuestos multicapa de Si3N4/SiC con diferentes capas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-11-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [Spanish] Se ha investigado el efecto de las tensiones residuales en la resistencia, dureza y trabajo de fractura de los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC. Puede ser una manera eficaz de diseñar y optimizar las propiedades mecánicas de los compuestos multicapa de Si3N4/SiC mediante el control de las propiedades de las capas de SiC. Los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC se fabricaron por medio de colado en cinta en medio acuoso y sinterización sin presión. Las tensiones residuales se calcularon mediante el uso de la simulación ANSYS, los valores máximos de las fuerzas de tracción y compresión fueron 553,2 MPa y −552,1 MPa, respectivamente. Se observó una fractura escalonada a partir de las superficies de fractura. La fracción de capas de deslaminación aumenta con la tensión residual, lo que puede mejorar la fiabilidad de los materiales. La fuerza de tracción residual era beneficiosa para la mejora de la dureza y el trabajo de fractura, pero la resistencia de los compuestos disminuyó.

  18. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10 16 N + ions/cm 2 and 3.6 x 10 17 e/cm 2 and 1.08 x 10 18 e/cm 2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  19. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  20. Large area SiC coating technology of RBSC for semiconductor processing component

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described

  1. Large area SiC coating technology of RBSC for semiconductor processing component

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described.

  2. Exploration of porous SiC nanostructures as thermal insulator with high thermal stability and low thermal conductivity

    Institute of Scientific and Technical Information of China (English)

    Peng; WAN; Jingyang; WANG

    2016-01-01

    The crucial challenge for current nanoscale thermal insulation materials,such as Al2O3 and SiO2 aerogel composites,is to solve the trade-off between extremely low thermal conductivity and unsatisfied thermal stability.Typical high-temperature ceramic SiC possesses excellent mechanical properties and

  3. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes

    DEFF Research Database (Denmark)

    Facciotti, Marco; Boffa, Vittorio; Magnacca, Giuliana

    2014-01-01

    Porous SiC based materials present high mechanical, chemical and thermal robustness, and thus have been largely applied to water-filtration technologies. In this study, commercial SiC microfiltration tubes with nominal pore size of 0.04 m were used as carrier for depositing thin aluminium oxide....... After 5 times coating, a 5.6 µm thick γ-Al2O3 layer was obtained. This membrane shows retention of ~75% for polyethylene glycol molecules with Mn of 8 and 35 kDa, indicating that, despite their intrinsic surface roughness, commercial SiC microfiltration tubes can be applied as carrier for thin...... ultrafiltration membranes. This work also indicates that an improvement of the commercial SiC support surface smoothness may greatly enhance permeance and selectivity of Υ-Al2O3 ultrafiltration membranes by allowing the deposition of thinner defect-free layers....

  4. Effect of oxygen on the processes of ion beam synthesis of buried SiC layers in silicon

    International Nuclear Information System (INIS)

    Artamonov, V.V.; Valakh, M.Ya.; Klyuj, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of Si-structures with buried silicon carbide (SiC) layers created by high dose carbon implantation into Cz-Si or Fz-Si wafers followed by high-temperature annealing were studied by Raman and infrared spectroscopy. Effect of additional oxygen implantation on the peculiarities of SiC layer formation was also studied. It was shown that under the same implantation and post-implantation annealing conditions the buried SiC layers are more effectively formed in Cz-Si or in Si subjected to additional oxygen implantation. Thus, oxygen in silicon promotes the SiC layer formation due to SiO x precipitate creation and accommodation of the crystal volume in the region where SiC phase is formed

  5. The role of Pd in the transport of Ag in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2013-01-01

    This paper presents results in support of a newly proposed transport mechanism to account for the release of Ag from intact TRISO particles during HTR reactor operation. The study reveals that the migration of Ag in polycrystalline SiC can occur in association with Pd, a relatively high yield metallic fission product. The migration takes place primarily along grain boundary routes, seen in the form of distinct Pd, Ag and Si containing nodules. Pd is known to rapidly migrate to the SiC and iPyC interface within TRISO particles during operation. It has been shown to chemically corrode the SiC to form palladium silicides. These palladium silicides are found present along SiC grain boundaries in nodule like form. It is suggested that Ag penetrates these nodules together with the palladium silicide, to form a Pd, Ag and Si solution capable of migrating along SiC grain boundaries over time.

  6. The role of Pd in the transport of Ag in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2013-01-15

    This paper presents results in support of a newly proposed transport mechanism to account for the release of Ag from intact TRISO particles during HTR reactor operation. The study reveals that the migration of Ag in polycrystalline SiC can occur in association with Pd, a relatively high yield metallic fission product. The migration takes place primarily along grain boundary routes, seen in the form of distinct Pd, Ag and Si containing nodules. Pd is known to rapidly migrate to the SiC and iPyC interface within TRISO particles during operation. It has been shown to chemically corrode the SiC to form palladium silicides. These palladium silicides are found present along SiC grain boundaries in nodule like form. It is suggested that Ag penetrates these nodules together with the palladium silicide, to form a Pd, Ag and Si solution capable of migrating along SiC grain boundaries over time.

  7. Tribology of silicon-thin-film-coated SiC ceramics and the effects of high energy ion irradiation

    International Nuclear Information System (INIS)

    Kohzaki, Masao; Noda, Shoji; Doi, Harua

    1990-01-01

    The sliding friction coefficients and specific wear of SiC ceramics coated with a silicon thin film (Si/SiC) with and without subsequent Ar + irradiation against a diamond pin were measured with a pin-on-disk tester at room temperature in laboratory air of approximately 50% relative humidity without oil lubrication for 40 h. The friction coefficient of Ar + -irradiated Si/SiC was about 0.05 with a normal load of 9.8 N and remained almost unchanged during the 40 h test, while that of SiC increased from 0.04 to 0.12 during the test. The silicon deposition also reduced the specific wear of SiC to less than one tenth of that of the uncoated SiC. Effectively no wear was detected in Si/SiC irradiated to doses of over 2x10 16 ions cm -2 . (orig.)

  8. Performance Evaluation of an Automotive-Grade, High Speed Gate Driver for SiC FETs, Type UCC27531, Over a Wide Temperature Range

    Science.gov (United States)

    Boomer, Kristen; Hammoud, Ahmad

    2015-01-01

    Silicon carbide (SiC) devices are becoming widely used in electronic power circuits as replacement for conventional silicon parts due to their attractive properties that include low on-state resistance, high temperature tolerance, and high frequency operation. These attributes have a significant impact by reducing system weight, saving board space, and conserving power. In this work, the performance of an automotive-grade high speed gate driver with potential use in controlling SiC FETs (field-Effect Transistors) in converters or motor control applications was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to assess performance and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.

  9. Electrical measurement of radiation effect in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Satoshi; Kamiya, Koji; Kanno, Ikuo [Kyoto Univ. (Japan). Faculty of Engineering] [and others

    1996-04-01

    For aiming to limited resources and environmental conservations on the Earth, development of controlling element workable under high temperature environment was investigated so as to establish a high grade and optimum controlling system. In order to observe changes of electrical properties before and after irradiation and after annealing, and to investigate changes of carrier concentration and movability after irradiating neutron from reactor and accelerator for the SiC single crystal wafer, elucidation on neutron irradiation effect of SiC as well as finding an optimum method on nuclear conversion injection were investigated. For this reason, SiC surface was purified by its etching and was treated thermally at 1000degC for about 30 min. under argon gas atmosphere after vacuum depositing nickel on it. And then, it was irradiated neutron using Kyoto University reactor (LTL), Linac and University of Tokyo reactor (YAYOI) to measure changes of resistivity using van der Pauw. As a result, it was found that LTL irradiation data was under investigation of measuring method, that in Linac no meaning change was observed because of low irradiation, and that only YAYOI data showed increase of resistivity. (G.K.)

  10. Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites

    International Nuclear Information System (INIS)

    Balasubramanian, I.; Maheswaran, R.

    2015-01-01

    Highlights: • AA6063/SiC composites with different weight percent are stir cast. • Resistance properties against indentation, stretching force and sliding force are studied. • Increase in initiation of cleavage facets and reduces the tensile strength for 15% SiC. • Transition from micro ploughing to micro cutting wear mechanism is less due to SiC inclusion. - Abstract: This study investigates the mechanical resistance behaviour of AA6063 particulate composites with the inclusion of micron-sized silicon carbide (SiC) particles with different weight percentages in an AA6063 aluminium matrix. AA6063/SiC particulate composites containing 0, 5, 10, and 15 weight percent of SiC particles were produced by stir casting. Standard mechanical tests were conducted on the composite plates, and the mechanical resistance to indentation, tensile force and sliding force are evaluated. It has been observed that upon addition of SiC particles, the resistance against indentation is increased and the resistance against tensile force is initially increased and then decreased. Furthermore, using scanning electron microscopy (SEM), the fracture appearance of the broken specimen subjected to tensile force and morphological changes in the surface subjected to sliding force are analysed. The SEM images reveal that the addition of SiC particles in the AA6063 aluminium matrix initiates more cleavage facets. This leads to brittle fracture in the specimen subjected to tensile forces and less transition from material displacement to material removal in the specimen subjected to sliding forces

  11. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  12. Palladium assisted silver transport in polycrystalline SiC

    Energy Technology Data Exchange (ETDEWEB)

    Neethling, J.H., E-mail: Jan.Neethling@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); O' Connell, J.H.; Olivier, E.J. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-10-15

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd-Ag compound at temperatures of 800 and 1000 Degree-Sign C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC-SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag-Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag-Pd compound if present at the IPyC-SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  13. Palladium assisted silver transport in polycrystalline SiC

    International Nuclear Information System (INIS)

    Neethling, J.H.; O’Connell, J.H.; Olivier, E.J.

    2012-01-01

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd–Ag compound at temperatures of 800 and 1000 °C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC–SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag–Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag–Pd compound if present at the IPyC–SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  14. Efficacy of using radio transmitters to monitor least tern chicks

    Science.gov (United States)

    Whittier, Joanna B.; Leslie, David M.

    2005-01-01

    Little is known about Least Tern (Sterna antillarum) chicks from the time they leave the nest until fledging because they are highly mobile and cryptically colored. We evaluated the efficacy of using radiotelemetry to monitor Interior Least Tern (S. a. athalassos) chicks at Salt Plains National Wildlife Refuge, Oklahoma. In 1999, we attached radio transmitters to 26 Least Tern chicks and tracked them for 2-17 days. No adults abandoned their chicks after transmitters were attached. Transmitters did not appear to alter growth rates of transmittered chicks (P = 0.36) or prevent feather growth, although dermal irritation was observed on one chick. However, without frequent reattachment, transmitters generally did not remain on chicks feather growth and transmitter removal, presumably by adult terns. Although the presence of transmitters did not adversely affect Least Tern chicks, future assessments should investigate nonintrusive methods to improve retention of transmitters on young chicks and reduce the number of times that chicks need to be handled.

  15. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-15

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle. - Graphical abstract: An improved design of TRISO particle with porous SiC inner layer to replace the inner porous pyrolytic carbon layer was proposed and prepared by FB-CVD method. This new design is aimed to reduce the total internal pressure of the particles by reducing the formation of CO and to reduce the risks of amoeba effect. - Highlights: • An improved design of TRISO particle with porous SiC inner layer was proposed. • Three methods of preparing porous SiC layer are proposed and experimentally studied. • The density of porous SiC layer can be controlled by adjusting experimental parameters. • Formation mechanisms of porous SiC layer were given based on the FB-CVD principle. • TRISO particles with porous SiC inner layer were mass produced successfully.

  16. 47 CFR 74.461 - Transmitter power.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Transmitter power. 74.461 Section 74.461....461 Transmitter power. (a) Transmitter power is the power at the transmitter output terminals and.... For the purpose of this Subpart, the transmitter power is the carrier power. (b) The authorized...

  17. Alternative Solder Bond Packaging Approach for High-Voltage (HV) Pulsed Power Devices

    Science.gov (United States)

    2016-09-01

    triggered into the ON-state with a fiber - optic transmitter once the capacitor has been charged up to the desired voltage of choice with a power supply...substrate, which results in a much higher conductivity compared to highly doped p-type substrates in SiC (Fig. 1). The anode layer was etched using...reactive ion etch and then the mesa of the device was etched for total isolation. The gate contact implant was followed using nitrogen in a box

  18. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    second part of the project. Alumina sol was synthesized by the hydrolysis of Aluminum isopropoxide using the Yoldas method. Alumina sol was homogenous and had a needle-like shape with a thickness of 2--3 nm. Crystalline changes during the heating process of alumina sol were studied using XRD. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to identify the functional groups on the alumina sol surface as a function of temperature. In the third part of the project, the feasibility of the in-situ polymerization technique was investigated to fabricate porous SiC ceramics. In this part, the mixture of SiC and calcined alumina powders were coated by polyethylene via in-situ polymerizing referred to as the polymerization compounding process in a slurry phase. The polymerization was conducted under very moderate operational conditions using the Ziegler-Natta catalyst system. Differential scanning calorimetry (DSC) and TGA analysis and morphological studies (SEM and TEM) revealed the presence of a high density of polyethylene on the surface of SiC and alumina powders. The amount of polymer was controlled by the polymerization reaction time. Most parts of particles were coated by a thin layer of polyethylene and polymer. The porous SiC ceramics, which were fabricated by these treated particles showed higher mechanical and physical properties compared to the samples made without any treatment. The relative intensity of mullite was higher compared to the samples prepared by the traditional process. The effects of the sintering temperature, forming pressure and polymer content were also studied on the physical and mechanical properties of the final product. In the last phase of this research work, the focus of the investigation was to take advantage of both the sol-gel processing and in-situ polymerization method to develop a new process to manufacture mullite-bonded porous SiC ceramic with enhanced mechanical and physical properties. Therefore, first the SiC

  19. CVD of SiC and AlN using cyclic organometallic precursors

    Science.gov (United States)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  20. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  1. Fluorescent SiC with pseudo-periodic moth-eye structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Aijaz, Imran; Ou, Haiyan

    2012-01-01

    White light-emitting diodes (LEDs) consisting of a nitride-based blue LED chip and phosphor are very promising candidates for the general lighting applications as energy-saving sources. Recently, donor-acceptor doped fluorescent SiC has been proven as a highly efficient wavelength converter...... to enhance the extraction efficiency, we present a simple method to fabricate the pseudo-periodic moth-eye structures on the surface of the fluorescent SiC. A thin gold layer is deposited on the fluorescent SiC first. Then the thin gold layer is treated by rapid thermal processing. After annealing, the thin...... gold layer turns into discontinuous nano-islands. The average size of the islands is dependent on the annealing condition which could be well controlled. By using the reactive-ion etching, pseudo-periodic moth-eye structures would be obtained using the gold nano-islands as a mask layer. Reactive...

  2. Heteroepitaxy of zinc-blende SiC nano-dots on Si substrate by organometallic ion beam

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kiuchi, M.; Sugimoto, S.; Goto, S.

    2006-01-01

    The self-assembled SiC nano-dots were fabricated on Si(111) substrate at low-temperatures using the organometallic ion beam deposition technique. The single precursor of methylsilicenium ions (SiCH 3 + ) with the energy of 100 eV was deposited on Si(111) substrate at 500, 550 and 600 deg. C. The characteristics of the self-assembled SiC nano-dots were analyzed by reflection high-energy electron diffraction (RHEED), Raman spectroscopy and atomic force microscope (AFM). The RHEED patterns showed that the crystal structure of the SiC nano-dots formed on Si(111) substrate was zinc-blende SiC (3C-SiC) and it was heteroepitaxy. The self-assembled SiC nano-dots were like a dome in shape, and their sizes were the length of 200-300 nm and the height of 10-15 nm. Despite the low-temperature of 500 deg. C as SiC crystallization the heteroepitaxial SiC nano-dots were fabricated on Si(111) substrate using the organometallic ion beam

  3. Grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    ), raman spectroscopy and X-ray diffraction (XRD) measurements. UV–Visible absorption spectroscopy was used to study optical properties such as optical energy gap (Eg), Urbach's energy (Eu), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constant of PVA as well as PVA......Polyvinyl alcohol (PVA) grafted SiC (PVA-g-SiC)/PVA nanocomposite was synthesized by incorporating PVA grafted silicon carbide (SiC) nanocrystals inside PVA matrix. In-depth structural characterization of resulting nanocomposite was carried out using fourier transform infrared spectroscopy (FTIR...

  4. Synthesis of whiskers of SiC microwave assisted; Sintesis de whiskers de SiC asistida por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Garza-Mendez, F. J.; Vanegas, A. J.; Vazquez, B. A.; Garza-Paz, J.

    2013-06-01

    We developed a new process for the synthesis of SiC whiskers assisted by microwaves; this is based on the mixture of silica xerogels and graphite powder. As energy source were used microwaves of 2.45 GHz and 1.0 kW of power RMS. On the other hand, mesoporous silica was synthesized via sol-gel, the precursors used were TEOS/H{sub 2}O and ethanol. Through analysis of the BET is determined the value of average pore size (3.0 nm) and the surface area (1090 m2/g).By mean of X-Ray diffraction it was demonstrated that the silica obtained is an amorphous solid and, the powders obtained in the microwave synthesis are {beta}-SiC. Synthesized SiC powders were observed using a SEM in secondary electron mode, it was observed that this powders consists of SiC whiskers. The effect of microwaves on the synthesis of whiskers of SiC is discussed in the present work. (Author) 19 refs.

  5. D-region ion-neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) - WACCM-SIC and WACCM-rSIC

    Science.gov (United States)

    Kovács, Tamás; Plane, John M. C.; Feng, Wuhu; Nagy, Tibor; Chipperfield, Martyn P.; Verronen, Pekka T.; Andersson, Monika E.; Newnham, David A.; Clilverd, Mark A.; Marsh, Daniel R.

    2016-09-01

    This study presents a new ion-neutral chemical model coupled into the Whole Atmosphere Community Climate Model (WACCM). The ionospheric D-region (altitudes ˜ 50-90 km) chemistry is based on the Sodankylä Ion Chemistry (SIC) model, a one-dimensional model containing 307 ion-neutral and ion recombination, 16 photodissociation and 7 photoionization reactions of neutral species, positive and negative ions, and electrons. The SIC mechanism was reduced using the simulation error minimization connectivity method (SEM-CM) to produce a reaction scheme of 181 ion-molecule reactions of 181 ion-molecule reactions of 27 positive and 18 negative ions. This scheme describes the concentration profiles at altitudes between 20 km and 120 km of a set of major neutral species (HNO3, O3, H2O2, NO, NO2, HO2, OH, N2O5) and ions (O2+, O4+, NO+, NO+(H2O), O2+(H2O), H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, O3-, NO2-, O-, O2, OH-, O2-(H2O), O2-(H2O)2, O4-, CO3-, CO3-(H2O), CO4-, HCO3-, NO2-, NO3-, NO3-(H2O), NO3-(H2O)2, NO3-(HNO3), NO3-(HNO3)2, Cl-, ClO-), which agree with the full SIC mechanism within a 5 % tolerance. Four 3-D model simulations were then performed, using the impact of the January 2005 solar proton event (SPE) on D-region HOx and NOx chemistry as a test case of four different model versions: the standard WACCM (no negative ions and a very limited set of positive ions); WACCM-SIC (standard WACCM with the full SIC chemistry of positive and negative ions); WACCM-D (standard WACCM with a heuristic reduction of the SIC chemistry, recently used to examine HNO3 formation following an SPE); and WACCM-rSIC (standard WACCM with a reduction of SIC chemistry using the SEM-CM method). The standard WACCM misses the HNO3 enhancement during the SPE, while the full and reduced model versions predict significant NOx, HOx and HNO3 enhancements in the mesosphere during solar proton events. The SEM-CM reduction also identifies the important ion-molecule reactions that affect the partitioning of

  6. Discussion on informatization teaching of certain radar transmitter

    Science.gov (United States)

    Liang, Guanhui; Lv, Guizhou; Meng, Yafeng

    2017-04-01

    With the development of informatization, the traditional teaching method of certain radar transmitter is more and more difficult to meet the need of cultivating new type of high-quality military talents. This paper first analyzes the problems traditional teaching method of certain radar transmitter, and then puts forward the strategy of informatization teaching, and finally elaborates the concrete steps and contents of informatization teaching. Using the multimedia maintenance training system, information simulation training system and network courses and other informatization means, effectively improves the master degree to radar transmitter by trainees, but also lays a good foundation for repair in the next step.

  7. 47 CFR 80.959 - Radiotelephone transmitter.

    Science.gov (United States)

    2010-10-01

    ... watts into 50 ohms nominal resistance when operated with its rated supply voltage. The transmitter must... capability of the transmitter, measurements of primary supply voltage and transmitter output power must be... voltage measured at the power input terminals to the transmitter terminated in a matching artificial load...

  8. Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Iannello, Christopher J.; Del Castillo, Linda Y.; Fitzpatrick, Fred D.; Mojarradi, Mohammad M.; hide

    2016-01-01

    Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments.

  9. A Novel High Bandwidth Current Control Strategy for SiC mosfet Based Active Front-End Rectifiers Under Unbalanced Input Voltage Conditions

    DEFF Research Database (Denmark)

    Maheshwari, Ramkrishan; Trintis, Ionut; Török, Lajos

    2017-01-01

    SiC mosfet based converters are capable of high switching frequency operation. In this paper, the converter is operated with 50-kHz switching frequency for an active front-end rectifier application. Due to high switching frequency, the grid-side filter size is reduced, and the possibility of a high...

  10. Pore Formation Process of Porous Ti3SiC2 Fabricated by Reactive Sintering

    Directory of Open Access Journals (Sweden)

    Huibin Zhang

    2017-02-01

    Full Text Available Porous Ti3SiC2 was fabricated with high purity, 99.4 vol %, through reactive sintering of titanium hydride (TiH2, silicon (Si and graphite (C elemental powders. The reaction procedures and the pore structure evolution during the sintering process were systematically studied by X-ray diffraction (XRD and scanning electron microscope (SEM. Our results show that the formation of Ti3SiC2 from TiH2/Si/C powders experienced the following steps: firstly, TiH2 decomposed into Ti; secondly, TiC and Ti5Si3 intermediate phases were generated; finally, Ti3SiC2 was produced through the reaction of TiC, Ti5Si3 and Si. The pores formed in the synthesis procedure of porous Ti3SiC2 ceramics are derived from the following aspects: interstitial pores left during the pressing procedure; pores formed because of the TiH2 decomposition; pores formed through the reactions between Ti and Si and Ti and C powders; and the pores produced accompanying the final phase synthesized during the high temperature sintering process.

  11. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  12. Influence of extrusion parameters on sic distribution and properties of AA6061/SiC composites produced by kobo method

    Energy Technology Data Exchange (ETDEWEB)

    WoĨniak, Jarosáaw; Kostecki, Marek; Broniszewski, Kamil; Olszyna, Andrzej [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Bochniak, Wáodzimierz [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Cracow (Poland)

    2013-07-01

    The influence of extrusion parameters on reinforcements distribution and properties of AA6061+x% vol. SiC p (x=0; 2.5; 5; 7.5; 10) composites was discussed in this paper The averages size of AA6061 and SiC particles were 10.6 μ m and 0.42 μ m, respectively. The composites were consolidated via powder metallurgy processing (without the sintering) and extruded by KoBo method. The microstructure was examined on each steps of production. High values of density for all produced composites were achieved. Additionally, hardness and Young’s modulus were investigated. The best reinforcement distribution and mechanical properties were obtained for composites extruded with the highest extrusion ratio. Key words: aluminum alloy, extrusion, aged hardening, metal matrix composites, microstructure.

  13. Data transmission through power line of smart transmitter

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Kang, Hyun Gook; Seong, Poong Hyun

    1996-01-01

    In this study, the method to use the phase shift keying (PSK) communication technique in smart transmitter is presented. In nuclear applications, smart transmitters for various parameters are expected to improve the accuracy of measurement and to reduce the load of calibration work. The capability of communication in field level is the most important merit of the smart transmitter. The most popular method is using of digital and analog techniques simultaneously - transmitting measurements from the field at 4-20mA while modulating the current to carry digital information in both directions over the same twisted pairs. Conventional smart transmitters use the frequency shift keying (FSK) method for digital communication. Generally, however, the FSK method has the speed limit at 1200 bps. Amount of information to transmit becomes increasing as the processing technique is improved. The PSK method is noticeable alternative for high speed digital communication, but it has non-zero DC component. In order to use the PSK method in the field transmission with smart transmitter, the method to remove the DC component is studied in this work

  14. High-throughput screening of Si-Ni flux for SiC solution growth using a high-temperature laser microscope observation and secondary ion mass spectroscopy depth profiling.

    Science.gov (United States)

    Maruyama, Shingo; Onuma, Aomi; Kurashige, Kazuhisa; Kato, Tomohisa; Okumura, Hajime; Matsumoto, Yuji

    2013-06-10

    Screening of Si-based flux materials for solution growth of SiC single crystals was demonstrated using a thin film composition-spread technique. The reactivity and diffusion of carbon in a composition spread of the flux was investigated by secondary ion mass spectroscopy depth profiling of the annealed flux thin film spread on a graphite substrate. The composition dependence of the chemical interaction between a seed crystal and flux materials was revealed by high-temperature thermal behavior observation of the flux and the subsequent morphological study of the surface after removing the flux using atomic force microscopy. Our new screening approach is shown to be an efficient process for understanding flux materials for SiC solution growth.

  15. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  16. Residual Stress Measurement of SiC tile/Al7075 Hybrid Composites by Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Bok; Lee, Jun Ho; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of); Lee, Sang Bok; Lee, Sang Kwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Muslihd, M. Rifai [Center for Advanced Materials Science and Technology, Tangerang (India)

    2016-05-15

    In this research, SiC which has low density, high compressive strength, and high elastic modulus was used to fabricate the armor plate. In addition, Al which has low density and high toughness was used for a metal matrix of the composites. If two materials are combined, the composite can be effective materials for light weight armor applications. However, the existence of a large difference in coefficients of thermal expansion (CTE) between SiC and Al matrix, SiC/Al composites can have residual stresses while cooled in the fabrication process. Previous research reported that residual stresses in the composites or microstructures have an effect on the fatigue life and their mechanical properties. Some researchers reported about the residual stresses in the SiCp/Al metal matrix composites by numerical simulation systems, X-ray diffraction, and destructive methods. In order to analyze the residual stress of SiC/Al composites, the neutron diffraction as the non-destructive method was performed in this research. The 50 vol.% SiC{sub p}/Al7075 composites and SiC tile inserted 50 vol.% SiC{sub p}/Al7075 hybrid composites were measured to analyze the residual stress of Al (111) and SiC (111). Both samples had the tensile residual stresses in the Al (111) and the compressive residual stresses in the SiC (111) due to the difference in CTE.

  17. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    introduced in the characteristic TO and LO mode of vibration of SiC nanocrystals after grafting procedure.XRD analysis confirmed that the grafting procedure did not alter the crystalline geometry of SiC nanocrystals. TEM and SEM images further support the FTIR and Raman spectroscopic results and confirm...... of semiconducting SiC nanocrystals using a novel method. FTIR spectroscopy reveals the introduction of new peaks corresponding to various functional groups of PVA alongwith the presence of characteristic Si-C vibrational peak in the spectra of grafted SiC nanocrystals. Raman spectra depict the presence of changes...... the presence of PVA layer around SiC nanocrystals. Thermal degradation behavior of PVA-g-SiC nanocrystals has been studied using TGA analysis....

  18. Stability analysis of SiO2/SiC multilayer coatings

    International Nuclear Information System (INIS)

    Fu Zhiqiang; Jean-Charles, R.

    2006-01-01

    The stability behaviours of SiC coatings and SiO 2 /SiC coatings in helium with little impurities are studied by HSC Chemistry 4.1, the software for analysis of Chemical reaction and equilibrium in multi-component complex system. It is found that in helium with a low partial pressure of oxidative impurities under different total pressure, the key influence factor controlling T cp of SiC depends is the partial pressure of oxidative impurities; T cp of SiC increases with the partial pressure of oxidative impurities. In helium with a low partial pressure of different impurities, the key influence factor of T cs of SiO 2 are both the partial pressure of impurities and the amount of impurities for l mol SiO 2 ; T cs of SiO 2 increases with the partial pressure of oxidative impurities at the same amount of the impurities for 1 mol SiO 2 while it decreases with the amount of the impurities for 1 mm SiO 2 at the same partial pressure of the impurities. The influence of other impurities on T cp of SiC in He-O 2 is studied and it is found that CO 2 , H 2 O and N-2 increase T cp of SiC in He-O 2 while H 2 , CO and CH 4 decrease T cp of SiC He-O 2 . When there exist both oxidative impurities and reductive impurities, their effect on T cs of SiO 2 can be suppressed by the other. In HTR-10 operation atmosphere, SiO 2 /SiC coatings can keep stable status at higher temperature than SiC coatings, so SiO 2 /SiC coatings is more suitable to improve the oxidation resistance of graphite in HTR-10 operation atmosphere compared with SiC coatings. (authors)

  19. Quantitative analyses of impurity silicon-carbide (SiC) and high-purity-titanium by neutron activation analyses based on k0-standardization method. Development of irradiation silicon technology in productivity using research reactor (Joint research)

    International Nuclear Information System (INIS)

    Motohashi, Jun; Takahashi, Hiroyuki; Magome, Hirokatsu; Sasajima, Fumio; Tokunaga, Okihiro; Kawasaki, Kozo; Onizawa, Koji; Isshiki, Masahiko

    2009-07-01

    JRR-3 and JRR-4 have been providing neutron-transmutation-doped silicon (NTD-Si) by using the silicon NTD process, which is a method to produce a high quality semiconductor. The domestic supply of NTD-Si is insufficient for the demand, and the market of NTD-Si is significantly growing at present. It is very important to increase achieve the production. To fulfill the requirement, we have been investigating a neutron filter, which is made of high-purity-titanium, for uniform doping. Silicon-carbide (SiC) semiconductor doped with NTD technology is considered suitable for high power devices with superior performances to conventional Si-based devices. We are very interested in the SiC as well. This report presents the results obtained after the impurity contents in the high-purity-titanium and SiC were analyzed by neutron activation analyses (NAA) using k 0 -standardization method. There were 6 and 9 impurity elements detected from the high-purity-titanium and SiC, respectively. Among those Sc from the high-purity-titanium and Fe from SiC were comparatively long half life nuclides. From the viewpoint of exposure in handling them, we need to examine the impurity control of materials. (author)

  20. Control of the graphene growth rate on capped SiC surface under strong Si confinement

    International Nuclear Information System (INIS)

    Çelebi, C.; Yanık, C.; Demirkol, A.G.; Kaya, İsmet İ.

    2013-01-01

    Highlights: ► Graphene is grown on capped SiC surface with well defined cavity size. ► Graphene growth rate linearly increases with the cavity height. ► Graphene uniformity is reduced with thickness. - Abstract: The effect of the degree of Si confinement on the thickness and morphology of UHV grown epitaxial graphene on (0 0 0 −1) SiC is investigated by using atomic force microscopy and Raman spectroscopy measurements. Prior to the graphene growth process, the C-face surface of a SiC substrate is capped by another SiC comprising three cavities on its Si-rich surface with depths varying from 0.5 to 2 microns. The Si atoms, thermally decomposed from the sample surface during high temperature annealing of the SiC cap /SiC sample stack, are separately trapped inside these individual cavities at the sample/cap interface. Our analyses show that the growth rate linearly increases with the cavity height. It was also found that stronger Si confinement yields more uniform graphene layers.

  1. Graphene synthesis on SiC: Reduced graphitization temperature by C-cluster and Ar-ion implantation

    International Nuclear Information System (INIS)

    Zhang, R.; Li, H.; Zhang, Z.D.; Wang, Z.S.; Zhou, S.Y.; Wang, Z.; Li, T.C.; Liu, J.R.; Fu, D.J.

    2015-01-01

    Thermal decomposition of SiC is a promising method for high quality production of wafer-scale graphene layers, when the high decomposition temperature of SiC is substantially reduced. The high decomposition temperature of SiC around 1400 °C is a technical obstacle. In this work, we report on graphene synthesis on 6H–SiC with reduced graphitization temperature via ion implantation. When energetic Ar, C 1 and C 6 -cluster ions implanted into 6H–SiC substrates, some of the Si–C bonds have been broken due to the electronic and nuclear collisions. Owing to the radiation damage induced bond breaking and the implanted C atoms as an additional C source the graphitization temperature was reduced by up to 200 °C

  2. Role of Defects in Swelling and Creep of Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Voyles, Paul [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-16

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  3. Role of Defects in Swelling and Creep of Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Voyles, Paul; Sridharan, Kumar; Katoh, Yutai

    2016-01-01

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  4. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  5. New constructions of approximately SIC-POVMs via difference sets

    Science.gov (United States)

    Luo, Gaojun; Cao, Xiwang

    2018-04-01

    In quantum information theory, symmetric informationally complete positive operator-valued measures (SIC-POVMs) are related to quantum state tomography (Caves et al., 2004), quantum cryptography (Fuchs and Sasaki, 2003) [1], and foundational studies (Fuchs, 2002) [2]. However, constructing SIC-POVMs is notoriously hard. Although some SIC-POVMs have been constructed numerically, there does not exist an infinite class of them. In this paper, we propose two constructions of approximately SIC-POVMs, where a small deviation from uniformity of the inner products is allowed. We employ difference sets to present the first construction and the dimension of the approximately SIC-POVMs is q + 1, where q is a prime power. Notably, the dimension of this framework is new. The second construction is based on partial geometric difference sets and works whenever the dimension of the framework is a prime power.

  6. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    Science.gov (United States)

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  7. SiC Optically Modulated Field-Effect Transistor

    Science.gov (United States)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  8. Oxygen isotopic exchange occurring during dry thermal oxidation of 6H SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vickridge, I.C. E-mail: vickridge@gps.jussieu.fr; Tromson, D.; Trimaille, I.; Ganem, J.-J.; Szilagyi, E.; Battistig, G

    2002-05-01

    SiC is a large band gap semiconductor, promising for high power and high frequency devices. The thermal oxide is SiO{sub 2} however the growth rates of thermal oxide on SiC are substantially slower than on Si, and different along the polar directions (<0 0 0 1-bar> and <0 0 0 1> in the hexagonal polytypes). Thorough understanding of the oxide growth mechanisms may give us new insights into the nature of the SiO{sub 2}/SiC interface, crucial for device applications. We have determined growth kinetics for ultra-dry thermal oxidation of 6H SiC at 1100 deg. C for pressures from 3 to 200 mbar. At 3 mbar, the lowest pressure studied, the oxide growth rates along the two polar directions are virtually the same. At higher pressures growth is faster on the carbon-terminated (0 0 0 1-bar) face. After consecutive oxidations at 1100 deg. C and 100 mbar in {sup 18}O{sub 2} and {sup 16}O{sub 2} gases, {sup 18}O depth profiles show significant isotopic exchange and oxygen movement within the oxide during oxidation.

  9. Development of the fabrication process of SiC composite by polycarbosilane

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Kim, Jung Il; Ryu, Woo Seog

    2004-11-01

    This technical report reviewed the fabrication process of fiber reinforced ceramic composites, characteristics of the PIP process, and applications of SiC f /SiC composite to develop a silicon carbide composite by PIP method. Additionally, characteristics and thermal behaviors of a PCS+SiC powder slurry and infiltration behaviors of slurry into the SiC fabric was evaluated. The stacking behaviors of SiC fabrics infiltrated a PCS+SiC powder slurry was also investigated. Using this stacked preforms, SiC f /SiC composites were fabricated by the electron beam curing and pyrolysis process and the thermal oxidation curing and pyrolysis process, respectively. And the characteristics of both composites were compared

  10. Miniature excitatory synaptic currents in cultured hippocampal neurons.

    Science.gov (United States)

    Finch, D M; Fisher, R S; Jackson, M B

    1990-06-04

    We performed patch clamp recordings in the whole cell mode from cultured embryonic mouse hippocampal neurons. In bathing solutions containing tetrodotoxin (TTX), the cells showed spontaneous inward currents (SICs) ranging in size from 1 to 100 pA. Several observations indicated that the SICs were miniature excitatory synaptic currents mediated primarily by non-NMDA (N-methyl-D-aspartate) excitatory amino acid receptors: the rising phase of SICs was fast (1 ms to half amplitude at room temperature) and smooth, suggesting unitary events. The SICs were blocked by the broad-spectrum glutamate receptor antagonist gamma-D-glutamylglycine (DGG), but not by the selective NMDA-receptor antagonist D-2-amino-5-phosphonovaleric acid (5-APV). SICs were also blocked by desensitizing concentrations of quisqualate. Incubating cells in tetanus toxin, which blocks exocytotic transmitter release, eliminated SICs. The presence of SICs was consistent with the morphological arrangement of glutamatergic innervation in the cell cultures demonstrated immunohistochemically. Spontaneous outward currents (SOCs) were blocked by bicuculline and presumed to be mediated by GABAA receptors. This is consistent with immunohistochemical demonstration of GABAergic synapses. SIC frequency was increased in a calcium dependent manner by bathing the cells in a solution high in K+, and application of the dihydropyridine L-type calcium channel agonist BAY K 8644 increased the frequency of SICs. Increases in SIC frequency produced by high K+ solutions were reversed by Cd2+ and omega-conotoxin GVIA, but not by the selective L-type channel antagonist nimodipine. This suggested that presynaptic L-type channels were in a gating mode that was not blocked by nimodipine, and/or that another class of calcium channel makes a dominant contribution to excitatory transmitter release.

  11. Brazing of AlN to SiC by a Pr silicide: Physicochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Koltsov, A. [SIMAP - UMR CNRS 5266, INP Grenoble-UJF, Domaine Universitaire, BP 75, 1130 rue de la Piscine, 38402 Saint Martin d' Heres, Cedex (France)], E-mail: alexey.koltsov@arcelor.com; Hodaj, F.; Eustathopoulos, N. [SIMAP - UMR CNRS 5266, INP Grenoble-UJF, Domaine Universitaire, BP 75, 1130 rue de la Piscine, 38402 Saint Martin d' Heres, Cedex (France)

    2008-11-15

    In view of their very different thermomechanical properties, joining of metals to ceramics by brazing is usually performed by means of one or more interlayers. In a recent investigation AlN was chosen as interlayer material for brazing SiC to a superalloy. The aim of the present study is to determine an alloy with a high melting point (close to 1200 deg. C) enabling brazing of AlN to SiC. Two types of experiments are performed with a Si-17 at.% Pr eutectic alloy (T{sub m} = 1212 deg. C): sessile drop experiments to determine wetting and brazing of AlN and SiC plates to determine gap filling. Experiments are carried out in high vacuum to promote deoxidation. Interfacial reactivity, joint microstructure and type of failure occurring during cooling are examined by optical and scanning electron microscopy.

  12. Brazing of AlN to SiC by a Pr silicide: Physicochemical aspects

    International Nuclear Information System (INIS)

    Koltsov, A.; Hodaj, F.; Eustathopoulos, N.

    2008-01-01

    In view of their very different thermomechanical properties, joining of metals to ceramics by brazing is usually performed by means of one or more interlayers. In a recent investigation AlN was chosen as interlayer material for brazing SiC to a superalloy. The aim of the present study is to determine an alloy with a high melting point (close to 1200 deg. C) enabling brazing of AlN to SiC. Two types of experiments are performed with a Si-17 at.% Pr eutectic alloy (T m = 1212 deg. C): sessile drop experiments to determine wetting and brazing of AlN and SiC plates to determine gap filling. Experiments are carried out in high vacuum to promote deoxidation. Interfacial reactivity, joint microstructure and type of failure occurring during cooling are examined by optical and scanning electron microscopy

  13. Conversion of wood flour/SiO2/phenolic composite to porous SiC ceramic containing SiC whiskers

    Directory of Open Access Journals (Sweden)

    Li Zhong

    2013-01-01

    Full Text Available A novel wood flour/SiO2/phenolic composite was chosen to be converted into porous SiC ceramic containing SiC whiskers via carbothermal reduction. At 1550°C the composite is converted into porous SiC ceramic with pore diameters of 10~40μm, and consisting of β-SiC located at the position of former wood cell walls. β-SiC wire-like whiskers of less than 50 nm in diameter and several tens to over 100 μm in length form within the pores. The surface of the resulting ceramic is coated with β-SiC necklace-like whiskers with diameters of 1~2μm.

  14. Fast Turn-off Mine Transient Electromagnetic Transmitter System

    Directory of Open Access Journals (Sweden)

    ZHENG Xiao-Liang

    2014-05-01

    Full Text Available For solving problems such as short turn-off time, high linear degree of falling edge, measurement of turn-off time and influence of primary signals for transient electromagnetic transmitter, and restrictions because of the environmental conditions of underground coal mine, this thesis aims at designing a new transient electromagnetic transmitter system suitable for coal mine. Supported by damping absorption circuit, such system applies small volume, sectional transmitting coil, with features of short turn-off time, high linear degree of current falling edge. It uses the transmitter monitoring circuit, which accurately measures turn-off time and simultaneously records the current value changes after turn-off, thus to eliminate the influence of primary field as well as to restore earlier secondary field signals for reference and finally to improve the ability to detect the shallow structure. It turns out that the new system has a shorter turn-off time, a higher linear degree of current falling and more accurate data record of turn-off current.

  15. High optical transmittance of aluminum ultrathin film with hexagonal nanohole arrays as transparent electrode

    KAUST Repository

    Du, Qing Guo; Yue, Weisheng; Wang, Zhihong; Lau, Wah Tung; Ren, Hengjiang; Li, Er-Ping

    2016-01-01

    We fabricate samples of aluminum ultrathin films with hexagonal nanohole arrays and characterize the transmission performance. High optical transmittance larger than 60% over a broad wavelength range from 430 nm to 750 nm is attained experimentally. The Fano-type resonance of the excited surface plasmon plaritons and the directly transmitted light attribute to both of the broadband transmission enhancement and the transmission suppression dips. © 2016 Optical Society of America.

  16. High optical transmittance of aluminum ultrathin film with hexagonal nanohole arrays as transparent electrode

    KAUST Repository

    Du, Qing Guo

    2016-02-24

    We fabricate samples of aluminum ultrathin films with hexagonal nanohole arrays and characterize the transmission performance. High optical transmittance larger than 60% over a broad wavelength range from 430 nm to 750 nm is attained experimentally. The Fano-type resonance of the excited surface plasmon plaritons and the directly transmitted light attribute to both of the broadband transmission enhancement and the transmission suppression dips. © 2016 Optical Society of America.

  17. Homoepitaxial VPE growth of SiC active layers

    Energy Technology Data Exchange (ETDEWEB)

    Burk, A.A. Jr. [Northrop Grumman Electron. Sensors and Syst. Div., Baltimore, MD (United States); Rowland, L.B. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-01

    SiC active layers of tailored thickness and doping form the heart of all SiC electronic devices. These layers are most conveniently formed by vapor phase epitaxy (VPE). Exacting requirements are placed upon the SiC-VPE layers` material properties by both semiconductor device physics and available methods of device processing. In this paper, the current ability of the SiC-VPE process to meet these requirements is described along with continuing improvements in SiC epitaxial reactors, processes and materials. (orig.) 48 refs.

  18. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic; Elaboration de ceramiques nanostructurees en carbure de silicium (SiC): de la synthese de poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMA), 91 - Gif-sur-Yvette (France)

    2008-07-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC{sub f}/SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC{sub f}/SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  19. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.

    Science.gov (United States)

    Jiang, M; Zheng, J W; Xiao, H Y; Liu, Z J; Zu, X T

    2017-08-24

    ZrC and TiC have been proposed to be alternatives to SiC as fuel-cladding and structural materials in nuclear reactors due to their strong radiation tolerance and high thermal conductivity at high temperatures. To unravel how the presence of defects affects the thermo-physical properties under irradiation, first-principles calculations based on density function theory were carried out to investigate the mechanical and thermal properties of defective ZrC, TiC and SiC. As compared with the defective SiC, the ZrC and TiC always exhibit larger bulk modulus, smaller changes in the Young's and shear moduli, as well as better ductility. The total thermal conductivity of ZrC and TiC are much larger than that of SiC, implying that under radiation environment the ZrC and TiC will exhibit superior heat conduction ability than the SiC. One disadvantage for ZrC and TiC is that their Debye temperatures are generally lower than that of SiC. These results suggest that further improving the Debye temperature of ZrC and TiC will be more beneficial for their applications as fuel-cladding and structural materials in nuclear reactors.

  20. 47 CFR 80.215 - Transmitter power.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmitter power. 80.215 Section 80.215... MARITIME SERVICES General Technical Standards § 80.215 Transmitter power. (a) Transmitter power shown on the radio station authorization is the maximum power the licensee is authorized to use. Power is...

  1. 47 CFR 101.513 - Transmitter power.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmitter power. 101.513 Section 101.513... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.513 Transmitter power. The transmitter power will be governed by § 101.113. Further, each application must contain an analysis demonstrating...

  2. Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature

    International Nuclear Information System (INIS)

    Li Hejun; Jiao Gengsheng; Li Kezhi; Wang Chuang

    2008-01-01

    To prevent carbon/carbon (C/C) composites from oxidation, a multilayer coating based on molybdenum disilicide and titanium disilicide was formed using a two-step pack cementation technique in argon atmosphere. XRD and SEM analysis showed that the internal coating was a bond SiC layer that acts as a buffer layer, and that the external multilayer coating formed in the two-step pack cementation was composed of two MoSi 2 -TiSi 2 -SiC layers. This coating, which is characterized by excellent thermal shock resistance, could effectively protect the composites from exposure to an oxidizing atmosphere at 1773 K for 79 h. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating

  3. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  4. SiC Armor Tiles via Magnetic Compaction and Pressureless Sintering

    National Research Council Canada - National Science Library

    Chelluri, Bhanu; Knoth, Ed A; Franks, L. P

    2008-01-01

    The purpose of the SBIR, entitled "Continuous Dynamic Processing of Ceramic Tiles for Ground Vehicle Protection", was to create a high rate, cost effective manufacturing method for producing silicon carbide (SiC...

  5. Effect Of SiC Particles On Sinterability Of Al-Zn-Mg-Cu P/M Alloy

    Directory of Open Access Journals (Sweden)

    Rudianto H.

    2015-06-01

    Full Text Available Premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder was analyzed as matrix in this research. Gas atomized powder Al-9Si with 20% volume fraction of SiC particles was used as reinforcement and added into the alloy with varied concentration. Mix powders were compacted by dual action press with compaction pressure of 700 MPa. High volume fraction of SiC particles gave lower green density due to resistance of SiC particles to plastic deformation during compaction process and resulted voids between particles and this might reduce sinterability of this mix powder. Sintering was carried out under ultra high purity nitrogen gas from 565°-580°C for 1 hour. High content of premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder gave better sintering density and reached up to 98% relative. Void between particles, oxide layer on aluminum powder and lower wettability between matrix and reinforcement particles lead to uncompleted liquid phase sintering, and resulted on lower sintering density and mechanical properties on powder with high content of SiC particles. Mix powder with wt90% of Alumix 431D and wt10% of Al-9Si-vf20SiC powder gave higher tensile strength compare to another mix powder for 270 MPa. From chemical compositions, sintering precipitates might form after sintering such as MgZn2, CuAl2 and Mg2Si. X-ray diffraction, DSC-TGA, and SEM were used to characterize these materials.

  6. Self-Organized Graphene Nanoribbons on SiC(0001) Studied with Scanning Tunneling Microscopy

    Science.gov (United States)

    Torrance, David; Zhang, Baiqian; Hoang, Tien; First, Phillip

    2012-02-01

    Graphene nanoribbons grown directly on nanofacets of SiC(0001) offer an attractive union of top-down and bottom-up fabrication techniques. Nanoribbons have been shown to form on the facets of templated silicon carbide substrates,ootnotetextSprinkle et al., Nat. Nanotech. 5, 727 (2010). but also appear spontaneously along step-bunches on vicinal SiC(0001) miscut slightly towards . These self-organized graphene nanoribbons were characterized with low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) in ultra-high vacuum. Our measurements indicate that the graphene forms a continuous ``buffer layer'' across the SiC(0001) terraces during nanoribbon formation, with the zigzag edge of the buffer layer aligned parallel to the step-bunched nanofacets. Scanning tunneling microscopy/spectroscopy (STM/STS) was used to characterize the topography and electrical characteristics of the graphene nanoribbons. These measurements indicate that the graphene nanoribbons are highly-crystalline with predominantly zigzag edges.

  7. Research Progress of Optical Fabrication and Surface-Microstructure Modification of SiC

    Directory of Open Access Journals (Sweden)

    Fang Jiang

    2012-01-01

    Full Text Available SiC has become the best candidate material for space mirror and optical devices due to a series of favorable physical and chemical properties. Fine surface optical quality with the surface roughness (RMS less than 1 nm is necessary for fine optical application. However, various defects are present in SiC ceramics, and it is very difficult to polish SiC ceramic matrix with the 1 nm RMS. Surface modification of SiC ceramics must be done on the SiC substrate. Four kinds of surface-modification routes including the hot pressed glass, the C/SiC clapping, SiC clapping, and Si clapping on SiC surface have been reported and reviewed here. The methods of surface modification, the mechanism of preparation, and the disadvantages and advantages are focused on in this paper. In our view, PVD Si is the best choice for surface modification of SiC mirror.

  8. 47 CFR 101.807 - Transmitter power.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmitter power. 101.807 Section 101.807... SERVICES Local Television Transmission Service § 101.807 Transmitter power. Stations in this service will not be authorized to use transmitters having a rated power output in excess of the limits set forth in...

  9. New Possibilities of Power Electronic Structures Using SiC Technology

    Directory of Open Access Journals (Sweden)

    Robert Sul

    2006-01-01

    Full Text Available This paper is dedicated to the recent unprecedented boom of SiC electronic technology. The contribution deals with brief survey of those properties. In particular, the differences (both good and bad between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are given for several large-scale applications on the end of the contribution. The basic properties of SiC material have been discussed already on the beginning of 80’s, also at our university.

  10. Methods for growth of relatively large step-free SiC crystal surfaces

    Science.gov (United States)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  11. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    Science.gov (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  12. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    International Nuclear Information System (INIS)

    Lillo, T.M.; Rooyen, I.J. van; Wu, Y.Q.

    2016-01-01

    Highlights: • SiC grain orientation determined by TEM-based precession electron diffraction. • Orientation data improved with increasing TEM sample thickness. • Fraction of low angle grain boundaries lower from PED data than EBSD data. • Fractions of high angle and CSL-related boundaries similar to EBSD data. - Abstract: Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. This work reports the effect of transmission electron microscope (TEM) lamella thickness on the quality of data and establishes a baseline comparison to SiC grain boundary characteristics, in an unirradiated TRISO particle, determined previously using a conventional electron backscatter diffraction (EBSD) scanning electron microscope (SEM)-based technique. In general, it was determined that the lamella thickness produced using the standard focused ion beam (FIB) fabrication process (∼80 nm), is sufficient to provide reliable PED measurements, although thicker lamellae (∼120 nm) were found to produce higher quality orientation data. Also, analysis of SiC grain boundary character from the TEM-based PED data showed a much lower fraction of low-angle grain boundaries compared to SEM-based EBSD data from the SiC layer of a TRISO-coated particle made using the same fabrication parameters and a SiC layer deposited at a slightly lower temperature from a surrogate TRISO particle. However, the fractions of high-angle and coincident site lattice (CSL)-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm (Kirchhofer et al., 2013), depending on the fabrication parameters, and since grain boundary fission product precipitates in irradiated TRISO fuel can be nano-sized, the TEM-based PED orientation data

  13. Enhanced oxidation resistance of SiC coating on Graphite by crack healing at the elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yoo-Taek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Windes, William E. [Idaho National Laboratory, Idaho (United States)

    2015-10-15

    An oxidation protective SiC coating on the graphite components could assist in slowing the oxidation down. However, the irradiation induced dimensional changes in the graphite (shrinkage followed by swelling) can occur, while the SiC CVD coating has been reported to swell even at a low dose neutron irradiation. In this work, functionally gradient electron beam evaporative coating with an ion beam processing was firstly conducted and then SiC coating on the FG coating to the desired thickness is followed. For the crack healing, both the repeated EB-PVD and CVD were performed. Oxidation and thermal cycling tests of the coated specimens were performed and reflected in the process development. In this work, efforts have been paid to heal the cracks in the SiC coated layer on graphite with both EB-PVD and CVD. CVD seems to be more appropriate coating method for crack healing probably due to its excellent crack-line filling capability for high density and high aspect ratio.

  14. Compósitos SiCf /SiC utilizados em sistemas de proteção térmica SiCf /SiC composites for thermal protection systems

    Directory of Open Access Journals (Sweden)

    M. Florian

    2005-09-01

    Full Text Available Compósitos de carbeto de silício (SiC reforçado com fibras de carbeto de silício (SiCf são materiais candidatos em potencial para utilização em sistemas de proteção térmica em altas temperaturas devido principalmente à boa condutividade térmica na direção da fibra e muito baixa condutividade térmica na direção transversal à fibra, alta dureza, estabilidade térmica e à corrosão por oxidação. O compósito SiCf/SiC possui uma matriz de SiC reforçada com fibras contínuas policristalinas de SiC e é obtido por reações de conversão em altas temperaturas e atmosfera controlada, utilizando o compósito carbono/carbono como precursor. O processo de Reação Química em Vapor (CVR foi utilizado para a fabricação de compósitos SiCf/SiC com alta pureza na fase de SiC-beta. O compósito precursor de carbono/carbono foi fabricado com fibra de carbono não estabilizada e matriz carbonosa derivada da resina fenólica na forma de carbono isotrópico. O compósito convertido exibiu uma densidade de 1,75 g/cm³, com 40% de porosidade aberta e resistência à flexão de 80 MPa medida por ensaio flexão em 4 pontos. A área especifica medida pela técnica de BET é dependente da temperatura de conversão e das condições inicias do precursor de carbono, podendo chegar a 18 m²/g.Composites based on silicon carbide are potential candidate materials for thermal protection systems mainly due to its good thermal conductivity in fiber direction and very low transversal thermal conductivity, high hardness, corrosion and thermal resistance. SiCf/SiC composite presents a SiC matrix reinforced with SiC polycrystalline continuous fibers. The composite was obtained by conversion reactions at high temperature and controlled atmosphere from a carbon/carbon composite precursor. The CVR process was used to fabricate SiC /SiC composite with crystalline high-purity beta-SiC from a carbon-carbon precursor fabricated with non-stabilized carbon fiber and

  15. Failure probabilities of SiC clad fuel during a LOCA in public acceptable simple SMR (PASS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Kim, Ho Sik, E-mail: hskim25@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2015-10-15

    Highlights: • Graceful operating conditions of SMRs markedly lower SiC cladding stress. • Steady-state fracture probabilities of SiC cladding is below 10{sup −7} in SMRs. • PASS demonstrates fuel coolability (T < 1300 °C) with sole radiation in LOCA. • SiC cladding failure probabilities of PASS are ∼10{sup −2} in LOCA. • Cold gas gap pressure controls SiC cladding tensile stress level in LOCA. - Abstract: Structural integrity of SiC clad fuels in reference Small Modular Reactors (SMRs) (NuScale, SMART, IRIS) and a commercial pressurized water reactor (PWR) are assessed with a multi-layered SiC cladding structural analysis code. Featured with low fuel pin power and temperature, SMRs demonstrate markedly reduced incore-residence fracture probabilities below ∼10{sup −7}, compared to those of commercial PWRs ∼10{sup −6}–10{sup −1}. This demonstrates that SMRs can serve as a near-term deployment fit to SiC cladding with a sound management of its statistical brittle fracture. We proposed a novel SMR named Public Acceptable Simple SMR (PASS), which is featured with 14 × 14 assemblies of SiC clad fuels arranged in a square ring layout. PASS aims to rely on radiative cooling of fuel rods during a loss of coolant accident (LOCA) by fully leveraging high temperature tolerance of SiC cladding. An overarching assessment of SiC clad fuel performance in PASS was conducted with a combined methodology—(1) FRAPCON-SiC for steady-state performance analysis of PASS fuel rods, (2) computational fluid dynamics code FLUENT for radiative cooling rate of fuel rods during a LOCA, and (3) multi-layered SiC cladding structural analysis code with previously developed SiC recession correlations under steam environments for both steady-state and LOCA. The results show that PASS simultaneously maintains desirable fuel cooling rate with the sole radiation and sound structural integrity of fuel rods for over 36 days of a LOCA without water supply. The stress level of

  16. Formation mechanism of SiC in C-Si system by ion irradiation

    International Nuclear Information System (INIS)

    Hishita, Shunichi; Aizawa, Takashi; Suehara, Shigeru; Haneda, Hajime

    2003-01-01

    The irradiation effects of 2 MeV He + , Ne + , and Ar + ions on the film structure of the C-Si system were investigated with RHEED and XPS. The ion dose dependence of the SiC formation was kinetically analyzed. The SiC formation at moderate temperature was achieved by 2 MeV ion irradiation when the thickness of the initial carbon films was appropriate. The evolution process of the SiC film thickness consisted of the 3 stages. The first stage was the steep increase of the SiC, and was governed by the inelastic collision. The second was the gentle increase of the SiC, and was governed by the diffusion. The last was the decrease of the SiC, and was caused by the sputtering. The formation mechanism of the SiC was discussed. (author)

  17. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  18. Laser transmitter system

    International Nuclear Information System (INIS)

    Dye, R.A.

    1975-01-01

    A laser transmitter system is disclosed which utilizes mechanical energy for generating an output pulse. The laser system includes a current developing device such as a piezoelectric crystal which charges a storage device such as a capacitor in response to a mechanical input signal. The capacitor is coupled to a switching device, such as a silicon controlled rectifier (SCR). The switching device is coupled to a laser transmitter such as a GaAs laser diode, which provides an output signal in response to the capacitor being discharged

  19. Effect of nitrogen on the electrochemical performance of core–shell structured Si/C nanocomposites as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Tao, Hua-Chao; Huang, Mian; Fan, Li-Zhen; Qu, Xuanhui

    2013-01-01

    Highlights: ► N-containing core–shell structured Si/C nanocomposites are prepared via two steps. ► The N-containing Si/C nanocomposites exhibit high capacity and excellent cycling stability. ► The appropriate nitrogen has a beneficial effect on the electrochemical performance. -- Abstract: Core–shell structured Si/C nanocomposites with different nitrogen contents are prepared by in situ polymerization of aniline in the suspension of silicon nanoparticles followed by carbonization of Si/polyaniline (PANI) nanocomposites at different temperatures. The nitrogen contents of Si/C nanocomposites decrease gradually with increasing carbonization temperatures. The effect of nitrogen contents on the electrochemical performance of Si/C nanocomposites as anode materials for lithium ion batteries is investigated. It is found that the Si/C nanocomposites with 4.75 wt.% nitrogen exhibit the high specific capacity of 795 mAh g −1 after 50 cycles at a current density of 100 mA g −1 and excellent cycling stability. The appropriate nitrogen in Si/C nanocomposites plays a beneficial role in the improvement of electrochemical performance. The nitrogen in Si/C nanocomposites increases the reversible capacity, which may be due to the formation of vacancies and dangling bonds around the nitrogen sites

  20. Irradiation damages in Ti3SiC2

    International Nuclear Information System (INIS)

    Nappe, J.C.; Grosseau, Ph.; Guilhot, B.; Audubert, F.; Beauvy, M.

    2007-01-01

    Carbides, by their remarkable properties, are considered as possible materials (fuel cans) in reactor of generation IV. Among those studied, Ti 3 SiC 2 is particularly considered because it joins both the ceramics and metals properties. Nevertheless, its behaviour under irradiation is not known. Characterizations have been carried out on samples irradiated at 75 MeV krypton ions. They have revealed that TiO 2 (formed at the surface of Ti 3 SiC 2 ) is pulverized by the irradiation and that the crystal lattice of Ti 3 SiC 2 dilates with c. (O.M.)

  1. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, H.; Curtin, W.A. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  2. Halogenation of SiC for band-gap engineering and excitonic functionalization

    Science.gov (United States)

    Drissi, L. B.; Ramadan, F. Z.; Lounis, S.

    2017-11-01

    The optical excitation spectra and excitonic resonances are investigated in systematically functionalized SiC with Fluorine and/or Chlorine utilizing density functional theory in combination with many-body perturbation theory. The latter is required for a realistic description of the energy band-gaps as well as for the theoretical realization of excitons. Structural, electronic and optical properties are scrutinized and show the high stability of the predicted two-dimensional materials. Their realization in laboratory is thus possible. Large band-gaps of the order of 4 eV are found in the so-called GW approximation, with the occurrence of bright excitons, optically active in the four investigated materials. Their binding energies vary from 0.9 eV to 1.75 eV depending on the decoration choice and in one case, a dark exciton is foreseen to exist in the fully chlorinated SiC. The wide variety of opto-electronic properties suggest halogenated SiC as interesting materials with potential not only for solar cell applications, anti-reflection coatings or high-reflective systems but also for a possible realization of excitonic Bose-Einstein condensation.

  3. TRISO coated fuel particles with enhanced SiC properties

    International Nuclear Information System (INIS)

    Lopez-Honorato, E.; Tan, J.; Meadows, P.J.; Marsh, G.; Xiao, P.

    2009-01-01

    The silicon carbide (SiC) layer used for the formation of TRISO coated fuel particles is normally produced at 1500-1650 deg. C via fluidized bed chemical vapor deposition from methyltrichlorosilane in a hydrogen environment. In this work, we show the deposition of SiC coatings with uniform grain size throughout the coating thickness, as opposed to standard coatings which have larger grain sizes in the outer sections of the coating. Furthermore, the use of argon as the fluidizing gas and propylene as a carbon precursor, in addition to hydrogen and methyltrichlorosilane, allowed the deposition of stoichiometric SiC coatings with refined microstructure at 1400 and 1300 deg. C. The deposition of SiC at lower deposition temperatures was also advantageous since the reduced heat treatment was not detrimental to the properties of the inner pyrolytic carbon which generally occurs when SiC is deposited at 1500 deg. C. The use of a chemical vapor deposition coater with four spouts allowed the deposition of uniform and spherical coatings.

  4. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  5. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2014-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  6. Detail study of SiC MOSFET switching characteristics

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    This paper makes detail study of the latest SiC MOSFETs switching characteristics in relation to gate driver maximum current, gate resistance, common source inductance and parasitic switching loop inductance. The switching performance of SiC MOSFETs in terms of turn on and turn off voltage...

  7. Mechanical performance of SiC three-layer cladding in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Angelici Avincola, Valentina, E-mail: valentina.avincola@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Guenoun, Pierre, E-mail: pguenoun@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Shirvan, Koroush, E-mail: kshirvan@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-12-15

    Highlights: • FEA calculations of the stress distribution in SiC three-layer cladding. • Simulation of SiC mechanical performance under operation and accident conditions. • Failure probability analysis of SiC in steady-state and accident conditions. - Abstract: The silicon carbide cladding concept is currently under investigation with regard to increasing the accident tolerance and economic performance of light-water reactor fuels. In this work, the stress fields in the multi-layered silicon carbide cladding for LWR fuels are calculated using the commercial finite element analysis software ADINA. The material properties under irradiation are implemented as a function of temperature. The cladding is studied under operating and accident conditions, specifically for the loss-of-coolant accident (LOCA). During the LOCA, the blowdown and the reflood phases are modeled, including the quench waterfront. The calculated stresses along the cladding thickness show a high sensitivity to the assumptions regarding material properties. The resulting stresses are compared with experimental data and the probability of failure is calculated considering a Weibull model.

  8. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  9. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  10. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  11. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  12. The deep-tow marine controlled-source electromagnetic transmitter system for gas hydrate exploration

    Science.gov (United States)

    Wang, Meng; Deng, Ming; Wu, Zhongliang; Luo, Xianhu; Jing, Jianen; Chen, Kai

    2017-02-01

    The Marine Controlled-Source Electromagnetic (MCSEM) method has been recognized as an important and effective tool to detect electrically resistive structures, such as oil, gas, and gas hydrate. The MCSEM performance is strongly influenced by the transmitter system design. We have developed a deep-tow MCSEM transmitter system. In this paper, some new technical details will be present. A 10,000 m optical-electrical composite cable is used to support high power transmission and fast data transfer; a new clock unit is designed to keep the synchronization between transmitter and receivers, and mark the time stamp into the transmission current full waveform; a data link is established to monitor the real-time altitude of the tail unit; an online insulation measuring instrument is adopted to monitor current leakage from high voltage transformer; a neutrally buoyant dipole antenna of copper cable and flexible electrodes are created to transmit the large power current into seawater; a new design method for the transmitter, which is called "real-time control technology of hardware parallelism", is described to achieve inverting and recording high-power current waveform, controlling functions, and collecting auxiliary information. We use a gas hydrate exploration test to verify the performance of the transmitter system, focusing on more technical details, rather than applications. The test shows that the transmitter can be used for gas hydrate exploration as an effective source.

  13. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  14. Ag Transport Through Non-Irradiated and Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Blanchard, James [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-11

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  15. Ag Transport Through Non-Irradiated and Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Blanchard, James

    2016-01-01

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  16. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters

    Science.gov (United States)

    Reese, Bradley

    2015-01-01

    Arkansas Power Electronics International (APEI), Inc., is developing a high-efficiency, radiation-hardened 3.8-kW SiC power supply for the PPU of Hall effect thrusters. This project specifically targets the design of a PPU for the high-voltage Hall accelerator (HiVHAC) thruster, with target specifications of 80- to 160-V input, 200- to 700-V/5A output, efficiency greater than 96 percent, and peak power density in excess of 2.5 kW/kg. The PPU under development uses SiC junction field-effect transistor power switches, components that APEI, Inc., has irradiated under total ionizing dose conditions to greater than 3 MRad with little to no change in device performance.

  17. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-05-16

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  18. Loss Model and Efficiency Analysis of Tram Auxiliary Converter Based on a SiC Device

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2017-12-01

    Full Text Available Currently, the auxiliary converter in the auxiliary power supply system of a modern tram adopts Si IGBT as its switching device and with the 1700 V/225 A SiC MOSFET module commercially available from Cree, an auxiliary converter using all SiC devices is now possible. A SiC auxiliary converter prototype is developed during this study. The author(s derive the loss calculation formula of the SiC auxiliary converter according to the system topology and principle and each part loss in this system can be calculated based on the device datasheet. Then, the static and dynamic characteristics of the SiC MOSFET module used in the system are tested, which aids in fully understanding the performance of the SiC devices and provides data support for the establishment of the PLECS loss simulation model. Additionally, according to the actual circuit parameters, the PLECS loss simulation model is set up. This simulation model can simulate the actual operating conditions of the auxiliary converter system and calculate the loss of each switching device. Finally, the loss of the SiC auxiliary converter prototype is measured and through comparison it is found that the loss calculation theory and PLECS loss simulation model is valuable. Furthermore, the thermal images of the system can prove the conclusion about loss distribution to some extent. Moreover, these two methods have the advantages of less variables and fast calculation for high power applications. The loss models may aid in optimizing the switching frequency and improving the efficiency of the system.

  19. Preparation and infrared absorption properties of buried SiC layers

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Wong, S.P.; Kwok, R.W.M.

    1997-01-01

    Buried SiC layers were formed by using a metal vapor vacuum arc (MEVVA) ion source, with C + ions implanted into Si substrates under different doses. In the present study, the extracted voltage was 50 kV and the ion dose was varied from 3.0 x 10 17 to 1.6 x 10 18 cm -2 . According to infrared absorption measurements, it was fount that the structure of the buried SiC layers depended on the ion dose. Moreover, the results also demonstrated that the buried SiC layers including cubic crystalline SiC could be synthesized at an averaged substrate temperature of lower than 400 degree C with the MEVVA ion source

  20. Orthorhombic Intermediate State in the Zinc Blende to Rocksalt Transformation Path of SiC at High Pressure

    International Nuclear Information System (INIS)

    Catti, Michele

    2001-01-01

    The mechanism of the B3/B1 phase transition of SiC has been investigated by periodic LCAO-DFT least-enthalpy calculations. A new transformation pathway, based on a Pmm2 orthorhombic intermediate state with two SiC units per cell, is found to be energetically favored over the traditional R3m mechanism. The computed activation enthalpy is 0.75eV/SiC unit at the predicted transition pressure of 92GPa (B3LYP functional). Activation enthalpy and activation volume vs pressure are analyzed to characterize the kinetic aspects of the transformation

  1. Tema 8. Principis físics dels semiconductors (Resum)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2011-01-01

    Resum del "Tema 8. Principis físics dels semiconductors" de l'assignatura "Fonaments Físics de l'Enginyeria I" de "Grau en Enginyeria en So i Imatge" impartit a l'Escola Politècnica Superior de la Universitat d'Alacant.

  2. The Development of a Hybrid-Type Radiation Detector with SiC for a Reactor Robot

    International Nuclear Information System (INIS)

    Lee, Nam Ho; Cho, Jai Wan; Kim, Seung Ho

    2005-01-01

    For a robot working in a harsh environment such as a nuclear reactor environment or a space environment, requirements of on-board radiation detectors are not the same as those for environments around human. SiC devices with the wide band-gap are less dependent on temperature than Si counterparts and the can be the better candidate for the high radiation environment. With this background, radiation performance of a commercial SiC detector in a Co-60 gamma-ray environment has been evaluated. In addition to the SiC detector, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detector has been incorporated as a backup. With this MOSFET sensor the dosimeter can keep its radiation exposure history even with loss of power. It is not only a redundant feature but also a diverse feature. The dosimetry module can be attached to mobile robot for high radiation environment was developed. This module has both SiC diode and pMOSFET mentioned above. The monitoring program which receives the radiation information from them and gives out the alarm signal when the difference of the two values from them is over the preset level was constructed. Because both the SiC pulse-type detector and the MOSFET dosimeter are small and light weight, they can be easily accommodated on a small printcircuit board for a tight space on a robot arm or for a small spacecraft

  3. Influence of SiC coating thickness on mechanical properties of SiCf/SiC composite

    Science.gov (United States)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-11-01

    at the interface during cooling to room temperature after deposition. On the other hand, growth stresses would also exist from the CVD process (see Fig. 4). All of these internal residual stresses would result in radial cracks and even cause the fracture of fibres. Temperature damage. In order to investigate the effect of temperature during the CVD coating process, heat-treatment of the as-received fibres was conducted at 1373 K for 120 min with natural cooling, which is similar to the thermal history used in CVD process for the 0.34 μm thick SiC coating. The single-filament strength of the resulting fibre is 1.6 GPa compared with 2.0 GPa without any heat treatment, which implies that the mechanical property of fibres was affected by the high temperature during the CVD coating process. Fig. 3 also demonstrates that the native carbonaceous layer of KD-I fibre is functional as the interface after the CVD process. In fact, by applying considerably thick coating the monofilament is rather a composite than a coated fibre, where the coating serves as the matrix. The increasing coating thickness means an increasing matrix volume fraction and subsequently a decreasing fibre volume fraction. The decrease of high strength-fibre volume fraction directly led to the decrease of the tensile strength of filament, which can be well understood by the rule of mixtures.

  4. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials

    Directory of Open Access Journals (Sweden)

    Xuejiao Sun

    2018-05-01

    Full Text Available The development of high energy lithium-ion batteries (LIBs has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g−1 after 250 cycles at a current density of 0.1 A g−1. It is interesting that a high discharge capacity of 540.1 mAh g−1 was achieved after 500 cycles at an even higher current density of 0.3 A g−1, which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

  5. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.

    Science.gov (United States)

    Sun, Xuejiao; Shao, Changzhen; Zhang, Feng; Li, Yi; Wu, Qi-Hui; Yang, Yonggang

    2018-01-01

    The development of high energy lithium-ion batteries (LIBs) has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g -1 after 250 cycles at a current density of 0.1 A g -1 . It is interesting that a high discharge capacity of 540.1 mAh g -1 was achieved after 500 cycles at an even higher current density of 0.3 A g -1 , which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

  6. Direct growth of freestanding GaN on C-face SiC by HVPE.

    Science.gov (United States)

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  7. Thermally induced formation of SiC nanoparticles from Si/C/Si multilayers deposited by ultra-high-vacuum ion beam sputtering

    International Nuclear Information System (INIS)

    Chung, C-K; Wu, B-H

    2006-01-01

    A novel approach for the formation of SiC nanoparticles (np-SiC) is reported. Deposition of Si/C/Si multilayers on Si(100) wafers by ultra-high-vacuum ion beam sputtering was followed by thermal annealing in vacuum for conversion into SiC nanoparticles. The annealing temperature significantly affected the size, density, and distribution of np-SiC. No nanoparticles were formed for multilayers annealed at 500 0 C, while a few particles started to appear when the annealing temperature was increased to 700 0 C. At an annealing temperature of 900 0 C, many small SiC nanoparticles, of several tens of nanometres, surrounding larger submicron ones appeared with a particle density approximately 16 times higher than that observed at 700 0 C. The higher the annealing temperature was, the larger the nanoparticle size, and the higher the density. The higher superheating at 900 0 C increased the amount of stable nuclei, and resulted in a higher particle density compared to that at 700 0 C. These particles grew larger at 900 0 C to reduce the total surface energy of smaller particles due to the higher atomic mobility and growth rate. The increased free energy of stacking defects during particle growth will limit the size of large particles, leaving many smaller particles surrounding the large ones. A mechanism for the np-SiC formation is proposed in this paper

  8. Investigation of reactivity between SiC and Nb-1Zr in planned irradiation creep experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, C.A.; Hamilton, M.L.; Jones, R.H.

    1997-08-01

    Thermodynamic calculations and diffusion couple experiments showed that SiC and Nb-1Zr were reactive at the upper range of temperatures anticipated in the planned irradiation creep experiment. Sputter-deposited aluminum oxide (Al{sub 2}O{sub 3}) was selected as a diffusion barrier coating. Experiments showed that although the coating coarsened at high temperature it was an effective barrier for diffusion of silicon from SiC into Nb-1Zr. Therefore, to avoid detrimental reactions between the SiC composite and the Nb-1Zr pressurized bladder during the planned irradiation creep experiment, a coating of Al{sub 2}O{sub 3} will be required on the Nb-1Zr bladder.

  9. UV laser drilling of SiC for semiconductor device fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Olaf; Schoene, Gerd; Wernicke, Tim; John, Wilfred; Wuerfl, Joachim; Traenkle, Guenther [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2007-04-15

    Pulsed UV laser processing is used to drill micro holes in silicon carbide (SiC) wafers supporting AlGaN/GaN transistor structures. Direct laser ablation using nanosecond pulses has been proven to provide an efficient way to create through and blind holes in 400 {mu}m thick SiC. When drilling through, openings in the front pads are formed, while blind holes stop {approx}40 {mu}m before the backside and were advanced to the electrical contact pad by subsequent plasma etching without an additional mask. Low induction connections (vias) between the transistor's source pads and the ground on the backside were formed by metallization of the holes. Micro vias having aspect ratios of 5-6 have been processed in 400 {mu}m SiC. The process flow from wafer layout to laser drilling is available including an automated beam alignment that allows a positioning accuracy of {+-}1 {mu}m with respect to existing patterns on the wafer. As proven by electrical dc and rf measurements the laser-assisted via technologies have successfully been implemented into fabrication of AlGaN/GaN high-power transistors.

  10. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual

  11. High Quality, Low-Scatter SiC Optics Suitable for Space-based UV & EUV Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG Precision Optronics proposes the development and demonstration of a new optical fabrication process for the production of EUV quality Silicon Carbide (SiC)...

  12. Light transmittance under diffuse radiation circumstances

    International Nuclear Information System (INIS)

    Kieboom, A.M.G. van den; Stoffers, J.A.

    1985-01-01

    For a grower it is important to know the light transmittance of a greenhouse. With this date (and many others) he is able to make a decision about which greenhouse and covering is the most economical in his situation. It is absolute impossible for a grower to use figures that are functions of: • the orientation of the greenhouse, • the relation between direct and global radiation, • the amount of radiation, etc. • He needs one comparable figure. As a comparable figure for light transmittance of a greenhouse we use the transmittance factor that is estimated with a diffuse radiation source. This figure will be the same as the mean transmittance over one year for that greenhouse, even with extreme direct radiation and independent of the orientation of the greenhouse. (author)

  13. Photoluminescence enhancement in porous SiC passivated by atomic layer deposited Al2O3 films

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2016-01-01

    Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved.......Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved....

  14. Terrestrial VLF transmitter injection into the magnetosphere

    Science.gov (United States)

    Cohen, M. B.; Inan, U. S.

    2012-08-01

    Very Low Frequency (VLF, 3-30 kHz) radio waves emitted from ground sources (transmitters and lightning) strongly impact the radiation belts, driving electron precipitation via whistler-electron gyroresonance, and contributing to the formation of the slot region. However, calculations of the global impacts of VLF waves are based on models of trans-ionospheric propagation to calculate the VLF energy reaching the magnetosphere. Limited comparisons of these models to individual satellite passes have found that the models may significantly (by >20 dB) overestimate amplitudes of ground based VLF transmitters in the magnetosphere. To form a much more complete empirical picture of VLF transmitter energy reaching the magnetosphere, we present observations of the radiation pattern from a number of ground-based VLF transmitters by averaging six years of data from the DEMETER satellite. We divide the slice at ˜700 km altitude above a transmitter into pixels and calculate the average field for all satellite passes through each pixel. There are enough data to see 25 km features in the radiation pattern, including the modal interference of the subionospheric signal mapped upwards. Using these data, we deduce the first empirical measure of the radiated power into the magnetosphere from these transmitters, for both daytime and nighttime, and at both the overhead and geomagnetically conjugate region. We find no detectable variation of signal intensity with geomagnetic conditions at low and mid latitudes (L ionospheric heating by one VLF transmitter which modifies the trans-ionospheric absorption of signals from other transmitters passing through the heated region.

  15. Opportunistic transmitter selection for selfless overlay cognitive radios

    KAUST Repository

    Shaqfeh, Mohammad; Zafar, Ammar; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2013-01-01

    We propose an opportunistic strategy to grant channel access to the primary and secondary transmitters in causal selfless overlay cognitive radios over block-fading channels. The secondary transmitter helps the primary transmitter by relaying

  16. Low dose irradiation performance of SiC interphase SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Lowden, R.A.; Strizak, J.; More, K.L.; Eatherly, W.S.; Bailey, J.; Williams, A.M.; Osborne, M.C.; Shinavski, R.J.

    1998-01-01

    Reduced oxygen Hi-Nicalon fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either 'porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1 x 10 25 n m -2 (E>0.1 MeV) in the temperature range of 260 to 1060 C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber. (orig.)

  17. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle

  18. Effects of UV light intensity on electrochemical wet etching of SiC for the fabrication of suspended graphene

    Science.gov (United States)

    O, Ryong-Sok; Takamura, Makoto; Furukawa, Kazuaki; Nagase, Masao; Hibino, Hiroki

    2015-03-01

    We report on the effects of UV light intensity on the photo assisted electrochemical wet etching of SiC(0001) underneath an epitaxially grown graphene for the fabrication of suspended structures. The maximum etching rate of SiC(0001) was 2.5 µm/h under UV light irradiation in 1 wt % KOH at a constant current of 0.5 mA/cm2. The successful formation of suspended structures depended on the etching rate of SiC. In the Raman spectra of the suspended structures, we did not observe a significant increase in the intensity of the D peak, which originates from defects in graphene sheets. This is most likely explained by the high quality of the single-crystalline graphene epitaxially grown on SiC.

  19. An Extension of SIC Predictions to the Wiener Coactive Model.

    Science.gov (United States)

    Houpt, Joseph W; Townsend, James T

    2011-06-01

    The survivor interaction contrasts (SIC) is a powerful measure for distinguishing among candidate models of human information processing. One class of models to which SIC analysis can apply are the coactive, or channel summation, models of human information processing. In general, parametric forms of coactive models assume that responses are made based on the first passage time across a fixed threshold of a sum of stochastic processes. Previous work has shown that that the SIC for a coactive model based on the sum of Poisson processes has a distinctive down-up-down form, with an early negative region that is smaller than the later positive region. In this note, we demonstrate that a coactive process based on the sum of two Wiener processes has the same SIC form.

  20. SiC detectors to monitor ionizing radiations emitted from nuclear events and plasmas

    Science.gov (United States)

    Torrisi, L.; Cannavò, A.

    2016-09-01

    Silicon Carbide (SiC) semiconductor detectors are increasingly employed in Nuclear Physics for their advantages with respect to traditional silicon (Si). Such detectors show an energy resolution, charge mobility, response velocity and detection efficiency similar to Si detectors. However, the higher band gap (3.26 eV), the lower leakage current (∼10 pA) maintained also at room temperature, the higher radiation hardness and the higher density with respect to Si represent some indisputable advantages characterizing such detectors. The devices can be employed at high temperatures, at high absorbed doses and in the case of high visible light intensities, for example, in plasma, for limited exposition times without damage. Generally SiC Schottky diodes are employed in reverse polarization with an active region depth of the order of 100 µm, purity below 1014 cm-3 and an active area lower than 1 cm2. Measurements in the regime of proportionality with the radiation energy released in the active region and measurements in time-of-flight configuration are employed for nuclear emission events produced at both low and high fluences. Alpha spectra demonstrated an energy resolution of about 1.3% at 5.8 MeV. Radiation emission from laser-generated plasma can be monitored in terms of detected photons, electrons and ions, using the laser pulse as a start signal and the radiation detection as a stop signal, enabling to measure the ion velocity by knowing the target-detector flight distance. SiC spectra acquired in the Messina University laboratories using radioactive ion sources and at the PALS laboratory facility in Prague (Czech Republic) are presented. A preliminary study of the use of SiC detectors, embedded in a water equivalent polymer, as a dosimeter is presented and discussed.

  1. Mechanical performance of SiC based MEMS capacitive microphone for ultrasonic detection in harsh environment

    Science.gov (United States)

    Zawawi, S. A.; Hamzah, A. A.; Mohd-Yasin, F.; Majlis, B. Y.

    2017-08-01

    In this project, SiC based MEMS capacitive microphone was developed for detecting leaked gas in extremely harsh environment such as coal mines and petroleum processing plants via ultrasonic detection. The MEMS capacitive microphone consists of two parallel plates; top plate (movable diaphragm) and bottom (fixed) plate, which separated by an air gap. While, the vent holes were fabricated on the back plate to release trapped air and reduce damping. In order to withstand high temperature and pressure, a 1.0 μm thick SiC diaphragm was utilized as the top membrane. The developed SiC could withstand a temperature up to 1400°C. Moreover, the 3 μm air gap is invented between the top membrane and the bottom plate via wafer bonding. COMSOL Multiphysics simulation software was used for design optimization. Various diaphragms with sizes of 600 μm2, 700 μm2, 800 μm2, 900 μm2 and 1000 μm2 are loaded with external pressure. From this analysis, it was observed that SiC microphone with diaphragm width of 1000 μm2 produced optimal surface vibrations, with first-mode resonant frequency of approximately 36 kHz. The maximum deflection value at resonant frequency is less than the air gap thickness of 8 mu;m, thus eliminating the possibility of shortage between plates during operation. As summary, the designed SiC capacitive microphone has high potential and it is suitable to be applied in ultrasonic gas leaking detection in harsh environment.

  2. Fission products silver, palladium, and cadmium identification in neutron-irradiated SiC TRISO particles using a Cs-Corrected HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: isabella.vanrooyen@inl.gov [Fuel Design and Development Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Olivier, E.J.; Neethling, J.H. [Centre for High Resolution Electron Microscopy, Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2016-08-01

    Electron microscopy investigations of selected coated particles from the first advanced gas reactor experiment at Idaho National Laboratory provided important information on fission product distribution and chemical composition in the silicon-carbide (SiC) layer. Silver precipitates were nano-sized, and therefore high-resolution transmission electron microscopy (HRTEM) was used to provide more information at the atomic level. Based on gamma-ray analysis, this particle which was irradiated to an average burnup of 19.38% fissions per initial metal atom, may have released as much as 10% of its available Ag-110 m inventory during irradiation. The HRTEM investigation focused on silver, palladium, and cadmium due to interest in silver transport mechanisms and possible correlation with palladium and silver previously found. Palladium, silver, and cadmium were found to co-exist in some of the SiC grain boundaries and triple junctions. This study confirmed palladium both at inter and intragranular sites. Phosphor was identified in SiC grain boundaries and triple points. - Highlights: • First high resolution electron microscopy fission product nano-structural locations of irradiated TRISO coated particles. • Pd observed inside SiC grains in proximity to planar defects e.g. stacking faults. • Ag co-exists with Pd and Cd only may suggest a Pd-assisted transport mechanism. • First finding of neutron transmutation product P, in SiC layer of TRISO coated particles. No direct link to Ag transport. • No significant Pd corrosion of SiC observed even at this high resolution images.

  3. Liquid phase sintered SiC ceramics from starting materials of different grade Cerâmicas à base de SiC sinterizadas via fase líquida a partir de matérias-primas de diferentes purezas

    Directory of Open Access Journals (Sweden)

    V. A. Izhevskyi

    2004-09-01

    Full Text Available Possibility of high performance ceramics manufactured from commercial SiC powder of technical grade has been shown. Sintering behavior and microstructure formation under conditions of liquid phase sintering (LPS with oxynitride sintering aids (AlN-Y2O3 of three SiC-based compositions have been investigated. Two of the compositions were based on Alcoa 1000 SiC powder of technical grade, and the third one, which was used as a reference, was based on H.C. Starck UF-15 fine grade commercial powder. Milling process used for Alcoa 1000 SiC powder granulometry improvement has been investigated in detail, while chemical treatment of milled SiC powders has been used for pick-up impurities removal. Dilatometric experiments showed that SiC powder of technical grade after appropriate treatment exhibits sinterability comparable with the fine grade SiC. Microstructural investigations performed on sintered samples showed that the final microstructure of the Alcoa 1000 SiC based materials was practically identical with the H.C. Starck SiC based reference ones. Preliminary investigations of hardness and fracture toughness were carried out revealing excellent results for the materials produced from cheaper, nationally produced starting powder.Neste trabalho é apresentada a possibilidade de obtenção de cerâmicas de SiC de alto desempenho a partir de matéria-prima comercial de grau técnico. Foi realizado o estudo de sinterização via fase líquida e desenvolvimento microestrutural de três composições à base de SiC tendo como aditivos de sinterização AlN e Y2O3 . Duas destas composições são à base de SiC-1000 da Alcoa, grau técnico, e a terceira, utilizada como referência, à base do UF-15 da H.C. Starck - Alemanha, pó comercial de granulometria fina. O processo de moagem do pó SiC-1000 da Alcoa foi acompanhado por medidas de distribuição granulométrica e posterior ataque químico, para remoção de impurezas. Os pós de grau técnico, ap

  4. The development of SiC whisker fabrication technology for nuclear applications

    International Nuclear Information System (INIS)

    Kang, Thae Khapp; Kuk, Il Hiun; Lee, Jae Chun; Rhee, Chang Kyu; Lee, Ho Jin; Park, Soon Dong

    1990-02-01

    Important process factors of carbothermic process for the growth of SiC whiskers were investigated. The crystalline form of silicon dioxide, amount of carbon addition, graphite, silicon, catalysts, additive and reaction temperature were chosen as the main factors. Morphology of the resultant products was grouped into 3 different types; whisker,noodle and power types. The addition of catalyst affected in most the formation of SiC whiskers. Effects of catalyst and additive additions and reaction atmospheres on the morphology anf growth of SiC whiskers were investigated, silicon monoxide power and carbon monoxide gas were used as the raw materials. The addition of an iron containing catalyst resulted in a very long thread-like growth of the whiskers, while that of sodium chloride helical curlings. Addition of hydrogen to the non-oxidizing atmosphere enhanced the whisker formations. Crystallization of amorphous silicon monoxide raw powder was investigated at high temperatures up to 1500 deg C in Ar atmosphere using graphite crucible. Up to 900 deg C no crystallization occurred, while at 1100 - 1300 deg C silicon formation, and at 1500 deg C silicon dioxide and silicon carbide formations were detected. A slight weight loss began 1300 deg C, and the weight loss became about 33 % at 1500 deg C. After the formation reaction of SiC whiskers, the reaction products were leached by hydrofluoric acids. The optimum concentration of the hydrofluoric acid was 2 %. (author)

  5. Synthesis of micro-sized interconnected Si-C composites

    Science.gov (United States)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  6. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  7. APMP Pilot Study on Transmittance Haze

    Science.gov (United States)

    Liu, Wen-Chun; Hwang, Jisoo; Koo, Annette; Wu, Houping; Leecharoen, Rojana; Yu, Hsueh-Ling

    2018-02-01

    Five NMIs within APMP, including CMS/ITRI, MSL, NIM, NIMT and KRISS from TCPR applied to the APMP technical committee initiative project for funding to carry out a pilot comparison of transmittance haze in 2012. The project started in 2014 and the final report was completed at the end of 2016. In this pilot comparison, three different haze standards were adopted, and transmittance haze for each standard was measured according to ASTM D1003 or ISO 14782. This paper presents the first results of an APMP pilot study of transmittance haze and the analysis of the variation among different haze measurement systems which are commonly used. The study shows that the variables such as sphere multiplier, transmittance distribution, fluorescence of samples and optical path of the incident beam cause discrepancies among NMIs and highlight deficiencies in current documentary standards.

  8. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; hide

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  9. Rapid degradation of azo dye Direct Black BN by magnetic MgFe{sub 2}O{sub 4}-SiC under microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jia; Yang, Shaogui, E-mail: yangsg@nju.edu.cn; Li, Na; Meng, Lingjun; Wang, Fei; He, Huan; Sun, Cheng

    2016-08-30

    Highlights: • MgFe{sub 2}O{sub 4}-SiC was first successfully synthesized. • MgFe{sub 2}O{sub 4}-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range. • Fast decolorization and high TOC removal of azo dye Direct Black BN with complicated structure could occur with MgFe{sub 2}O{sub 4}-SiC under MW radiation. • MgFe{sub 2}O{sub 4}-SiC had better MW absorbing property and higher MW catalytic activity than MnFe{sub 2}O{sub 4}-SiC under the same condition. • MgFe{sub 2}O{sub 4}-SiC was of practical use in the wastewater treatment. - Abstract: A novel microwave (MW) catalyst, MgFe{sub 2}O{sub 4} loaded on SiC (MgFe{sub 2}O{sub 4}-SiC), was successfully synthesized by sol-gel method, and pure MgFe{sub 2}O{sub 4} was used as reference. The MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-SiC catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N{sub 2} adsorption analyzer (BET specific surface area), X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of the prepared catalysts were measured by vector network analyzer. The reflection loss (RL) based on the electromagnetic parameters calculated in Matlab showed MgFe{sub 2}O{sub 4}-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range, revealing the excellent MW absorption property of MgFe{sub 2}O{sub 4}-SiC. MW-induced degradation of Direct Black BN (DB BN) over as-synthesized MgFe{sub 2}O{sub 4}-SiC indicated that degradation efficiency of DB BN (20 mg L{sup −1}) in 5 min reached 96.5%, the corresponding TOC removal was 65%, and the toxicity of DB BN after degradation by MgFe{sub 2}O{sub 4}-SiC obviously decreased. The good stability and applicability of MgFe{sub 2}O{sub 4}-SiC on the degradation process were also discovered. Moreover, the ionic chromatogram during degradation

  10. SiC epitaxy growth using chloride-based CVD

    International Nuclear Information System (INIS)

    Henry, Anne; Leone, Stefano; Beyer, Franziska C.; Pedersen, Henrik; Kordina, Olof; Andersson, Sven; Janzén, Erik

    2012-01-01

    The growth of thick epitaxial SiC layers needed for high-voltage, high-power devices is investigated with the chloride-based chemical vapor deposition. High growth rates exceeding 100 μm/h can be obtained, however to obtain device quality epilayers adjustments of the process parameters should be carried out appropriately for the chemistry used. Two different chemistry approaches are compared: addition of hydrogen chloride to the standard precursors or using methyltrichlorosilane, a molecule that contains silicon, carbon and chlorine. Optical and electrical techniques are used to characterize the layers.

  11. Factors affecting the corrosion of SiC layer by fission product palladium

    International Nuclear Information System (INIS)

    Dewita, E.

    2000-01-01

    HTR is one of the advanced nuclear reactors which has inherent safety system, graphite moderated and helium gas cooled. In general, these reactors are designed with the TRISO coated particle consist of four coating layers that are porous pyrolytic carbon (PyC). inner dense PyC (IPyC), silicon carbide (SiC), and outer dense PyC (OPyC). Among the four coating layers, the SiC plays an important role beside in retaining metallic fission products, it also provides mechanical strength to fuel particle. However, results of post irradiation examination indicate that fission product palladium can react with and corrode SiC layer, This assessment is conducted to get the comprehension about resistance of SiC layer on irradiation effects, especially in order to increase the fuel bum-up. The result of this shows that the corrosion of SiC layer by fission product palladium is beside depend on the material characteristics of SiC, and also there are other factors that affect on the SiC layer corrosion. Fuel enrichment, bum-up, and irradiation time effect on the palladium flux in fuel kernel. While, the fuel density, vapour pressure of palladium (the degree depend on the irradiation temperature and kernel composition) effect on palladium migration in fuel particle. (author)

  12. Radiation hardening of CMOS-based circuitry in SMART transmitters

    International Nuclear Information System (INIS)

    Loescher, D.H.

    1993-02-01

    Process control transmitters that incorporate digital signal processing could be used advantageously in nuclear power plants; however, because such transmitters are too sensitive to radiation, they are not used. The Electric Power Research Institute sponsored work at Sandia National Laboratories under EPRI contract RP2614-58 to determine why SMART transmitters fail when exposed to radiation and to design and demonstrate SMART transmitter circuits that could tolerate radiation. The term ''SMART'' denotes transmitters that contain digital logic. Tests showed that transmitter failure was caused by failure of the complementary metal oxide semiconductors (CMOS)-integrated circuits which are used extensively in commercial transmitters. Radiation-hardened replacements were not available for the radiation-sensitive CMOS circuits. A conceptual design showed that a radiation-tolerant transmitter could be constructed. A prototype for an analog-to-digital converter subsection worked satisfactorily after a total dose of 30 megarads(Si). Encouraging results were obtained from preliminary bench-top tests on a dc-to-dc converter for the power supply subsection

  13. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    Unknown

    SiC fibre by chemical vapour deposition on tungsten filament ... CMCs), in defence and industrial applications. SiC has attractive ... porosity along with chemical purity. This is lacking .... reactor. Since mercury is very toxic it should be removed.

  14. Detection and analysis of particles with failed SiC in AGR-1 fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D., E-mail: hunnjd@ornl.gov [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M. [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A. [Idaho National Laboratory (INL), P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-09-15

    Highlights: • Cesium release was used to detect SiC failure in HTGR fuel. • Tristructural-isotropic particles with SiC failure were isolated by gamma screening. • SiC failure was studied by X-ray tomography and SEM. • SiC degradation was observed after irradiation and subsequent safety testing. - Abstract: As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of {sup 134}Cs and {sup 137}Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600–1800 °C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were

  15. Low cost sic coated erosion resistant graphite

    International Nuclear Information System (INIS)

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  16. Transformation from amorphous to nano-crystalline SiC thin films ...

    Indian Academy of Sciences (India)

    Administrator

    phous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering ... Auger electron spectroscopy showed that the carbon incorporation in the .... with a 514 nm Ar+ laser excitation source and the laser.

  17. An injectable acoustic transmitter for juvenile salmon

    Science.gov (United States)

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems.

  18. TiC/Ti3SiC2复合材料的制备及其性能研究%Preparation and properties of TiC/Ti3SiC2 composites

    Institute of Scientific and Technical Information of China (English)

    贾换; 尹洪峰; 袁蝴蝶; 杨祎诺

    2012-01-01

    以粉末Ti,Si,TiC和炭黑为原料,采用反应热压烧结法制备TiC/Ti3SiC2复合材料.借助XRD和SEM研究TiC含量对TiC/Ti3SiC2复合材料相组成、显微结构及力学特性的影响.结果表明:通过热压烧结可以得到致密度较高的TiC/Ti3SiC2复合材料;引入TiC可以促进Ti3SiC2的生成,当引入TiC的质量分数达30%,TiC/Ti3SiC2复合材料的弯曲强度和断裂韧性分别为406.9 MPa,3.7 MPa·m1/2;复合材料中Ti3SiC2相以穿晶断裂为主,TiC晶粒易产生拔出.%TiC/Ti3SiC2 composites were fabricated by reactive hot pressing sintering method using the mixture powder of Ti, Si, C and TiC as raw material. The effect of TiC content on phase composition, microstructure and mechanical properties of TiC/Ti3SiC2 composites was investigated by X-ray diffraction and scanning electron microscopy. The results demonstrate that dense TiC/ Ti3SiC2 composites can be obtained by hot pressing. The addition of TiC into composites can enhance the formation of TisSiC2. When the additional content of TiC reaches 30% (mass fraction) , the flexural strength and fracture toughness of TiC/Ti3SiC2 composite are 406.9 MPa and 3.7 MPa·m-2, respectively. Ti3SiC2 phase displays intergranular fracture and TiC grain pulls out from Ti3SiC2 matrix when TiC/Ti3SiC2 composite fractures.

  19. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  20. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  1. POWDER INJECTION MOLDING OF SIC FOR THERMAL MANAGEMENT V

    Directory of Open Access Journals (Sweden)

    Valmikanathan Onbattuvelli

    2012-06-01

    Full Text Available Silicon carbide (SiC exhibits many functional properties that are relevant to applications in electronics, aerospace, defense and automotive industries. However, the successful translation of these properties into final applications lies in the net-shaping of ceramics into fully dense microstructures. Increasing the packing density of the starting powders is one effective route to achieve high sintered density and dimensional precision. The present paper presents an in-depth study on the effects of nanoparticle addition on the powder injection molding process (PIM of SiC powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles are found to have significantly increased powder packing characteristics (solids loading in the powder-polymer mixtures. The influence of nanoparticle addition on the multi-step PIM process is examined. The above results provide new perspectives which could impact a wide range of materials, powder processing techniques and applications.

  2. NRL transmittance measurements at DIRT-III

    Science.gov (United States)

    Curcio, J. A.; Haught, K. M.; Woytko, M. A.; Gott, C.

    1981-06-01

    This is a final report on NRL experiments at the DIRT-III tests at Fort Polk, Louisiana in April - May 1980. Spectral transmission data at 3 wavelengths 0.55 microns, 1.06 microns and 10.4 microns is reported for 27 events in natural soil and various prepared soils. Spectral transmittance of smoke and dust clouds generated by explosive charges was found to be independent of wavelengths in about 50% of the events where useful data was obtained. When the charge was buried in wet natural soil transmittance at 10.4 microns was transmittance at 0.55 microns .

  3. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  4. SiC substrate defects and III-N heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Poust, B D [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Koga, T S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Sandhu, R [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Heying, B [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Hsing, R [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Wojtowicz, M [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Khan, A [Department of Electrical Engineering, University of South Carolina, Columbia, SC (United States); Goorsky, M S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2003-05-21

    This study addressed how defects in SiC substrates influence the crystallographic properties of AlGaN/GaN layers deposited by metallorganic vapour phase epitaxy and by molecular beam epitaxy. We employed double crystal reflection x-ray topography using symmetric (0008) and (00012) reflections with CuK{alpha} radiation ({lambda} = 1.54 A) to image dislocations, micropipes, and low angle boundaries in SiC substrates. Lattice strain near the core of a micropipe defect was estimated to be of the order of 10{sup -7}. The substrates investigated exhibited radial patterns of strain and, primarily, of tilt of the order of tens of arcsec. After deposition of the AlGaN and GaN layers, DCXRT images were generated from the substrate (0008) or (00012) and GaN epitaxial layer (0004) reflections. Full-width at half-maximum values ranging from {approx}100 to 300 arcsec were typical of the GaN reflections, while those of the 4H-SiC reflections were {approx}20-70 arcsec. Micropipes, tilt boundaries, and inclusions in the SiC were shown to produce structural defects in the GaN layers. A clear correlation between SiC substrate defects and GaN defects has been established.

  5. SiC substrate defects and III-N heteroepitaxy

    International Nuclear Information System (INIS)

    Poust, B D; Koga, T S; Sandhu, R; Heying, B; Hsing, R; Wojtowicz, M; Khan, A; Goorsky, M S

    2003-01-01

    This study addressed how defects in SiC substrates influence the crystallographic properties of AlGaN/GaN layers deposited by metallorganic vapour phase epitaxy and by molecular beam epitaxy. We employed double crystal reflection x-ray topography using symmetric (0008) and (00012) reflections with CuKα radiation (λ = 1.54 A) to image dislocations, micropipes, and low angle boundaries in SiC substrates. Lattice strain near the core of a micropipe defect was estimated to be of the order of 10 -7 . The substrates investigated exhibited radial patterns of strain and, primarily, of tilt of the order of tens of arcsec. After deposition of the AlGaN and GaN layers, DCXRT images were generated from the substrate (0008) or (00012) and GaN epitaxial layer (0004) reflections. Full-width at half-maximum values ranging from ∼100 to 300 arcsec were typical of the GaN reflections, while those of the 4H-SiC reflections were ∼20-70 arcsec. Micropipes, tilt boundaries, and inclusions in the SiC were shown to produce structural defects in the GaN layers. A clear correlation between SiC substrate defects and GaN defects has been established

  6. A Grande Reportagem no contexto informativo SIC

    OpenAIRE

    Colaço, Vanessa Alexandra Francisco

    2014-01-01

    Os telespectadores querem ver grandes reportagens? Como evoluíram as audiências da Grande Reportagem SIC? É este o produto premium da estação? Terá este formato um investimento e continuidade garantidas? Estas são algumas das questões formuladas e às quais se procurou dar resposta neste Relatório de Estágio. Neste trabalho traça-se o perfil do programa Grande Reportagem SIC, clarificando a linha editorial que lhe serviu de base, procurando perceber as suas dinâmicas e passando em revista mome...

  7. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M.; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2016-10-21

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.

  8. Defects induced by helium implantation in SiC

    International Nuclear Information System (INIS)

    Oliviero, E.; Barbot, J.F.; Declemy, A.; Beaufort, M.F.; Oliviero, E.

    2008-01-01

    SiC is one of the considered materials for nuclear fuel conditioning and for the fabrication of some core structures in future nuclear generation reactors. For the development of this advance technology, a fundamental research on this material is of prime importance. In particular, the implantation/irradiation effects have to be understood and controlled. It is with this aim that the structural alterations induced by implantation/irradiation in SiC are studied by different experimental techniques as transmission electron microscopy, helium desorption, X-ray diffraction and Rutherford backscattering spectrometry. In this work, the different types of defects induced by helium implantation in SiC, point or primary defects (obtained at low energy (∼100 eV) until spread defects (obtained at higher energy (until ∼2 MeV)) are exposed. The amorphization/recrystallization and swelling phenomena are presented too. (O.M.)

  9. Joining of pressureless-sintered SiC to stainless steel using Ag-Cu alloy and insert-metals

    International Nuclear Information System (INIS)

    Yano, Toyohiko; Takada, Naohiro; Iseki, Takayoshi

    1987-01-01

    Brazing of pressureless-sintered SiC to stainless steel using Ag-28 wt% Cu alloy was studied. In SiC plate joined to stainless steel rod (6 mm in diameter) using an Ag-Cu alloy powder containing 1.5 wt% Ti, the bond strength increased with decreasing brazing temperature and holding time. When the increased size of stainless steel plate (10 x 10 x 4 mm), joining was unsuccessful by the method mentioned above and even with Ti insert-metal. However, simultaneous use of Ti and Mo as insert-metal gave a good bonding in the order SiC/Ti/Mo/stainless steel, because of relaxation of residual stress due to thermal expansion mismatch. The shear strength was 30 - 50 MPa. A thin layer, probably Ti 3 SiC 2 , was observed at the interface between SiC and brazing filler immediately after melting. But with increasing both temperature and time, Ti 5 Si 3 (C) and TiC x were formed if Ti was continuously provided from the brazing filler. Since the interface of Ti 3 SiC 2 and either Ti 5 Si 3 (C) or TiC x seemed to be brittle, the formation of Ti 5 Si 3 (C) and TiC x decreased the bond strength. At lower temperature and short time, a high bond strength is expected when Ti was inserted in contact with SiC. (author)

  10. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications....

  11. Modified Polar Sigma-Delta Transmitter for Multiradio Applications

    Directory of Open Access Journals (Sweden)

    Maršálek Roman

    2010-01-01

    Full Text Available Radio transmitters capable of transforming variable envelope signals into constant envelope signals can be associated with high-efficiency switched mode power amplifiers. One of the techniques providing this conversion is Polar Sigma-Delta ( architecture. This approach provides efficient solution for high-dynamic signals, and, moreover, it offers flexibility in a multiradio environment. The overall concept of the polar transmitter is presented here along with novel modifications and improvements. Namely, when recombining the envelope and the phase signals, it is suggested to replace the analog mixing by a digital mixing. The impact of a frequency synthesizer with a switched loop bandwidth and its imperfections on the overall polar architecture is investigated as well. The Mobile WiMAX standard has been chosen for validation due to very high requirements in terms of power dynamics and the variable channel bandwidth. Simulation results are presented in this paper, and advantages and drawbacks of this novel approach are pointed here as well.

  12. Formation of SiC using low energy CO2 ion implantation in silicon

    International Nuclear Information System (INIS)

    Sari, A.H.; Ghorbani, S.; Dorranian, D.; Azadfar, P.; Hojabri, A.R.; Ghoranneviss, M.

    2008-01-01

    Carbon dioxide ions with 29 keV energy were implanted into (4 0 0) high-purity p-type silicon wafers at nearly room temperature and doses in the range between 1 x 10 16 and 3 x 10 18 ions/cm 2 . X-ray diffraction analysis (XRD) was used to characterize the formation of SiC in implanted Si substrate. The formation of SiC and its crystalline structure obtained from above mentioned technique. Topographical changes induced on silicon surface, grains and evaluation of them at different doses observed by atomic force microscopy (AFM). Infrared reflectance (IR) and Raman scattering measurements were used to reconfirm the formation of SiC in implanted Si substrate. The electrical properties of implanted samples measured by four point probe technique. The results show that implantation of carbon dioxide ions directly leads to formation of 15R-SiC. By increasing the implantation dose a significant changes were also observed on roughness and sheet resistivity properties.

  13. 47 CFR 90.215 - Transmitter measurements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmitter measurements. 90.215 Section 90.215... MOBILE RADIO SERVICES General Technical Standards § 90.215 Transmitter measurements. (a) The licensee of... current station authorization. On authorizations stating only the input power to the final radiofrequency...

  14. Effect of high temperature annealing on the grain size of CVD-grown SiC and experimental PBMR TRISO coated particles

    CSIR Research Space (South Africa)

    Mokoduwe, SM

    2010-10-01

    Full Text Available in the PBMR fuel SiC layer. square samples were cut from the original sample received from ORNL and prepared for grain size Prague, Czech Republic, October 18 – 2000 °C. These no significant ion of how the 8] also ge is also of tal THODS -Si... for grain size determination Fig. 5: Influence of high temperature annealing on the CVD ORNL polycrystalline 3 C-SiC. Fig. 6: Influence of high temperature annealing on the polycrystalline 3 C-SiC layer of PBMR TRISO CP batches D and E...

  15. Technology roadmap for development of SiC sensors at plasma processes laboratory

    Directory of Open Access Journals (Sweden)

    Mariana Amorim Fraga

    2010-08-01

    Full Text Available Recognizing the need to consolidate the research and development (R&D activities in microelectronics fields in a strategic manner, the Plasma Processes Laboratory of the Technological Institute of Aeronautics (LPP-ITA has established a technology roadmap to serve as a guide for activities related to development of sensors based on silicon carbide (SiC thin films. These sensors have also potential interest to the aerospace field due to their ability to operate in harsh environment such as high temperatures and intense radiation. In the present paper, this roadmap is described and presented in four main sections: i introduction, ii what we have already done in the past, iii what we are doing in this moment, and iv our targets up to 2015. The critical technological issues were evaluated for different categories: SiC deposition techniques, SiC processing techniques for sensors fabrication and sensors characterization. This roadmap also presents a shared vision of how R&D activities in microelectronics should develop over the next five years in our laboratory.

  16. High efficiency of transmittance and electrical conductivity of V doped ZnO used in solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Boujnah, M., E-mail: boujnah.mourad@gmail.com [Laboratory of Magnetism and Physics of High Energies, Department of Physics, B.P. 1014, Faculty of Sciences, Mohammed V University, Rabat (Morocco); Boumdyan, M. [Laboratory of Magnetism and Physics of High Energies, Department of Physics, B.P. 1014, Faculty of Sciences, Mohammed V University, Rabat (Morocco); Naji, S. [Department of Physics, Faculty of Sciences, Ibb University, Ibb (Yemen); Benyoussef, A.; El Kenz, A.; Loulidi, M. [Laboratory of Magnetism and Physics of High Energies, Department of Physics, B.P. 1014, Faculty of Sciences, Mohammed V University, Rabat (Morocco)

    2016-06-25

    The full-potential linearized augmented plane wave method (FP-LAPW) based on the density functional theory (DFT) and Boltzmann's Transport theory, are employed to investigate theoretically the electronic structure, optical and electrical properties of vanadium -doped wurtzite ZnO with different concentrations (3.125%, 6.25%, 12.5%, 25%). The FP-LAPW based on the new potential approximation known as the Tran-Blaha modified Becke–Johnson exchange potential approximation (mBJ) was also applied with the primary goal of improving the electronic structure description specially the band gap energy. The calculated band structure and density of states (DOS) exhibit a band gap of pure ZnO (3.3 eV) closer to the experimental one. As well, our results indicate that the average transmittance in the 400–1000 nm wavelength region was 93%. We found that Zn{sub 96.875}V{sub 3.125}O is the optimized composition of the V doped ZnO, which has the highest conductivity (3.2 × 10{sup 3} (Ωcm){sup −1}) and transmittance. The high transmittance and electrical conductivity indicate that hexagonal V:ZnO system is a potential as material for solar energy applications. - Highlights: • We investigate theoretically the physical properties of V-doped wurtzite ZnO. • We used density functional calculations (DFT) and Boltzmann's Transport theory. • We examined the optical and electrical properties of different percentage of V doped ZnO.

  17. A microstructure study of C + SiC coating materials for first wall of fusion reactor

    International Nuclear Information System (INIS)

    Pan Ying; Gao Dihua; Lu Huaichang; Yao Yiming

    1995-03-01

    By means of OM, SEM, XRD, WDS and EDAX, a microstructure study has been made of: (1) the dependence of microstructure and crystal structure of C + SiC coating and content and distribution of SiC in it on technological process, the coating was deposited on graphite substrate by chemical vapour deposition (CVD) with C 3 H 6 , CH 3 SiCl 3 and Ar mixture gases; (2) the influence of chemical sputtering by hydrogen ions and thermal shock by electron beams with high energy on microstructure and performance of the coating. The results show that the C + SiC coating deposited at 1600 degree C has good adherence and is resistant to damage from chemical sputtering by hydrogen ions and resistant to thermal shock by electron beams. (9 refs., 16 figs., 1 tab.)

  18. Stress Wave attenuation in SiC3D/Al Composite

    International Nuclear Information System (INIS)

    Yuan Chunyuan; Wang Yangwei; Li Guoju; Zhang Xu; Gao Jubin

    2013-01-01

    SiC 3D /Al composite is a kind of special composite with interpenetrating network microstructure. The attenuation properties of stress wave propagation along the SiC 3D /Al composite are studied by a Split Hopkinson Pressure Bar system and FEM simulations, and the attenuation mechanism is discussed in this paper. Results show that the attenuation rate of the stress wave in the composite is up to 1.73MPa·mm −1 . The reduction of the amplitude of waves is caused by that plenty of interfaces between SiC and Al within the composite acting with stress waves. When the incident plane wave reaches the SiC 3D /Al interface, reflection wave and transmission wave propagates in different directions along the irregular interface between SiC phase and aluminium phase due to the impedance mismatch of them, which leads to the divergence of stress wave. At the same time, some stress micro-focuses occurs in the aluminium phase for the complex wave superimposition, and some plastic deformation may take place within such micro-regions, which results in the consumption of stress wave energy. In conclusion, the stress wave attenuation is derived from divergence and consumption of stress wave.

  19. SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications

    Science.gov (United States)

    Ghosh, Ruby

    2008-03-01

    Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118

  20. 47 CFR 101.129 - Transmitter location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmitter location. 101.129 Section 101.129... SERVICES Technical Standards § 101.129 Transmitter location. (a) The applicant must determine, prior to... adequate to render the service proposed. In cases of questionable antenna locations, it is desirable to...

  1. Opportunistic transmitter selection for selfless overlay cognitive radios

    KAUST Repository

    Shaqfeh, Mohammad

    2013-11-01

    We propose an opportunistic strategy to grant channel access to the primary and secondary transmitters in causal selfless overlay cognitive radios over block-fading channels. The secondary transmitter helps the primary transmitter by relaying the primary messages opportunistically, aided by a buffer to store the primary messages temporarily. The optimal channel-aware transmitter- selection strategy is the solution of the maximization of the average secondary rate under the average primary rate requirement and the buffer stability constraints. Numerical results demonstrate the gains of the proposed opportunistic selection strategy. © 2013 IEEE.

  2. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Wang, X.J.; Gong, W.X.; Wu, K.; Wang, F.H.

    2013-01-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC p /AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO 2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO 2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC p /AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  3. Report on the Fracture Analysis of HfB(sub 2)-SiC and ZrB(sub 2)-SiC Composites; TOPICAL

    International Nuclear Information System (INIS)

    MECHOLSKY, JR. JOHN J.

    2001-01-01

    Hafnium diboride-silicon carbide (HS) and zirconium diboride-silicon carbide (ZS) composites are potential materials for high temperature, thermal shock applications such as for components on re-entry vehicles. In order to establish material constants necessary for evaluation of in situ fracture, bars fractured in four-point flexure were examined using fractographic principles. The fracture toughness was determined from measurements of the critical crack sizes and the strength values and the crack branching constants were established to use in forensic fractography for future in-flight tests. The fracture toughnesses range from about 13 MPam(sup 1/2) at room temperature to about 6 MPam(sup 1/2) at 1400 C for ZrB(sub 2)-Sic composites and from about 13 MPam(sup 1/2) at room temperature to about 4 MPam(sup 1/2) at 1400 C for HfB(sub 2)-SiC composites. Thus, the toughnesses of either the HS or ZS composites have the potential for use in thermal shock applications. Processing and manufacturing defects limited the strength of the test bars. However, examination of the microstructure on the fracture surfaces shows that the processing of these composites can be improved. There is potential for high toughness composites with high strength to be used in thermal shock conditions if the processing and handling are controlled

  4. Reliability Concerns for Flying SiC Power MOSFETs in Space

    Science.gov (United States)

    Galloway, K. F.; Witulski, A. F.; Schrimpf, R. D.; Sternberg, A. L.; Ball, D. R.; Javanainen, A.; Reed, R. A.; Sierawski, B. D.; Lauenstein, J-M

    2018-01-01

    SiC power MOSFETs are space-ready in terms of typical reliability measures. However, single event burnout (SEB) often occurs at voltages 50% or lower than specified breakdown. Data illustrating burnout for 1200 V devices is reviewed and the space reliability of SiC MOSFETs is discussed.

  5. Synthesis of boron nitride nanotubes with SiC nanowire as template

    International Nuclear Information System (INIS)

    Zhong, B.; Song, L.; Huang, X.X.; Wen, G.W.; Xia, L.

    2011-01-01

    Highlights: → Boron nitride nanotubes (BNNTs) have been fabricated using SiC nanowires as template. → SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. → A template self-sacrificing mechanism is responsible for the formation of BNNTs. -- Abstract: A novel template method for the preparation of boron nitride nanotubes (BNNTs) using SiC nanowire as template and ammonia borane as precursor is reported. We find out that the SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. The as-prepared products are well characterized by means of complementary analytical techniques. A possible formation mechanism is disclosed. The method developed here paves the way for large scale production of BNNTs.

  6. Operation and Modulation of H7 Current Source Inverter with Hybrid SiC and Si Semiconductor Switches

    DEFF Research Database (Denmark)

    Wang, Weiqi; Gao, Feng; Yang, Yongheng

    2018-01-01

    This paper proposes an H7 current source inverter (CSI) consisting of a single parallel-connected silicon carbide (SiC) switch and a traditional silicon (Si) H6 CSI. The proposed H7 CSI takes the advantages of the SiC switch to maintain high efficiency, while significantly increasing the switching...... as an all-SiC-switch converter in terms of high performance and high efficiency with reduced DC inductance. It provides a cost-effective solution to addressing the efficiency issue of conventional CSI systems. Simulations and experiments are performed to validate the effectiveness of the proposed H7 CSI...

  7. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Science.gov (United States)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  8. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC

    Science.gov (United States)

    Sakwe, S. A.; Müller, R.; Wellmann, P. J.

    2006-04-01

    We have developed a KOH-based defect etching procedure for silicon carbide (SiC), which comprises in situ temperature measurement and control of melt composition. As benefit for the first time reproducible etching conditions were established (calibration plot, etching rate versus temperature and time); the etching procedure is time independent, i.e. no altering in KOH melt composition takes place, and absolute melt temperature values can be set. The paper describes this advanced KOH etching furnace, including the development of a new temperature sensor resistant to molten KOH. We present updated, absolute KOH etching parameters of n-type SiC and new absolute KOH etching parameters for low and highly p-type doped SiC, which are used for quantitative defect analysis. As best defect etching recipes we found T=530 °C/5 min (activation energy: 16.4 kcal/mol) and T=500 °C/5 min (activation energy: 13.5 kcal/mol) for n-type and p-type SiC, respectively.

  9. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Plasmon-assisted photoluminescence enhancement of SiC nanocrystals by proximal silver nanoparticles

    International Nuclear Information System (INIS)

    Zhang, N.; Dai, D.J.; Fan, J.Y.

    2012-01-01

    Highlights: ► We studied metal surface plasmon-enhanced photoluminescence in SiC nanocrystals. ► The integrated emission intensity can be enhanced by 17 times. ► The coupling between SiC emission and Ag plasmon oscillation induces the enhancement. ► The enhancement is tunable with varied spacing thickness of electrolytes. - Abstract: Plasmon-enhanced photoluminescence has wide application potential in many areas, whereas the underlying mechanism is still in debate. We report the photoluminescence enhancement in SiC nanocrystal–Ag nanoparticle coupled system spaced by the poly(styrene sulfonic acid) sodium salt/poly(allylamine hydrochloride) polyelectrolyte bilayers. The integrated luminescence intensity can be improved by up to 17 times. Our analysis indicates that the strong coupling between the SiC nanocrystals and the surface plasmon oscillation of the silver nanoparticles is the major cause of the luminescence enhancement. These findings will help to understand the photoluminescence enhancement mechanism as well as widen the applications of the SiC nanocrystals in photonics and life sciences.

  11. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15......R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar...

  12. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Won, E-mail: pjw@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Eung-Seon; Kim, Jae-Un [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Yootaek [Dept. of Materials Engineering, Kyonggi Universtiy, Suwon (Korea, Republic of); Windes, William E. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2016-08-15

    Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  13. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    International Nuclear Information System (INIS)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-01-01

    Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  14. Preparation of SiC thin films by ion beam technology and PECVD

    International Nuclear Information System (INIS)

    Chen Changqing; Ren Congxin; Yang Lixin; Yan Jinlong; Zheng Zhihong; Zhou Zuyao; Chen Ping; Liu Xianghuai; Chen Xueliang

    1998-01-01

    The formation of β-SiC buried layers in p-type Si by ion beam methods is reported and a comparison of the results obtained under different experimental conditions is made. The preparation of amorphous SiC thin films by IBED is presented and the enhanced deposition of Xe + is found superior to that of Ar + . The work of synthesizing hydrogenated amorphous SiC films by RIBS and RIBAD is described with a discussion on the dependence of some physical parameters on the partial pressure ratio pCH 4 /pAr. Finally given is a brief introduction to a high quality α-SiC:H film which is prepared by PECVD and can exhibit green luminescence at room temperature

  15. Chemical vapor deposition of SiC on C-C composites as plasma facing materials for fusion application

    International Nuclear Information System (INIS)

    Kim, W. J.; Lee, M. Y.; Park, J. Y.; Hong, G. W.; Kim, J. I.; Choi, D. J.

    2000-01-01

    Because of the low activation and excellent mechanical properties at elevated temperatures, carbon-fiber reinforced carbon(C-C) composites have received much attention for plasma facing materials for fusion reactor and high-temperature structural applications such as aircrafts and space vehicles. These proposed applications have been frustrated by the lack of resistance to hydrogen erosion and oxidation on exposure to ambient oxidizing conditions at high temperature. Although Silicon Carbide (SiC) has shown excellent properties as an effective erosion-and oxidation-protection coating, many cracks are developed during fabrication and thermal cycles in use due to the Coefficients of Thermal Expansion(CTE) mismatch between SiC and C-C composite. In this study, we adopted a pyrolitic carbon as an interlayer between SiC and C-C substrate in order to minimize the CTE mismatch. The oxidation-protection performance of this composite was investigated as well

  16. PhySIC: a veto supertree method with desirable properties.

    Science.gov (United States)

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC.

  17. Transmittance measurements at DIRT-II

    Science.gov (United States)

    Curcio, J. A.; Haught, K. M.; Woytko, M. A.

    1980-07-01

    This is a report on the NRL experiments at the DIRT-II tests sponsored by the Atmospheric Sciences Laboratory at the White Sands Missile Range in July 1970. The NRL experiment was designed to measure spectral transmittance through smoke and dust clouds generated by detonations of various explosive charges and also by impact of artillery rounds. Spectral transmission data as a function of time for 0.55 micrometers, 1.06 micrometers, and 10.37 micrometers were obtained for 63 events comprised of static detonations and artillery rounds. Transmission data for 1.06 micrometers, in most cases were similar and equal to 0.55 micrometers. In dry soil conditions the 10.37 micrometers channel showed higher transmittance values than the visible channel. There are indications that 10.37 micrometers transmittance in wet soil events is lower than visible presumably because of strong liquid water absorption at the IR wavelength.

  18. Heteroepitaxial growth of SiC films by carbonization of polyimide Langmuir-Blodgett films on Si

    Directory of Open Access Journals (Sweden)

    Goloudina S.I.

    2017-01-01

    Full Text Available High quality single crystal SiC films were prepared by carbonization of polyimide Langmuir-Blodgett films on Si substrate. The films formed after annealing of the polyimide films at 1000°C, 1100°C, 1200°C were studied by Fourier transform-infrared (FTIR spectroscopy, X-ray diffraction (XRD, Raman spectroscopy, transmission electon microscopy (TEM, transmission electron diffraction (TED, and scanning electron microscopy (SEM. XRD study and HRTEM cross-section revealed that the crystalline SiC film begins to grow on Si (111 substrate at 1000°C. According to the HRTEM cross-section image five planes in 3C-SiC (111 film are aligned with four Si(111 planes at the SiC/Si interface. It was shown the SiC films (35 nm grown on Si(111 at 1200°C have mainly cubic 3C-SiC structure with a little presence of hexagonal polytypes. Only 3C-SiC films (30 nm were formed on Si (100 substrate at the same temperature. It was shown the SiC films (30-35 nm are able to cover the voids in Si substrate with size up to 10 μm.

  19. 10kV SiC MOSFET split output power module

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Li, Helong; Uhrenfeldt, Christian

    2015-01-01

    The poor body diode performance of the first generation of 10kV SiC MOSFETs and the parasitic turn-on phenomenon limit the performance of SiC based converters. Both these problems can potentially be mitigated using a split output topology. In this paper we present a comparison between a classical...

  20. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  1. Advances in SiC materials and devices: an industrial point of view

    Energy Technology Data Exchange (ETDEWEB)

    Siergiej, R.R.; Clarke, R.C.; Sriram, S.; Agarwal, A.K.; Bojko, R.J.; Morse, A.W.; Balakrishna, V.; MacMillan, M.F.; Brandt, C.D. [Northrop Grumman ESSS Sci. and Technol. Center, Pittsburgh, PA (United States); Burk, A.A. Jr. [Northrop Grumman ESSS Adv. Technol. Lab. Baltimore, MD (United States)

    1999-07-30

    Silicon carbide (SiC) is an emerging semiconductor that has proven itself especially well-suited to high temperature power switching and high-frequency power generation. In this paper we examine recent advances in materials development and device performance. In boule growth we have focused on increasing boule diameter and reducing defect counts. Two conductivity types have been developed (1) semi-insulating for MESFETs, and (2) highly conducting boules for SITs and power switches. Very uniform planetary multi-wafer epitaxial layer growth on these wafers is described, in which specular epitaxial layers have been obtained with growth rates of 3-5{mu}m h{sup -1} exhibiting unintentional n-type doping of {proportional_to}1 x 10{sup 15} cm{sup -3}, and room temperature Hall mobilities of {proportional_to}1000 cm{sup 2} V{sup -1} s{sup -1}. Controlled n-type doping between {proportional_to}5 x 10{sup 15} cm{sup -3} and >1 x 10{sup 19} cm{sup -3} has also been demonstrated using nitrogen doping. SiC finds application in high temperature power switching devices and microwave power transistors. MOS turn-off thyristors (MTO{sup TM}) are being investigated as power switches because they offer ease of turn-off, 500 C operation and reduced cooling requirements. In the fabrication of high-power, high-frequency transistors at UHF, L-, S-, and X-bands SiC has been found superior to both silicon and GaAs. For example, a 4H-SiC UHF television module has demonstrated good signal fidelity at the 2000 W PEP level, S-band transistor packages have shown 300 W peak power for radar applications, and 6 W power output has been obtained at X-band. (orig.)

  2. Neutron displacement damage cross sections for SiC

    International Nuclear Information System (INIS)

    Huang Hanchen; Ghoniem, N.

    1993-01-01

    Calculations of neutron displacement damage cross sections for SiC are presented. We use Biersack and Haggmark's empirical formula in constructing the electronic stopping power, which combines Lindhard's model at low PKA energies and Bethe-Bloch's model at high PKA energies. The electronic stopping power for polyatomic materials is computed on the basis of Bragg's Additivity Rule. A continuous form of the inverse power law potential is used for nuclear scattering. Coupled integro-differential equations for the number of displaced atoms j, caused by PKA i, are then derived. The procedure outlined above gives partial displacement cross sections, displacement cross sections for each specie of the lattice, and for each PKA type. The corresponding damage rates for several fusion and fission neutron spectra are calculated. The stoichiometry of the irradiated material is investigated by finding the ratio of displacements among various atomic species. The role of each specie in displacing atoms is also investigated by calculating the fraction of displacements caused by each PKA type. The study shows that neutron displacement damage rates of SiC in typical magnetic fusion reactor first walls will be ∝10-15 dpa MW -1 m 2 ; in typical lead-protected inertial confinement fusion reactor first walls they will be ∝15-20 dpa MW -1 m 2 . For fission spectra, we find that the neutron displacement damage rate of SiC is ∝74 dpa per 10 27 n/m 2 in FFTF, ∝39 dpa per 10 27 n/m 2 in HFIR, and 25 dpa per 10 27 n/m 2 in NRU. Approximately 80% of displacement atoms are shown to be of the carbon-type. (orig.)

  3. Tema 8. Principis físics dels semiconductors (Guia del tema)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2011-01-01

    Guia del "Tema 8. Principis físics dels semiconductors" de l'assignatura "Fonaments Físics de l'Enginyeria I" de "Grau en Enginyeria en So i Imatge" impartit a l'Escola Politècnica Superior de la Universitat d'Alacant.

  4. Diodes of nanocrystalline SiC on n-/n+-type epitaxial crystalline 6H-SiC

    Science.gov (United States)

    Zheng, Junding; Wei, Wensheng; Zhang, Chunxi; He, Mingchang; Li, Chang

    2018-03-01

    The diodes of nanocrystalline SiC on epitaxial crystalline (n-/n+)6H-SiC wafers were investigated, where the (n+)6H-SiC layer was treated as cathode. For the first unit, a heavily boron doped SiC film as anode was directly deposited by plasma enhanced chemical vapor deposition method on the wafer. As to the second one, an intrinsic SiC film was fabricated to insert between the wafer and the SiC anode. The third one included the SiC anode, an intrinsic SiC layer and a lightly phosphorus doped SiC film besides the wafer. Nanocrystallization in the yielded films was illustrated by means of X-ray diffraction, transmission electronic microscope and Raman spectrum respectively. Current vs. voltage traces of the obtained devices were checked to show as rectifying behaviors of semiconductor diodes, the conduction mechanisms were studied. Reverse recovery current waveforms were detected to analyze the recovery performance. The nanocrystalline SiC films in base region of the fabricated diodes are demonstrated as local regions for lifetime control of minority carriers to improve the reverse recovery properties.

  5. Azimuth-Variant Signal Processing in High-Altitude Platform Passive SAR with Spaceborne/Airborne Transmitter

    Directory of Open Access Journals (Sweden)

    Huaizong Shao

    2013-03-01

    Full Text Available High-altitude platforms (HAP or near-space vehicle offers several advantages over current low earth orbit (LEO satellite and airplane, because HAP is not constrained by orbital mechanics and fuel consumption. These advantages provide potential for some specific remote sensing applications that require persistent monitoring or fast-revisiting frequency. This paper investigates the azimuth-variant signal processing in HAP-borne bistatic synthetic aperture radar (BiSAR with spaceborne or airborne transmitter for high-resolution remote sensing. The system configuration, azimuth-variant Doppler characteristics and two-dimensional echo spectrum are analyzed. Conceptual system simulation results are also provided. Since the azimuth-variant BiSAR geometry brings a challenge for developing high precision data processing algorithms, we propose an image formation algorithm using equivalent velocity and nonlinear chirp scaling (NCS to address the azimuth-variant signal processing problem. The proposed algorithm is verified by numerical simulation results.

  6. Effect of Ti and Si interlayer materials on the joining of SiC ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Park, Dong Jun; Park, Jeong Yong; Kim, Weon Ju [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ∼0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ∼100 MPa. The joint interface consisted of TiSi{sub 2}, Ti{sub 3}SiC{sub 2}, and SiC phases formed by a diffusion reaction of Ti and Si.

  7. ToF-MEIS stopping measurements in thin SiC films

    International Nuclear Information System (INIS)

    Linnarsson, M.K.; Khartsev, S.; Primetzhofer, D.; Possnert, G.; Hallén, A.

    2014-01-01

    Electronic stopping in thin, amorphous, SiC films has been studied by time-of-flight medium energy ion scattering and conventional Rutherford backscattering spectrometry. Amorphous SiC films (8, 21 and 36 nm) were prepared by laser ablation using a single crystalline silicon carbide target. Two kinds of substrate films, one with a lower atomic mass (carbon) and one with higher atomic mass (iridium) compared to silicon has been used. Monte Carlo simulations have been used to evaluate electronic stopping from the shift in energy for the signal scattered from Ir with and without SiC. The two kinds of samples are used to illustrate the strength and challenges for ToF-MEIS compared to conventional RBS

  8. An Improved Current-Doubler Rectifier for the Marine Controlled Source Electromagnetic Transmitter

    Directory of Open Access Journals (Sweden)

    Hongxi Song

    2018-01-01

    Full Text Available High power marine controlled source electromagnetic transmitters have gained interest with applications in marine geological survey and mineral resources exploration. The direct current to direct current (DC-DC converter that is typically used in marine transmitters has some issues, as the insulated-gate bipolar transistor (IGBT tube cannot achieve zero-voltage switching (ZVS. In particular, lagging-leg switching cannot easily achieve ZVS. The conversion efficiency of the heat converter requires improvement. This paper proposes an improved current-doubler rectifier for the marine controlled source electromagnetic transmitter (ICDR-MCSET. Resonant inductance is increased and a blocking capacitor is added to the converter (DC-DC circuit, where the converter can achieve ZVS in a wide load range. This results in the effective decrease of the heating temperature and the improvement of transformation efficiency. Saber software simulation and a 20 KW electromagnetic transmitter are used to verify the results, which show that the method is feasible and effective.

  9. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  10. Determination of irradiation temperature using SiC temperature monitors

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

  11. Enhanced visible light photocatalytic H{sub 2} evolution of metal-free g-C{sub 3}N{sub 4}/SiC heterostructured photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao, E-mail: wangbiao@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Jingtao, E-mail: zhangjtao@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006 (China); Huang, Feng, E-mail: huangfeng@mail.sysu.edu.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006 (China)

    2017-01-01

    Highlights: • Novel g-C{sub 3}N{sub 4}/SiC composite was prepared by synthesizing g-C{sub 3}N{sub 4} on the surface of SiC. • g-C{sub 3}N{sub 4}/SiC composites exhibit much higher H{sub 2} production activity than pure g-C{sub 3}N{sub 4}. • The g-C{sub 3}N{sub 4}/SiC heterojunction mainly accounts for improved photocatalytic activity. - Abstract: g-C{sub 3}N{sub 4} has been attracting much attention for application in visible light photocatalytic water splitting due to its suitable band structure, and high thermal and chemical stability. However, the rapid recombination of photogenerated carriers has inhibited its wide use. For this reason, novel g-C{sub 3}N{sub 4}/SiC composites were prepared via in situ synthesis of g-C{sub 3}N{sub 4} on the surface of SiC, with which g-C{sub 3}N{sub 4} shows tight interaction (chemical bonding). The g-C{sub 3}N{sub 4}/SiC composites exhibit high stability in H{sub 2} production under irradiation with visible light (λ ≥ 420 nm), demonstrating a maximum of 182 μmol g{sup −1} h{sup −1}, being 3.4 times higher than that of pure g-C{sub 3}N{sub 4}. The enhanced photocatalytic H{sub 2} production ability for g-C{sub 3}N{sub 4}/SiC photocatalysts is primarily ascribed to the combined effects of enhanced separation of photogenerated carriers through efficient migration of electron and enlarged surface areas, in addition to the possible contributions of increased hydrophilicity of SiC and polymerization degree of g-C{sub 3}N{sub 4}. This study may provide new insights into the development of g-C{sub 3}N{sub 4}-based composites as stable and efficient photocatalysts for H{sub 2} production from water splitting.

  12. Synthesis of nanostructured SiC using the pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Zhang, H.X.; Feng, P.X.; Makarov, V.; Weiner, B.R.; Morell, G.

    2009-01-01

    We report the new results on the direct synthesis of nanostructured silicon carbide (SiC) materials using the pulsed laser deposition technique. Scanning electron microscopy images revealed that SiC nanoholes, nanosprouts, nanowires, and nanoneedles were obtained. The crystallographic structure, chemical composition, and bond structure of the nanoscale SiC materials were investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman scattering spectroscopy. The transverse optical mode and longitudinal optical mode in Raman spectra were found to become sharper as the substrate temperature was increased, while the material structure evolved from amorphous to crystalline

  13. Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

    Directory of Open Access Journals (Sweden)

    Xinghao Liang

    2018-02-01

    Full Text Available Silicon carbide (SiC is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

  14. Effects of SiC and MgO on aluminabased ceramic foams filters

    OpenAIRE

    CAO Da-li; ZHOU Jing-yi; JIN Yong-ming

    2007-01-01

    Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phas...

  15. Microstructure of SiC ceramics fabricated by pyrolysis of electron beam irradiated polycarbomethylsilane containing precursors

    International Nuclear Information System (INIS)

    Xu Yunshu; Tanaka, Shigeru

    2003-01-01

    A modified gel-casting method was developed to form the ceramics precursor matrix by using polycarbomehylsilane (PCMS) and SiC powder. The polymer precursor was mixed with SiC powder in toluene, and then the slurry samples were cast into designed shapes. The pre-ceramic samples were then irradiated by 2.0 MeV electron beam generated by a Cockcroft-Walton type accelerator in He gas flow to about 15 MGy. The cured samples were pyrolyzed and sintered into SiC ceramics at 1300degC in Ar gas. The modified gel-casting method leaves almost no internal stress in the pre-ceramic samples, and the electron beam curing not only diminished the amount of pyrolysis gaseous products but also enhanced the interface binding of the polymer converted SiC and the grains of SiC powder. Optical microscope, AFM and SEM detected no visible internal or surface cracks in the final SiC ceramics matrix. A maximum value of 122 MPa of flexural strength of the final SiC ceramics was achieved. (author)

  16. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libao [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Xie Xiaohua [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wang Baofeng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang Ke [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie Jingying [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China) and Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: jyxie@mail.sim.ac.cn

    2006-07-15

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g{sup -1} and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly.

  17. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    International Nuclear Information System (INIS)

    Chen Libao; Xie Xiaohua; Wang Baofeng; Wang Ke; Xie Jingying

    2006-01-01

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g -1 and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly

  18. Structural and electrical characterization of ion beam synthesized and n-doped SiC layers

    Energy Technology Data Exchange (ETDEWEB)

    Serre, C.; Perez-Rodriguez, A.; Romano-Rodriguez, A.; Morante, J.R. [Barcelona Univ. (Spain). Dept. Electronica; Panknin, D.; Koegler, R.; Skorupa, W. [Forschungszentrum Rossendorf, Dresden (Germany); Esteve, J.; Acero, M.C. [CSIC, Bellaterra (Spain). Centre Nacional de Microelectronica

    2001-07-01

    This work reports preliminary data on the ion beam synthesis of n-doped SiC layers. For this, two approaches have been studied: (i) doping by ion implantation (with N{sup +}) of ion beam synthesized SiC layers and (ii) ion beam synthesis of SiC in previously doped (with P) Si wafers. In the first case, the electrical data show a p-type overcompensation of the SiC layer in the range of temperatures between -50 C and 125 C. The structural (XRD) and in-depth (SIMS, Spreading Resistance) analysis of the samples suggest this overcompensation to be induced by p-type active defects related to the N{sup +} ion implantation damage, and therefore the need for further optimization their thermal processing. In contrast, the P-doped SiC layers always show n-type doping. This is also accompanied by a higher structural quality, being the spectral features of the layers similar to those from the not doped material. Electrical activation of P in the SiC lattice is about one order of magnitude lower than in Si. These data constitute, to our knowledge, the first results reported on the doping of ion beam synthesized SiC layers. (orig.)

  19. A comparative study on electrical characteristics of 1-kV pnp and npn SiC bipolar junction transistors

    Science.gov (United States)

    Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun

    2018-04-01

    We investigate the electrical characteristics of 1-kV pnp SiC bipolar junction transistors (BJTs) and compare them with those of npn SiC BJTs. The base resistance, current gain, and blocking capability are characterized. It is found that the base resistance of pnp SiC BJTs is two orders of magnitude lower than that of npn SiC BJTs. However, the obtained current gains are low below unity in pnp SiC BJTs, whereas npn SiC BJTs exhibit a current gain of 14 without surface passivation. The reason for the poor current gain of pnp SiC BJTs is discussed.

  20. 29 CFR 1921.15 - Transmittal of record.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Transmittal of record. 1921.15 Section 1921.15 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... WORKERS' COMPENSATION ACT Decision and Order § 1921.15 Transmittal of record. Immediately following the...

  1. Detection and Analysis of Particles with Failed SiC in AGR-1 Fuel Compacts

    International Nuclear Information System (INIS)

    Hunn, John D.; Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M.; Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A.

    2014-01-01

    As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of "1"3"4Cs and "1"3"7Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during the AGR-1 irradiation test or post-irradiation safety testing at 1600– 1800°C were identified, and individual particles with abnormally low cesium retention were sorted out with the ORNL Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were related to either fabrication defects or showed extensive Pd corrosion through the SiC where it had been exposed by similar IPyC cracking. (author)

  2. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay

    2013-07-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  3. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  4. A dual-mode 6-9 GHz transmitter for OFDM-UWB

    International Nuclear Information System (INIS)

    Chen Yunfeng; Gao Ting; Li Wei; Li Ning; Ren Junyan

    2011-01-01

    This paper presents a fully integrated dual-mode 6 to 9 GHz transmitter for both WiMedia and China MB-OFDM UWB applications. The proposed transmitter consists of a dual-mode I/QLPF, an up-conversion mixer, a two-stage power driver amplifier and a broadband high-speed frequency divider with LO buffers for I/Q LO carrier generation. The measurement results show that the gain ripple of the transmitter is within ±1.5/±2.8 dB from 6 to 8.7/9 GHz. The output IP3 is about +13.2 dBm, the output 1dBCP is around +2.8 dBm, and the LO leakage/sideband rejection ratio is about -35/-38 dBc. The ESD protected chip is fabricated with a TSMC 0.13 μm RFCMOS process with a die size of 1.6 x 1.3 mm 2 and the core circuit consumes only 46 mA under a 1.2 V supply. (semiconductor integrated circuits)

  5. A dual-mode 6-9 GHz transmitter for OFDM-UWB

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yunfeng; Gao Ting; Li Wei; Li Ning; Ren Junyan, E-mail: jyren@fudan.edu.cn, E-mail: w-li@fudan.edu.cn [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2011-05-15

    This paper presents a fully integrated dual-mode 6 to 9 GHz transmitter for both WiMedia and China MB-OFDM UWB applications. The proposed transmitter consists of a dual-mode I/QLPF, an up-conversion mixer, a two-stage power driver amplifier and a broadband high-speed frequency divider with LO buffers for I/Q LO carrier generation. The measurement results show that the gain ripple of the transmitter is within {+-}1.5/{+-}2.8 dB from 6 to 8.7/9 GHz. The output IP3 is about +13.2 dBm, the output 1dBCP is around +2.8 dBm, and the LO leakage/sideband rejection ratio is about -35/-38 dBc. The ESD protected chip is fabricated with a TSMC 0.13 {mu}m RFCMOS process with a die size of 1.6 x 1.3 mm{sup 2} and the core circuit consumes only 46 mA under a 1.2 V supply. (semiconductor integrated circuits)

  6. A route to strong p-doping of epitaxial graphene on SiC

    KAUST Repository

    Cheng, Yingchun; Schwingenschlö gl, Udo

    2010-01-01

    The effects of Au intercalation on the electronic properties of epitaxialgraphenegrown on SiC{0001} substrates are studied using first principles calculations. A graphenemonolayer on SiC{0001} restores the shape of the pristine graphene dispersion

  7. The physics of epitaxial graphene on SiC(0001)

    International Nuclear Information System (INIS)

    Kageshima, H; Hibino, H; Tanabe, S

    2012-01-01

    Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to

  8. Improvements in mechanical properties in SiC by the addition of TiC particles

    International Nuclear Information System (INIS)

    Wei, G.C.; Becher, P.F.

    1984-01-01

    Silicon carbide ceramics containing up to 24.6 vol% dispersed TiC particles yielded fully dense composites by hot-pressing at 2000 0 C with 1 wt% Al and 1 wt% C added. The microstructure consists of fine TiC particles in a fine-grained SiC matrix. Addition of TiC particles increases the critical fracture toughness of SiC (to approx. =6 MPa /SUP ./ m /SUP 1/2/ at 24.6 vol% TiC) and yields high flexure strength (greater than or equal to 680 MPa), with both properties increasing with increasing volume fraction of TiC. The strengths at high temperatures are also improved by the TiC additions. Observations of the fracture path indicate that the improved toughness and strength are a result of crack deflection by the TiC particles

  9. Structural Analysis of Polyhedral Oligomeric Silsesquioxane Coated SiC Nanoparticles and Their Applications in Thermoset Polymers

    International Nuclear Information System (INIS)

    Reza-E-Rabby, M.; Jeelani, Sh.; Rangari, V. K.

    2015-01-01

    The SiC nanoparticles (NPs) were sonochemically coated with Octa Isobutyl (OI) polyhedral oligomeric silsesquioxane (POSS) to create a compatible interface between particle and thermoset polymer. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) techniques were used to analyze the structure of OI-POSS coated SiC nanoparticles. These results revealed the formation of a covalent bonding between SiC and OI-POSS. The transmission electron microscopy (TEM) analysis of OI-POSS coated SiC nanoparticles has also shown the indication of attachment between these two nanoparticles. The OI-POSS coated SiC nanoparticles were further reinforced into a thermoset resin system in order to evaluate mechanical and thermal properties of nano composites. The flexural strength, modulus, and glass transition temperature were found to be enhanced while SiC and OI-POSS coated SiC were infused into epoxy system compared to those properties of neat epoxy resin

  10. Structural Analysis of Polyhedral Oligomeric Silsesquioxane Coated SiC Nanoparticles and Their Applications in Thermoset Polymers

    Directory of Open Access Journals (Sweden)

    Md. Reza-E-Rabby

    2015-01-01

    Full Text Available The SiC nanoparticles (NPs were sonochemically coated with OctaIsobutyl (OI polyhedral oligomeric silsesquioxane (POSS to create a compatible interface between particle and thermoset polymer. X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD techniques were used to analyze the structure of OI-POSS coated SiC nanoparticles. These results revealed the formation of a covalent bonding between SiC and OI-POSS. The transmission electron microscopy (TEM analysis of OI-POSS coated SiC nanoparticles has also shown the indication of attachment between these two nanoparticles. The OI-POSS coated SiC nanoparticles were further reinforced into a thermoset resin system in order to evaluate mechanical and thermal properties of nanocomposites. The flexural strength, modulus, and glass transition temperature were found to be enhanced while SiC and OI-POSS coated SiC were infused into epoxy system compared to those properties of neat epoxy resin.

  11. Effects of radio transmitters on nesting captive mallards

    Science.gov (United States)

    Houston, Robert A.; Greenwood, Raymond J.

    1993-01-01

    Radio packages may subtly affect bird behavior and condition, and thus could bias results from studies using this technique. To assess effects on reproduction of mallards (Anas platyrhynchos), we tested 3 types of back-mounted radio packages on captive females. Eight paired females were randomly assigned to each of 4 treatments: 4-g transmitter attached with sutures and glue, 10-g or 18-g transmitter attached with a harness, and no transmitter (control). All mallards were fed ad libitum. No differences were detected among treatments in number of clutches, clutch size, nesting interval, egg mass, or body mass; powers (range = 0.15-0.48) of tests were low. Feather wear and skin irritation around radio packages were minimal. Birds retained sutured transmitters for an average of 43.5 days (range = 3-106 days) and harness transmitters for the duration of the study (106 days). Sutures were not reliable and presently are not recommended as an attachment method. Caution is advised in applying these results to radio-equipped mallards in the wild.

  12. PEALD grown high-k ZrO{sub 2} thin films on SiC group IV compound semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, A. G., E-mail: agkhairnar@gmail.com; Patil, V. S.; Agrawal, K. S.; Salunke, R. S.; Mahajan, A. M., E-mail: ammahajan@nmu.ac.in [North Maharashtra University, Department of Electronics, School of Physical Sciences (India)

    2017-01-15

    The study of ZrO{sub 2} thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO{sub 2} thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO{sub 2} thin films were post deposition annealed in rapid thermal annealing chamber at temperature of 400°Ð¡. The atomic force microscopy and X-гау photoelectron spectroscopy has been carried out to study the surface topography, roughness and chemical composition of thin film, respectively.

  13. PhySIC_IST: cleaning source trees to infer more informative supertrees.

    Science.gov (United States)

    Scornavacca, Celine; Berry, Vincent; Lefort, Vincent; Douzery, Emmanuel J P; Ranwez, Vincent

    2008-10-04

    Supertree methods combine phylogenies with overlapping sets of taxa into a larger one. Topological conflicts frequently arise among source trees for methodological or biological reasons, such as long branch attraction, lateral gene transfers, gene duplication/loss or deep gene coalescence. When topological conflicts occur among source trees, liberal methods infer supertrees containing the most frequent alternative, while veto methods infer supertrees not contradicting any source tree, i.e. discard all conflicting resolutions. When the source trees host a significant number of topological conflicts or have a small taxon overlap, supertree methods of both kinds can propose poorly resolved, hence uninformative, supertrees. To overcome this problem, we propose to infer non-plenary supertrees, i.e. supertrees that do not necessarily contain all the taxa present in the source trees, discarding those whose position greatly differs among source trees or for which insufficient information is provided. We detail a variant of the PhySIC veto method called PhySIC_IST that can infer non-plenary supertrees. PhySIC_IST aims at inferring supertrees that satisfy the same appealing theoretical properties as with PhySIC, while being as informative as possible under this constraint. The informativeness of a supertree is estimated using a variation of the CIC (Cladistic Information Content) criterion, that takes into account both the presence of multifurcations and the absence of some taxa. Additionally, we propose a statistical preprocessing step called STC (Source Trees Correction) to correct the source trees prior to the supertree inference. STC is a liberal step that removes the parts of each source tree that significantly conflict with other source trees. Combining STC with a veto method allows an explicit trade-off between veto and liberal approaches, tuned by a single parameter.Performing large-scale simulations, we observe that STC+PhySIC_IST infers much more informative

  14. PENGARUH PEMBELAJARAN TEAM ASSISTED INDIVIDUALIZATION (TAI BERBANTUAN MEDIA SMART AND INTERESTING CARD (SIC TERHADAP HASIL BELAJAR SISWA

    Directory of Open Access Journals (Sweden)

    Kun Khuriya Pratiwi

    2015-11-01

    Full Text Available This experiment aimed to determine the influence of student’s learning outcomes of Senior High School (SHS in Parakan through the application of TAI (Team Assisted Individualization assisted of SIC (Smart and Interesting Card media on the subject of redox reaction. The population in this experiment were X grade students Senior High School (SHS in Parakan of the school year 2011/2012. Determination of the sample used cluster random sampling system that obtained two classes where X-3 as an experimental group that was treated by using TAI method assisted by SIC media and X-4 as a control group that was treated conventional methods. The research data was obtained by the method of documentation, testing, questionnaire and observation. The final analysis methods are normalization test, the similarity of two varians test, difference of two average test, gain test, biserial correlation, determination coefficient and analysis of questionnaire and observation sheet. The results showed that experiment class better than the control class. The results of study obtained results of the experimental group had an average 76,78 and a control group had an average of 67,82. TAI method assisted by SIC media give contribution to the learning outcome as 30%.Key words: TAI learning, SIC media 

  15. Suomi NPP VIIRS solar diffuser screen transmittance model and its applications.

    Science.gov (United States)

    Lei, Ning; Xiong, Xiaoxiong; Mcintire, Jeff

    2017-11-01

    The visible infrared imaging radiometer suite on the Suomi National Polar-orbiting Partnership satellite calibrates its reflective solar bands through observations of a sunlit solar diffuser (SD) panel. Sunlight passes through a perforated plate, referred to as the SD screen, before reaching the SD. It is critical to know whether the SD screen transmittance measured prelaunch is accurate. Several factors such as misalignments of the SD panel and the measurement apparatus could lead to errors in the measured transmittance and thus adversely impact on-orbit calibration quality through the SD. We develop a mathematical model to describe the transmittance as a function of the angles that incident light makes with the SD screen, and apply the model to fit the prelaunch measured transmittance. The results reveal that the model does not reproduce the measured transmittance unless the size of the apertures in the SD screen is quite different from the design value. We attribute the difference to the orientation alignment errors for the SD panel and the measurement apparatus. We model the alignment errors and apply our transmittance model to fit the prelaunch transmittance to retrieve the "true" transmittance. To use this model correctly, we also examine the finite source size effect on the transmittance. Furthermore, we compare the product of the retrieved "true" transmittance and the prelaunch SD bidirectional reflectance distribution function (BRDF) value to the value derived from on-orbit data to determine whether the prelaunch SD BRDF value is relatively accurate. The model is significant in that it can evaluate whether the SD screen transmittance measured prelaunch is accurate and help retrieve the true transmittance from the transmittance with measurement errors, consequently resulting in a more accurate sensor data product by the same amount.

  16. A Short-Circuit Safe Operation Area Identification Criterion for SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Luo, Haoze

    2017-01-01

    This paper proposes a new method for the investigation of the short-circuit safe operation area (SCSOA) of state-of-the-art SiC MOSFET power modules rated at 1.2 kV based on the variations in SiC MOSFET electrical parameters (e.g., short-circuit current and gate–source voltage). According...... to the experimental results, two different failure mechanisms have been identified, both reducing the short-circuit capability of SiC power modules with respect to discrete SiC devices. Based on such failure mechanisms, two short-circuit safety criteria have been formulated: 1) the short-circuit...

  17. Using of the Modern Semiconductor Devices Based on the SiC

    Directory of Open Access Journals (Sweden)

    Pavel Drabek

    2008-01-01

    Full Text Available This paper deals with possibility of application of the semiconductor devices based on the SiC (Silicon Carbide inthe power electronics. Basic synopsis of SiC based materials problems are presented, appreciation of their properties incomparison with current using power semiconductor devices ((IGBT, MOSFET, CoolFET transistors.

  18. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    International Nuclear Information System (INIS)

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-01-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO 2 volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  19. Comparison between ASHRAE and ISO thermal transmittance calculation methods

    DEFF Research Database (Denmark)

    Blanusa, Petar; Goss, William P.; Roth, Hartwig

    2007-01-01

    is proportional to the glazing/frame sightline distance that is also proportional to the total glazing spacer length. An example calculation of the overall heat transfer and thermal transmittance (U-value or U-factor) using the two methods for a thermally broken, aluminum framed slider window is presented....... The fenestration thermal transmittance calculations analyses presented in this paper show that small differences exist between the calculated thermal transmittance values produced by the ISO and ASHRAE methods. The results also show that the overall thermal transmittance difference between the two methodologies...... decreases as the total window area (glazing plus frame) increases. Thus, the resulting difference in thermal transmittance values for the two methods is negligible for larger windows. This paper also shows algebraically that the differences between the ISO and ASHRAE methods turn out to be due to the way...

  20. Morphological and electronic properties of epitaxial graphene on SiC

    International Nuclear Information System (INIS)

    Yakimova, R.; Iakimov, T.; Yazdi, G.R.; Bouhafs, C.; Eriksson, J.; Zakharov, A.; Boosalis, A.; Schubert, M.; Darakchieva, V.

    2014-01-01

    We report on the structural and electronic properties of graphene grown on SiC by high-temperature sublimation. We have studied thickness uniformity of graphene grown on 4H–SiC (0 0 0 1), 6H–SiC (0 0 0 1), and 3C–SiC (1 1 1) substrates and investigated in detail graphene surface morphology and electronic properties. Differences in the thickness uniformity of the graphene layers on different SiC polytypes is related mainly to the minimization of the terrace surface energy during the step bunching process. It is also shown that a lower substrate surface roughness results in more uniform step bunching and consequently better quality of the grown graphene. We have compared the three SiC polytypes with a clear conclusion in favor of 3C–SiC. Localized lateral variations in the Fermi energy of graphene are mapped by scanning Kelvin probe microscopy. It is found that the overall single-layer graphene coverage depends strongly on the surface terrace width, where a more homogeneous coverage is favored by wider terraces. It is observed that the step distance is a dominating, factor in determining the unintentional doping of graphene from the SiC substrate. Microfocal spectroscopic ellipsometry mapping of the electronic properties and thickness of epitaxial graphene on 3C–SiC (1 1 1) is also reported. Growth of one monolayer graphene is demonstrated on both Si- and C-polarity of the 3C–SiC substrates and it is shown that large area homogeneous single monolayer graphene can be achieved on the Si-face substrates. Correlations between the number of graphene monolayers on one hand and the main transition associated with an exciton enhanced van Hove singularity at ∼4.5 eV and the free-charge carrier scattering time, on the other are established. It is shown that the interface structure on the Si- and C-polarity of the 3C–SiC (1 1 1) differs and has a determining role for the thickness and electronic properties homogeneity of the epitaxial graphene.

  1. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn

    2006-07-15

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.

  2. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    International Nuclear Information System (INIS)

    Xue Wenbin

    2006-01-01

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed

  3. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  4. Changes in work function due to NO2 adsorption on monolayer and bilayer epitaxial graphene on SiC(0001)

    Science.gov (United States)

    Caffrey, Nuala M.; Armiento, Rickard; Yakimova, Rositsa; Abrikosov, Igor A.

    2016-11-01

    The electronic properties of monolayer graphene grown epitaxially on SiC(0001) are known to be highly sensitive to the presence of NO2 molecules. The presence of small areas of bilayer graphene, on the other hand, considerably reduces the overall sensitivity of the surface. We investigate how NO2 molecules interact with monolayer and bilayer graphene, both free-standing and on a SiC(0001) substrate. We show that it is necessary to explicitly include the effect of the substrate in order to reproduce the experimental results. When monolayer graphene is present on SiC, there is a large charge transfer from the interface between the buffer layer and the SiC substrate to the molecule. As a result, the surface work function increases by 0.9 eV after molecular adsorption. A graphene bilayer is more effective at screening this interfacial charge, and so the charge transfer and change in work function after NO2 adsorption is much smaller.

  5. Comparison of the Contact stress and friction behavior of SiC and ZrO2 materials

    International Nuclear Information System (INIS)

    Lindberg, L.J.; Richerson, D.W.

    1985-01-01

    Studies were performed to further elucidate the friction and contact- stress characteristics of structural ceramic materials. New data for fully stabilized and partially stabilized zirconia ceramics are compared with prior test results for sintered SiC. The comparison provides further evidence that the high temperature friction characteristics of sinstered SiC are strongly influenced by the presence of a viscous surface layer. The results also show that a ceramic material with lower coefficient of friction and higher fracture toughness has increased resistance to strength-reducing surface damage due to contact stress

  6. PSpice Modeling Platform for SiC Power MOSFET Modules with Extensive Experimental Validation

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Iannuzzo, Francesco; Nawaz, Muhammad

    2016-01-01

    to simulate the performance of high current rating (above 100 A), multi-chip SiC MOSFET modules both for static and switching behavior. Therefore, the simulation results have been validated experimentally in a wide range of operating conditions, including high temperatures, gate resistance and stray elements....... The whole process has been repeated for three different modules with voltage rating of 1.2 kV and 1.7 kV, manufactured by three different companies. Lastly, a parallel connection of two modules of the same type has been performed in order to observe the unbalancing and mismatches experimentally......The aim of this work is to present a PSpice implementation for a well-established and compact physics-based SiC MOSFET model, including a fast, experimental-based parameter extraction procedure in a MATLAB GUI environment. The model, originally meant for single-die devices, has been used...

  7. Design and calculation of low infrared transmittance and low emissivity coatings for heat radiative applications

    Science.gov (United States)

    Wang, Guang-Hai; Zhang, Yue; Zhang, Da-Hai; Fan, Jin-Peng

    2012-02-01

    The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low transmittance and low emissivity coatings to reduce the heat transfer by thermal radiation for high-temperature applications. In the case of silica coating layers constituted with various structural titania particles (solid, hollow, and core-shell spherical), the dependence of transmittance and emissivity of the coating layer on the particle structure and the layer thickness was investigated and optimized. The results indicate that the coating pigmented with core-shell titania particles exhibits a lower infrared transmittance and a lower emissivity value than that with other structural particles and is suitable to radiative heat-insulating applications.

  8. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies

    Science.gov (United States)

    Dobrzhinetskaya, Larissa; Mukhin, Pavel; Wang, Qin; Wirth, Richard; O'Bannon, Earl; Zhao, Wenxia; Eppelbaum, Lev; Sokhonchuk, Tatiana

    2018-06-01

    Here, we present studies of natural SiC that occurs in situ in tuff related to the Miocene alkaline basalt formation deposited in northern part of Israel. Raman spectroscopy, SEM and FIB-assisted TEM studies revealed that SiC is primarily hexagonal polytypes 4H-SiC and 6H-SiC, and that the 4H-SiC polytype is the predominant phase. Both SiC polytypes contain crystalline inclusions of silicon (Sio) and inclusions of metal-silicide with varying compositions (e.g. Si58V25Ti12Cr3Fe2, Si41Fe24Ti20Ni7V5Zr3, and Si43Fe40Ni17). The silicides crystal structure parameters match Si2TiV5 (Pm-3m space group, cubic), FeSi2Ti (Pbam space group, orthorhombic), and FeSi2 (Cmca space group, orthorhombic) respectively. We hypothesize that SiC was formed in a local ultra-reduced environment at respectively shallow depths (60-100 km), through a reaction of SiO2 with highly reducing fluids (H2O-CH4-H2-C2H6) arisen from the mantle "hot spot" and passing through alkaline basalt magma reservoir. SiO2 interacting with the fluids may originate from the walls of the crustal rocks surrounding this magmatic reservoir. This process led to the formation of SiC and accompanied by the reducing of metal-oxides to native metals, alloys, and silicides. The latter were trapped by SiC during its growth. Hence, interplate "hot spot" alkali basalt volcanism can now be included as a geological environment where SiC, silicon, and silicides can be found.

  9. Mechanical properties and electrical conductivity of Cu-Cr and Cu-Cr-4% SiC nanocomposites for thermo-electric applications

    International Nuclear Information System (INIS)

    Mula, Suhrit; Sahani, Pankajini; Pratihar, S.K.; Mal, Siddhartha; Koch, Carl C.

    2011-01-01

    Highlights: → Ball-milled Cu-Cr and Cu-Cr-SiC nanopowders successfully consolidated by microwave sintering. → Addition of nanosize SiC in Cu-Cr leads to enhanced sintered density, wear and hardness. → A good combination of wear resistance, hardness and electrical conductivity resulted in Cu 94 Cr 6 -4% SiC. → Microwave suscepting SiC particles played a pivotal role in good densification retaining matrix grains 99 Cr 1 , Cu 94 Cr 6 , Cu 99 Cr 1 -4 wt.% SiC and Cu 94 Cr 6 -4 wt.% SiC (average particle size ∼30 nm). The 50 h ball-milled samples were uniaxially pressed, and then pellets were sintered at 800 deg. C, 900 deg. C and 1000 deg. C for a constant soaking period of 30 min by microwave sintering technique. Microstructural characterization was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Sintered compacts resulted a highly densified compacts (∼95% relative density) while retaining ultra-fine grains (100-200 nm) in the matrix. The mechanical properties, namely, hardness and wear resistance, and electrical conductivity of the sintered specimens were also evaluated. The best combination of mechanical properties (e.g. hardness ∼2.4 GPa) and electrical conductivity (60.3% of IACS) were obtained for Cu 94 Cr 6 -4 wt.% SiC sintered at 900 deg. C. This is possibly due to presence of ultra-fine grains in the bulk samples, good densification and proper bonding between particles. The results were analyzed in the light of interactions of microwaves between metallic matrix and microwave susceptive SiC particulates.

  10. The corrosion behavior of CVI SiC matrix in SiC{sub f}/SiC composites under molten fluoride salt environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongda [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); School of Graduate, University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Qian [Analysis and Testing Center, Donghua University, Shanghai 201600 (China); Wang, Zhen, E-mail: jeff@mail.sic.ac.cn [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhou, Haijun; Kan, Yanmei; Hu, Jianbao [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Dong, Shaoming, E-mail: smdong@mail.sic.ac.cn [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2017-04-15

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  11. De interactie van SiC met Fe, Ni en hun legeringen

    NARCIS (Netherlands)

    Schiepers, R.C.J.

    1991-01-01

    De interactie tussen SiC en metalen gebaseerd op Fe en Ni is bestudeerd in het temperatuurtraject 700-1035°C door middel van vaste-stof-diffusiekoppels. In de koppels van SiC met Fe, Ni en hun legeringen treden hevige reakties op, die de vorming van een goede verbinding verhinderen. Door het grate

  12. Manufacturing and characterization of porous SiC for flow channel inserts in dual-coolant blanket designs

    International Nuclear Information System (INIS)

    Bereciartu, Ainhoa; Ordas, Nerea; Garcia-Rosales, Carmen; Morono, Alejandro; Malo, Marta; Hodgson, Eric R.; Abella, Jordi; Sedano, Luis

    2011-01-01

    SiC is the primary candidate for the flow channel inserts in dual-coolant blanket concepts. Porous SiC ceramics are attractive candidates for this non-structural application, since they can satisfy the required properties through a low cost manufacturing route, compared to SiC f /SiC. This work shows first results of the manufacturing of porous SiC ceramics prepared with different amounts of Y 2 O 3 and Al 2 O 3 as sintering additives. C powders were used as pore-formers by their burnout during oxidation after sintering. Comparison of microstructure, porosity, flexural strength, thermal and electrical conductivity and corrosion under Pb-15.7Li of porous SiC without and with sintering additives is presented. The addition of 2.5 wt.% of Y 2 O 3 and Al 2 O 3 improves the mechanical properties, and reduces the thermal and electrical conductivity down to reasonable values. Preliminary corrosion tests under Pb-15.7 Li at 500 deg. C show that the absence of a dense coating on porous SiC leads to poor corrosion behavior.

  13. The development of SiC whisker fabrication technology for nuclear applications

    International Nuclear Information System (INIS)

    Kang, Thae Khapp; Kuk, Il Hiun; Kim, Chang Kyu; Lee, Jae Chun; Lee, Ho Jin; Park, Soon Dong; Im, Gyeong Soo

    1991-02-01

    Some important experiments for whisker growth reactions, fabrication processes, and experiments for fabricarion of whisker reinforced composites have been performed. In order to investigate growth reaction of SiC whiskers, a conventional carbothermic reaction was tested. Based on the results of carbothermic process, a new process called silicothermic reaction was planned and some basic experiments were performed. Reaction characteristics of silicon monoxide, core material for SiC whisker growth in both of the reactions were investigated for basic data. Additionally, a hydrofluoric acid leaching process was tested for developing SiC whisker recovery process, and powder metallurgy process and melt sqeeze process were tried to develop aluminum-SiC whisker composites. (Author)

  14. Small Incision Cataract Surgery (SICS with Clear Corneal Incision and SICS with Scleral Incision – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Md Shafiqul Alam

    2014-01-01

    Full Text Available Background: Age related cataract is the leading cause of blindness and visual impairment throughout the world. With the advent of microsurgical facilities simple cataract extraction surgery has been replaced by small incision cataract surgery (SICS with posterior chamber intra ocular lens implant, which can be done either with clear corneal incision or scleral incision. Objective: To compare the post operative visual outcome in these two procedures of cataract surgery. Materials and method: This comparative study was carried out in the department of Ophthalmology, Delta Medical College & Hospital, Dhaka, Bangladesh, during the period of January 2010 to December 2012. Total 60 subjects indicated for age related cataract surgery irrespective of sex with the age range of 40-80 years with predefined inclusion and exclusion criteria were enrolled in the study. Subjects were randomly and equally distributed in 2 groups; Group A for SICS with clear corneal incision and group B for SICS with scleral incision. Post operative visual out come was evaluated by determining visual acuity and astigmatism in different occasions and was compared between groups. Statistical analysis was done by SPSS for windows version12. Results: The highest age incidence (43.3% was found between 61 to 70 years of age group. Among study subjects 40 were male and 20 were female. Preoperative visual acuity and astigmatism were evenly distributed between groups. Regarding postoperative unaided visual outcome, 6/12 or better visual acuity was found in 19.98% cases in group A and 39.6% cases in group B at 1st week. At 6th week 6/6 vision was found in 36.3% in Group A and 56.1% in Group B and 46.2% in group A and 66% in group B without and with correction respectively. With refractive correction, 6/6 vision was attained in 60% subjects of group A and 86.67% of group B at 8th week. Post operative visual acuity was statistically significant in all occasions. Postoperative astigmatism of

  15. 21 CFR 870.2910 - Radiofrequency physiological signal transmitter and receiver.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency physiological signal transmitter... Devices § 870.2910 Radiofrequency physiological signal transmitter and receiver. (a) Identification. A radiofrequency physiological signal transmitter and receiver is a device used to condition a physiological signal...

  16. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) power supply for the Power Processing Unit (PPU) of...

  17. Application of SiC masses as tube liners in municipal incinerators. Anwendung von SiC-Massen fuer Rohrverkleidungen in kommunalen Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Soo.

    1993-09-02

    Phosphate-bonded SiC masses with different additives were investigated. The reference mass was a SiC mass consisting of 90% by mass of SiC and 10% by mass of Al[sub 2]O[sub 3]. The reactive alumina ([alpha]-Al[sub 2]O[sub 3]) served as reaction partner for the aluminium phosphate binder. The physical and thermomechanical properties as well as the corrosion resistance of the developed SiC masses were investigated, and the reactions of the additives with the aluminium phosphate binder were investigated. The best combination of properties required of a refractory liner for waste incinerators was found in masses with Si[sub 3]N[sub 4] additives. These masses have optimal physical and thermomechanical properties and a high resistance to the corrosive gases and alkaline slags produced in modern incinerators. (orig./EF)

  18. Implementation and validation of a CubeSat laser transmitter

    Science.gov (United States)

    Kingsbury, R. W.; Caplan, D. O.; Cahoy, K. L.

    2016-03-01

    The paper presents implementation and validation results for a CubeSat-scale laser transmitter. The master oscillator power amplifier (MOPA) design produces a 1550 nm, 200mW average power optical signal through the use of a directly modulated laser diode and a commercial fiber amplifier. The prototype design produces high-fidelity M-ary pulse position modulated (PPM) waveforms (M=8 to 128), targeting data rates > 10 Mbit/s while meeting a constraining 8W power allocation. We also present the implementation of an avalanche photodiode (APD) receiver with measured transmitter-to-receiver performance within 3 dB of theory. Via loopback, the compact receiver design can provide built-in self-test and calibration capabilities, and supports incremental on-orbit testing of the design.

  19. A route to strong p-doping of epitaxial graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2010-11-09

    The effects of Au intercalation on the electronic properties of epitaxialgraphenegrown on SiC{0001} substrates are studied using first principles calculations. A graphenemonolayer on SiC{0001} restores the shape of the pristine graphene dispersion, where doping levels between strongly n-doped and weakly p-doped can be achieved by altering the Au coverage. We predict that Au intercalation between the two C layers of bilayer graphenegrown on SiC{0001} makes it possible to achieve a strongly p-doped graphene state, where the p-doping level can be controlled by means of the Au coverage.

  20. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  1. Pulsed laser deposition of SiC thin films at medium substrate temperatures

    International Nuclear Information System (INIS)

    Katharria, Y.S.; Kumar, Sandeep; Choudhary, R.J.; Prakash, Ram; Singh, F.; Lalla, N.P.; Phase, D.M.; Kanjilal, D.

    2008-01-01

    Systematic studies of thin silicon carbide (SiC) films deposited on Si (100) substrates using pulsed laser deposition technique at room temperature, 370 deg. C and 480 deg. C are carried out. X-ray photoelectron spectroscopy showed the formation of SiC bonds in the films at these temperatures along with some graphitic carbon clusters. Fourier transform infrared analysis also confirmed the formation of SiC nanocrystallites in the films. Transmission electron microscopy and electron diffraction were used to study the structural properties of nanocrystallites formed in the films. Surface morphological analysis using atomic force microscopy revealed the growth of smooth films

  2. Estudio de la Citotoxicidad de Cerámicas Biomórficas de SiC Recubiertas con Vidrio Bioactivo

    Directory of Open Access Journals (Sweden)

    Borrajo, J. P.

    2006-04-01

    Full Text Available In the past years there was a need to develop new tough bioactive materials capable to resist high loads when implanted in the body, that led to the production of bioactive coatings on metallic substrates. A new approach, which consists of biomorphic silicon carbide (SiC coated with bioactive glass by Pulsed Laser Deposition (PLD, was recently presented. This new material joins the high mechanical strength, lightness and porosity of biomorphic SiC and the bioactive properties of PLD glass films. In this work, a multiple evaluation of this new material is presented starting from the biomorphic SiC morphology and porosity, following with the bioactivity in simulated body fluid of the coatings, and ending with a deep in vitro study with MG-63 cells. The citotoxicity of the SiC coated and uncoated and the cell proliferation and attachment were studied.

    La necesidad de desarrollar nuevos implantes basados en materiales bioactivos que sean capaces de soportar grandes cargas mecánicas ha llevado a la producción de sustratos metálicos recubiertos con cerámicas bioactivas. Recientemente se ha propuesto un dispositivo alternativo que consiste en un sustrato de carburo de silicio (SiC biomórfico recubierto con vidrio bioactivo, mediante la técnica de Depósito por Láser Pulsado (PLD, y que dispone de la resistencia mecánica adecuada, además de gran ligereza y una porosidad intrínseca muy favorable de cara a la implantación. En este trabajo se presenta un estudio interdisciplinar de este nuevo material centrado en la morfología y porosidad de sustratos de SiC provenientes de diferentes maderas, la bioactividad de los recubrimientos producidos por PLD y en la evaluación in vitro con células de osteosarcoma MG-63 con la que se ha determinado la citotoxicidad de estos materiales y se ha estudiado la influencia de los mismos en la adhesión y la proliferación celular.

  3. Mark 4A DSN receiver-exciter and transmitter subsystems

    Science.gov (United States)

    Wick, M. R.

    1986-01-01

    The present configuration of the Mark 4A DSN Receiver-Exciter and Transmitter Subsystems is described. Functional requirements and key characteristics are given to show the differences in the capabilities required by the Networks Consolidation task for combined High Earth Orbiter and Deep Space Network tracking support.

  4. On the Interior of Carbon-Rich Exoplanets: New Insight from Si-C System at Ultra High Pressure

    Science.gov (United States)

    Miozzi Ferrini, F.; Morard, G.; Antonangeli, D.; Clark, A. N.; Edmund, E.; Fiquet, G.; Mezouar, M.

    2017-12-01

    The variability in the mass/radius ratio of the more than 3200 exoplanets discovered so far, is a direct consequence of the large diversity of their internal composition. Exoplanets with a mass between 1 and 10 times the mass of the Earth are typically referred to as super-Earths, and their mineralogical composition depends on that of the protoplanetary disk. The key variable in determining the chemical makeup of such planets is the C/O ratio. Values of C/O ratio smaller than 0.8 correspond to an interior dominated by silicates (e.g. terrestrial planets), whereas for C/O ratios > 0.8 the interior is enriched in carbon. In these C-rich planets, Si may form carbides instead of silicates (Duffy et al., 2015). The detection of planet 55 Cancri e, with a particularly high C/O ratio, has increased the interest in carbon-rich planets. 55 Cancri e has been modelled as a layered structure made by different assemblages of carbon, silicon and iron (Madhusudan et al., 2012). However, the accuracy of such type of models suffers the lack of experimental data on the Si - C system at extreme conditions of pressure and temperature. Experimental equations of state are limited to 80 GPa (Nisr et al., 2017) and little is known about subsolidus relation, with only one theoretical study from Wilson and Militzer (2004) at multi-megabar pressures. Here we present experiments on SiC samples by synchrotron X-ray diffraction, in laser heated diamond anvil cell between 30-200 GPa and 300-3500 K. The results show evidences of coexistence of SiC with Si or C, without the appearance of intermediate compounds. Moreover, between 60 and 75 GPa, SiC undergoes a phase transition from the zinc blend structure (B3), to the rock salt structure (B1). This phase transition, also reported in previous literature work (e.g. Daviau and Lee, 2017), corresponds to a change in the atoms coordination, and is accompanied by an important volume reduction. Acknowledgements: This work was supported by the ERC Planet

  5. 47 CFR 101.131 - Transmitter construction and installation.

    Science.gov (United States)

    2010-10-01

    ... appropriately labeled pilot lamp or meter which will provide continuous visual indication at the transmitter... indication when the transmitter is radiating, or, in lieu thereof, a pilot lamp or meter which will provide... responsible operating personnel 24 hours per day. ...

  6. Re-evaluation of SiC permeation coefficients at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasushi, E-mail: yama3707@kansai-u.ac.jp [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Murakami, Yuichiro; Yamaguchi, Hirosato; Yamamoto, Takehiro; Yonetsu, Daigo [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Noborio, Kazuyuki [Hydrogen Isotope Research Center, Univ. of Toyama, Toyama, Toyama 930-8555 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • The deuterium permeation coefficients of CVD-SiC at 600–950 °C were evaluated. • The wraparound flow was reduced to less than 1/100th of the permeation flow. • CVD-SiC materials are very effective as hydrogen isotope permeation barriers. - Abstract: Since 2007, our group has studied the deuterium permeation and diffusion coefficients for SiC materials at temperatures above 600 °C as a means of evaluating the tritium inventory and permeation in fusion blankets. During such measurements, control and evaluation of the wraparound flow through the sample holder are important, and so the heated sample holder is enclosed by a glass tube and kept under vacuum during experimental trials. However, detailed studies regarding the required degree of vacuum based on model calculations have shown that the wraparound flow is much larger than expected, and so can affect measurements at high temperatures. We therefore modified the measurement apparatus based on calculations involving reduced pressure in the glass tube, and are now confident that the measurement error is only several percent, even at 950 °C. In this paper, recent experimental results obtained with a chemical vapor deposition (CVD)-SiC sample over the temperature range of 600–950 °C are presented, showing that the permeation coefficient for CVD-SiC is more than three orders of magnitude smaller than that for stainless steel (SS316) at 600 °C, and that at 950 °C, the coefficient for CVD-SiC is almost equal to that for SUS316 at 550 °C.

  7. Kronig-Penney-like description for band gap variation in SiC polytypes

    NARCIS (Netherlands)

    Backes, W.H.; Nooij, de F.C.; Bobbert, P.A.; van Haeringen, W.

    1996-01-01

    A one-dimensional Kronig-Penney-like model for envelope wave functions is presented to explain the band gap variation of SiC polytypes. In this model the envelope functions obey discontinuous boundary conditions. The electronic band gaps of cubic and several hexagonal and rhombohedral SiC polytypes

  8. Testing of porous SiC with dense coating under relevant conditions for Flow Channel Insert application

    Energy Technology Data Exchange (ETDEWEB)

    Ordás, N., E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Bereciartu, A.; García-Rosales, C. [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Moroño, A.; Malo, M.; Hodgson, E.R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abellà, J.; Colominas, S. [Institut Químic de Sarrià, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, L. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2014-10-15

    Highlights: • Porous SiC coated by CVD with a dense coating was developed for Flow Channel Inserts (FCI) in dual-coolant blanket concept. • Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives. • Flexural strength, thermal and electrical conductivity, and microstructure of uncoated and coated porous SiC are presented. • Adhesion of coating to porous SiC and its corrosion behavior under Pb-17.5Li at 700 °C are shown. - Abstract: Thermally and electrically insulating porous SiC ceramics are attractive candidates for Flow Channel Inserts (FCI) in dual-coolant blanket concepts thanks to its relatively inexpensive manufacturing route. To prevent tritium permeation and corrosion by Pb-15.7 a dense coating has to be applied on the porous SiC. Despite not having structural function, FCI must exhibit sufficient mechanical strength to withstand strong thermal gradients and thermo-electrical stresses during operation. This work summarizes the results on the development of coated porous SiC for FCI. Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives and a carbonaceous phase as pore former. Sintering was performed in inert gas at 1850–1950 °C during 15 min to 3 h, followed by oxidation at 650 °C to eliminate the carbonaceous phase. The most promising bulk materials were coated with a ∼30 μm thick dense SiC by CVD. Results on porosity, bending tests, thermal and electrical conductivity are presented. The microstructure of the coating, its adhesion to the porous SiC and its corrosion behavior under Pb-17.5Li are also shown.

  9. The rheological properties of shear thickening fluid reinforced with SiC nanowires

    Directory of Open Access Journals (Sweden)

    Jianhao Ge

    Full Text Available The rheological properties of shear thickening fluid (STF reinforced with SiC nanowires were investigated in this paper. Pure STF consists of 56 vol% silica nano-particles and polyethylene glycol 400 (PEG 400 solvent was fabricated; and a specific amount of SiC nanowires were dispersed into this pure STF, and then the volume fraction of PEG400 was adjusted to maintain the volume fraction of solid phase in the STF at a constant of 56%. The results showed there was almost 30% increase in the initial and shear thickening viscosity of the STF reinforced with SiC nanowires compared to the pure STF. Combining with the hydrodynamic cluster theory, the effect of the mechanism of SiC nanowire on the viscosity of STF was discussed, and based on the experimental results, an analytical model of viscosity was used to describe the rheological properties of STF, which agreed with the experimental results. Keywords: Shear thickening fluid (STF, Nanowire, Rheology, Viscosity, Analytical model

  10. Switching Investigations on a SiC MOSFET in a TO-247 Package

    DEFF Research Database (Denmark)

    Anthon, Alexander; Hernandez Botella, Juan Carlos; Zhang, Zhe

    2014-01-01

    This paper deals with the switching behavior of a SiC MOSFET in a TO-247 package. Based on simulations, critical parasitic inductances in the circuit layout are analyzed and their effect on the switching losses highlighted. Especially the common source inductance, a critical parameter in a TO-247...... package, has a major influence on the switching energy. Crucial design guidelines for an improved double pulse test circuit are introduced which are used for practical investigations on the switching behavior. Switching energies of a SiC MOSFET in a TO-247 package is measured depending on varying gate...... resistance and loop inductances. With total switching energy of 340.24 μJ, the SiC MOSFET has more than six times lower switching losses than a regular Si IGBT. Implementing the SiC switches in a 3 kW T-Type inverter topology, efficiency improvements of 0.8 % are achieved and maximum efficiency of 97...

  11. Development of high temperature resistant ceramic matrix composites based on SiC- and novel SiBNC-fibres

    International Nuclear Information System (INIS)

    Daenicke, Enrico

    2014-01-01

    Novel ceramic fibres in the quaternary system Si-B-C-N exhibit excellent high temperature stability and creep resistance. In th is work it was investigated, to what extent these outstanding properties of SiBNC-fibres can be transferred into ceramic matrix composites (CMC) in comparison to commercial silicon carbide (SiC) fibres. For the CMC development the liquid silicon infiltration (LSI) as well as the polymer infiltration and pyrolysis process (PIP) was applied. Extensive correlations between fibre properties, fibre coating (without, pyrolytic carbon, lanthanum phosphate), process parameters of the CMC manufacturing method and the mechanical and microstructural properties of the CMC before and after exposure to air could be established. Hence, the potential of novel CMCs can be assessed and application fields can be derived.

  12. 47 CFR 90.471 - Points of operation in internal transmitter control systems.

    Science.gov (United States)

    2010-10-01

    ...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control Systems § 90.471 Points of operation in internal transmitter control systems. The... licensee for internal communications and transmitter control purposes. Operating positions in internal...

  13. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    Science.gov (United States)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  14. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    Science.gov (United States)

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mechanical Properties and Elastic Constants Due to Damage Accumulation and Amorphization in SiC

    International Nuclear Information System (INIS)

    Gao, Fei; Weber, William J.

    2004-01-01

    Damage accumulation due to cascade overlap, which was simulated previously, has been used to study the changes of elastic constants, bulk and elastic moduli as a function of dose. These mechanical properties generally decrease with increasing dose, and the rapid decrease at low-dose level indicates that point defects and small clusters play an important role in the changes of elastic constants rather than topological disorder. The internal strain relaxation has no effect on the elastic constants, C11 and C12, in perfect SiC, but it has a significant influence on all elastic constants calculated in damaged SiC. The elastic constants in the cascade-amorphized (CA) SiC decrease about 19%, 29% and 46% for C11, C12 and C44, respectively. The bulk modulus decrease 23% and the elastic modulus decreases 29%, which is consistent with experimental measurements. The stability of both the perfect SiC and CA-SiC under hydrostatic tension has been also investigated. All mechanical properties in the CA-SiC exhibit behavior similar to that in perfect SiC, but the critical stress at which the CA-SiC becomes structurally unstable is one order of magnitude smaller than that for perfect SiC

  16. Structural, thermal, dielectric spectroscopic and AC impedance properties of SiC nanoparticles doped PVK/PVC blend

    Science.gov (United States)

    Alghunaim, Naziha Suliman

    2018-06-01

    Nanocomposite films based on poly (N-vinylcarbazole)/polyvinylchloride (PVK/PVC) blend doped with different concentrations of Silicon Carbide (SiC) nanoparticles have been prepared. The X-ray diffraction, Ultra violet-visible spectroscopy, thermogravimetric analysis and electrical spectroscopic has been used to characterize these nanocomposites. The X-ray analysis confirms the semi-crystalline nature of the films. The intensity of the main X-ray peak is decreased due to the interaction between the PVK/PVC and SiC. The main SiC peaks are absent due to complete dissolution of SiC in polymeric matrices. The UV-Vis spectra indicated that the band gap optical energy is affected by adding SiC nanoparticles because the charges transfer complexes between PVK/PVC with amount of SiC. The thermal stability is improved and the estimated values of ε‧ and ε″ are increased with increasing for SiC content due to the free charge carriers which in turn increase the ionic conductivity of the doped samples. The plots of tan δ with frequency are studied. A single peak from the plot between tan δ and Log (f) is appeared and shifted towards the higher frequency confirmed the presence of relaxing dipoles moment.

  17. The SiC hardware of the Sentinel-2 multi spectral instrument

    Science.gov (United States)

    Bougoin, Michel; Lavenac, Jérôme

    2017-11-01

    The Sentinel-2 mission is a major part of the GMES (Global Monitoring for Environment and Security) program which has been set up by the European Union, on a joint initiative with the European Space Agency. A pair of identical satellites will observe the earth from a sun-synchronous orbit at 786 km altitude. Astrium is the prime contractor of the satellites and their payload. The MultiSpectral Instrument features a "all-SiC" TMA (Three Mirror Anastygmat) telescope. MSI will provide optical images in 13 spectral bands, in the visible and also the near infra-red range, with a 10 to 60 m resolution and a 290 km wide swath. The Boostec® SiC material is used mainly for its high specific stiffness (Youngs modulus / density) and its high thermal stability (thermal conductivity / coefficient of thermal expansion) which allow to reduce the distortions induced by thermo-elastic stresses. Its high mechanical properties as well as the relevant technology enable to make not only the mirrors but also the structure which holds them and the elements of the focal plane (including some detectors packaging). Due to the required large size, accuracy and shape complexity, developing and manufacturing some of these SiC parts required innovative manufacturing approach. It is reviewed in the present paper.

  18. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazadevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2017-05-01

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.

  19. Development of the fabrication process of SiC composite by radiation beam

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Woo, Chang Hyeon; Ryu, Woo Seog

    2006-01-01

    In order to operate the nuclear system at high temperatures, core materials with a good irradiation resistance at high temperatures must be developed. SiC composite is one of candidates for high temperature structural materials. Among several fabrication processes, the PIP process includes the curing and pyrolysis process. Generally, the thermal oxidation curing method has some disadvantages; difficulty in the control of oxygen contents and volatilization of many constituents. To overcome these disadvantages and reduce the process time, a new and improved method like the beam curing process has been proposed as one of the effective methods for the fabrication of SiC composite. In this study, the electron beam curing method in the PIP process was optimized to develop SiCf/SiC composite with low oxygen contents. Using the electron beam curing method with full doses of 2∼10 MGy and the pyrolysis process at 1300∼1400 .deg. C, composite with the oxygen content of less than 1 wt% could be obtained. Additionally, if the slurry impregnation and curing/pyrolysis processes were repeated several times, dense composite could be produced

  20. In-situ synchrotron x-ray study of MgB2 formation when doped by SiC

    Science.gov (United States)

    Abrahamsen, A. B.; Grivel, J.-C.; Andersen, N. H.; Herrmann, M.; Häßler, W.; Birajdar, B.; Eibl, O.; Saksl, K.

    2008-02-01

    We have studied the evolution of the reaction xMg + 2B + ySiC → zMg1-p(B1-qCq)2 + yMg2Si in samples of 1, 2, 5 and 10 wt% SiC doping. We found a coincident formation of MgB2 and Mg2Si, whereas the crystalline part of the SiC nano particles is not reacting at all. Evidence for incorporation of carbon into the MgB2 phase was established from the decrease of the a-axis lattice parameter upon increasing SiC doping. An estimate of the MgB2 lower limit grain size was found to decrease from L100 = 795 Å and L002 = 337 Å at 1 wt% SiC to L100 = 227 Å and L002= 60 Å at 10 wt% SiC. Thus superconductivity might be suppressed at 10 wt% SiC doping due to the grain size approaching the coherence length.

  1. Analysis of Intermodulation Distortion in OFDM Based Transmitter Using EER Technique

    Directory of Open Access Journals (Sweden)

    S. Matejka

    2016-06-01

    Full Text Available During the last two decades, new digital modulation systems have appeared in the audio broadcasting. Such broadcasting systems require new transmitters’ concepts to enable the transmission of digitally modulated signals. Moreover, the selected modulation schemes (e.g. orthogonal frequency division multiplexing require a high linearity power stage, which typically exhibits low efficiency due to high peak-toaverage power ratio of the modulated signal. One of the promising transmitter concepts is the Kahn envelope elimination and restoration technique, where the original Cartesian in-phase and quadrature baseband signals are transformed to the envelope and phase signals. The main advantage of this technique is an ability to employ suitable types of highly efficient amplitude modulation transmitters for envelope amplification, while the phase modulated carrier is produced by an additional phase modulator. The substantial drawback of envelope elimination and restoration is nonideal recombination of linearly distorted amplitude signal and phase modulated carrier at the output power stage. The aim of this paper is twofold. Firstly, to analyze the effect of the envelope and phase signals bandwidth limitation on the modulated signal in-channel distortion and out-ofchannel emission. Secondly, to present the performance results as a reference for transmitter designers to properly set the envelope and phase paths to reach required in-channel signal quality and suppress out-of-channel products.

  2. In-situ synthesis of SiC particles by the structural evolution of TiCx in Al–Si melt

    International Nuclear Information System (INIS)

    Nie, Jinfeng; Li, Dakui; Wang, Enzhao; Liu, Xiangfa

    2014-01-01

    Highlights: • A facile method to in-situ synthesize SiC was developed utilizing the structural evolution of TiC x in Al–Si melt. • The SiC particles have the size range from 2.5 to 7.5 μm and a block-like morphology. • The SiC particles and (SiC + TiB 2 ) hybrid-particles reinforced Al–18Si composite were prepared. • The wear resistance effect of SiC on the based alloy was investigated. - Abstract: A facile method has been developed to in-situ synthesize SiC particles utilizing the structural instability and evolution of TiC x in Al–Si melt. It is considered that the synthesis of SiC particles occurs via the gradual reaction between TiC x and Si atoms, whilst Si content plays the crucial role in this approach. If the Si content in the melt is above 30%, TiC x directly reacts with Si and Al to form SiC, but the needle-like TiAl x Si y phase formed simultaneously will do harm to the mechanical properties of the composites. Thus, it is proposed to add B element in the melt to transform the TiAl x Si y into TiB 2 particles. Therefore, the SiC and (SiC + TiB 2 ) hybrid-particles reinforced Al–18Si composites were successfully prepared using the method. In the composites, the SiC particles have the size range from 2.5 to 7.5 μm and a block-like morphology. Furthermore, the mechanical properties of base alloy, including the wear resistance and macro-hardness, have been obviously improved by the in-situ SiC particles. Besides, the relevant underlying mechanisms are also discussed

  3. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  4. Hydrogen activated axial inter-conversion in SiC nanowires

    International Nuclear Information System (INIS)

    Ruemmeli, Mark H.; Adebimpe, David B.; Borowiak-Palen, Ewa; Gemming, Thomas; Ayala, Paola; Ioannides, Nicholas; Pichler, Thomas; Huczko, Andrzej; Cudzilo, Stanislaw; Knupfer, Martin; Buechner, Bernd

    2009-01-01

    A facile low pressure annealing route using NH 3 as a hydrogen source for the structural and chemical modification of SiC nanowires (SiCNWs) is presented. The developed route transforms SiCNWs into tubular SiC nanostructures while coaxial SiO 2 /SiCNWs reverse their sheath/core structure. Our findings suggest a decomposition process induced via the preferential substitution of silicon by hydrogen and via the difference in diffusion rates of available atomic species, which leads to axial structural rearrangement. In addition to these effects, the procedure improves the crystallinity of the samples. The process could be exploited as a viable route to manipulate a variety of nanostructures and films for doping and etching and structural manipulation. - Graphical abstract: SiC and SiO 2 /SiCNWs are shown to be structurally modified through a hydrogen activated replacement route which can even lead to the axial inter-conversion of species. The process could be exploited as a viable route to manipulate a variety of nanostructures and films for doping and etching and structural manipulation

  5. Normal Isocurvature Surfaces and Special Isocurvature Circles (SIC)

    Science.gov (United States)

    Manoussakis, Gerassimos; Delikaraoglou, Demitris

    2010-05-01

    An isocurvature surface of a gravity field is a surface on which the value of the plumblines' curvature is constant. Here we are going to study the isocurvature surfaces of the Earth's normal gravity field. The normal gravity field is a symmetric gravity field therefore the isocurvature surfaces are surfaces of revolution. But even in this case the necessary relations for their study are not simple at all. Therefore to study an isocurvature surface we make special assumptions to form a vector equation which will hold only for a small coordinate patch of the isocurvature surface. Yet from the definition of the isocurvature surface and the properties of the normal gravity field is possible to express very interesting global geometrical properties of these surfaces without mixing surface differential calculus. The gradient of the plumblines' curvature function is vertical to an isocurvature surface. If P is a point of an isocurvature surface and "Φ" is the angle of the gradient of the plumblines' curvature with the equatorial plane then this direction points to the direction along which the curvature of the plumbline decreases / increases the most, and therefore is related to the strength of the normal gravity field. We will show that this direction is constant along a line of curvature of the isocurvature surface and this line is an isocurvature circle. In addition we will show that at each isocurvature surface there is at least one isocurvature circle along which the direction of the maximum variation of the plumblines' curvature function is parallel to the equatorial plane of the ellipsoid of revolution. This circle is defined as a Special Isocurvature Circle (SIC). Finally we shall prove that all these SIC lye on a special surface of revolution, the so - called SIC surface. That is to say, a SIC is not an isolated curve in the three dimensional space.

  6. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  7. Ohmic Contacts to P-Type SiC

    National Research Council Canada - National Science Library

    Crofton, John

    2000-01-01

    Alloys of aluminum (Al) have previously been used as ohmic contacts to p-type SiC, however the characteristics and performance of these contacts is drastically affected by the type and composition of the Al alloy...

  8. Electronic Structure and Chemical Bond of Ti3SiC2 and Adding Al Element

    Institute of Scientific and Technical Information of China (English)

    MIN Xinmin; LU Ning; MEI Bingchu

    2006-01-01

    The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation (DFT-DVM) method. When Al element is added into Ti3SiC2, there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3SiC2, adding a proper quantity of Al can promote the formation of Ti3SiC2. The density of state shows that there is a mixed conductor character in both of Ti3SiC2 and adding Al element. Ti3SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.

  9. Influence of neutron irradiation on etching of SiC in KOH

    Science.gov (United States)

    Mokhov, E. N.; Kazarova, O. P.; Soltamov, V. A.; Nagalyuk, S. S.

    2017-07-01

    The effect of reactor neutron irradiation on the etch rate of SiC in potassium hydroxide has been studied. In the case of high irradiation doses (1019-1021 cm-2), the etch rate of silicon carbide has been shown to drastically rise, especially in the [0001]Si direction. This considerably mitigates the orientation anisotropy of polar face etching. After high-temperature annealing (up to 1200-1400°C), a higher etch rate of irradiated crystals persists. The results have been explained by the high concentration of radiation-induced (partially clustered) defects they contain.

  10. Tailoring of SiC nanoprecipitates formed in Si

    Energy Technology Data Exchange (ETDEWEB)

    Velisa, G., E-mail: gihan.velisa@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele (Romania); Trocellier, P. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Thomé, L. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR8609, Bât. 108, 91405 Orsay (France); Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Miro, S.; Serruys, Y.; Bordas, É. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Meslin, E. [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Mylonas, S. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR8609, Bât. 108, 91405 Orsay (France); Coulon, P.E. [Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA/DSM/IRAMIS-CNRS, 91128 Palaiseau Cedex (France); Leprêtre, F.; Pilz, A.; Beck, L. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2013-07-15

    The SiC synthesis through single-beam of C{sup +}, and simultaneous-dual-beam of C{sup +} and Si{sup +} ion implantations into a Si substrate heated at 550 °C has been studied by means of three complementary analytical techniques: nuclear reaction analysis (NRA), Raman, and transmission electron microscopy (TEM). It is shown that a broad distribution of SiC nanoprecipitates is directly formed after simultaneous-dual-beam (520-keV C{sup +} and 890-keV Si{sup +}) and single-beam (520-keV C{sup +}) ion implantations. Their shape appear as spherical (average size ∼4–5 nm) and they are in epitaxial relationship with the silicon matrix.

  11. Distribution of the grain limit character in SiC and its effect on the diffusion of fission products in the TRISO fuel particles; Distribucion del caracter de limite de grano en SiC y su efecto sobre la difusion de los productos de fision en las particulas de combustible TRISO

    Energy Technology Data Exchange (ETDEWEB)

    Cancino T, F.; Lopez H, E., E-mail: Eddie.lopez@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica 1062, Zona Industrial, 25900 Ramos Arizpe, Coahuila (Mexico)

    2017-09-15

    At present is accepted that silver diffuses through silicium carbide (SiC) by diffusion in grain boundaries, although little is known about the characteristics of grain boundaries in SiC, and how these change depending on the type of sample. In this work, was observed that there are small but important differences between the SiC in the tri-structural isotropic (TRISO) particles and that of the monoliths, which could explain some of the differences observed in experiments on diffusion in the literature. Five different types (coatings and monoliths) of SiC produced by chemical vapor deposition (CVD) were characterized by electron backscatter diffraction (EBSD). In all the samples the SiC was mainly composed of high-angle grain boundaries (∼ 65%), with a small fraction of grain boundaries of low-angle (about 15%) and 20% of the coincidence site lattice (CSL). The morphology of the monoliths is constituted by large grains, surrounded by smaller grains; in the particles of the TRISO fuel, both columnar and equi axial grains were observed, with a more uniform distribution over the surface of the coating. (Author)

  12. Effects of AlN on the densification and mechanical properties of pressureless-sintered SiC ceramics

    Directory of Open Access Journals (Sweden)

    Qisong Li

    2016-02-01

    Full Text Available In the present work, SiC ceramics was fabricated with AlN using B4C and C as sintering aids by a solid-state pressureless-sintered method. The effects of AlN contents on the densification, mechanical properties, phase compositions, and microstructure evolutions of as-obtained SiC ceramics were thoroughly investigated. AlN was found to promote further densification of the SiC ceramics due to its evaporation over 1800 °C, transportation, and solidification in the pores resulted from SiC grain coarsening. The highest relative density of 99.65% was achieved for SiC sample with 15.0 wt% AlN by the pressureless-sintered method at 2130 °C for 1 h in Ar atmosphere. Furthermore, the fracture mechanism for SiC ceramics containing AlN tended to transfer from single transgranular fracture mode to both transgranular fracture and intergranular fracture modes when the sample with 30.0 wt% AlN sintered at 1900 °C for 1 h in Ar. Also, SiC ceramics with 30.0 wt% AlN exhibited the highest fracture toughness of 5.23 MPa m1/2 when sintered at 1900 °C.

  13. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  14. 22 CFR 181.7 - Transmittal to the Congress.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Transmittal to the Congress. 181.7 Section 181... PUBLICATION OF INTERNATIONAL AGREEMENTS § 181.7 Transmittal to the Congress. (a) International agreements.... Background statements, while not expressly required by the act, have been requested by the Congress and have...

  15. Study on porosity of ceramic SiC using small angle neutron scattering

    International Nuclear Information System (INIS)

    Li Jizhou; Yang Jilian; Kang Jian; Ye Chuntang

    1996-01-01

    The mechanical properties of functional heat-resistant ceramics SiC are significantly influenced by the concentration and dimensions of pores. Small angle neutron scattering measurements for 3 SiC samples with different densities are performed on C1-2 SANS instrument of the University of Tokyo. Two groups of the neutron data are obtained using 8 and 16 m of secondary flight path, 1 and 0.7 nm of neutron wave lengths, respectively. After deduction of background measurement and transmission correction, both neutron data are linked up with each other. The patterns of neutron data of 3 samples with Q range from 0.028∼0.5 nm -1 are almost with axial symmetry, showing that the shape of pores is almost spherical. Using Mellin transform, size distributions of pores in 3 samples are obtained. The average size (∼19 nm) of pores for hot-pressed SiC sample with higher density is smaller than the others (∼ 21 nm). It seems to be the reason why the density of hot-pressed SiC sample is higher than not hot-pressed sample

  16. Drift mobility of thermalized and highly energetic holes in thin layers of amorphous dielectric SiC

    International Nuclear Information System (INIS)

    Sielski, Jan; Jeszka, Jeremiasz K.

    2012-01-01

    The development of new technology in the electronics industry requires new dielectric materials. It is also important to understand the charge-carrier transport mechanism in these materials. We examined the hole drift mobility in amorphous SiC dielectric thin films using the time-of-flight (TOF) method. Charge carriers were generated using an electron gun. The generated holes gave a dispersive TOF signal and the mobility was low. For electric field strengths above 4 x 10 5 V cm -1 the drift mobility shows a very strong dependence on the electric field and a weak temperature dependence (transport of ''high-energy'' charge carriers). At lower electric fields and for thermalized charge carriers the mobility is practically field independent and thermally activated. The observed phenomenon was attributed to the changes in the effective energy of the generated carriers moving in the high electric fields and consequently in the density of localized states taking part in the transport. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The influence of various dielectric parameters on the reststrahlen region of SiC

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Rooyen, I.J. van

    2011-01-01

    The reststrahlen region of SiC is analysed with the goal of establishing the origin of different shapes of this band, by varying the dielectric parameters involved when simulating the reststrahlen region as obtained by infrared reflectance. -- Research highlights: → An anomalous peak observed in the reststrahlen band of SiC was investigated. → The reflection spectrum of SiC in the reststrahlen region was simulated by theoretical calculations. → The influence on the reststrahlen band of the dielectric parameters used in the simulations is discussed. → Dielectric parameters used in the simulations did not yield the anomalous peak that is observed experimentally.

  18. The influence of various dielectric parameters on the reststrahlen region of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.z [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Rooyen, I.J. van [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); National Laser Centre, CSIR, PO Box 395, Pretoria 0001 (South Africa)

    2011-02-01

    The reststrahlen region of SiC is analysed with the goal of establishing the origin of different shapes of this band, by varying the dielectric parameters involved when simulating the reststrahlen region as obtained by infrared reflectance. -- Research highlights: {yields} An anomalous peak observed in the reststrahlen band of SiC was investigated. {yields} The reflection spectrum of SiC in the reststrahlen region was simulated by theoretical calculations. {yields} The influence on the reststrahlen band of the dielectric parameters used in the simulations is discussed. {yields} Dielectric parameters used in the simulations did not yield the anomalous peak that is observed experimentally.

  19. Distribution of the grain limit character in SiC and its effect on the diffusion of fission products in the TRISO fuel particles

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2017-09-01

    At present is accepted that silver diffuses through silicium carbide (SiC) by diffusion in grain boundaries, although little is known about the characteristics of grain boundaries in SiC, and how these change depending on the type of sample. In this work, was observed that there are small but important differences between the SiC in the tri-structural isotropic (TRISO) particles and that of the monoliths, which could explain some of the differences observed in experiments on diffusion in the literature. Five different types (coatings and monoliths) of SiC produced by chemical vapor deposition (CVD) were characterized by electron backscatter diffraction (EBSD). In all the samples the SiC was mainly composed of high-angle grain boundaries (∼ 65%), with a small fraction of grain boundaries of low-angle (about 15%) and 20% of the coincidence site lattice (CSL). The morphology of the monoliths is constituted by large grains, surrounded by smaller grains; in the particles of the TRISO fuel, both columnar and equi axial grains were observed, with a more uniform distribution over the surface of the coating. (Author)

  20. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    International Nuclear Information System (INIS)

    Lee, Hyeon-Geun; Kim, Daejong; Lee, Seung Jae; Park, Ji Yeon; Kim, Weon-Ju

    2017-01-01

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al_2O_3 and Y_2O_3 sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  1. Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Zhang Jianfeng; Wang Lianjun; Jiang Wan; Chen Lidong

    2008-01-01

    Spark plasma sintering technique was used to in situ fabricate high dense Ti 3 SiC 2 -TiC composites. The calculated TiC volume content from X-ray diffraction (XRD) is close to the theoretical one. It is found from fracture surface observation that TiC is about 1 μm, and Ti 3 SiC 2 is about 2-10 μm in grain size. The fracture modes consist of intergranular mainly for Ti 3 SiC 2 and transgranular fracture mainly for TiC. With the increasing of TiC volume content, Vickers hardness increases to the maximum value of 13 GPa for Ti 3 SiC 2 -40 vol.%TiC. Fracture toughness and flexural strength of the composites are also improved compared with those of monolithic Ti 3 SiC 2 except for Ti 3 SiC 2 -40 vol.%TiC composite. The main reasons for the sudden decrease of fracture toughness and flexural strength of Ti 3 SiC 2 -40 vol.%TiC composite can be attributed to the relatively lower density, some clusters of TiC in the composite and the transition of fracture mode from intergranular to transgranular. The thermal conductivities decreased with the addition of TiC. The minimum thermal conductivity is 22 W m deg. C -1 for Ti 3 SiC 2 -40 vol.%TiC composite

  2. Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach

    Science.gov (United States)

    Jiang, Hao

    Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at

  3. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Automatic Transmitter Identification System (ATIS). 25.281 Section 25.281 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter...

  4. X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xiaoxia [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Zhang, Xun; Lowe, Tristan [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Blanc, Remi [FEI, 3 Impasse Rudolf Diesel, BP 50227, 33708 Mérignac (France); Rad, Mansoureh Norouzi [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Wang, Ying [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Batail, Nelly; Pham, Charlotte [SICAT SARL, 20 Place des Halles, 67000 Strasbourg (France); Shokri, Nima; Garforth, Arthur A. [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Withers, Philip J. [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Fan, Xiaolei, E-mail: xiaolei.fan@manchester.ac.uk [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom)

    2017-01-15

    Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors based on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.

  5. Ultra-low power transmitter for encoding non-MR signals in Magnetic Resonance (MR) recordings

    DEFF Research Database (Denmark)

    Petersen, Jan Raagaard; Pedersen, Jan Ole; Zhurbenko, Vitaliy

    collection of data from non-MRI sensors. The transmitter consumes only 1.3mW while transmitting 2.7µW at 120MHz with high frequency stability. The presented design is useful in low power applications requiring high frequency stability and is intended for wireless transmission of non-MR signal recordings......Advancing Magnetic Resonance Imaging (MRI) technology requires integration of the MRI scanners with sensors and systems for monitoring various non-MRI signals. In this paper, we present design and integration of a low power AM radio transmitter into a 3T MRI scanner, which can be used for efficient...

  6. Porous SiC ceramics fabricated by quick freeze casting and solid state sintering

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available Porous SiC ceramics with uniform microstructure were fabricated by quick freezing in liquid nitrogen and solid state sintering. Poly (vinyl alcohol (PVA was added as binder and pore morphology controller in this work. The microstructure and mechanical properties of porous SiC ceramics could be controlled by the composition of the aqueous slurries. Both solid content of the slurries and PVA content impacted on the pore structures and mechanical properties of the porous SiC ceramics. The solid content of slurries and PVA content varied from 60 to 67.5 wt% and 2–6 wt%, respectively. Besides, the grain morphology of ceramics was also tailored by changing the sintering temperature from 2050 to 2150 °C. Porous SiC ceramics with an average porosity of 42.72%, flexural strength of 59.28 MPa were obtained at 2150 °C from 67.5 wt% slurries with 2 wt% PVA.

  7. Preparation of SiC Compacts by the Rapid Proto typing Machine

    International Nuclear Information System (INIS)

    Abdelrahman, A.A.M.; Ahmed, A.Z.; Elmasry, M.A.A.

    2008-01-01

    The preparation of ceramic green bodies from powders by the rapid proto typing is a promising technique. In this work SiC green bodies were prepared from black SiC powder mixed with 10 wt % organic binder namely Ave be SP G20 starch. Different liquid binders were investigated and were successful in producing strong green bodies such as NH 4 OH in the ph range 9-10 or 1 % HCl solution in water and or a mixture of 1% NH 4 Cl and NH 4 OH in the ph range of 8.5 to 9. The green bodies were then preheated at 200 degree C to eliminate the starch by thermal decomposition. After that these parts were infiltrated using molten silicon at 1450 degree C in Argon atmosphere. Unfortunately it was impossible to infiltrate the green bodies using liquid silicon. Another technique was followed which is dipping of the green bodies in liquid silicon. This method was successful. The densities of the green and dipped bodies were determined and they were examined under the metallo graph and SEM. It was found that no SiC dissolved in the silicon after dipping. This was concluded from the presence of sharp corners of SiC grains

  8. Facile and Low-Temperature Fabrication of Thermochromic Cr2O3/VO2 Smart Coatings: Enhanced Solar Modulation Ability, High Luminous Transmittance and UV-Shielding Function.

    Science.gov (United States)

    Chang, Tianci; Cao, Xun; Li, Ning; Long, Shiwei; Gao, Xiang; Dedon, Liv R; Sun, Guangyao; Luo, Hongjie; Jin, Ping

    2017-08-09

    In the pursuit of energy efficient materials, vanadium dioxide (VO 2 ) based smart coatings have gained much attention in recent years. For smart window applications, VO 2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr 2 O 3 /VO 2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr 2 O 3 layer not only provides a structural template for the growth of VO 2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr 2 O 3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO 2 coating. According to optical measurements, the Cr 2 O 3 /VO 2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔT sol = 12.2%) and a high luminous transmittance (T lum,lt = 46.0%), which makes a good balance between ΔT sol and T lum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr 2 O 3 /VO 2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr 2 O 3 /VO 2 coating glass.

  9. Microminiature radio frequency transmitter for communication and tracking applications

    Science.gov (United States)

    Crutcher, Richard I.; Emery, Mike S.; Falter, Kelly G.; Nowlin, C. H.; Rochelle, Jim M.; Clonts, Lloyd G.

    1997-02-01

    A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests are discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its small size of 2.2 multiplied by 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications are presented.

  10. Nanomechanical properties of SiC films grown from C{sub 60} precursors using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morse, K. [Colorado School of Mines, Golden, CO (United States); Balooch, M.; Hamza, A.V.; Belak, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    The mechanical properties of SiC films grown via C{sub 60} precursors were determined using atomic force microscopy (AFM). Conventional silicon nitride and modified diamond cantilever AFM tips were employed to determine the film hardness, friction coefficient, and elastic modulus. The hardness is found to be between 26 and 40 GPa by nanoindentation of the film with the diamond tip. The friction coefficient for the silicon nitride tip on the SiC film is about one third that for silicon nitride sliding on a silicon substrate. By combining nanoindentation and AFM measurements an elastic modulus of {approximately}300 GPa is estimated for these SiC films. In order to better understand the atomic scale mechanisms that determine the hardness and friction of SiC, we simulated the molecular dynamics of a diamond indenting a crystalline SiC substrate.

  11. Effect of organic additives on mechanical properties of SiC ceramics prepared by a modified gelcasting method

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2016-12-01

    Full Text Available A novel and simple gel system of isobutylene and maleic anhydride (PIBM was used to prepare SiC ceramics. The rheological behaviour of the SiC slurries was investigated as function of organic additives. The SiC slurries with 0.2 wt.% PIBM and 0.2 wt.% tetramethylammonium hydroxide (TMAH showed low viscosity, which was favourable for casting SiC green bodies. In order to obtain homogeneous green bodies, polyvinyl alcohol (PVA was used to assist the dispersion of carbon black in the slurries, and polyethylene glycol (PEG was added to inhibit the surface exfoliation of green bodies. The content of PVA was controlled carefully to avoid the warpage of green bodies during the drying process. Finally, homogeneous defect-free SiC green bodies were successfully fabricated via aqueous gelcasting. The SiC ceramics sintered at 2100 °C (prepared from slurries with solid content of 60 wt.% showed an average flexural strength of 305.7 MPa with porosity of 19.92%.

  12. A High-Voltage Low-Power Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices for LED Drivers

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    Previous research on switched-capacitor DC-DC converters has focused on low-voltage and/or high-power ranges where the efficiencies are dominated by conduction loss. Switched-capacitor DC-DC converters at high-voltage (> 100 V) low-power (high efficiency and high power density...... are anticipated to emerge. This paper presents a switched-capacitor converter with an input voltage up to 380 V (compatible with rectified European mains) and a maximum output power of 10 W. GaN switches and SiC diodes are analytically compared and actively combined to properly address the challenges at high......-voltage low-current levels, where switching loss becomes significant. Further trade-off between conduction loss and switching loss is experimentally optimized with switching frequencies. Three variant designs of the proposed converter are implemented, and the trade-off between the efficiency and the power...

  13. Cold spraying SiC/Al metal matrix composites: effects of SiC contents and heat treatment on microstructure, thermophysical and flexural properties

    Science.gov (United States)

    Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.

    2018-02-01

    In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.

  14. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  15. Design of CMOS RFIC ultra-wideband impulse transmitters and receivers

    CERN Document Server

    Nguyen, Cam

    2017-01-01

    This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets.  The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of U...

  16. A New Position Location System Using DTV Transmitter Identification Watermark Signals

    Directory of Open Access Journals (Sweden)

    Chouinard Jean-Yves

    2006-01-01

    Full Text Available A new position location technique using the transmitter identification (TxID RF watermark in the digital TV (DTV signals is proposed in this paper. Conventional global positioning system (GPS usually does not work well inside buildings due to the high frequency and weak field strength of the signal. In contrast to the GPS, the DTV signals are received from transmitters at relatively short distance, while the broadcast transmitters operate at levels up to the megawatts effective radiated power (ERP. Also the RF frequency of the DTV signal is much lower than the GPS, which makes it easier for the signal to penetrate buildings and other objects. The proposed position location system based on DTV TxID signal is presented in this paper. Practical receiver implementation issues including nonideal correlation and synchronization are analyzed and discussed. Performance of the proposed technique is evaluated through Monte Carlo simulations and compared with other existing position location systems. Possible ways to improve the accuracy of the new position location system is discussed.

  17. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    International Nuclear Information System (INIS)

    He, Jianchao; Wang, Heyi; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-01-01

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  18. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianchao; Wang, Heyi, E-mail: hywang@caep.cn; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-12-15

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  19. BioRadioTransmitter: a self-powered wireless glucose-sensing system.

    Science.gov (United States)

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    2011-09-01

    Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.

  20. Corrosion and wear behavior of functionally graded Al2024/SiC composites produced by hot pressing and consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Fatih; Canakci, Aykut, E-mail: aykut@ktu.edu.tr; Varol, Temel; Ozkaya, Serdar

    2015-09-25

    Highlights: • Functionally graded Al2024/SiC composites were produced by hot pressing. • Effect of the number of graded layers was investigated on the corrosion behavior. • Functionally graded composites has the most corrosion resistant than composites. • Wear mechanisms of Al2024/SiC composites were explained. - Abstract: Functionally graded Al2024/SiC composites (FGMs) with varying percentage of SiC (30–60%) were produced by hot pressing and consolidation method. The effects of SiC content and number of layers of Al2024/SiC FGMs on the corrosion and wear behaviors were investigated. The microstructures of these composites were characterized by a scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The corrosion performances of composites were evaluated by potentiodynamic polarization scans in 3.5% NaCl solution. Corrosion experiments shows that corrosion rate (1109 mpy) of two layered FGMs which containing 50 wt.% SiC were much higher than Al2024 matrix (2569 mpy) and Al2024/50 wt.% SiC composite (2201 mpy). Mechanical properties of these composites were evaluated by microhardness measurements and ball-on-disk wear tests. As the applied load change from 15 to 20 N, the wear rates of the Al2024 increased significantly and wear mechanism transformed from mild to severe wear regime. It has been shown that Al2024/40 wt.% SiC composite has lower wear rate where adhesive and abrasive wear mechanisms play a major role.

  1. Effect of SiC whisker addition on the microstructures and mechanical properties of Ti(C, N)-based cermets

    International Nuclear Information System (INIS)

    Wu, Peng; Zheng, Yong; Zhao, Yongle; Yu, Haizhou

    2011-01-01

    Ti(C, N)-based cermets with addition of SiC whisker (SiC w ) were prepared by vacuum sintering. The microstructures of the prepared cermets were investigated by using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Mechanical properties such as transverse rupture strength (TRS), fracture toughness (K IC ) and hardness (HRA) were also measured. It was found that the grain size of the cermets was affected by the SiC whisker addition. The cermets with 1.0 wt.% SiC whisker addition exhibited the smallest grain size. The porosities of the cermets increased with increasing SiC whisker additions. The addition of the SiC whisker had no influence on the phase constituents of the cermets. Compared with the cermets with no whisker addition, the highest TRS and fracture toughness for cermets with 1.0 wt.% SiC whisker addition increased by about 24% and 29%, respectively. The strengthening mechanisms were attributed to finer grain size, homogeneous microstructure and moderate thickness of rim phase. The toughening mechanisms were characterized by crack deflection, whisker bridging and whisker pulling-out.

  2. Optical study on neutron irradiation effect on hexagonal SiC single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Moritami; Kimura, Itsurou; Kanazawa, Satoshi; Kanno, Ikuo; Kamiya, Koji [Kyoto Univ. (Japan); Nakata, Toshitake; Watanabe, Masanori; Nakagawa, Masuo; Atobe, Kozo

    1996-04-01

    It is well known that SiC is a higher radiation resistant semiconductor on comparison with Si and Ge. Recently, on accompanying with advancement of developing program on nuclear fission reactor on space, development of electronic element workable effectively under severe radiation environment is desired. SiC is expected as one of such elements. Therefore, because of considering importance of understanding the effect on fundamental properties of SiC electronic element under radiation environment before its development, some studies on it was executed. In this paper, according to find out induction of interesting defect center in hexagonal 4H- and 6H-SiC single crystals irradiated with reactor neutron on light absorption and SER test, outlines of these experimental results were reported. (G.K.)

  3. A porous SiC ammonia sensor

    NARCIS (Netherlands)

    Connolly, E.J.; Timmer, B.H.; Pham, H.T.M.; Groeneweg, J.; Sarro, P.M.; Olthuis, Wouter; French, P.J.

    2005-01-01

    When used as the dielectric in a capacitive sensing arrangement, porous SiC has been found to be extremely sensitive to the presence of ammonia (NH3) gas. The exact sensing method is still not clear, but NH3 levels as low as 0.5 ppm could be detected. We report the fabrication and preliminary

  4. A Fast Electro-Thermal Co-Simulation Modeling Approach for SiC Power MOSFETs

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Bahman, Amir Sajjad; Iannuzzo, Francesco

    2017-01-01

    The purpose of this work is to propose a novel electro-thermal co-simulation approach for the new generation of SiC MOSFETs, by development of a PSpice-based compact and physical SiC MOSFET model including temperature dependency of several parameters and a Simulink-based thermal network. The PSpice...... the FEM simulation of the DUT’s structure, performed in ANSYS Icepack. A MATLAB script is used to process the simulation data and feed the needed settings and parameters back into the simulation. The parameters for a CREE 1.2 kV/30 A SiC MOSFET have been identified and the electro-thermal model has been...

  5. Protection of 310l Stainless Steel from Wear at Elevated Temperatures using Conicraly Thermal Spray Coatings with and without Sic Addition

    Science.gov (United States)

    Zhang, Yan; Zhang, Tao; Li, Kaiyang; Li, Dongyang

    2017-10-01

    Due to its high oxidation resistance, 310L stainless steel is often used for thermal facilities working at high-temperatures. However, the steel may fail prematurely at elevated temperatures when encounter surface mechanical attacks such as wear. Thermal spray coatings have been demonstrated to be effective in protecting the steel from wear at elevated temperatures. In this study, we investigated the effectiveness of high velocity oxy-fuel(HVOF) spraying CoNiCrAlY/SiC coatings in resisting wear of 310L stainless steel at elevated temperature using a pin-on-disc wear tester. In order to further improve the performance of the coating, 5%SiC was added to the coating. It was demonstrated that the CoNiCrAlY/SiC coating after heat treatment markedly suppressed wear. However, the added SiC particles did not show benefits to the wear resistance of the coating. Microstructures of CoNiCrAlY coatings with and without the SiC addition were characterized in order to understand the mechanism responsible for the observed phenomena.

  6. Enhanced thermoelectric properties of nano SiC dispersed Bi2Sr2Co2Oy Ceramics

    Science.gov (United States)

    Hu, Qiujun; Wang, Kunlun; Zhang, Yingjiu; Li, Xinjian; Song, Hongzhang

    2018-04-01

    The thermoelectric properties of Bi2Sr2Co2Oy + x wt% nano SiC (x = 0.00, 0.025, 0.05, 0.1, 0.2, and 0.3) prepared by the solid-state reaction method were investigated from 300 K to 923 K. The resistivity can be reduced effectively by adding a small amount of SiC nano particles, which is attributed to the increase of the carrier concentration. At the same time, the Seebeck coefficients can be improved effectively due to the energy filtering effect that low energy carriers are strongly dispersed at the interface between the SiC nano particles and the matrix. The decrease of thermal conductivity is due to the increase of the scattering ability of the phonons by the SiC nanoparticles distributed at the boundary of the matrix. As a result, the Bi2Sr2Co2Oy + x wt% SiC composites exhibit better thermoelectric properties. The maximum ZT value 0.24 is obtained when x = 0.05 at 923 K. Compared with the sample without SiC nano particles, the ZT value is increased by about 59.7%.

  7. Effects of radio transmitters on the behavior of Red-headed Woodpeckers

    Science.gov (United States)

    Mark Vukovich; John C. Kilgo

    2009-01-01

    Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior...

  8. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    International Nuclear Information System (INIS)

    Cabibbo, Marcello; Spigarelli, Stefano

    2011-01-01

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K were carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: → TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. → The evaluation has been extended to different compression temperature conditions. → Linear and Quadratic sum has been proposed and validated. → Hall-Petch was found to be the most prominent strengthening contributions.

  9. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  10. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  11. Interface and interaction of graphene layers on SiC(0001[combining macron]) covered with TiC(111) intercalation.

    Science.gov (United States)

    Wang, Lu; Wang, Qiang; Huang, Jianmei; Li, Wei-Qi; Chen, Guang-Hui; Yang, Yanhui

    2017-10-11

    It is important to understand the interface and interaction between the graphene layer, titanium carbide [TiC(111)] interlayer, and silicon carbide [SiC(0001[combining macron])] substrates in epitaxial growth of graphene on silicon carbide (SiC) substrates. In this study, the fully relaxed interfaces which consist of up to three layers of TiC(111) coatings on the SiC(0001[combining macron]) as well as the graphene layers interactions with these TiC(111)/SiC(0001[combining macron]) were systematically studied using the density functional theory-D2 (DFT-D2) method. The results showed that the two layers of TiC(111) coating with the C/C-terminated interfaces were thermodynamically more favorable than one or three layers of TiC(111) on the SiC(0001[combining macron]). Furthermore, the bonding of the Ti-hollow-site stacked interfaces would be a stronger link than that of the Ti-Fcc-site stacked interfaces. However, the formation of the C/Ti/C and Ti/C interfaces implied that the first upper carbon layer can be formed on TiC(111)/SiC(0001[combining macron]) using the decomposition of the weaker Ti-C and C-Si interfacial bonds. When growing graphene layers on these TiC(111)/SiC(0001[combining macron]) substrates, the results showed that the interaction energy depended not only on the thickness of the TiC(111) interlayer, but also on the number of graphene layers. Bilayer graphene on the two layer thick TiC(111)/SiC(0001[combining macron]) was thermodynamically more favorable than a monolayer or trilayer graphene on these TiC(111)/SiC(0001[combining macron]) substrates. The adsorption energies of the bottom graphene layers with the TiC(111)/SiC(0001[combining macron]) substrates increased with the decrease of the interface vertical distance. The interaction energies between the bottom, second and third layers of graphene on the TiC(111)/SiC(0001[combining macron]) were significantly higher than that of the freestanding graphene layers. All of these findings provided

  12. Broadband antireflection nanodome structures on SiC substrate

    DEFF Research Database (Denmark)

    Ou, Yiyu; Zhu, Xiaolong; Møller, Uffe Visbech

    2013-01-01

    Nanodome structures are demonstrated on the SiC substrate by using nanosphere lithography and dry etching. Significant surface antireflection has been observed over a broad spectral range from 400 nm to 1600 nm....

  13. Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon

    International Nuclear Information System (INIS)

    Park, Jung-Bae; Lee, Kwan-Hee; Jeon, Young-Jun; Lim, Sung-Hwan; Lee, Sung-Man

    2014-01-01

    The synthesis of Si nanoparticles by ultrasonication processing of porous Si powder and a novel method for preparing a high-capacity Si/C composite using this technique is reported. The porous Si powder is prepared by selectively etching the silicide phase of a Ti 24 Si 76 alloy consisting of Si and silicide phases. The particle size of the nanocrystalline Si is determined by the crystallite size of the Si and silicide phases in the alloy powder. Ultrasonication of the porous Si obtained from the mechanically alloyed Ti 24 Si 76 alloy generates nanocrystalline Si particles of size about 5 nm. Growth of the Si and silicide phases in the alloy is induced by annealing of the mechanically alloyed sample, with a consequent increase in the size of the Si particles obtained after ultrasonication. Application of the ultrasonication process to the fabrication of Si/C composite anode materials generates nanometer-scale Si particles in situ that are distributed in the matrix. Analysis of the phases obtained and evaluation of the distribution of the nanometer-scale Si particles in the composites via XRD/TEM measurements show that the nanometer-scale Si particles are effectively synthesized and uniformly distributed in the carbon matrix, leading to enhanced electrochemical performance of the Si/C composites

  14. synthesis and characterization of al/sic composite made by stir casting method

    International Nuclear Information System (INIS)

    Ghauri, K.M.; Ahmad, A.; Ahmad, R.; Din, K.M.; Chaudhry, J.A.

    2013-01-01

    Ceramics contain a distinctive property of completely absence of slip planes and have least probability of deforming by the application of force. Among these ceramics, the silicon carbide occupies a competent place to be used as a reinforcing agent for aluminum or its alloys. It has the density close to aluminum and is best for making composite having good strength and good heat conductivity. Stir casting has been used to synthesize Al/SiC MMCs by reinforcing silicon carbide particles into aluminum matrix. The reason for using stir casting is to develop technology for the development of MMCs at affordable cost. The selection of SiC as reinforcement and Al as matrix is because of their easy availability. The practical data acquired, analyzed and optimized will be interpreted in the light of information available in the literature and be shared with the relevant industries. The present work was mainly carried out to characterize the SiC/Al composite which was produced by reinforcing the various proportions of SiC (5, 10, 15, 25 and 30%) in aluminum matrix using stir casting technique. Mechanical properties of test specimens made from stir-casted Aluminum-Silicon Carbide composites have been studied using metallographic and mechanical testing techniques. It was observed that as the volume fraction of SiC in the composite is gradually increased, the hardness and toughness increase. However, beyond a level of 25-30 percent SiC, the results are not very consistent, and depend largely on the uniformity of distribution of SiC in the aluminum matrix. (author)

  15. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  16. Influence of the anodic etching current density on the morphology of the porous SiC layer

    Directory of Open Access Journals (Sweden)

    Anh Tuan Cao

    2014-03-01

    Full Text Available In this report, we fabricated a porous layer in amorphous SiC thin films by using constant-current anodic etching in an electrolyte of aqueous diluted hydrofluoric acid. The morphology of the porous amorphous SiC layer changed as the anodic current density changed: At low current density, the porous layer had a low pore density and consisted of small pores that branched downward. At moderate current density, the pore size and depth increased, and the pores grew perpendicular to the surface, creating a columnar pore structure. At high current density, the porous structure remained perpendicular, the pore size increased, and the pore depth decreased. We explained the changes in pore size and depth at high current density by the growth of a silicon oxide layer during etching at the tips of the pores.

  17. The origin of a peak in the reststrahlen region of SiC

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Rooyen, I.J. van; Henry, A.; Janzén, E.; Olivier, E.J.

    2012-01-01

    A peak in the reststrahlen region of SiC is analyzed in order to establish the origin of this peak. The peak can be associated with a thin damaged layer on the SiC wafers, and a relation is found between surface roughness and the height of this peak, by modeling the damaged layer as an additional layer when simulating the reflectivity from the wafers.

  18. The origin of a peak in the reststrahlen region of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Rooyen, I.J. van [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Henry, A.; Janzen, E. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Olivier, E.J. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    A peak in the reststrahlen region of SiC is analyzed in order to establish the origin of this peak. The peak can be associated with a thin damaged layer on the SiC wafers, and a relation is found between surface roughness and the height of this peak, by modeling the damaged layer as an additional layer when simulating the reflectivity from the wafers.

  19. Device-independent quantum reading and noise-assisted quantum transmitters

    International Nuclear Information System (INIS)

    Roga, W; Buono, D; Illuminati, F

    2015-01-01

    In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In the presence of noise or for sufficiently weak signals, quantum reading can outperform classical reading by reason of enhanced state distinguishability. Here we show that enhanced quantum efficiency depends on the presence in the transmitter of a particular type of quantum correlations, the discord of response. Different encodings and transmitters give rise to different levels of efficiency. Considering noisy quantum probes, we show that squeezed thermal transmitters with non-symmetrically distributed noise among the field modes yield higher quantum efficiency compared with coherent thermal quantum states. The noise-enhanced quantum advantage is a consequence of the discord of response being a non-decreasing function of increasing thermal noise under constant squeezing, a behavior that leads to increased state distinguishability. We finally show that, for non-symmetric squeezed thermal states, the probability of error, as measured by the quantum Chernoff bound, vanishes asymptotically with increasing local thermal noise with finite global squeezing. Therefore, with fixed finite squeezing, noisy but strongly discordant quantum states with a large noise imbalance between the field modes can outperform noisy classical resources as well as pure entangled transmitters with the same finite level of squeezing. (paper)

  20. Transmittance and Tunneling Current through a Trapezoidal Barrier under Spin Polarization Consideration

    Science.gov (United States)

    Noor, F. A.; Nabila, E.; Mardianti, H.; Ariani, T. I.; Khairurrijal

    2018-04-01

    The transmittance and tunneling current in heterostructures under spin polarization consideration were studied by employing a zinc-blended structure for the heterostructures. An electron tunnels through a potential barrier by applying a bias voltage to the barrier, which is called the trapezoidal potential barrier. In order to study the transmittance, an Airy wave function approach was employed to find the transmittance. The obtained transmittance was then utilized to compute the tunneling current by using a Gauss quadrature method. It was shown that the transmittances were asymmetric with the incident angle of the electron. It was also shown that the tunneling currents increased as the bias voltage increased.

  1. Ultrafast photoconductor detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davis, B.A.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.

    1987-01-01

    We report the results of an experiment in which we used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When we irradiated the neutron-damaged Cr-doped GaAs detector with 17-MeV electron beams, the temporal response was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. We are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  2. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    Science.gov (United States)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  3. Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Plasma Nanoscience, Industrial Innovation Program, CSIRO Manufacturing Flagship, Lindfield, New South Wales 2070 (Australia); Yang, Yonggang [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Wenjun, E-mail: apwjzh@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China)

    2015-10-15

    SiC- based nanomaterials possess superior electric, thermal and mechanical properties. However, due to the tricky synthesis process, which needs to be carried out under high temperature with multi-step reaction procedures, the further application is dramatically limited. Herein, a simple as well as a controllable approach is proposed for synthesis of SiC- based nanostructures under low temperature. Phenyl-bridged polysilsesquioxane was chosen as the starting material to react with magnesium at 650 °C, following which SiC@C nanocomposites were finally obtained, and it maintains the original bent rod-like architecture of polysilsesquioxanes. The possible formation process for the nanocomposites can proposed as well. The electrochemical behaviour of nanocomposites was accessed, verifying that the synthesized SiC@C nanocomposites deliver good electrochemical performance. Moreover, SiC@C also shows to be a promising scaffold in supporting Si thin film electrode in achieving stable cycling performance in lithium ion batteries. - Highlights: • SiC@C bent nanorods were synthesized with a magnesium reaction approach. • Carbon nanorod spines studded with ultrafine β-SiC nanocrystallines was realized. • The synthesized SiC@C keeps the original rod-like structure of polysilsesquioxanes. • The possible formation process for the nanocomposites was analysed and proposed. • Si@SiC@C nanocomposites reveal good electrochemical performance in LIBs.

  4. Determination of He and D permeability of neutron-irradiated SiC tubes to examine the potential for release due to micro-cracking

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Driven by the need to enlarge the safety margins of light water reactors in both design-basis and beyond-design-basis accident scenarios, the research and development of accident-tolerant fuel (ATF) has become an importance topic in the nuclear engineering and materials community. Continuous SiC fiber-reinforced SiC matrix ceramic composites are under consideration as a replacement for traditional zirconium alloy cladding owing to their high-temperature stability, chemical inertness, and exceptional irradiation resistance. Among the key technical feasibility issues, potential failure of the fission product containment due to probabilistic penetrating cracking has been identified as one of the two most critical feasibility issues, together with the radiolysisassisted hydrothermal corrosion of SiC. The experimental capability to evaluate the hermeticity of SiC-based claddings is an urgent need. In this report, we present the development of a comprehensive permeation testing station established in the Low Activation Materials Development and Analysis laboratory at Oak Ridge National Laboratory. Preliminary results for the hermeticity evaluation of un-irradiated monolithic SiC tubes, uncoated and coated SiC/SiC composite tubes, and neutron-irradiated monolithic SiC tubes at room temperature are exhibited. The results indicate that this new permeation testing station is capable of evaluating the hermeticity of SiC-based tubes by determining the helium and deuterium permeation flux as a function of gas pressure at a high resolution of 8.07 x 10-12 atm-cc/s for helium and 2.83 x 10-12 atm-cc/s for deuterium, respectively. The detection limit of this system is sufficient to evaluate the maximum allowable helium leakage rate of lab-scale tubular samples, which is linearly extrapolated from the evaluation standard used for a commercial as-manufactured light water reactor fuel rod at room temperature. The un-irradiated monolithic SiC tube is hermetic, as

  5. Investigation on the Short Circuit Safe Operation Area of SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Luo, Haoze; Iannuzzo, Francesco

    2016-01-01

    This paper gives a better insight of the short circuit capability of state-of-the-art SiC MOSFET power modules rated at 1.2 kV by highlighting the physical limits under different operating conditions. Two different failure mechanisms have been identified, both reducing the short-circuit capability...... of SiC power modules in respect to discrete SiC devices. Based on such failure mechanisms, two short circuit criteria (i.e., short circuit current-based criterion and gate voltage-based criterion) are proposed in order to ensure their robustness under short-circuit conditions. A Safe Operation Area (SOA...

  6. Vertically cross-linked and porous CoNi2S4 nanosheets-decorated SiC nanowires with exceptional capacitive performance as a free-standing electrode for asymmetric supercapacitors

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan; Li, Qingdang

    2016-11-01

    In this paper, a simple, low-cost and mild hydrothermal technology of growing vertically cross-linked ternary nickel cobalt sulfides nanosheets (CoNi2S4 NSs) with porous characteristics on SiC nanowires (SiC NWs) supporters with outstanding resistances to oxidation and corrosion, good conductivity and large specific surface area deposited directly on carbon cloth (CC) is successfully developed, forming a new family of free-standing advanced hybrid electrode for asymmetric supercapacitors (ASCs). Such integrated electrode (SiC NWs@CoNi2S4 NSs) manifests intriguing electrochemical characteristics such as high specific capacity (231.1 mA h g-1 at 2 A g-1) and rate capability due to the synergistic effect of SiC NWs and CoNi2S4 NSs with unique morphology. Additionally, an asymmetric supercapacitor is also assembled via using this special hybrid architectures as positive electrode and activated carbon (AC) on Ni foam (NF) as negative electrode, and it can yield a high energy density of 57.8 W h kg-1 with a power density of 1.6 kW kg-1 and long cycling lifespan. This study constitutes an emerging attractive strategy to reasonably design and fabricate novel SiC NWs-based nanostructured electrodes with enhanced capacity, which holds great potential to be the candidate of electrode materials for environmentally benign as well as high-performance energy storage devices.

  7. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    Science.gov (United States)

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  8. A Kochen–Specker inequality from a SIC

    International Nuclear Information System (INIS)

    Bengtsson, Ingemar; Blanchfield, Kate; Cabello, Adán

    2012-01-01

    Yu and Oh (eprint) have given a state-independent proof of the Kochen–Specker theorem in three dimensions using only 13 rays. The proof consists of showing that a non-contextual hidden variable theory necessarily leads to an inequality that is violated by quantum mechanics. We give a similar proof making use of 21 rays that constitute a SIC (symmetric informationally-complete positive operator-valued measure) and a complete set of MUB (mutually unbiased bases). A theory-independent inequality is also presented using the same 21 rays, as required for experimental tests of contextuality. -- Highlights: ► We find a state-independent Kochen–Specker inequality in dimension 3 with 21 rays. ► The rays constitute a SIC (9 rays) and a complete set of MUB (12 rays). ► Orthogonalities among the rays produce the Hesse configuration. ► The rays also give a state-independent non-contextual hidden variable inequality. ► We show that both inequalities are violated by quantum mechanics.

  9. 31 CFR 537.323 - U.S. registered money transmitter.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false U.S. registered money transmitter. 537.323 Section 537.323 Money and Finance: Treasury Regulations Relating to Money and Finance... General Definitions § 537.323 U.S. registered money transmitter. The term U.S. registered money...

  10. 31 CFR 538.319 - U.S. registered money transmitter.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false U.S. registered money transmitter. 538.319 Section 538.319 Money and Finance: Treasury Regulations Relating to Money and Finance... General Definitions § 538.319 U.S. registered money transmitter. The term U.S. registered money...

  11. Study on extrusion process of SiC ceramic matrix

    Science.gov (United States)

    Dai, Xiao-Yuan; Shen, Fan; Ji, Jia-You; Wang, Shu-Ling; Xu, Man

    2017-11-01

    In this thesis, the extrusion process of SiC ceramic matrix has been systematically studied.The effect of different cellulose content on the flexural strength and pore size distribution of SiC matrix was discussed.Reselts show that with the increase of cellulose content, the flexural strength decreased.The pore size distribution in the sample was 1um-4um, and the 1um-2um concentration was more concentrated. It is found that the cellulose content has little effect on the pore size distribution.When the cellulose content is 7%, the flexural strength of the sample is 40.9Mpa. At this time, the mechanical properties of the sample are the strongest.

  12. Two new constructions of approximately SIC-POVMs from multiplicative characters

    Science.gov (United States)

    Luo, Gaojun; Cao, Xiwang

    2017-12-01

    In quantum information theory, symmetric informationally complete positive operator-valued measures (SIC-POVMs) are relevant to quantum state tomography [8], quantum cryptography [15], and foundational studies [16]. In general, it is hard to construct SIC-POVMs and only a few classes of them existed, as we know. Moreover, we do not know whether there exists an infinite class of them. Many researchers tried to construct approximately symmetric informationally complete positive operator-valued measures (ASIC-POVMs). In this paper, we propose two new constructions of ASIC-POVMs for prime power dimensions only by using multiplicative characters over finite fields.

  13. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  14. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  15. Oxidation of BN-coated SiC fibers in ceramic matrix composites

    International Nuclear Information System (INIS)

    Sheldon, B.W.; Sun, E.Y.

    1996-01-01

    Thermodynamic calculations were performed to analyze the simultaneous oxidation of BN and SiC. The results show that, with limited amounts of oxygen present, the formation of SiO 2 should occur prior to the formation of B 2 O 3 . This agrees with experimental observations of oxidation in glass-ceramic matrix composites with BN-coated SiC fibers, where a solid SiO 2 reaction product containing little or no boron has been observed. The thermodynamic calculations suggest that this will occur when the amount of oxygen available is restricted. One possible explanation for this behavior is that SiO 2 formation near the external surfaces of the composite closes off cracks or pores, such that vapor phase O 2 diffusion into the composite occurs only for a limited time. This indicates that BN-coated SiC fibers will not always oxidize to form significant amounts of a low-melting, borosilicate glass

  16. 47 CFR 90.473 - Operation of internal transmitter control systems through licensed fixed control points.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of internal transmitter control... Transmitter Control Internal Transmitter Control Systems § 90.473 Operation of internal transmitter control systems through licensed fixed control points. An internal transmitter control system may be operated...

  17. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    Science.gov (United States)

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Effects of radio transmitters on the behavior of Red-headed Woodpeckers.

    Energy Technology Data Exchange (ETDEWEB)

    Vukovich, Mark; Kilgo, John, C.

    2009-05-01

    ABSTRACT. Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior of and use of cavities byRed-headedWoodpeckers (Melanerpes erythrocephalus). Using backpack harnesses, we attached 2.1-g transmitter packages that averaged 3.1% of body weight (range = 2.5–3.6%) to Red-headed Woodpeckers. We observed both radio-tagged (N = 23) and nonradio-tagged (N = 28) woodpeckers and determined the percentage of time spent engaged in each of five behaviors: flight, foraging, perching, preening, and territorial behavior. We found no difference between the two groups in the percentage of time engaged in each behavior. In addition, we found that transmitters had no apparent effect on use of cavities for roosting by radio-tagged woodpeckers (N = 25).We conclude that backpack transmitters weighing less than 3.6% of body weight had no impact on either their behavior or their ability to use cavities.

  19. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    Science.gov (United States)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  20. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters

    Science.gov (United States)

    2018-01-01

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMCdc-dc) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMCdc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMCdc-dc are presented: increasing the order of the SMCdc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting. PMID:29642455

  1. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  2. Superselective intra-arterial chemotherapy (SIC) by using the Seldinger technique as the treatment strategy for maxillary sinus carcinoma

    International Nuclear Information System (INIS)

    Yoshida, Tomoyuki; Nakamura, Kazuhiro; Tukahara, Kiyoaki; Ito, Hiroyuki; Shimizu, Akira; Takata, Daisuke; Okamoto, Isaku; Kondo, Takahito

    2010-01-01

    We have been applying superselective intra-arterial chemotherapy (SIC) by using the Seldinger technique as the treatment strategy for maxillary sinus carcinoma since 1998 in combination with radiotherapy and surgery. SIC allows delivery of high-dose anticancer drugs to the target tumor at high concentrations through its feeding vessel with few adverse effects by neutralizing and limiting the toxic effects of cisplatin (CDDP) within an acceptable range. We studied the effect of primary treatment and adverse events in 40 patients with squamous cell carcinoma of the maxillary sinus who underwent high-dose SIC combined with radiotherapy in our department between 1998 and 2008. The patients were 30 men and 10 women aged 43 to 75 years (median, 61 years). All carcinomas were advanced and graded as T3 in 17, T4 in 23, and N+ in 8. Some of the carcinomas reached the skull base or extended deep into the orbit. SIC was performed using the Seldinger technique from the femoral artery. Total CDDP dose was 200-300 mg/m 2 (mean, 210 mg/m 2 ). All vessels used for the treatment were those branching from the external carotid arteries; those from internal carotid arteries were not used for intra-arterial infusion. Following arterial infusion chemotherapy, systemic administration of 800 mg 5-fluorouracil (FU) was started on Day 2. Simultaneous radiotherapy was started on Day 2 at a dose of 2 Gy with a goal of increasing up to 60 Gy. Patients enrolled in this treatment arm received two courses of chemotherapy at 1- to 2-week intervals, along with a total dose of 60 Gy of radiotherapy from 1998 to 2007. Since 2008, two courses of SIC with the Seldinger technique, based on the results of postoperative pathological examination, and curative radiation at 60 Gy became the preferred basic treatment strategy irrespective of tumor size, and evaluation of treatment response at the level of 40 Gy was abandoned. For residual or recurrent carcinoma, we took a ''wait and see'' approach and

  3. Structural study of disordered SiC nanowires by three-dimensional rotation electron diffraction

    International Nuclear Information System (INIS)

    Li, Duan; Guo, Peng; Wan, Wei; Zou, Ji; Shen, Zhijian; Guzi de Moraes, Elisângela; Colombo, Paolo

    2014-01-01

    The structure of disordered SiC nanowires was studied by using the three-dimensional rotation electron diffraction (RED) technique. The streaks shown in the RED images indicated the stacking faults of the nanowire. High-resolution transmission electron microscopy imaging was employed to support the results from the RED data. It suggested that a 2H polytype is most possible for the nanowires. (paper)

  4. Development and Characterization of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) Reinforced Al-based Nanocomposites

    Science.gov (United States)

    Gujba, Kachalla Abdullahi

    increase in internal strains were observed as milling progressed with increase in wt.% reinforcement due to the severe plastic deformation. Al/SiC and Al/CNTs were successfully consolidated by the SPS at sintering temperatures of 400, 450 and 500°C with SiC at 5, 12 and 20wt% and 0.5wt%CNT milled for 20hrs and 3 hrs respectively. It was obtained that sintering temperature of 500°C was the most suitable as the densification achieved for SiC reinforced sample was above 98% and 100% for unreinforced sample. The hardness increased with increasing SiC content from 0, 5 to 12 wt% i.e 68, 82, 85 respectively. At 20%wt of SiC a slight decrease in the hardness was observed i.e. 70 which might be attributed to high wt.% SiC, a similar trend was observed for the other alloy studied. For CNT reinforced samples, the hardness and densification increased significantly and 100% densification was obtained at 500ºC, a hardness value from 68 to 82 was achieved from 0 to 0.5wt%CNT with a similar trend to the other alloy of interest. Conclusively, sintering of both alloys at 500ºC and above is the most suitable, the use of SiCp and CNTs as reinforcements improved the hardness, 12wt% SiC showed better hardness values than 20wt% SiC at all three temperatures and the Al alloy containing higher Si in its alloying elements showed better hardness values using the same reinforcement and sintering parameters.

  5. Cl-intercalated graphene on SiC: Influence of van der Waals forces

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of Cl-intercalated epitaxial graphene on SiC are studied by first-principles calculations. By increasing the Cl concentration, doping levels from n-type to slightly p-type are achieved on the SiC(0001) surface, while a wider range of doping levels is possible on the SiC(0001̄) surface. We find that the Cl atoms prefer bonding to the substrate rather than to the graphene. By varying the Cl concentration the doping level can be tailored. Consideration of van der Waals forces improves the distance between the graphene and the substrate as well as the binding energy, but it is not essential for the formation energy. For understanding the doping mechanism the introduction of non-local van der Waals contributions to the exchange correlation functional is shown to be essential. Copyright © EPLA, 2013.

  6. Regulatory Experience on Safety Smart Transmitter's CCF of SKN 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    Smart transmitters are digital I and C equipment which can replace analog transmitters. Non safety grade smart transmitters have been used for I and C systems of NPP(Nuclear Power Plant).. But, recently, smart transmitters have been used for safety grade I and C systems as well as non-safety grade I and C system for SKN 3 and 4. Smart transmitters execute measuring sensor values, generating output signals and adjusting range using software. Also, smart transmitters are basically capable of remote calibration through digital communication. The operating capability is more reliable and effective with remote calibration of smart transmitters, but there is potential vulnerability that causes the result no one wanted such as cyber attacks or software CCF. This paper addresses our regulatory experiences how to evaluate safety smart transmitter's CCF of SKN 3 and 4. Nuclear I and C equipment have increased the use on digital technology in safety system. According that, interest in a postulated software CCF is increasing. The software may be firmware or operating system of digital equipment. During SKN 3 and 4 operating license process, safety grade smart transmitter's adequacy was reviewed such as software V and V processes and equipment qualification. Also, it was analyzed that effect of the software CCFs of smart transmitters under DBA condition. Main concern was whether the postulated smart transmitter's software CCF may lead to an adverse safety consequence. We have future research plan to execute proof tests about our concerns and develop regulatory guide for smart transmitters.

  7. Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema.

    Science.gov (United States)

    Chang, Yin-Jung; Lai, Chi-Sheng

    2013-09-01

    The mismatch in film thickness and incident angle between reflectance and transmittance extrema due to the presence of lossy film(s) is investigated toward the maximum transmittance design in the active region of solar cells. Using a planar air/lossy film/silicon double-interface geometry illustrates important and quite opposite mismatch behaviors associated with TE and TM waves. In a typical thin-film CIGS solar cell, mismatches contributed by TM waves in general dominate. The angular mismatch is at least 10° in about 37%-53% of the spectrum, depending on the thickness combination of all lossy interlayers. The largest thickness mismatch of a specific interlayer generally increases with the thickness of the layer itself. Antireflection coating designs for solar cells should therefore be optimized in terms of the maximum transmittance into the active region, even if the corresponding reflectance is not at its minimum.

  8. Ultrafast photoconductive detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.; Davis, B.A.

    1987-01-01

    The authors report the results of an experiment in which they used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When they irradiated the neutron-damaged Cr-doped Ga/As detector with 17-MeV electron beams, the temporal response of was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. They are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  9. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface fo...

  10. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  11. A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation

    Directory of Open Access Journals (Sweden)

    Yong Li

    2017-02-01

    Full Text Available Traditional Wireless Power Transfer (WPT systems only have one energy transmission path, which can hardly meet the power demand for high power applications, e.g., railway applications (electric trains and trams, etc. due to the capacity constraints of power electronic devices. A novel WPT system based on dual transmitters and dual receivers is proposed in this paper to upgrade the power capacity of the WPT system. The reliability and availability of the proposed WPT system can be dramatically improved due to the four energy transmission paths. A three-dimensional finite element analysis (FEA tool ANSYS MAXWELL (ANSYS, Canonsburg, PA, USA is adopted to investigate the proposed magnetic coupling structure. Besides, the effects of the crossing coupling mutual inductances among the transmitters and receivers are analyzed. It shows that the same-side cross couplings will decrease the efficiency and transmitted power. Decoupling transformers are employed to mitigate the effects of the same-side cross couplings. Meanwhile, the output voltage in the secondary side can be regulated at its designed value with a fast response performance, and the system can continue work even with a faulty inverter. Finally, a scale-down experimental setup is provided to verify the proposed approach. The experimental results indicate that the proposed method could improve the transmitted power capacity, overall efficiency and reliability, simultaneously. The proposed WPT structure is a potential alternative for high power applications.

  12. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    Science.gov (United States)

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  13. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  14. Effect of LaB6 on the thermal shock property of MoSi2-SiC coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li Ting; Li Hejun; Shi Xiaohong

    2013-01-01

    Highlights: ► LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC multi-composition coatings were coated on C/C composites by pack cementation. ► The microstructure and thermal shock resistance of both coatings were investigated. ► The addition of LaB 6 can increase the compactness, flexural strength and fracture toughness of the MoSi 2 -SiC coating simultaneously. ► Both coatings bond well with the substrates before and after thermal cycling oxidation between 1773 K and room temperature. ► The LaB 6 -MoSi 2 -SiC coated C/C shows better thermal shock resistance than the MoSi 2 -SiC coated C/C. - Abstract: LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coatings were prepared on the surface of carbon/carbon composites by pack cementation method. The crystal structures of the coatings were measured by X-ray diffraction. The morphologies and element distributions were also analyzed by scanning electron microscopy and energy dispersive spectroscopy, respectively. The effect of LaB 6 on the microstructure and thermal shock resistance of MoSi 2 -SiC coating was investigated. The results indicated that the LaB 6 -MoSi 2 -SiC coating possessed a denser structure and superior thermal shock resistance. After 25 times of thermal cycling oxidation between 1773 K and room temperature, the weight losses of the LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coated samples were 0.627% and 2.019%, respectively.

  15. Characteristics of Fabricated SiC Neutron Detectors for Neutron Flux Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Ha, Jang Ho; Park, Se Hwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Ho [Hanyang University, Seoul (Korea, Republic of)

    2011-05-15

    An SPND (Self-powered Neutron Detector) is commonly used for neutron detection in NPP (Nuclear Power Plant) by virtue of un-reactivity for gamma-rays. But it has a drawback, which is that it cannot detect neutrons in real time due to beta emissions (about > 48 s) after reactions between neutrons and {sup 103}Rh in an SPND. And Generation IV reactors such as MSR (Molten-salt reactor), SFR (Sodium-cooled fast reactor), and GFR (Gas-cooled fast reactor) are designed to compact size and integration type. For GEN IV reactor, neutron monitor also must be compact-sized to apply such reactor easily and much more reliable. The wide band-gap semiconductors such as SiC, AlN, and diamond make them an attractive alternative in applications in harsh environments by virtue of the lower operating voltage, faster charge-collection times compared with gas-filled detectors, and compact size.1) In this study, two PIN-type SiC semiconductor neutron detectors, which are for fast neutron detection by elastic and inelastic scattering SiC atoms and for thermal neutron detection by charged particle emissions of 6LiF reaction, were designed and fabricated for NPP-related applications. Preliminary tests such as I-V and alpha response were performed and neutron responses at ENF in HANARO research reactor were also addressed. The application feasibility of the fabricated SiC neutron detector as an in-core neutron monitor was discussed

  16. A comparative study of low energy radiation responses of SiC, TiC and ZrC

    International Nuclear Information System (INIS)

    Jiang, M.; Xiao, H.Y.; Zhang, H.B.; Peng, S.M.; Xu, C.H.; Liu, Z.J.; Zu, X.T.

    2016-01-01

    In this study, an ab initio molecular dynamics method is employed to compare the responses of SiC, TiC and ZrC to low energy irradiation. It reveals that C displacements are dominant in the cascade events of the three carbides. The associated defects in SiC are mainly Frenkel pairs and antisite defects, whereas damage end states in TiC and ZrC generally consist of Frenkel pairs and very few antisite defects are created. It is proposed that the susceptibility to antisite formation in SiC contributes to its crystalline-to-amorphous transformation under irradiation that is observed experimentally. The stronger radiation tolerance of TiC and ZrC than SiC can be originated from their different electronic structures, i.e., the and bonds are a mixture of covalent, metallic, and ionic character, whereas the bond is mainly covalent. The presented results provide underlying mechanisms for defect generation in SiC, TiC and ZrC, and advance the fundamental understanding of the radiation resistances of carbide materials.

  17. 47 CFR 90.475 - Operation of internal transmitter control systems in specially equipped systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of internal transmitter control... Control Internal Transmitter Control Systems § 90.475 Operation of internal transmitter control systems in specially equipped systems. (a) An internal transmitter control system need not be designed to meet the...

  18. Analysis of an Intelligent Temperature Transmitter for Process Control

    African Journals Online (AJOL)

    Percentage error shows acceptable points at -0.04%, 0.04% and -0.1%. For higher percentage error readings, it is necessary to connect a resistor of value between 250Ω and 1100Ω between the current loop and the transmitter. The future of transmitter technology is however the wireless sensor node (WSN) incorporating ...

  19. Remote control radioactive-waste removal system uses modulated laser transmitter

    Science.gov (United States)

    Burcher, E. E.; Kopia, L. P.; Rowland, C. W.; Sinclair, A. R.

    1971-01-01

    Laser remote control system consists of transmitter, auto tracker, and receiver. Transmitter and tracker, packaged together and bore sighted, constitute control station, receiver is slave station. Model has five command channels and optical link operating range of 110 m.

  20. Methodology Development for SiC Sensor Signal Modelling in the Nuclear Reactor Radiation Environments

    International Nuclear Information System (INIS)

    Cetnar, J.; Krolikowski, I.P.

    2013-06-01

    This paper deals with SiC detector simulation methodology for signal formation by neutrons and induced secondary radiation as well as its inverse interpretation. The primary goal is to achieve the SiC capability of simultaneous spectroscopic measurements of neutrons and gamma-rays for which an appropriate methodology of the detector signal modelling and its interpretation must be adopted. The process of detector simulation is divided into two basically separate but actually interconnected sections. The first one is the forward simulation of detector signal formation in the field of the primary neutron and secondary radiations, whereas the second one is the inverse problem of finding a representation of the primary radiation, based on the measured detector signals. The applied methodology under development is based on the Monte Carlo description of radiation transport and analysis of the reactor physics. The methodology of SiC detector signal interpretation will be based on the existing experience in neutron metrology developed in the past for various neutron and gamma-ray detection systems. Since the novel sensors based on SiC are characterised by a new structure, yet to be finally designed, the methodology for particle spectroscopic fluence measurement must be developed while giving a productive feed back to the designing process of SiC sensor, in order to arrive at the best possible design. (authors)

  1. FIR Filter of DS-CDMA UWB Modem Transmitter

    Science.gov (United States)

    Kang, Kyu-Min; Cho, Sang-In; Won, Hui-Chul; Choi, Sang-Sung

    This letter presents low-complexity digital pulse shaping filter structures of a direct sequence code division multiple access (DS-CDMA) ultra wide-band (UWB) modem transmitter with a ternary spreading code. The proposed finite impulse response (FIR) filter structures using a look-up table (LUT) have the effect of saving the amount of memory by about 50% to 80% in comparison to the conventional FIR filter structures, and consequently are suitable for a high-speed parallel data process.

  2. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing [Tsinghua University, Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology (China)

    2017-02-15

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H{sub 2} system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  3. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing

    2017-01-01

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H_2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  4. Biomorphous SiC ceramics prepared from cork oak as precursor

    Science.gov (United States)

    Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.

    2016-04-01

    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.

  5. Key technology for (V)HTR: laser beam joining of SiC

    International Nuclear Information System (INIS)

    Knorr, J.; Lippmann, W.; Reinecke, A.M.; Wolf, R.; Rasper, R.; Kerber, A.; Wolter, A.

    2005-01-01

    Laser beam joining has numerous advantages over other methods presently known. After having been developed successful for brazing silicon carbide for high temperature applications, this technology is now also available for silicon nitride. Thus the field of application of SiC and Si 3 N 4 which are very interesting materials for the nuclear sector is considerably extended thanks to this new technology. Ceramic encapsulation of fuel and absorber increases the margins for operation at very high temperatures. Additionally, without ceramic encapsulation of the main core components, it will be difficult to continue claiming non-catastrophic behaviour for the (V)HTR. (orig.)

  6. Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings

    International Nuclear Information System (INIS)

    Wang, Weijie; Fu, Ceji; Tan, Wenchang

    2014-01-01

    Spectral and directional control of thermal emission holds substantial importance in applications where heat transfer is predominantly by thermal radiation. In this work, we investigate the spectral and directional properties of thermal emission from a novel structure, which is constituted with a photonic crystal (PC) sandwiched by SiC gratings. Numerical results based on the RCWA algorithm reveal that greatly enhanced emissivity can be achieved in a broad frequency band and in a wide range of angle of emission. This promising emission feature is found to be caused by excitation of surface phonon polaritons (SPhPs), PC mode, magnetic polaritons (MPs) and Fabry–Pérot resonance from high order diffracted waves, as well as the coupling between different resonant modes. We show that the broad enhanced emissivity band can be manipulated by adjusting the dimensional parameters of the structure properly. -- Highlights: ► We propose a novel structure made of a photonic crystal sandwiched by SiC gratings. ► High emissivity can be achieved in a broad spectral band and angle range. ► We explain the result by excitation of multiple excited modes and their coupling

  7. Assessment of intrinsic small signal parameters of submicron SiC MESFETs

    Science.gov (United States)

    Riaz, Mohammad; Ahmed, Muhammad Mansoor; Rafique, Umair; Ahmed, Umer Farooq

    2018-01-01

    In this paper, a technique has been developed to estimate intrinsic small signal parameters of submicron SiC MESFETs, designed for high power microwave applications. In the developed technique, small signal parameters are extracted by involving drain-to-source current, Ids instead of Schottky barrier depletion layer expression. It has been demonstrated that in SiC MESFETs, the depletion layer gets modified due to intense transverse electric field and/or self-heating effects, which are conventionally not taken into account. Thus, assessment of AC small signal parameters by employing depletion layer expression loses its accuracy for devices meant for high power applications. A set of expressions for AC small signal elements has been developed using Ids and its dependence on device biasing has been discussed. The validity of the proposed technique has been demonstrated using experimental data. Dr. Ahmed research interests are in Microelectronics, Microwave and RF Engineering and he has supervised numerous MS and PhD research projects. He authored over 100 research papers in the field of microelectronics. Dr. Ahmed is a fellow of the Institution of Engineering and Technology (IET), UK.; a Chartered Engineer (CEng) from the UK Engineering Council and holds the title of European Engineer (Eur Ing) from the European Federation of National Engineering Association (FEANI), Brussels. He is a life member of PEC (Pak); EDS & MTTS (USA).

  8. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  9. Secure Broadcasting with Imperfect Channel State Information at the Transmitter

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Khisti, Ashish; Alouini, Mohamed-Slim

    2015-01-01

    We investigate the problem of secure broadcasting over fast fading channels with imperfect main channel state information (CSI) at the transmitter. In particular, we analyze the effect of the noisy estimation of the main CSI on the throughput of a broadcast channel where the transmission is intended for multiple legitimate receivers in the presence of an eavesdropper. Besides, we consider the realistic case where the transmitter is only aware of the statistics of the eavesdropper’s CSI and not of its channel’s realizations. First, we discuss the common message transmission case where the source broadcasts the same information to all the receivers, and we provide an upper and a lower bounds on the ergodic secrecy capacity. For this case, we show that the secrecy rate is limited by the legitimate receiver having, on average, the worst main channel link and we prove that a non-zero secrecy rate can still be achieved even when the CSI at the transmitter is noisy. Then, we look at the independent messages case where the transmitter broadcasts multiple messages to the receivers, and each intended user is interested in an independent message. For this case, we present an expression for the achievable secrecy sum-rate and an upper bound on the secrecy sum-capacity and we show that, in the limit of large number of legitimate receivers K, our achievable secrecy sum-rate follows the scaling law log((1−) log(K)), where is the estimation error variance of the main CSI. The special cases of high SNR, perfect and no-main CSI are also analyzed. Analytical derivations and numerical results are presented to illustrate the obtained expressions for the case of independent and identically distributed Rayleigh fading channels.

  10. Secure Broadcasting with Imperfect Channel State Information at the Transmitter

    KAUST Repository

    Hyadi, Amal

    2015-11-13

    We investigate the problem of secure broadcasting over fast fading channels with imperfect main channel state information (CSI) at the transmitter. In particular, we analyze the effect of the noisy estimation of the main CSI on the throughput of a broadcast channel where the transmission is intended for multiple legitimate receivers in the presence of an eavesdropper. Besides, we consider the realistic case where the transmitter is only aware of the statistics of the eavesdropper’s CSI and not of its channel’s realizations. First, we discuss the common message transmission case where the source broadcasts the same information to all the receivers, and we provide an upper and a lower bounds on the ergodic secrecy capacity. For this case, we show that the secrecy rate is limited by the legitimate receiver having, on average, the worst main channel link and we prove that a non-zero secrecy rate can still be achieved even when the CSI at the transmitter is noisy. Then, we look at the independent messages case where the transmitter broadcasts multiple messages to the receivers, and each intended user is interested in an independent message. For this case, we present an expression for the achievable secrecy sum-rate and an upper bound on the secrecy sum-capacity and we show that, in the limit of large number of legitimate receivers K, our achievable secrecy sum-rate follows the scaling law log((1−) log(K)), where is the estimation error variance of the main CSI. The special cases of high SNR, perfect and no-main CSI are also analyzed. Analytical derivations and numerical results are presented to illustrate the obtained expressions for the case of independent and identically distributed Rayleigh fading channels.

  11. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Science.gov (United States)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A.; Martínez-Criado, G.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.

    2009-07-01

    By means of x-ray absorption near-edge structure (XANES) several Ga1-xMnxN (0.03SiC substrates. The low mismatch between GaN and SiC allows for a good quality and homogeneity of the material. The measurements were performed in fluorescence mode around both the Ga and Mn K edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding \\mathrm {t_{2}}\\uparrow band localized in the gap region, and the corresponding anti-bonding state \\mathrm {t_{2}}\\downarrow , which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  12. Effects of aging on calibration and response time of nuclear plant pressure transmitters

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1991-01-01

    This paper presents the key results of an experimental research project conducted for the Nuclear Regulatory Commission to quantify the effects of normal aging on static and dynamic performance of nuclear grade pressure, level, and flow transmitters (hereafter referred to as pressure transmitters). The project involved laboratory testing of representative pressure transmitters manufactured by Barton, Foxboro, Rosemount, and Tobar (or Veritrak) companies. These manufacturers provide the four most commonly used pressure transmitters in the safety systems of US nuclear power plants. The transmitters were tested under normal aging conditions as opposed to accelerated aging, even though accelerated aging will be used in the last few months of the project to determine the weak links and failure modes of the transmitters. The project has been performed in two phases. The Phase 1 project which was a six month feasibility study has been completed and the results published in NUREG/CR-5383. The Phase 2 project is still underway with the final report due in the fall of 1991. The project has focused on the following areas: (1) effects of aging on calibration stability; (2) effects of aging on response time; (3) study of individual components of pressure transmitters that are sensitive to aging degradation; (4) sensing line blockages due to solidification of boron, formation of sludge, freezing, and other effects; (5) search of licensee event reports and component reliability databases for failures of safety-related pressure transmitters; and (6) oil loss syndrome in Rosemount pressure transmitters

  13. Photonic integrated multiwavelength transmitters for fiber-to-the-home networks

    NARCIS (Netherlands)

    Lawniczuk, K.; Smit, M.K.; Piramidowicz, P.; Szczepanski, P.; Leijtens, X.J.M.; Wale, M.J.

    2012-01-01

    In this paper we present measurement results of monolithically integrated photonic transmitters for application in the next generation Fiber-to-the-Home (FTTH) networks. 4- and 8-channel transmitters were integrated onto a single chip, using multiple lasers with distributed Bragg reflector (DBR)

  14. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  15. An audit of the knowledge and attitudes of doctors towards Surgical Informed Consent (SIC).

    Science.gov (United States)

    Ashraf, Bushra; Tasnim, Nasira; Saaiq, Muhammad; Zaman, Khaleeq-Uz-

    2014-11-01

    The Surgical Informed Consent (SIC) is a comprehensive process that establishes an information-based agreement between the patient and his doctor to undertake a clearly outlined medical or surgical intervention. It is neither a casual formality nor a casually signed piece of paper. The present study was designed to audit the current knowledge and attitudes of doctors towards SIC at a tertiary care teaching hospital in Pakistan. This cross-sectional qualitative investigation was conducted under the auspices of the Department of Medical Education (DME), Pakistan Institute of Medical Sciences (PIMS), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad over three months period. A 19-item questionnaire was employed for data collection. The participants were selected at random from the list of the surgeons maintained in the hospital and approached face-to-face with the help of a team of junior doctors detailed for questionnaire distribution among them. The target was to cover over 50% of these doctors by convenience sampling. Out of 231 respondents, there were 32 seniors while 199 junior doctors, constituting a ratio of 1:6.22. The respondents variably responded to the questions regarding various attributes of the process of SIC. Overall, the junior doctors performed poorer compared to the seniors. The knowledge and attitudes of our doctors particularly the junior ones, towards the SIC are less than ideal. This results in their failure to avail this golden opportunity of doctor-patient communication to guide their patients through a solidly informative and legally valid SIC. They are often unaware of the essential preconditions of the SIC; provide incomplete information to their patients; and quite often do not ensure direct involvement of their patients in the process. Additionally they lack an understanding of using interactive computer-based programs as well as the concept of nocebo effect of informed consent.

  16. An Audit of the Knowledge and Attitudes of Doctors towards Surgical Informed Consent (SIC

    Directory of Open Access Journals (Sweden)

    Bushra Ashraf

    2014-11-01

    Full Text Available Background The Surgical Informed Consent (SIC is a comprehensive process that establishes an informationbased agreement between the patient and his doctor to undertake a clearly outlined medical or surgical intervention. It is neither a casual formality nor a casually signed piece of paper. The present study was designed to audit the current knowledge and attitudes of doctors towards SIC at a tertiary care teaching hospital in Pakistan. Methods This cross-sectional qualitative investigation was conducted under the auspices of the Department of Medical Education (DME, Pakistan Institute of Medical Sciences (PIMS, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU, Islamabad over three months period. A 19-item questionnaire was employed for data collection. The participants were selected at random from the list of the surgeons maintained in the hospital and approached face-to-face with the help of a team of junior doctors detailed for questionnaire distribution among them. The target was to cover over 50% of these doctors by convenience sampling. Results Out of 231 respondents, there were 32 seniors while 199 junior doctors, constituting a ratio of 1:6.22. The respondents variably responded to the questions regarding various attributes of the process of SIC. Overall, the junior doctors performed poorer compared to the seniors. Conclusion The knowledge and attitudes of our doctors particularly the junior ones, towards the SIC are less than ideal. This results in their failure to avail this golden opportunity of doctor-patient communication to guide their patients through a solidly informative and legally valid SIC. They are often unaware of the essential preconditions of the SIC; provide incomplete information to their patients; and quite often do not ensure direct involvement of their patients in the process. Additionally they lack an understanding of using interactive computer-based programs as well as the concept of nocebo effect of informed

  17. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  18. Interfacial reaction between SiC and aluminium due to extrusion and heat treatment process

    International Nuclear Information System (INIS)

    Junaidah Jai; Fauzi Ismail; Samsiah Sulaiman; Patthi Hussain, Azmi Idris; Yoichi Murakoshi

    1999-01-01

    Chemical interaction between aluminium (Al) and silicon carbide (SiC) produces aluminium carbide (Al 4 C 3 ) which presents potential problems in the production and application of Al/SiC Metal Matrix Composit (MMC). The Al 4 C 3 formed can reduce material properties such as strength in the MMC. This research work investigates the interface reaction in Al 7075/SiC MMC made through hot extrusion process. Mixed Al 7075/SiC MMC powders were pressed at 300 degree C and extruded at 500 degree C, with a reduction ratio of 20:1. The extruded MMC was then heat-treated in air at various temperatures from 560 degree C, 600 degree C, 640 degree C, 700 degree C to 800 degree C in order to observe the interface reaction of the MMC materials. The heat-treated MMCs were then analyzed under the optical microscope, X-ray Diffraction (XRD) Spectroscope and Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDAZ) attachment to observe the interface reaction within the MMCs. This investigation confirms there was interface reaction between SiC and aluminium

  19. Modulating the Surface State of SiC to Control Carrier Transport in Graphene/SiC.

    Science.gov (United States)

    Jia, Yuping; Sun, Xiaojuan; Shi, Zhiming; Jiang, Ke; Liu, Henan; Ben, Jianwei; Li, Dabing

    2018-05-28

    Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000-1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000-1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Ru, H.Q., E-mail: ruhq@smm.neu.edu.cn [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Zhang, N.; Liang, B. [Key Laboratory of Advanced Materials Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Addition of nano-SiC particles enhances residual strength and critical temperature. Black-Right-Pointing-Pointer Young's modulus decreases with increasing quenching temperature. Black-Right-Pointing-Pointer Linear relationship between residual strength and thermal shock times is obtained. Black-Right-Pointing-Pointer Rougher fracture surfaces in the SiC-AlON composites are observed. - Abstract: Aluminum oxynitride (AlON) has been considered as a potential ceramic material for high-performance structural and advanced refractory applications. Thermal shock resistance is a major concern and an important performance index of high-temperature ceramics. While silicon carbide (SiC) particles have been proven to improve mechanical properties of AlON ceramic, the high-temperature thermal shock behavior was unknown. The aim of this investigation was to identify the thermal shock resistance and underlying mechanisms of AlON ceramic and 8 wt% SiC-AlON composites over a temperature range between 175 Degree-Sign C and 275 Degree-Sign C. The residual strength and Young's modulus after thermal shock decreased with increasing quenching temperature and thermal shock times due to large temperature gradients and thermal stresses caused by abrupt water-quenching. A linear relationship between the residual strength and thermal shock times was observed in both pure AlON and SiC-AlON composites. The addition of nano-sized SiC particles increased both residual strength and critical temperature from 200 Degree-Sign C in the monolithic AlON to 225 Degree-Sign C in the SiC-AlON composites due to the toughening effect, the lower coefficient of thermal expansion and higher thermal conductivity of SiC. The enhancement of the thermal shock resistance in the SiC-AlON composites was directly related to the change of fracture mode from intergranular cracking along with cleavage-type fracture in the AlON to a rougher fracture surface with ridge