WorldWideScience

Sample records for high throughput methods

  1. High-throughput methods for electron crystallography.

    Science.gov (United States)

    Stokes, David L; Ubarretxena-Belandia, Iban; Gonen, Tamir; Engel, Andreas

    2013-01-01

    Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing a native lipid environment for these proteins. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, electron microscopy can be used to collect images and diffraction and the corresponding data can be combined to produce a three-dimensional reconstruction, which under favorable conditions can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on titration of cyclodextrin as a chelating agent for detergent; a specialized pipetting robot has been designed not only to add cyclodextrin in a systematic way, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described.

  2. A high-throughput multiplex method adapted for GMO detection.

    Science.gov (United States)

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  3. High throughput instruments, methods, and informatics for systems biology.

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael B.; Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Van Benthem, Mark Hilary; Wylie, Brian Neil; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Aragon, Anthony D. (University of New Mexico, Albuquerque, NM); Keenan, Michael Robert; Boyack, Kevin W.; Thomas, Edward Victor; Werner-Washburne, Margaret C. (University of New Mexico, Albuquerque, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Martinez, M. Juanita (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Willman, Cheryl L. (University of New Mexico, Albuquerque, NM)

    2003-12-01

    High throughput instruments and analysis techniques are required in order to make good use of the genomic sequences that have recently become available for many species, including humans. These instruments and methods must work with tens of thousands of genes simultaneously, and must be able to identify the small subsets of those genes that are implicated in the observed phenotypes, or, for instance, in responses to therapies. Microarrays represent one such high throughput method, which continue to find increasingly broad application. This project has improved microarray technology in several important areas. First, we developed the hyperspectral scanner, which has discovered and diagnosed numerous flaws in techniques broadly employed by microarray researchers. Second, we used a series of statistically designed experiments to identify and correct errors in our microarray data to dramatically improve the accuracy, precision, and repeatability of the microarray gene expression data. Third, our research developed new informatics techniques to identify genes with significantly different expression levels. Finally, natural language processing techniques were applied to improve our ability to make use of online literature annotating the important genes. In combination, this research has improved the reliability and precision of laboratory methods and instruments, while also enabling substantially faster analysis and discovery.

  4. New high-throughput methods of investigating polymer electrolytes

    Science.gov (United States)

    Alcock, Hannah J.; White, Oliver C.; Jegelevicius, Grazvydas; Roberts, Matthew R.; Owen, John R.

    2011-03-01

    Polymer electrolyte films have been prepared by solution casting techniques from precursor solutions of a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), lithium-bis(trifluoromethane) sulfonimide (LiTFSI), and propylene carbonate (PC). Arrays of graded composition were characterised by electrochemical impedance spectroscopy (EIS), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) using high throughput techniques. Impedance analysis showed the resistance of the films as a function of LiTFSI, PC and polymer content. The ternary plot of conductivity shows an area that combines a solid-like mechanical stability with high conductivity, 1 × 10-5 S cm-1 at the composition 0.55/0.15/0.30 wt% PVdF-HFP/LiTFSI/PC, increasing with PC content. In regions with less than a 50 wt% fraction of PVdF-HFP the films were too soft to give meaningful results by this method. The DSC measurements on solvent free, salt-doped polymers show a reduced crystallinity, and high throughput XRD patterns show that non-polar crystalline phases are suppressed by the presence of LiTFSI and PC.

  5. An improved high throughput sequencing method for studying oomycete communities

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    Culture-independent studies using next generation sequencing have revolutionizedmicrobial ecology, however, oomycete ecology in soils is severely lagging behind. The aimof this study was to improve and validate standard techniques for using high throughput sequencing as a tool for studying oomyce...

  6. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  7. High-throughput screening method for lipases/esterases.

    Science.gov (United States)

    Mateos-Díaz, Eduardo; Rodríguez, Jorge Alberto; de Los Ángeles Camacho-Ruiz, María; Mateos-Díaz, Juan Carlos

    2012-01-01

    High-throughput screening (HTS) methods for lipases and esterases are generally performed by using synthetic chromogenic substrates (e.g., p-nitrophenyl, resorufin, and umbelliferyl esters) which may be misleading since they are not their natural substrates (e.g., partially or insoluble triglycerides). In previous works, we have shown that soluble nonchromogenic substrates and p-nitrophenol (as a pH indicator) can be used to quantify the hydrolysis and estimate the substrate selectivity of lipases and esterases from several sources. However, in order to implement a spectrophotometric HTS method using partially or insoluble triglycerides, it is necessary to find particular conditions which allow a quantitative detection of the enzymatic activity. In this work, we used Triton X-100, CHAPS, and N-lauroyl sarcosine as emulsifiers, β-cyclodextrin as a fatty acid captor, and two substrate concentrations, 1 mM of tributyrin (TC4) and 5 mM of trioctanoin (TC8), to improve the test conditions. To demonstrate the utility of this method, we screened 12 enzymes (commercial preparations and culture broth extracts) for the hydrolysis of TC4 and TC8, which are both classical substrates for lipases and esterases (for esterases, only TC4 may be hydrolyzed). Subsequent pH-stat experiments were performed to confirm the preference of substrate hydrolysis with the hydrolases tested. We have shown that this method is very useful for screening a high number of lipases (hydrolysis of TC4 and TC8) or esterases (only hydrolysis of TC4) from wild isolates or variants generated by directed evolution using nonchromogenic triglycerides directly in the test.

  8. A microfluidic, high throughput protein crystal growth method for microgravity.

    Directory of Open Access Journals (Sweden)

    Carl W Carruthers

    Full Text Available The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS. The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions' microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD, as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 10(3 cm.. After 70 days on the ISS, our samples were returned with 16 of 25 (64% microgravity cards having crystals, compared to 12 of 25 (48% of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories.

  9. Development of automatic image analysis methods for high-throughput and high-content screening

    NARCIS (Netherlands)

    Di, Zi

    2013-01-01

    This thesis focuses on the development of image analysis methods for ultra-high content analysis of high-throughput screens where cellular phenotype responses to various genetic or chemical perturbations that are under investigation. Our primary goal is to deliver efficient and robust image analysis

  10. Development of automatic image analysis methods for high-throughput and high-content screening

    NARCIS (Netherlands)

    Di, Zi

    2013-01-01

    This thesis focuses on the development of image analysis methods for ultra-high content analysis of high-throughput screens where cellular phenotype responses to various genetic or chemical perturbations that are under investigation. Our primary goal is to deliver efficient and robust image analysis

  11. High-throughput analysis of total nitrogen content that replaces the classic Kjeldahl method.

    Science.gov (United States)

    Yasuhara, T; Nokihara, K

    2001-10-01

    A high-throughput method for determination of total nitrogen content has been developed. The method involves decomposition of samples, followed by trapping and quantitative colorimetric determination of the resulting ammonia. The present method is rapid, facile, and economical. Thus, it can replace the classic Kjeldahl method through its higher efficiency for determining multiple samples. Compared to the classic method, the present method is economical and environmentally friendly. Based on the present method, a novel reactor was constructed to realize routine high-throughput analyses of multiple samples such as those found for pharmaceutical materials, foods, and/or excrements.

  12. Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method.

    Science.gov (United States)

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2009-07-15

    The high-throughput Zn reduction method was developed and optimized for various biological/biomedical accelerator mass spectrometry (AMS) applications of mg of C size samples. However, high levels of background carbon from the high-throughput Zn reduction method were not suitable for sub-mg of C size samples in environmental, geochronology, and biological/biomedical AMS applications. This study investigated the effect of background carbon mass (mc) and background 14C level (Fc) from the high-throughput Zn reduction method. Background mc was 0.011 mg of C and background Fc was 1.5445. Background subtraction, two-component mixing, and expanded formulas were used for background correction. All three formulas accurately corrected for backgrounds to 0.025 mg of C in the aerosol standard (NIST SRM 1648a). Only the background subtraction and the two-component mixing formulas accurately corrected for backgrounds to 0.1 mg of C in the IAEA-C6 and -C7 standards. After the background corrections, our high-throughput Zn reduction method was suitable for biological (diet)/biomedical (drug) and environmental (fine particulate matter) applications of sub-mg of C samples (> or = 0.1 mg of C) in keeping with a balance between throughput (270 samples/day/analyst) and sensitivity/accuracy/precision of AMS measurement. The development of a high-throughput method for examination of > or = 0.1 mg of C size samples opens up a range of applications for 14C AMS studies. While other methods do exist for > or = 0.1 mg of C size samples, the low throughput has made them cost prohibitive for many applications.

  13. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  14. Probabilistic Methods for Processing High-Throughput Sequencing Signals

    DEFF Research Database (Denmark)

    Sørensen, Lasse Maretty

    for reconstructing transcript sequences from RNA sequencing data. The method is based on a novel sparse prior distribution over transcript abundances and is markedly more accurate than existing approaches. The second chapter describes a new method for calling genotypes from a fixed set of candidate variants...... insights is far from trivial. A key challenge is that these methods cannot read the input sequences in their entirety. Due to technological constraints, they instead provide the sequences of very many fragments of the input molecules. Furthermore, not all nucleotides in these fragments are measured...... correctly and the final output of a typical experiment thus consists of hundreds of millions of error-containing sequence fragments. This thesis concerns the development of methods for transforming such a raw sequencing signal into a simpler representation from which biological inferences can then be made...

  15. Evaluation of simple and inexpensive high-throughput methods for phytic acid determination

    Science.gov (United States)

    High-throughput/low-cost/low-tech methods for phytic acid determination that are sufficiently accurate and reproducible would be of value in plant genetics, crop breeding and in the food and feed industries. Variants of two candidate methods, those described by Vaintraub and Lapteva (Anal. Biochem. ...

  16. Development of in-house methods for high-throughput DNA extraction

    Science.gov (United States)

    Given the high-throughput nature of many current biological studies, in particular field-based or applied environmental studies, optimization of cost-effective, efficient methods for molecular analysis of large numbers of samples is a critical first step. Existing methods are either based on costly ...

  17. Methods and devices for high-throughput dielectrophoretic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A. (San Francisco, CA); Cummings, Eric B. (Livermore, CA); Fiechtner, Gregory J. (Germantown, MD); Fintschenko, Yolanda (Livermore, CA); McGraw, Gregory J. (Ann Arbor, MI); Salmi, Allen (Escalon, CA)

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  18. Methods and devices for high-throughput dielectrophoretic concentration

    Science.gov (United States)

    Simmons, Blake A.; Cummings, Eric B.; Fiechtner, Gregory J.; Fintschenko, Yolanda; McGraw, Gregory J.; Salmi, Allen

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  19. Probabilistic Methods for Processing High-Throughput Sequencing Signals

    DEFF Research Database (Denmark)

    Sørensen, Lasse Maretty

    correctly and the final output of a typical experiment thus consists of hundreds of millions of error-containing sequence fragments. This thesis concerns the development of methods for transforming such a raw sequencing signal into a simpler representation from which biological inferences can then be made....... Importantly, the fact that the fragments are short and contain errors implies that there may be significant uncertainty associated with the signal. By using probabilistic models, we are able to quantify this uncertainty and propagate it to downstream analyses. The first chapter describes a new method...

  20. High-Throughput Sequencing Based Methods of RNA Structure Investigation

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz Jan

    In this thesis we describe the development of four related methods for RNA structure probing that utilize massive parallel sequencing. Using them, we were able to gather structural data for multiple, long molecules simultaneously. First, we have established an easy to follow experimental and comp......In this thesis we describe the development of four related methods for RNA structure probing that utilize massive parallel sequencing. Using them, we were able to gather structural data for multiple, long molecules simultaneously. First, we have established an easy to follow experimental...... and computational protocol for detecting the reverse transcription termination sites (RTTS-Seq). This protocol was subsequently applied to hydroxyl radical footprinting of three dimensional RNA structures to give a probing signal that correlates well with the RNA backbone solvent accessibility. Moreover, we applied...

  1. A high-throughput method for GMO multi-detection using a microfluidic dynamic array

    NARCIS (Netherlands)

    Brod, F.C.A.; Dijk, van J.P.; Voorhuijzen, M.M.; Dinon, A.Z.; Guimarães, L.H.S.; Scholtens, I.M.J.; Arisi, A.C.M.; Kok, E.J.

    2014-01-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNAbased methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the nu

  2. A high-throughput UPLC method for the characterization of chemical modifications in monoclonal antibody molecules.

    Science.gov (United States)

    Stackhouse, Nicole; Miller, Amanda K; Gadgil, Himanshu S

    2011-12-01

    Development of high-throughput release and characterization assays is critical for the effective support of the rapidly growing biologics pipeline for biotherapeutics. Clipping of polypeptide chains is commonly monitored during process optimization, formulation development, and stability studies. A reduced capillary electrophoresis-sodium dodecyl sulfate (rCE -SDS) method is often used as a purity release assay for monitoring clips in monoclonal antibodies (mAbs); however, it has a cycle time of approximately 40 min, which is not suited for high-throughput screening. Additionally, the characterization of clips and variants from electropherograms is not straightforward and takes significant time. Reduced reversed-phase (RP) chromatography has been a popular assay for the characterization and identification of clips and variants because it can be directly coupled with online mass spectrometric analysis. However, the high-column temperature and low pH required for RP assays can induce on-column cleavage and therefore skew the results. To minimize on-column degradation, we have developed a high-throughput method with a significantly shorter cycle time of 5 min. The short cycle time was achieved using an ultra-high-pressure liquid chromatography (UPLC) system with a 1.7 μm phenyl column. This UPLC method allowed quantitation of hinge clipping in an IgG1 molecule and acid induced aspartic acid/proline (D/P) clip in an IgG2 molecule. The results from the UPLC method were comparable to those obtained with rCE-SDS. Additionally, the phenyl column offered partial resolution of oxidation and other chemical modifications, making this technique an attractive assay for high-throughput process characterization and formulation screens. Copyright © 2011 Wiley-Liss, Inc.

  3. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    Science.gov (United States)

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  4. An improved high-throughput lipid extraction method for the analysis of human brain lipids.

    Science.gov (United States)

    Abbott, Sarah K; Jenner, Andrew M; Mitchell, Todd W; Brown, Simon H J; Halliday, Glenda M; Garner, Brett

    2013-03-01

    We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass-glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads. This high-throughput method significantly reduced sample handling time and increased efficiency compared to glass-glass homogenizing. Furthermore, replacing chloroform with MTBE is safer (less carcinogenic/toxic), with lipids dissolving in the upper phase, allowing for easier pipetting and the potential for automation (i.e., robotics). Both methods were applied to the analysis of human occipital cortex. Lipid species (including ceramides, sphingomyelins, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserines) were analyzed via electrospray ionization mass spectrometry and sterol species were analyzed using gas chromatography mass spectrometry. No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.

  5. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved...... equivalent, displaying reduction curves that interrelated directly with CFU counts. For growth rate estimation, the methylene blue reduction test (MBRT) proved superior, since the discriminatory nature of the method allowed for the quantification of metabolically active cells only, excluding dead cells...

  6. Statistical Methods for Integrating Multiple Types of High-Throughput Data

    OpenAIRE

    Xie, Yang; Ahn, Chul

    2010-01-01

    Large-scale sequencing, copy number, mRNA, and protein data have given great promise to the biomedical research, while posing great challenges to data management and data analysis. Integrating different types of high-throughput data from diverse sources can increase the statistical power of data analysis and provide deeper biological understanding. This chapter uses two biomedical research examples to illustrate why there is an urgent need to develop reliable and robust methods for integratin...

  7. Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays*

    OpenAIRE

    Sturino, Joseph; Zorych, Ivan; Mallick, Bani; Pokusaeva, Karina; Chang, Ying-Ying; Carroll, Raymond J.; Bliznuyk, Nikolay

    2010-01-01

    We propose statistical methods for comparing phenomics data generated by the Biolog Phenotype Microarray (PM) platform for high-throughput phenotyping. Instead of the routinely used visual inspection of data with no sound inferential basis, we develop two approaches. The first approach is based on quantifying the distance between mean or median curves from two treatments and then applying a permutation test; we also consider a permutation test applied to areas under mean curves. The second ap...

  8. A High Throughput Biochemical Fluorometric Method for Measuring Lipid Peroxidation in HDL

    Science.gov (United States)

    Kelesidis, Theodoros; Roberts, Christian K.; Huynh, Diana; Martínez-Maza, Otoniel; Currier, Judith S.; Reddy, Srinivasa T.; Yang, Otto O.

    2014-01-01

    Current cell-based assays for determining the functional properties of high-density lipoproteins (HDL) have limitations. We report here the development of a new, robust fluorometric cell-free biochemical assay that measures HDL lipid peroxidation (HDLox) based on the oxidation of the fluorochrome Amplex Red. HDLox correlated with previously validated cell-based (r = 0.47, pHDL in established animal models of atherosclerosis and Human Immunodeficiency Virus (HIV) patients. Using an immunoaffinity method for capturing HDL, we demonstrate the utility of this novel assay for measuring HDLox in a high throughput format. Furthermore, HDLox correlated significantly with measures of cardiovascular diseases including carotid intima media thickness (r = 0.35, pHDL function/quality that is suitable for high throughput implementation. PMID:25368900

  9. High throughput drug profiling

    OpenAIRE

    Entzeroth, Michael; Chapelain, Béatrice; Guilbert, Jacques; Hamon, Valérie

    2000-01-01

    High throughput screening has significantly contributed to advances in drug discovery. The great increase in the number of samples screened has been accompanied by increases in costs and in the data required for the investigated compounds. High throughput profiling addresses the issues of compound selectivity and specificity. It combines conventional screening with data mining technologies to give a full set of data, enabling development candidates to be more fully compared.

  10. Field induced gradient simulations: a high throughput method for computing chemical potentials in multicomponent systems.

    Science.gov (United States)

    Mehrotra, Anuja Seth; Puri, Sanjay; Khakhar, D V

    2012-04-07

    We present a simulation method for direct computation of chemical potentials in multicomponent systems. The method involves application of a field to generate spatial gradients in the species number densities at equilibrium, from which the chemical potential of each species is theoretically estimated. A single simulation yields results over a range of thermodynamic states, as in high throughput experiments, and the method remains computationally efficient even at high number densities since it does not involve particle insertion at high densities. We illustrate the method by Monte Carlo simulations of binary hard sphere mixtures of particles with different sizes in a gravitational field. The results of the gradient Monte Carlo method are found to be in good agreement with chemical potentials computed using the classical Widom particle insertion method for spatially uniform systems.

  11. A critical comparison of two high-throughput ascorbate analyses methods for plant samples.

    Science.gov (United States)

    Ueda, Yoshiaki; Wu, Linbo; Frei, Michael

    2013-09-01

    Ascorbate (AsA) is an important metabolite involved in stress response and development of plants. Therefore it is necessary to quantify the AsA content in many fields of plant science, including high throughput and critical applications. In this study we compared two different microplate-based AsA assays, which are suitable for high throughput applications: an ascorbate oxidase (AO)-based assay and a dipyridyl (DPD)-based assay. These methods were compared in critical applications, i.e. (i) when AsA concentrations were very low such as in apoplastic extracts, (ii) when plants contained pigments interfering with the spectrometric measurements, and (iii) when plants contained high iron concentration interfering with the color reactions. The precision of measurements was higher with the DPD method, as illustrated by higher recovery rates of internal AsA standards. On the other hand, the AO method was more sensitive to low levels of AsA. This was an advantage in determining apoplastic AsA concentration in rice, which was substantially lower than that of whole tissues. The AO method also had the advantage that plant pigments and high iron concentrations in plants tissues did not interfere with the analysis, as opposed to the DPD assay. In conclusion, both assays had advantages and the choice of a suitable method depends on the specific application.

  12. Novel method for the high-throughput processing of slides for the comet assay.

    Science.gov (United States)

    Karbaschi, Mahsa; Cooke, Marcus S

    2014-11-26

    Single cell gel electrophoresis (the comet assay), continues to gain popularity as a means of assessing DNA damage. However, the assay's low sample throughput and laborious sample workup procedure are limiting factors to its application. "Scoring", or individually determining DNA damage levels in 50 cells per treatment, is time-consuming, but with the advent of high-throughput scoring, the limitation is now the ability to process significant numbers of comet slides. We have developed a novel method by which multiple slides may be manipulated, and undergo electrophoresis, in batches of 25 rather than individually and, importantly, retains the use of standard microscope comet slides, which are the assay convention. This decreases assay time by 60%, and benefits from an electrophoresis tank with a substantially smaller footprint, and more uniform orientation of gels during electrophoresis. Our high-throughput variant of the comet assay greatly increases the number of samples analysed, decreases assay time, number of individual slide manipulations, reagent requirements and risk of damage to slides. The compact nature of the electrophoresis tank is of particular benefit to laboratories where bench space is at a premium. This novel approach is a significant advance on the current comet assay procedure.

  13. Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays

    KAUST Repository

    Sturino, Joseph

    2010-01-24

    We propose statistical methods for comparing phenomics data generated by the Biolog Phenotype Microarray (PM) platform for high-throughput phenotyping. Instead of the routinely used visual inspection of data with no sound inferential basis, we develop two approaches. The first approach is based on quantifying the distance between mean or median curves from two treatments and then applying a permutation test; we also consider a permutation test applied to areas under mean curves. The second approach employs functional principal component analysis. Properties of the proposed methods are investigated on both simulated data and data sets from the PM platform.

  14. Statistical methods for comparative phenomics using high-throughput phenotype microarrays.

    Science.gov (United States)

    Sturino, Joseph; Zorych, Ivan; Mallick, Bani; Pokusaeva, Karina; Chang, Ying-Ying; Carroll, Raymond J; Bliznuyk, Nikolay

    2010-08-24

    We propose statistical methods for comparing phenomics data generated by the Biolog Phenotype Microarray (PM) platform for high-throughput phenotyping. Instead of the routinely used visual inspection of data with no sound inferential basis, we develop two approaches. The first approach is based on quantifying the distance between mean or median curves from two treatments and then applying a permutation test; we also consider a permutation test applied to areas under mean curves. The second approach employs functional principal component analysis. Properties of the proposed methods are investigated on both simulated data and data sets from the PM platform.

  15. Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays*

    Science.gov (United States)

    Sturino, Joseph; Zorych, Ivan; Mallick, Bani; Pokusaeva, Karina; Chang, Ying-Ying; Carroll, Raymond J; Bliznuyk, Nikolay

    2010-01-01

    We propose statistical methods for comparing phenomics data generated by the Biolog Phenotype Microarray (PM) platform for high-throughput phenotyping. Instead of the routinely used visual inspection of data with no sound inferential basis, we develop two approaches. The first approach is based on quantifying the distance between mean or median curves from two treatments and then applying a permutation test; we also consider a permutation test applied to areas under mean curves. The second approach employs functional principal component analysis. Properties of the proposed methods are investigated on both simulated data and data sets from the PM platform. PMID:20865133

  16. Quantitative dot blot analysis (QDB), a versatile high throughput immunoblot method.

    Science.gov (United States)

    Tian, Geng; Tang, Fangrong; Yang, Chunhua; Zhang, Wenfeng; Bergquist, Jonas; Wang, Bin; Mi, Jia; Zhang, Jiandi

    2017-08-29

    Lacking access to an affordable method of high throughput immunoblot analysis for daily use remains a big challenge for scientists worldwide. We proposed here Quantitative Dot Blot analysis (QDB) to meet this demand. With the defined linear range, QDB analysis fundamentally transforms traditional immunoblot method into a true quantitative assay. Its convenience in analyzing large number of samples also enables bench scientists to examine protein expression levels from multiple parameters. In addition, the small amount of sample lysates needed for analysis means significant saving in research sources and efforts. This method was evaluated at both cellular and tissue levels with unexpected observations otherwise would be hard to achieve using conventional immunoblot methods like Western blot analysis. Using QDB technique, we were able to observed an age-dependent significant alteration of CAPG protein expression level in TRAMP mice. We believe that the adoption of QDB analysis would have immediate impact on biological and biomedical research to provide much needed high-throughput information at protein level in this "Big Data" era.

  17. High-throughput preparation methods of crude extract for robust cell-free protein synthesis.

    Science.gov (United States)

    Kwon, Yong-Chan; Jewett, Michael C

    2015-03-02

    Crude extract based cell-free protein synthesis (CFPS) has emerged as a powerful technology platform for high-throughput protein production and genetic part characterization. Unfortunately, robust preparation of highly active extracts generally requires specialized and costly equipment and can be labor and time intensive. Moreover, cell lysis procedures can be hard to standardize, leading to different extract performance across laboratories. These challenges limit new entrants to the field and new applications, such as comprehensive genome engineering programs to improve extract performance. To address these challenges, we developed a generalizable and easily accessible high-throughput crude extract preparation method for CFPS based on sonication. To validate our approach, we investigated two Escherichia coli strains: BL21 Star™ (DE3) and a K12 MG1655 variant, achieving similar productivity (defined as CFPS yield in g/L) by varying only a few parameters. In addition, we observed identical productivity of cell extracts generated from culture volumes spanning three orders of magnitude (10 mL culture tubes to 10 L fermentation). We anticipate that our rapid and robust extract preparation method will speed-up screening of genomically engineered strains for CFPS applications, make possible highly active extracts from non-model organisms, and promote a more general use of CFPS in synthetic biology and biotechnology.

  18. Development of an optimized medium, strain and high-throughput culturing methods for Methylobacterium extorquens

    National Research Council Canada - National Science Library

    Delaney, Nigel F; Kaczmarek, Maria E; Ward, Lewis M; Swanson, Paige K; Lee, Ming-Chun; Marx, Christopher J

    2013-01-01

    .... Here we develop a new system for high-throughput batch culture of M. extorquens in microtiter plates by jointly optimizing the properties of the organism, the growth media and the culturing system...

  19. TLC-Direct Bioautography as a High Throughput Method for Detection of Antimicrobials in Plants

    Directory of Open Access Journals (Sweden)

    Irena M. Choma

    2015-05-01

    Full Text Available The richness of bioactive compounds in plant materials encourages continuous development of separation methods and bioassays for their isolation and identification. Thin-layer chromatography-direct bioautography links separation on the adsorbent layer with biological tests performed directly on it. Therefore, the method is very convenient for searching plant constituents with biological activity, such as antibiotics. Test bacteria grow directly on a plate surface excluding places where antibacterials are located. They can be detected with reagents converted by living bacteria. TLC-DB is a high throughput method enabling analyses of many samples in parallel and the comparison of their activity. Both screening and semi-quantitative analysis is possible. The targeted compounds can be identified using spectroscopic methods, mostly mass spectrometry, that can be performed directly on a TLC plate. This paper discusses all above mentioned aspects of TLC-DB, illustrating them with literature, schemes and our own results.

  20. A High-Throughput Method for the Analysis of Larval Developmental Phenotypes in Caenorhabditis elegans.

    Science.gov (United States)

    Olmedo, María; Geibel, Mirjam; Artal-Sanz, Marta; Merrow, Martha

    2015-10-01

    Caenorhabditis elegans postembryonic development consists of four discrete larval stages separated by molts. Typically, the speed of progression through these larval stages is investigated by visual inspection of the molting process. Here, we describe an automated method to monitor the timing of these discrete phases of C. elegans maturation, from the first larval stage through adulthood, using bioluminescence. The method was validated with a lin-42 mutant strain that shows delayed development relative to wild-type animals and with a daf-2 mutant that shows an extended second larval stage. This new method is inherently high-throughput and will finally allow dissecting the molecular machinery governing the speed of the developmental clock, which has so far been hampered by the lack of a method suitable for genetic screens.

  1. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    Directory of Open Access Journals (Sweden)

    Oldenburg Delene J

    2007-03-01

    Full Text Available Abstract Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI, SYBR Green I (SG, SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content.

  2. A high-throughput microfluidic method for generating and characterizing transcription factor mutant libraries.

    Science.gov (United States)

    Geertz, Marcel; Rockel, Sylvie; Maerkl, Sebastian J

    2012-01-01

    Characterizing libraries of mutant proteins is a challenging task, but can lead to detailed functional insights on a specific protein, and general insights for families of proteins such as transcription factors. Challenges in mutant protein screening consist in synthesizing the necessary expression-ready DNA constructs and transforming them into a suitable host for protein expression. Protein purification and characterization are also non-trivial tasks that are not easily scalable to hundreds or thousands of protein variants. Here we describe a method based on a high-throughput microfluidic platform to screen and characterize the binding profile of hundreds of transcription factor variants. DNA constructs are synthesized by a rapid two-step PCR approach without the need of cloning or transformation steps. All transcription factor mutants are expressed on-chip followed by characterization of their binding specificities against 64 different DNA target sequences. The current microfluidic platform can synthesize and characterize up to 2,400 protein-DNA pairs in parallel. The platform method is also generally applicable, allowing high-throughput functional studies of proteins.

  3. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.

    Science.gov (United States)

    Roy, Emmanuel; Galas, Jean-Christophe; Veres, Teodor

    2011-09-21

    Multilayer soft lithography of polydimethylsiloxane (PDMS) is a well-known method for the fabrication of complex fluidic functions. With advantages and drawbacks, this technique allows fabrication of valves, pumps and micro-mixers. However, the process is inadequate for industrial applications. Here, we report a rapid prototyping technique for the fabrication of multilayer microfluidic devices, using a different and promising class of polymers. Using styrenic thermoplastic elastomers (TPE), we demonstrate a rapid technique for the fabrication and assembly of pneumatically driven valves in a multilayer microfluidic device made completely from thermoplastics. This material solution is transparent, biocompatible and as flexible as PDMS, and has high throughput thermoforming processing characteristics. We established a proof of principle for valving and mixing with three different grades of TPE using an SU-8 master mold. Specific viscoelastic properties of each grade allow us to report enhanced bonding capabilities from room temperature bonding to free pressure thermally assisted bonding. In terms of microfabrication, beyond classically embossing means, we demonstrate a high-throughput thermoforming method, where TPE molding experiments have been carried out without applied pressure and vacuum assistance within an overall cycle time of 180 s. The quality of the obtained thermoplastic systems show robust behavior and an opening/closing frequency of 5 Hz.

  4. Substrate-induced gene expression screening: a method for high-throughput screening of metagenome libraries.

    Science.gov (United States)

    Uchiyama, Taku; Miyazaki, Kentaro

    2010-01-01

    The SIGEX (substrate-induced gene expression) method is a novel approach for the screening of gene (genome) libraries. In addition to the commonly used function- and sequence-driven approaches to screening, SIGEX provides a third option; in SIGEX, positives are identified using a reporter gene, and the library is constructed using an "operon-trap" vector. This vector contains the reporter gene immediately downstream of the cloning site for the genomic insert so that the expression of the inserted gene(s) is coupled with that of the reporter gene. This system is especially suitable for screening catabolic genes that are induced in response to metabolically relevant compounds, such as substrates. If expression of the inserted gene(s) is activated in response to the addition of these compounds, then positive clones can be identified based on the reporter signal. The most effective selection is obtained by the use of a FACS (fluorescence-activated cell sorter) in conjunction with a FACS-compatible fluorescent reporter protein, such as GFP (green fluorescent protein). Activity-based screening of metagenomic libraries often suffers from low sensitivity and low throughput. In contrast, the high throughput, high sensitivity, and versatility of SIGEX make it a particularly suitable method for screening metagenomic libraries.

  5. A high-throughput method for GMO multi-detection using a microfluidic dynamic array.

    Science.gov (United States)

    Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J

    2014-02-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.

  6. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method.

    Science.gov (United States)

    Yang, Kewei; Delaney, Joseph T; Schubert, Ulrich S; Fahr, Alfred

    2012-03-01

    A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50 nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.

  7. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing

    DEFF Research Database (Denmark)

    Gamba, Cristina; Hanghøj, Kristian Ebbesen; Gaunitz, Charleen

    2016-01-01

    The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs...... of high-throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning...... a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules...

  8. High-throughput transformation method for Yarrowia lipolytica mutant library screening.

    Science.gov (United States)

    Leplat, Christophe; Nicaud, Jean-Marc; Rossignol, Tristan

    2015-09-01

    As a microorganism of major biotechnological importance, the oleaginous yeast Yarrowia lipolytica is subjected to intensive genetic engineering and functional genomic analysis. Future advancements in this area, however, require a system that will generate a large collection of mutants for high-throughput screening. Here, we report a rapid and efficient method for high-throughput transformation of Y. lipolytica in 96-well plates. We developed plasmids and strains for the large-scale screening of overexpression mutant strains, using Gateway® vectors that were adapted for specific locus integration in Y. lipolytica. As an example, a collection of mutants that overexpressed the alkaline extracellular protease (AEP) was obtained in a single transformation experiment. The platform strain that we developed to receive the overexpression cassette was designed to constitutively express a fluorescent protein as a convenient growth reporter for screening in non-translucid media. An example of growth comparison in skim milk-based medium between AEP overexpression and deletion mutants is provided.

  9. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  10. Statistical methods for integrating multiple types of high-throughput data.

    Science.gov (United States)

    Xie, Yang; Ahn, Chul

    2010-01-01

    Large-scale sequencing, copy number, mRNA, and protein data have given great promise to the biomedical research, while posing great challenges to data management and data analysis. Integrating different types of high-throughput data from diverse sources can increase the statistical power of data analysis and provide deeper biological understanding. This chapter uses two biomedical research examples to illustrate why there is an urgent need to develop reliable and robust methods for integrating the heterogeneous data. We then introduce and review some recently developed statistical methods for integrative analysis for both statistical inference and classification purposes. Finally, we present some useful public access databases and program code to facilitate the integrative analysis in practice.

  11. Optimized methods for high-throughput analysis of hair samples for American black bears (Ursus americanus

    Directory of Open Access Journals (Sweden)

    Thea V Kristensen

    2011-06-01

    Full Text Available Noninvasive sampling has revolutionized the study of species that are difficult or dangerous to study using traditional methods. Early studies were often confined to small populations as genotyping large numbers of samples was prohibitively costly and labor intensive. Here we describe optimized protocols designed to reduce the costs and effort required for microsatellite genotyping and sex determination for American black bears (Ursus americanus. We redesigned primers for six microsatellite loci, designed novel primers for the amelogenin gene for genetic determination of sex, and optimized conditions for a nine-locus multiplex PCR. Our high-throughput methods will enable researchers to include larger sample sizes in studies of black bears, providing data in a timely fashion that can be used to inform population management.

  12. Differential Dynamic Microscopy: a High-Throughput Method for Characterizing the Motility of Microorganism

    CERN Document Server

    Martinez, Vincent A; Croze, Ottavio A; Tailleur, Julien; Reufer, Mathias; Schwarz-Linek, Jana; Wilson, Laurence G; Bees, Martin A; Poon, Wilson C K

    2012-01-01

    We present a fast, high-throughput method for characterizing the motility of microorganisms in 3D based on standard imaging microscopy. Instead of tracking individual cells, we analyse the spatio-temporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function (ISF) of the system. We demonstrate our method on two different types of microorganisms: bacteria, both smooth swimming (run only) and wild type (run and tumble) Escherichia coli, and the bi-flagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the ISF, we are able to extract (i) for E. coli: the swimming speed distribution, the fraction of motile cells and the diffusivity, and (ii) for C. reinhardtii: the swimming speed distribution, the amplitude and frequency of the oscillatory dynamics. In both cases, the motility parameters are averaged over \\approx 10^4 cells and obtained in a few minutes.

  13. Development of a facile method for high throughput screening with reporter gene assays.

    Science.gov (United States)

    Goetz, A S; Andrews, J L; Littleton, T R; Ignar, D M

    2000-10-01

    This report describes a facile methodology for high throughput screening with stable mammalian cell reporter gene assays. We have adapted a 96-well adherent cell method to an assay in which cells propagated in suspension are dispensed into 96- or 384-well plates containing test compounds in 100% DMSO. The validation of a stable CHO cell line that expresses 6xCRE-luciferase for use as a reporter gene host cell line is described. The reporter gene, when expressed in this particular CHO cell line, appears to respond specifically to modulation of cAMP levels, thus the cell line is appropriate for screening and pharmacological analysis of Galpha(s)- and Galpha(i)-coupled seven-transmembrane receptors. The development of the new suspension cell assay in both 96- and 384-well formats was performed using a derivative of the CHO host reporter cell line that was stably transfected with human melanocortin-1 receptor. The response of this cell line to NDP-alpha-melanocyte-stimulating hormone and forskolin was nearly identical between the adherent and suspension methods. The new method offers improvements in cost, throughput, cell culture effort, compound stability, accuracy of compound delivery, and hands-on time. The 384-well assay can be performed at high capacity in any laboratory without the use of expensive automation systems such that a single person can screen 100 plates per day with 3.5-4 h hands-on time. Although the system has been validated using Galpha(s)-coupled receptor-mediated activation of a cAMP response element, the method can be applied to other types of targets and/or transcriptional response elements.

  14. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells

    KAUST Repository

    Call, Douglas F.

    2011-07-01

    There is great interest in studying exoelectrogenic microorganisms, but existing methods can require expensive electrochemical equipment and specialized reactors. We developed a simple system for conducting high throughput bioelectrochemical research using multiple inexpensive microbial electrolysis cells (MECs) built with commercially available materials and operated using a single power source. MECs were small crimp top serum bottles (5mL) with a graphite plate anode (92m 2/m 3) and a cathode of stainless steel (SS) mesh (86m 2/m 3), graphite plate, SS wire, or platinum wire. The highest volumetric current density (240A/m 3, applied potential of 0.7V) was obtained using a SS mesh cathode and a wastewater inoculum (acetate electron donor). Parallel operated MECs (single power source) did not lead to differences in performance compared to non-parallel operated MECs, which can allow for high throughput reactor operation (>1000 reactors) using a single power supply. The utility of this method for cultivating exoelectrogenic microorganisms was demonstrated through comparison of buffer effects on pure (Geobacter sulfurreducens and Geobacter metallireducens) and mixed cultures. Mixed cultures produced current densities equal to or higher than pure cultures in the different media, and current densities for all cultures were higher using a 50mM phosphate buffer than a 30mM bicarbonate buffer. Only the mixed culture was capable of sustained current generation with a 200mM phosphate buffer. These results demonstrate the usefulness of this inexpensive method for conducting in-depth examinations of pure and mixed exoelectrogenic cultures. © 2011 Elsevier B.V.

  15. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis.

    Science.gov (United States)

    Nanita, Sergio C; Kaldon, Laura G

    2016-01-01

    Where does flow injection analysis mass spectrometry (FIA-MS) stand relative to ambient mass spectrometry (MS) and chromatography-MS? Improvements in FIA-MS methods have resulted in fast-expanding uses of this technique. Key advantages of FIA-MS over chromatography-MS are fast analysis (typical run time quantitative screening of chemicals needs to be performed rapidly and reliably. The FIA-MS methods discussed herein have demonstrated quantitation of diverse analytes, including pharmaceuticals, pesticides, environmental contaminants, and endogenous compounds, at levels ranging from parts-per-billion (ppb) to parts-per-million (ppm) in very complex matrices (such as blood, urine, and a variety of foods of plant and animal origin), allowing successful applications of the technique in clinical diagnostics, metabolomics, environmental sciences, toxicology, and detection of adulterated/counterfeited goods. The recent boom in applications of FIA-MS for high-throughput quantitative analysis has been driven in part by (1) the continuous improvements in sensitivity and selectivity of MS instrumentation, (2) the introduction of novel sample preparation procedures compatible with standalone mass spectrometric analysis such as salting out assisted liquid-liquid extraction (SALLE) with volatile solutes and NH4(+) QuEChERS, and (3) the need to improve efficiency of laboratories to satisfy increasing analytical demand while lowering operational cost. The advantages and drawbacks of quantitative analysis by FIA-MS are discussed in comparison to chromatography-MS and ambient MS (e.g., DESI, LAESI, DART). Generally, FIA-MS sits 'in the middle' between ambient MS and chromatography-MS, offering a balance between analytical capability and sample analysis throughput suitable for broad applications in life sciences, agricultural chemistry, consumer safety, and beyond.

  16. On Efficient Feature Ranking Methods for High-Throughput Data Analysis.

    Science.gov (United States)

    Liao, Bo; Jiang, Yan; Liang, Wei; Peng, Lihong; Peng, Li; Hanyurwimfura, Damien; Li, Zejun; Chen, Min

    2015-01-01

    Efficient mining of high-throughput data has become one of the popular themes in the big data era. Existing biology-related feature ranking methods mainly focus on statistical and annotation information. In this study, two efficient feature ranking methods are presented. Multi-target regression and graph embedding are incorporated in an optimization framework, and feature ranking is achieved by introducing structured sparsity norm. Unlike existing methods, the presented methods have two advantages: (1) the feature subset simultaneously account for global margin information as well as locality manifold information. Consequently, both global and locality information are considered. (2) Features are selected by batch rather than individually in the algorithm framework. Thus, the interactions between features are considered and the optimal feature subset can be guaranteed. In addition, this study presents a theoretical justification. Empirical experiments demonstrate the effectiveness and efficiency of the two algorithms in comparison with some state-of-the-art feature ranking methods through a set of real-world gene expression data sets.

  17. Cancer panomics: computational methods and infrastructure for integrative analysis of cancer high-throughput "omics" data

    DEFF Research Database (Denmark)

    Brunak, Søren; De La Vega, Francisco M.; Rätsch, Gunnar

    2014-01-01

    Targeted cancer treatment is becoming the goal of newly developed oncology medicines and has already shown promise in some spectacular cases such as the case of BRAF kinase inhibitors in BRAF-mutant (e.g. V600E) melanoma. These developments are driven by the advent of high-throughput sequencing...

  18. High-throughput open source computational methods for genetics and genomics

    NARCIS (Netherlands)

    Prins, J.C.P.

    2015-01-01

    Biology is increasingly data driven by virtue of the development of high-throughput technologies, such as DNA and RNA sequencing. Computational biology and bioinformatics are scientific disciplines that cross-over between the disciplines of biology, informatics and statistics; which is clearly refle

  19. High-throughput open source computational methods for genetics and genomics

    NARCIS (Netherlands)

    Prins, J.C.P.

    2015-01-01

    Biology is increasingly data driven by virtue of the development of high-throughput technologies, such as DNA and RNA sequencing. Computational biology and bioinformatics are scientific disciplines that cross-over between the disciplines of biology, informatics and statistics; which is clearly

  20. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing.

    Science.gov (United States)

    Gamba, Cristina; Hanghøj, Kristian; Gaunitz, Charleen; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Bradley, Daniel G; Orlando, Ludovic

    2016-03-01

    The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high-throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost-effective solution for downstream applications, including DNA sequencing on HTS platforms. © 2015 John Wiley & Sons Ltd.

  1. A High-Temperature, High-Throughput Method for Monitoring Residual Formaldehyde in Vaccine Formulations.

    Science.gov (United States)

    Stallings, Kendra D; Kitchener, Rebecca L; Hentz, Nathaniel G

    2014-06-01

    Formaldehyde has long been used in the chemical inactivation of viral material during vaccine production. Viral inactivation is required so that the vaccine does not infect the patient. Formaldehyde is diluted during the vaccine manufacturing process, but residual quantities of formaldehyde are still present in some current vaccines. Although formaldehyde is considered safe for use in vaccines by the Food and Drug Administration, excessive exposure to this chemical may lead to cancer or other health-related issues. An assay was developed that is capable of detecting levels of residual formaldehyde in influenza vaccine samples. The assay employs incubation of dosage formulation suspensions with hydralazine hydrochloride under mildly acidic conditions and elevated temperatures, where formaldehyde is derivatized to yield fluorescent s-triazolo-[3,4-a]-phthalazine. The assay has been traditionally run by high-performance liquid chromatography, where runtimes of 15 minutes per sample can be expected. Our laboratory has developed a plate-based version that drastically improved the throughput to a runtime of 96 samples per minute. The assay was characterized and validated with respect to reaction temperature, evaporation, stability, and selectivity to monitor residual formaldehyde in various influenza vaccine samples, including in-process samples. Heat transfer and evaporation will be especially considered in this work. Since the assay is plate based, it is automation friendly. The new assay format has attained detection limits of 0.01 µg/mL residual formaldehyde, which is easily able to detect and quantify formaldehyde at levels used in many current vaccine formulations (<5 µg/0.5-mL dose).

  2. Method with high-throughput screening potential for antioxidative substances using Escherichia coli biosensor katG'::lux.

    Science.gov (United States)

    Tienaho, Jenni; Sarjala, Tytti; Franzén, Robert; Karp, Matti

    2015-11-01

    A new method is described for the rapid real-time screening of antioxidative properties using a recombinant Escherichia coli DPD2511 biosensor. This microplate technique, without time-consuming pre-incubations and handling, has potential for a high-throughput search of bioactive compounds. Special emphasis was given to obtaining highly reliable and repeatable results.

  3. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system.

    Science.gov (United States)

    Sullivan, David C; Mirmalek-Sani, Sayed-Hadi; Deegan, Daniel B; Baptista, Pedro M; Aboushwareb, Tamer; Atala, Anthony; Yoo, James J

    2012-11-01

    End-stage renal failure is a devastating disease, with donor organ transplantation as the only functional restorative treatment. The current number of donor organs meets less than one-fifth of demand, so regenerative medicine approaches have been proposed as potential therapeutic alternatives. One such approach for whole large-organ bioengineering is to combine functional renal cells with a decellularized porcine kidney scaffold. The efficacy of cellular removal and biocompatibility of the preserved porcine matrices, as well as scaffold reproducibility, are critical to the success of this approach. We evaluated the effectiveness of 0.25 and 0.5% sodium dodecyl sulfate (SDS) and 1% Triton X-100 in the decellularization of adult porcine kidneys. To perform the decellularization, a high-throughput system was designed and constructed. In this study all three methods examined showed significant cellular removal, but 0.5% SDS was the most effective detergent (<50 ng DNA/mg dry tissue). Decellularized organs retained intact microarchitecture including the renal vasculature and essential extracellular matrix components. The SDS-treated decellularized scaffolds were non-cytotoxic to primary human renal cells. This method ensures clearance of porcine cellular material (which directly impacts immunoreactivity during transplantation) and preserves the extracellular matrix and cellular compatibility of these renal scaffolds. Thus, we have developed a rapid decellularization method that can be scaled up for use in other large organs, and this represents a step toward development of a transplantable organ using tissue engineering techniques.

  4. A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes.

    Science.gov (United States)

    Jakubowski, Brandon R; Longoria, Rafael A; Shubeita, George T

    2012-01-01

    Drosophila melanogaster is widely used as a model system for development and disease. Due to the homology between Drosophila and human genes, as well as the tractable genetics of the fly, its use as a model for neurologic disorders, in particular, has been rising. Locomotive impairment is a commonly used diagnostic for screening and characterization of these models, yet a fast, sensitive and model-free method to compare behavior is lacking. Here, we present a high throughput method to quantify the crawling behavior of larvae. We use the mean squared displacement as well as the direction autocorrelation of the crawling larvae as descriptors of their motion. By tracking larvae from wild-type strains and models of the Fragile X mental retardation as well as Alzheimer disease, we show these mutants exhibit impaired crawling. We further show that the magnitude of impairment correlates with the severity of the mutation, demonstrating the sensitivity and the dynamic range of the method. Finally, we study larvae with altered expression of the shaggy gene, a homolog of Glycogen Synthase Kinase-3 (GSK-3), which has been implicated in Alzheimer disease. Surprisingly, we find that both increased and decreased expression of dGSK-3 lead to similar larval crawling impairment. These findings have implications for the use of GSK-3 inhibitors recently proposed for Alzheimer treatment.

  5. Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton-Brehm, Scott [ORNL; Vishnivetskaya, Tatiana A [ORNL; Allman, Steve L [ORNL; Mielenz, Jonathan R [ORNL; Elkins, James G [ORNL

    2012-01-01

    Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

  6. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

    Science.gov (United States)

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  7. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    Science.gov (United States)

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-03

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths.

  8. Information content and analysis methods for multi-modal high-throughput biomedical data.

    Science.gov (United States)

    Ray, Bisakha; Henaff, Mikael; Ma, Sisi; Efstathiadis, Efstratios; Peskin, Eric R; Picone, Marco; Poli, Tito; Aliferis, Constantin F; Statnikov, Alexander

    2014-03-21

    The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect "multi-modal" data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression, and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data.

  9. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, Jacqueline Alexandra [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-11-22

    This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.

  10. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Andrew J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Capo, Rosemary C. [Univ. of Pittsburgh, PA (United States); Stewart, Brian W. [Univ. of Pittsburgh, PA (United States); Phan, Thai T. [Univ. of Pittsburgh, PA (United States); Jain, Jinesh C. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hakala, Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Guthrie, George D. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-09-22

    This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.

  11. A TMA de-arraying method for high throughput biomarker discovery in tissue research.

    Directory of Open Access Journals (Sweden)

    Yinhai Wang

    Full Text Available BACKGROUND: Tissue MicroArrays (TMAs represent a potential high-throughput platform for the analysis and discovery of tissue biomarkers. As TMA slides are produced manually and subject to processing and sectioning artefacts, the layout of TMA cores on the final slide and subsequent digital scan (TMA digital slide is often disturbed making it difficult to associate cores with their original position in the planned TMA map. Additionally, the individual cores can be greatly altered and contain numerous irregularities such as missing cores, grid rotation and stretching. These factors demand the development of a robust method for de-arraying TMAs which identifies each TMA core, and assigns them to their appropriate coordinates on the constructed TMA slide. METHODOLOGY: This study presents a robust TMA de-arraying method consisting of three functional phases: TMA core segmentation, gridding and mapping. The segmentation of TMA cores uses a set of morphological operations to identify each TMA core. Gridding then utilises a Delaunay Triangulation based method to find the row and column indices of each TMA core. Finally, mapping correlates each TMA core from a high resolution TMA whole slide image with its name within a TMAMap. CONCLUSION: This study describes a genuine robust TMA de-arraying algorithm for the rapid identification of TMA cores from digital slides. The result of this de-arraying algorithm allows the easy partition of each TMA core for further processing. Based on a test group of 19 TMA slides (3129 cores, 99.84% of cores were segmented successfully, 99.81% of cores were gridded correctly and 99.96% of cores were mapped with their correct names via TMAMaps. The gridding of TMA cores were also extensively tested using a set of 113 pseudo slide (13,536 cores with a variety of irregular grid layouts including missing cores, rotation and stretching. 100% of the cores were gridded correctly.

  12. A TMA de-arraying method for high throughput biomarker discovery in tissue research.

    Science.gov (United States)

    Wang, Yinhai; Savage, Kienan; Grills, Claire; McCavigan, Andrena; James, Jacqueline A; Fennell, Dean A; Hamilton, Peter W

    2011-01-01

    Tissue MicroArrays (TMAs) represent a potential high-throughput platform for the analysis and discovery of tissue biomarkers. As TMA slides are produced manually and subject to processing and sectioning artefacts, the layout of TMA cores on the final slide and subsequent digital scan (TMA digital slide) is often disturbed making it difficult to associate cores with their original position in the planned TMA map. Additionally, the individual cores can be greatly altered and contain numerous irregularities such as missing cores, grid rotation and stretching. These factors demand the development of a robust method for de-arraying TMAs which identifies each TMA core, and assigns them to their appropriate coordinates on the constructed TMA slide. This study presents a robust TMA de-arraying method consisting of three functional phases: TMA core segmentation, gridding and mapping. The segmentation of TMA cores uses a set of morphological operations to identify each TMA core. Gridding then utilises a Delaunay Triangulation based method to find the row and column indices of each TMA core. Finally, mapping correlates each TMA core from a high resolution TMA whole slide image with its name within a TMAMap. This study describes a genuine robust TMA de-arraying algorithm for the rapid identification of TMA cores from digital slides. The result of this de-arraying algorithm allows the easy partition of each TMA core for further processing. Based on a test group of 19 TMA slides (3129 cores), 99.84% of cores were segmented successfully, 99.81% of cores were gridded correctly and 99.96% of cores were mapped with their correct names via TMAMaps. The gridding of TMA cores were also extensively tested using a set of 113 pseudo slide (13,536 cores) with a variety of irregular grid layouts including missing cores, rotation and stretching. 100% of the cores were gridded correctly.

  13. Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Braga, Thiago Verano; Roepstorff, Peter

    2015-01-01

    for high-throughput experiments allow large-scale identification and quantification of several PTM types. This review addresses the concurrently emerging challenges for the computational analysis of the resulting data and presents PTM-centered approaches for spectra identification, statistical analysis......, multivariate analysis and data interpretation. We furthermore discuss the potential of future developments that will help to gain deep insight into the PTM-ome and its biological role in cells....

  14. High Throughput Method to Quantify Anterior-Posterior Polarity of T-Cells and Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Susan J. Marriott

    2011-11-01

    Full Text Available The virologic synapse (VS, which is formed between a virus-infected and uninfected cell, plays a central role in the transmission of certain viruses, such as HIV and HTLV-1. During VS formation, HTLV-1-infected T-cells polarize cellular and viral proteins toward the uninfected T-cell. This polarization resembles anterior-posterior cell polarity induced by immunological synapse (IS formation, which is more extensively characterized than VS formation and occurs when a T-cell interacts with an antigen-presenting cell. One measure of cell polarity induced by both IS or VS formation is the repositioning of the microtubule organizing center (MTOC relative to the contact point with the interacting cell. Here we describe an automated, high throughput system to score repositioning of the MTOC and thereby cell polarity establishment. The method rapidly and accurately calculates the angle between the MTOC and the IS for thousands of cells. We also show that the system can be adapted to score anterior-posterior polarity establishment of epithelial cells. This general approach represents a significant advancement over manual cell polarity scoring, which is subject to experimenter bias and requires more time and effort to evaluate large numbers of cells.

  15. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    Science.gov (United States)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  16. DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning

    KAUST Repository

    Soufan, Othman

    2016-11-10

    Background Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods for extracting useful information from these assays. Virtual screening and a wide variety of databases, methods and solutions proposed to-date, did not completely overcome these challenges. This study is based on a multi-label classification (MLC) technique for modeling correlations between several HTS assays, meaning that a single prediction represents a subset of assigned correlated labels instead of one label. Thus, the devised method provides an increased probability for more accurate predictions of compounds that were not tested in particular assays. Results Here we present DRABAL, a novel MLC solution that incorporates structure learning of a Bayesian network as a step to model dependency between the HTS assays. In this study, DRABAL was used to process more than 1.4 million interactions of over 400,000 compounds and analyze the existing relationships between five large HTS assays from the PubChem BioAssay Database. Compared to different MLC methods, DRABAL significantly improves the F1Score by about 22%, on average. We further illustrated usefulness and utility of DRABAL through screening FDA approved drugs and reported ones that have a high probability to interact with several targets, thus enabling drug-multi-target repositioning. Specifically DRABAL suggests the Thiabendazole drug as a common activator of the NCP1 and Rab-9A proteins, both of which are designed to identify treatment modalities for the Niemann–Pick type C disease. Conclusion We developed a novel MLC solution based on a Bayesian active learning framework to overcome the challenge of lacking fully labeled training data and exploit actual dependencies between the HTS assays. The solution is motivated by the need to model dependencies between existing

  17. High-throughput crystallization of membrane proteins using the lipidic bicelle method.

    Science.gov (United States)

    Ujwal, Rachna; Abramson, Jeff

    2012-01-09

    Membrane proteins (MPs) play a critical role in many physiological processes such as pumping specific molecules across the otherwise impermeable membrane bilayer that surrounds all cells and organelles. Alterations in the function of MPs result in many human diseases and disorders; thus, an intricate understanding of their structures remains a critical objective for biological research. However, structure determination of MPs remains a significant challenge often stemming from their hydrophobicity. MPs have substantial hydrophobic regions embedded within the bilayer. Detergents are frequently used to solubilize these proteins from the bilayer generating a protein-detergent micelle that can then be manipulated in a similar manner as soluble proteins. Traditionally, crystallization trials proceed using a protein-detergent mixture, but they often resist crystallization or produce crystals of poor quality. These problems arise due to the detergent's inability to adequately mimic the bilayer resulting in poor stability and heterogeneity. In addition, the detergent shields the hydrophobic surface of the MP reducing the surface area available for crystal contacts. To circumvent these drawbacks MPs can be crystallized in lipidic media, which more closely simulates their endogenous environment, and has recently become a de novo technique for MP crystallization. Lipidic cubic phase (LCP) is a three-dimensional lipid bilayer penetrated by an interconnected system of aqueous channels. Although monoolein is the lipid of choice, related lipids such as monopalmitolein and monovaccenin have also been used to make LCP. MPs are incorporated into the LCP where they diffuse in three dimensions and feed crystal nuclei. A great advantage of the LCP is that the protein remains in a more native environment, but the method has a number of technical disadvantages including high viscosity (requiring specialized apparatuses) and difficulties in crystal visualization and manipulation. Because

  18. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Karson S Putt

    Full Text Available Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  19. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    Science.gov (United States)

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  20. Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arrays

    Directory of Open Access Journals (Sweden)

    Malloff Chad A

    2004-01-01

    Full Text Available Abstract Background The recent development of array based comparative genomic hybridization (CGH technology provides improved resolution for detection of genomic DNA copy number alterations. In array CGH, generating spotting solution is a multi-step process where bacterial artificial chromosome (BAC clones are converted to replenishable PCR amplified fragments pools (AFP for use as spotting solution in a microarray format on glass substrate. With completion of the human and mouse genome sequencing, large BAC clone sets providing complete genome coverage are available for construction of whole genome BAC arrays. Currently, Southern hybridization, fluorescent in-situ hybridization (FISH, and BAC end sequencing methods are commonly used to identify the initial BAC clone but not the end product used for spotting arrays. The AFP sequencing technique described in this study is a novel method designed to verify the identity of array spotting solution in a high throughput manner. Results We show here that Southern hybridization, FISH, and AFP sequencing can be used to verify the identity of final spotting solutions using less than 10% of the AFP product. Single pass AFP sequencing identified over half of the 960 AFPs analyzed. Moreover, using two vector primers approximately 90% of the AFP spotting solutions can be identified. Conclusions In this feasibility study we demonstrate that current methods for identifying initial BAC clones can be adapted to verify the identity of AFP spotting solutions used in printing arrays. Of these methods, AFP sequencing proves to be the most efficient for large scale identification of spotting solution in a high throughput manner.

  1. Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry.

    Science.gov (United States)

    Tischer, Bruna; Oliveira, Alessandra Stangherlin; Ferreira, Daniele de Freitas; Menezes, Cristiano Ragagnin; Duarte, Fábio Andrei; Wagner, Roger; Barin, Juliano Smanioto

    2017-01-15

    Infrared thermal imaging was combined with disposable microplates to perform enthalpimetric analysis using an infrared camera to monitor temperature without contact. The proposed thermal infrared enthalpimetry (TIE) method was used to determine the total, fixed and volatile acidities of vinegars. Sample preparation and analysis were performed in the same vessel, avoiding excessive sample handling and reducing energy expenditure by more than ten times. The results agreed with those of the conventional method for different kinds of vinegars, with values of 1.7%, and 2.3% for repeatability and intermediate precision, respectively. A linear calibration curve was obtained from 0.040 to 1.30molL(-1). The proposed method provided rapid results (within 10s) for four samples simultaneously, a sample throughput of up to 480 samples per hour. In addition, the method complies with at least eight of twelve recommendations for green analytical chemistry, making TIE a promising tool for routine vinegar analysis.

  2. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    Science.gov (United States)

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  3. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection.

    Directory of Open Access Journals (Sweden)

    Priya Choudhry

    Full Text Available Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays.

  4. Statistical methods for the analysis of high-throughput metabolomics data

    Directory of Open Access Journals (Sweden)

    Fabian J. Theis

    2013-01-01

    Full Text Available Metabolomics is a relatively new high-throughput technology that aims at measuring all endogenous metabolites within a biological sample in an unbiased fashion. The resulting metabolic profiles may be regarded as functional signatures of the physiological state, and have been shown to comprise effects of genetic regulation as well as environmental factors. This potential to connect genotypic to phenotypic information promises new insights and biomarkers for different research fields, including biomedical and pharmaceutical research. In the statistical analysis of metabolomics data, many techniques from other omics fields can be reused. However recently, a number of tools specific for metabolomics data have been developed as well. The focus of this mini review will be on recent advancements in the analysis of metabolomics data especially by utilizing Gaussian graphical models and independent component analysis.

  5. A high throughput DNA extraction method with high yield and quality

    Science.gov (United States)

    Background: Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome), and next-generation sequencing directly from sheared ...

  6. A high-throughput cell-based method to predict the unbound drug fraction in the brain.

    Science.gov (United States)

    Mateus, André; Matsson, Pär; Artursson, Per

    2014-04-10

    Optimization of drug efficacy in the brain requires understanding of the local exposure to unbound drug at the site of action. This relies on measurements of the unbound drug fraction (fu,brain), which currently requires access to brain tissue. Here, we present a novel methodology using homogenates of cultured cells for rapid estimation of fu,brain. In our setup, drug binding to human embryonic kidney cell (HEK293) homogenate was measured in a small-scale dialysis apparatus. To increase throughput, we combined drugs into cassettes for simultaneous measurement of multiple compounds. Our method estimated fu,brain with an average error of 1.9-fold. We propose that our simple method can be used as an inexpensive, easily available and high-throughput alternative to brain tissues excised from laboratory animals. Thereby, estimates of unbound drug exposure can now be implemented at a much earlier stage of the drug discovery process, when molecular property changes are easier to make.

  7. Micro-X-ray fluorescence as a general high-throughput screening method for catalyst discovery and small molecule recognition.

    Science.gov (United States)

    Miller, Thomasin C; Mann, Grace; Havrilla, George J; Wells, Cyndi A; Warner, Benjamin P; Baker, R Tom

    2003-01-01

    A powerful high-throughput screening technique is described for the rapid screening of bead-based libraries for catalyst discovery and molecular recognition. Micro-X-ray fluorescence (MXRF) screens materials for elemental composition with mesoscale analysis. This method is nondestructive and requires minimal sample preparation and no special tags for analysis, and the screening time is dependent on the desired sensitivity. The speed, sensitivity, and simplicity of MXRF as a high-throughput screening technique were applied to screen bead-based libraries of oligopeptides for phosphate hydrolysis catalysts and molecular recognition of selective receptors for the degradation products and analogues of chemical warfare agents. This paper demonstrates the analytical or HTS capability of MXRF for combinatorial screening. It is meant only to show the capabilities of MXRF and is not meant as an exhaustive study of the catalyst and molecular recognition systems presented.

  8. Adapting high-throughput screening methods and assays for biocontainment laboratories.

    Science.gov (United States)

    Rasmussen, Lynn; Tigabu, Bersabeh; White, E Lucile; Bostwick, Robert; Tower, Nichole; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W; Noah, James W

    2015-01-01

    High-throughput screening (HTS) has been integrated into the drug discovery process, and multiple assay formats have been widely used in many different disease areas but with limited focus on infectious agents. In recent years, there has been an increase in the number of HTS campaigns using infectious wild-type pathogens rather than surrogates or biochemical pathogen-derived targets. Concurrently, enhanced emerging pathogen surveillance and increased human mobility have resulted in an increase in the emergence and dissemination of infectious human pathogens with serious public health, economic, and social implications at global levels. Adapting the HTS drug discovery process to biocontainment laboratories to develop new drugs for these previously uncharacterized and highly pathogenic agents is now feasible, but HTS at higher biosafety levels (BSL) presents a number of unique challenges. HTS has been conducted with multiple bacterial and viral pathogens at both BSL-2 and BSL-3, and pilot screens have recently been extended to BSL-4 environments for both Nipah and Ebola viruses. These recent successful efforts demonstrate that HTS can be safely conducted at the highest levels of biological containment. This review outlines the specific issues that must be considered in the execution of an HTS drug discovery program for high-containment pathogens. We present an overview of the requirements for HTS in high-level biocontainment laboratories.

  9. Label-free high-throughput screening via mass spectrometry: a single cystathionine quantitative method for multiple applications.

    Science.gov (United States)

    Holt, Tom G; Choi, Bernard K; Geoghagen, Neil S; Jensen, Kristian K; Luo, Qi; LaMarr, William A; Makara, Gergely M; Malkowitz, Lorraine; Ozbal, Can C; Xiong, Yusheng; Dufresne, Claude; Luo, Ming-Juan

    2009-10-01

    Label-free mass spectrometric (MS) technologies are particularly useful for enzyme assay design for drug discovery screens. MS permits the selective detection of enzyme substrates or products in a wide range of biological matrices without need for derivatization, labeling, or capture technologies. As part of a cardiovascular drug discovery effort aimed at finding modulators of cystathionine beta-synthase (CBS), we used the RapidFire((R)) label-free high-throughput MS (HTMS) technology to develop a high-throughput screening (HTS) assay for CBS activity. The in vitro assay used HTMS to quantify the unlabeled product of the CBS reaction, cystathionine. Cystathionine HTMS analyses were carried out with a throughput of 7 s per sample and quantitation over a linear range of 80-10,000 nM. A compound library of 25,559 samples (or 80 384-well plates) was screened as singlets using the HTMS assay in a period of 8 days. With a hit rate of 0.32%, the actives showed a 90% confirmation rate. The in vitro assay was applied to secondary screens in more complex matrices with no additional analytical development. Our results show that the HTMS method was useful for screening samples containing serum, for cell-based assays, and for liver explants. The novel extension of the in vitro analytical method, without modification, to secondary assays resulted in a significant and advantageous economy of development time for the drug discovery project.

  10. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues

    Directory of Open Access Journals (Sweden)

    Balcke Gerd Ulrich

    2012-11-01

    Full Text Available Abstract Background Phytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding. These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing. Results Here we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified. Conclusion The method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive tandem mass spectrometry instrumentation.

  11. Microbial Characterization of Denitrifying Sulifde Removal Sludge Using High-Throughput Amplicon Sequencing Method

    Institute of Scientific and Technical Information of China (English)

    Ma Wenjuan; Liu Chunshuang; Zhao Dongfeng; Guo Yadong; Wang Aijie; Jia Kuili

    2015-01-01

    The denitrifying sulifde removal (DSR) process has recently been studied extensively from an engineering per-spective. However, the importance of microbial communities of this process was generally underestimated. In this study, the microbial community structure of a lab-scale DSR reactor was characterized in order to provide a comprehensive insight into the key microbial groups in DSR system. Results from high-throughput sequencing analysis revealed that the frac-tion of autotrophic denitriifers increased from 2.34 % to 10.93% and 44.51% in the DSR system when the inlfuent NaCl increased from 0 g/L, to 4 g/L and 30 g/L, respectively. On the contrary, the fraction of heterotrophic denitriifers decreased from 61.74% to 39.57%, and 24.12%, respectively.Azoarcus andThiobacillus were the main autotrophic denitriifers, and Thauera was the main hetetrophic denitriifer during the whole process. This study could be useful for better understanding the interaction between autotrophs and heterotrophs in DSR system.

  12. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater.

    Science.gov (United States)

    Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali

    2016-02-01

    The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost.

  13. The modified FACS calcein AM retention assay: A high throughput flow cytometer based method to measure cytotoxicity.

    Science.gov (United States)

    Gillissen, M A; Yasuda, E; de Jong, G; Levie, S E; Go, D; Spits, H; van Helden, P M; Hazenberg, M D

    2016-07-01

    Current methods to determine cellular cytotoxicity in vitro are hampered by background signals that are caused by auto-fluorescent target and effector cells and by non-specific cell death. We combined and adjusted existing cell viability assays to develop a method that allows for highly reproducible, accurate, single cell analysis by high throughput FACS, in which non-specific cell death is corrected for. In this assay the number of living, calcein AM labeled cells that are green fluorescent are quantified by adding a fixed number of unlabeled calibration beads to the analysis. Using this modified FACS calcein AM retention method, we found EC50 values to be highly reproducible and considerably lower compared to EC50 values obtained by conventional assays, displaying the high sensitivity of this assay.

  14. Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods

    Energy Technology Data Exchange (ETDEWEB)

    Blint, Richard J. [General Motors Corporation, Warren, MI (United States)

    2007-12-31

    DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 tests of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.

  15. High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry.

    Science.gov (United States)

    Kessel, Sarah; Cribbes, Scott; Déry, Olivier; Kuksin, Dmitry; Sincoff, Eric; Qiu, Jean; Chan, Leo Li-Ying

    2016-06-01

    Oncologists have investigated the effect of protein or chemical-based compounds on cancer cells to identify potential drug candidates. Traditionally, the growth inhibitory and cytotoxic effects of the drugs are first measured in 2D in vitro models, and then further tested in 3D xenograft in vivo models. Although the drug candidates can demonstrate promising inhibitory or cytotoxicity results in a 2D environment, similar effects may not be observed under a 3D environment. In this work, we developed an image-based high-throughput screening method for 3D tumor spheroids using the Celigo image cytometer. First, optimal seeding density for tumor spheroid formation was determined by investigating the cell seeding density of U87MG, a human glioblastoma cell line. Next, the dose-response effects of 17-AAG with respect to spheroid size and viability were measured to determine the IC50 value. Finally, the developed high-throughput method was used to measure the dose response of four drugs (17-AAG, paclitaxel, TMZ, and doxorubicin) with respect to the spheroid size and viability. Each experiment was performed simultaneously in the 2D model for comparison. This detection method allowed for a more efficient process to identify highly qualified drug candidates, which may reduce the overall time required to bring a drug to clinical trial.

  16. Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish.

    Directory of Open Access Journals (Sweden)

    Steven L Walker

    Full Text Available Reporter-based assays underlie many high-throughput screening (HTS platforms, but most are limited to in vitro applications. Here, we report a simple whole-organism HTS method for quantifying changes in reporter intensity in individual zebrafish over time termed, Automated Reporter Quantification in vivo (ARQiv. ARQiv differs from current "high-content" (e.g., confocal imaging-based whole-organism screening technologies by providing a purely quantitative data acquisition approach that affords marked improvements in throughput. ARQiv uses a fluorescence microplate reader with specific detection functionalities necessary for robust quantification of reporter signals in vivo. This approach is: 1 Rapid; achieving true HTS capacities (i.e., >50,000 units per day, 2 Reproducible; attaining HTS-compatible assay quality (i.e., Z'-factors of ≥0.5, and 3 Flexible; amenable to nearly any reporter-based assay in zebrafish embryos, larvae, or juveniles. ARQiv is used here to quantify changes in: 1 Cell number; loss and regeneration of two different fluorescently tagged cell types (pancreatic beta cells and rod photoreceptors, 2 Cell signaling; relative activity of a transgenic Notch-signaling reporter, and 3 Cell metabolism; accumulation of reactive oxygen species. In summary, ARQiv is a versatile and readily accessible approach facilitating evaluation of genetic and/or chemical manipulations in living zebrafish that complements current "high-content" whole-organism screening methods by providing a first-tier in vivo HTS drug discovery platform.

  17. High aspect ratio microstructuring of transparent dielectrics using femtosecond laser pulses: method for optimization of the machining throughput

    Science.gov (United States)

    Hendricks, F.; der Au, J. Aus; Matylitsky, V. V.

    2014-10-01

    High average power, high repetition rate femtosecond lasers with μJ pulse energies are increasingly used for material processing applications. The unique advantage of material processing with sub-picosecond lasers is efficient, fast and localized energy deposition, which leads to high ablation efficiency and accuracy in nearly all kinds of solid materials. This work focuses on the machining of high aspect ratio structures in transparent dielectrics, in particular chemically strengthened Xensation™ glass from Schott using multi-pass ablative material removal. For machining of high aspect ratio structures, among others needed for cutting applications, a novel method to determine the best relation between kerf width and number of overscans is presented. The importance of this relation for optimization of the machining throughput will be demonstrated.

  18. A High-Throughput UHPLC-QqQ-MS Method for Polyphenol Profiling in Rosé Wines

    Directory of Open Access Journals (Sweden)

    Marine Lambert

    2015-04-01

    Full Text Available A rapid, sensitive and selective analysis method using Ultra High Performance Liquid Chromatography coupled to triple-quadrupole Mass Spectrometry (UHPLC-QqQ-MS has been developed for the quantification of polyphenols in rosé wines. The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM mode, the present method allows the selective quantification of up to 152 phenolic and two additional non-phenolic wine compounds in 30 min without sample purification or pre-concentration, even at low concentration levels. This method was repeatably applied to a set of 12 rosé wines and thus proved to be suitable for high-throughput and large-scale metabolomics studies.

  19. Investigation of RNA Structure by High-Throughput SHAPE-Based Probing Methods

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl

    that they are functional. The SHAPES method is further applied to the hepatitis C virus (HCV), where the data is used to refine known and predicted structures. Over the past years, the interest of studying RNA structure in their native environment has been increased, and to allow studying RNA structure inside living cells....... A highly successful method to probe RNA structure is Selective 2’-Hydroxyl Acylation analyzed by Primer Extension (SHAPE), however, this method is limited by high background rates arising from non-probed molecules and pretermination in the reverse transcription. In this thesis I describe the development...

  20. An automatic scanning method for high throughput microscopic system to facilitate medical genetic diagnosis: an initial study

    Science.gov (United States)

    Qiu, Yuchen; Chen, Xiaodong; Li, Zheng; Li, Yuhua; Chen, Wei R.; Zheng, Bin; Li, Shibo; Liu, Hong

    2012-03-01

    The purpose of this paper is to report a new automatic scanning scheme for high throughput microscopic systems aiming to facilitate disease diagnosis in genetic laboratories. To minimize the impact of the random vibration and mechanical drifting of the scanning stage in microscopic image acquisition, auto-focusing operations are usually applied repeatedly during the scanning process. Such methods ensure the acquisition of well focused images for clinical diagnosis, but are time consuming. The technique investigated in this preliminary study applies the auto-focusing operations at a limited number of locations on the slide. For the rest of the imaging field, the focusing position is quickly adjusted through linear interpolation. In this initial validation study, blood pathological slides containing both metaphase and interphase cells are scanned. For a selected area of 6.9mm×6.9mm, a number of 2×2, 3×2, 3×3, and 4×4 positions are evenly sampled for auto-focusing operations. Respectively, 25, 29, 40, and 41 clinically meaningful cells are identified for each sampling scheme. For the specific case investigated, the results demonstrate that the 4 position auto-focusing scheme could obtain the adequate number of clinically meaningful cells for the diagnosis. The schemes with more auto-focusing operations provide an option for high reliability diagnosis when clinically necessary. More comprehensive research is planned, and that may lead to optimal design of trade-off for developing the scanning scheme of the high throughput microscopic systems.

  1. High Throughput Analysis of Photocatalytic Water Purification

    NARCIS (Netherlands)

    Romao, Joana; Barata, David; Habibovic, Pamela; Mul, Guido; Baltrusaitis, Jonas

    2014-01-01

    We present a novel high throughput photocatalyst efficiency assessment method based on 96-well microplates and UV-Vis spectroscopy. We demonstrate the reproducibility of the method using methyl orange (MO) decomposition, and compare kinetic data obtained with those provided in the literature for lar

  2. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    Science.gov (United States)

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2016-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239

  3. Development and Application of a High-Throughput Screening Method to Evaluate Antifungal Activity against Trichophyton tonsurans.

    Science.gov (United States)

    Preuett, Barry; Leeder, J Steven; Abdel-Rahman, Susan

    2015-10-01

    There exist relatively few drug classes on the market to treat dermatophyte infections. This investigation was designed to develop and validate high-throughput methodology for screening and confirmation of chemicals for activity against Trichophyton tonsurans. Growth characteristics were examined on two platforms (96- and 384-well) in three media at eight spore concentrations over a period of up to 120 h. Microspectrophotometry was used to automate plate reads. The 384-well platform was used to screen more than 7000 compounds from six chemical libraries. Z-scores for optical density relative to positive growth controls were used to flag compounds of interest and activity confirmed in separate assays. The final conditions selected for both screening and confirmation with minimum inhibitory concentration (MIC) determination were growth for 48 h at 32 °C in SabDex with 1 × 10(4) spores per reaction. Sensitivity and specificity averaged 99.2% (range, 95.2%-100%) and 99.8% (range, 99.1%-100%), respectively. MICs for known antifungals were similar to those reported by others using Clinical and Laboratory Standards Institute methods. Several novel compound classes were identified to have activity against T. tonsurans with potency comparable to known antifungals. A robust, reproducible assay is described that permits high-throughput screening in T. tonsurans.

  4. Investigation of RNA Structure by High-Throughput SHAPE-Based Probing Methods

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl

    of highthroughput SHAPE-based approaches to investigate RNA structure based on novel SHAPE reagents that permit selection of full-length cDNAs. The SHAPE Selection (SHAPES) method is applied to the foot-and-mouth disease virus (FMDV) plus strand RNA genome, and the data is used to construct a genome-wide structural......RNA exists in cells as dynamic, three dimensional entities, and determination of their structure can be an essential step in understanding their function. With the introduction of next generation sequencing, it has become possible to study the structure of thousands of RNAs in a single experiment....... A highly successful method to probe RNA structure is Selective 2’-Hydroxyl Acylation analyzed by Primer Extension (SHAPE), however, this method is limited by high background rates arising from non-probed molecules and pretermination in the reverse transcription. In this thesis I describe the development...

  5. High throughput sample processing and automated scoring

    Directory of Open Access Journals (Sweden)

    Gunnar eBrunborg

    2014-10-01

    Full Text Available The comet assay is a sensitive and versatile method for assessing DNA damage in cells. In the traditional version of the assay, there are many manual steps involved and few samples can be treated in one experiment. High throughput modifications have been developed during recent years, and they are reviewed and discussed. These modifications include accelerated scoring of comets; other important elements that have been studied and adapted to high throughput are cultivation and manipulation of cells or tissues before and after exposure, and freezing of treated samples until comet analysis and scoring. High throughput methods save time and money but they are useful also for other reasons: large-scale experiments may be performed which are otherwise not practicable (e.g., analysis of many organs from exposed animals, and human biomonitoring studies, and automation gives more uniform sample treatment and less dependence on operator performance. The high throughput modifications now available vary largely in their versatility, capacity, complexity and costs. The bottleneck for further increase of throughput appears to be the scoring.

  6. A new versatile microarray-based method for high-throughput screening of carbohydrate-active enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia; Pedersen, Henriette Lodberg; Schückel, Julia;

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing, together with associated bioinformatic tools have identified vast numbers of putative carbohydrate degrading and modifying enzymes including glycoside hydrolases...... and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high-throughput and versatile...... semi-quantitative enzyme-screening technique which requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme cocktails and crude culture broths against single substrates, substrate mixtures and biomass samples. Moreover, we show...

  7. High throughput LC-MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum.

    Science.gov (United States)

    Jenkinson, Carl; Taylor, Angela E; Hassan-Smith, Zaki K; Adams, John S; Stewart, Paul M; Hewison, Martin; Keevil, Brian G

    2016-03-01

    Recent studies suggest that vitamin D-deficiency is linked to increased risk of common human health problems. To define vitamin D 'status' most routine analytical methods quantify one particular vitamin D metabolite, 25-hydroxyvitamin D3 (25OHD3). However, vitamin D is characterized by complex metabolic pathways, and simultaneous measurement of multiple vitamin D metabolites may provide a more accurate interpretation of vitamin D status. To address this we developed a high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyse multiple vitamin D analytes, with particular emphasis on the separation of epimer metabolites. A supportive liquid-liquid extraction (SLE) and LC-MS/MS method was developed to quantify 10 vitamin D metabolites as well as separation of an interfering 7α-hydroxy-4-cholesten-3-one (7αC4) isobar (precursor of bile acid), and validated by analysis of human serum samples. In a cohort of 116 healthy subjects, circulating concentrations of 25-hydroxyvitamin D3 (25OHD3), 3-epi-25-hydroxyvitamin D3 (3-epi-25OHD3), 24,25-dihydroxyvitamin D3 (24R,25(OH)2D3), 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3), and 25-hydroxyvitamin D2 (25OHD2) were quantifiable using 220μL of serum, with 25OHD3 and 24R,25(OH)2D3 showing significant seasonal variations. This high-throughput LC-MS/MS method provides a novel strategy for assessing the impact of vitamin D on human health and disease.

  8. A high-throughput detection method for invasive fruit fly (Diptera: Tephritidae) species based on microfluidic dynamic array.

    Science.gov (United States)

    Jiang, Fan; Fu, Wei; Clarke, Anthony R; Schutze, Mark Kurt; Susanto, Agus; Zhu, Shuifang; Li, Zhihong

    2016-11-01

    Invasive species can be detrimental to a nation's ecology, economy and human health. Rapid and accurate diagnostics are critical to limit the establishment and spread of exotic organisms. The increasing rate of biological invasions relative to the taxonomic expertise available generates a demand for high-throughput, DNA-based diagnostics methods for identification. We designed species-specific qPCR primer and probe combinations for 27 economically important tephritidae species in six genera (Anastrepha, Bactrocera, Carpomya, Ceratitis, Dacus and Rhagoletis) based on 935 COI DNA barcode haplotypes from 181 fruit fly species publically available in BOLD, and then tested the specificity for each primer pair and probe through qPCR of 35 of those species. We then developed a standardization reaction system for detecting the 27 target species based on a microfluidic dynamic array and also applied the method to identify unknown immature samples from port interceptions and field monitoring. This method led to a specific and simultaneous detection for all 27 species in 7.5 h, using only 0.2 μL of reaction system in each reaction chamber. The approach successfully discriminated among species within complexes that had genetic similarities of up to 98.48%, while it also identified all immature samples consistent with the subsequent results of morphological examination of adults which were reared from larvae of cohorts from the same samples. We present an accurate, rapid and high-throughput innovative approach for detecting fruit flies of quarantine concern. This is a new method which has broad potential to be one of international standards for plant quarantine and invasive species detection. © 2016 John Wiley & Sons Ltd.

  9. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization.

    Science.gov (United States)

    Kastner, Elisabeth; Kaur, Randip; Lowry, Deborah; Moghaddam, Behfar; Wilkinson, Alexander; Perrie, Yvonne

    2014-12-30

    Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows for reproducible mixing in miliseconds on the nanoliter scale. Here we investigate microfluidics-based manufacturing of liposomes. The aim of these studies was to assess the parameters in a microfluidic process by varying the total flow rate (TFR) and the flow rate ratio (FRR) of the solvent and aqueous phases. Design of experiment and multivariate data analysis were used for increased process understanding and development of predictive and correlative models. High FRR lead to the bottom-up synthesis of liposomes, with a strong correlation with vesicle size, demonstrating the ability to in-process control liposomes size; the resulting liposome size correlated with the FRR in the microfluidics process, with liposomes of 50 nm being reproducibly manufactured. Furthermore, we demonstrate the potential of a high throughput manufacturing of liposomes using microfluidics with a four-fold increase in the volumetric flow rate, maintaining liposome characteristics. The efficacy of these liposomes was demonstrated in transfection studies and was modelled using predictive modeling. Mathematical modelling identified FRR as the key variable in the microfluidic process, with the highest impact on liposome size, polydispersity and transfection efficiency. This study demonstrates microfluidics as a robust and high-throughput method for the scalable and highly reproducible manufacture of size-controlled liposomes. Furthermore, the application of statistically based process control increases understanding and allows for the generation of a design-space for controlled particle characteristics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns

    Science.gov (United States)

    Lasagni, Andrés Fabián

    2017-06-01

    Fabrication of two- and three-dimensional (2D and 3D) structures in the micro- and nano-range allows a new degree of freedom to the design of materials by tailoring desired material properties and, thus, obtaining a superior functionality. Such complex designs are only possible using novel fabrication techniques with high resolution, even in the nanoscale range. Starting from a simple concept, transferring the shape of an interference pattern directly to the surface of a material, laser interferometric processing methods have been continuously developed. These methods enable the fabrication of repetitive periodic arrays and microstructures by irradiation of the sample surface with coherent beams of light. This article describes the capabilities of laser interference lithographic methods for the treatment of both photoresists and solid materials. Theoretical calculations are used to calculate the intensity distributions of patterns that can be realized by changing the number of interfering laser beams, their polarization, intensity and phase. Finally, different processing systems and configurations are described and, thus, demonstrating the possibility for the fast and precise tailoring of material surface microstructures and topographies on industrial relevant scales as well as several application cases for both methods.

  11. A high-throughput method for genotyping S-RNase alleles in apple

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Ørgaard, Marian; Toldam-Andersen, Torben Bo

    2016-01-01

    We present a new efficient screening tool for detection of S-alleles in apple. The protocol using general and multiplexed primers for PCR reaction and fragment detection on an automatized capillary DNA sequencer exposed a higher number of alleles than any previous studies. Analysis of alleles...... is made on basis of three individual fragment sizes making the allele interpretation highly accurate. The method was employed to genotype 432 Malus accessions and exposed 25 different S-alleles in a selection of Malus domestica cultivars of mainly Danish origin (402 accessions) as well as a selection...

  12. A high-throughput method to examine protein-nucleotide interactions identifies targets of the bacterial transcriptional regulatory protein fur.

    Science.gov (United States)

    Yu, Chunxiao; Lopez, Carlos A; Hu, Han; Xia, Yu; Freedman, David S; Reddington, Alexander P; Daaboul, George G; Unlü, M Selim; Genco, Caroline Attardo

    2014-01-01

    The Ferric uptake regulatory protein (Fur) is a transcriptional regulatory protein that functions to control gene transcription in response to iron in a number of pathogenic bacteria. In this study, we applied a label-free, quantitative and high-throughput analysis method, Interferometric Reflectance Imaging Sensor (IRIS), to rapidly characterize Fur-DNA interactions in vitro with predicted Fur binding sequences in the genome of Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea. IRIS can easily be applied to examine multiple protein-protein, protein-nucleotide and nucleotide-nucleotide complexes simultaneously and demonstrated here that seventy percent of the predicted Fur boxes in promoter regions of iron-induced genes bound to Fur in vitro with a range of affinities as observed using this microarray screening technology. Combining binding data with mRNA expression levels in a gonococcal fur mutant strain allowed us to identify five new gonococcal genes under Fur-mediated direct regulation.

  13. DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale

    Science.gov (United States)

    Zhou, Tianyin; Yang, Lin; Lu, Yan; Dror, Iris; Dantas Machado, Ana Carolina; Ghane, Tahereh; Di Felice, Rosa; Rohs, Remo

    2013-01-01

    We present a method and web server for predicting DNA structural features in a high-throughput (HT) manner for massive sequence data. This approach provides the framework for the integration of DNA sequence and shape analyses in genome-wide studies. The HT methodology uses a sliding-window approach to mine DNA structural information obtained from Monte Carlo simulations. It requires only nucleotide sequence as input and instantly predicts multiple structural features of DNA (minor groove width, roll, propeller twist and helix twist). The results of rigorous validations of the HT predictions based on DNA structures solved by X-ray crystallography and NMR spectroscopy, hydroxyl radical cleavage data, statistical analysis and cross-validation, and molecular dynamics simulations provide strong confidence in this approach. The DNAshape web server is freely available at http://rohslab.cmb.usc.edu/DNAshape/. PMID:23703209

  14. A high-throughput and sensitive method to measure Global DNA Methylation: Application in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mamaev Sergey

    2008-08-01

    Full Text Available Abstract Background Genome-wide changes in DNA methylation are an epigenetic phenomenon that can lead to the development of disease. The study of global DNA methylation utilizes technology that requires both expensive equipment and highly specialized skill sets. Methods We have designed and developed an assay, CpGlobal, which is easy-to-use, does not utilize PCR, radioactivity and expensive equipment. CpGlobal utilizes methyl-sensitive restriction enzymes, HRP Neutravidin to detect the biotinylated nucleotides incorporated in an end-fill reaction and a luminometer to measure the chemiluminescence. The assay shows high accuracy and reproducibility in measuring global DNA methylation. Furthermore, CpGlobal correlates significantly with High Performance Capillary Electrophoresis (HPCE, a gold standard technology. We have applied the technology to understand the role of global DNA methylation in the natural history of lung cancer. World-wide, it is the leading cause of death attributed to any cancer. The survival rate is 15% over 5 years due to the lack of any clinical symptoms until the disease has progressed to a stage where cure is limited. Results Through the use of cell lines and paired normal/tumor samples from patients with non-small cell lung cancer (NSCLC we show that global DNA hypomethylation is highly associated with the progression of the tumor. In addition, the results provide the first indication that the normal part of the lung from a cancer patient has already experienced a loss of methylation compared to a normal individual. Conclusion By detecting these changes in global DNA methylation, CpGlobal may have a role as a barometer for the onset and development of lung cancer.

  15. High-throughput NIR-chemometric methods for determination of drug content and pharmaceutical properties of indapamide tablets.

    Science.gov (United States)

    Tomuta, Ioan; Rus, Lucia; Iovanov, Rares; Rus, Luca Liviu

    2013-10-01

    This paper describes the development, validation and application of NIR-chemometric methods for API content and pharmaceutical characterization (disintegration time and crushing strength) of indapamide intact tablets. Development of the method for chemical characterization was performed on samples corresponding to 80, 90, 100, 110 and 120% of indapamide content and for pharmaceutical characterization on samples prepared at nine different compression forces (covering the interval 7-45 kN). NIR spectra of prepared tablets were recorded in transmission mode, and partial least-squares followed by leave-one-out cross-validation were used to develop models for the prediction of the drug content and the pharmaceutical properties of tablets. All developed models were validated in terms of trueness, precision and accuracy. No statistical differences were found between results predicted by NIR-chemometric methods and the ones determined by reference methods. Therefore, the developed NIR-chemometric methods meet the requirements of a high-throughput method for the determination of drug content, pharmaceutical properties of indapamide tablets.

  16. High-Throughput LC-MS/MS Method for Direct Quantification of Glucuronidated, Sulfated and Free Enterolactone in Human Plasma

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Kyrø, Cecilie; Olsen, Anja

    2016-01-01

    Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized that ente......Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized......−MS/MS and a fluoroimmunoassay; however, most of these methods measure the total concentration of enterolactone, without any specification of its conjugation pattern. Here for the first time we present a high-throughput LC−MS/MS method to quantify enterolactone in its intact form as glucuronide, sulfate, and free enterolactone....... The method has shown good accuracy and precision at low concentration and very high sensitivity, with LLOQ for enterolactone sulfate at 16 pM, enterolactone glucuronide at 26 pM, and free enterolactone at 86 pM. The short run time of 2.6 min combined with simple sample clean up and high sensitivity make...

  17. A method for high-throughput production of sequence-verified DNA libraries and strain collections.

    Science.gov (United States)

    Smith, Justin D; Schlecht, Ulrich; Xu, Weihong; Suresh, Sundari; Horecka, Joe; Proctor, Michael J; Aiyar, Raeka S; Bennett, Richard A O; Chu, Angela; Li, Yong Fuga; Roy, Kevin; Davis, Ronald W; Steinmetz, Lars M; Hyman, Richard W; Levy, Sasha F; St Onge, Robert P

    2017-02-13

    The low costs of array-synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost-effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site-specific recombination to index library DNA, and next-generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost-effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized.

  18. Peptide reactivity assay using spectrophotometric method for high-throughput screening of skin sensitization potential of chemical haptens.

    Science.gov (United States)

    Jeong, Yun Hyeok; An, Susun; Shin, Kyeho; Lee, Tae Ryong

    2013-02-01

    Haptens must react with cellular proteins to be recognized by antigen presenting cells. Therefore, monitoring reactivity of chemicals with peptide/protein has been considered an in vitro skin sensitization testing method. The reactivity of peptides with chemicals (peptide reactivity) has usually been monitored by chromatographic methods like HPLC or LC/MS, which are robust tools for monitoring common chemical reactions but are rather expensive and time consuming. Here, we examined the possibility of using spectrophotometric methods to monitor peptide reactivity. Two synthetic peptides, Ac-RWAACAA and Ac-RWAAKAA, were reacted with 48 chemicals (34 sensitizers and 14 non-sensitizers). Peptide reactivity was measured by monitoring unreacted peptides with UV-Vis spectrophotometer using 5,5'-dithiobis-2-nitrobenzoic acid as a detection reagent for the free thiol group of cysteine-containing peptide or fluorometer using fluorescamine™ as a detection reagent for the free amine group of lysine-containing peptide. Chemicals were categorized as sensitizers when they induced more than 10% depletion of cysteine-containing peptide or 20% depletion of lysine-containing peptide. The sensitivity, specificity, and accuracy of this method were 82.4%, 85.7%, and 83.3%, respectively. These results demonstrate that spectrophotometric methods can be easy, fast, and high-throughput screening tools for the prediction of the skin sensitization potential of chemical haptens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A simple, robust enzymatic-based high-throughput screening method for antimicrobial peptides discovery against Escherichia coli.

    Science.gov (United States)

    Thirumalai, Muthukumaresan Kuppuswamy; Roy, Arpita; Sanikommu, Suma; Arockiaraj, Jesu; Pasupuleti, Mukesh

    2014-05-01

    The indiscriminate usage of antibiotics has created a major problem in the form of antibiotic resistance. Even though new antimicrobial drug discovery programs have been in place from the last two decades, still we are unsuccessful in identifying novel molecules that have a potential to become new therapeutic agents for the treatment of microbial infections. A major problem in most screening studies is the requirement of high-throughput techniques. Given this, we present here an enzyme-based robust method for screening antimicrobial agent's active against Escherichia coli. This method is based upon the ability of the intracellular innate enzyme to cleave o-nitrophenyl β-d-galactopyranoside (non-chromogenic) to o-nitrophenolate (ONP) (chromogenic) upon the membrane damage or disruption. In comparison with the other currently available methods, we believe that our method provides an opportunity for real-time monitoring of the antimicrobial agents action by measuring the ONP generation in a user-friendly manner. Even though this method can be applied to other strain, our experience shows that one has to be careful especially when the pigments or metabolites present in the bacteria have the same wavelength absorbance.

  20. Evaluation of high throughput screening methods in picking up differences between cultivars of lignocellulosic biomass for ethanol production

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2014-01-01

    We present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated an...

  1. Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping

    NARCIS (Netherlands)

    Golbach, Franck; Kootstra, Gert; Damjanovic, Sanja; Otten, Gerwoud; Zedde, van de Rick

    2016-01-01

    In plant phenotyping, there is a demand for high-throughput, non-destructive systems that can accurately analyse various plant traits by measuring features such as plant volume, leaf area, and stem length. Existing vision-based systems either focus on speed using 2D imaging, which is consequently

  2. A Validated High-Throughput Fluorometric Method for Determination of Omeprazole in Quality Control Laboratory via Charge Transfer Sensitized Fluorescence.

    Science.gov (United States)

    Mahmoud, Ashraf M; Ahmed, Sameh A

    2016-03-01

    A high-throughput 96-microwell plate fluorometric method was developed and validated to determine omeprazole (OMZ) in its dosage forms. The method was based on the charge-transfer (CT) sensitized fluorescence reaction of OMZ with 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ). This fluorescence reaction provided a new approach for simple, sensitive and selective determinations of OMZ in pharmaceutical preparations. In the present method, the fluorescence reaction was carried out in 96-microwell plates as reaction vessels in order to increase the automation of the methodology and the efficiency of its use in quality control laboratories. All factors affecting the fluorescence reaction were carefully studied and the conditions were optimized. The stoichiometry of the fluorescence reaction between OMZ and DDQ was determined and the reaction mechanism was suggested. Under the optimum conditions, the linear range was 100-6000 ng/ml with the lowest LOD of 33 ng/ml. Analytical performance of the proposed assay, in terms of accuracy and precision, was statistically validated and the results were satisfactory; RSD was <2.6 % and the accuracy was 98.6-101.6 %. The method was successfully applied to the analysis of OMZ in its dosage forms; the recovery values were 98.26-99.60 ± 0.95-2.22 %. The developed methodology may provide a safer, automated and economic tool for the analysis of OMZ in quality control laboratories.

  3. Evaluation of Simple and Inexpensive High-Throughput Methods for Phytic Acid Determination

    DEFF Research Database (Denmark)

    Raboy, Victor; Johnson, Amy; Bilyeu, Kristin

    2017-01-01

    consistently acceptable (˂2.0”) “Horwitz ratios”, a measure of reproducibility, although some treatments approached that. For example, one variant of the VL method when used to assay a soybean flour with a “standard” level of phytic acid had a Horwitz ratio of 2.15. Some variants of the VL method were adequate...

  4. A new high-throughput LC-MS method for the analysis of complex fructan mixtures

    DEFF Research Database (Denmark)

    Verspreet, Joran; Hansen, Anders Holmgaard; Dornez, Emmie

    2014-01-01

    In this paper, a new liquid chromatography-mass spectrometry (LC-MS) method for the analysis of complex fructan mixtures is presented. In this method, columns with a trifunctional C18 alkyl stationary phase (T3) were used and their performance compared with that of a porous graphitized carbon (PGC...

  5. A rapid typing method for Listeria monocytogenes based on high-throughput multilocus sequence typing (Hi-MLST).

    Science.gov (United States)

    Takahashi, Hajime; Iwakawa, Ai; Ohshima, Chihiro; Kyoui, Daisuke; Kumano, Shiori; Kuda, Takashi; Kimura, Bon

    2017-02-21

    Listeria monocytogenes infects humans via food products, causing listeriosis. Consequently, food companies pay meticulous attention to the risk of contamination of their products by this bacterium. While fragment analysis methods such as pulsed-field gel electrophoresis (PFGE) are used to trace the sources of contamination for this bacterium, some drawbacks have been identified, namely the complexity of the methods and the difficulty of making data comparisons. As an alternative, multilocus sequence typing (MLST) is now seeing widespread use; however, owing to its cost, time, and labor requirements, its diffusion into the food industry has been slow. Thus, in the present study, a High-throughput MLST (Hi-MLST) method, which can rapidly, simply, and cheaply perform MLST analyses using a next-generation sequencer (NGS) that can analyze a large volume of base sequences at once was developed. Firstly, a multiplex PCR method designed to amplify seven genes for use in MLST was developed. The discriminatory potential of the developed method was confirmed in silico, and was verified that it has the same discriminatory potential as conventional methods. Next, MLST analysis using multiplex PCR and NGS was performed for 48 strains of L. monocytogenes. The sequences obtained from this analysis have sufficiently reliable quality for all of the genes from of all the strains. Thus, this method could classify the 48 strains into 39 sequence types (ST) with a Diversity index (DI) of 0.989. In summary, using the Hi-MLST method developed in the present study, which combined multiplex PCR and NGS, cut the costs to 1/6th and the time to 1/20th that of conventional MLST methods.

  6. High-throughput multiplex quantitative polymerase chain reaction method for Giardia lamblia and Cryptosporidium species detection in stool samples.

    Science.gov (United States)

    Nurminen, Noora; Juuti, Rosa; Oikarinen, Sami; Fan, Yue-Mei; Lehto, Kirsi-Maarit; Mangani, Charles; Maleta, Kenneth; Ashorn, Per; Hyöty, Heikki

    2015-06-01

    Giardia lamblia and Cryptosporidium species belong to a complex group of pathogens that cause diseases hampering development and socioeconomic improvements in the developing countries. Both pathogens are recognized as significant causes of diarrhea and nutritional disorders. However, further studies are needed to clarify the role of parasitic infections, especially asymptomatic infections in malnutrition and stunting. We developed a high-throughput multiplex quantitative polymerase chain reaction (qPCR) method for G. lamblia and Cryptosporidium spp. detection in stool samples. The sensitivity and specificity of the method were ensured by analyzing confirmed positive samples acquired from diagnostics laboratories and participating in an external quality control round. Its capability to detect asymptomatic G. lamblia and Cryptosporidium spp. infections was confirmed by analyzing stool samples collected from 44 asymptomatic 6-month-old infants living in an endemic region in Malawi. Of these, five samples were found to be positive for G. lamblia and two for Cryptosporidium spp. In conclusion, the developed method is suitable for large-scale studies evaluating the occurrence of G. lamblia and Cryptosporidium spp. in endemic regions and for clinical diagnostics of these infections.

  7. Clinical phenotyping in selected national networks: demonstrating the need for high-throughput, portable, and computational methods.

    Science.gov (United States)

    Richesson, Rachel L; Sun, Jimeng; Pathak, Jyotishman; Kho, Abel N; Denny, Joshua C

    2016-07-01

    The combination of phenomic data from electronic health records (EHR) and clinical data repositories with dense biological data has enabled genomic and pharmacogenomic discovery, a first step toward precision medicine. Computational methods for the identification of clinical phenotypes from EHR data will advance our understanding of disease risk and drug response, and support the practice of precision medicine on a national scale. Based on our experience within three national research networks, we summarize the broad approaches to clinical phenotyping and highlight the important role of these networks in the progression of high-throughput phenotyping and precision medicine. We provide supporting literature in the form of a non-systematic review. The practice of clinical phenotyping is evolving to meet the growing demand for scalable, portable, and data driven methods and tools. The resources required for traditional phenotyping algorithms from expert defined rules are significant. In contrast, machine learning approaches that rely on data patterns will require fewer clinical domain experts and resources. Machine learning approaches that generate phenotype definitions from patient features and clinical profiles will result in truly computational phenotypes, derived from data rather than experts. Research networks and phenotype developers should cooperate to develop methods, collaboration platforms, and data standards that will enable computational phenotyping and truly modernize biomedical research and precision medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Predicting high-throughput screening results with scalable literature-based discovery methods.

    Science.gov (United States)

    Cohen, T; Widdows, D; Stephan, C; Zinner, R; Kim, J; Rindflesch, T; Davies, P

    2014-10-08

    The identification of new therapeutic uses for existing agents has been proposed as a means to mitigate the escalating cost of drug development. A common approach to such repurposing involves screening libraries of agents for activities against cell lines. In silico methods using knowledge from the biomedical literature have been proposed to constrain the costs of screening by identifying agents that are likely to be effective a priori. However, results obtained with these methods are seldom evaluated empirically. Conversely, screening experiments have been criticized for their inability to reveal the biological basis of their results. In this paper, we evaluate the ability of a scalable literature-based approach, discovery-by-analogy, to identify a small number of active agents within a large library screened for activity against prostate cancer cells. The methods used permit retrieval of the knowledge used to infer their predictions, providing a plausible biological basis for predicted activity.

  9. A simple, high throughput method for the quantification of sodium alginates on oesophageal mucosa.

    Science.gov (United States)

    Richardson, J C; Dettmar, P W; Hampson, F C; Melia, C D

    2004-03-01

    Sodium alginate is a potential bioadhesive, but the lack of a convenient and suitable method for its quantification on the mucosal surface complicates the evaluation of its mucosal retentive properties. This paper develops and evaluates a spectrophotometric method for the rapid quantification of a range of sodium alginates differing in chemical composition, and investigates how quantification was influenced by the presence of oesophageal mucosa. The method, based on dye complexation with 1,9-dimethyl methylene blue (DMMB) was sensitive to alginate molecular weight and uronic acid composition, however, no significant correlations between assay performance and alginate molecular characteristics were demonstrated. The assay was also influenced by complexation time, calcium ions and mucin, but was unaffected by the presence of oesophageal tissue scrapings. The assay proved to be capable of quantifying sodium alginate with excellent linearity (r = 0.999), reproducibility (CV alginate on oesophageal mucosa.

  10. High Throughput Method of Extracting and Counting Strontium-90 in Urine

    Energy Technology Data Exchange (ETDEWEB)

    Shkrob, I. [Argonne National Lab. (ANL), Argonne, IL (United States); Kaminski, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Mertz, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Hawkins, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Dietz, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Tisch, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    A method has been developed for the rapid extraction of Sr-90 from the urine of individuals exposed to radiation in a terrorist attack. The method employs two chromatographic ion-exchange materials: Diphonix resin and Sr resin, both of which are commercially available. The Diphonix resin reduces the alkali ion concentrations below 10 mM, and the Sr resin concentrates and decontaminates strontium-90. Experimental and calculational data are given for a variety of test conditions. On the basis of these results, a flowsheet has been developed for the rapid concentration and extraction of Sr-90 from human urine samples for subsequent beta-counting.

  11. X-Ray Sources and High-Throughput Data Collection Methods

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Gyorgy

    2012-03-15

    X-ray diffraction experiments on protein crystals are at the core of the structure determination process. An overview of X-ray sources and data collection methods to support structure-based drug design (SBDD) efforts is presented in this chapter. First, methods of generating and manipulating X-rays for the purpose of protein crystallography, as well as the components of the diffraction experiment setup are discussed. SBDD requires the determination of numerous protein-ligand complex structures in a timely manner, and the second part of this chapter describes how to perform diffraction experiments efficiently on a large number of crystals, including crystal screening and data collection.

  12. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers

    Science.gov (United States)

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization integrated approaches combining different chemical, biological and in silico methods are recommended to r...

  13. Instrument for high throughput measurement of material physical properties and method of using same

    OpenAIRE

    Hajduk, Damian; Carlson, Eric; Freitag, Christopher; Kolosov, Oleg; Engstrom, James; Safir, Adam; Shrinivasan, Ravi; Matsiev, L

    2002-01-01

    An apparatus and method for screening combinatorial libraries of materials by measuring the response of individual library members to mechanical perturbations is described. The apparatus generally includes a sample holder for containing the library members, an array of probes for mechanically perturbing individual library members, and an array of sensors for measuring the response of each of the library members to the mechanical perturbations. Library members undergoing screening make up a sa...

  14. Instrument for high throughput measurement of material physical properties and method of using same

    OpenAIRE

    Freitag, Christopher; Kolosov, Oleg; Hajduk, Damian; Carlson, Eric

    2001-01-01

    An apparatus and method for screening combinatorial libraries of materials by measuring the response of individual library members to mechanical perturbations is described. The apparatus generally includes a sample holder for containing the library members, an array of probes for mechanically perturbing individual library members, and an array of sensors for measuring the response of each of the library members to the mechanical perturbations. Library members undergoing screening make up a sa...

  15. A high throughput method for quantification of cell surface bound and internalized chitosan nanoparticles.

    Science.gov (United States)

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2015-11-01

    Chitosan has become a popular polymer for drug delivery. It's hydro solubility and mild formulation conditions have made it an attractive polymer for macromolecular delivery. Accurate quantification of internalized chitosan nanoparticles (NPs) is imperative for fair assessment of the nano-formulation where it is important to determine the exact amount of drug actually being delivered into the cell, especially for macromolecular drugs where cellular entry is limited by molecule size and/or charge. The preferential affinity of wheat germ agglutinin tagged with fluorescein isothiocyanate (WGA-FITC) to chitosan is exploited in the development of a simple and rapid method for the differentiation between and quantification of cell surface bound and internalized chitosan NPs. The percentage of cell surface bound NPs could be easily determined and corrected NP uptake could be calculated accordingly. The developed method is applicable in several cell lines and has successfully been tested with NPs with different sizes (25 and 150nm) and with very low NP concentrations (20μg/mL). The method will allow for the correct evaluation of chitosan NP uptake and could be further used to evaluate chitosan based nanomedicine and provide guidelines on how to modify NPs for enhanced internalization, and improved drug delivery.

  16. Scalable Computational Methods for the Analysis of High-Throughput Biological Data

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Michael A

    2012-09-06

    This primary focus of this research project is elucidating genetic regulatory mechanisms that control an organism's responses to low-dose ionizing radiation. Although low doses (at most ten centigrays) are not lethal to humans, they elicit a highly complex physiological response, with the ultimate outcome in terms of risk to human health unknown. The tools of molecular biology and computational science will be harnessed to study coordinated changes in gene expression that orchestrate the mechanisms a cell uses to manage the radiation stimulus. High performance implementations of novel algorithms that exploit the principles of fixed-parameter tractability will be used to extract gene sets suggestive of co-regulation. Genomic mining will be performed to scrutinize, winnow and highlight the most promising gene sets for more detailed investigation. The overall goal is to increase our understanding of the health risks associated with exposures to low levels of radiation.

  17. GOParGenPy: a high throughput method to generate gene ontology data matrices.

    Science.gov (United States)

    Kumar, Ajay Anand; Holm, Liisa; Toronen, Petri

    2013-08-08

    Gene Ontology (GO) is a popular standard in the annotation of gene products and provides information related to genes across all species. The structure of GO is dynamic and is updated on a daily basis. However, the popular existing methods use outdated versions of GO. Moreover, these tools are slow to process large datasets consisting of more than 20,000 genes. We have developed GOParGenPy, a platform independent software tool to generate the binary data matrix showing the GO class membership, including parental classes, of a set of GO annotated genes. GOParGenPy is at least an order of magnitude faster than popular tools for Gene Ontology analysis and it can handle larger datasets than the existing tools. It can use any available version of the GO structure and allows the user to select the source of GO annotation. GO structure selection is critical for analysis, as we show that GO classes have rapid turnover between different GO structure releases. GOParGenPy is an easy to use software tool which can generate sparse or full binary matrices from GO annotated gene sets. The obtained binary matrix can then be used with any analysis environment and with any analysis methods.

  18. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency.

    Science.gov (United States)

    Takahashi, Mayumi; Wu, Xiwei; Ho, Michelle; Chomchan, Pritsana; Rossi, John J; Burnett, John C; Zhou, Jiehua

    2016-09-22

    The systemic evolution of ligands by exponential enrichment (SELEX) technique is a powerful and effective aptamer-selection procedure. However, modifications to the process can dramatically improve selection efficiency and aptamer performance. For example, droplet digital PCR (ddPCR) has been recently incorporated into SELEX selection protocols to putatively reduce the propagation of byproducts and avoid selection bias that result from differences in PCR efficiency of sequences within the random library. However, a detailed, parallel comparison of the efficacy of conventional solution PCR versus the ddPCR modification in the RNA aptamer-selection process is needed to understand effects on overall SELEX performance. In the present study, we took advantage of powerful high throughput sequencing technology and bioinformatics analysis coupled with SELEX (HT-SELEX) to thoroughly investigate the effects of initial library and PCR methods in the RNA aptamer identification. Our analysis revealed that distinct "biased sequences" and nucleotide composition existed in the initial, unselected libraries purchased from two different manufacturers and that the fate of the "biased sequences" was target-dependent during selection. Our comparison of solution PCR- and ddPCR-driven HT-SELEX demonstrated that PCR method affected not only the nucleotide composition of the enriched sequences, but also the overall SELEX efficiency and aptamer efficacy.

  19. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.

    Science.gov (United States)

    Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P

    2017-01-01

    Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository.

  20. A one pot, one step, precision cloning method with high throughput capability.

    Directory of Open Access Journals (Sweden)

    Carola Engler

    Full Text Available Current cloning technologies based on site-specific recombination are efficient, simple to use, and flexible, but have the drawback of leaving recombination site sequences in the final construct, adding an extra 8 to 13 amino acids to the expressed protein. We have devised a simple and rapid subcloning strategy to transfer any DNA fragment of interest from an entry clone into an expression vector, without this shortcoming. The strategy is based on the use of type IIs restriction enzymes, which cut outside of their recognition sequence. With proper design of the cleavage sites, two fragments cut by type IIs restriction enzymes can be ligated into a product lacking the original restriction site. Based on this property, a cloning strategy called 'Golden Gate' cloning was devised that allows to obtain in one tube and one step close to one hundred percent correct recombinant plasmids after just a 5 minute restriction-ligation. This method is therefore as efficient as currently used recombination-based cloning technologies but yields recombinant plasmids that do not contain unwanted sequences in the final construct, thus providing precision for this fundamental process of genetic manipulation.

  1. Development of a high-throughput method to evaluate serum bactericidal activity using bacterial ATP measurement as survival readout

    Science.gov (United States)

    Saul, Allan; Rondini, Simona

    2017-01-01

    Serum Bactericidal Activity (SBA) assay is the method of choice to evaluate the complement-mediated functional activity of both infection- and vaccine-induced antibodies. To perform a typical SBA assay, serial dilutions of sera are incubated with target bacterial strains and complement. The conventional SBA assay is based on plating on agar the SBA reaction mix and counting the surviving bacterial colony forming units (CFU) at each serum dilution. Even with automated colony counting, it is labor-intensive, time-consuming and not amenable for large-scale studies. Here, we have developed a luminescence-based SBA (L-SBA) method able to detect surviving bacteria by measuring their ATP. At the end of the SBA reaction, a single commercially available reagent is added to each well of the SBA plate, and the resulting luminescence signal is measured in a microplate reader. The signal obtained is proportional to the ATP present, which is directly proportional to the number of viable bacteria. Bactericidal activity is subsequently calculated. We demonstrated the applicability of L-SBA with multiple bacterial serovars, from 5 species: Citrobacter freundii, Salmonella enterica serovars Typhimurium and Enteritidis, Shigella flexneri serovars 2a and 3a, Shigella sonnei and Neisseria meningitidis. Serum bactericidal titers obtained by the luminescence readout method strongly correlate with the data obtained by the conventional agar plate-based assay, and the new assay is highly reproducible. L-SBA considerably shortens assay time, facilitates data acquisition and analysis and reduces the operator dependency, avoiding the plating and counting of CFUs. Our results demonstrate that L-SBA is a useful high-throughput bactericidal assay. PMID:28192483

  2. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).

    Science.gov (United States)

    Soyer, Jessica L; Möller, Mareike; Schotanus, Klaas; Connolly, Lanelle R; Galazka, Jonathan M; Freitag, Michael; Stukenbrock, Eva H

    2015-06-01

    The presence or absence of specific transcription factors, chromatin remodeling machineries, chromatin modification enzymes, post-translational histone modifications and histone variants all play crucial roles in the regulation of pathogenicity genes. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) provides an important tool to study genome-wide protein-DNA interactions to help understand gene regulation in the context of native chromatin. ChIP-seq is a convenient in vivo technique to identify, map and characterize occupancy of specific DNA fragments with proteins against which specific antibodies exist or which can be epitope-tagged in vivo. We optimized existing ChIP protocols for use in the wheat pathogen Zymoseptoria tritici and closely related sister species. Here, we provide a detailed method, underscoring which aspects of the technique are organism-specific. Library preparation for Illumina sequencing is described, as this is currently the most widely used ChIP-seq method. One approach for the analysis and visualization of representative sequence is described; improved tools for these analyses are constantly being developed. Using ChIP-seq with antibodies against H3K4me2, which is considered a mark for euchromatin or H3K9me3 and H3K27me3, which are considered marks for heterochromatin, the overall distribution of euchromatin and heterochromatin in the genome of Z. tritici can be determined. Our ChIP-seq protocol was also successfully applied to Z. tritici strains with high levels of melanization or aberrant colony morphology, and to different species of the genus (Z. ardabiliae and Z. pseudotritici), suggesting that our technique is robust. The methods described here provide a powerful framework to study new aspects of chromatin biology and gene regulation in this prominent wheat pathogen.

  3. An exposure:activity profiling method for interpreting high-throughput screening data for estrogenic activity--proof of concept.

    Science.gov (United States)

    Becker, Richard A; Friedman, Katie Paul; Simon, Ted W; Marty, M Sue; Patlewicz, Grace; Rowlands, J Craig

    2015-04-01

    Rapid high throughput in vitro screening (HTS) assays are now available for characterizing dose-responses in assays that have been selected for their sensitivity in detecting estrogen-related endpoints. For example, EPA's ToxCast™ program recently released endocrine assay results for more than 1800 substances and the interagency Tox21 consortium is in the process of releasing data for approximately 10,000 chemicals. But such activity measurements alone fall short for the purposes of priority setting or screening because the relevant exposure context is not considered. Here, we extend the method of exposure:activity profiling by calculating the exposure:activity ratios (EARs) using human exposure estimates and AC50 values for a range of chemicals tested in a suite of seven estrogenic assays in ToxCast™ and Tox21. To provide additional context, relative estrogenic exposure:activity quotients (REEAQ) were derived by comparing chemical-specific EARs to the EAR of the ubiquitous dietary phytoestrogen, genistein (GEN). Although the activity of a substance in HTS-endocrine assays is not a measure of health hazard or risk, understanding how such a dose compares to human exposures provides a valuable additional metric that can be used in decision-making; substances with small EARs and REEAQs would indicate low priority for further endocrine screening or testing.

  4. A high-throughput method to examine protein-nucleotide interactions identifies targets of the bacterial transcriptional regulatory protein fur.

    Directory of Open Access Journals (Sweden)

    Chunxiao Yu

    Full Text Available The Ferric uptake regulatory protein (Fur is a transcriptional regulatory protein that functions to control gene transcription in response to iron in a number of pathogenic bacteria. In this study, we applied a label-free, quantitative and high-throughput analysis method, Interferometric Reflectance Imaging Sensor (IRIS, to rapidly characterize Fur-DNA interactions in vitro with predicted Fur binding sequences in the genome of Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea. IRIS can easily be applied to examine multiple protein-protein, protein-nucleotide and nucleotide-nucleotide complexes simultaneously and demonstrated here that seventy percent of the predicted Fur boxes in promoter regions of iron-induced genes bound to Fur in vitro with a range of affinities as observed using this microarray screening technology. Combining binding data with mRNA expression levels in a gonococcal fur mutant strain allowed us to identify five new gonococcal genes under Fur-mediated direct regulation.

  5. Probe molecules (PrM) approach in adverse outcome pathway (AOP) based high throughput screening (HTS): in vivo discovery for developing in vitro target methods

    Science.gov (United States)

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...

  6. Probe molecules (PrM) approach in adverse outcome pathway (AOP) based high throughput screening (HTS): in vivo discovery for developing in vitro target methods

    Science.gov (United States)

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...

  7. High Throughput Neuro-Imaging Informatics

    Directory of Open Access Journals (Sweden)

    Michael I Miller

    2013-12-01

    Full Text Available This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high dimensional neuroinformatic representations index containing O(E3-E4 discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high throughput machine learning methods for supporting (i cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii integration of image and non-image information for diagnosis and prognosis.

  8. Rapid restriction enzyme-free cloning of PCR products: a high-throughput method applicable for library construction.

    Science.gov (United States)

    Chaudhary, Vijay K; Shrivastava, Nimisha; Verma, Vaishali; Das, Shilpi; Kaur, Charanpreet; Grover, Payal; Gupta, Amita

    2014-01-01

    Herein, we describe a novel cloning strategy for PCR-amplified DNA which employs the type IIs restriction endonuclease BsaI to create a linearized vector with four base-long 5'-overhangs, and T4 DNA polymerase treatment of the insert in presence of a single dNTP to create vector-compatible four base-long overhangs. Notably, the insert preparation does not require any restriction enzyme treatment. The BsaI sites in the vector are oriented in such a manner that upon digestion with BsaI, a stuffer sequence along with both BsaI recognition sequences is removed. The sequence of the four base-long overhangs produced by BsaI cleavage were designed to be non-palindromic, non-compatible to each other. Therefore, only ligation of an insert carrying compatible ends allows directional cloning of the insert to the vector to generate a recombinant without recreating the BsaI sites. We also developed rapid protocols for insert preparation and cloning, by which the entire process from PCR to transformation can be completed in 6-8 h and DNA fragments ranging in size from 200 to 2200 bp can be cloned with equal efficiencies. One protocol uses a single tube for insert preparation if amplification is performed using polymerases with low 3'-exonuclease activity. The other protocol is compatible with any thermostable polymerase, including those with high 3'-exonuclease activity, and does not significantly increase the time required for cloning. The suitability of this method for high-throughput cloning was demonstrated by cloning batches of 24 PCR products with nearly 100% efficiency. The cloning strategy is also suitable for high efficiency cloning and was used to construct large libraries comprising more than 108 clones/µg vector. Additionally, based on this strategy, a variety of vectors were constructed for the expression of proteins in E. coli, enabling large number of different clones to be rapidly generated.

  9. Application of a high throughput method of biomarker discovery to improvement of the EarlyCDT(®-Lung Test.

    Directory of Open Access Journals (Sweden)

    Isabel K Macdonald

    Full Text Available BACKGROUND: The National Lung Screening Trial showed that CT screening for lung cancer led to a 20% reduction in mortality. However, CT screening has a number of disadvantages including low specificity. A validated autoantibody assay is available commercially (EarlyCDT®-Lung to aid in the early detection of lung cancer and risk stratification in patients with pulmonary nodules detected by CT. Recent advances in high throughput (HTP cloning and expression methods have been developed into a discovery pipeline to identify biomarkers that detect autoantibodies. The aim of this study was to demonstrate the successful clinical application of this strategy to add to the EarlyCDT-Lung panel in order to improve its sensitivity and specificity (and hence positive predictive value, (PPV. METHODS AND FINDINGS: Serum from two matched independent cohorts of lung cancer patients were used (n = 100 and n = 165. Sixty nine proteins were initially screened on an abridged HTP version of the autoantibody ELISA using protein prepared on small scale by a HTP expression and purification screen. Promising leads were produced in shake flask culture and tested on the full assay. These results were analyzed in combination with those from the EarlyCDT-Lung panel in order to provide a set of re-optimized cut-offs. Five proteins that still displayed cancer/normal differentiation were tested for reproducibility and validation on a second batch of protein and a separate patient cohort. Addition of these proteins resulted in an improvement in the sensitivity and specificity of the test from 38% and 86% to 49% and 93% respectively (PPV improvement from 1 in 16 to 1 in 7. CONCLUSION: This is a practical example of the value of investing resources to develop a HTP technology. Such technology may lead to improvement in the clinical utility of the EarlyCDT--Lung test, and so further aid the early detection of lung cancer.

  10. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking.

    Directory of Open Access Journals (Sweden)

    Jiabing Ji

    Full Text Available BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR, touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well.

  11. A simplified high-throughput method for pyrethroid knock-down resistance (kdr detection in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Walker Edward D

    2005-03-01

    Full Text Available Abstract Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. The screening is commonly performed using a multiplex Polymerase Chain Reaction (PCR which, since it is reliant on a single nucleotide polymorphism, can be unreliable. Here we present a reliable and potentially high throughput method for screening An. gambiae for the kdr mutation. Methods A Hot Ligation Oligonucleotide Assay (HOLA was developed to detect both the East and West African kdr alleles in the homozygous and heterozygous states, and was optimized for use in low-tech developing world laboratories. Results from the HOLA were compared to results from the multiplex PCR for field and laboratory mosquito specimens to provide verification of the robustness and sensitivity of the technique. Results and Discussion The HOLA assay, developed for detection of the kdr mutation, gives a bright blue colouration for a positive result whilst negative reactions remain colourless. The results are apparent within a few minutes of adding the final substrate and can be scored by eye. Heterozygotes are scored when a sample gives a positive reaction to the susceptible probe and the kdr probe. The technique uses only basic laboratory equipment and skills and can be carried out by anyone familiar with the Enzyme-linked immunosorbent assay (ELISA technique. A comparison to the multiplex PCR method showed that the HOLA assay was more reliable, and scoring of the plates was less ambiguous. Conclusion The method is capable of detecting both the East and West African kdr alleles

  12. Supplementary Material for: DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning

    KAUST Repository

    Soufan, Othman

    2016-01-01

    Abstract Background Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods for extracting useful information from these assays. Virtual screening and a wide variety of databases, methods and solutions proposed to-date, did not completely overcome these challenges. This study is based on a multi-label classification (MLC) technique for modeling correlations between several HTS assays, meaning that a single prediction represents a subset of assigned correlated labels instead of one label. Thus, the devised method provides an increased probability for more accurate predictions of compounds that were not tested in particular assays. Results Here we present DRABAL, a novel MLC solution that incorporates structure learning of a Bayesian network as a step to model dependency between the HTS assays. In this study, DRABAL was used to process more than 1.4 million interactions of over 400,000 compounds and analyze the existing relationships between five large HTS assays from the PubChem BioAssay Database. Compared to different MLC methods, DRABAL significantly improves the F1Score by about 22%, on average. We further illustrated usefulness and utility of DRABAL through screening FDA approved drugs and reported ones that have a high probability to interact with several targets, thus enabling drug-multi-target repositioning. Specifically DRABAL suggests the Thiabendazole drug as a common activator of the NCP1 and Rab-9A proteins, both of which are designed to identify treatment modalities for the Niemannâ Pick type C disease. Conclusion We developed a novel MLC solution based on a Bayesian active learning framework to overcome the challenge of lacking fully labeled training data and exploit actual dependencies between the HTS assays. The solution is motivated by the need to model dependencies between

  13. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  14. Automated High Throughput Drug Target Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  15. A High Throughput Method for Measuring Polycyclic Aromatic Hydrocarbons in Seafood Using QuEChERS Extraction and SBSE

    Directory of Open Access Journals (Sweden)

    Edward A. Pfannkoch

    2015-01-01

    Full Text Available National Oceanic and Atmospheric Administration (NOAA Method NMFS-NWFSC-59 2004 is currently used to quantitatively analyze seafood for polycyclic aromatic hydrocarbon (PAH contamination, especially following events such as the Deepwater Horizon oil rig explosion that released millions of barrels of crude oil into the Gulf of Mexico. This method has limited throughput capacity; hence, alternative methods are necessary to meet analytical demands after such events. Stir bar sorptive extraction (SBSE is an effective technique to extract trace PAHs in water and the quick, easy, cheap, effective, rugged, and safe (QuEChERS extraction strategy effectively extracts PAHs from complex food matrices. This study uses SBSE to concentrate PAHs and eliminate matrix interference from QuEChERS extracts of seafood, specifically oysters, fish, and shrimp. This method provides acceptable recovery (65–138% linear calibrations and is sensitive (LOD = 0.02 ppb, LOQ = 0.06 ppb while providing higher throughput and maintaining equivalency between NOAA 2004 as determined by analysis of NIST SRM 1974b mussel tissue.

  16. Application of a high throughput method of biomarker discovery to improvement of the EarlyCDT(®)-Lung Test.

    Science.gov (United States)

    Macdonald, Isabel K; Murray, Andrea; Healey, Graham F; Parsy-Kowalska, Celine B; Allen, Jared; McElveen, Jane; Robertson, Chris; Sewell, Herbert F; Chapman, Caroline J; Robertson, John F R

    2012-01-01

    The National Lung Screening Trial showed that CT screening for lung cancer led to a 20% reduction in mortality. However, CT screening has a number of disadvantages including low specificity. A validated autoantibody assay is available commercially (EarlyCDT®-Lung) to aid in the early detection of lung cancer and risk stratification in patients with pulmonary nodules detected by CT. Recent advances in high throughput (HTP) cloning and expression methods have been developed into a discovery pipeline to identify biomarkers that detect autoantibodies. The aim of this study was to demonstrate the successful clinical application of this strategy to add to the EarlyCDT-Lung panel in order to improve its sensitivity and specificity (and hence positive predictive value, (PPV)). Serum from two matched independent cohorts of lung cancer patients were used (n = 100 and n = 165). Sixty nine proteins were initially screened on an abridged HTP version of the autoantibody ELISA using protein prepared on small scale by a HTP expression and purification screen. Promising leads were produced in shake flask culture and tested on the full assay. These results were analyzed in combination with those from the EarlyCDT-Lung panel in order to provide a set of re-optimized cut-offs. Five proteins that still displayed cancer/normal differentiation were tested for reproducibility and validation on a second batch of protein and a separate patient cohort. Addition of these proteins resulted in an improvement in the sensitivity and specificity of the test from 38% and 86% to 49% and 93% respectively (PPV improvement from 1 in 16 to 1 in 7). This is a practical example of the value of investing resources to develop a HTP technology. Such technology may lead to improvement in the clinical utility of the EarlyCDT--Lung test, and so further aid the early detection of lung cancer.

  17. A Bacillus thuringiensis isolation method utilizing a novel stain, low selection and high throughput produced atypical results

    Directory of Open Access Journals (Sweden)

    Ammons David

    2005-09-01

    Full Text Available Abstract Background Bacillus thuringiensis is a bacterium known for producing protein crystals with insecticidal properties. These toxins are widely sought after for controlling agricultural pests due to both their specificity and their applicability in transgenic plants. There is great interest in isolating strains with improved or novel toxin characteristics, however isolating B. thuringiensis from the environment is time consuming and yields relatively few isolates of interest. New approaches to B. thuringiensis isolation have been, and continue to be sought. In this report, candidate B. thuringiensis isolates were recovered from environmental samples using a combination of a novel stain, high throughput and reduced selection. Isolates were further characterized by SDS-PAGE, light microscopy, PCR, probe hybridization, and with selected isolates, DNA sequencing, bioassay or Electron Microscopy. Results Based on SDS-PAGE patterns and the presence of cry genes or a crystal, 79 candidate, non-clonal isolates of B. thuringiensis were identified from 84 samples and over 10,000 colonies. Although only 16/79 (20% of the isolates showed DNA homology by Probe Hybridization or PCR to common cry genes, initial characterization revealed a surprisingly rich library that included a putative nematocidal gene, a novel filamentous structure associated with a crystal, a spore with spikes originating from a very small parasporal body and isolates with unusually small crystals. When compared to reports of other screens, this screen was also atypical in that only 3/79 isolates (3.8% produced a bipyramidal crystal and 24/79 (30% of the isolates' spores possessed an attached, dark-staining body. Conclusion Results suggest that the screening methodology adopted in this study might deliver a vastly richer and potentially more useful library of B. thuringiensis isolates as compared to that obtained with commonly reported methodologies, and that by extension

  18. A simple high-throughput method for determination of antiepileptic analogues of γ-aminobutyric acid in pharmaceutical dosage forms using microplate fluorescence reader.

    Science.gov (United States)

    Martinc, Boštjan; Vovk, Tomaž

    2013-01-01

    Pregabalin (PGB), gabapentin (GBP), and vigabatrin (VGB) are structural analogues of γ-aminobutyric acid used for the treatment of different forms of epilepsy. Their analytical determination is challenging since these molecules have no significant UV or visible absorption. Several derivatization methods have been developed and used for their determination in bulk or pharmaceutical dosage forms. We aimed to develop a high- throughput method using a microplate reader with fluorescence detection and simple derivatization with fluorescamine. Obtained method involves derivatization step of only 5 min at room temperature and simultaneous measurements of 96 samples (λex 395, λem 476 nm) thus rendering excellent high-throughput analysis. The method was found to be linear with r²>0.998 across investigated analytical ranges of 0.75 to 30.0 µg/mL for PGB, 2.00 to 80.0 µg/mL for GBP, and 1.50 to 60.0 µg/mL for VGB. Intraday and interday precision values did not exceed 4.93%. The accuracy was ranging between 96.6 to 103.5%. The method was also found to be specific since used excipients did not interfere with the method. The robustness study showed that derivatization procedure is more robust than spectrofluorimetric conditions. The developed high-throughput method was successfully applied for determination of drug content and dissolution profiles in pharmaceutical dosage forms of studied antiepileptic drugs.

  19. Rapid Restriction Enzyme-Free Cloning of PCR Products: A High-Throughput Method Applicable for Library Construction

    Science.gov (United States)

    Chaudhary, Vijay K.; Das, Shilpi; Kaur, Charanpreet; Grover, Payal; Gupta, Amita

    2014-01-01

    Herein, we describe a novel cloning strategy for PCR-amplified DNA which employs the type IIs restriction endonuclease BsaI to create a linearized vector with four base-long 5′-overhangs, and T4 DNA polymerase treatment of the insert in presence of a single dNTP to create vector-compatible four base-long overhangs. Notably, the insert preparation does not require any restriction enzyme treatment. The BsaI sites in the vector are oriented in such a manner that upon digestion with BsaI, a stuffer sequence along with both BsaI recognition sequences is removed. The sequence of the four base-long overhangs produced by BsaI cleavage were designed to be non-palindromic, non-compatible to each other. Therefore, only ligation of an insert carrying compatible ends allows directional cloning of the insert to the vector to generate a recombinant without recreating the BsaI sites. We also developed rapid protocols for insert preparation and cloning, by which the entire process from PCR to transformation can be completed in 6–8 h and DNA fragments ranging in size from 200 to 2200 bp can be cloned with equal efficiencies. One protocol uses a single tube for insert preparation if amplification is performed using polymerases with low 3′-exonuclease activity. The other protocol is compatible with any thermostable polymerase, including those with high 3′-exonuclease activity, and does not significantly increase the time required for cloning. The suitability of this method for high-throughput cloning was demonstrated by cloning batches of 24 PCR products with nearly 100% efficiency. The cloning strategy is also suitable for high efficiency cloning and was used to construct large libraries comprising more than 108 clones/µg vector. Additionally, based on this strategy, a variety of vectors were constructed for the expression of proteins in E. coli, enabling large number of different clones to be rapidly generated. PMID:25360695

  20. High-Throughput Melanin-Binding Affinity and In Silico Methods to Aid in the Prediction of Drug Exposure in Ocular Tissue.

    Science.gov (United States)

    Reilly, John; Williams, Sarah L; Forster, Cornelia J; Kansara, Viral; End, Peter; Serrano-Wu, Michael H

    2015-12-01

    Drugs possessing the ability to bind to melanin-rich tissue, such as the eye, are linked with higher ocular exposure, and therefore have the potential to affect the efficacy and safety profiles of therapeutics. A high-throughput melanin chromatographic affinity assay has been developed and validated, which has allowed the rapid melanin affinity assessment for a large number of compounds. Melanin affinity of compounds can be quickly assigned as low, medium, or high melanin binders. A high-throughput chromatographic method has been developed and fully validated to assess melanin affinity of pharmaceuticals and has been useful in predicting ocular tissue distribution in vivo studies. The high-throughput experimental approach has also allowed for a specific training set of 263 molecules for a quantitative structure-affinity relationships (QSAR) method to be developed, which has also been shown to be a predictor of ocular tissue exposure. Previous studies have reported the development of in silico QSAR models based on training sets of relatively small and mostly similar compounds; this model covers a broader range of melanin-binding affinities than what has been previously published and identified several physiochemical descriptors to be considered in the design of compounds where melanin-binding modulation is desired.

  1. Advance of bioassay methods used in high throughput screening%高通量药物筛选生物活性分析技术研究进展

    Institute of Scientific and Technical Information of China (English)

    张莉; 张海霞; 任德成; 杜冠华

    2001-01-01

    A variety of technologies continue to develop for high-throughput screening. This review summarized recent advances of bioassay techniques used in high-throughput screening. The principles, applications, characteristics and other parameters of these methods were described such as homogeneous time resolved fluorescence, fluorescence polarization, fluorescence resonance energy transfer, fluorescence correlation spectroscopy and scintillation proximity assay.

  2. An Automated High-Throughput Metabolic Stability Assay Using an Integrated High-Resolution Accurate Mass Method and Automated Data Analysis Software

    Science.gov (United States)

    Shah, Pranav; Kerns, Edward; Nguyen, Dac-Trung; Obach, R. Scott; Wang, Amy Q.; Zakharov, Alexey; McKew, John; Simeonov, Anton; Hop, Cornelis E. C. A.

    2016-01-01

    Advancement of in silico tools would be enabled by the availability of data for metabolic reaction rates and intrinsic clearance (CLint) of a diverse compound structure data set by specific metabolic enzymes. Our goal is to measure CLint for a large set of compounds with each major human cytochrome P450 (P450) isozyme. To achieve our goal, it is of utmost importance to develop an automated, robust, sensitive, high-throughput metabolic stability assay that can efficiently handle a large volume of compound sets. The substrate depletion method [in vitro half-life (t1/2) method] was chosen to determine CLint. The assay (384-well format) consisted of three parts: 1) a robotic system for incubation and sample cleanup; 2) two different integrated, ultraperformance liquid chromatography/mass spectrometry (UPLC/MS) platforms to determine the percent remaining of parent compound, and 3) an automated data analysis system. The CYP3A4 assay was evaluated using two long t1/2 compounds, carbamazepine and antipyrine (t1/2 > 30 minutes); one moderate t1/2 compound, ketoconazole (10 < t1/2 < 30 minutes); and two short t1/2 compounds, loperamide and buspirone (t½ < 10 minutes). Interday and intraday precision and accuracy of the assay were within acceptable range (∼12%) for the linear range observed. Using this assay, CYP3A4 CLint and t1/2 values for more than 3000 compounds were measured. This high-throughput, automated, and robust assay allows for rapid metabolic stability screening of large compound sets and enables advanced computational modeling for individual human P450 isozymes. PMID:27417180

  3. FLASH Assembly of TALENs Enables High-Throughput Genome Editing

    OpenAIRE

    Reyon, Deepak; Tsai, Shengdar Q.; Khayter, Cyd; Foden, Jennifer A.; Sander, Jeffry D.; Joung, J. Keith

    2012-01-01

    Engineered transcription activator-like effector nucleases (TALENs) have shown promise as facile and broadly applicable genome editing tools. However, no publicly available high-throughput method for constructing TALENs has been published and large-scale assessments of the success rate and targeting range of the technology remain lacking. Here we describe the Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) platform, a rapid and cost-effective method we developed to enable ...

  4. Virtual high throughput screening (vHTS) - A perspective

    OpenAIRE

    Subramaniam, Sangeetha; Mehrotra, Monica; Gupta, Dinesh,

    2008-01-01

    With the exponential rise in the number of viable novel drug targets, computational methods are being increasingly applied to accelerate the drug discovery process. Virtual High Throughput Screening (vHTS) is one such established methodology to identify drug candidates from large collection of compound libraries. Although it complements the expensive and time consuming High Throughput Screening (HTS) of compound libraries, vHTS possess inherent challenges. The successful vHTS requires the car...

  5. Validation of a novel, fully automated high throughput high-performance liquid chromatographic/tandem mass Spectrometric method for quantification of pantoprazole in human plasma.

    Science.gov (United States)

    Dotsikas, Yannis; Apostolou, Constantinos; Soumelas, Stefanos; Kolocouri, Filomila; Ziaka, Afroditi; Kousoulos, Constantinos; Loukas, Yannis L

    2010-01-01

    An automated high-throughput HPLC/MS/MS method was developed for the quantitative determination of pantoprazole in human plasma. Only 100 microL plasma was placed in 2.2 mL 96 deep-well plates, and both pantoprazole and omeprazole (IS) were extracted from human plasma by liquid-liquid extraction, using diethyl ether-dichloromethane (70:30, v/v) as the organic solvent. Robotic liquid-handling workstations were used for all liquid transfer and solution preparation steps and resulted in a short sample preparation time. After vortexing, centrifugation, and freezing, the supernatant organic solvent was evaporated and reconstituted in a small volume of reconstitution solution. Sample analysis was performed by utilizing the combination of RP-HPLC/MS/MS, with positive-ion electrospray ionization and multiple reaction monitoring detection. The chromatographic run time was set at 1.8 min with a flow rate of 0.6 mL/min on a Nucleosil octylsilyl (C8) analytical column. The method was proven to be sensitive, specific, accurate, and precise for the determination of pantoprazole in human plasma. The method was applied to a bioequivalence study after per os administration of a 40 mg pantoprazole gastric retentive tablet.

  6. Achieving High Data Throughput in Research Networks

    Institute of Scientific and Technical Information of China (English)

    WarrenMatthews; LesCottrell

    2001-01-01

    After less than a year of operation ,the BaBar experiment at SLAC has collected almost 100 million particle collision events in a database approaching 165TB.Around 20 TB of data has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon,France,and around 40TB of simulated data has been imported from the Lawrence Livermore National Laboratory(LLNL),BaBar Collaborators plan to double data collection each year and export a third of the data to IN2P3.So within a few years the SLAC OC3 (155Mbps) connection will be fully utilized by file transfer to France alone.Upgrades to infrastructure is essential and detailed understanding of performance issues and the requirements for reliable high throughput transfers is critical.In this talk results from active and passive monitoring and direct measurements of throughput will be reviewed.Methods for achieving the ambitious requirements will be discussed.

  7. A new high-throughput method utilizing porous silica-based nano-composites for the determination of partition coefficients of drug candidates.

    Science.gov (United States)

    Yu, Chih H; Tam, Kin; Tsang, Shik C

    2011-09-01

    We show that highly porous silica-based nanoparticles prepared via micro-emulsion and sol-gel techniques are stable colloids in aqueous solution. By incorporating a magnetic core into the porous silica nano-composite, it is found that the material can be rapidly separated (precipitated) upon exposure to an external magnetic field. Alternatively, the porous silica nanoparticles without magnetic cores can be equally separated from solution by applying a high-speed centrifugation. Using these silica-based nanostructures a new high-throughput method for the determination of partition coefficient for water/n-octanol is hereby described. First, a tiny quantity of n-octanol phase is pre-absorbed in the porous silica nano-composite colloids, which allows an establishment of interface at nano-scale between the adsorbed n-octanol with the bulk aqueous phase. Organic compounds added to the mixture can therefore undergo a rapid partition between the two phases. The concentration of drug compound in the supernatant in a small vial can be determined by UV-visible absorption spectroscopy. With the adaptation of a robotic liquid handler, a high-throughput technology for the determination of partition coefficients of drug candidates can be employed for drug screening in the industry based on these nano-separation skills. The experimental results clearly suggest that this new method can provide partition coefficient values of potential drug candidates comparable to the conventional shake-flask method but requires much shorter analytical time and lesser quantity of chemicals.

  8. Replication methods and tools in high-throughput cultivation processes - recognizing potential variations of growth and product formation by on-line monitoring

    Directory of Open Access Journals (Sweden)

    Luft Karina

    2010-03-01

    Full Text Available Abstract Background High-throughput cultivations in microtiter plates are the method of choice to express proteins from recombinant clone libraries. Such processes typically include several steps, whereby some of them are linked by replication steps: transformation, plating, colony picking, preculture, main culture and induction. In this study, the effects of conventional replication methods and replication tools (8-channel pipette, 96-pin replicators: steel replicator with fixed or spring-loaded pins, plastic replicator with fixed pins on growth kinetics of Escherichia coli SCS1 pQE-30 pSE111 were observed. Growth was monitored with the BioLector, an on-line monitoring technique for microtiter plates. Furthermore, the influence of these effects on product formation of Escherichia coli pRhotHi-2-EcFbFP was investigated. Finally, a high-throughput cultivation process was simulated with Corynebacterium glutamicum pEKEx2-phoD-GFP, beginning at the colony picking step. Results Applying different replication tools and methods for one single strain resulted in high time differences of growth of the slowest and fastest growing culture. The shortest time difference (0.3 h was evaluated for the 96 cultures that were transferred with an 8-channel pipette from a thawed and mixed cryoculture and the longest time difference (6.9 h for cultures that were transferred with a steel replicator with fixed pins from a frozen cryoculture. The on-line monitoring of a simulated high-throughput cultivation process revealed strong variances in growth kinetics and a twofold difference in product formation. Another experiment showed that varying growth kinetics, caused by varying initial biomass concentrations (OD600 of 0.0125 to 0.2 led to strongly varying product formation upon induction at a defined point of time. Conclusions To improve the reproducibility of high-throughput cultivation processes and the comparability between different applied cultures, it is strongly

  9. Development of an efficient transformation method by Agrobacterium tumefaciens and high throughput spray assay to identify transgenic plants for woodland strawberry (Fragaria vesca) using NPTII selection.

    Science.gov (United States)

    Pantazis, Christopher J; Fisk, Sarah; Mills, Kerri; Flinn, Barry S; Shulaev, Vladimir; Veilleux, Richard E; Dan, Yinghui

    2013-03-01

    KEY MESSAGE : We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics. Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12-16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1-2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying.

  10. Development of a high throughput 96-well plate sample preparation method for the determination of trileptal (oxcarbazepine) and its metabolites in human plasma.

    Science.gov (United States)

    Souppart, C; Decherf, M; Humbert, H; Maurer, G

    2001-10-05

    A high throughput preparation method for the determination of trileptal (oxcarbazepine, OXC) and its mono (MHD) and dihydroxy (DHD) metabolites in human plasma, using 96-well plate technology, has been developed and validated according to international regulatory requirements. Preparation of plasma samples (50 microl) containing the compounds to be analysed involved solid-phase extraction (SPE) on Empore C18 96-well SPE plates. Eluates from the plate were injected onto a reversed-phase column (Hypersil C18,3 microm) with UV detection at 210 nm. Detector response was linear over the ranges 0.2-10, 0.1-200 and 0.1-20 micromol/l, for OXC, MHD and DHD, respectively, with relative standard deviations from 1 to 10% and mean accuracies within 4% of the nominal values (number of standard curves=3 in duplicate). The limits of quantitation were 0.2, 0.1 and 0.1 micromol/l, respectively. The overall mean accuracies ranged from 96 to 106% and precision was in the range 4 to 11%. Cross validation indicated no significant difference between plasma concentrations obtained using the 96-well method and the previous method using a traditional SPE method with a 50 mg C18 cartridge. About a threefold increase in sample throughput and a twofold decrease of plasma volume required for the assays, were the main advantages obtained from the previous method. The method was applied for the determination of 3000 plasma samples from clinical studies.

  11. An Optimized High Throughput Clean-Up Method Using Mixed-Mode SPE Plate for the Analysis of Free Arachidonic Acid in Plasma by LC-MS/MS

    OpenAIRE

    Wan Wang; Suzi Qin; Linsen Li; Xiaohua Chen; Qunjie Wang; Junfu Wei

    2015-01-01

    A high throughput sample preparation method was developed utilizing mixed-mode solid phase extraction (SPE) in 96-well plate format for the determination of free arachidonic acid in plasma by LC-MS/MS. Plasma was mixed with 3% aqueous ammonia and loaded into each well of 96-well plate. After washing with water and methanol sequentially, 3% of formic acid in acetonitrile was used to elute arachidonic acid. The collected fraction was injected onto a reversed phase column at 30°C with mobile pha...

  12. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer.

    Science.gov (United States)

    Cribbes, Scott; Kessel, Sarah; McMenemy, Scott; Qiu, Jean; Chan, Leo Li-Ying

    2017-01-01

    Three-dimensional (3D) tumor models have been increasingly used to investigate and characterize cancer drug compounds. The ability to perform high-throughput screening of 3D multicellular tumor spheroids (MCTS) can highly improve the efficiency and cost-effectiveness of discovering potential cancer drug candidates. Previously, the Celigo Image Cytometer has demonstrated a novel method for high-throughput screening of 3D multicellular tumor spheroids. In this work, we employed the Celigo Image Cytometer to examine the effects of 14 cancer drug compounds on 3D MCTS of the glioblastoma cell line U87MG in 384-well plates. Using parameters such as MCTS diameter and invasion area, growth and invasion were monitored for 9 and 3 d, respectively. Furthermore, fluorescent staining with calcein AM, propidium iodide, Hoechst 33342, and caspase 3/7 was performed at day 9 posttreatment to measure viability and apoptosis. Using the kinetic and endpoint data generated, we created a novel multiparametric drug-scoring system for 3D MCTS that can be used to identify and classify potential drug candidates earlier in the drug discovery process. Furthermore, the combination of quantitative and qualitative image data can be used to delineate differences between drugs that induce cytotoxic and cytostatic effects. The 3D MCTS-based multiparametric scoring method described here can provide an alternative screening method to better qualify tested drug compounds.

  13. Data Management for High-Throughput Genomics

    CERN Document Server

    Roehm, Uwe

    2009-01-01

    Today's sequencing technology allows sequencing an individual genome within a few weeks for a fraction of the costs of the original Human Genome project. Genomics labs are faced with dozens of TB of data per week that have to be automatically processed and made available to scientists for further analysis. This paper explores the potential and the limitations of using relational database systems as the data processing platform for high-throughput genomics. In particular, we are interested in the storage management for high-throughput sequence data and in leveraging SQL and user-defined functions for data analysis inside a database system. We give an overview of a database design for high-throughput genomics, how we used a SQL Server database in some unconventional ways to prototype this scenario, and we will discuss some initial findings about the scalability and performance of such a more database-centric approach.

  14. High-Throughput Contact Flow Lithography.

    Science.gov (United States)

    Le Goff, Gaelle C; Lee, Jiseok; Gupta, Ankur; Hill, William Adam; Doyle, Patrick S

    2015-10-01

    High-throughput fabrication of graphically encoded hydrogel microparticles is achieved by combining flow contact lithography in a multichannel microfluidic device and a high capacity 25 mm LED UV source. Production rates of chemically homogeneous particles are improved by two orders of magnitude. Additionally, the custom-built contact lithography instrument provides an affordable solution for patterning complex microstructures on surfaces.

  15. Selective Detection and Automated Counting of Fluorescently-Labeled Chrysotile Asbestos Using a Dual-Mode High-Throughput Microscopy (DM-HTM Method

    Directory of Open Access Journals (Sweden)

    Jung Kyung Kim

    2013-05-01

    Full Text Available Phase contrast microscopy (PCM is a widely used analytical method for airborne asbestos, but it is unable to distinguish asbestos from non-asbestos fibers and requires time-consuming and laborious manual counting of fibers. Previously, we developed a high-throughput microscopy (HTM method that could greatly reduce human intervention and analysis time through automated image acquisition and counting of fibers. In this study, we designed a dual-mode HTM (DM-HTM device for the combined reflection and fluorescence imaging of asbestos, and automated a series of built-in image processing commands of ImageJ software to test its capabilities. We used DksA, a chrysotile-adhesive protein, for selective detection of chrysotile fibers in the mixed dust-free suspension of crysotile and amosite prepared in the laboratory. We demonstrate that fluorescently-stained chrysotile and total fibers can be identified and enumerated automatically in a high-throughput manner by the DM-HTM system. Combined with more advanced software that can correctly identify overlapping and branching fibers and distinguish between fibers and elongated dust particles, the DM-HTM method should enable fully automated counting of airborne asbestos.

  16. A high-throughput and solvent-free method for measurement of natural polyisoprene content in leaves by Fourier transform near infrared spectroscopy.

    Science.gov (United States)

    Takeno, Shinya; Bamba, Takeshi; Nakazawa, Yoshihisa; Fukusaki, Eiichiro; Okazawa, Atsushi; Kobayashi, Akio

    2008-12-01

    Commercial development of natural polyisoprene from polyisoprene-producing plants requires detailed knowledge on how to select high-polyisoprene-content lines and establish agronomic cultivation methods for achieving maximum polyisoprene yield. This development can be facilitated by a high-throughput quantification method for natural polyisoprene. In this paper, we describe the Fourier transform near infrared spectroscopy (FT-NIR) technique coupled with a partial least squares (PLS) regression model to quantify natural polyisoprene in Eucommia ulmoides leaves. PLS regression models are discussed with respect to linearity, root-mean-square error of estimation (RMSEE), and root-mean-square error of prediction (RMSEP). The best PLS regression model was obtained with second derivative NIR spectra in the region between 4000-6000 cm(-1) (R2Y, 0.95; RMSEE, 0.25; RMSEP, 0.37). This is the first report to employ FT-NIR analysis for high throughput and solvent-free quantification of natural polyisoprene in leaves.

  17. Development of a sensitive and reliable high performance liquid chromatography method with fluorescence detection for high-throughput analysis of multi-class mycotoxins in Coix seed.

    Science.gov (United States)

    Kong, Wei-Jun; Li, Jun-Yuan; Qiu, Feng; Wei, Jian-He; Xiao, Xiao-He; Zheng, Yuguo; Yang, Mei-Hua

    2013-10-17

    As an edible and medicinal plant, Coix seed is readily contaminated by more than one group of mycotoxins resulting in potential risk to human health. A reliable and sensitive method has been developed to determine seven mycotoxins (aflatoxins B1, B2, G1, G2, zearalenone, α-zearalenol, and β-zearalenol) simultaneously in 10 batches of Coix seed marketed in China. The method is based on a rapid ultrasound-assisted solid-liquid extraction (USLE) using methanol/water (80/20) followed by immunoaffinity column (IAC) clean-up, on-line photochemical derivatization (PCD), and high performance liquid chromatography coupled with fluorescence detection (HPLC-FLD). Careful optimization of extraction, clean-up, separation and detection conditions was accomplished to increase sample throughput and to attain rapid separation and sensitive detection. Method validation was performed by analyzing samples spiked at three different concentrations for the seven mycotoxins. Recoveries were from 73.5% to 107.3%, with relative standard deviations (RSDs) lower than 7.7%. The intra- and inter-day precisions, expressed as RSDs, were lower than 4% for all studied analytes. Limits of detection and quantification ranged from 0.01 to 50.2 μg kg(-1), and from 0.04 to 125.5 μg kg(-1), respectively, which were below the tolerance levels for mycotoxins set by the European Union. Samples that tested positive were further analyzed by HPLC tandem electrospray ionization mass spectrometry for confirmatory purposes. This is the first application of USLE-IAC-HPLC-PCD-FLD for detecting the occurrence of multi-class mycotoxins in Coix seed.

  18. Fluorescent Approaches to High Throughput Crystallography

    Science.gov (United States)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider

  19. Polymerase chain reaction-hybridization method using urease gene sequences for high-throughput Ureaplasma urealyticum and Ureaplasma parvum detection and differentiation.

    Science.gov (United States)

    Xu, Chen; Zhang, Nan; Huo, Qianyu; Chen, Minghui; Wang, Rengfeng; Liu, Zhili; Li, Xue; Liu, Yunde; Bao, Huijing

    2016-04-15

    In this article, we discuss the polymerase chain reaction (PCR)-hybridization assay that we developed for high-throughput simultaneous detection and differentiation of Ureaplasma urealyticum and Ureaplasma parvum using one set of primers and two specific DNA probes based on urease gene nucleotide sequence differences. First, U. urealyticum and U. parvum DNA samples were specifically amplified using one set of biotin-labeled primers. Furthermore, amine-modified DNA probes, which can specifically react with U. urealyticum or U. parvum DNA, were covalently immobilized to a DNA-BIND plate surface. The plate was then incubated with the PCR products to facilitate sequence-specific DNA binding. Horseradish peroxidase-streptavidin conjugation and a colorimetric assay were used. Based on the results, the PCR-hybridization assay we developed can specifically differentiate U. urealyticum and U. parvum with high sensitivity (95%) compared with cultivation (72.5%). Hence, this study demonstrates a new method for high-throughput simultaneous differentiation and detection of U. urealyticum and U. parvum with high sensitivity. Based on these observations, the PCR-hybridization assay developed in this study is ideal for detecting and discriminating U. urealyticum and U. parvum in clinical applications.

  20. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning (EF

  1. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning

  2. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning (EF

  3. Protocol: An improved high-throughput method for generating tissue samples in 96-well format for plant genotyping (Ice-Cap 2.0

    Directory of Open Access Journals (Sweden)

    Krysan Patrick J

    2007-06-01

    Full Text Available Abstract Background We previously developed a high-throughput system called 'Ice-Cap' for growing Arabidopsis seedlings in a 96-well format and rapidly collecting tissue for subsequent DNA extraction and genotyping. While the originally described Ice-Cap method is an effective tool for high-throughput genotyping, one shortcoming of the first version of Ice-Cap is that optimal seedling growth is highly dependent on specific environmental conditions. Here we describe several technical improvements to the Ice-Cap method that make it much more robust and provide a detailed protocol for implementing the method. Results The key innovation underlying Ice-Cap 2.0 is the development of a continuous watering system. The addition of the watering system allows the seedling growth plates to be incubated without a lid for the duration of the growth period, which in turn allows for much more uniform and robust seedling growth than was observed using the original method. We also determined that inserting wooden skewers between the upper and lower plates prior to tissue harvest made it easier to separate the plates following freezing. Seedlings grown using the Ice-Cap 2.0 method remain viable in the Ice-Cap plates twice as long as seedlings grown using the original method. Conclusion The continuous watering system that we have developed provides an effective solution to the problem of sub-optimal seedling growth that can be encountered when using the originally described Ice-Cap system. This novel watering system and several additional modifications to the Ice-Cap procedure have improved the robustness and utility of the method.

  4. One step forwards for the routine use of high-throughput DNA sequencing in environmental monitoring. An efficient and standardizable method to maximize the detection of environmental bacteria.

    Science.gov (United States)

    Bruno, Antonia; Sandionigi, Anna; Galimberti, Andrea; Siani, Eleonora; Labra, Massimo; Cocuzza, Clementina; Ferri, Emanuele; Casiraghi, Maurizio

    2017-02-01

    We propose an innovative, repeatable, and reliable experimental workflow to concentrate and detect environmental bacteria in drinking water using molecular techniques. We first concentrated bacteria in water samples using tangential flow filtration and then we evaluated two methods of environmental DNA extraction. We performed tests on both artificially contaminated water samples and real drinking water samples. The efficiency of the experimental workflow was measured through qPCR. The successful applicability of the high-throughput DNA sequencing (HTS) approach was demonstrated on drinking water samples. Our results demonstrate the feasibility of our approach in high-throughput-based studies, and we suggest incorporating it in monitoring strategies to have a better representation of the microbial community. In the recent years, HTS techniques have become key tools in the study of microbial communities. To make the leap from academic laboratories to the routine monitoring (e.g., water treatment plants laboratories), we here propose an experimental workflow suitable for the introduction of HTS as a standard method for detecting environmental bacteria. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Development of a Scintillation Proximity Assay (SPA) Based, High Throughput Screening Feasible Method for the Identification of PDE12 Activity Modulators.

    Science.gov (United States)

    Mang, Samuel; Bucher, Hannes; Nickolaus, Peter

    2016-01-01

    The scintillation proximity assay (SPA) technology has been widely used to establish high throughput screens (HTS) for a range of targets in the pharmaceutical industry. PDE12 (aka. 2'- phosphodiesterase) has been published to participate in the degradation of oligoadenylates that are involved in the establishment of an antiviral state via the activation of ribonuclease L (RNAse-L). Degradation of oligoadenylates by PDE12 terminates these antiviral activities, leading to decreased resistance of cells for a variety of viral pathogens. Therefore inhibitors of PDE12 are discussed as antiviral therapy. Here we describe the use of the yttrium silicate SPA bead technology to assess inhibitory activity of compounds against PDE12 in a homogeneous, robust HTS feasible assay using tritiated adenosine-P-adenylate ([3H]ApA) as substrate. We found that the used [3H]ApA educt, was not able to bind to SPA beads, whereas the product [3H]AMP, as known before, was able to bind to SPA beads. This enables the measurement of PDE12 activity on [3H]ApA as a substrate using a wallac microbeta counter. This method describes a robust and high throughput capable format in terms of specificity, commonly used compound solvents, ease of detection and assay matrices. The method could facilitate the search for PDE12 inhibitors as antiviral compounds.

  6. High-throughput computing in the sciences.

    Science.gov (United States)

    Morgan, Mark; Grimshaw, Andrew

    2009-01-01

    While it is true that the modern computer is many orders of magnitude faster than that of yesteryear; this tremendous growth in CPU clock rates is now over. Unfortunately, however, the growth in demand for computational power has not abated; whereas researchers a decade ago could simply wait for computers to get faster, today the only solution to the growing need for more powerful computational resource lies in the exploitation of parallelism. Software parallelization falls generally into two broad categories--"true parallel" and high-throughput computing. This chapter focuses on the latter of these two types of parallelism. With high-throughput computing, users can run many copies of their software at the same time across many different computers. This technique for achieving parallelism is powerful in its ability to provide high degrees of parallelism, yet simple in its conceptual implementation. This chapter covers various patterns of high-throughput computing usage and the skills and techniques necessary to take full advantage of them. By utilizing numerous examples and sample codes and scripts, we hope to provide the reader not only with a deeper understanding of the principles behind high-throughput computing, but also with a set of tools and references that will prove invaluable as she explores software parallelism with her own software applications and research.

  7. INTRODUCTION OF THE HIGH THROUGHPUT SCREENING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    李元

    2001-01-01

    In this article, we introduce the system of high throughput screening (HTS). Its role in new drug study and current development is described. The relationship between research achievements of genome study and new type screening model of new drugs is emphasized. The personal opinions of current problems about HTS study in China are raised.

  8. INTRODUCTION OF THE HIGH THROUGHPUT SCREENING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    李元

    2001-01-01

    In this article, we introduce the system of high throughput screening (HTS). Its role in new drug study and current development is described. The relationship between research achievements of genome study and new type screening model of new drugs is emphasized. The personal opinions of current problems about HTS study in China are raised.``

  9. High-throughput screening assay used in pharmacognosy: Selection, optimization and validation of methods of enzymatic inhibition by UV-visible spectrophotometry

    Directory of Open Access Journals (Sweden)

    Graciela Granados-Guzmán

    2014-02-01

    Full Text Available In research laboratories of both organic synthesis and extraction of natural products, every day a lot of products that can potentially introduce some biological activity are obtained. Therefore it is necessary to have in vitro assays, which provide reliable information for further evaluation in in vivo systems. From this point of view, in recent years has intensified the use of high-throughput screening assays. Such trials should be optimized and validated for accurate and precise results, i.e. reliable. The present review addresses the steps needed to develop and validate bioanalytical methods, emphasizing UV-Visible spectrophotometry as detection system. Particularly focuses on the selection of the method, the optimization to determine the best experimental conditions, validation, implementation of optimized and validated method to real samples, and finally maintenance and possible transfer it to a new laboratory.

  10. Combinatorial and high-throughput screening approaches for strain engineering.

    Science.gov (United States)

    Liu, Wenshan; Jiang, Rongrong

    2015-03-01

    Microbes have long been used in the industry to produce valuable biochemicals. Combinatorial engineering approaches, new strain engineering tools derived from inverse metabolic engineering, have started to attract attention in recent years, including genome shuffling, error-prone DNA polymerase, global transcription machinery engineering (gTME), random knockout/overexpression libraries, ribosome engineering, multiplex automated genome engineering (MAGE), customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER), and library construction of "tunable intergenic regions" (TIGR). Since combinatorial approaches and high-throughput screening methods are fundamentally interconnected, color/fluorescence-based, growth-based, and biosensor-based high-throughput screening methods have been reviewed. We believe that with the help of metabolic engineering tools and new combinatorial approaches, plus effective high-throughput screening methods, researchers will be able to achieve better results on improving microorganism performance under stress or enhancing biochemical yield.

  11. High-throughput diffusion multiples

    Directory of Open Access Journals (Sweden)

    J.-C. Zhao

    2005-10-01

    Full Text Available A diffusion multiple is an assembly of three or more different metal blocks, in intimate interfacial contact, subjected to high temperature to allow thermal interdiffusion to create solid-solution compositions and intermetallic compounds. Using microscale probes, composition-structure-phase-property relationships can be established with an efficiency orders of magnitude higher than conventional one-composition-at-a-time practice. For structural materials, such relationships include phase diagrams, diffusion coefficients, precipitation kinetics, solution strengthening effects, and precipitation strengthening effects. Many microscale probes can also be used to study several materials phenomena. For instance, microscale thermal conductivity measurements can be used to study order-disordering transformation, site preference in intermetallic compounds, solid-solution effect on conductivity, and compositional point defect propensity. This article will use a few examples to illustrate the capabilities and developmental needs of this approach.

  12. Perspective: Data infrastructure for high throughput materials discovery

    Science.gov (United States)

    Pfeif, E. A.; Kroenlein, K.

    2016-05-01

    Computational capability has enabled materials design to evolve from trial-and-error towards more informed methodologies that require large amounts of data. Expert-designed tools and their underlying databases facilitate modern-day high throughput computational methods. Standard data formats and communication standards increase the impact of traditional data, and applying these technologies to a high throughput experimental design provides dense, targeted materials data that are valuable for material discovery. Integrated computational materials engineering requires both experimentally and computationally derived data. Harvesting these comprehensively requires different methods of varying degrees of automation to accommodate variety and volume. Issues of data quality persist independent of type.

  13. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  14. A novel high-throughput multi-parameter flow cytometry based method for monitoring and rapid characterization of microbiome dynamics in anaerobic systems.

    Science.gov (United States)

    Dhoble, Abhishek S; Bekal, Sadia; Dolatowski, William; Yanz, Connor; Lambert, Kris N; Bhalerao, Kaustubh D

    2016-11-01

    A novel multidimensional flow cytometry based method has been demonstrated to monitor and rapidly characterize the dynamics of the complex anaerobic microbiome associated with perturbations in external environmental factors. While community fingerprinting provides an estimate of the meta genomic structure, flow cytometry provides a fingerprint of the community morphology including its autofluorescence spectrum in a high-throughput manner. Using anaerobic microbial consortia perturbed with the controlled addition of various carbon sources, it is possible to quantitatively discriminate between divergent microbiome analogous to community fingerprinting techniques using automated ribosomal intergenic spacer analysis (ARISA). The utility of flow cytometry based method has also been demonstrated in a fully functional industry scale anaerobic digester to distinguish between microbiome composition caused by varying hydraulic retention time (HRT). This approach exploits the rich multidimensional information from flow cytometry for rapid characterization of the dynamics of microbial communities.

  15. High-throughput cloning and expression in recalcitrant bacteria

    NARCIS (Netherlands)

    Geertsma, Eric R.; Poolman, Bert

    2007-01-01

    We developed a generic method for high-throughput cloning in bacteria that are less amenable to conventional DNA manipulations. The method involves ligation-independent cloning in an intermediary Escherichia coli vector, which is rapidly converted via vector-backbone exchange (VBEx) into an organism

  16. A high-throughput method for the simultaneous determination of multiple mycotoxins in human and laboratory animal biological fluids and tissues by PLE and HPLC-MS/MS.

    Science.gov (United States)

    Cao, Xiaoqin; Wu, Shuangchan; Yue, Yuan; Wang, Shi; Wang, Yuting; Tao, Li; Tian, Hui; Xie, Jianmei; Ding, Hong

    2013-12-30

    A high-throughput method for the determination of 28 mycotoxins involving pressurised liquid extraction (PLE) coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been optimised and validated for determination in various biological fluids and tissues of human and laboratory animals. High-throughput analysis was achieved using PLE pre-treatment and without the need for any cleanup. The extraction solvent was acetonitrile/water/acetic acid (80/19/1, v/v/v). The static extraction time was 5min. The extraction pressure and temperature were 1500psi and 140°C, respectively. The flush volume was 60%. The limits of detection, which were defined as CCα, varied from 0.01μg/kg (μg/L) to 0.69μg/kg (μg/L). The recoveries of spiked samples from 0.20μg/kg (μg/L) to 2μg/kg (μg/L) ranged from 71% to 100.5% with relative standard deviations of less than 17.5%, except FB1 and FB2 recoveries, which were lower than 60%. The method was successfully applied in real samples, and the data indicate that this technique is a useful analytical method for the determination of mycotoxins from humans and animals. To the best of our knowledge, this method is the first for the large-scale testing of multi-class mycotoxins in all types of biological fluids and tissues that uses PLE and HPLC-MS/MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. High throughput-per-footprint inertial focusing.

    Science.gov (United States)

    Ciftlik, Ata Tuna; Ettori, Maxime; Gijs, Martin A M

    2013-08-26

    Matching the scale of microfluidic flow systems with that of microelectronic chips for realizing monolithically integrated systems still needs to be accomplished. However, this is appealing only if such re-scaling does not compromise the fluidic throughput. This is related to the fact that the cost of microelectronic circuits primarily depends on the layout footprint, while the performance of many microfluidic systems, like flow cytometers, is measured by the throughput. The simple operation of inertial particle focusing makes it a promising technique for use in such integrated flow cytometer applications, however, microfluidic footprints demonstrated so far preclude monolithic integration. Here, the scaling limits of throughput-per-footprint (TPFP) in using inertial focusing are explored by studying the interplay between theory, the effect of channel Reynolds numbers up to 1500 on focusing, the entry length for the laminar flow to develop, and pressure resistance of the microchannels. Inertial particle focusing is demonstrated with a TPFP up to 0.3 L/(min cm²) in high aspect-ratio rectangular microfluidic channels that are readily fabricated with a post-CMOS integratable process, suggesting at least a 100-fold improvement compared to previously demonstrated techniques. Not only can this be an enabling technology for realizing cost-effective monolithically integrated flow cytometry devices, but the methodology represented here can also open perspectives for miniaturization of many biomedical microfluidic applications requiring monolithic integration with microelectronics without compromising the throughput.

  18. Comparison of four DNA extraction methods for comprehensive assessment of 16S rRNA bacterial diversity in marine biofilms using high-throughput sequencing.

    Science.gov (United States)

    Corcoll, Natàlia; Österlund, Tobias; Sinclair, Lucas; Eiler, Alexander; Kristiansson, Erik; Backhaus, Thomas; Eriksson, K Martin

    2017-08-01

    High-throughput DNA sequencing technologies are increasingly used for the metagenomic characterisation of microbial biodiversity. However, basic issues, such as the choice of an appropriate DNA extraction method, are still not resolved for non-model microbial communities. This study evaluates four commonly used DNA extraction methods for marine periphyton biofilms in terms of DNA yield, efficiency, purity, integrity and resulting 16S rRNA bacterial diversity. Among the tested methods, the Plant DNAzol® Reagent (PlantDNAzol) and the FastDNA® SPIN Kit for Soil (FastDNA Soil) methods were best suited to extract high quantities of DNA (77-130 μg g wet wt-1). Lower amounts of DNA were obtained (DNA Isolation Kit (PowerPlant) and the Power Biofilm® DNA Isolation Kit (PowerBiofilm) methods, but integrity and purity of the extracted DNA were higher. Results from 16S rRNA amplicon sequencing demonstrate that the choice of a DNA extraction method significantly influences the bacterial community profiles generated. A higher number of bacterial OTUs were detected when DNA was extracted with the PowerBiofilm and the PlantDNAzol methods. Overall, this study demonstrates the potential bias in metagenomic diversity estimates associated with different DNA extraction methods. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. High throughput UV method for the estimation of thermodynamic solubility and the determination of the solubility in biorelevant media.

    Science.gov (United States)

    Bard, Bruno; Martel, Sophie; Carrupt, Pierre-Alain

    2008-03-03

    The growing interest for high quality solubility data in the early stages of drug discovery suggested a detailed optimization of experimental conditions for a 96-well HTS UV method in order to obtain solubility values close to thermodynamic solubility measured by shake-flask method. Results have shown that solubility data obtained by the HTS approach were highly dependent on shaking intensity and incubation times due to the formation of supersaturated solutions resulting from the dilution of DMSO stock solutions in aqueous buffer. Thus, careful experimental set-up was developed to improve the quality and the reproducibility of the HTS method. Moreover, the early qualitative prediction of bioavailability and absorption of orally administered drugs require more and more biorelevant solubility values in drug discovery programs. Thus, the optimized HTS method was also adapted to measure solubility directly in FaSSIF and FeSSIF media. The versatile HTS UV approach presented in this paper provides a unique and reliable way to determine solubility in various experimental conditions.

  20. Microfabricated high-throughput electronic particle detector

    Science.gov (United States)

    Wood, D. K.; Requa, M. V.; Cleland, A. N.

    2007-10-01

    We describe the design, fabrication, and use of a radio frequency reflectometer integrated with a microfluidic system, applied to the very high-throughput measurement of micron-scale particles, passing in a microfluidic channel through the sensor region. The device operates as a microfabricated Coulter counter [U.S. Patent No. 2656508 (1953)], similar to a design we have described previously, but here with significantly improved electrode geometry as well as including electronic tuning of the reflectometer; the two improvements yielding an improvement by more than a factor of 10 in the signal to noise and in the diametric discrimination of single particles. We demonstrate the high-throughput discrimination of polystyrene beads with diameters in the 4-10μm range, achieving diametric resolutions comparable to the intrinsic spread of diameters in the bead distribution, at rates in excess of 15×106beads/h.

  1. HIGH THROUGHPUT DRILLING OF TITANIUM ALLOYS

    Institute of Scientific and Technical Information of China (English)

    LI Rui; SHIH Albert Jau-Min

    2007-01-01

    The experiments of high throughput drilling of Ti-6Al-4V at 183 m/min cutting speed and 156 mm3/s material removal rate using a 4 mm diameter WC-Co spiral point drill are conducted. At this material removal rate, it took only 0.57 s to drill a hole in a 6.35 mm thick Ti plate. Supplying the cutting fluid via through-the-drill holes and the balance of cutting speed and feed have proven to be critical for drill life. An inverse heat transfer model is developed to predict the heat flux and the drill temperature distribution in drilling. A three-dimensional finite element modeling of drilling is conducted to predict the thrust force and torque. Experimental result demonstrates that, using proper machining process parameters, tool geometry, and fine-grained WC-Co tool material, the high throughput machining of Ti alloy is technically feasible.

  2. [High Throughput Screening Analysis of Preservatives and Sweeteners in Carbonated Beverages Based on Improved Standard Addition Method].

    Science.gov (United States)

    Wang, Su-fang; Liu, Yun; Gong, Li-hua; Dong, Chun-hong; Fu, De-xue; Wang, Guo-qing

    2016-02-01

    Simulated water samples of 3 kinds of preservatives and 4 kinds of sweeteners were formulated by using orthogonal design. Kernel independent component analysis (KICA) was used to process the UV spectra of the simulated water samples and the beverages added different amounts of the additive standards, then the independent components (ICs), i. e. the UV spectral profiles of the additives, and the ICs' coefficient matrices were used to establish UV-KICA-SVR prediction model of the simulated preservatives and sweeteners solutions using support vector regression (SVR) analysis. The standards added beverages samples were obtained by adding different amounts level of additives in carbonated beverages, their UV spectra were processed by KICA, then IC information represented to the additives and other sample matrix were obtained, and the sample background can be deducted by removing the corresponding IC, other ICs' coefficient matrices were used to estimate the amounts of the additives in the standard added beverage samples based on the UV-KICA-SVR model, while the intercept of linear regression equation of predicted amounts and the added amounts in the standard added samples is the additive content in the raw beverage sample. By utilization of chemometric "blind source separation" method for extracting IC information of the tested additives in the beverage and other sample matrix, and using SVR regression modeling to improve the traditional standard addition method, a new method was proposed for the screening of the preservatives and sweeteners in carbonated beverages. The proposed UV-KICA-SVR method can be used to determine 3 kinds of preservatives and 4 kinds of sweetener in the carbonate beverages with the limit of detection (LOD) are located with the range 0.2-1.0 mg · L⁻¹, which are comparable to that of the traditional high performance liquid chromatographic (HPLC) method.

  3. The OncoFinder algorithm for minimizing the errors introduced by the high-throughput methods of transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Anton A. Buzdin

    2014-08-01

    Full Text Available The diversity of the installed sequencing and microarray equipment make it increasingly difficult to compare and analyze the gene expression datasets obtained using the different methods. Many applications requiring high-quality and low error rates can not make use of available data using traditional analytical approaches. Recently, we proposed a new concept of signalome-wide analysis of functional changes in the intracellular pathways termed OncoFinder, a bioinformatic tool for quantitative estimation of the signaling pathway activation (SPA. We also developed methods to compare the gene expression data obtained using multiple platforms and minimizing the error rates by mapping the gene expression data onto the known and custom signaling pathways. This technique for the first time makes it possible to analyze the functional features of intracellular regulation on a mathematical basis. In this study we show that the OncoFinder method significantly reduces the errors introduced by transcriptome-wide experimental techniques. We compared the gene expression data for the same biological samples obtained by both the next generation sequencing (NGS and microarray methods. For these different techniques we demonstrate that there is virtually no correlation between the gene expression values for all datasets analyzed (R2 < 0.1. In contrast, when the OncoFinder algorithm is applied to the data we observed clear-cut correlations between the NGS and microarray gene expression datasets. The signaling pathway activation profiles obtained using NGS and microarray techniques were almost identical for the same biological samples allowing for the platform-agnostic analytical applications. We conclude that this feature of the OncoFinder enables to characterize the functional states of the transcriptomes and interactomes more accurately as before, which makes OncoFinder a method of choice for many applications including genetics, physiology, biomedicine and

  4. Orthogonal NGS for High Throughput Clinical Diagnostics.

    Science.gov (United States)

    Chennagiri, Niru; White, Eric J; Frieden, Alexander; Lopez, Edgardo; Lieber, Daniel S; Nikiforov, Anastasia; Ross, Tristen; Batorsky, Rebecca; Hansen, Sherry; Lip, Va; Luquette, Lovelace J; Mauceli, Evan; Margulies, David; Milos, Patrice M; Napolitano, Nichole; Nizzari, Marcia M; Yu, Timothy; Thompson, John F

    2016-04-19

    Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly.

  5. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.;

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification....... Monoclonal antibodies were raised to different targets in single batch runs of 6-10 wk using multiplexed immunisations, automated fusion and cell-culture, and a novel antigen-coated microarray-screening assay. In a large-scale experiment, where eight mice were immunized with ten antigens each, we generated...

  6. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas

    2013-10-22

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  7. High Throughput PBTK: Open-Source Data and Tools for ...

    Science.gov (United States)

    Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy

  8. Development and validation of a high throughput UPLC–MS/MS method for simultaneous quantification of esomeprazole, rabeprazole and levosulpiride in human plasma

    Directory of Open Access Journals (Sweden)

    Raja Haranadha Babu Chunduri

    2016-06-01

    Full Text Available A high throughput ultra pressure liquid chromatography–mass spectrometry (UPLC–MS/MS method with good sensitivity and selectivity has been developed and validated for simultaneous quantification of esomeprazole, rabeprazole and levosulpiride in human plasma using lansoprazole as internal standard (IS. The extraction method based on liquid–liquid extraction technique was used to extract the analytes and IS from of 50 µL of human plasma using methyl tert-butyl ether:ethyl acetate (80:20, v/v, which offers a high recovery. Chromatographic separation of analytes and IS was achieved on a Hypersil gold C18 column using gradient mobile phase consisting of 2 mM ammonium formate/acetonitrile. The flow rate was set at 0.5 mL/min to elute all the analytes and IS within 1.00 min runtime. Detection of target compounds was performed on a triple quadruple mass spectrometer by multiple reaction monitoring (MRM mode via positive electrospray ionization (ESI. Method validation results demonstrated that the developed method has good precision and accuracy over the concentration ranges of 0.1–2000 ng/mL for each analyte. Stability of compounds was established in a battery of stability studies, i.e., bench top, autosampler, dry extract and long-term storage stability as well as freeze-thaw cycles. The validated method has been successfully applied to analyze human plasma samples for application in pharmacokinetic studies.

  9. Development and validation of a high throughput UPLC-MS/MS method for simultaneous quantification of esomeprazole, rabeprazole and levosulpiride in human plasma$

    Institute of Scientific and Technical Information of China (English)

    Raja Haranadha Babu Chunduri a; n; Gowri Sankar Dannana b

    2016-01-01

    A high throughput ultra pressure liquid chromatography–mass spectrometry (UPLC–MS/MS) method with good sensitivity and selectivity has been developed and validated for simultaneous quantification of esomeprazole, rabeprazole and levosulpiride in human plasma using lansoprazole as internal standard (IS). The extraction method based on liquid–liquid extraction technique was used to extract the analytes and IS from of 50 mL of human plasma using methyl tert-butyl ether:ethyl acetate (80:20, v/v), which offers a high recovery. Chromatographic separation of analytes and IS was achieved on a Hypersil gold C18 column using gradient mobile phase consisting of 2 mM ammonium formate/acetonitrile. The flow rate was set at 0.5 mL/min to elute all the analytes and IS within 1.00 min runtime. Detection of target compounds was performed on a triple quadruple mass spectrometer by multiple reaction monitoring (MRM) mode via positive electrospray ionization (ESI). Method validation results demonstrated that the developed method has good precision and accuracy over the concentration ranges of 0.1–2000 ng/mL for each analyte. Stability of compounds was established in a battery of stability studies, i.e., bench top, autosampler, dry extract and long-term storage stability as well as freeze-thaw cycles. The validated method has been successfully applied to analyze human plasma samples for application in pharmaco-kinetic studies.

  10. Robust-LongSAGE (RL-SAGE): an improved LongSAGE method for high-throughput transcriptome analysis.

    Science.gov (United States)

    Gowda, Malali; Wang, Guo-Liang

    2008-01-01

    Serial analysis of gene expression (SAGE) is a powerful technique for large-scale transcriptome analysis in eukaryotes. However, technical difficulties in the SAGE library construction, such as low concatemer cloning efficiency, small concatemer size, and a high level of empty clones, has prohibited its widespread use as a routine technique for expression profiling in many laboratories. We recently improved the LongSAGE library construction method considerably and developed a modified version called Robust-LongSAGE, or RL-SAGE. In RL-SAGE, concatemer cloning efficiency and clone insert size were increased significantly. About 20 PCR reactions are sufficient to make a library with more than 150,000 clones. Using RL-SAGE, we have made 10 libraries of rice, maize, and the rice blast fungus Magnaporthe grisea.

  11. The development and assessment of high-throughput mass spectrometry-based methods for the quantification of a nanoparticle drug delivery agent in cellular lysate.

    Science.gov (United States)

    Buse, Joshua; Purves, Randy W; Verrall, Ronald E; Badea, Ildiko; Zhang, Haixia; Mulligan, Christopher C; Peru, Kerry M; Bailey, Jonathan; Headley, John V; El-Aneed, Anas

    2014-11-01

    The safe use of lipid-based drug delivery agents requires fast and sensitive qualitative and quantitative assessment of their cellular interactions. Many mass spectrometry (MS) based analytical platforms can achieve such task with varying capabilities. Therefore, four novel high-throughput MS-based quantitative methods were evaluated for the analysis of a small organic gene delivery agent: N,N-bis(dimethylhexadecyl)-1,3-propane-diammonium dibromide (G16-3). Analysis utilized MS instruments that detect analytes using low-resolution tandem MS (MS/MS) analysis (i.e. QTRAP or linear ion trap in this work) or high-resolution MS analysis (i.e. time of flight (ToF) or Orbitrap). Our results indicate that the validated fast chromatography (FC)-QTRAP-MS/MS, FC- LTQ-Orbitrap-MS, desorption electrospray ionization-collision-induced dissociation (CID)-MS/MS and matrix assisted laser desorption ionization-ToF/ToF-MS MS methods were superior in the area of method development and sample analysis time to a previously developed liquid chromatography (LC)-CID-MS/MS. To our knowledge, this is the first evaluation of the abilities of five MS-based quantitative methods that target a single pharmaceutical analyte. Our findings indicate that, in comparison to conventional LC-CID-MS/MS, the new MS-based methods resulted in a (1) substantial reduction in the analysis time, (2) reduction in the time required for method development and (3) production of either superior or comparable quantitative data. The four new high-throughput MS methods, therefore, were faster, more efficient and less expensive than a conventional LC-CID-MS/MS for the quantification of the G16-3 analyte within tissue culture. When applied to cellular lysate, no significant change in the concentration of G16-3 gemini surfactant within PAM212 cells was observed between 5 and 53 h, suggesting the absence of any metabolism/excretion from PAM212 cells.

  12. Development of a simple fluorescence-based microplate method for the high-throughput analysis of proline in wine samples.

    Science.gov (United States)

    Robert-Peillard, Fabien; Boudenne, Jean-Luc; Coulomb, Bruno

    2014-05-01

    This paper presents a simple, accurate and multi-sample method for the determination of proline in wines thanks to a 96-well microplate technique. Proline is the most abundant amino acid in wine and is an important parameter related to wine characteristics or maturation processes of grape. In the current study, an improved application of the general method based on sodium hypochlorite oxidation and o-phthaldialdehyde (OPA)-thiol spectrofluorometric detection is described. The main interfering compounds for specific proline detection in wines are strongly reduced by selective reaction with OPA in a preliminary step under well-defined pH conditions. Application of the protocol after a 500-fold dilution of wine samples provides a working range between 0.02 and 2.90gL(-1), with a limit of detection of 7.50mgL(-1). Comparison and validation on real wine samples by ion-exchange chromatography prove that this procedure yields accurate results. Simplicity of the protocol used, with no need for centrifugation or filtration, organic solvents or high temperature enables its full implementation in plastic microplates and efficient application for routine analysis of proline in wines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. High-throughput GC-ECD analysis of PCBs in food by accelerated solvent extraction. Method validation

    Energy Technology Data Exchange (ETDEWEB)

    Piersanti, A.; Fioroni, L.; Paoloni, A.; Tavoloni, T.; Pecorelli, I.; Galarini, R. [Istituto Zooprofilattico Sperimentale dell' Umbria e delle Marche, Perugia (Italy)

    2004-09-15

    In the year 2000 the determination of the PCBs in food commodities was introduced in the Italian national residue control plan in which government labs were requested to estimate the total PCB content as sum of seven more representative congeners. Later on, in 2001, it was decided that a more appropriate estimation of the total PCBs was possible through analysis of eighteen rather than seven congeners. Therefore the need for simple and validated analytical methods arose. In this work a method for the analysis of the PCBs 18-congeners (T{sub 3}CB-28, T{sub 4}CB-52, P{sub 5}CB-95, P{sub 5}CB-99, P{sub 5}CB-101, P{sub 5}CB-105, P{sub 5}CB-110, P{sub 5}CB-118, H{sub 6}CB-138, H{sub 6}CB-146, H{sub 6}CB-149, H{sub 6}CB-151, H{sub 6}CB-153, H{sub 7}CB-170, H{sub 7}CB-177, H{sub 7}CB-180, H{sub 7}CB-183, H{sub 7}CB-187) is reported. This has been set up taking in account the advantages of the automated and high efficient Accelerated Solvent Extraction together with good purification achieved by a one-step acidic-extrelut/silica chromatography. The instrumental analysis is performed by capillary-GC equipped with an ECD detector. An in-house validation study has been made on swine muscle assessing the method performances in terms of limit of detection, response linearity range, trueness and precision.

  14. Chemometric Optimization Studies in Catalysis Employing High-Throughput Experimentation

    NARCIS (Netherlands)

    Pereira, S.R.M.

    2008-01-01

    The main topic of this thesis is the investigation of the synergies between High-Throughput Experimentation (HTE) and Chemometric Optimization methodologies in Catalysis research and of the use of such methodologies to maximize the advantages of using HTE methods. Several case studies were analysed

  15. Automatic Spot Identification for High Throughput Microarray Analysis

    Science.gov (United States)

    Wu, Eunice; Su, Yan A.; Billings, Eric; Brooks, Bernard R.; Wu, Xiongwu

    2013-01-01

    High throughput microarray analysis has great potential in scientific research, disease diagnosis, and drug discovery. A major hurdle toward high throughput microarray analysis is the time and effort needed to accurately locate gene spots in microarray images. An automatic microarray image processor will allow accurate and efficient determination of spot locations and sizes so that gene expression information can be reliably extracted in a high throughput manner. Current microarray image processing tools require intensive manual operations in addition to the input of grid parameters to correctly and accurately identify gene spots. This work developed a method, herein called auto-spot, to automate the spot identification process. Through a series of correlation and convolution operations, as well as pixel manipulations, this method makes spot identification an automatic and accurate process. Testing with real microarray images has demonstrated that this method is capable of automatically extracting subgrids from microarray images and determining spot locations and sizes within each subgrid, regardless of variations in array patterns and background noises. With this method, we are one step closer to the goal of high throughput microarray analysis. PMID:24298393

  16. High-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of fampridine, paroxetine, and quinidine in rat plasma: Application to in vivo perfusion study

    Directory of Open Access Journals (Sweden)

    Suneetha Achanti

    2016-10-01

    Full Text Available A selective and high-throughput liquid chromatography–mass spectrometry method has been developed and validated for the simultaneous quantification of paroxetine, fampridine, and quinidine in rat plasma using imipramine as an internal standard. Following protein precipitation extraction, the analytes and internal standard were run on XBridge C18 column (150 mm × 4.6 mm, 5 μm using a gradient mobile phase consisting of 5mM ammonium formate in water (pH 9.0 and acetonitrile in a flow gradience program. The precursor and product ions of the drugs were monitored on a triple quadrupole instrument operated in the positive ionization mode. The method was validated over a concentration range of 0.1–100 ng/mL for all the three analytes, with relative recoveries ranging from 69% to 82%. The intra- and interbatch precision (percent coefficient of variation across four validation runs were less than 13.4%. The accuracy determined at four quality control (QC levels (lower limit of quantitation, low QC, medium QC, and high QC was within ±6.5% of coefficient of variation values. The method proved highly reproducible and sensitive, and was successfully applied in a pharmacokinetic study after single-dose oral administration to rats and also in perfusion study sample analysis.

  17. A novel mean-centering method for normalizing microRNA expression from high-throughput RT-qPCR data

    Directory of Open Access Journals (Sweden)

    Wylie Dennis

    2011-12-01

    Full Text Available Abstract Background Normalization is critical for accurate gene expression analysis. A significant challenge in the quantitation of gene expression from biofluids samples is the inability to quantify RNA concentration prior to analysis, underscoring the need for robust normalization tools for this sample type. In this investigation, we evaluated various methods of normalization to determine the optimal approach for quantifying microRNA (miRNA expression from biofluids and tissue samples when using the TaqMan® Megaplex™ high-throughput RT-qPCR platform with low RNA inputs. Findings We compared seven normalization methods in the analysis of variation of miRNA expression from biofluid and tissue samples. We developed a novel variant of the common mean-centering normalization strategy, herein referred to as mean-centering restricted (MCR normalization, which is adapted to the TaqMan Megaplex RT-qPCR platform, but is likely applicable to other high-throughput RT-qPCR-based platforms. Our results indicate that MCR normalization performs comparable to or better than both standard mean-centering and other normalization methods. We also propose an extension of this method to be used when migrating biomarker signatures from Megaplex to singleplex RT-qPCR platforms, based on the identification of a small number of normalizer miRNAs that closely track the mean of expressed miRNAs. Conclusions We developed the MCR method for normalizing miRNA expression from biofluids samples when using the TaqMan Megaplex RT-qPCR platform. Our results suggest that normalization based on the mean of all fully observed (fully detected miRNAs minimizes technical variance in normalized expression values, and that a small number of normalizer miRNAs can be selected when migrating from Megaplex to singleplex assays. In our study, we find that normalization methods that focus on a restricted set of miRNAs tend to perform better than methods that focus on all miRNAs, including

  18. An Improved Method for Measuring Quantitative Resistance to the Wheat Pathogen Zymoseptoria tritici Using High-Throughput Automated Image Analysis.

    Science.gov (United States)

    Stewart, Ethan L; Hagerty, Christina H; Mikaberidze, Alexey; Mundt, Christopher C; Zhong, Ziming; McDonald, Bruce A

    2016-07-01

    Zymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. An improved method of quantifying STB symptoms was developed based on automated analysis of diseased leaf images made using a flatbed scanner. Naturally infected leaves (n = 949) sampled from fungicide-treated field plots comprising 39 wheat cultivars grown in Switzerland and 9 recombinant inbred lines (RIL) grown in Oregon were included in these analyses. Measures of quantitative resistance were percent leaf area covered by lesions, pycnidia size and gray value, and pycnidia density per leaf and lesion. These measures were obtained automatically with a batch-processing macro utilizing the image-processing software ImageJ. All phenotypes in both locations showed a continuous distribution, as expected for a quantitative trait. The trait distributions at both sites were largely overlapping even though the field and host environments were quite different. Cultivars and RILs could be assigned to two or more statistically different groups for each measured phenotype. Traditional visual assessments of field resistance were highly correlated with quantitative resistance measures based on image analysis for the Oregon RILs. These results show that automated image analysis provides a promising tool for assessing quantitative resistance to Z. tritici under field conditions.

  19. Development of a high throughput screening method to test flavour-forming capabilities of anaerobic micro-organisms.

    NARCIS (Netherlands)

    Smit, B.A.; Engels, W.J.M.; Hylckama Vlieg, van J.E.T.; Wouters, J.T.M.; Smit, G.

    2004-01-01

    Aim: Development of a fast, automated and reliable screening method for screening of large collections of bacterial strains with minimal handling time. Methods and Results: The method is based on the injection of a small headspace sample (100 µl) from culture vials (2 ml) in 96-well format directly

  20. An efficient sample preparation method for high-throughput analysis of 15(S)-8-iso-PGF2α in plasma and urine by enzyme immunoassay.

    Science.gov (United States)

    Bielecki, A; Saravanabhavan, G; Blais, E; Vincent, R; Kumarathasan, P

    2012-01-01

    Although several methods have been reported on the analysis of the oxidative stress marker 15(S)-8-iso-prostaglandin-F2alpha (8-iso-PGF2α) in biological fluids, they either involve extensive sample preparation and costly technology or require high sample volume. This study presents a sample preparation method that utilizes low sample volume for 8-iso-PGF2α analysis in plasma and urine by an enzyme immunoassay (EIA). In brief, 8-iso-PGF2α in deproteinized plasma or native urine sample is complexed with an antibody and then captured by molecular weight cut-off filtration. This method was compared with two other sample preparation methods that are typically used in the analysis of 8-iso-PGF2α by EIA: Cayman's affinity column purification method and solid-phase extraction on C-18. The immunoaffinity purification method described here was superior to the other two sample preparation methods and yielded recovery values of 99.8 and 54.1% for 8-iso-PGF2α in plasma and urine, respectively. Analytical precision (relative standard deviation) was ±5% for plasma and ±15% for urine. The analysis of healthy human plasma and urine resulted in basal 8-iso-PGF2α levels of 31.8 ± 5.5 pg/mL and 2.9 ± 2.0 ng/mg creatinine, respectively. The robustness and analytical performance of this method makes it a promising tool for high-throughput screening of biological samples for 8-iso-PGF2α.

  1. Development of high-throughput multi-residue method for non-steroidal anti-inflammatory drugs monitoring in swine muscle by LC-MS/MS.

    Science.gov (United States)

    Castilhos, Tamara S; Barreto, Fabiano; Meneghini, Leonardo; Bergold, Ana Maria

    2016-07-01

    A reliable and simple method for the detection and quantification of residues of 14 non-steroidal anti-inflammatory drugs and a metamizole metabolite in swine muscle was developed using liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS). The samples were extracted with acetonitrile (ACN) in solid-liquid extraction followed by a low-temperature partitioning (LLE-LTP) process at -20 ± 2°C. After evaporation to dryness, the residue was reconstituted with hexane and a mixture of water:acetonitrile (1:1). LC separation was achieved on a reversed-phase (RP18) column with gradient elution using water (phase A) and ACN (phase B) both containing 1 mmol l(-)(1) ammonium acetate (NH4COO) with 0.025% acetic acid. Analysis was carried out on a triple-quadrupole tandem mass spectrometer (LC-MS/MS) in multiple reaction monitoring mode using an electrospray interface in negative and positive mode in a single run. Method validation was performed according to the criteria of Commission Decision No. 2002/657/EC. The matrix effect and linearity were evaluated. Decision limit (CCα), detection capability (CCβ), accuracy and repeatability of the method are also reported. The proposed method proved to be simple, easy and adequate for high-throughput analysis and was applied to routine analysis by the Brazilian Ministry of Agriculture, Livestock and Food Supply.

  2. A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays.

    Science.gov (United States)

    Zhang, Xiaohua Douglas

    2007-08-01

    The z-score method and its variants for testing mean difference are commonly used for hit selection in high-throughput screening (HTS) assays. Strictly standardized mean difference (SSMD) offers a way to measure and classify the short interfering RNA (siRNA) effects. In this article, based on SSMD, the authors propose a new testing method for hit selection in RNA interference (RNAi) HTS assays. This SSMD-based method allows the differentiation between siRNAs with large and small effects on the assay output and maintains flexible and balanced control of both the false-negative rate, in which the siRNAs with strong effects are not selected as hits, and the restricted false-positive rate, in which the siRNAs with weak or no effects are selected as hits. This method directly addresses the size of siRNA effects represented by the strength of difference between an siRNA and a negative reference, whereas the classic z-score method and t-test of testing no mean difference address whether the mean of an siRNA is exactly the same as the mean of a negative reference. This method can readily control the false-negative rate, whereas it is nontrivial for the classic z-score method and t-test to control the false-negative rate. Therefore, theoretically, the SSMD-based method offers better control of the sizes of siRNA effects and the associated false-positive and false-negative rates than the commonly used z-score method and t-test for hit selection in HTS assays. The SSMD-based method should generally be applicable to any assay in which the end point is a difference in signal compared to a reference sample, including those for RNAi, receptor, enzyme, and cellular function.

  3. High-Throughput Analysis of Methylmalonic Acid in Serum, Plasma, and Urine by LC-MS/MS. Method for Analyzing Isomers Without Chromatographic Separation.

    Science.gov (United States)

    Kushnir, Mark M; Nelson, Gordon J; Frank, Elizabeth L; Rockwood, Alan L

    2016-01-01

    Measurement of methylmalonic acid (MMA) plays an important role in the diagnosis of vitamin B12 deficiency. Vitamin B12 is an essential cofactor for the enzymatic carbon rearrangement of methylmalonyl-CoA (MMA-CoA) to succinyl-CoA (SA-CoA), and the lack of vitamin B12 leads to elevated concentrations of MMA. Presence of succinic acid (SA) complicates the analysis because mass spectra of MMA and SA are indistinguishable, when analyzed in negative ion mode and the peaks are difficult to resolve chromatographically. We developed a method for the selective analysis of MMA that exploits the significant difference in fragmentation patterns of di-butyl derivatives of the isomers MMA and SA in a tandem mass spectrometer when analyzed in positive ion mode. Tandem mass spectra of di-butyl derivatives of MMA and SA are very distinct; this allows selective analysis of MMA in the presence of SA. The instrumental analysis is performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive ion mode, which is, in combination with selective extraction of acidic compounds, is highly selective for organic acids with multiple carboxyl groups (dicarboxylic, tricarboxylic, etc.). In this method organic acids with a single carboxyl group are virtually undetectable in the mass spectrometer; the only organic acid, other than MMA, that is detected by this method is its isomer, SA. Quantitative measurement of MMA in this method is performed using a deconvolution algorithm, which mathematically resolves the signal corresponding to MMA and does not require chromatographic resolution of the MMA and SA peaks. Because of its high selectivity, the method utilizes isocratic chromatographic separation; reconditioning and re-equilibration of the chromatographic column between injections is unnecessary. The above features of the method allow high-throughput analysis of MMA with analysis cycle time of 1 min.

  4. Rapid, microscale, acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana.

    Science.gov (United States)

    Chang, Xue Feng; Chandra, Richard; Berleth, Thomas; Beatson, Rodger P

    2008-08-27

    The acetyl bromide method has been modified to enable the rapid microscale determination of lignin content in Arabidopsis with the goal of determining the genes that control lignin in plants. Modifications include reduction in sample size, use of a microball mill, adoption of a modified rapid method of extraction, use of an ice-bath to stabilize solutions and reduction in the volume of solutions. The microscale method was shown to be rapid, accurate and precise with values in agreement with those determined by the full-scale acetyl bromide method. The extinction coefficient for Arabidopsis lignin, dissolved using acetyl bromide, was determined to be 23.35 g(-1) L cm(-1) at 280 nm. This value is independent of the Arabidopsis accession, environmental growth conditions and is insensitive to lignin structure. The newly developed method can be used to determine lignin content in the inflorescence stems of Arabidopsis for mapping of lignin-related genes.

  5. HTS-PEG: a method for high throughput sequencing of the paired-ends of genomic libraries.

    Science.gov (United States)

    Zhou, Sisi; Fu, Yonggui; Li, Jie; He, Lingyu; Cai, Xingsheng; Yan, Qingyu; Rao, Xingqiang; Huang, Shengfeng; Li, Guang; Wang, Yiquan; Xu, Anlong

    2012-01-01

    Second generation sequencing has been widely used to sequence whole genomes. Though various paired-end sequencing methods have been developed to construct the long scaffold from contigs derived from shotgun sequencing, the classical paired-end sequencing of the Bacteria Artificial Chromosome (BAC) or fosmid libraries by the Sanger method still plays an important role in genome assembly. However, sequencing libraries with the Sanger method is expensive and time-consuming. Here we report a new strategy to sequence the paired-ends of genomic libraries with parallel pyrosequencing, using a Chinese amphioxus (Branchiostoma belcheri) BAC library as an example. In total, approximately 12,670 non-redundant paired-end sequences were generated. Mapping them to the primary scaffolds of Chinese amphioxus, we obtained 413 ultra-scaffolds from 1,182 primary scaffolds, and the N50 scaffold length was increased approximately 55 kb, which is about a 10% improvement. We provide a universal and cost-effective method for sequencing the ultra-long paired-ends of genomic libraries. This method can be very easily implemented in other second generation sequencing platforms.

  6. HTS-PEG: a method for high throughput sequencing of the paired-ends of genomic libraries.

    Directory of Open Access Journals (Sweden)

    Sisi Zhou

    Full Text Available Second generation sequencing has been widely used to sequence whole genomes. Though various paired-end sequencing methods have been developed to construct the long scaffold from contigs derived from shotgun sequencing, the classical paired-end sequencing of the Bacteria Artificial Chromosome (BAC or fosmid libraries by the Sanger method still plays an important role in genome assembly. However, sequencing libraries with the Sanger method is expensive and time-consuming. Here we report a new strategy to sequence the paired-ends of genomic libraries with parallel pyrosequencing, using a Chinese amphioxus (Branchiostoma belcheri BAC library as an example. In total, approximately 12,670 non-redundant paired-end sequences were generated. Mapping them to the primary scaffolds of Chinese amphioxus, we obtained 413 ultra-scaffolds from 1,182 primary scaffolds, and the N50 scaffold length was increased approximately 55 kb, which is about a 10% improvement. We provide a universal and cost-effective method for sequencing the ultra-long paired-ends of genomic libraries. This method can be very easily implemented in other second generation sequencing platforms.

  7. Validation of a fully automated high throughput liquid chromatographic/tandem mass spectrometric method for roxithromycin quantification in human plasma. Application to a bioequivalence study.

    Science.gov (United States)

    Kousoulos, Constantinos; Tsatsou, Georgia; Dotsikas, Yannis; Apostolou, Constantinos; Loukas, Yannis L

    2008-05-01

    A fully automated high-throughput liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for the determination of roxithromycin in human plasma. The plasma samples were treated by liquid-liquid extraction (LLE) in 2.2 mL 96-deep-well plates. Roxithromycin and the internal standard clarithromycin were extracted from 100 microL of human plasma by LLE, using methyl t-butyl ether as the organic solvent. All liquid transfer steps were performed automatically using robotic liquid handling workstations. After vortexing, centrifugation and freezing, the supernatant organic solvent was evaporated and reconstituted. Sample analysis was performed by reversed-phase LC-MS/MS, with positive ion electrospray ionization, using multiple-reaction monitoring. The method had a very short chromatographic run time of 1.6 min. The calibration curve was linear for the range of concentrations 50.0-20.0x10(3) ng mL(-1). The proposed method was fully validated and it was proven to be selective, accurate, precise, reproducible and suitable for the determination of roxithromycin in human plasma. Therefore, it was applied to the rapid and reliable determination of roxithromycin in a bioequivalence study after per os administration of 300 mg tablet formulations of roxithromycin.

  8. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis: I. Monoprotic weak acids and bases.

    Science.gov (United States)

    Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Rosés, Martí

    2009-04-24

    A new and fast method to determine acidity constants of monoprotic weak acids and bases by capillary zone electrophoresis based on the use of an internal standard (compound of similar nature and acidity constant as the analyte) has been developed. This method requires only two electrophoretic runs for the determination of an acidity constant: a first one at a pH where both analyte and internal standard are totally ionized, and a second one at another pH where both are partially ionized. Furthermore, the method is not pH dependent, so an accurate measure of the pH of the buffer solutions is not needed. The acidity constants of several phenols and amines have been measured using internal standards of known pK(a), obtaining a mean deviation of 0.05 pH units compared to the literature values.

  9. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System.

    Directory of Open Access Journals (Sweden)

    Coralie Coudray-Meunier

    Full Text Available Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR. A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR. The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely

  10. A simple high-throughput method for the determination of plasma methylmalonic acid by liquid chromatography-tandem mass spectrometry.

    NARCIS (Netherlands)

    Blom, H.J.; Rooij, A. van; Hogeveen, M.

    2007-01-01

    BACKGROUND: Cobalamin (Cbl) deficiency is a common clinical phenomenon, in particular among the elderly and possibly also among infants. Methylmalonic acid (MMA) is the most sensitive and specific marker of intracellular Cbl status, but its application is hindered by limited methods available for ac

  11. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs

    DEFF Research Database (Denmark)

    Montero-Pau, Javier; Gómez, Africa; Muñoz, Joaquin

    2008-01-01

    We describe the application of a simple, low-cost, and effective method of DNA extraction (hot sodium hydroxide and Tris, HotSHOT) to the diapausing propagules of continental aquatic invertebrates for its use in PCR amplification. We illustrate the use of the technique in cladocerans, rotifers...

  12. Combinatorial materials research applied to the development of new surface coatings X: a high-throughput electrochemical impedance spectroscopy method for screening organic coatings for corrosion inhibition.

    Science.gov (United States)

    He, Jie; Bahr, James; Chisholm, Bret J; Li, Jun; Chen, Zhigang; Balbyshev, Séva N; Bonitz, Verena; Bierwagen, Gordon P

    2008-01-01

    The objective of the study was to develop a high-throughput electrochemical impedance spectroscopy (HT-EIS) method for rapid and quantitative evaluation of corrosion protective coatings. A 12-element, spatially addressable electrochemical platform was designed, fabricated, and validated. This platform was interfaced to a commercial EIS instrument through an automated electronic switching unit. The HT-EIS system enables four parallel EIS measurements to be run simultaneously, which significantly reduces characterization time compared to that of serial EIS measurements using a multiplexer. The performance of the HT-EIS system was validated using a series of model systems, including a Randles equivalent circuit, an electrochemical reaction (Ti/K4FeCN6, K3FeCN6), a highly uniform polymer film, and several polymer coatings. The results of the validation studies showed that the HT-EIS system enables a major reduction in characterization time and provides high quality data comparable to data obtained with conventional, single-cell EIS measurement systems.

  13. Development and Application of a New Microarray- Based Method for High-Throughput Screening of Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia

    biological roles in plants and in addition to biofuel production they are extensively used in other industrial processes including in detergents, textiles, paper and the food industry. A vast repertoire of CAZymes exists in nature but there is a growing disparity between our ability to putatively identify....... The applicability of the method to identify the substrate specificities of purified uncharacterised enzymes as well as for screening CAZyme activities in complex enzyme mixtures, such as crude culture broths and plant extracts, is shown by examples presented in this thesis. We envisage that the method......The effective and sustainable use of plant biomass for second generation biofuels is of vital importance for reducing dependence on fossil fuels. Carbohydrate-active enzymes (CAZymes) that degrade lignocellulosic plant cell wall material are an important part of this effort. CAZymes have multiple...

  14. Digital One-Disc-One-Compound Method for High-Throughput Discovery of Prostate Cancer - Targeting Ligands

    Science.gov (United States)

    2015-10-01

    contamination for peptide synthesis. To solve this problem, a covalently bonded PET -PDMS hybrid structure for the microfluidic assembly was developed. As...showed great promises in the microfluidic chip fabrication. To combine PDMS and plastic advantages, a PET - PDMS hybrid device method was developed by...robustness makes the device to be recycle used in whole peptide synthesis. As shown in Fig. 4, the plastic was first plasma treated 12 and then silanized

  15. INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms

    Indian Academy of Sciences (India)

    Sakshi Shrivastava; Ch V Siva Kumar Reddy; Sharmila S Mande

    2010-09-01

    Genomic islands (GIs) are regions in the genome which are believed to have been acquired via horizontal gene transfer events and are thus likely to be compositionally distinct from the rest of the genome. Majority of the genes located in a GI encode a particular function. Depending on the genes they encode, GIs can be classified into various categories, such as `metabolic islands’, `symbiotic islands’, `resistance islands’, `pathogenicity islands’, etc. The computational process for GI detection is known and many algorithms for the same are available. We present a new method termed as Improved N-mer based Detection of Genomic Islands Using Sequence-clustering (INDeGenIUS) for the identification of GIs. This method was applied to 400 completely sequenced species belonging to proteobacteria. Based on the genes encoded in the identified GIs, the GIs were grouped into 6 categories: metabolic islands, symbiotic islands, resistance islands, secretion islands, pathogenicity islands and motility islands. Several new islands of interest which had previously been missed out by earlier algorithms were picked up as GIs by INDeGenIUS. The present algorithm has potential application in the identification of functionally relevant GIs in the large number of genomes that are being sequenced. Investigation of the predicted GIs in pathogens may lead to identification of potential drug/vaccine candidates.

  16. Optimisation methodologies and algorithms for research on catalysis employing high-throughput methods: comparison using the Selox benchmark.

    Science.gov (United States)

    Pereira, Sílvia Raquel Morais; Clerc, Frédéric; Farrusseng, David; van der Waala, Jan Cornelis; Maschmeyer, Thomas

    2007-02-01

    The Selox is a catalytic benchmark for the selective CO oxidation reaction in the presence of H(2), in the form of mathematical equations obtained via modelling of experimental results. The optimisation efficiencies of several Global Optimisation algorithms were studied using the Selox benchmark. Genetic Algorithms, Evolutionary Strategies, Simulated Annealing, Taboo Search and Genetic Algorithms hybridised with Knowledge Discovery procedures were the methods compared. A Design of Experiments search strategy was also exemplified using this benchmark. The main differences regarding the applicability of DoE and Global optimisation techniques are highlighted. Evolutionary strategies, Genetic algorithms, using the sharing procedure, and the Hybrid Genetic algorithms proved to be the most successful in the benchmark optimisation.

  17. High-throughput computer method for 3D neuronal structure reconstruction from the image stack of the Drosophila brain and its applications.

    Directory of Open Access Journals (Sweden)

    Ping-Chang Lee

    Full Text Available Drosophila melanogaster is a well-studied model organism, especially in the field of neurophysiology and neural circuits. The brain of the Drosophila is small but complex, and the image of a single neuron in the brain can be acquired using confocal microscopy. Analyzing the Drosophila brain is an ideal start to understanding the neural structure. The most fundamental task in studying the neural network of Drosophila is to reconstruct neuronal structures from image stacks. Although the fruit fly brain is small, it contains approximately 100,000 neurons. It is impossible to trace all the neurons manually. This study presents a high-throughput algorithm for reconstructing the neuronal structures from 3D image stacks collected by a laser scanning confocal microscope. The proposed method reconstructs the neuronal structure by applying the shortest path graph algorithm. The vertices in the graph are certain points on the 2D skeletons of the neuron in the slices. These points are close to the 3D centerlines of the neuron branches. The accuracy of the algorithm was verified using the DIADEM data set. This method has been adopted as part of the protocol of the FlyCircuit Database, and was successfully applied to process more than 16,000 neurons. This study also shows that further analysis based on the reconstruction results can be performed to gather more information on the neural network.

  18. Method for Assaying the Lipid Kinase Phosphatidylinositol-5-phosphate 4-kinase α in Quantitative High-Throughput Screening (qHTS) Bioluminescent Format

    Science.gov (United States)

    Davis, Mindy I.; Sasaki, Atsuo T.; Simeonov, Anton

    2015-01-01

    Summary ipid kinases are important regulators of a variety of cellular processes and their dysregulation causes diseases such as cancer and metabolic diseases. Distinct lipid kinases regulate the seven different phosphorylated forms of phosphatidylinositol (PtdIns). Some lipid kinases utilize long-chain lipid substrates that have limited solubility in aqueous solutions, which can lead to difficulties in developing a robust and miniaturizable biochemical assay. The ability to prepare the lipid substrate and develop assays to identify modulators of lipid kinases is important and is the focus of this methods chapter. Herein, we describe a method to prepare a DMSO-based lipid mixture that enables the 1536-well screening of the lipid kinase phosphatidylinositol-5-phosphate 4-kinase α (PI5P4Kα) utilizing the D-myo-di16-PtIns(5)P substrate in quantitative high-throughput screening (qHTS) format using the ADP-Glo™ technology to couple the production of ADP to a bioluminescent readout. PMID:26552670

  19. Studying Bordetella pertussis populations by use of SNPeX, a simple high-throughput single nucleotide polymorphism typing method.

    Science.gov (United States)

    Zeddeman, Anne; Witteveen, Sandra; Bart, Marieke J; van Gent, Marjolein; van der Heide, Han G J; Heuvelman, Kees J; Schouls, Leo M; Mooi, Frits R

    2015-03-01

    Large outbreaks of pertussis occur despite vaccination. A first step in the analyses of outbreaks is strain typing. However, the typing of Bordetella pertussis, the causative agent of pertussis, is problematic because the available assays are insufficiently discriminatory, not unequivocal, time-consuming, and/or costly. Here, we describe a single nucleotide primer extension assay for the study of B. pertussis populations, SNPeX (single nucleotide primer extension), which addresses these problems. The assay is based on the incorporation of fluorescently labeled dideoxynucleotides (ddNTPs) at the 3' end of allele-specific poly(A)-tailed primers and subsequent analysis with a capillary DNA analyzer. Each single nucleotide polymorphism (SNP) primer has a specific length, and as a result, up to 20 SNPs can be determined in one SNPeX reaction. Importantly, PCR amplification of target DNA is not required. We selected 38 SNPeX targets from the whole-genome sequencing data of 74 B. pertussis strains collected from across the world. The SNPeX-based phylogenetic trees preserved the general tree topology of B. pertussis populations based on whole-genome sequencing, with a minor loss of details. We envisage a strategy whereby SNP types (SnpTs) are quickly identified with the SNPeX assay during an outbreak, followed by whole-genome sequencing (WGS) of a limited number of isolates representing predominant SnpTs and the incorporation of novel SNPs in the SNPeX assay. The flexibility of the SNPeX assay allows the method to evolve along with the pathogen, making it a promising method for studying outbreaks of B. pertussis and other pathogens.

  20. Modeling Steroidogenesis Disruption Using High-Throughput ...

    Science.gov (United States)

    Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on steroidogenesis. The steroidogenic pathway is a series of hydroxylation and dehydrogenation steps carried out by CYP450 and hydroxysteroid dehydrogenase enzymes, yet the only enzyme in the pathway for which a high-throughput screening (HTS) assay has been developed is aromatase (CYP19A1), responsible for the aromatization of androgens to estrogens. Recently, the ToxCast HTS program adapted the OECD validated H295R steroidogenesis assay using human adrenocortical carcinoma cells into a high-throughput model to quantitatively assess the concentration-dependent (0.003-100 µM) effects of chemicals on 10 steroid hormones including progestagens, androgens, estrogens and glucocorticoids. These results, in combination with two CYP19A1 inhibition assays, comprise a large dataset amenable to clustering approaches supporting the identification and characterization of putative mechanisms of action (pMOA) for steroidogenesis disruption. In total, 514 chemicals were tested in all CYP19A1 and steroidogenesis assays. 216 chemicals were identified as CYP19A1 inhibitors in at least one CYP19A1 assay. 208 of these chemicals also altered hormone levels in the H295R assay, suggesting 96% sensitivity in the

  1. Preliminary High-Throughput Metagenome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  2. 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data

    Directory of Open Access Journals (Sweden)

    Cox Juergen

    2012-11-01

    Full Text Available Abstract Quantitative proteomics now provides abundance ratios for thousands of proteins upon perturbations. These need to be functionally interpreted and correlated to other types of quantitative genome-wide data such as the corresponding transcriptome changes. We describe a new method, 2D annotation enrichment, which compares quantitative data from any two 'omics' types in the context of categorical annotation of the proteins or genes. Suitable genome-wide categories are membership of proteins in biochemical pathways, their annotation with gene ontology terms, sub-cellular localization, the presence of protein domains or the membership in protein complexes. 2D annotation enrichment detects annotation terms whose members show consistent behavior in one or both of the data dimensions. This consistent behavior can be a correlation between the two data types, such as simultaneous up- or down-regulation in both data dimensions, or a lack thereof, such as regulation in one dimension but no change in the other. For the statistical formulation of the test we introduce a two-dimensional generalization of the nonparametric two-sample test. The false discovery rate is stringently controlled by correcting for multiple hypothesis testing. We also describe one-dimensional annotation enrichment, which can be applied to single omics data. The 1D and 2D annotation enrichment algorithms are freely available as part of the Perseus software.

  3. A comparison of sorptive extraction techniques coupled to a new quantitative, sensitive, high throughput GC-MS/MS method for methoxypyrazine analysis in wine.

    Science.gov (United States)

    Hjelmeland, Anna K; Wylie, Philip L; Ebeler, Susan E

    2016-02-01

    Methoxypyrazines are volatile compounds found in plants, microbes, and insects that have potent vegetal and earthy aromas. With sensory detection thresholds in the low ng L(-1) range, modest concentrations of these compounds can profoundly impact the aroma quality of foods and beverages, and high levels can lead to consumer rejection. The wine industry routinely analyzes the most prevalent methoxypyrazine, 2-isobutyl-3-methoxypyrazine (IBMP), to aid in harvest decisions, since concentrations decrease during berry ripening. In addition to IBMP, three other methoxypyrazines IPMP (2-isopropyl-3-methoxypyrazine), SBMP (2-sec-butyl-3-methoxypyrazine), and EMP (2-ethyl-3-methoxypyrazine) have been identified in grapes and/or wine and can impact aroma quality. Despite their routine analysis in the wine industry (mostly IBMP), accurate methoxypyrazine quantitation is hindered by two major challenges: sensitivity and resolution. With extremely low sensory detection thresholds (~8-15 ng L(-1) in wine for IBMP), highly sensitive analytical methods to quantify methoxypyrazines at trace levels are necessary. Here we were able to achieve resolution of IBMP as well as IPMP, EMP, and SBMP from co-eluting compounds using one-dimensional chromatography coupled to positive chemical ionization tandem mass spectrometry. Three extraction techniques HS-SPME (headspace-solid phase microextraction), SBSE (stirbar sorptive extraction), and HSSE (headspace sorptive extraction) were validated and compared. A 30 min extraction time was used for HS-SPME and SBSE extraction techniques, while 120 min was necessary to achieve sufficient sensitivity for HSSE extractions. All extraction methods have limits of quantitation (LOQ) at or below 1 ng L(-1) for all four methoxypyrazines analyzed, i.e., LOQ's at or below reported sensory detection limits in wine. The method is high throughput, with resolution of all compounds possible with a relatively rapid 27 min GC oven program.

  4. Spectrophotometric Analysis of Pigments: A Critical Assessment of a High-Throughput Method for Analysis of Algal Pigment Mixtures by Spectral Deconvolution.

    Directory of Open Access Journals (Sweden)

    Jan-Erik Thrane

    Full Text Available The Gauss-peak spectra (GPS method represents individual pigment spectra as weighted sums of Gaussian functions, and uses these to model absorbance spectra of phytoplankton pigment mixtures. We here present several improvements for this type of methodology, including adaptation to plate reader technology and efficient model fitting by open source software. We use a one-step modeling of both pigment absorption and background attenuation with non-negative least squares, following a one-time instrument-specific calibration. The fitted background is shown to be higher than a solvent blank, with features reflecting contributions from both scatter and non-pigment absorption. We assessed pigment aliasing due to absorption spectra similarity by Monte Carlo simulation, and used this information to select a robust set of identifiable pigments that are also expected to be common in natural samples. To test the method's performance, we analyzed absorbance spectra of pigment extracts from sediment cores, 75 natural lake samples, and four phytoplankton cultures, and compared the estimated pigment concentrations with concentrations obtained using high performance liquid chromatography (HPLC. The deviance between observed and fitted spectra was generally very low, indicating that measured spectra could successfully be reconstructed as weighted sums of pigment and background components. Concentrations of total chlorophylls and total carotenoids could accurately be estimated for both sediment and lake samples, but individual pigment concentrations (especially carotenoids proved difficult to resolve due to similarity between their absorbance spectra. In general, our modified-GPS method provides an improvement of the GPS method that is a fast, inexpensive, and high-throughput alternative for screening of pigment composition in samples of phytoplankton material.

  5. A high-throughput optomechanical retrieval method for sequence-verified clonal DNA from the NGS platform.

    Science.gov (United States)

    Lee, Howon; Kim, Hyoki; Kim, Sungsik; Ryu, Taehoon; Kim, Hwangbeom; Bang, Duhee; Kwon, Sunghoon

    2015-02-02

    Writing DNA plays a significant role in the fields of synthetic biology, functional genomics and bioengineering. DNA clones on next-generation sequencing (NGS) platforms have the potential to be a rich and cost-effective source of sequence-verified DNAs as a precursor for DNA writing. However, it is still very challenging to retrieve target clonal DNA from high-density NGS platforms. Here we propose an enabling technology called 'Sniper Cloning' that enables the precise mapping of target clone features on NGS platforms and non-contact rapid retrieval of targets for the full utilization of DNA clones. By merging the three cutting-edge technologies of NGS, DNA microarray and our pulse laser retrieval system, Sniper Cloning is a week-long process that produces 5,188 error-free synthetic DNAs in a single run of NGS with a single microarray DNA pool. We believe that this technology has potential as a universal tool for DNA writing in biological sciences.

  6. A new high-throughput screening method for the detection of chronic lymphatic leukemia and myelodysplastic syndrome.

    Science.gov (United States)

    Haschke-Becher, Elisabeth; Vockenhuber, Michael; Niedetzky, Paul; Totzke, Uwe; Gabriel, Christian

    2008-01-01

    The VCS technology of Beckman Coulter differentiates white blood cells based on measures of their volume, conductivity and light scatter. The current study investigated the predictive value of index measures, known as research population data, for the detection of chronic lymphatic leukemia and myelodysplastic syndrome. Blood cell counts were performed in samples from 44 patients with chronic lymphatic leukemia, 19 patients with myelodysplastic syndrome and 199 healthy blood donors using the Beckman Coulter LH750. Means and standard deviations of volume, conductivity and scatter of lymphocytes and neutrophils were evaluated as predictors for both diseases. Their specificity and selectivity were evaluated by logistic regression and receiver operating characteristic curve analysis. Research population data were significantly different among groups. For chronic lymphatic leukemia, standard deviations of lymphocytes scatter and volume showed most relevant differences in comparison to healthy blood donors (sensitivity 88.6%, specificity 84.4%). For myelodysplastic syndrome, standard deviations of neutrophils conductivity were most predictive (sensitivity 73.7%, specificity 93.0%). Areas under corresponding receiver operating characteristic curves were 0.941 and 0.951, respectively. Based on their high predictive value, research population data could be routinely used to screen for chronic lymphatic leukemia and myelodysplastic syndrome.

  7. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    Science.gov (United States)

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-12-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1–5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10–50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (∼1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields.

  8. MIPHENO: data normalization for high throughput metabolite analysis

    Directory of Open Access Journals (Sweden)

    Bell Shannon M

    2012-01-01

    Full Text Available Abstract Background High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course of months and years, often without the controls needed to compare directly across the dataset. Few methods are available to facilitate comparisons of high throughput metabolic data generated in batches where explicit in-group controls for normalization are lacking. Results Here we describe MIPHENO (Mutant Identification by Probabilistic High throughput-Enabled Normalization, an approach for post-hoc normalization of quantitative first-pass screening data in the absence of explicit in-group controls. This approach includes a quality control step and facilitates cross-experiment comparisons that decrease the false non-discovery rates, while maintaining the high accuracy needed to limit false positives in first-pass screening. Results from simulation show an improvement in both accuracy and false non-discovery rate over a range of population parameters (p -16 and a modest but significant (p -16 improvement in area under the receiver operator characteristic curve of 0.955 for MIPHENO vs 0.923 for a group-based statistic (z-score. Analysis of the high throughput phenotypic data from the Arabidopsis Chloroplast 2010 Project (http://www.plastid.msu.edu/ showed ~ 4-fold increase in the ability to detect previously described or expected phenotypes over the group based statistic. Conclusions Results demonstrate MIPHENO offers substantial benefit in improving the ability to detect putative mutant phenotypes from post-hoc analysis of large data sets. Additionally, it facilitates data interpretation and permits cross-dataset comparison where group-based controls are missing. MIPHENO is applicable to a wide range of high throughput screenings and the code is

  9. High-throughput rod-induced electrospinning

    Science.gov (United States)

    Wu, Dezhi; Xiao, Zhiming; Teh, Kwok Siong; Han, Zhibin; Luo, Guoxi; Shi, Chuan; Sun, Daoheng; Zhao, Jinbao; Lin, Liwei

    2016-09-01

    A high throughput electrospinning process, directly from flat polymer solution surfaces induced by a moving insulating rod, has been proposed and demonstrated. Different rods made of either phenolic resin or paper with a diameter of 1-3 cm and a resistance of about 100-500 MΩ, has been successfully utilized in the process. The rod is placed approximately 10 mm above the flat polymer solution surface with a moving speed of 0.005-0.4 m s-1 this causes the solution to generate multiple liquid jets under an applied voltage of 15-60 kV for the tip-less electrospinning process. The local electric field induced by the rod can boost electrohydrodynamic instability in order to generate Taylor cones and liquid jets. Experimentally, it is found that a large rod diameter and a small solution-to-rod distance can enhance the local electrical field to reduce the magnitude of the applied voltage. In the prototype setup with poly (ethylene oxide) polymer solution, an area of 5 cm  ×  10 cm and under an applied voltage of 60 kV, the maximum throughput of nanofibers is recorded to be approximately144 g m-2 h-1.

  10. Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut.

    Directory of Open Access Journals (Sweden)

    Omar Lakhdari

    Full Text Available BACKGROUND/AIM: The human intestinal microbiota plays an important role in modulation of mucosal immune responses. To study interactions between intestinal epithelial cells (IECs and commensal bacteria, a functional metagenomic approach was developed. One interest of metagenomics is to provide access to genomes of uncultured microbes. We aimed at identifying bacterial genes involved in regulation of NF-κB signaling in IECs. A high throughput cell-based screening assay allowing rapid detection of NF-κB modulation in IECs was established using the reporter-gene strategy to screen metagenomic libraries issued from the human intestinal microbiota. METHODS: A plasmid containing the secreted alkaline phosphatase (SEAP gene under the control of NF-κB binding elements was stably transfected in HT-29 cells. The reporter clone HT-29/kb-seap-25 was selected and characterized. Then, a first screening of a metagenomic library from Crohn's disease patients was performed to identify NF-κB modulating clones. Furthermore, genes potentially involved in the effect of one stimulatory metagenomic clone were determined by sequence analysis associated to mutagenesis by transposition. RESULTS: The two proinflammatory cytokines, TNF-α and IL-1β, were able to activate the reporter system, translating the activation of the NF-κB signaling pathway and NF-κB inhibitors, BAY 11-7082, caffeic acid phenethyl ester and MG132 were efficient. A screening of 2640 metagenomic clones led to the identification of 171 modulating clones. Among them, one stimulatory metagenomic clone, 52B7, was further characterized. Sequence analysis revealed that its metagenomic DNA insert might belong to a new Bacteroides strain and we identified 2 loci encoding an ABC transport system and a putative lipoprotein potentially involved in 52B7 effect on NF-κB. CONCLUSIONS: We have established a robust high throughput screening assay for metagenomic libraries derived from the human intestinal

  11. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing

    Science.gov (United States)

    Hykin, Sarah M.; Bi, Ke; McGuire, Jimmy A.

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens—particularly for use in phylogenetic analyses—has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for

  12. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    Science.gov (United States)

    Hykin, Sarah M; Bi, Ke; McGuire, Jimmy A

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for

  13. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    Directory of Open Access Journals (Sweden)

    Sarah M Hykin

    Full Text Available For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles, attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp. We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens

  14. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Amanda [Pall Corporation, Port Washington, NY (United States); Zhao, Hongbin [Pall Corporation, Port Washington, NY (United States); Hopkins, Scott [Pall Corporation, Port Washington, NY (United States)

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  15. An Optimized High Throughput Clean-Up Method Using Mixed-Mode SPE Plate for the Analysis of Free Arachidonic Acid in Plasma by LC-MS/MS.

    Science.gov (United States)

    Wang, Wan; Qin, Suzi; Li, Linsen; Chen, Xiaohua; Wang, Qunjie; Wei, Junfu

    2015-01-01

    A high throughput sample preparation method was developed utilizing mixed-mode solid phase extraction (SPE) in 96-well plate format for the determination of free arachidonic acid in plasma by LC-MS/MS. Plasma was mixed with 3% aqueous ammonia and loaded into each well of 96-well plate. After washing with water and methanol sequentially, 3% of formic acid in acetonitrile was used to elute arachidonic acid. The collected fraction was injected onto a reversed phase column at 30°C with mobile phase of acetonitrile/water (70 : 30, v/v) and detected by LC-MS/MS coupled with electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode. The calibration curve ranged from 10 to 2500 ng/mL with sufficient linearity (r (2) = 0.9999). The recoveries were in the range of 99.38% to 103.21% with RSD less than 6%. The limit of detection is 3 ng/mL.

  16. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  17. Immunodetection of Triticum mosaic virus by DAS- and DAC-ELISA using antibodies produced against coat protein expressed in Escherichia coli: potential for high-throughput diagnostic methods.

    Science.gov (United States)

    Tatineni, Satyanarayana; Sarath, Gautam; Seifers, Dallas; French, Roy

    2013-04-01

    Triticum mosaic virus (TriMV), an economically important virus infecting wheat in the Great Plains region of the USA, is the type species of the Poacevirus genus in the family Potyviridae. Sensitive and high-throughput serology-based detection methods are crucial for the management of TriMV and germplasm screening in wheat breeding programs. In this study, TriMV coat protein (CP) was expressed in Escherichia coli, and polyclonal antibodies were generated against purified soluble native form recombinant CP (rCP) in rabbits. Specificity and sensitivity of resulting antibodies were tested in Western immuno-blot and enzyme-linked immunosorbent assays (ELISA). In direct antigen coating (DAC)-ELISA, antibodies reacted specifically, beyond 1:20,000 dilution with TriMV in crude sap, but not with healthy extracts, and antiserum at a 1:10,000 dilution detected TriMV in crude sap up to 1:4860 dilution. Notably, rabbit anti-TriMV IgG and anti-TriMV IgG-alkaline phosphatase conjugate reacted positively with native virions in crude sap in a double antibody sandwich-ELISA, suggesting that these antibodies can be used as coating antibodies which is crucial for any 'sandwich' type of assays. Finally, the recombinant antibodies reacted positively in ELISA with representative TriMV isolates collected from fields, suggesting that antibodies generated against rCP can be used for sensitive, large-scale, and broad-spectrum detection of TriMV.

  18. Fast Gradient Elution Reversed-Phase HPLC with Diode-Array Detection as a High Throughput Screening Method for Drugs of Abuse

    Energy Technology Data Exchange (ETDEWEB)

    Peter W. Carr; K.M. Fuller; D.R. Stoll; L.D. Steinkraus; M.S. Pasha; Glenn G. Hardin

    2005-12-30

    A new approach has been developed by modifying a conventional gradient elution liquid chromatograph for the high throughput screening of biological samples to detect the presence of regulated intoxicants. The goal of this work was to improve the speed of a gradient elution screening method over current approaches by optimizing the operational parameters of both the column and the instrument without compromising the reproducibility of the retention times, which are the basis for the identification. Most importantly, the novel instrument configuration substantially reduces the time needed to re-equilibrate the column between gradient runs, thereby reducing the total time for each analysis. The total analysis time for each gradient elution run is only 2.8 minutes, including 0.3 minutes for column reequilibration between analyses. Retention times standard calibration solutes are reproducible to better than 0.002 minutes in consecutive runs. A corrected retention index was adopted to account for day-to-day and column-to-column variations in retention time. The discriminating power and mean list length were calculated for a library of 47 intoxicants and compared with previous work from other laboratories to evaluate fast gradient elution HPLC as a screening tool.

  19. High-throughput theoretical design of lithium battery materials

    Science.gov (United States)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  20. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  1. High Throughput Screening for Neurodegeneration and Complex Disease Phenotypes

    OpenAIRE

    Varma, Hemant; Lo, Donald C.; Stockwell, Brent R.

    2008-01-01

    High throughput screening (HTS) for complex diseases is challenging. This stems from the fact that complex phenotypes are difficult to adapt to rapid, high throughput assays. We describe the recent development of high throughput and high-content screens (HCS) for neurodegenerative diseases, with a focus on inherited neurodegenerative disorders, such as Huntington's disease. We describe, among others, HTS assays based on protein aggregation, neuronal death, caspase activation and mutant protei...

  2. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...... maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content...... and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers...

  3. An Overview of High Throughput Biological Screening Methods and Its Application%高通量生物分析技术及应用研究进展

    Institute of Scientific and Technical Information of China (English)

    翟绪昭; 王广彬; 赵亮涛; 曾海娟; 李建武; 丁承超; 宋春美; 刘箐

    2016-01-01

    基因组学、蛋白组学、代谢组学等研究的兴起使得大量生物数据的快速获取和分析变得更加重要。传统的生物分析方法大多耗时、费力,已无法满足现代生命科学研究对海量生物信息的需要。高通量分析技术是快速获取大量生物信息的重要手段。对微阵列芯片、微流控芯片、焦磷酸测序、荧光偏振免疫分析、量子点荧光免疫分析等高通量生物分析技术进行了综述,简述了近几年高通量生物分析技术的研究重点和研究成果,并对其在食品安全、医学等方面的应用进行了简要介绍。%The emergence of genomics,proteomics,metabolomics and other molecular biology studies makes the rapid attainment and assessment of large amounts of biological data become extremely important. The traditional detection methods are time-consuming and laborious, and cannot satisfy the needs of contemporary biological science research for massive biological information. High Throughput Screening(HTS) methods are significant means of quick attainment of massive biological information. This paper will make an overview of microarray chip, microfluidic chip,pyrosequencing,fluorescence polarization immunoassay,quantum dot fluorescence immunoassay and multiple PCR, outline research focus and research results of HTS methods in recent years,and briefly introduce its application in food safety,medicine and other fields.

  4. A high-throughput neutron spectrometer

    Science.gov (United States)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  5. Applications of High Throughput Nucleotide Sequencing

    DEFF Research Database (Denmark)

    Waage, Johannes Eichler

    The recent advent of high throughput sequencing of nucleic acids (RNA and DNA) has vastly expanded research into the functional and structural biology of the genome of all living organisms (and even a few dead ones). With this enormous and exponential growth in biological data generation come......-sequencing, a study of the effects on alternative RNA splicing of KO of the nonsense mediated RNA decay system in Mus, using digital gene expression and a custom-built exon-exon junction mapping pipeline is presented (article I). Evolved from this work, a Bioconductor package, spliceR, for classifying alternative...... splicing events and coding potential of isoforms from full isoform deconvolution software, such as Cufflinks (article II), is presented. Finally, a study using 5’-end RNA-seq for alternative promoter detection between healthy patients and patients with acute promyelocytic leukemia is presented (article III...

  6. A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes.

    Science.gov (United States)

    Kraaij, Tineke; Tengström, Fredrik C; Kamerling, Sylvia W A; Pusey, Charles D; Scherer, H Ulrich; Toes, Rene E M; Rabelink, Ton J; van Kooten, Cees; Teng, Y K Onno

    2016-06-01

    A newly-described first-line immune defence mechanism of neutrophils is the release of neutrophil extracellular traps (NETs). Immune complexes (ICxs) induce low level NET release. As such, the in vitro quantification of NETs is challenging with current methodologies. In order to investigate the role of NET release in ICx-mediated autoimmune diseases, we developed a highly sensitive and automated method for quantification of NETs. After labelling human neutrophils with PKH26 and extracellular DNA with Sytox green, cells are fixed and automatically imaged with 3-dimensional confocal laser scanning microscopy (3D-CLSM). NET release is then quantified with digital image analysis whereby the NET amount (Sytox green area) is corrected for the number of imaged neutrophils (PKH26 area). A high sensitivity of the assay is achieved by a) significantly augmenting the area of the well imaged (11%) as compared to conventional assays (0.5%) and b) using a 3D imaging technique for optimal capture of NETs, which are topologically superimposed on neutrophils. In this assay, we confirmed low levels of NET release upon human ICx stimulation which were positive for citrullinated histones and neutrophil elastase. In contrast to PMA-induced NET release, ICx-induced NET release was unchanged when co-incubated with diphenyleneiodonium (DPI). We were able to quantify NET release upon stimulation with serum from RA and SLE patients, which was not observed with normal human serum. To our knowledge, this is the first semi-automated assay capable of sensitive detection and quantification of NET release at a low threshold by using 3D CLSM. The assay is applicable in a high-throughput manner and allows the in vitro analysis of NET release in ICx-mediated autoimmune diseases.

  7. High-throughput screening of cell responses to biomaterials.

    Science.gov (United States)

    Yliperttula, Marjo; Chung, Bong Geun; Navaladi, Akshay; Manbachi, Amir; Urtti, Arto

    2008-10-02

    Biomaterials have emerged as powerful regulators of the cellular microenvironment for drug discovery, tissue engineering research and chemical testing. Although biomaterial-based matrices control the cellular behavior, these matrices are still far from being optimal. In principle, efficacy of biomaterial development for the cell cultures can be improved by using high-throughput techniques that allow screening of a large number of materials and manipulate microenvironments in a controlled manner. Several cell responses such as toxicity, proliferation, and differentiation have been used to evaluate the biomaterials thus providing basis for further selection of the lead biomimetic materials or microenvironments. Although high-throughput techniques provide an initial screening of the desired properties, more detailed follow-up studies of the selected materials are required to understand the true value of a 'positive hit'. High-throughput methods may become important tools in the future development of biomaterials-based cell cultures that will enable more realistic pre-clinical prediction of pharmacokinetics, pharmacodynamics, and toxicity. This is highly important, because predictive pre-clinical methods are needed to improve the high attrition rate of drug candidates during clinical testing.

  8. A new high-throughput method for simultaneous detection of drug resistance associated mutations in Plasmodium vivax dhfr, dhps and mdr1 genes

    Directory of Open Access Journals (Sweden)

    Siba Peter

    2011-09-01

    Full Text Available Abstract Background Reports of severe cases and increasing levels of drug resistance highlight the importance of improved Plasmodium vivax case management. Whereas monitoring P. vivax resistance to anti-malarial drug by in vivo and in vitro tests remain challenging, molecular markers of resistance represent a valuable tool for high-scale analysis and surveillance studies. A new high-throughput assay for detecting the most relevant markers related to P. vivax drug resistance was developed and assessed on Papua New Guinea (PNG patient isolates. Methods Pvdhfr, pvdhps and pvmdr1 fragments were amplified by multiplex nested PCR. Then, PCR products were processed through an LDR-FMA (ligase detection reaction - fluorescent microsphere assay. 23 SNPs, including pvdhfr 57-58-61 and 173, pvdhps 382-383, 553, 647 and pvmdr1 976, were simultaneously screened in 366 PNG P. vivax samples. Results Genotyping was successful in 95.4% of the samples for at least one gene. The coexistence of multiple distinct haplotypes in the parasite population necessitated the introduction of a computer-assisted approach to data analysis. Whereas 73.1% of patients were infected with at least one wild-type genotype at codons 57, 58 and 61 of pvdhfr, a triple mutant genotype was detected in 65.6% of the patients, often associated with the 117T mutation. Only one patient carried the 173L mutation. The mutant 647P pvdhps genotype allele was approaching genetic fixation (99.3%, whereas 35.1% of patients were infected with parasites carrying the pvmdr1 976F mutant allele. Conclusions The LDR-FMA described here allows a discriminant genotyping of resistance alleles in the pvdhfr, pvdhps, and pvmdr1 genes and can be used in large-scale surveillance studies.

  9. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes.

    Science.gov (United States)

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H J; Hensbergen, Paul J; Reiding, Karli R; Hazes, Johanna M W; Dolhain, Radboud J E M; Wuhrer, Manfred

    2014-11-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼ 20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding.

  10. Improvements of polymerase chain reaction and capillary electrophoresis single-strand conformation polymorphism methods in microbial ecology: toward a high-throughput method for microbial diversity studies in soil.

    Science.gov (United States)

    Zinger, Lucie; Gury, Jérôme; Giraud, Frédéric; Krivobok, Serge; Gielly, Ludovic; Taberlet, Pierre; Geremia, Roberto A

    2007-08-01

    The molecular signature of bacteria from soil ecosystems is an important tool for studying microbial ecology and biogeography. However, a high-throughput technology is needed for such studies. In this article, we tested the suitability of available methods ranging from soil DNA extraction to capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) for high-throughput studies. Our results showed that the extraction method does not dramatically influence CE-SSCP profiles, and that DNA extraction of a 0.25 g soil sample is sufficient to observe overall bacterial diversity in soil matrices. The V3 region of the 16S rRNA gene was amplified by PCR, and the extension time was found to be critical. We have also found that proofreading DNA polymerases generate a better signal in CE-SSCP profiles. Experiments performed with different soil matrices revealed the repeatability, efficiency, and consistency of CE-SSCP. Studies on PCR and CE-SSCP using single-species genomic DNA as a matrix showed that several ribotypes may migrate at the same position, and also that single species can produce double peaks. Thus, the extrapolation between number of peaks and number of species remains difficult. Additionally, peak detection is limited by the analysis software. We conclude that the presented method, including CE-SSCP and the analyzing step, is a simple and effective technique to obtain the molecular signature of a given soil sample.

  11. Detection of knockdown resistance (kdr mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

    Directory of Open Access Journals (Sweden)

    Ball Amanda

    2007-08-01

    Full Text Available Abstract Background Knockdown resistance (kdr is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1 TaqMan probes and 2 high resolution melt (HRM analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR, Heated Oligonucleotide Ligation Assay (HOLA, Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost, and safety (requirement for hazardous chemicals. Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions and the most specific (with the lowest number of incorrect scores. Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS

  12. High-throughput screening in the C. elegans nervous system.

    Science.gov (United States)

    Kinser, Holly E; Pincus, Zachary

    2016-06-03

    The nematode Caenorhabditis elegans is widely used as a model organism in the field of neurobiology. The wiring of the C. elegans nervous system has been entirely mapped, and the animal's optical transparency allows for in vivo observation of neuronal activity. The nematode is also small in size, self-fertilizing, and inexpensive to cultivate and maintain, greatly lending to its utility as a whole-animal model for high-throughput screening (HTS) in the nervous system. However, the use of this organism in large-scale screens presents unique technical challenges, including reversible immobilization of the animal, parallel single-animal culture and containment, automation of laser surgery, and high-throughput image acquisition and phenotyping. These obstacles require significant modification of existing techniques and the creation of new C. elegans-based HTS platforms. In this review, we outline these challenges in detail and survey the novel technologies and methods that have been developed to address them.

  13. C. elegans in high-throughput drug discovery

    OpenAIRE

    O’Reilly, Linda P.; Cliff J Luke; Perlmutter, David H.; Silverman, Gary A.; Pak, Stephen C.

    2013-01-01

    C. elegans has proven to be a useful model organism for investigating molecular and cellular aspects of numerous human diseases. More recently, investigators have explored the use of this organism as a tool for drug discovery. Although earlier drug screens were labor-intensive and low in throughput, recent advances in high-throughput liquid workflows, imaging platforms and data analysis software have made C. elegans a viable option for automated high-throughput drug screens. This review will ...

  14. FLASH assembly of TALENs for high-throughput genome editing.

    Science.gov (United States)

    Reyon, Deepak; Tsai, Shengdar Q; Khayter, Cyd; Foden, Jennifer A; Sander, Jeffry D; Joung, J Keith

    2012-05-01

    Engineered transcription activator–like effector nucleases (TALENs) have shown promise as facile and broadly applicable genome editing tools. However, no publicly available high-throughput method for constructing TALENs has been published, and large-scale assessments of the success rate and targeting range of the technology remain lacking. Here we describe the fast ligation-based automatable solid-phase high-throughput (FLASH) system, a rapid and cost-effective method for large-scale assembly of TALENs. We tested 48 FLASH-assembled TALEN pairs in a human cell–based EGFP reporter system and found that all 48 possessed efficient gene-modification activities. We also used FLASH to assemble TALENs for 96 endogenous human genes implicated in cancer and/or epigenetic regulation and found that 84 pairs were able to efficiently introduce targeted alterations. Our results establish the robustness of TALEN technology and demonstrate that FLASH facilitates high-throughput genome editing at a scale not currently possible with other genome modification technologies.

  15. Application of an active attachment model as a high-throughput demineralization biofilm model

    NARCIS (Netherlands)

    Silva, T.C.; Pereira, A.F.F.; Exterkate, R.A.M.; Bagnato, V.S.; Buzalaf, M.A.R.; de A.M. Machado, M.A.; ten Cate, J.M.; Crielaard, W.; Deng, D.M.

    2012-01-01

    Objectives To investigate the potential of an active attachment biofilm model as a high-throughput demineralization biofilm model for the evaluation of caries-preventive agents. Methods Streptococcus mutans UA159 biofilms were grown on bovine dentine discs in a high-throughput active attachment mode

  16. Probe molecule (PrM) approach in adverse outcome pathway (AOP) based high-throughput screening (HTS): in vivo discovery for developing in vitro target methods.

    Science.gov (United States)

    Angrish, Michelle M; Madden, Michael C; Pleil, Joachim D

    2015-04-20

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by relevant in vivo exposure data. The challenge is to develop HTS assays with unambiguous quantitative links between in vitro responses and corresponding in vivo effects, which is complicated by metabolically insufficient systems, in vitro to in vivo extrapolation (IVIVE), cross-species comparisons, and other inherent issues correlating IVIVE findings. This article introduces the concept of ultrasensitive gas phase probe molecules (PrMs) to help bridge the current HTS assay IVIVE gap. The PrM concept assesses metabolic pathways that have already been well-defined from intact human or mammalian models. Specifically, the idea is to introduce a gas phase probe molecule into a system, observe normal steady state, add chemicals of interest, and quantitatively measure (from headspace gas) effects on PrM metabolism that can be directly linked back to a well-defined and corresponding in vivo effect. As an example, we developed the pharmacokinetic (PK) parameters and differential equations to estimate methyl tertiary butyl ether (MTBE) metabolism to tertiary butyl alcohol (TBA) via cytochrome (CYP) 2A6 in the liver from human empirical data. Because MTBE metabolic pathways are well characterized from in vivo data, we can use it as a PrM to explore direct and indirect chemical effects on CYP pathways. The PrM concept could be easily applied to in vitro and alternative models of disease and phenotype, and even test for volatile chemicals while avoiding liquid handling robotics. Furthermore, a PrM can be designed for any chemical with known empirical human exposure data and used to assess chemicals for which no information exists. Herein, we propose an elegant gas phase probe molecule-based approach to in

  17. High Throughput Direct Detection Doppler Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lite Cycles, Inc. (LCI) proposes to develop a direct-detection Doppler lidar (D3L) technology called ELITE that improves the system optical throughput by more than...

  18. Development of a fast isocratic LC-MS/MS method for the high-throughput analysis of pyrrolizidine alkaloids in Australian honey.

    Science.gov (United States)

    Griffin, Caroline T; Mitrovic, Simon M; Danaher, Martin; Furey, Ambrose

    2015-01-01

    Honey samples originating from Australia were purchased and analysed for targeted pyrrolizidine alkaloids (PAs) using a new and rapid isocratic LC-MS/MS method. This isocratic method was developed from, and is comparable with, a gradient elution method and resulted in no loss of sensitivity or reduction in chromatographic peak shape. Isocratic elution allows for significantly shorter run times (6 min), eliminates the requirement for column equilibration periods and, thus, has the advantage of facilitating a high-throughput analysis which is particularly important for regulatory testing laboratories. In excess of two hundred injections are possible, with this new isocratic methodology, within a 24-h period which is more than 50% improvement on all previously published methodologies. Good linear calibrations were obtained for all 10 PAs and four PA N-oxides (PANOs) in spiked honey samples (3.57-357.14 µg l(-1); R(2) ≥ 0.9987). Acceptable inter-day repeatability was achieved for the target analytes in honey with % RSD values (n = 4) less than 7.4%. Limits of detection (LOD) and limits of quantitation (LOQ) were achieved with spiked PAs and PANOs samples; giving an average LOD of 1.6 µg kg(-1) and LOQ of 5.4 µg kg(-1). This method was successfully applied to Australian and New Zealand honey samples sourced from supermarkets in Australia. Analysis showed that 41 of the 59 honey samples were contaminated by PAs with the mean total sum of PAs being 153 µg kg(-1). Echimidine and lycopsamine were predominant and found in 76% and 88%, respectively, of the positive samples. The average daily exposure, based on the results presented in this study, were 0.051 µg kg(-1) bw day(-1) for adults and 0.204 µg kg(-1) bw day(-1) for children. These results are a cause for concern when compared with the proposed European Food Safety Authority (EFSA), Committee on Toxicity (COT) and Bundesinstitut für Risikobewertung (BfR - Federal Institute of Risk Assessment Germany) maximum

  19. High Volume Throughput Computing: Identifying and Characterizing Throughput Oriented Workloads in Data Centers

    CERN Document Server

    Zhan, Jianfeng; Sun, Ninghui; Wang, Lei; Jia, Zhen; Luo, Chunjie

    2012-01-01

    For the first time, this paper systematically identifies three categories of throughput oriented workloads in data centers: services, data processing applications, and interactive real-time applications, whose targets are to increase the volume of throughput in terms of processed requests or data, or supported maximum number of simultaneous subscribers, respectively, and we coins a new term high volume throughput computing (in short HVC) to describe those workloads and data center systems designed for them. We characterize and compare HVC with other computing paradigms, e.g., high throughput computing, warehouse-scale computing, and cloud computing, in terms of levels, workloads, metrics, coupling degree, data scales, and number of jobs or service instances. We also preliminarily report our ongoing work on the metrics and benchmarks for HVC systems, which is the foundation of designing innovative data center systems for HVC workloads.

  20. Ultraspecific probes for high throughput HLA typing

    Directory of Open Access Journals (Sweden)

    Eggers Rick

    2009-02-01

    Full Text Available Abstract Background The variations within an individual's HLA (Human Leukocyte Antigen genes have been linked to many immunological events, e.g. susceptibility to disease, response to vaccines, and the success of blood, tissue, and organ transplants. Although the microarray format has the potential to achieve high-resolution typing, this has yet to be attained due to inefficiencies of current probe design strategies. Results We present a novel three-step approach for the design of high-throughput microarray assays for HLA typing. This approach first selects sequences containing the SNPs present in all alleles of the locus of interest and next calculates the number of base changes necessary to convert a candidate probe sequences to the closest subsequence within the set of sequences that are likely to be present in the sample including the remainder of the human genome in order to identify those candidate probes which are "ultraspecific" for the allele of interest. Due to the high specificity of these sequences, it is possible that preliminary steps such as PCR amplification are no longer necessary. Lastly, the minimum number of these ultraspecific probes is selected such that the highest resolution typing can be achieved for the minimal cost of production. As an example, an array was designed and in silico results were obtained for typing of the HLA-B locus. Conclusion The assay presented here provides a higher resolution than has previously been developed and includes more alleles than previously considered. Based upon the in silico and preliminary experimental results, we believe that the proposed approach can be readily applied to any highly polymorphic gene system.

  1. High-throughput mass spectrometric cytochrome P450 inhibition screening.

    Science.gov (United States)

    Lim, Kheng B; Ozbal, Can C; Kassel, Daniel B

    2013-01-01

    We describe here a high-throughput assay to support rapid evaluation of drug discovery compounds for possible drug-drug interaction (DDI). Each compound is evaluated for its DDI potential by incubating over a range of eight concentrations and against a panel of six cytochrome P450 (CYP) enzymes: 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. The method utilizes automated liquid handling for sample preparation, and online solid-phase extraction/tandem mass spectrometry (SPE/MS/MS) for sample analyses. The system is capable of generating two 96-well assay plates in 30 min, and completes the data acquisition and analysis of both plates in about 30 min. Many laboratories that perform the CYP inhibition screening automate only part of the processes leaving a throughput bottleneck within the workflow. The protocols described in this chapter are aimed to streamline the entire process from assay to data acquisition and processing by incorporating automation and utilizing high-precision instrument to maximize throughput and minimize bottleneck.

  2. Application of a high-throughput genotyping method for loci exclusion in non-consanguineous Australian pedigrees with autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Paterson, Rachel L; De Roach, John N; McLaren, Terri L; Hewitt, Alex W; Hoffmann, Ling; Lamey, Tina M

    2012-01-01

    Retinitis pigmentosa (RP) is the most common form of inherited blindness, caused by progressive degeneration of photoreceptor cells in the retina, and affects approximately 1 in 3,000 people. Over the past decade, significant progress has been made in gene therapy for RP and related diseases, making genetic characterization increasingly important. Recently, high-throughput technologies have provided an option for reasonably fast, cost-effective genetic characterization of autosomal recessive RP (arRP). The current study used a single nucleotide polymorphism (SNP) genotyping method to exclude up to 28 possible disease-causing genes in 31 non-consanguineous Australian families affected by arRP. DNA samples were collected from 59 individuals affected with arRP and 74 unaffected family members from 31 Australian families. Five to six SNPs were genotyped for 28 genes known to cause arRP or the related disease Leber congenital amaurosis (LCA). Cosegregation analyses were used to exclude possible causative genes from each of the 31 families. Bidirectional sequencing was used to identify disease-causing mutations in prioritized genes that were not excluded with cosegregation analyses. Two families were excluded from analysis due to identification of false paternity. An average of 28.9% of genes were excluded per family when only one affected individual was available, in contrast to an average of 71.4% or 89.8% of genes when either two, or three or more affected individuals were analyzed, respectively. A statistically significant relationship between the proportion of genes excluded and the number of affected individuals analyzed was identified using a multivariate regression model (pgene as CRB1 in one family (c.2548 G>A) and USH2A in two families (c.2276 G>T). This study has shown that SNP genotyping cosegregation analysis can be successfully used to refine and expedite the genetic characterization of arRP in a non-consanguineous population; however, this method is

  3. High-throughput synthesis and analysis of acylated cyanohydrins.

    Science.gov (United States)

    Hamberg, Anders; Lundgren, Stina; Wingstrand, Erica; Moberg, Christina; Hult, Karl

    2007-01-01

    The yields and optical purities of products obtained from chiral Lewis acid/Lewis base-catalysed additions of alpha-ketonitriles to prochiral aldehydes could be accurately determined by an enzymatic method. The amount of remaining aldehyde was determined after its reduction to an alcohol, whilst the two product enantiomers were analysed after subsequent hydrolysis first by the (S)-selective Candida antarctica lipase B and then by the unselective pig liver esterase. The method could be used for analysis of products obtained from a number of aromatic aldehydes and aliphatic ketonitriles. Microreactor technology was successfully combined with high-throughput analysis for efficient catalyst optimization.

  4. Benchmarking procedures for high-throughput context specific reconstruction algorithms

    Directory of Open Access Journals (Sweden)

    Maria ePires Pacheco

    2016-01-01

    Full Text Available Recent progress in high-throughput data acquisition has shifted the focus from data generation to processing and understanding of how to integrate collected information. Context specific reconstruction based on generic genome scale models like ReconX (Duarte et al., 2007; Thiele et al., 2013 or HMR (Agren et al., 2013 has the potential to become a diagnostic and treatment tool tailored to the analysis of specific individuals. The respective computational algorithms require a high level of predictive power, robustness and sensitivity. Although multiple context specific reconstruction algorithms were published in the last ten years, only a fraction of them is suitable for model building based on human high-throughput data. Beside other reasons, this might be due to problems arising from the limitation to only one metabolic target function or arbitrary thresholding.This review describes and analyses common validation methods used for testing model building algorithms. Two major methods can be distinguished, consistency testing and comparison based testing. The former includes methods like cross validation or testing with artificial networks. The latter covers methods comparing sets of functionalities, comparison with existing networks or additional databases. We test those methods on several available algorithms and deduce properties of these algorithms, that can be compared with future developments. The set of tests performed, can therefore serve as a benchmarking procedure for future algorithms

  5. High Throughput Bent-Pipe Processor Demonstrator

    Science.gov (United States)

    Tabacco, P.; Vernucci, A.; Russo, L.; Cangini, P.; Botticchio, T.; Angeletti, P.

    2008-08-01

    The work associated to this article is a study initiative sponsored by ESA/ESTEC that responds to the crucial need of developing new Satellite payload aimed at making rapid progresses in handling large amounts of data at a competitive price with respect to terrestrial one in the telecommunication field. Considering the quite limited band allowed to space communications at Ka band, reusing the same band in a large number of beams is mandatory: therefore beam-forming is the right technological answer. Technological progresses - mainly in the digital domain - also help greatly in increasing the satellite capacity. Next Satellite payload target are set in throughput range of 50Gbps. Despite the fact that the implementation of a wideband transparent processor for a high capacity communication payload is a very challenging task, Space Engineering team in the frame of this ESA study proposed an intermediate step of development for a scalable unit able to demonstrate both the capacity and flexibility objectives for different type of Wideband Beamforming antennas designs. To this aim the article describes the features of Wideband HW (analog and digital) platform purposely developed by Space Engineering in the frame of this ESA/ESTEC contract ("WDBFN" contract) with some preliminary system test results. The same platform and part of the associated SW will be used in the development and demonstration of the real payload digital front end Mux and Demux algorithms as well as the Beam Forming and on Board channel switching in frequency domain. At the time of this article writing, despite new FPGA and new ADC and DAC converters have become available as choices for wideband system implementation, the two HW platforms developed by Space Engineering, namely WDBFN ADC and DAC Boards, represent still the most performing units in terms of analog bandwidth, processing capability (in terms of FPGA module density), SERDES (SERiliazer DESerializers) external links density, integration form

  6. High throughput discovery of new fouling-resistant surfaces†

    Science.gov (United States)

    Zhou, Mingyan; Liu, Hongwei; Venkiteshwaran, Adith; Kilduff, James; Anderson, Daniel G.; Langer, Robert; Belfort, Georges

    2017-01-01

    A novel high throughput method for synthesis and screening of customized protein-resistant surfaces was developed. This method is an inexpensive, fast, reproducible and scalable approach to synthesize and screen protein-resistant surfaces appropriate for a specific feed. The method is illustrated here by combining a high throughput platform (HTP) approach together with our patented photo-induced graft polymerization (PGP) method developed for facile modification of commercial poly(aryl sulfone) membranes. We demonstrate that the HTP–PGP approach to synthesize and screen fouling-resistant surfaces is general, and thus provides the capability to develop surfaces optimized for specific feeds. Surfaces were prepared via graft polymerization onto poly(ether sulfone) (PES) membranes and were evaluated using a protein adsorption assay followed by pressure-driven filtration. We have employed the HTP–PGP approach to confirm previously reported successful monomers and to develop new antifouling surfaces from a library of 66 monomers for four different challenges of interest to the biotechnology community: hen egg-white lysozyme, supernatant from Chinese Hamster Ovary (CHO) cells in phosphate buffered saline (PBS) solution as a model cell suspension, and immunoglobulin G (IgG) precipitated in the absence and presence of bovine serum albumin (BSA) in high salt solution as a model precipitation process.

  7. Automated Transition State Theory Calculations for High-Throughput Kinetics.

    Science.gov (United States)

    Bhoorasingh, Pierre L; Slakman, Belinda L; Seyedzadeh Khanshan, Fariba; Cain, Jason Y; West, Richard Henry

    2017-08-18

    A scarcity of known chemical kinetic parameters leads to the use of many reaction rate estimates, which are not always sufficiently accurate, in the construction of detailed kinetic models. To reduce the reliance on these estimates and improve the accuracy of predictive kinetic models, we have developed a high-throughput, fully automated, reaction rate calculation method, AutoTST. The algorithm integrates automated saddle-point geometry search methods and a canonical transition state theory kinetics calculator. The automatically calculated reaction rates compare favorably to existing estimated rates. Comparison against high level theoretical calculations show the new automated method performs better than rate estimates when the estimate is made by a poor analogy. The method will improve by accounting for internal rotor contributions and by improving methods to determine molecular symmetry.

  8. Numerical techniques for high-throughput reflectance interference biosensing

    Science.gov (United States)

    Sevenler, Derin; Ünlü, M. Selim

    2016-06-01

    We have developed a robust and rapid computational method for processing the raw spectral data collected from thin film optical interference biosensors. We have applied this method to Interference Reflectance Imaging Sensor (IRIS) measurements and observed a 10,000 fold improvement in processing time, unlocking a variety of clinical and scientific applications. Interference biosensors have advantages over similar technologies in certain applications, for example highly multiplexed measurements of molecular kinetics. However, processing raw IRIS data into useful measurements has been prohibitively time consuming for high-throughput studies. Here we describe the implementation of a lookup table (LUT) technique that provides accurate results in far less time than naive methods. We also discuss an additional benefit that the LUT method can be used with a wider range of interference layer thickness and experimental configurations that are incompatible with methods that require fitting the spectral response.

  9. Evaluation of methods for de novo genome assembly from high-throughput sequencing reads reveals dependencies that affect the quality of the results.

    Science.gov (United States)

    Haiminen, Niina; Kuhn, David N; Parida, Laxmi; Rigoutsos, Isidore

    2011-01-01

    Recent developments in high-throughput sequencing technology have made low-cost sequencing an attractive approach for many genome analysis tasks. Increasing read lengths, improving quality and the production of increasingly larger numbers of usable sequences per instrument-run continue to make whole-genome assembly an appealing target application. In this paper we evaluate the feasibility of de novo genome assembly from short reads (≤100 nucleotides) through a detailed study involving genomic sequences of various lengths and origin, in conjunction with several of the currently popular assembly programs. Our extensive analysis demonstrates that, in addition to sequencing coverage, attributes such as the architecture of the target genome, the identity of the used assembly program, the average read length and the observed sequencing error rates are powerful variables that affect the best achievable assembly of the target sequence in terms of size and correctness.

  10. Controlling high-throughput manufacturing at the nano-scale

    Science.gov (United States)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  11. Spectrophotometric Enzyme Assays for High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Jean-Louis Reymond

    2004-01-01

    Full Text Available This paper reviews high-throughput screening enzyme assays developed in our laboratory over the last ten years. These enzyme assays were initially developed for the purpose of discovering catalytic antibodies by screening cell culture supernatants, but have proved generally useful for testing enzyme activities. Examples include TLC-based screening using acridone-labeled substrates, fluorogenic assays based on the β-elimination of umbelliferone or nitrophenol, and indirect assays such as the back-titration method with adrenaline and the copper-calcein fluorescence assay for aminoacids.

  12. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  13. Resolution- and throughput-enhanced spectroscopy using high-throughput computational slit

    CERN Document Server

    Kazemzadeh, Farnoud

    2016-01-01

    There exists a fundamental tradeoff between spectral resolution and the efficiency or throughput for all optical spectrometers. The primary factors affecting the spectral resolution and throughput of an optical spectrometer are the size of the entrance aperture and the optical power of the focusing element. Thus far collective optimization of the above mentioned has proven difficult. Here, we introduce the concept of high-throughput computational slits (HTCS) for improving both the effective spectral resolution and efficiency of a spectrometer. The proposed HTCS approach was experimentally validated using an optical spectrometer configured with a 200 um entrance aperture, test, and a 50 um entrance aperture, control, demonstrating improvements in spectral resolution of the spectrum by ~20% over the control spectral resolution and improvements in efficiency of > 2 times the efficiency of the largest entrance aperture used in the study while producing highly accurate spectra.

  14. HIGH THROUGHPUT OF MAP PROCESSOR USING PIPELINE WINDOW DECODING

    Directory of Open Access Journals (Sweden)

    P. Nithya

    2012-11-01

    Full Text Available Turbo codes are one of the most efficient error correcting code which approaches the Shannon limit.The high throughput in turbo decoder can be achieved by parallelizing several soft Input Soft Output(SISOunits together.In this way,multiple SISO decoders work on the same data frame at the same values and delievers soft outputs can be split into three terms like the soft channel and a priori input and the extrinsic value.The extrinsic value is used for the next iteration.The high throughput of Max-Log-MAP processor tha supports both single Binary(SBand Double-binary(DB convolutional turbo codes.Decoding of these codes however an iterative processing is requires high computation rate and latency.Thus in order to achieve high throughput and to reduce latency by using serial processing techniques.The pipeline window(PWdecoding is introduced to support arbitrary frame sizes with high throughput.

  15. New technologies for ultra-high throughput genotyping in plants.

    Science.gov (United States)

    Appleby, Nikki; Edwards, David; Batley, Jacqueline

    2009-01-01

    Molecular genetic markers represent one of the most powerful tools for the analysis of plant genomes and the association of heritable traits with underlying genetic variation. Molecular marker technology has developed rapidly over the last decade, with the development of high-throughput genotyping methods. Two forms of sequence-based marker, simple sequence repeats (SSRs), also known as microsatellites and single nucleotide polymorphisms (SNPs) now predominate applications in modern plant genetic analysis, along the anonymous marker systems such as amplified fragment length polymorphisms (AFLPs) and diversity array technology (DArT). The reducing cost of DNA sequencing and increasing availability of large sequence data sets permits the mining of this data for large numbers of SSRs and SNPs. These may then be used in applications such as genetic linkage analysis and trait mapping, diversity analysis, association studies and marker-assisted selection. Here, we describe automated methods for the discovery of molecular markers and new technologies for high-throughput, low-cost molecular marker genotyping. Genotyping examples include multiplexing of SSRs using Multiplex-Ready marker technology (MRT); DArT genotyping; SNP genotyping using the Invader assay, the single base extension (SBE), oligonucleotide ligation assay (OLA) SNPlex system, and Illumina GoldenGate and Infinium methods.

  16. High-throughput fragment screening by affinity LC-MS.

    Science.gov (United States)

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2013-02-01

    Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in 3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant (K (D)) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.

  17. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...

  18. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...

  19. AOPs & Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making.

    Science.gov (United States)

    As high throughput screening (HTS) approaches play a larger role in toxicity testing, computational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models for this purpose are becoming increasingly more sophisticated...

  20. MIPHENO: Data normalization for high throughput metabolic analysis.

    Science.gov (United States)

    High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course...

  1. High-throughput Identification of Phage-derived Imaging Agents

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-01-01

    Full Text Available The use of phage-displayed peptide libraries is a powerful method for selecting peptides with desired binding properties. However, the validation and prioritization of “hits” obtained from this screening approach remains challenging. Here, we describe the development and testing of a new analysis method to identify and display hits from phage-display experiments and high-throughput enzyme-linked immunosorbent assay screens. We test the method using a phage screen against activated macrophages to develop imaging agents with higher specificity for active disease processes. The new methodology should be useful in identifying phage hits and is extendable to other library screening methods such as small-molecule and nanoparticle libraries.

  2. Inferential literacy for experimental high-throughput biology.

    Science.gov (United States)

    Miron, Mathieu; Nadon, Robert

    2006-02-01

    Many biologists believe that data analysis expertise lags behind the capacity for producing high-throughput data. One view within the bioinformatics community is that biological scientists need to develop algorithmic skills to meet the demands of the new technologies. In this article, we argue that the broader concept of inferential literacy, which includes understanding of data characteristics, experimental design and statistical analysis, in addition to computation, more adequately encompasses what is needed for efficient progress in high-throughput biology.

  3. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications

    Science.gov (United States)

    Imaduwage, Kasun P.; Go, Eden P.; Zhu, Zhikai; Desaire, Heather

    2016-09-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have Ki values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods.

  4. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications

    Science.gov (United States)

    Imaduwage, Kasun P.; Go, Eden P.; Zhu, Zhikai; Desaire, Heather

    2016-11-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have Ki values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods.

  5. Evaluation of a high throughput starch analysis optimised for wood.

    Directory of Open Access Journals (Sweden)

    Chandra Bellasio

    Full Text Available Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11 was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood of four species (coniferous and flowering plants. The optimised protocol proved to be remarkably precise and accurate (3%, suitable for a high throughput routine analysis (35 samples a day of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes.

  6. Evaluation of a high throughput starch analysis optimised for wood.

    Science.gov (United States)

    Bellasio, Chandra; Fini, Alessio; Ferrini, Francesco

    2014-01-01

    Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes.

  7. Evaluation of a High Throughput Starch Analysis Optimised for Wood

    Science.gov (United States)

    Bellasio, Chandra; Fini, Alessio; Ferrini, Francesco

    2014-01-01

    Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes. PMID:24523863

  8. Compression of structured high-throughput sequencing data.

    Directory of Open Access Journals (Sweden)

    Fabien Campagne

    Full Text Available Large biological datasets are being produced at a rapid pace and create substantial storage challenges, particularly in the domain of high-throughput sequencing (HTS. Most approaches currently used to store HTS data are either unable to quickly adapt to the requirements of new sequencing or analysis methods (because they do not support schema evolution, or fail to provide state of the art compression of the datasets. We have devised new approaches to store HTS data that support seamless data schema evolution and compress datasets substantially better than existing approaches. Building on these new approaches, we discuss and demonstrate how a multi-tier data organization can dramatically reduce the storage, computational and network burden of collecting, analyzing, and archiving large sequencing datasets. For instance, we show that spliced RNA-Seq alignments can be stored in less than 4% the size of a BAM file with perfect data fidelity. Compared to the previous compression state of the art, these methods reduce dataset size more than 40% when storing exome, gene expression or DNA methylation datasets. The approaches have been integrated in a comprehensive suite of software tools (http://goby.campagnelab.org that support common analyses for a range of high-throughput sequencing assays.

  9. High-throughput protein analysis integrating bioinformatics and experimental assays.

    Science.gov (United States)

    del Val, Coral; Mehrle, Alexander; Falkenhahn, Mechthild; Seiler, Markus; Glatting, Karl-Heinz; Poustka, Annemarie; Suhai, Sandor; Wiemann, Stefan

    2004-01-01

    The wealth of transcript information that has been made publicly available in recent years requires the development of high-throughput functional genomics and proteomics approaches for its analysis. Such approaches need suitable data integration procedures and a high level of automation in order to gain maximum benefit from the results generated. We have designed an automatic pipeline to analyse annotated open reading frames (ORFs) stemming from full-length cDNAs produced mainly by the German cDNA Consortium. The ORFs are cloned into expression vectors for use in large-scale assays such as the determination of subcellular protein localization or kinase reaction specificity. Additionally, all identified ORFs undergo exhaustive bioinformatic analysis such as similarity searches, protein domain architecture determination and prediction of physicochemical characteristics and secondary structure, using a wide variety of bioinformatic methods in combination with the most up-to-date public databases (e.g. PRINTS, BLOCKS, INTERPRO, PROSITE SWISSPROT). Data from experimental results and from the bioinformatic analysis are integrated and stored in a relational database (MS SQL-Server), which makes it possible for researchers to find answers to biological questions easily, thereby speeding up the selection of targets for further analysis. The designed pipeline constitutes a new automatic approach to obtaining and administrating relevant biological data from high-throughput investigations of cDNAs in order to systematically identify and characterize novel genes, as well as to comprehensively describe the function of the encoded proteins.

  10. A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry.

    Science.gov (United States)

    Ognibene, Ted J; Bench, Graham; Vogel, John S; Peaslee, Graham F; Murov, Steve

    2003-05-01

    The growth of accelerator mass spectrometry as a tool for quantitative isotope ratio analysis in the biosciences necessitates high-throughput sample preparation. A method has been developed to convert CO(2) obtained from carbonaceous samples to solid graphite for highly sensitive and precise (14)C quantification. Septa-sealed vials are used along with commercially available disposable materials, eliminating sample cross contamination, minimizing complex handling, and keeping per sample costs low. Samples containing between 0.25 and 10 mg of total carbon can be reduced to graphite in approximately 4 h in routine operation. Approximately 150 samples per 8-h day can be prepared by a single technician.

  11. A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonia; Pearce, Richard;

    2005-01-01

    . However, to be a practical tool in the surveillance of drug resistance, simpler methods for high-throughput haplotyping are warranted. Here we describe a quick and simple technique that detects dhfr, dhps, and Pfcrt SNPs using polymerase chain reaction (PCR)- and enzyme-linked immunosorbent assay (ELISA...... the SNPs of dhfr, dhps, and Pfcrt with high specificity. The SSOP-ELISA compared well with a standard PCR-restriction fragment length polymorphism procedure, and gave identical positive results in more than 90% of the P. falciparum slide-positive samples tested. The SSOP-ELISA of all dhfr, dhps, or Pfcrt...

  12. Receptor-ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method

    DEFF Research Database (Denmark)

    Buus, S; Stryhn, A; Kirkby, N

    1995-01-01

    on the method development essential to obtain efficient separation in particular when used for analytical purposes. In this paper we describe a systematic approach to select the optimal parameters for spun column separation including a simple modification of the technique whereby the spun columns are eluted...... the gradient centrifugation helps to achieve equilibrium across the gel matrix during the elution. The new method has been used successfully for several different receptor-ligand interactions, and this paper describes a general approach on how to develop new applications of the technique....

  13. Field high-throughput phenotyping: the new crop breeding frontier.

    Science.gov (United States)

    Araus, José Luis; Cairns, Jill E

    2014-01-01

    Constraints in field phenotyping capability limit our ability to dissect the genetics of quantitative traits, particularly those related to yield and stress tolerance (e.g., yield potential as well as increased drought, heat tolerance, and nutrient efficiency, etc.). The development of effective field-based high-throughput phenotyping platforms (HTPPs) remains a bottleneck for future breeding advances. However, progress in sensors, aeronautics, and high-performance computing are paving the way. Here, we review recent advances in field HTPPs, which should combine at an affordable cost, high capacity for data recording, scoring and processing, and non-invasive remote sensing methods, together with automated environmental data collection. Laboratory analyses of key plant parts may complement direct phenotyping under field conditions. Improvements in user-friendly data management together with a more powerful interpretation of results should increase the use of field HTPPs, therefore increasing the efficiency of crop genetic improvement to meet the needs of future generations.

  14. High-throughput comet assay using 96 minigels.

    Science.gov (United States)

    Gutzkow, Kristine B; Langleite, Torgrim M; Meier, Silja; Graupner, Anne; Collins, Andrew R; Brunborg, Gunnar

    2013-05-01

    The single-cell gel electrophoresis--the comet assay--has proved to be a sensitive and relatively simple method that is much used in research for the analysis of specific types of DNA damage, and its use in genotoxicity testing is increasing. The efficiency of the comet assay, in terms of number of samples processed per experiment, has been rather poor, and both research and toxicological testing should profit from an increased throughput. We have designed and validated a format involving 96 agarose minigels supported by a hydrophilic polyester film. Using simple technology, hundreds of samples may be processed in one experiment by one person, with less time needed for processing, less use of chemicals and requiring fewer cells per sample. Controlled electrophoresis, including circulation of the electrophoresis solution, improves the homogeneity between replicate samples in the 96-minigel format. The high-throughput method described in this paper should greatly increase the overall capacity, versatility and robustness of the comet assay.

  15. A high-throughput cidality screen for Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    Full Text Available Exposure to Mycobacterium tuberculosis (Mtb aerosols is a major threat to tuberculosis (TB researchers, even in bio-safety level-3 (BSL-3 facilities. Automation and high-throughput screens (HTS in BSL3 facilities are essential for minimizing manual aerosol-generating interventions and facilitating TB research. In the present study, we report the development and validation of a high-throughput, 24-well 'spot-assay' for selecting bactericidal compounds against Mtb. The bactericidal screen concept was first validated in the fast-growing surrogate Mycobacterium smegmatis (Msm and subsequently confirmed in Mtb using the following reference anti-tubercular drugs: rifampicin, isoniazid, ofloxacin and ethambutol (RIOE, acting on different targets. The potential use of the spot-assay to select bactericidal compounds from a large library was confirmed by screening on Mtb, with parallel plating by the conventional gold standard method (correlation, r2 = 0.808. An automated spot-assay further enabled an MBC90 determination on resistant and sensitive Mtb clinical isolates. The implementation of the spot-assay in kinetic screens to enumerate residual Mtb after either genetic silencing (anti-sense RNA, AS-RNA or chemical inhibition corroborated its ability to detect cidality. This relatively simple, economical and quantitative HTS considerably minimized the bio-hazard risk and enabled the selection of novel vulnerable Mtb targets and mycobactericidal compounds. Thus, spot-assays have great potential to impact the TB drug discovery process.

  16. A scalable approach for high throughput branch flow filtration.

    Science.gov (United States)

    Inglis, David W; Herman, Nick

    2013-05-07

    Microfluidic continuous flow filtration methods have the potential for very high size resolution using minimum feature sizes that are larger than the separation size, thereby circumventing the problem of clogging. Branch flow filtration is particularly promising because it has an unlimited dynamic range (ratio of largest passable particle to the smallest separated particle) but suffers from very poor volume throughput because when many branches are used, they cannot be identical if each is to have the same size cut-off. We describe a new iterative approach to the design of branch filtration devices able to overcome this limitation without large dead volumes. This is demonstrated by numerical modelling, fabrication and testing of devices with 20 branches, with dynamic ranges up to 6.9, and high filtration ratios (14-29%) on beads and fungal spores. The filters have a sharp size cutoff (10× depletion for 12% size difference), with large particle rejection equivalent to a 20th order Butterworth low pass filter. The devices are fully scalable, enabling higher throughput and smaller cutoff sizes and they are compatible with ultra low cost fabrication.

  17. COMPUTER APPROACHES TO WHEAT HIGH-THROUGHPUT PHENOTYPING

    Directory of Open Access Journals (Sweden)

    Afonnikov D.

    2012-08-01

    Full Text Available The growing need for rapid and accurate approaches for large-scale assessment of phenotypic characters in plants becomes more and more obvious in the studies looking into relationships between genotype and phenotype. This need is due to the advent of high throughput methods for analysis of genomes. Nowadays, any genetic experiment involves data on thousands and dozens of thousands of plants. Traditional ways of assessing most phenotypic characteristics (those with reliance on the eye, the touch, the ruler are little effective on samples of such sizes. Modern approaches seek to take advantage of automated phenotyping, which warrants a much more rapid data acquisition, higher accuracy of the assessment of phenotypic features, measurement of new parameters of these features and exclusion of human subjectivity from the process. Additionally, automation allows measurement data to be rapidly loaded into computer databases, which reduces data processing time.In this work, we present the WheatPGE information system designed to solve the problem of integration of genotypic and phenotypic data and parameters of the environment, as well as to analyze the relationships between the genotype and phenotype in wheat. The system is used to consolidate miscellaneous data on a plant for storing and processing various morphological traits and genotypes of wheat plants as well as data on various environmental factors. The system is available at www.wheatdb.org. Its potential in genetic experiments has been demonstrated in high-throughput phenotyping of wheat leaf pubescence.

  18. High-throughput nanoparticle catalysis: partial oxidation of propylene.

    Science.gov (United States)

    Duan, Shici; Kahn, Michael; Senkan, Selim

    2007-02-01

    Partial oxidation of propylene was investigated at 1 atm pressure over Rh/TiO(2) catalysts as a function of reaction temperature, metal loading and particle size using high-throughput methods. Catalysts were prepared by ablating thin sheets of pure rhodium metal using an excimer laser and by collecting the nanoparticles created on the external surfaces of TiO(2) pellets that were placed inside the ablation plume. Rh nanoparticles before the experiments were characterized by transmission electron microscopy (TEM) by collecting them on carbon film. Catalyst evaluations were performed using a high-throughput array channel microreactor system coupled to quadrupole mass spectrometry (MS) and gas chromatography (GC). The reaction conditions were 23% C(3)H(6), 20% O(2) and the balance helium in the feed, 20,000 h(-1) GHSV and a temperature range of 250-325 degrees C. The reaction products included primarily acetone (AT) and to a lesser degree propionaldehyde (PaL) as the C(3) products, together with deep oxidation products COx.

  19. Fluorescent foci quantitation for high-throughput analysis

    Science.gov (United States)

    Ledesma-Fernández, Elena; Thorpe, Peter H.

    2015-01-01

    A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells. PMID:26290880

  20. Receptor-ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method

    DEFF Research Database (Denmark)

    Buus, S; Stryhn, A; Kirkby, N;

    1995-01-01

    on the method development essential to obtain efficient separation in particular when used for analytical purposes. In this paper we describe a systematic approach to select the optimal parameters for spun column separation including a simple modification of the technique whereby the spun columns are eluted...... the gradient centrifugation helps to achieve equilibrium across the gel matrix during the elution. The new method has been used successfully for several different receptor-ligand interactions, and this paper describes a general approach on how to develop new applications of the technique.......Size exclusion chromatography may under the right circumstances be an easy and powerful way to measure in solution the interaction between a receptor an dits ligand. Spun column chromatography is a fast size exclusion technique of increasing popularity, however, little information exists...

  1. Development of high-throughput and high sensitivity capillary gel electrophoresis platform method for Western, Eastern, and Venezuelan equine encephalitis (WEVEE) virus like particles (VLPs) purity determination and characterization.

    Science.gov (United States)

    Gollapudi, Deepika; Wycuff, Diane L; Schwartz, Richard M; Cooper, Jonathan W; Cheng, K C

    2017-08-26

    In this paper, we describe development of a high-throughput, highly sensitive method based on Lab Chip CGE-SDS platform for purity determination and characterization of virus-like particle (VLP) vaccines. A capillary gel electrophoresis approach requiring about 41 s per sample for analysis and demonstrating sensitivity to protein initial concentrations as low as 20 μg/mL, this method has been used previously to evaluate monoclonal antibodies, but this application for lot release assay of VLPs using this platform is unique. The method was qualified and shown to be accurate for the quantitation of VLP purity. Assay repeatability was confirmed to be less than 2% relative standard deviation of the mean (% RSD) with interday precision less than 2% RSD. The assay can evaluate purified VLPs in a concentration range of 20-249 μg/mL for VEE and 20-250 μg/mL for EEE and WEE VLPs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts

    DEFF Research Database (Denmark)

    Lundqvist, Magnus; Edfors, Fredrik; Sivertsson, Åsa

    2015-01-01

    We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We...... at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations....

  3. A multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans

    OpenAIRE

    Jung, Sang-Kyu; Qu, Xiaolei; Aleman-Meza, Boanerges; Wang, Tianxiao; Riepe, Celeste; Liu, Zheng; Li, Qilin; Zhong, Weiwei

    2015-01-01

    The booming nanotech industry has raised public concerns about the environmental health and safety impact of engineered nanomaterials (ENMs). High-throughput assays are needed to obtain toxicity data for the rapidly increasing number of ENMs. Here we present a suite of high-throughput methods to study nanotoxicity in intact animals using Caenorhabditis elegans as a model. At the population level, our system measures food consumption of thousands of animals to evaluate population fitness. At t...

  4. Validation of a High-Throughput Multiplex Genetic Detection System for Helicobacter pylori Identification, Quantification, Virulence, and Resistance Analysis

    OpenAIRE

    Zhang, Yanmei; Zhao, Fuju; Kong, Mimi; Wang, Shiwen; Nan, Li; Hu, Binjie; Olszewski, Michal A.; Miao, Yingxin; Ji, Danian; Jiang, Wenrong; Fang, Yi; Zhang, Jinghao; Chen, Fei; Xiang, Ping; Wu, Yong

    2016-01-01

    Helicobacter pylori (H. pylori) infection is closely related to various gastroduodenal diseases. Virulence factors and bacterial load of H. pylori are associated with clinical outcomes, and drug-resistance severely impacts the clinical efficacy of eradication treatment. Existing detection methods are low-throughput, time-consuming and labor intensive. Therefore, a rapid and high-throughput method is needed for clinical diagnosis, treatment, and monitoring for H. pylori. High-throughput Multip...

  5. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  6. Surrogate-assisted feature extraction for high-throughput phenotyping.

    Science.gov (United States)

    Yu, Sheng; Chakrabortty, Abhishek; Liao, Katherine P; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2017-04-01

    Phenotyping algorithms are capable of accurately identifying patients with specific phenotypes from within electronic medical records systems. However, developing phenotyping algorithms in a scalable way remains a challenge due to the extensive human resources required. This paper introduces a high-throughput unsupervised feature selection method, which improves the robustness and scalability of electronic medical record phenotyping without compromising its accuracy. The proposed Surrogate-Assisted Feature Extraction (SAFE) method selects candidate features from a pool of comprehensive medical concepts found in publicly available knowledge sources. The target phenotype's International Classification of Diseases, Ninth Revision and natural language processing counts, acting as noisy surrogates to the gold-standard labels, are used to create silver-standard labels. Candidate features highly predictive of the silver-standard labels are selected as the final features. Algorithms were trained to identify patients with coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis using various numbers of labels to compare the performance of features selected by SAFE, a previously published automated feature extraction for phenotyping procedure, and domain experts. The out-of-sample area under the receiver operating characteristic curve and F -score from SAFE algorithms were remarkably higher than those from the other two, especially at small label sizes. SAFE advances high-throughput phenotyping methods by automatically selecting a succinct set of informative features for algorithm training, which in turn reduces overfitting and the needed number of gold-standard labels. SAFE also potentially identifies important features missed by automated feature extraction for phenotyping or experts.

  7. High-throughput DNA extraction of forensic adhesive tapes.

    Science.gov (United States)

    Forsberg, Christina; Jansson, Linda; Ansell, Ricky; Hedman, Johannes

    2016-09-01

    Tape-lifting has since its introduction in the early 2000's become a well-established sampling method in forensic DNA analysis. Sampling is quick and straightforward while the following DNA extraction is more challenging due to the "stickiness", rigidity and size of the tape. We have developed, validated and implemented a simple and efficient direct lysis DNA extraction protocol for adhesive tapes that requires limited manual labour. The method uses Chelex beads and is applied with SceneSafe FAST tape. This direct lysis protocol provided higher mean DNA yields than PrepFiler Express BTA on Automate Express, although the differences were not significant when using clothes worn in a controlled fashion as reference material (p=0.13 and p=0.34 for T-shirts and button-down shirts, respectively). Through in-house validation we show that the method is fit-for-purpose for application in casework, as it provides high DNA yields and amplifiability, as well as good reproducibility and DNA extract stability. After implementation in casework, the proportion of extracts with DNA concentrations above 0.01ng/μL increased from 71% to 76%. Apart from providing higher DNA yields compared with the previous method, the introduction of the developed direct lysis protocol also reduced the amount of manual labour by half and doubled the potential throughput for tapes at the laboratory. Generally, simplified manual protocols can serve as a cost-effective alternative to sophisticated automation solutions when the aim is to enable high-throughput DNA extraction of complex crime scene samples. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Adaptation to high throughput batch chromatography enhances multivariate screening.

    Science.gov (United States)

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A high-throughput screen for antibiotic drug discovery.

    Science.gov (United States)

    Scanlon, Thomas C; Dostal, Sarah M; Griswold, Karl E

    2014-02-01

    We describe an ultra-high-throughput screening platform enabling discovery and/or engineering of natural product antibiotics. The methodology involves creation of hydrogel-in-oil emulsions in which recombinant microorganisms are co-emulsified with bacterial pathogens; antibiotic activity is assayed by use of a fluorescent viability dye. We have successfully utilized both bulk emulsification and microfluidic technology for the generation of hydrogel microdroplets that are size-compatible with conventional flow cytometry. Hydrogel droplets are ∼25 pL in volume, and can be synthesized and sorted at rates exceeding 3,000 drops/s. Using this technique, we have achieved screening throughputs exceeding 5 million clones/day. Proof-of-concept experiments demonstrate efficient selection of antibiotic-secreting yeast from a vast excess of negative controls. In addition, we have successfully used this technique to screen a metagenomic library for secreted antibiotics that kill the human pathogen Staphylococcus aureus. Our results establish the practical utility of the screening platform, and we anticipate that the accessible nature of our methods will enable others seeking to identify and engineer the next generation of antibacterial biomolecules. © 2013 Wiley Periodicals, Inc.

  10. A robust robotic high-throughput antibody purification platform.

    Science.gov (United States)

    Schmidt, Peter M; Abdo, Michael; Butcher, Rebecca E; Yap, Min-Yin; Scotney, Pierre D; Ramunno, Melanie L; Martin-Roussety, Genevieve; Owczarek, Catherine; Hardy, Matthew P; Chen, Chao-Guang; Fabri, Louis J

    2016-07-15

    Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development. Miniaturization and automation of chromatography using micro columns (RoboColumns(®) from Atoll GmbH) coupled to an automated liquid handling instrument (ALH; Freedom EVO(®) from Tecan) has been a successful approach to establish high throughput process development platforms. Recent advances in transient gene expression (TGE) using the high-titre Expi293F™ system have enabled recombinant mAb titres of greater than 500mg/L. These relatively high protein titres reduce the volume required to generate several milligrams of individual antibodies for initial biochemical and biological downstream assays, making TGE in the Expi293F™ system ideally suited to high throughput chromatography on an ALH. The present publication describes a novel platform for purifying Expi293F™-expressed recombinant mAbs directly from cell-free culture supernatant on a Perkin Elmer JANUS-VariSpan ALH equipped with a plate shuttle device. The purification platform allows automated 2-step purification (Protein A-desalting/size exclusion chromatography) of several hundred mAbs per week. The new robotic method can purify mAbs with high recovery (>90%) at sub-milligram level with yields of up to 2mg from 4mL of cell-free culture supernatant.

  11. Interpretation of mass spectrometry data for high-throughput proteomics.

    Science.gov (United States)

    Chamrad, Daniel C; Koerting, Gerhard; Gobom, Johan; Thiele, Herbert; Klose, Joachim; Meyer, Helmut E; Blueggel, Martin

    2003-08-01

    Recent developments in proteomics have revealed a bottleneck in bioinformatics: high-quality interpretation of acquired MS data. The ability to generate thousands of MS spectra per day, and the demand for this, makes manual methods inadequate for analysis and underlines the need to transfer the advanced capabilities of an expert human user into sophisticated MS interpretation algorithms. The identification rate in current high-throughput proteomics studies is not only a matter of instrumentation. We present software for high-throughput PMF identification, which enables robust and confident protein identification at higher rates. This has been achieved by automated calibration, peak rejection, and use of a meta search approach which employs various PMF search engines. The automatic calibration consists of a dynamic, spectral information-dependent algorithm, which combines various known calibration methods and iteratively establishes an optimised calibration. The peak rejection algorithm filters signals that are unrelated to the analysed protein by use of automatically generated and dataset-dependent exclusion lists. In the "meta search" several known PMF search engines are triggered and their results are merged by use of a meta score. The significance of the meta score was assessed by simulation of PMF identification with 10,000 artificial spectra resembling a data situation close to the measured dataset. By means of this simulation the meta score is linked to expectation values as a statistical measure. The presented software is part of the proteome database ProteinScape which links the information derived from MS data to other relevant proteomics data. We demonstrate the performance of the presented system with MS data from 1891 PMF spectra. As a result of automatic calibration and peak rejection the identification rate increased from 6% to 44%.

  12. High-throughput DNA droplet assays using picoliter reactor volumes.

    Science.gov (United States)

    Srisa-Art, Monpichar; deMello, Andrew J; Edel, Joshua B

    2007-09-01

    The online characterization and detection of individual droplets at high speeds, low analyte concentrations, and perfect detection efficiencies is a significant challenge underpinning the application of microfluidic droplet reactors to high-throughput chemistry and biology. Herein, we describe the integration of confocal fluorescence spectroscopy as a high-efficiency detection method for droplet-based microfluidics. Issues such as surface contamination, rapid mixing, and rapid detection, as well as low detections limits have been addressed with the approach described when compared to conventional laminar flow-based fluidics. Using such a system, droplet size, droplet shape, droplet formation frequencies, and droplet compositions can be measured accurately and precisely at kilohertz frequencies. Taking advantage of this approach, we demonstrate a high-throughput biological assay based on fluorescence resonance energy transfer (FRET). By attaching a FRET donor (Alexa Fluor 488) to streptavidin and labeling a FRET acceptor (Alexa Fluor 647) on one DNA strand and biotin on the complementary strand, donor and acceptor molecules are brought in proximity due to streptavidin-biotin binding, resulting in FRET. Fluorescence bursts of the donor and acceptor from each droplet can be monitored simultaneously using separate avalanche photodiode detectors operating in single photon counting mode. Binding assays were investigated and compared between fixed streptavidin and DNA concentrations. Binding curves fit perfectly to Hill-Waud models, and the binding ratio between streptavidin and biotin was evaluated and found to be in agreement with the biotin binding sites on streptavidin. FRET efficiency for this FRET pair was also investigated from the binding results. Efficiency results show that this detection system can precisely measure FRET even at low FRET efficiencies.

  13. Microfluidic cell chips for high-throughput drug screening.

    Science.gov (United States)

    Chi, Chun-Wei; Ahmed, Ah Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-05-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell-drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers.

  14. High-throughput ab-initio dilute solute diffusion database

    Science.gov (United States)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  15. UAV-based high-throughput phenotyping in legume crops

    Science.gov (United States)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  16. High-Throughput Screening Using Fourier-Transform Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Erdem Sasmaz

    2015-06-01

    Full Text Available Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

  17. High-throughput sequencing in veterinary infection biology and diagnostics.

    Science.gov (United States)

    Belák, S; Karlsson, O E; Leijon, M; Granberg, F

    2013-12-01

    Sequencing methods have improved rapidly since the first versions of the Sanger techniques, facilitating the development of very powerful tools for detecting and identifying various pathogens, such as viruses, bacteria and other microbes. The ongoing development of high-throughput sequencing (HTS; also known as next-generation sequencing) technologies has resulted in a dramatic reduction in DNA sequencing costs, making the technology more accessible to the average laboratory. In this White Paper of the World Organisation for Animal Health (OIE) Collaborating Centre for the Biotechnology-based Diagnosis of Infectious Diseases in Veterinary Medicine (Uppsala, Sweden), several approaches and examples of HTS are summarised, and their diagnostic applicability is briefly discussed. Selected future aspects of HTS are outlined, including the need for bioinformatic resources, with a focus on improving the diagnosis and control of infectious diseases in veterinary medicine.

  18. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    Science.gov (United States)

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  19. A system for performing high throughput assays of synaptic function.

    Directory of Open Access Journals (Sweden)

    Chris M Hempel

    Full Text Available Unbiased, high-throughput screening has proven invaluable for dissecting complex biological processes. Application of this general approach to synaptic function would have a major impact on neuroscience research and drug discovery. However, existing techniques for studying synaptic physiology are labor intensive and low-throughput. Here, we describe a new high-throughput technology for performing assays of synaptic function in primary neurons cultured in microtiter plates. We show that this system can perform 96 synaptic vesicle cycling assays in parallel with high sensitivity, precision, uniformity, and reproducibility and can detect modulators of presynaptic function. By screening libraries of pharmacologically defined compounds on rat forebrain cultures, we have used this system to identify novel effects of compounds on specific aspects of presynaptic function. As a system for unbiased compound as well as genomic screening, this technology has significant applications for basic neuroscience research and for the discovery of novel, mechanism-based treatments for central nervous system disorders.

  20. Development and clinical performance of high throughput loop-mediated isothermal amplification for detection of malaria

    OpenAIRE

    Perera, Rushini S.; Ding, Xavier C; Tully, Frank; Oliver, James; Bright, Nigel; Bell, David; Chiodini, Peter L; Gonzalez, Iveth J.; Spencer D Polley

    2017-01-01

    Background Accurate and efficient detection of sub-microscopic malaria infections is crucial for enabling rapid treatment and interruption of transmission. Commercially available malaria LAMP kits have excellent diagnostic performance, though throughput is limited by the need to prepare samples individually. Here, we evaluate the clinical performance of a newly developed high throughput (HTP) sample processing system for use in conjunction with the Eiken malaria LAMP kit. Methods The HTP syst...

  1. Development and clinical performance of high throughput loop-mediated isothermal amplification for detection of malaria.

    OpenAIRE

    Perera, RS; Ding, XC; Tully, F.; Oliver, J.; Bright, N; Bell, D.; Chiodini, PL; Gonzalez, IJ; Polley, SD

    2017-01-01

    Background Accurate and efficient detection of sub-microscopic malaria infections is crucial for enabling rapid treatment and interruption of transmission. Commercially available malaria LAMP kits have excellent diagnostic performance, though throughput is limited by the need to prepare samples individually. Here, we evaluate the clinical performance of a newly developed high throughput (HTP) sample processing system for use in conjunction with the Eiken malaria LAMP kit. Methods The HTP syst...

  2. Droplet microfluidics for high-throughput biological assays.

    Science.gov (United States)

    Guo, Mira T; Rotem, Assaf; Heyman, John A; Weitz, David A

    2012-06-21

    Droplet microfluidics offers significant advantages for performing high-throughput screens and sensitive assays. Droplets allow sample volumes to be significantly reduced, leading to concomitant reductions in cost. Manipulation and measurement at kilohertz speeds enable up to 10(8) samples to be screened in one day. Compartmentalization in droplets increases assay sensitivity by increasing the effective concentration of rare species and decreasing the time required to reach detection thresholds. Droplet microfluidics combines these powerful features to enable currently inaccessible high-throughput screening applications, including single-cell and single-molecule assays.

  3. High-throughput Binary Vectors for Plant Gene Function Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yong Lei; Ping Zhao; Min-Jie Cao; Rong Cui; Xi Chen; Li-Zhong Xiong; Qi-Fa Zhang; David J. Oliver; Cheng-Bin Xiang

    2007-01-01

    A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene silencing,and green fluorescent protein fusions for protein localization. These vectors provide for high-throughput and efficient cloning utilizing sites for λ phage integrase/excisionase. In addition, unique restriction sites are incorporated in a multiple cloning site and enable promoter replacement. The entire vector series are available with complete sequence information and detailed annotations and are freely distributed to the scientific community for non-commercial uses.

  4. Screening and synthesis: high throughput technologies applied to parasitology.

    Science.gov (United States)

    Morgan, R E; Westwood, N J

    2004-01-01

    High throughput technologies continue to develop in response to the challenges set by the genome projects. This article discusses how the techniques of both high throughput screening (HTS) and synthesis can influence research in parasitology. Examples of the use of targeted and phenotype-based HTS using unbiased compound collections are provided. The important issue of identifying the protein target(s) of bioactive compounds is discussed from the synthetic chemist's perspective. This article concludes by reviewing recent examples of successful target identification studies in parasitology.

  5. High throughput recombinant protein production of fungal secreted proteins

    DEFF Research Database (Denmark)

    Vala, Andrea Lages Lino; Roth, Doris; Grell, Morten Nedergaard

    2011-01-01

    a high-throughput protein production system with a special focus on fungal secreted proteins. We use a ligation independent cloning to clone target genes into expression vectors for E. coli and P. pastoris and a small scale test expression to identify constructs producing soluble protein. Expressed...... interaction), between fungi of the order Entomophthorales and aphids (pathogenic interaction), and in the mycoparasitic interaction between the oomycetes Pythium oligandrum and P. ultimum. In general, the high-throughput protein production system can lead to a better understanding of fungal/host interactions...

  6. Efficient Management of High-Throughput Screening Libraries with SAVANAH

    DEFF Research Database (Denmark)

    List, Markus; Elnegaard, Marlene Pedersen; Schmidt, Steffen;

    2016-01-01

    High-throughput screening (HTS) has become an indispensable tool for the pharmaceutical industry and for biomedical research. A high degree of automation allows for experiments in the range of a few hundred up to several hundred thousand to be performed in close succession. The basis for such scr...

  7. Efficient Management of High-Throughput Screening Libraries with SAVANAH

    DEFF Research Database (Denmark)

    List, Markus; Elnegaard, Marlene Pedersen; Schmidt, Steffen

    2017-01-01

    High-throughput screening (HTS) has become an indispensable tool for the pharmaceutical industry and for biomedical research. A high degree of automation allows for experiments in the range of a few hundred up to several hundred thousand to be performed in close succession. The basis...

  8. A high-throughput label-free nanoparticle analyser

    Science.gov (United States)

    Fraikin, Jean-Luc; Teesalu, Tambet; McKenney, Christopher M.; Ruoslahti, Erkki; Cleland, Andrew N.

    2011-05-01

    Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection, concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient throughput to analyse 500,000 particles per second. We also report the rapid size and titre analysis of unlabelled bacteriophage T7 in both salt solution and mouse blood plasma, using just ~1 × 10-6 l of analyte. Unexpectedly, in the native blood plasma we discover a large background of naturally occurring nanoparticles with a power-law size distribution. The high-throughput detection capability, scalable fabrication and simple electronics of this instrument make it well suited for diverse applications.

  9. High throughput phenotyping for aphid resistance in large plant collections

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2012-08-01

    Full Text Available Abstract Background Phloem-feeding insects are among the most devastating pests worldwide. They not only cause damage by feeding from the phloem, thereby depleting the plant from photo-assimilates, but also by vectoring viruses. Until now, the main way to prevent such problems is the frequent use of insecticides. Applying resistant varieties would be a more environmental friendly and sustainable solution. For this, resistant sources need to be identified first. Up to now there were no methods suitable for high throughput phenotyping of plant germplasm to identify sources of resistance towards phloem-feeding insects. Results In this paper we present a high throughput screening system to identify plants with an increased resistance against aphids. Its versatility is demonstrated using an Arabidopsis thaliana activation tag mutant line collection. This system consists of the green peach aphid Myzus persicae (Sulzer and the circulative virus Turnip yellows virus (TuYV. In an initial screening, with one plant representing one mutant line, 13 virus-free mutant lines were identified by ELISA. Using seeds produced from these lines, the putative candidates were re-evaluated and characterized, resulting in nine lines with increased resistance towards the aphid. Conclusions This M. persicae-TuYV screening system is an efficient, reliable and quick procedure to identify among thousands of mutated lines those resistant to aphids. In our study, nine mutant lines with increased resistance against the aphid were selected among 5160 mutant lines in just 5 months by one person. The system can be extended to other phloem-feeding insects and circulative viruses to identify insect resistant sources from several collections, including for example genebanks and artificially prepared mutant collections.

  10. High throughput online solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry method for polyfluoroalkyl phosphate esters, perfluoroalkyl phosphonates, and other perfluoroalkyl substances in human serum, plasma, and whole blood.

    Science.gov (United States)

    Poothong, Somrutai; Lundanes, Elsa; Thomsen, Cathrine; Haug, Line Småstuen

    2017-03-08

    A rapid, sensitive and reliable method was developed for the determination of a broad range of poly- and perfluoroalkyl substances (PFASs) in various blood matrices (serum, plasma, and whole blood), and uses only 50 μL of sample material. The method consists of a rapid protein precipitation by methanol followed by high throughput online solid phase extraction (SPE), ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS), and negative electrospray ionization detection. The method was developed for simultaneous determination of twenty-five PFASs, including polyfluoroalkyl phosphate esters (PAPs; 6:2, 8:2, 6:2/6:2, and 8:2/8:2), perfluoroalkyl phosphonates (PFPAs; C6, C8, and C10), perfluoroalkyl sulfonates (PFSAs; C4, C6, C7, C8, and C10), perfluoroalkyl carboxylates (PFCAs; C5C14), and perfluoroalkyl sulfonamides (FOSAs; C8, N-methyl, and N-ethyl). High linearity of matrix-matched calibration standards (correlation coefficients, R = 0.99-0.999) were obtained in the range of 0.006-45 ng mL(-1) blood. Excellent sensitivity was achieved with method detection limits (MDLs) between 0.0018 and 0.09 ng mL(-1), depending on the compound and matrix. The method was validated for serum, plasma, and whole blood (n = 5 + 5) at six levels in the range 0.0180-30 ng mL(-1). The accuracy (n = 5) was on average 102± 12%. The intermediate precision (n = 10) ranged from 2 to 40% with an average between-batch of analyses difference of 10± 10%. Two human serum samples from a former interlaboratory comparison were analyzed and the differences between the applied method and the consensus values were below ≤22% (n = 5). The method was also successfully applied to samples of human plasma and whole blood with coefficients of variation in the range 0.8-15.2% (n = 5).

  11. EDITORIAL: Combinatorial and High-Throughput Materials Research

    Science.gov (United States)

    Potyrailo, Radislav A.; Takeuchi, Ichiro

    2005-01-01

    still remain in the rapid characterization of materials in a number of key technological areas. Scientists are taking on the challenges, and we can expect many more innovations in the future. We thank the authors and reviewers for their contributions. Special thanks go to Professor Peter Hauptmann for encouragement and support of this project, and to Natasha Leeper and James Dimond, for their assistance in putting this special issue together. References [1] Borman S 2002 Millennial analysis Chem Eng. News 80 (18) 49-52 [2] Chang H et al 1998 Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin film libraries for microwave applications Appl. Phys. Lett. 72 2185-7 [3] Kyranos J N, Lee H, Goetzinger W K and Li L Y T 2004 One-minute full-gradient HPLC/UV/ELSD/MS analysis to support high-throughput parallel synthesis J. Comb. Chem. 6 796-804 [4] Danielson E et al 1998 A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods Science 279 837-9 [5] Tan D S, Foley M A, Shair M D and Schreiber S L 1998 Stereoselective synthesis of over two million compounds having structural features both reminiscent of natural products and compatible with miniaturized cell-based assays J. Am. Chem. Soc. 120 8565-6

  12. High-throughput bioinformatics with the Cyrille2 pipeline system.

    NARCIS (Netherlands)

    Fiers, M.W.E.J.; Burgt, van der A.; Datema, E.; Groot, de J.C.W.; Ham, van R.C.H.J.

    2008-01-01

    Background - Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses a

  13. Algorithms for mapping high-throughput DNA sequences

    DEFF Research Database (Denmark)

    Frellsen, Jes; Menzel, Peter; Krogh, Anders

    2014-01-01

    Abstract High-throughput sequencing (HTS) technologies revolutionized the field of molecular biology by enabling large scale whole genome sequencing as well as a broad range of experiments for studying the cell's inner workings directly on DNA or RNA level. Given the dramatically increased rate...

  14. High-Throughput, Large-Scale SNP Genotyping: Bioinformatics Considerations

    OpenAIRE

    Margetic, Nino

    2004-01-01

    In order to provide a high-throughput, large-scale genotyping facility at the national level we have developed a set of inter-dependent information systems. A combination of commercial, publicly-available and in-house developed tools links a series of data repositories based both on flat files and relational databases providing an almost complete semi-automated pipeline.

  15. High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays

    DEFF Research Database (Denmark)

    Tiendrebeogo, Regis W; Adu, Bright; Singh, Susheel K

    2014-01-01

    BACKGROUND: Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent...... distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS: Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45...

  16. Emerging metrology for high-throughput nanomaterial genotoxicology.

    Science.gov (United States)

    Nelson, Bryant C; Wright, Christa W; Ibuki, Yuko; Moreno-Villanueva, Maria; Karlsson, Hanna L; Hendriks, Giel; Sims, Christopher M; Singh, Neenu; Doak, Shareen H

    2017-01-01

    The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided. Published by Oxford University Press on

  17. High Throughput Profiling of Molecular Shapes in Crystals

    Science.gov (United States)

    Spackman, Peter R.; Thomas, Sajesh P.; Jayatilaka, Dylan

    2016-02-01

    Molecular shape is important in both crystallisation and supramolecular assembly, yet its role is not completely understood. We present a computationally efficient scheme to describe and classify the molecular shapes in crystals. The method involves rotation invariant description of Hirshfeld surfaces in terms of of spherical harmonic functions. Hirshfeld surfaces represent the boundaries of a molecule in the crystalline environment, and are widely used to visualise and interpret crystalline interactions. The spherical harmonic description of molecular shapes are compared and classified by means of principal component analysis and cluster analysis. When applied to a series of metals, the method results in a clear classification based on their lattice type. When applied to around 300 crystal structures comprising of series of substituted benzenes, naphthalenes and phenylbenzamide it shows the capacity to classify structures based on chemical scaffolds, chemical isosterism, and conformational similarity. The computational efficiency of the method is demonstrated with an application to over 14 thousand crystal structures. High throughput screening of molecular shapes and interaction surfaces in the Cambridge Structural Database (CSD) using this method has direct applications in drug discovery, supramolecular chemistry and materials design.

  18. A Simple Analytical Method for High-Throughput Screening of Major Sugars from Soybean by Normal-Phase HPLC with Evaporative Light Scattering Detection

    Directory of Open Access Journals (Sweden)

    Babu Valliyodan

    2015-01-01

    Full Text Available This paper presents a simple analytical method for determining sugars in soybean (Glycine max (L. Merr. tissues. Sample preparation was modified from several early published methods. High-performance liquid chromatography (HPLC equipped with an evaporative light scattering detector (ELSD was used to separate, identify, and quantify seven sugars, including glucose, galactose, fructose, sucrose, melibiose, raffinose, and stachyose. Two mobile phases were programed into a gradient elution. Mobile phase A is pure water and mobile phase B is a mixture of acetonitrile and acetone 75 : 25 (v/v. Total chromatographic retention time is less than 20 minutes. This method has been validated for detection limit, calibration range, and intraday and interday repeatability. This method has been used analyzing more than 5000 soybean samples in the experiments studying natural genetic variation of sugar contents and components in soybean seeds and other tissues.

  19. Establishing a high throughput method for medium optimization – a case study using Streptomyces lividans as host for production of heterologous protein

    DEFF Research Database (Denmark)

    Rattleff, Stig; Thykaer, Jette; Lantz, Anna Eliasson

    2012-01-01

    composition can have great effect on the cellular performance, in particular on heterologous protein production. It is a parameter that can be adjusted regardless of GMO concerns or knowledge of genomic sequence. Optimizing medium composition can be labor intensive opening up for introducing automation...... the most promising candidates were tested in milliliter scale, followed by final verification in lab-scale fermentation. The method has the great advantage that the initial steps have a high degree of automation, which allows to retain a relatively high number of candidates. A further benefit...

  20. A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonia; Pearce, Richard

    2005-01-01

    . However, to be a practical tool in the surveillance of drug resistance, simpler methods for high-throughput haplotyping are warranted. Here we describe a quick and simple technique that detects dhfr, dhps, and Pfcrt SNPs using polymerase chain reaction (PCR)- and enzyme-linked immunosorbent assay (ELISA......)-based technology. Biotinylated PCR products of dhfr, dhps, or Pfcrt were captured on streptavidin-coated microtiter plates and sequence-specific oligonucleotide probes (SSOPs) were hybridized with the PCR products. A stringent washing procedure enabled detection of remaining bound SSOPs and distinguished between...... the SNPs of dhfr, dhps, and Pfcrt with high specificity. The SSOP-ELISA compared well with a standard PCR-restriction fragment length polymorphism procedure, and gave identical positive results in more than 90% of the P. falciparum slide-positive samples tested. The SSOP-ELISA of all dhfr, dhps, or Pfcrt...

  1. High-throughput proteomics : optical approaches.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.

    2008-09-01

    Realistic cell models could greatly accelerate our ability to engineer biochemical pathways and the production of valuable organic products, which would be of great use in the development of biofuels, pharmaceuticals, and the crops for the next green revolution. However, this level of engineering will require a great deal more knowledge about the mechanisms of life than is currently available. In particular, we need to understand the interactome (which proteins interact) as it is situated in the three dimensional geometry of the cell (i.e., a situated interactome), and the regulation/dynamics of these interactions. Methods for optical proteomics have become available that allow the monitoring and even disruption/control of interacting proteins in living cells. Here, a range of these methods is reviewed with respect to their role in elucidating the interactome and the relevant spatial localizations. Development of these technologies and their integration into the core competencies of research organizations can position whole institutions and teams of researchers to lead in both the fundamental science and the engineering applications of cellular biology. That leadership could be particularly important with respect to problems of national urgency centered around security, biofuels, and healthcare.

  2. High-Throughput Screening Using Mass Spectrometry within Drug Discovery.

    Science.gov (United States)

    Rohman, Mattias; Wingfield, Jonathan

    2016-01-01

    In order to detect a biochemical analyte with a mass spectrometer (MS) it is necessary to ionize the analyte of interest. The analyte can be ionized by a number of different mechanisms, however, one common method is electrospray ionization (ESI). Droplets of analyte are sprayed through a highly charged field, the droplets pick up charge, and this is transferred to the analyte. High levels of salt in the assay buffer will potentially steal charge from the analyte and suppress the MS signal. In order to avoid this suppression of signal, salt is often removed from the sample prior to injection into the MS. Traditional ESI MS relies on liquid chromatography (LC) to remove the salt and reduce matrix effects, however, this is a lengthy process. Here we describe the use of RapidFire™ coupled to a triple-quadrupole MS for high-throughput screening. This system uses solid-phase extraction to de-salt samples prior to injection, reducing processing time such that a sample is injected into the MS ~every 10 s.

  3. Filtering high-throughput protein-protein interaction data using a combination of genomic features

    Directory of Open Access Journals (Sweden)

    Patil Ashwini

    2005-04-01

    Full Text Available Abstract Background Protein-protein interaction data used in the creation or prediction of molecular networks is usually obtained from large scale or high-throughput experiments. This experimental data is liable to contain a large number of spurious interactions. Hence, there is a need to validate the interactions and filter out the incorrect data before using them in prediction studies. Results In this study, we use a combination of 3 genomic features – structurally known interacting Pfam domains, Gene Ontology annotations and sequence homology – as a means to assign reliability to the protein-protein interactions in Saccharomyces cerevisiae determined by high-throughput experiments. Using Bayesian network approaches, we show that protein-protein interactions from high-throughput data supported by one or more genomic features have a higher likelihood ratio and hence are more likely to be real interactions. Our method has a high sensitivity (90% and good specificity (63%. We show that 56% of the interactions from high-throughput experiments in Saccharomyces cerevisiae have high reliability. We use the method to estimate the number of true interactions in the high-throughput protein-protein interaction data sets in Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens to be 27%, 18% and 68% respectively. Our results are available for searching and downloading at http://helix.protein.osaka-u.ac.jp/htp/. Conclusion A combination of genomic features that include sequence, structure and annotation information is a good predictor of true interactions in large and noisy high-throughput data sets. The method has a very high sensitivity and good specificity and can be used to assign a likelihood ratio, corresponding to the reliability, to each interaction.

  4. High-throughput synthesis and characterization of nanocrystalline porphyrinic zirconium metal-organic frameworks.

    Science.gov (United States)

    Kelty, M L; Morris, W; Gallagher, A T; Anderson, J S; Brown, K A; Mirkin, C A; Harris, T D

    2016-06-14

    We describe and employ a high-throughput screening method to accelerate the synthesis and identification of pure-phase, nanocrystalline metal-organic frameworks (MOFs). We demonstrate the efficacy of this method through its application to a series of porphyrinic zirconium MOFs, resulting in the isolation of MOF-525, MOF-545, and PCN-223 on the nanoscale.

  5. Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: evaluation of electronic structure theory methods.

    Science.gov (United States)

    Korth, Martin

    2014-05-07

    The performance of semi-empirical quantum mechanical (SQM), density functional theory (DFT) and wave function theory (WFT) methods is evaluated for the purpose of screening a large number of molecular structures with respect to their electrochemical stability to identify new battery electrolyte solvents. Starting from 100,000 database entries and based on more than 46,000 DFT calculations, 83 candidate molecules are identified and then used for benchmarking lower-level computational models (SQM, DFT) with respect to higher-level WFT reference data. A combination of SQM and WFT methods is suggested as a screening strategy at the electronic structure theory level. Using a subset of over 11,000 typical organic molecules and based on over 22,000 high-level WFT calculations, several simple models are tested for the prediction of ionization potentials (IPs) and electron affinities (EAs). Reference data are made available for the development of more sophisticated QSPR models.

  6. GiNA, an efficient and high-throughput software for horticultural phenotyping

    Science.gov (United States)

    Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed,...

  7. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  8. High Throughput Multispectral Image Processing with Applications in Food Science.

    Science.gov (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  9. High Throughput Multispectral Image Processing with Applications in Food Science.

    Directory of Open Access Journals (Sweden)

    Panagiotis Tsakanikas

    Full Text Available Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  10. High Throughput Multispectral Image Processing with Applications in Food Science

    Science.gov (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing’s outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples. PMID:26466349

  11. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hossein Pourmodheji

    2016-06-01

    Full Text Available Nuclear Magnetic Resonance (NMR is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS. In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.

  12. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-06-09

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.

  13. Multiple column high-throughput e-beam inspection (EBI)

    Science.gov (United States)

    Lam, David K.; Monahan, Kevin M.; Liu, Enden D.; Tran, Cong; Prescop, Ted

    2012-03-01

    Single-column e-beam systems are used in production for the detection of electrical defects, but are too slow to be used for the detection of small physical defects, and can't meet future inspection requirements. This paper presents a multiplecolumn e-beam technology for high throughput wafer inspection. Multibeam has developed all-electrostatic columns for high-resolution imaging. The elimination of magnetic coils enables the columns to be small; e-beam deflection is faster in the absence of magnetic hysteresis. Multiple miniaturecolumns are assembled in an array. An array of 100 columns covers the entire surface of a 300mm wafer, affording simultaneous cross-wafer sampling. Column performance simulations and system architecture are presented. Also provided are examples of high throughput, more efficient, multiple-column wafer inspection.

  14. A high-throughput method for the quantification of proanthocyanidins in forage crops and its application in assessing variation in condensed tannin content in breeding programmes for Lotus corniculatus and Lotus uliginosus.

    Science.gov (United States)

    Marshall, Athole; Bryant, David; Latypova, Galina; Hauck, Barbara; Olyott, Phil; Morris, Phillip; Robbins, Mark

    2008-02-13

    Lotus corniculatus and Lotus uliginosus are agronomically important forage crops used in ruminant livestock production. The condensed tannin (CT) content, dry matter (DM) production, and persistence of these species are key characteristics of interest for future exploitation of these crops. Here we present field data on 19 varieties of L. corniculatus, 2 varieties of L. uliginosus and, additionally, a glasshouse experiment using 6 varieties of L. corniculatus and 2 varieties of L. uliginosus. Current methods for the quantification of condensed tannins in crop species are slow and labor intensive and are generally based upon polymer hydrolysis following the extraction of chlorophyll in a liquid phase. Presented here is a high-throughput protocol for condensed tannin quantification suitable for microtiter plates based upon the precipitation of condensed tannin polymers in complex with bovine serum albumin (BSA) with subsequent hydrolysis of precipates using butan 1-ol/ hydrochloric acid.

  15. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  16. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Directory of Open Access Journals (Sweden)

    Othman Soufan

    Full Text Available High-throughput screening (HTS experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  17. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Science.gov (United States)

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  18. Development of a high-throughput LC/APCI-MS method for the determination of thirteen phytoestrogens including gut microbial metabolites in human urine and serum.

    Science.gov (United States)

    Wyns, Ciska; Bolca, Selin; De Keukeleire, Denis; Heyerick, Arne

    2010-04-15

    The investigation into the potential usefulness of phytoestrogens in the treatment of menopausal symptoms requires large-scale clinical trials that involve rapid, validated assays for the characterization and quantification of the phytoestrogenic precursors and their metabolites in biological matrices, as large interindividual differences in metabolism and bioavailability have been reported. Consequently, a new sensitive high-performance liquid chromatography-mass spectrometry method (HPLC-MS) for the quantitative determination of thirteen phytoestrogens including their most important gut microbial metabolites (genistein, daidzein, equol, dihydrodaidzein, O-desmethylangolensin, coumestrol, secoisolariciresinol, matairesinol, enterodiol, enterolactone, isoxanthohumol, xanthohumol and 8-prenylnaringenin) in human urine and serum within one single analytical run was developed. The method uses a simple sample preparation procedure consisting of enzymatic deconjugation followed by liquid-liquid extraction (LLE) or solid-phase extraction (SPE) for urine or serum, respectively. The phytoestrogens and their metabolites are detected with a single quadrupole mass spectrometer using atmospheric pressure chemical ionization (APCI), operating both in the positive and the negative mode. This bioanalytical method has been fully validated and proved to allow an accurate and precise quantification of the targeted phytoestrogens and their metabolites covering the lower parts-per-billion range for the measurement of relevant urine and serum levels following ingestion of phytoestrogen-rich dietary supplements.

  19. Recent Progress Using High-throughput Sequencing Technologies in Plant Molecular Breeding

    Institute of Scientific and Technical Information of China (English)

    Qiang Gao; Guidong Yue; Wenqi Li; Junyi Wang; Jiaohui Xu; Ye Yin

    2012-01-01

    High-throughput sequencing is a revolutionary technological innovation in DNA sequencing.This technology has an ultra-low cost per base of sequencing and an overwhelmingly high data output.High-throughput sequencing has brought novel research methods and solutions to the research fields of genomics and post-genomics.Furthermore,this technology is leading to a new molecular breeding revolution that has landmark significance for scientific research and enables us to launch multi-level,multifaceted,and multi-extent studies in the fields of crop genetics,genomics,and crop breeding.In this paper,we review progress in the application of high-throughput sequencing technologies to plant molecular breeding studies.

  20. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  1. High-throughput microfluidic line scan imaging for cytological characterization

    Science.gov (United States)

    Hutcheson, Joshua A.; Powless, Amy J.; Majid, Aneeka A.; Claycomb, Adair; Fritsch, Ingrid; Balachandran, Kartik; Muldoon, Timothy J.

    2015-03-01

    Imaging cells in a microfluidic chamber with an area scan camera is difficult due to motion blur and data loss during frame readout causing discontinuity of data acquisition as cells move at relatively high speeds through the chamber. We have developed a method to continuously acquire high-resolution images of cells in motion through a microfluidics chamber using a high-speed line scan camera. The sensor acquires images in a line-by-line fashion in order to continuously image moving objects without motion blur. The optical setup comprises an epi-illuminated microscope with a 40X oil immersion, 1.4 NA objective and a 150 mm tube lens focused on a microfluidic channel. Samples containing suspended cells fluorescently stained with 0.01% (w/v) proflavine in saline are introduced into the microfluidics chamber via a syringe pump; illumination is provided by a blue LED (455 nm). Images were taken of samples at the focal plane using an ELiiXA+ 8k/4k monochrome line-scan camera at a line rate of up to 40 kHz. The system's line rate and fluid velocity are tightly controlled to reduce image distortion and are validated using fluorescent microspheres. Image acquisition was controlled via MATLAB's Image Acquisition toolbox. Data sets comprise discrete images of every detectable cell which may be subsequently mined for morphological statistics and definable features by a custom texture analysis algorithm. This high-throughput screening method, comparable to cell counting by flow cytometry, provided efficient examination including counting, classification, and differentiation of saliva, blood, and cultured human cancer cells.

  2. High-throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding Converge

    Institute of Scientific and Technical Information of China (English)

    Llorenc Cabrera-Bosquet; José Crossa; Jarislav von Zitzewitz; Maria Dolors Serret; José Luis Araus

    2012-01-01

    Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding community from both the public and private sectors world-wide.Both approaches promise to revolutionize the prediction of complex traits,including growth,yield and adaptation to stress.Whereas high-throughput phenotyping may help to improve understanding of crop physiology,most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and comparable to genomic selection.Despite the fact that the two methodological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome),they both consider the targeted traits (e.g.grain yield,growth,phenology,plant adaptation to stress) as a black box instead of dissecting them as a set of secondary traits (i.e.physiological) putatively related to the target trait.Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology.This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield.

  3. Cobalt Biogeochemistry in the South Atlantic: A Full-Depth Zonal Ocean Section of Total Dissolved Cobalt, and Development of a High Throughput Cobalt ICP-MS Method

    Science.gov (United States)

    Noble, A. E.; Saito, M. A.; Goepfert, T. J.

    2008-12-01

    This study presents the first high-resolution full-depth zonal section of total dissolved cobalt from a recent cruise transecting the South Atlantic Ocean along approximately 11S. This section demonstrates that current electrochemical analytical techniques are capable of producing the high precision and high resolution datasets for total dissolved cobalt expected to be generated as a part of the international GEOTRACES Program. The micronutritive role of cobalt may affect community structure in different regions of the oceans, a compelling reason to include cobalt in the trace element analyses planned for the GEOTRACES Program. This cobalt section reveals an advective source of cobalt from the African coast near Namibia, which we propose to be due to the Benguela Current interacting with reducing shelf sediments. These high concentrations of cobalt were also observed within the oxygen minimum zone that extends across much of the South Atlantic basin in this section, and are likely indicative of redox cycling of cobalt in the water column. Nutrient-like vertical structure of cobalt was observed in the surface waters across the majority of the basin due to biological utilization, and the expected hybrid-type trend is observed at depth, with scavenging of cobalt below the nutricline. Deepwater concentrations of cobalt were around 50pM across the basin below 3000m. Analysis of the shelf-life of refrigerated filtered samples stored without acidification for electrochemical cobalt analysis demonstrated that those samples which were collected specifically within oxygen minimum zones may underestimate cobalt if not analyzed within a few weeks of collection. These results motivate our on-going development of a method to measure cobalt in acidified samples via inductively coupled plasma mass spectrometry (ICP-MS). The benefit of this technique would be twofold: acidification would extend the shelf-life of the samples significantly, and samples would be preserved identically

  4. Human transcriptome array for high-throughput clinical studies.

    Science.gov (United States)

    Xu, Weihong; Seok, Junhee; Mindrinos, Michael N; Schweitzer, Anthony C; Jiang, Hui; Wilhelmy, Julie; Clark, Tyson A; Kapur, Karen; Xing, Yi; Faham, Malek; Storey, John D; Moldawer, Lyle L; Maier, Ronald V; Tompkins, Ronald G; Wong, Wing Hung; Davis, Ronald W; Xiao, Wenzhong

    2011-03-01

    A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.

  5. Computational analysis of high-throughput flow cytometry data

    Science.gov (United States)

    Robinson, J Paul; Rajwa, Bartek; Patsekin, Valery; Davisson, Vincent Jo

    2015-01-01

    Introduction Flow cytometry has been around for over 40 years, but only recently has the opportunity arisen to move into the high-throughput domain. The technology is now available and is highly competitive with imaging tools under the right conditions. Flow cytometry has, however, been a technology that has focused on its unique ability to study single cells and appropriate analytical tools are readily available to handle this traditional role of the technology. Areas covered Expansion of flow cytometry to a high-throughput (HT) and high-content technology requires both advances in hardware and analytical tools. The historical perspective of flow cytometry operation as well as how the field has changed and what the key changes have been discussed. The authors provide a background and compelling arguments for moving toward HT flow, where there are many innovative opportunities. With alternative approaches now available for flow cytometry, there will be a considerable number of new applications. These opportunities show strong capability for drug screening and functional studies with cells in suspension. Expert opinion There is no doubt that HT flow is a rich technology awaiting acceptance by the pharmaceutical community. It can provide a powerful phenotypic analytical toolset that has the capacity to change many current approaches to HT screening. The previous restrictions on the technology, based on its reduced capacity for sample throughput, are no longer a major issue. Overcoming this barrier has transformed a mature technology into one that can focus on systems biology questions not previously considered possible. PMID:22708834

  6. High throughput electrophysiology: new perspectives for ion channel drug discovery.

    Science.gov (United States)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter; Jensen, Bo Skaaning; Korsgaard, Mads P G; Christophersen, Palle

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels. A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion channel targets accessible for drug screening. Specifically, genuine HTS parallel processing techniques based on arrays of planar silicon chips are being developed, but also lower throughput sequential techniques may be of value in compound screening, lead optimization, and safety screening. The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery.

  7. Fluorescent biosensors for high throughput screening of protein kinase inhibitors.

    Science.gov (United States)

    Prével, Camille; Pellerano, Morgan; Van, Thi Nhu Ngoc; Morris, May C

    2014-02-01

    High throughput screening assays aim to identify small molecules that interfere with protein function, activity, or conformation, which can serve as effective tools for chemical biology studies of targets involved in physiological processes or pathways of interest or disease models, as well as templates for development of therapeutics in medicinal chemistry. Fluorescent biosensors constitute attractive and powerful tools for drug discovery programs, from high throughput screening assays, to postscreen characterization of hits, optimization of lead compounds, and preclinical evaluation of candidate drugs. They provide a means of screening for inhibitors that selectively target enzymatic activity, conformation, and/or function in vitro. Moreover, fluorescent biosensors constitute useful tools for cell- and image-based, multiplex and multiparametric, high-content screening. Application of fluorescence-based sensors to screen large and complex libraries of compounds in vitro, in cell-based formats or whole organisms requires several levels of optimization to establish robust and reproducible assays. In this review, we describe the different fluorescent biosensor technologies which have been applied to high throughput screens, and discuss the prerequisite criteria underlying their successful application. Special emphasis is placed on protein kinase biosensors, since these enzymes constitute one of the most important classes of therapeutic targets in drug discovery.

  8. A CRISPR CASe for High-Throughput Silencing

    Directory of Open Access Journals (Sweden)

    Jacob eHeintze

    2013-10-01

    Full Text Available Manipulation of gene expression on a genome-wide level is one of the most important systematic tools in the post-genome era. Such manipulations have largely been enabled by expression cloning approaches using sequence-verified cDNA libraries, large-scale RNA interference libraries (shRNA or siRNA and zinc finger nuclease technologies. More recently, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated (Cas9-mediated gene editing technology has been described that holds great promise for future use of this technology in genomic manipulation. It was suggested that the CRISPR system has the potential to be used in high-throughput, large-scale loss of function screening. Here we discuss some of the challenges in engineering of CRISPR/Cas genomic libraries and some of the aspects that need to be addressed in order to use this technology on a high-throughput scale.

  9. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N.; Naulleau, Patrick P.

    2007-07-30

    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  10. Galaxy High Throughput Genotyping Pipeline for GeneTitan.

    Science.gov (United States)

    Karpenko, Oleksiy; Bahroos, Neil; Chukhman, Morris; Dong, Xiao; Kanabar, Pinal; Arbieva, Zarema; Jackson, Tommie; Hendrickson, William

    2013-01-01

    Latest genotyping solutions allow for rapid testing of more than two million markers in one experiment. Fully automated instruments such as Affymetrix GeneTitan enable processing of large numbers of samples in a truly high-throughput manner. In concert with solutions like Axiom, fully customizable array plates can now utilize automated workflows that can leverage multi-channel instrumentation like the GeneTitan. With the growing size of raw data output, the serial computational architecture of the software, typically distributed by the vendors on turnkey desktop solutions for quality control and genotype calling, becomes legacy rather than an advantage. Advanced software techniques provide power, flexibility, and can be deployed in an HPC environment, but become technically inconvenient for biologists to use. Here we present a pipeline that uses Galaxy as a mechanism to lower the barrier for complex analysis, and increase efficiency by leveraging high-throughput computing.

  11. High-throughput screening for modulators of cellular contractile force

    CERN Document Server

    Park, Chan Young; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J; Marinkovic, Aleksandar; Tschumperlin, Daniel J; Burger, Stephanie; Frykenberg, Matthew; Butler, James P; Stamer, W Daniel; Johnson, Mark; Solway, Julian; Fredberg, Jeffrey J; Krishnan, Ramaswamy

    2014-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signaling intermediates with poorly defined relationship to such a physiological endpoint. Using cellular force as the target, here we screened libraries to identify novel drug candidates in the case of human airway smooth muscle cells in the context of asthma, and also in the case of Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery.

  12. Reverse Phase Protein Arrays for High-throughput Toxicity Screening

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    High-throughput screening is extensively applied for identification of drug targets and drug discovery and recently it found entry into toxicity testing. Reverse phase protein arrays (RPPAs) are used widespread for quantification of protein markers. We reasoned that RPPAs also can be utilized...... beneficially in automated high-throughput toxicity testing. An advantage of using RPPAs is that, in addition to the baseline toxicity readout, they allow testing of multiple markers of toxicity, such as inflammatory responses, which do not necessarily cumulate in cell death. We used transfection of si...... a robotic screening platform. Furthermore, we automated sample tracking and data analysis by developing a bundled bioinformatics tool named “MIRACLE”. Automation and RPPA-based viability/toxicity readouts enable rapid testing of large sample numbers, while granting the possibility for flexible consecutive...

  13. Spotsizer: High-throughput quantitative analysis of microbial growth

    Science.gov (United States)

    Jeffares, Daniel C.; Arzhaeva, Yulia; Bähler, Jürg

    2017-01-01

    Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license. PMID:27712582

  14. A targeted proteomics toolkit for high-throughput absolute quantification of Escherichia coli proteins.

    Science.gov (United States)

    Batth, Tanveer S; Singh, Pragya; Ramakrishnan, Vikram R; Sousa, Mirta M L; Chan, Leanne Jade G; Tran, Huu M; Luning, Eric G; Pan, Eva H Y; Vuu, Khanh M; Keasling, Jay D; Adams, Paul D; Petzold, Christopher J

    2014-11-01

    Transformation of engineered Escherichia coli into a robust microbial factory is contingent on precise control of metabolism. Yet, the throughput of omics technologies used to characterize cell components has lagged far behind our ability to engineer novel strains. To expand the utility of quantitative proteomics for metabolic engineering, we validated and optimized targeted proteomics methods for over 400 proteins from more than 20 major pathways in E. coli metabolism. Complementing these methods, we constructed a series of synthetic genes to produce concatenated peptides (QconCAT) for absolute quantification of the proteins and made them available through the Addgene plasmid repository (www.addgene.org). To facilitate high sample throughput, we developed a fast, analytical-flow chromatography method using a 5.5-min gradient (10 min total run time). Overall this toolkit provides an invaluable resource for metabolic engineering by increasing sample throughput, minimizing development time and providing peptide standards for absolute quantification of E. coli proteins.

  15. High throughput screening operations at the University of Kansas.

    Science.gov (United States)

    Roy, Anuradha

    2014-05-01

    The High Throughput Screening Laboratory at University of Kansas plays a critical role in advancing academic interest in the identification of chemical probes as tools to better understand the biological and biochemical basis of new therapeutic targets. The HTS laboratory has an open service policy and collaborates with internal and external academia as well as for-profit organizations to execute projects requiring HTS-compatible assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization.

  16. Systematic error detection in experimental high-throughput screening

    OpenAIRE

    2011-01-01

    Abstract Background High-throughput screening (HTS) is a key part of the drug discovery process during which thousands of chemical compounds are screened and their activity levels measured in order to identify potential drug candidates (i.e., hits). Many technical, procedural or environmental factors can cause systematic measurement error or inequalities in the conditions in which the measurements are taken. Such systematic error has the potential to critically affect the hit selection proces...

  17. Targeted high-throughput sequencing of tagged nucleic acid samples

    OpenAIRE

    M.; Meyer; Stenzel, U.; Myles, S.; Prüfer, K; Hofreiter, M.

    2007-01-01

    High-throughput 454 DNA sequencing technology allows much faster and more cost-effective sequencing than traditional Sanger sequencing. However, the technology imposes inherent limitations on the number of samples that can be processed in parallel. Here we introduce parallel tagged sequencing (PTS), a simple, inexpensive and flexible barcoding technique that can be used for parallel sequencing any number and type of double-stranded nucleic acid samples. We demonstrate that PTS is particularly...

  18. Mass spectrometry for high-throughput metabolomics analysis of urine

    OpenAIRE

    Abdelrazig, Salah M.A.

    2015-01-01

    Direct electrospray ionisation-mass spectrometry (direct ESI-MS), by omitting the chromatographic step, has great potential for application as a high-throughput approach for untargeted urine metabolomics analysis compared to liquid chromatography-mass spectrometry (LC-MS). The rapid development and technical innovations revealed in the field of ambient ionisation MS such as nanoelectrospray ionisation (nanoESI) chip-based infusion and liquid extraction surface analysis mass spectrometry (LESA...

  19. Generating barcoded libraries for multiplex high-throughput sequencing.

    Science.gov (United States)

    Knapp, Michael; Stiller, Mathias; Meyer, Matthias

    2012-01-01

    Molecular barcoding is an essential tool to use the high throughput of next generation sequencing platforms optimally in studies involving more than one sample. Various barcoding strategies allow for the incorporation of short recognition sequences (barcodes) into sequencing libraries, either by ligation or polymerase chain reaction (PCR). Here, we present two approaches optimized for generating barcoded sequencing libraries from low copy number extracts and amplification products typical of ancient DNA studies.

  20. Condor-COPASI: high-throughput computing for biochemical networks

    OpenAIRE

    Kent Edward; Hoops Stefan; Mendes Pedro

    2012-01-01

    Abstract Background Mathematical modelling has become a standard technique to improve our understanding of complex biological systems. As models become larger and more complex, simulations and analyses require increasing amounts of computational power. Clusters of computers in a high-throughput computing environment can help to provide the resources required for computationally expensive model analysis. However, exploiting such a system can be difficult for users without the necessary experti...

  1. Intel: High Throughput Computing Collaboration: A CERN openlab / Intel collaboration

    CERN Document Server

    CERN. Geneva

    2015-01-01

    The Intel/CERN High Throughput Computing Collaboration studies the application of upcoming Intel technologies to the very challenging environment of the LHC trigger and data-acquisition systems. These systems will need to transport and process many terabits of data every second, in some cases with tight latency constraints. Parallelisation and tight integration of accelerators and classical CPU via Intel's OmniPath fabric are the key elements in this project.

  2. Considerations for the design and reporting of enzyme assays in high-throughput screening applications

    Directory of Open Access Journals (Sweden)

    Michael G. Acker

    2014-05-01

    Full Text Available This review describes the key steps and methods which are used to develop enzyme assays suitable for high-throughput screening (HTS applications. The goals of HTS enzyme assays are defined relative to lower-throughput bench top assays and important aspects which go into constructing robust and sensitive enzyme assays are described. Methods that have been applied to common enzyme classes are reviewed and pitfalls related to assay artifacts are discussed. We also suggest a reporting format to describe the steps in HTS enzyme assays.

  3. High-Throughput Preparation of New Photoactive Nanocomposites.

    Science.gov (United States)

    Conterosito, Eleonora; Benesperi, Iacopo; Toson, Valentina; Saccone, Davide; Barbero, Nadia; Palin, Luca; Barolo, Claudia; Gianotti, Valentina; Milanesio, Marco

    2016-06-08

    New low-cost photoactive hybrid materials based on organic luminescent molecules inserted into hydrotalcite (layered double hydroxides; LDH) were produced, which exploit the high-throughput liquid-assisted grinding (LAG) method. These materials are conceived for applications in dye-sensitized solar cells (DSSCs) as a co-absorbers and in silicon photovoltaic (PV) panels to improve their efficiency as they are able to emit where PV modules show the maximum efficiency. A molecule that shows a large Stokes' shift was designed, synthesized, and intercalated into LDH. Two dyes already used in DSSCs were also intercalated to produce two new nanocomposites. LDH intercalation allows the stability of organic dyes to be improved and their direct use in polymer melt blending. The prepared nanocomposites absorb sunlight from UV to visible and emit from blue to near-IR and thus can be exploited for light-energy management. Finally one nanocomposite was dispersed by melt blending into a poly(methyl methacrylate)-block-poly(n-butyl acrylate) copolymer to obtain a photoactive film.

  4. High throughput miniature drug-screening platform using bioprinting technology.

    Science.gov (United States)

    Rodríguez-Dévora, Jorge I; Zhang, Bimeng; Reyna, Daniel; Shi, Zhi-dong; Xu, Tao

    2012-09-01

    In the pharmaceutical industry, new drugs are tested to find appropriate compounds for therapeutic purposes for contemporary diseases. Unfortunately, novel compounds emerge at expensive prices and current target evaluation processes have limited throughput, thus leading to an increase of cost and time for drug development. This work shows the development of the novel inkjet-based deposition method for assembling a miniature drug-screening platform, which can realistically and inexpensively evaluate biochemical reactions in a picoliter-scale volume at a high speed rate. As proof of concept, applying a modified Hewlett Packard model 5360 compact disc printer, green fluorescent protein expressing Escherichia coli cells along with alginate gel solution have been arrayed on a coverslip chip under a repeatable volume of 180% ± 26% picoliters per droplet; subsequently, different antibiotic droplets were patterned on the spots of cells to evaluate the inhibition of bacteria for antibiotic screening. The proposed platform was compared to the current screening process, validating its effectiveness. The viability and basic function of the printed cells were evaluated, resulting in cell viability above 98% and insignificant or no DNA damage to human kidney cells transfected. Based on the reduction of investment and compound volume used by this platform, this technique has the potential to improve the actual drug discovery process at its target evaluation stage.

  5. A fully automated high-throughput training system for rodents.

    Directory of Open Access Journals (Sweden)

    Rajesh Poddar

    Full Text Available Addressing the neural mechanisms underlying complex learned behaviors requires training animals in well-controlled tasks, an often time-consuming and labor-intensive process that can severely limit the feasibility of such studies. To overcome this constraint, we developed a fully computer-controlled general purpose system for high-throughput training of rodents. By standardizing and automating the implementation of predefined training protocols within the animal's home-cage our system dramatically reduces the efforts involved in animal training while also removing human errors and biases from the process. We deployed this system to train rats in a variety of sensorimotor tasks, achieving learning rates comparable to existing, but more laborious, methods. By incrementally and systematically increasing the difficulty of the task over weeks of training, rats were able to master motor tasks that, in complexity and structure, resemble ones used in primate studies of motor sequence learning. By enabling fully automated training of rodents in a home-cage setting this low-cost and modular system increases the utility of rodents for studying the neural underpinnings of a variety of complex behaviors.

  6. High Throughput T Epitope Mapping and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Giuseppina Li Pira

    2010-01-01

    Full Text Available Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th and by cytolytic T lymphocytes (CTL is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.

  7. Comprehensive analysis of high-throughput screening data

    Science.gov (United States)

    Heyse, Stephan

    2002-06-01

    High-Throughput Screening (HTS) data in its entirety is a valuable raw material for the drug-discovery process. It provides the most compete information about the biological activity of a company's compounds. However, its quantity, complexity and heterogeneity require novel, sophisticated approaches in data analysis. At GeneData, we are developing methods for large-scale, synoptical mining of screening data in a five-step analysis: (1) Quality Assurance: Checking data for experimental artifacts and eliminating low quality data. (2) Biological Profiling: Clustering and ranking of compounds based on their biological activity, taking into account specific characteristics of HTS data. (3) Rule-based Classification: Applying user-defined rules to biological and chemical properties, and providing hypotheses on the biological mode-of-action of compounds. (4) Joint Biological-Chemical Analysis: Associating chemical compound data to HTS data, providing hypotheses for structure- activity relationships. (5) integration with Genomic and Gene Expression Data: Linking into other components of GeneData's bioinformatics platform, and assessing the compounds' modes-of-action, toxicity, and metabolic properties. These analyses address issues that are crucial for a correct interpretation and full exploitation of screening data. They lead to a sound rating of assays and compounds at an early state of the lead-finding process.

  8. Use of High Throughput Screening Data in IARC Monograph ...

    Science.gov (United States)

    Purpose: Evaluation of carcinogenic mechanisms serves a critical role in IARC monograph evaluations, and can lead to “upgrade” or “downgrade” of the carcinogenicity conclusions based on human and animal evidence alone. Three recent IARC monograph Working Groups (110, 112, and 113) pioneered analysis of high throughput in vitro screening data from the U.S. Environmental Protection Agency’s ToxCast program in evaluations of carcinogenic mechanisms. Methods: For monograph 110, ToxCast assay data across multiple nuclear receptors were used to test the hypothesis that PFOA acts exclusively through the PPAR family of receptors, with activity profiles compared to several prototypical nuclear receptor-activating compounds. For monographs 112 and 113, ToxCast assays were systematically evaluated and used as an additional data stream in the overall evaluation of the mechanistic evidence. Specifically, ToxCast assays were mapped to 10 “key characteristics of carcinogens” recently identified by an IARC expert group, and chemicals’ bioactivity profiles were evaluated both in absolute terms (number of relevant assays positive for bioactivity) and relative terms (ranking with respect to other compounds evaluated by IARC, using the ToxPi methodology). Results: PFOA activates multiple nuclear receptors in addition to the PPAR family in the ToxCast assays. ToxCast assays offered substantial coverage for 5 of the 10 “key characteristics,” with the greates

  9. High Throughput Interrogation of Behavioral Transitions in C. elegans

    Science.gov (United States)

    Liu, Mochi; Shaevitz, Joshua; Leifer, Andrew

    We present a high-throughput method to probe transformations from neural activity to behavior in Caenorhabditis elegans to better understand how organisms change behavioral states. We optogenetically deliver white-noise stimuli to target sensory or inter neurons while simultaneously recording the movement of a population of worms. Using all the postural movement data collected, we computationally classify stereotyped behaviors in C. elegans by clustering based on the spectral properties of the instantaneous posture. (Berman et al., 2014) Transitions between these behavioral clusters indicate discrete behavioral changes. To study the neural correlates dictating these transitions, we perform model-driven experiments and employ Linear-Nonlinear-Poisson cascades that take the white-noise stimulus as the input. The parameters of these models are fitted by reverse-correlation from our measurements. The parameterized models of behavioral transitions predict the worm's response to novel stimuli and reveal the internal computations the animal makes before carrying out behavioral decisions. Preliminary results are shown that describe the neural-behavioral transformation between neural activity in mechanosensory neurons and reversal behavior.

  10. The JCSG high-throughput structural biology pipeline.

    Science.gov (United States)

    Elsliger, Marc André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wooley, John; Wüthrich, Kurt; Wilson, Ian A

    2010-10-01

    The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years. The JCSG has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe, as well as making substantial inroads into structural coverage of an entire organism. Targets are processed through an extensive combination of bioinformatics and biophysical analyses to efficiently characterize and optimize each target prior to selection for structure determination. The pipeline uses parallel processing methods at almost every step in the process and can adapt to a wide range of protein targets from bacterial to human. The construction, expansion and optimization of the JCSG gene-to-structure pipeline over the years have resulted in many technological and methodological advances and developments. The vast number of targets and the enormous amounts of associated data processed through the multiple stages of the experimental pipeline required the development of variety of valuable resources that, wherever feasible, have been converted to free-access web-based tools and applications.

  11. High-throughput parallel SPM for metrology, defect, and mask inspection

    Science.gov (United States)

    Sadeghian, H.; Herfst, R. W.; van den Dool, T. C.; Crowcombe, W. E.; Winters, J.; Kramer, G. F. I. J.

    2014-10-01

    Scanning probe microscopy (SPM) is a promising candidate for accurate assessment of metrology and defects on wafers and masks, however it has traditionally been too slow for high-throughput applications, although recent developments have significantly pushed the speed of SPM [1,2]. In this paper we present new results obtained with our previously presented high-throughput parallel SPM system [3,4] that showcase two key advances that are required for a successful deployment of SPM in high-throughput metrology, defect and mask inspection. The first is a very fast (up to 40 lines/s) image acquisition and a comparison of the image quality as function of speed. Secondly, a fast approach method: measurements of the scan-head approaching the sample from 0.2 and 1.0 mm distance in under 1.4 and 6 seconds respectively.

  12. High-throughput screening of small molecule libraries using SAMDI mass spectrometry.

    Science.gov (United States)

    Gurard-Levin, Zachary A; Scholle, Michael D; Eisenberg, Adam H; Mrksich, Milan

    2011-07-11

    High-throughput screening is a common strategy used to identify compounds that modulate biochemical activities, but many approaches depend on cumbersome fluorescent reporters or antibodies and often produce false-positive hits. The development of "label-free" assays addresses many of these limitations, but current approaches still lack the throughput needed for applications in drug discovery. This paper describes a high-throughput, label-free assay that combines self-assembled monolayers with mass spectrometry, in a technique called SAMDI, as a tool for screening libraries of 100,000 compounds in one day. This method is fast, has high discrimination, and is amenable to a broad range of chemical and biological applications.

  13. Microfluidics for cell-based high throughput screening platforms - A review.

    Science.gov (United States)

    Du, Guansheng; Fang, Qun; den Toonder, Jaap M J

    2016-01-15

    In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery.

  14. HTP-NLP: A New NLP System for High Throughput Phenotyping.

    Science.gov (United States)

    Schlegel, Daniel R; Crowner, Chris; Lehoullier, Frank; Elkin, Peter L

    2017-01-01

    Secondary use of clinical data for research requires a method to quickly process the data so that researchers can quickly extract cohorts. We present two advances in the High Throughput Phenotyping NLP system which support the aim of truly high throughput processing of clinical data, inspired by a characterization of the linguistic properties of such data. Semantic indexing to store and generalize partially-processed results and the use of compositional expressions for ungrammatical text are discussed, along with a set of initial timing results for the system.

  15. Condor-COPASI: high-throughput computing for biochemical networks

    Directory of Open Access Journals (Sweden)

    Kent Edward

    2012-07-01

    Full Text Available Abstract Background Mathematical modelling has become a standard technique to improve our understanding of complex biological systems. As models become larger and more complex, simulations and analyses require increasing amounts of computational power. Clusters of computers in a high-throughput computing environment can help to provide the resources required for computationally expensive model analysis. However, exploiting such a system can be difficult for users without the necessary expertise. Results We present Condor-COPASI, a server-based software tool that integrates COPASI, a biological pathway simulation tool, with Condor, a high-throughput computing environment. Condor-COPASI provides a web-based interface, which makes it extremely easy for a user to run a number of model simulation and analysis tasks in parallel. Tasks are transparently split into smaller parts, and submitted for execution on a Condor pool. Result output is presented to the user in a number of formats, including tables and interactive graphical displays. Conclusions Condor-COPASI can effectively use a Condor high-throughput computing environment to provide significant gains in performance for a number of model simulation and analysis tasks. Condor-COPASI is free, open source software, released under the Artistic License 2.0, and is suitable for use by any institution with access to a Condor pool. Source code is freely available for download at http://code.google.com/p/condor-copasi/, along with full instructions on deployment and usage.

  16. High-throughput bioinformatics with the Cyrille2 pipeline system

    Directory of Open Access Journals (Sweden)

    de Groot Joost CW

    2008-02-01

    Full Text Available Abstract Background Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses are often interdependent and chained together to form complex workflows or pipelines. Given the volume of the data used and the multitude of computational resources available, specialized pipeline software is required to make high-throughput analysis of large-scale omics datasets feasible. Results We have developed a generic pipeline system called Cyrille2. The system is modular in design and consists of three functionally distinct parts: 1 a web based, graphical user interface (GUI that enables a pipeline operator to manage the system; 2 the Scheduler, which forms the functional core of the system and which tracks what data enters the system and determines what jobs must be scheduled for execution, and; 3 the Executor, which searches for scheduled jobs and executes these on a compute cluster. Conclusion The Cyrille2 system is an extensible, modular system, implementing the stated requirements. Cyrille2 enables easy creation and execution of high throughput, flexible bioinformatics pipelines.

  17. High throughput biotechnology in traditional fermented food industry.

    Science.gov (United States)

    Yang, Yong; Xu, Rong-man; Song, Jia; Wang, Wei-min

    2010-11-01

    Traditional fermented food is not only the staple food for most of developing countries but also the key healthy food for developed countries. As the healthy function of these foods are gradually discovered, more and more high throughput biotechnologies are being used to promote the old and new industry. As a result, the microflora, manufacturing processes and product healthy function of these foods were pushed forward either in the respect of profundity or extensiveness nowadays. The application and progress of the high throughput biotechnologies into traditional fermented food industries were different from each other, which was reviewed and detailed by the catalogues of fermented milk products (yogurt, cheese), fermented sausages, fermented vegetables (kimchi, sauerkraut), fermented cereals (sourdough) and fermented beans (tempeh, natto). Given the further promotion by high throughput biotechnologies, the middle and/or down-stream process of traditional fermented foods would be optimized and the process of industrialization of local traditional fermented food having many functional factors but in small quantity would be accelerated. The article presents some promising patents on traditional fermented food industry.

  18. A microdroplet dilutor for high-throughput screening

    Science.gov (United States)

    Niu, Xize; Gielen, Fabrice; Edel, Joshua B.; Demello, Andrew J.

    2011-06-01

    Pipetting and dilution are universal processes used in chemical and biological laboratories to assay and experiment. In microfluidics such operations are equally in demand, but difficult to implement. Recently, droplet-based microfluidics has emerged as an exciting new platform for high-throughput experimentation. However, it is challenging to vary the concentration of droplets rapidly and controllably. To this end, we developed a dilution module for high-throughput screening using droplet-based microfluidics. Briefly, a nanolitre-sized sample droplet of defined concentration is trapped within a microfluidic chamber. Through a process of droplet merging, mixing and re-splitting, this droplet is combined with a series of smaller buffer droplets to generate a sequence of output droplets that define a digital concentration gradient. Importantly, the formed droplets can be merged with other reagent droplets to enable rapid chemical and biological screens. As a proof of concept, we used the dilutor to perform a high-throughput homogeneous DNA-binding assay using only nanolitres of sample.

  19. NCBI GEO: archive for high-throughput functional genomic data.

    Science.gov (United States)

    Barrett, Tanya; Troup, Dennis B; Wilhite, Stephen E; Ledoux, Pierre; Rudnev, Dmitry; Evangelista, Carlos; Kim, Irene F; Soboleva, Alexandra; Tomashevsky, Maxim; Marshall, Kimberly A; Phillippy, Katherine H; Sherman, Patti M; Muertter, Rolf N; Edgar, Ron

    2009-01-01

    The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest public repository for high-throughput gene expression data. Additionally, GEO hosts other categories of high-throughput functional genomic data, including those that examine genome copy number variations, chromatin structure, methylation status and transcription factor binding. These data are generated by the research community using high-throughput technologies like microarrays and, more recently, next-generation sequencing. The database has a flexible infrastructure that can capture fully annotated raw and processed data, enabling compliance with major community-derived scientific reporting standards such as 'Minimum Information About a Microarray Experiment' (MIAME). In addition to serving as a centralized data storage hub, GEO offers many tools and features that allow users to effectively explore, analyze and download expression data from both gene-centric and experiment-centric perspectives. This article summarizes the GEO repository structure, content and operating procedures, as well as recently introduced data mining features. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.

  20. Characterization of relative abundance of lactic acid bacteria species in French organic sourdough by cultural, qPCR and MiSeq high-throughput sequencing methods.

    Science.gov (United States)

    Michel, Elisa; Monfort, Clarisse; Deffrasnes, Marion; Guezenec, Stéphane; Lhomme, Emilie; Barret, Matthieu; Sicard, Delphine; Dousset, Xavier; Onno, Bernard

    2016-12-19

    In order to contribute to the description of sourdough LAB composition, MiSeq sequencing and qPCR methods were performed in association with cultural methods. A panel of 16 French organic bakers and farmer-bakers were selected for this work. The lactic acid bacteria (LAB) diversity of their organic sourdoughs was investigated quantitatively and qualitatively combining (i) Lactobacillus sanfranciscensis-specific qPCR, (ii) global sequencing with MiSeq Illumina technology and (iii) molecular isolates identification. In addition, LAB and yeast enumeration, pH, Total Titratable Acidity, organic acids and bread specific volume were analyzed. Microbial and physico-chemical data were statistically treated by Principal Component Analysis (PCA) and Hierarchical Ascendant Classification (HAC). Total yeast counts were 6 log10 to 7.6 log10CFU/g while LAB counts varied from 7.2 log10 to 9.6 log10CFU/g. Values obtained by L. sanfranciscensis-specific qPCR were estimated between 7.2 and 10.3 log10CFU/g, except for one sample at 4.4 log10CFU/g. HAC and PCA clustered the sixteen sourdoughs into three classes described by their variables but without links to bakers' practices. L. sanfranciscensis was the dominant species in 13 of the 16 sourdoughs analyzed by Next Generation Sequencing (NGS), by the culture dependent method this species was dominant only in only 10 samples. Based on isolates identification, LAB diversity was higher for 7 sourdoughs with the recovery of L. curvatus, L. brevis, L. heilongjiangensis, L. xiangfangensis, L. koreensis, L. pontis, Weissella sp. and Pediococcus pentosaceus, as the most representative species. L. koreensis, L. heilongjiangensis and L. xiangfangensis were identified in traditional Asian food and here for the first time as dominant in organic sourdough. This study highlighted that L. sanfranciscensis was not the major species in 6/16 sourdough samples and that a relatively high LAB diversity can be observed in French organic sourdough.

  1. High throughput comet assay to study genotoxicity of nanomaterials

    Directory of Open Access Journals (Sweden)

    Naouale El Yamani

    2015-06-01

    Full Text Available The unique physicochemical properties of engineered nanomaterials (NMs have accelerated their use in diverse industrial and domestic products. Although their presence in consumer products represents a major concern for public health safety, their potential impact on human health is poorly understood. There is therefore an urgent need to clarify the toxic effects of NMs and to elucidate the mechanisms involved. In view of the large number of NMs currently being used, high throughput (HTP screening technologies are clearly needed for efficient assessment of toxicity. The comet assay is the most used method in nanogenotoxicity studies and has great potential for increasing throughput as it is fast, versatile and robust; simple technical modifications of the assay make it possible to test many compounds (NMs in a single experiment. The standard gel of 70-100 μL contains thousands of cells, of which only a tiny fraction are actually scored. Reducing the gel to a volume of 5 μL, with just a few hundred cells, allows twelve gels to be set on a standard slide, or 96 as a standard 8x12 array. For the 12 gel format, standard slides precoated with agarose are placed on a metal template and gels are set on the positions marked on the template. The HTP comet assay, incorporating digestion of DNA with formamidopyrimidine DNA glycosylase (FPG to detect oxidised purines, has recently been applied to study the potential induction of genotoxicity by NMs via reactive oxygen. In the NanoTEST project we investigated the genotoxic potential of several well-characterized metal and polymeric nanoparticles with the comet assay. All in vitro studies were harmonized; i.e. NMs were from the same batch, and identical dispersion protocols, exposure time, concentration range, culture conditions, and time-courses were used. As a kidney model, Cos-1 fibroblast-like kidney cells were treated with different concentrations of iron oxide NMs, and cells embedded in minigels (12

  2. High-throughput electrical characterization for robust overlay lithography control

    Science.gov (United States)

    Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.

    2017-03-01

    Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.

  3. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput.

  4. Discovery of novel targets with high throughput RNA interference screening.

    Science.gov (United States)

    Kassner, Paul D

    2008-03-01

    High throughput technologies have the potential to affect all aspects of drug discovery. Considerable attention is paid to high throughput screening (HTS) for small molecule lead compounds. The identification of the targets that enter those HTS campaigns had been driven by basic research until the advent of genomics level data acquisition such as sequencing and gene expression microarrays. Large-scale profiling approaches (e.g., microarrays, protein analysis by mass spectrometry, and metabolite profiling) can yield vast quantities of data and important information. However, these approaches usually require painstaking in silico analysis and low-throughput basic wet-lab research to identify the function of a gene and validate the gene product as a potential therapeutic drug target. Functional genomic screening offers the promise of direct identification of genes involved in phenotypes of interest. In this review, RNA interference (RNAi) mediated loss-of-function screens will be discussed and as well as their utility in target identification. Some of the genes identified in these screens should produce similar phenotypes if their gene products are antagonized with drugs. With a carefully chosen phenotype, an understanding of the biology of RNAi and appreciation of the limitations of RNAi screening, there is great potential for the discovery of new drug targets.

  5. High-Throughput Dietary Exposure Predictions for Chemical Migrants from Food Packaging Materials

    Science.gov (United States)

    United States Environmental Protection Agency researchers have developed a Stochastic Human Exposure and Dose Simulation High -Throughput (SHEDS-HT) model for use in prioritization of chemicals under the ExpoCast program. In this research, new methods were implemented in SHEDS-HT...

  6. High-throughput verification of transcriptional starting sites by Deep-RACE

    DEFF Research Database (Denmark)

    Olivarius, Signe; Plessy, Charles; Carninci, Piero

    2009-01-01

    We present a high-throughput method for investigating the transcriptional starting sites of genes of interest, which we named Deep-RACE (Deep–rapid amplification of cDNA ends). Taking advantage of the latest sequencing technology, it allows the parallel analysis of multiple genes and is free of t...

  7. High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors

    NARCIS (Netherlands)

    Koudijs, M.J.; Klijn, C.; van der Weyden, L.; Kool, J.; ten Hoeve, J.; Sie, D.; Prasetyanti, P.R.; Schut, E.; Kas, S.; Whipp, T.; Cuppen, E.; Wessels, L.; Adams, D.J.; Jonkers, J.

    2011-01-01

    Retroviral and transposon-based insertional mutagenesis (IM) screens are widely used for cancer gene discovery in mice. Exploiting the full potential of IM screens requires methods for high-throughput sequencing and mapping of transposon and retroviral insertion sites. Current protocols are based on

  8. A high-throughput, high-quality plant genomic DNA extraction protocol.

    Science.gov (United States)

    Li, H; Li, J; Cong, X H; Duan, Y B; Li, L; Wei, P C; Lu, X Z; Yang, J B

    2013-10-15

    The isolation of high-quality genomic DNA (gDNA) is a crucial technique in plant molecular biology. The quality of gDNA determines the reliability of real-time polymerase chain reaction (PCR) analysis. In this paper, we reported a high-quality gDNA extraction protocol optimized for real-time PCR in a variety of plant species. Performed in a 96-well block, our protocol provides high throughput. Without the need for phenol-chloroform and liquid nitrogen or dry ice, our protocol is safer and more cost-efficient than traditional DNA extraction methods. The method takes 10 mg leaf tissue to yield 5-10 µg high-quality gDNA. Spectral measurement and electrophoresis were used to demonstrate gDNA purity. The extracted DNA was qualified in a restriction enzyme digestion assay and conventional PCR. The real-time PCR amplification was sufficiently sensitive to detect gDNA at very low concentrations (3 pg/µL). The standard curve of gDNA dilutions from our phenol-chloroform-free protocol showed better linearity (R(2) = 0.9967) than the phenol-chloroform protocol (R(2) = 0.9876). The results indicate that the gDNA was of high quality and fit for real-time PCR. This safe, high-throughput plant gDNA extraction protocol could be used to isolate high-quality gDNA for real-time PCR and other downstream molecular applications.

  9. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters.

    Science.gov (United States)

    Bolton, Glen R; Basha, Jonida; Lacasse, Daniel P

    2010-01-01

    Parvovirus retentive filters that assure removal of viruses and virus-like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size-based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass-throughput values of 7.3, 26.4, and 76.2 kg/m(2) were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass-throughput values of 73, 137, and 192 kg/m(2) were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large-scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small-scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large-scale filter capacity. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  10. A high-throughput method for liquid chromatography-tandem mass spectrometry determination of plasma alkylresorcinols, biomarkers of whole grain wheat and rye intake

    DEFF Research Database (Denmark)

    Ross, Alastair B; Svelander, Cecilia; Savolainen, Otto I;

    2016-01-01

    supported extraction methods for extracting alkylresorcinols from plasma and improved a normal-phase liquid chromatography coupled to a tandem mass spectrometer method to reduce sample analysis time. The method was validated and compared with gas chromatography-mass spectrometry analysis. Sample preparation...... with HybridSPE supported extraction was most effective for alkylresorcinol extraction, with recoveries of 77-82% from 100 μl of plasma. The use of 96-well plates allowed extraction of 160 samples per day. Using a 5-cm NH2 column and heptane reduced run times to 3 min. The new method had a limit of detection...

  11. Microfluidic-Enabled Print-to-Screen Platform for High-Throughput Screening of Combinatorial Chemotherapy.

    Science.gov (United States)

    Ding, Yuzhe; Li, Jiannan; Xiao, Wenwu; Xiao, Kai; Lee, Joyce; Bhardwaj, Urvashi; Zhu, Zijie; Digiglio, Philip; Yang, Gaomai; Lam, Kit S; Pan, Tingrui

    2015-10-20

    Since the 1960s, combination chemotherapy has been widely utilized as a standard method to treat cancer. However, because of the potentially enormous number of drug candidates and combinations, conventional identification methods of the effective drug combinations are usually associated with significantly high operational costs, low throughput screening, laborious and time-consuming procedures, and ethical concerns. In this paper, we present a low-cost, high-efficiency microfluidic print-to-screen (P2S) platform, which integrates combinatorial screening with biomolecular printing for high-throughput screening of anticancer drug combinations. This P2S platform provides several distinct advantages and features, including automatic combinatorial printing, high-throughput parallel drug screening, modular disposable cartridge, and biocompatibility, which can potentially speed up the entire discovery cycle of potent drug combinations. Microfluidic impact printing utilizing plug-and-play microfluidic cartridges is experimentally characterized with controllable droplet volume and accurate positioning. Furthermore, the combinatorial print-to-screen assay is demonstrated in a proof-of-concept biological experiment which can identify the positive hits among the entire drug combination library in a parallel and rapid manner. Overall, this microfluidic print-to-screen platform offers a simple, low-cost, high-efficiency solution for high-throughput large-scale combinatorial screening and can be applicable for various emerging applications in drug cocktail discovery.

  12. Evaluation of a high throughput method for the detection of mutations associated with thrombosis and hereditary hemochromatosis in Brazilian blood donors.

    Directory of Open Access Journals (Sweden)

    Vivian Dionisio Tavares Niewiadonski

    Full Text Available The aim of this study was to evaluate the OpenArray platform for genetic testing of blood donors and to assess the genotype frequencies of nucleotide-polymorphisms (SNPs associated with venous thrombosis (G1691A and G20210A, hyperhomocysteinemia (C677T, A1298C, and hereditary hemochromatosis (C282Y, H63D and S65C in blood donors from Sao Paulo, Brazil.We examined 400 blood donor samples collected from October to November 2011. The SNPs were detected using OpenArray technology. The blood samples were also examined using a real-time PCR-FRET system to compare the results and determine the accuracy of the OpenArray method.We observed 100% agreement in all assays tested, except HFE C282Y, which showed 99.75% agreement. The HFE C282Y assay was further confirmed through direct sequencing, and the results showed that OpenArray analysis was accurate. The calculated frequencies of each SNP were FV G1691A 98.8% (G/G, 1.2% (G/A; FII G2021A 99.5% (G/G, 0.5% (G/A; MTHFR C677T 45.5% (C/C, 44.8% (C/T, 9.8% (T/T; MTHFR A1298C 60.3% (A/A, 33.6% (A/C, 6.1% (C/C; HFE C282Y 96%(G/G, 4%(G/A, HFE H63D 78.1%(C/C, 20.3% (C/G, 1.6% (G/G; and HFE S65C 98.1% (A/A, 1.9% (A/T.Taken together, these results describe the frequencies of SNPs associated with diseases and are important to enhance our current knowledge of the genetic profiles of Brazilian blood donors, although a larger study is needed for a more accurate determination of the frequency of the alleles. Furthermore, the OpenArray platform showed a high concordance rate with standard FRET RT-PCR.

  13. Protocol: A high-throughput DNA extraction system suitable for conifers

    Directory of Open Access Journals (Sweden)

    Rajora Om P

    2008-08-01

    Full Text Available Abstract Background High throughput DNA isolation from plants is a major bottleneck for most studies requiring large sample sizes. A variety of protocols have been developed for DNA isolation from plants. However, many species, including conifers, have high contents of secondary metabolites that interfere with the extraction process or the subsequent analysis steps. Here, we describe a procedure for high-throughput DNA isolation from conifers. Results We have developed a high-throughput DNA extraction protocol for conifers using an automated liquid handler and modifying the Qiagen MagAttract Plant Kit protocol. The modifications involve change to the buffer system and improving the protocol so that it almost doubles the number of samples processed per kit, which significantly reduces the overall costs. We describe two versions of the protocol: one for medium-throughput (MTP and another for high-throughput (HTP DNA isolation. The HTP version works from start to end in the industry-standard 96-well format, while the MTP version provides higher DNA yields per sample processed. We have successfully used the protocol for DNA extraction and genotyping of thousands of individuals of several spruce and a pine species. Conclusion A high-throughput system for DNA extraction from conifer needles and seeds has been developed and validated. The quality of the isolated DNA was comparable with that obtained from two commonly used methods: the silica-spin column and the classic CTAB protocol. Our protocol provides a fully automatable and cost effective solution for processing large numbers of conifer samples.

  14. Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jing [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the narrow width of Raman band, and the stability of Raman scattering signals to distinguish several different species simultaneously without exploiting spatially-separated addresses on a biochip. By labeling gold nanoparticles with different Raman reporters in conjunction with different detection antibodies, a simultaneous detection of a dual-analyte immunoassay was demonstrated. Using this scheme for quantitative analysis was also studied and preliminary dose-response curves from an immunoassay of a

  15. Emerging high throughput analyses of cyanobacterial toxins and toxic cyanobacteria.

    Science.gov (United States)

    Sivonen, Kaarina

    2008-01-01

    The common occurrence of toxic cyanobacteria causes problems for health of animals and human beings. More research and good monitoring systems are needed to protect water users. It is important to have rapid, reliable and accurate analysis i.e. high throughput methods to identify the toxins as well as toxin producers in the environment. Excellent methods, such as ELISA already exist to analyse cyanobacterial hepatotoxins and saxitoxins, and PPIA for microcystins and nodularins. The LC/MS method can be fast in identifying the toxicants in the samples. Further development of this area should resolve the problems with sampling and sample preparation, which still are the bottlenecks of rapid analyses. In addition, the availability of reliable reference materials and standards should be resolved. Molecular detection methods are now routine in clinical and criminal laboratories and may also become important in environmental diagnostics. One prerequisite for the development of molecular analysis is that pure cultures of the producer organisms are available for identification of the biosynthetic genes responsible for toxin production and for proper testing of the diagnostic methods. Good methods are already available for the microcystin and nodularin-producing cyanobacteria such as conventional PCR, quantitative real-time PCR and microarrays/DNA chips. The DNA-chip technology offers an attractive monitoring system for toxic and non-toxic cyanobacteria. Only with these new technologies (PCR + DNA-chips) will we be able to study toxic cyanobacteria populations in situ and the effects of environmental factors on the occurrence and proliferation of especially toxic cyanobacteria. This is likely to yield important information for mitigation purposes. Further development of these methods should include all cyanobacterial biodiversity, including all toxin producers and primers/probes to detect producers of neurotoxins, cylindrospermopsins etc. (genes are unknown). The on

  16. High-Throughput Neuroimaging-Genetics Computational Infrastructure

    Directory of Open Access Journals (Sweden)

    Ivo D Dinov

    2014-04-01

    Full Text Available Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate and disseminate novel scientific methods, computational resources and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval and aggregation. Computational processing involves the necessary software, hardware and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical and phenotypic data and meta-data. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI and the Laboratory of Neuro Imaging (LONI at University of Southern California (USC. INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize diverse suites of software tools and web-services. These pipeline workflows are represented as portable XML objects which transfer the execution instructions and user specifications from the client user machine to remote pipeline servers for distributed computing. Using Alzheimer’s and Parkinson’s data, we provide several examples of translational applications using this infrastructure.

  17. High-throughput neuroimaging-genetics computational infrastructure.

    Science.gov (United States)

    Dinov, Ivo D; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D; Franco, Joseph; Toga, Arthur W

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize

  18. HTRF(®): pioneering technology for high-throughput screening.

    Science.gov (United States)

    Degorce, François

    2006-12-01

    Cisbio international pioneered the field of homogeneous fluorescence methodologies and time-resolved fluorescence resonance in particular, through its proprietary technology, HTRF(®). The development was based on Prof. Jean-Marie Lehn's research on rare earth fluorescence properties (awarded the Nobel Prize in Chemistry in 1987) and on Cisbio's expertise in homogenous time-resolved fluorescence (HTRF). The technology is used in assay development and drug screening, most notably in high-throughput screening applications. This highly powerful technology is particularly applied to the areas of G-protein-coupled receptor and kinase screening, as well as a series of targets related to inflammation, metabolic diseases and CNS disorders.

  19. SSFinder: High Throughput CRISPR-Cas Target Sites Prediction Tool

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Upadhyay

    2014-01-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated protein (Cas system facilitates targeted genome editing in organisms. Despite high demand of this system, finding a reliable tool for the determination of specific target sites in large genomic data remained challenging. Here, we report SSFinder, a python script to perform high throughput detection of specific target sites in large nucleotide datasets. The SSFinder is a user-friendly tool, compatible with Windows, Mac OS, and Linux operating systems, and freely available online.

  20. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r...... to the presence of filamentous microorganisms was monitored weekly over 4 months. Microthrix was identified as a causative filament and suitable control measures were introduced. The level of Microthrix was reduced after 1-2 months but a number of other filamentous species were still present, with most of them...

  1. Development of a High-Throughput Method for the Optical Screening of Phase Transformations Related to Amorphous Materials for Harsh Environment Applications

    Science.gov (United States)

    2012-02-01

    CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE...an amorphous region for some compositions when grown by PVD methods on unheated substrates. While it is a quite complex system in terms of phases...Gradients The simplest method of making combinatorial materials libraries by physical vapor deposition ( PVD ) is by using the natural thickness

  2. High throughput analysis of drugs of abuse in hair by combining purposely designed sample extraction compatible with immunometric methods used for drug testing in urine.

    Science.gov (United States)

    de la Torre, R; Civit, E; Svaizer, F; Lotti, A; Gottardi, M; Miozzo, M

    2010-03-20

    Drug testing in hair usually requires a rather complex sample treatment before drugs are amenable to analysis by either immunological and/or chromatographic coupled to mass spectrometry methods. Immunological methods applied are usually dedicated to hair analysis as analytes present in this matrix are not always the same present in urine. Comedical s.a.s. laboratories recently commercialized reagents (VMA-T) purposely designed for hair sample treatment which are compatible with current immunometric methods used for urine drug testing. This is possible as some analytes (6-MAM and cocaine) present in hair after sample treatment are converted to those detected in urine (morphine and benzoylecgonine). A correlation study for several drug classes performed in two laboratories with 32 clinical and 12 spiked drug free (controls) hair samples shows that implementation of the method on clinical chemistry analyzers is easy and that results obtained by different operators and instruments are comparable and reproducible. The main advantage of VMA-T method is the possibility to simultaneously extract from hair main drug classes, in a period of time lower than 2h and its compatibility with immunological methods applied in urine drug testing.

  3. High-Throughput Typing Method To Identify a Non-Outbreak-Involved Legionella pneumophila Strain Colonizing the Entire Water Supply System in the Town of Rennes, France ▿ †

    Science.gov (United States)

    Sobral, D.; Le Cann, P.; Gerard, A.; Jarraud, S.; Lebeau, B.; Loisy-Hamon, F.; Vergnaud, G.; Pourcel, C.

    2011-01-01

    Two legionellosis outbreaks occurred in the city of Rennes, France, during the past decade, requiring in-depth monitoring of Legionella pneumophila in the water network and the cooling towers in the city. In order to characterize the resulting large collection of isolates, an automated low-cost typing method was developed. The multiplex capillary-based variable-number tandem repeat (VNTR) (multiple-locus VNTR analysis [MLVA]) assay requiring only one PCR amplification per isolate ensures a high level of discrimination and reduces hands-on and time requirements. In less than 2 days and using one 4-capillary apparatus, 217 environmental isolates collected between 2000 and 2009 and 5 clinical isolates obtained during outbreaks in 2000 and 2006 in Rennes were analyzed, and 15 different genotypes were identified. A large cluster of isolates with closely related genotypes and representing 77% of the population was composed exclusively of environmental isolates extracted from hot water supply systems. It was not responsible for the known Rennes epidemic cases, although strains showing a similar MLVA profile have regularly been involved in European outbreaks. The clinical isolates in Rennes had the same genotype as isolates contaminating a mall's cooling tower. This study further demonstrates that unknown environmental or genetic factors contribute to the pathogenicity of some strains. This work illustrates the potential of the high-throughput MLVA typing method to investigate the origin of legionellosis cases by allowing the systematic typing of any new isolate and inclusion of data in shared databases. PMID:21821761

  4. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.

    Science.gov (United States)

    Shakoor, Nadia; Lee, Scott; Mockler, Todd C

    2017-08-01

    Effective implementation of technology that facilitates accurate and high-throughput screening of thousands of field-grown lines is critical for accelerating crop improvement and breeding strategies for higher yield and disease tolerance. Progress in the development of field-based high throughput phenotyping methods has advanced considerably in the last 10 years through technological progress in sensor development and high-performance computing. Here, we review recent advances in high throughput field phenotyping technologies designed to inform the genetics of quantitative traits, including crop yield and disease tolerance. Successful application of phenotyping platforms to advance crop breeding and identify and monitor disease requires: (1) high resolution of imaging and environmental sensors; (2) quality data products that facilitate computer vision, machine learning and GIS; (3) capacity infrastructure for data management and analysis; and (4) automated environmental data collection. Accelerated breeding for agriculturally relevant crop traits is key to the development of improved varieties and is critically dependent on high-resolution, high-throughput field-scale phenotyping technologies that can efficiently discriminate better performing lines within a larger population and across multiple environments. Copyright © 2017. Published by Elsevier Ltd.

  5. High-Throughput HPLC-MS/MS Method for Quantification of Ibuprofen Enantiomers in Human Plasma: Focus on Investigation of Metabolite Interference.

    Science.gov (United States)

    Nakov, Natalija; Bogdanovska, Liljana; Acevska, Jelena; Tonic-Ribarska, Jasmina; Petkovska, Rumenka; Dimitrovska, Aneta; Kasabova, Lilia; Svinarov, Dobrin

    2016-11-01

    In this research, as a part of the development of fast and reliable HPLC-MS/MS method for quantification of ibuprofen (IBP) enantiomers in human plasma, the possibility of IBP acylglucoronide (IBP-Glu) back-conversion was assessed. This involved investigation of in source and in vitro back-conversion. The separation of IBP enantiomers, its metabolite and rac-IBP-d3 (internal standard), was achieved within 6 min using Chiracel OJ-RH chromatographic column (150 × 2.1 mm, 5 μm). The followed selected reaction monitoring transitions for IBP-Glu (m/z 381.4 → 205.4, m/z 381.4 → 161.4 and m/z 205.4 → 161.4) implied that under the optimized electrospray ionization parameters, in source back-conversion of IBP-Glu was insignificant. The results obtained after liquid-liquid extraction of plasma samples spiked with IBP-Glu revealed that the amount of IBP enantiomers generated by IBP-Glu back-conversion was far <20% of lower limit of quantification sample. These results indicate that the presence of IBP-Glu in real samples will not affect the quantification of the IBP enantiomers; thereby reliability of the method was improved. Additional advantage of the method is the short analysis time making it suitable for the large number of samples. The method was fully validated according to the EMA guideline and was shown to meet all requirements to be applied in a pharmacokinetic study.

  6. A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers.

    Science.gov (United States)

    Harman-Ware, Anne E; Foster, Cliff; Happs, Renee M; Doeppke, Crissa; Meunier, Kristoffer; Gehan, Jackson; Yue, Fengxia; Lu, Fachuang; Davis, Mark F

    2016-10-01

    Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, including standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. The method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers

    Energy Technology Data Exchange (ETDEWEB)

    Harman-Ware, Anne E. [Bioenergy Science Center, Golden CO USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Foster, Cliff [Great Lakes BioEnergy Research Center, Michigan State University, East Lansing MI USA; Happs, Renee M. [Bioenergy Science Center, Golden CO USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Doeppke, Crissa [Bioenergy Science Center, Golden CO USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Meunier, Kristoffer [Great Lakes BioEnergy Research Center, Michigan State University, East Lansing MI USA; Gehan, Jackson [Great Lakes BioEnergy Research Center, Michigan State University, East Lansing MI USA; Yue, Fengxia [Wisconsin Bioenergy Initiative, University of Wisconsin, Madison WI USA; Lu, Fachuang [Wisconsin Bioenergy Initiative, University of Wisconsin, Madison WI USA; Davis, Mark F. [Bioenergy Science Center, Golden CO USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA

    2016-09-14

    Thioacidolysis is a method used to measure the relative content of lignin monomers bound by SS-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, including standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. The method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses.

  8. High-throughput method for the determination of residues of β-lactam antibiotics in bovine milk by LC-MS/MS.

    Science.gov (United States)

    Jank, Louise; Martins, Magda Targa; Arsand, Juliana Bazzan; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara

    2015-01-01

    This study describes the development and validation procedures for scope extension of a method for the determination of β-lactam antibiotic residues (ampicillin, amoxicillin, penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin, ceftiofur, cefquinome, cefoperazone, cephapirine, cefalexin and cephalonium) in bovine milk. Sample preparation was performed by liquid-liquid extraction (LLE) followed by two clean-up steps, including low temperature purification (LTP) and a solid phase dispersion clean-up. Extracts were analysed using a liquid chromatography-electrospray-tandem mass spectrometry system (LC-ESI-MS/MS). Chromatographic separation was performed in a C18 column, using methanol and water (both with 0.1% of formic acid) as mobile phase. Method validation was performed according to the criteria of Commission Decision 2002/657/EC. Main validation parameters such as linearity, limit of detection, decision limit (CCα), detection capability (CCβ), accuracy, and repeatability were determined and were shown to be adequate. The method was applied to real samples (more than 250) and two milk samples had levels above maximum residues limits (MRLs) for cloxacillin - CLX and cefapirin - CFAP.

  9. High-throughput screening to enhance oncolytic virus immunotherapy

    Directory of Open Access Journals (Sweden)

    Allan KJ

    2016-04-01

    Full Text Available KJ Allan,1,2 David F Stojdl,1–3 SL Swift1 1Children’s Hospital of Eastern Ontario (CHEO Research Institute, 2Department of Biology, Microbiology and Immunology, 3Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada Abstract: High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. Keywords: oncolytic, virus, screen, high-throughput, cancer, chemical, genomic, immunotherapy

  10. High-throughput, high-fidelity HLA genotyping with deep sequencing.

    Science.gov (United States)

    Wang, Chunlin; Krishnakumar, Sujatha; Wilhelmy, Julie; Babrzadeh, Farbod; Stepanyan, Lilit; Su, Laura F; Levinson, Douglas; Fernandez-Viña, Marcelo A; Davis, Ronald W; Davis, Mark M; Mindrinos, Michael

    2012-05-29

    Human leukocyte antigen (HLA) genes are the most polymorphic in the human genome. They play a pivotal role in the immune response and have been implicated in numerous human pathologies, especially autoimmunity and infectious diseases. Despite their importance, however, they are rarely characterized comprehensively because of the prohibitive cost of standard technologies and the technical challenges of accurately discriminating between these highly related genes and their many allelles. Here we demonstrate a high-resolution, and cost-effective methodology to type HLA genes by sequencing, which combines the advantage of long-range amplification, the power of high-throughput sequencing platforms, and a unique genotyping algorithm. We calibrated our method for HLA-A, -B, -C, and -DRB1 genes with both reference cell lines and clinical samples and identified several previously undescribed alleles with mismatches, insertions, and deletions. We have further demonstrated the utility of this method in a clinical setting by typing five clinical samples in an Illumina MiSeq instrument with a 5-d turnaround. Overall, this technology has the capacity to deliver low-cost, high-throughput, and accurate HLA typing by multiplexing thousands of samples in a single sequencing run, which will enable comprehensive disease-association studies with large cohorts. Furthermore, this approach can also be extended to include other polymorphic genes.

  11. Screening for methicillin-resistant Staphylococcus aureus in clinical swabs using a high-throughput real-time PCR-based method

    DEFF Research Database (Denmark)

    Ornskov, D; Kolmos, B; Bendix Horn, P

    2008-01-01

    pattern. This is a cost-effective approach, as the greatest expense in hospitals involves the isolation of patients of unknown MRSA status. The method was evaluated by testing 2194 clinical samples, with a sensitivity and specificity of 100% and 94%, respectively. The analytical sensitivity was 97......The presence of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals and the community is a serious problem. Accordingly, a comprehensive plan has been implemented in the County of Vejle, Denmark, to identify colonised and/or infected individuals and to control the spread of MRSA. Since...

  12. Adaptive Sampling for High Throughput Data Using Similarity Measures

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskaya, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, A. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    The need for adaptive sampling arises in the context of high throughput data because the rates of data arrival are many orders of magnitude larger than the rates at which they can be analyzed. A very fast decision must therefore be made regarding the value of each incoming observation and its inclusion in the analysis. In this report we discuss one approach to adaptive sampling, based on the new data point’s similarity to the other data points being considered for inclusion. We present preliminary results for one real and one synthetic data set.

  13. Creation of a small high-throughput screening facility.

    Science.gov (United States)

    Flak, Tod

    2009-01-01

    The creation of a high-throughput screening facility within an organization is a difficult task, requiring a substantial investment of time, money, and organizational effort. Major issues to consider include the selection of equipment, the establishment of data analysis methodologies, and the formation of a group having the necessary competencies. If done properly, it is possible to build a screening system in incremental steps, adding new pieces of equipment and data analysis modules as the need grows. Based upon our experience with the creation of a small screening service, we present some guidelines to consider in planning a screening facility.

  14. High-throughput epitope identification for snakebite antivenom

    DEFF Research Database (Denmark)

    Engmark, Mikael; De Masi, Federico; Laustsen, Andreas Hougaard

    Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individua...... toxins from pit vipers (Crotalidae) using the ICP Crotalidae antivenom. Due to an abundance of snake venom metalloproteinases and phospholipase A2s in the venoms used for production of the investigated antivenom, this study focuses on these toxin families....

  15. High-throughput DNA sequencing: a genomic data manufacturing process.

    Science.gov (United States)

    Huang, G M

    1999-01-01

    The progress trends in automated DNA sequencing operation are reviewed. Technological development in sequencing instruments, enzymatic chemistry and robotic stations has resulted in ever-increasing capacity of sequence data production. This progress leads to a higher demand on laboratory information management and data quality assessment. High-throughput laboratories face the challenge of organizational management, as well as technology management. Engineering principles of process control should be adopted in this biological data manufacturing procedure. While various systems attempt to provide solutions to automate different parts of, or even the entire process, new technical advances will continue to change the paradigm and provide new challenges.

  16. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    DEFF Research Database (Denmark)

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration...... of soft magnetic elements in the chip leads to a slightly higher capturing efficiency and a more uniform distribution of captured beads over the separation chamber than the system without soft magnetic elements....

  17. Computational Proteomics: High-throughput Analysis for Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2007-01-03

    High-throughput (HTP) proteomics is a rapidly developing field that offers the global profiling of proteins from a biological system. The HTP technological advances are fueling a revolution in biology, enabling analyses at the scales of entire systems (e.g., whole cells, tumors, or environmental communities). However, simply identifying the proteins in a cell is insufficient for understanding the underlying complexity and operating mechanisms of the overall system. Systems level investigations are relying more and more on computational analyses, especially in the field of proteomics generating large-scale global data.

  18. Method and apparatus for maximizing throughput of indirectly heated rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Coates, Ralph L; Smoot, Douglas L.; Hatfield, Kent E

    2016-06-21

    An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internally by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.

  19. Method and apparatus for maximizing throughput of indirectly heated rotary kilns

    Science.gov (United States)

    Coates, Ralph L; Smoot, L. Douglas; Hatfield, Kent E

    2012-10-30

    An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internally by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.

  20. A simple and high-throughput method to assess maturation status of bovine oocytes: comparison of anti-lamin A/C-DAPI with an aceto-orcein staining technique.

    Science.gov (United States)

    Prentice-Biensch, J R; Singh, J; Alfoteisy, B; Anzar, M

    2012-10-15

    A precise, accurate, nonambiguous and high-throughput method is required to assess nuclear maturation of mammalian oocytes. The objectives of this study were to compare the efficiency and ease of use of a simplified fluorescence imaging (anti-lamin A/C and 4',6-diamidino-2-phenylindole [DAPI]) technique to the existing technique (aceto-orcein staining) for the evaluation of nuclear maturation of bovine oocytes, and to determine the kinetics of bovine oocyte maturation using an anti-lamin A/C-DAPI technique. In Experiment 1, oocytes were matured in vitro and stained with aceto-orcein and anti-lamin A/C-DAPI staining techniques. The proportions of oocytes lost during procedures and those that could not be classified (because of ambiguous morphology) during evaluation were lower (P 24 h for the aceto-orcein method). Furthermore, > 200 oocytes could be stained in one batch with anti-lamin A/C-DAPI technique. In Experiment 2, nuclear maturation kinetics of bovine oocytes at various time intervals (0, 6, 12, and 22 h) during in vitro maturation (IVM) was evaluated using the anti-lamin A/C-DAPI technique. Germinal vesicle, germinal vesicle breakdown, metaphase I, and metaphase II oocytes were predominant at 0, 6, 12, and 22 h of IVM, respectively. We concluded that the anti-lamin A/C-DAPI was an efficient and simple technique for nonambiguous evaluation of nuclear maturation status of large numbers of oocytes in a short interval.

  1. High-throughput data pipelines for metabolic flux analysis in plants.

    Science.gov (United States)

    Poskar, C Hart; Huege, Jan; Krach, Christian; Shachar-Hill, Yair; Junker, Björn H

    2014-01-01

    In this chapter we illustrate the methodology for high-throughput metabolic flux analysis. Central to this is developing an end to end data pipeline, crucial for integrating the wet lab experiments and analytics, combining hardware and software automation, and standardizing data representation providing importers and exporters to support third party tools. The use of existing software at the start, data extraction from the chromatogram, and the end, MFA analysis, allows for the most flexibility in this workflow. Developing iMS2Flux provided a standard, extensible, platform independent tool to act as the "glue" between these end points. Most importantly this tool can be easily adapted to support different data formats, data verification and data correction steps allowing it to be central to managing the data necessary for high-throughput MFA. An additional tool was needed to automate the MFA software and in particular to take advantage of the course grained parallel nature of high-throughput analysis and available high performance computing facilities.In combination these methods show the development of high-throughput pipelines that allow metabolic flux analysis to join as a full member of the omics family.

  2. A Primer on High-Throughput Computing for Genomic Selection

    Directory of Open Access Journals (Sweden)

    Xiao-Lin eWu

    2011-02-01

    Full Text Available High-throughput computing (HTC uses computer clusters to solve advanced computational problems, with the goal of accomplishing high throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general purpose computation on a graphics processing unit (GPU provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin – Madison, which can be leveraged for genomic selection, in terms of central processing unit (CPU capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of

  3. Recent advances in quantitative high throughput and high content data analysis.

    Science.gov (United States)

    Moutsatsos, Ioannis K; Parker, Christian N

    2016-01-01

    High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.

  4. Probabilistic Assessment of High-Throughput Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Robin E. Kim

    2016-05-01

    Full Text Available Structural health monitoring (SHM using wireless smart sensors (WSS has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved.

  5. Probabilistic Assessment of High-Throughput Wireless Sensor Networks.

    Science.gov (United States)

    Kim, Robin E; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F; Song, Junho

    2016-05-31

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved.

  6. High-throughput metal susceptibility testing of microbial biofilms

    Directory of Open Access Journals (Sweden)

    Turner Raymond J

    2005-10-01

    Full Text Available Abstract Background Microbial biofilms exist all over the natural world, a distribution that is paralleled by metal cations and oxyanions. Despite this reality, very few studies have examined how biofilms withstand exposure to these toxic compounds. This article describes a batch culture technique for biofilm and planktonic cell metal susceptibility testing using the MBEC assay. This device is compatible with standard 96-well microtiter plate technology. As part of this method, a two part, metal specific neutralization protocol is summarized. This procedure minimizes residual biological toxicity arising from the carry-over of metals from challenge to recovery media. Neutralization consists of treating cultures with a chemical compound known to react with or to chelate the metal. Treated cultures are plated onto rich agar to allow metal complexes to diffuse into the recovery medium while bacteria remain on top to recover. Two difficulties associated with metal susceptibility testing were the focus of two applications of this technique. First, assays were calibrated to allow comparisons of the susceptibility of different organisms to metals. Second, the effects of exposure time and growth medium composition on the susceptibility of E. coli JM109 biofilms to metals were investigated. Results This high-throughput method generated 96-statistically equivalent biofilms in a single device and thus allowed for comparative and combinatorial experiments of media, microbial strains, exposure times and metals. By adjusting growth conditions, it was possible to examine biofilms of different microorganisms that had similar cell densities. In one example, Pseudomonas aeruginosa ATCC 27853 was up to 80 times more resistant to heavy metalloid oxyanions than Escherichia coli TG1. Further, biofilms were up to 133 times more tolerant to tellurite (TeO32- than corresponding planktonic cultures. Regardless of the growth medium, the tolerance of biofilm and planktonic

  7. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fenglei [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition

  8. Simulation and optimization of pyramidal AlGaAs probe with ultra-small spot size and high throughput

    Institute of Scientific and Technical Information of China (English)

    王晓秋; 吴世法; 简国树; 潘石

    2005-01-01

    In this paper, the light-emitting spot sizes and throughputs of the four types of probes are studied using the finitedifference time-domain method, and these probes are also compared in performance. Among these probes, a pyramidal AlGaAs tip coated entirely with a thin Ag film can provide the highest throughput and a single near-field spot size.Probe coated with a 3nm Ag film and incident light with a wavelength of 800nm seems to offer the optimum condition for high throughput and ultra-small spot size, which enables the realization of ultra-high density storage.

  9. Applications of high-throughput clonogenic survival assays in high-LET particle microbeams

    Directory of Open Access Journals (Sweden)

    Antonios eGeorgantzoglou

    2016-01-01

    Full Text Available Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-LET particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells’ clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells’ response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell’s capacity to divide at least 4-5 times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  10. Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing

    DEFF Research Database (Denmark)

    Vinner, Lasse; Mourier, Tobias; Friis-Nielsen, Jens;

    2015-01-01

    Although nearly one fifth of all human cancers have an infectious aetiology, the causes for the majority of cancers remain unexplained. Despite the enormous data output from high-throughput shotgun sequencing, viral DNA in a clinical sample typically constitutes a proportion of host DNA that is too......-stringency in-solution hybridization method enables detection of discovery of hitherto unknown viral sequences by high-throughput sequencing. The sensitivity was sufficient to detect retroviral...

  11. High-throughput screening to enhance oncolytic virus immunotherapy

    Science.gov (United States)

    Allan, KJ; Stojdl, David F; Swift, SL

    2016-01-01

    High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs) are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. PMID:27579293

  12. High-throughput measurement of the Ca2+-dependent ATPase activity in COS microsomes.

    Science.gov (United States)

    Vandecaetsbeek, Ilse; Holemans, Tine; Wuytack, Frank; Vangheluwe, Peter

    2014-08-01

    We provide a detailed procedure to determine the Ca(2+)-dependent ATPase activity in COS or HEK293 cells overexpressing a Ca(2+) pump. The ATPase activity is determined by the Baginsky method, which allows measurement of the steady-state production of inorganic phosphate (Pi). We have adapted this widely applied method into a sensitive, fast, and semi-high-throughput protocol suitable for use in a 96-well plate format.

  13. High throughput RNAi assay optimization using adherent cell cytometry

    Directory of Open Access Journals (Sweden)

    Pradhan Leena

    2011-04-01

    Full Text Available Abstract Background siRNA technology is a promising tool for gene therapy of vascular disease. Due to the multitude of reagents and cell types, RNAi experiment optimization can be time-consuming. In this study adherent cell cytometry was used to rapidly optimize siRNA transfection in human aortic vascular smooth muscle cells (AoSMC. Methods AoSMC were seeded at a density of 3000-8000 cells/well of a 96well plate. 24 hours later AoSMC were transfected with either non-targeting unlabeled siRNA (50 nM, or non-targeting labeled siRNA, siGLO Red (5 or 50 nM using no transfection reagent, HiPerfect or Lipofectamine RNAiMax. For counting cells, Hoechst nuclei stain or Cell Tracker green were used. For data analysis an adherent cell cytometer, Celigo® was used. Data was normalized to the transfection reagent alone group and expressed as red pixel count/cell. Results After 24 hours, none of the transfection conditions led to cell loss. Red fluorescence counts were normalized to the AoSMC count. RNAiMax was more potent compared to HiPerfect or no transfection reagent at 5 nM siGLO Red (4.12 +/-1.04 vs. 0.70 +/-0.26 vs. 0.15 +/-0.13 red pixel/cell and 50 nM siGLO Red (6.49 +/-1.81 vs. 2.52 +/-0.67 vs. 0.34 +/-0.19. Fluorescence expression results supported gene knockdown achieved by using MARCKS targeting siRNA in AoSMCs. Conclusion This study underscores that RNAi delivery depends heavily on the choice of delivery method. Adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays. This technology can accelerate in vitro cell assays and thus save costs.

  14. CrossCheck: an open-source web tool for high-throughput screen data analysis.

    Science.gov (United States)

    Najafov, Jamil; Najafov, Ayaz

    2017-07-19

    Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.

  15. High-throughput screening for integrative biomaterials design: exploring advances and new trends.

    Science.gov (United States)

    Oliveira, Mariana B; Mano, João F

    2014-12-01

    With the increasing need for biomaterials and tissue engineering alternatives, more accurate, rapid, and cost-saving methods and models to study biomaterial-cell interactions must be developed. We review the evolution of microarray platforms used for such studies in order to meet the criteria of complex tissue engineering biological environments. Particular aspects regarding biomaterials processing, data acquisition, and treatment are addressed. Apart from in vitro array-based strategies, we also address emerging in vivo high-throughput approaches and their associated trends, such as the role of inflammation in regeneration. The up-scaling of high-throughput methods using single cell encapsulation systems is also explored. Possible limitations related to the use of such methods, such as spot-to-spot crosstalk, are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. High-precision, high-throughput stability determinations facilitated by robotics and a semiautomated titrating fluorometer.

    Science.gov (United States)

    Edgell, Marshall Hall; Sims, Dorothy A; Pielak, Gary J; Yi, Fang

    2003-06-24

    The use of statistical modeling to test hypotheses concerning the determinants of protein structure requires stability data (e.g., the free energy of denaturation in H(2)O, DeltaG(HOH)) from hundreds of protein mutants. Fluorescence-monitored chemical denaturation provides a convenient method for high-precision, high-throughput DeltaG(HOH) determination. For eglin c we find that a throughput of about 20 min per protein can be attained in a two-channel semiautomated titrating fluorometer. We find also that the use of robotics for protein purification and preparation of the solutions for chemical denaturation gives highly precise DeltaG(HOH) values in which the standard deviation of values from multiple preparations (+/-0.051 kcal/mol) differs very little from multiple measurements from a single preparation (+/-0.040 kcal/mol). Since the variance introduced into model fitting by DeltaG(HOH) increases as the square of measurement error, there is a premium on precision. In fact, the fraction of stability behavior explicable by otherwise perfect models goes from 98% to only 50% over the error range commonly reported for chemical denaturation measurements (0.1-0.6 kcal/mol). We have found that the precision of chemical denaturation DeltaG(HOH) measurements depends most heavily on the precision of the instrument used, followed by protein purity and the capacity to precisely prepare the solutions used for titrations.

  17. A high-throughput Raman notch filter set

    Science.gov (United States)

    Puppels, G. J.; Huizinga, A.; Krabbe, H. W.; de Boer, H. A.; Gijsbers, G.; de Mul, F. F. M.

    1990-12-01

    A chevron-type Raman notch filter (RNF) set is described. lt combines a high signal throughput (up to 90% around 1600 cm-1 and ≳80% between and 700 and 2700 cm-1) with a laser line suppression of 108-109. The filter set can be used to replace the first two dispersion stages in triple-stage Raman monochromators commonly employed in multichannel detection systems. This yields a gain in intensity of the detected Raman signal of a factor of 4. It is shown that in Raman spectrometers with a backscatter geometry, the filter set can also be used to optically couple the microscope and the spectrometer. This leads to a further increase in signal intensity of a factor of 3-4 as compared to the situation where a beam splitter is used. Additional advantages of the RNF set are the fact that signal throughput is almost polarization independent over a large spectral interval and that it offers the possibility to simultaneously record Stokes and anti-Stokes spectra.

  18. Towards high-throughput microfluidic Raman-activated cell sorting.

    Science.gov (United States)

    Zhang, Qiang; Zhang, Peiran; Gou, Honglei; Mou, Chunbo; Huang, Wei E; Yang, Menglong; Xu, Jian; Ma, Bo

    2015-09-21

    Raman-activated cell sorting (RACS) is a promising single-cell analysis technology that is able to identify and isolate individual cells of targeted type, state or environment from an isogenic population or complex consortium of cells, in a label-free and non-invasive manner. However, compared with those widely used yet labeling-required or staining-dependent cell sorting technologies such as FACS and MACS, the weak Raman signal greatly limits the further development of the existing RACS systems to achieve higher throughput. Strategies that can tackle this bottleneck include, first, improvement of Raman-acquisition efficiency and quality based on advanced Raman spectrometers and enhanced Raman techniques; second, development of novel microfluidic devices for cell sorting followed by integration into a complete RACS system. Exploiting these strategies, prototypes for a new generation of RACS have been demonstrated, such as flow-based OT-RACS, DEP-RACS, and SERS/CARS flow cytometry. Such high-throughput microfluidic RACS can provide biologists with a powerful single-cell analysis tool to explore the scientific questions or applications that have been beyond the reach of FACS and MACS.

  19. High-throughput microcavitation bubble induced cellular mechanotransduction

    Science.gov (United States)

    Compton, Jonathan Lee

    inhibitor to IP 3 induced Ca2+ release. This capability opens the development of a high-throughput screening platform for molecules that modulate cellular mechanotransduction. We have applied this approach to screen the effects of a small set of small molecules, in a 96-well plate in less than an hour. These detailed studies offer a basis for the design, development, and implementation of a novel high-throughput mechanotransduction assay to rapidly screen the effect of small molecules on cellular mechanotransduction at high throughput.

  20. High-Throughput Tools for Characterization of Antibody Epitopes

    DEFF Research Database (Denmark)

    Christiansen, Anders

    , it is important to characterize antibodies thoroughly. In parallel to the characterization of antibodies, it is also important to characterize the binding area that is recognized by the antibody, known as an epitope. With the development of new technologies, such as high-throughput sequencing (HTS....... In this study, these improvements were utilized to characterize epitopes at high resolution, i.e. determine the importance of each residue for antibody binding, for all major peanut allergens. Epitope reactivity among patients often converged on known epitope hotspots, however the binding patterns were somewhat...... multiple years. Taken together, the presented studies demonstrated new applications for the investigated techniques focusing on their utilization in epitope mapping. In the process, new insights were obtained into how antibodies recognize their targets in a major disease, i.e. food allergy....

  1. Single-platelet nanomechanics measured by high-throughput cytometry

    Science.gov (United States)

    Myers, David R.; Qiu, Yongzhi; Fay, Meredith E.; Tennenbaum, Michael; Chester, Daniel; Cuadrado, Jonas; Sakurai, Yumiko; Baek, Jong; Tran, Reginald; Ciciliano, Jordan C.; Ahn, Byungwook; Mannino, Robert G.; Bunting, Silvia T.; Bennett, Carolyn; Briones, Michael; Fernandez-Nieves, Alberto; Smith, Michael L.; Brown, Ashley C.; Sulchek, Todd; Lam, Wilbur A.

    2016-10-01

    Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.

  2. High-throughput antibody development and retrospective epitope mapping

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro

    Plant cell walls are composed of an interlinked network of polysaccharides, glycoproteins and phenolic polymers. When addressing the diverse polysaccharides in green plants, including land plants and the ancestral green algae, there are significant overlaps in the cell wall structures. Yet...... of green algae, during the development into land plants. Hence, there is a pressing need for rethinking the glycomic toolbox, by developing new and high-throughput (HTP) technology, in order to acquire information of the location and relative abundance of diverse cell wall polymers. In this dissertation......, there are noteworthy differences in the less evolved species of algae as compared to land plants. The dynamic process orchestrating the deposition of these biopolymers both in algae and higher plants, is complex and highly heterogeneous, yet immensely important for the development and differentiation of the cell...

  3. The Principals and Practice of Distributed High Throughput Computing

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The potential of Distributed Processing Systems to deliver computing capabilities with qualities ranging from high availability and reliability to easy expansion in functionality and capacity were recognized and formalized in the 1970’s. For more three decade these principals Distributed Computing guided the development of the HTCondor resource and job management system. The widely adopted suite of software tools offered by HTCondor are based on novel distributed computing technologies and are driven by the evolving needs of High Throughput scientific applications. We will review the principals that underpin our work, the distributed computing frameworks and technologies we developed and the lessons we learned from delivering effective and dependable software tools in an ever changing landscape computing technologies and needs that range today from a desktop computer to tens of thousands of cores offered by commercial clouds. About the speaker Miron Livny received a B.Sc. degree in Physics and Mat...

  4. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion....... The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery.......Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels...

  5. A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying potential new invariant TCR α chains.

    Science.gov (United States)

    Kitaura, Kazutaka; Shini, Tadasu; Matsutani, Takaji; Suzuki, Ryuji

    2016-10-11

    High-throughput sequencing of T cell receptor (TCR) genes is a powerful tool for analyses of antigen specificity, clonality and diversity of T lymphocytes. Here, we developed a new TCR repertoire analysis method using 454 DNA sequencing technology in combination with an adaptor-ligation mediated polymerase chain reaction (PCR). This method allows the amplification of all TCR genes without PCR bias. To compare gene usage, diversity and similarity of expressed TCR repertoires among individuals, we conducted next-generation sequencing (NGS) of TRA and TRB genes in peripheral blood mononuclear cells from 20 healthy human individuals. From a total of 267,037 sequence reads from 20 individuals, 149,216 unique sequence reads were identified. Preferential usage of several V and J genes were observed while some recombinations of TRAV with TRAJ appeared to be restricted. The extent of TCR diversity was not significantly different between TRA and TRB, while TRA repertoires were more similar between individuals than TRB repertoires were. The interindividual similarity of TRA depended largely on the frequent presence of shared TCRs among two or more individuals. A publicly available TRA had a near-germline TCR with a shorter CDR3. Notably, shared TRA sequences, especially those shared among a large number of individuals', often contained TCRα related with invariant TCRα derived from invariant natural killer T cells and mucosal-associated invariant T cells. These results suggest that retrieval of shared TCRs by NGS would be useful for the identification of potential new invariant TCRα chains. This NGS method will enable the comprehensive quantitative analysis of TCR repertoires at a clonal level.

  6. High-Throughput Genomics Enhances Tomato Breeding Efficiency

    Science.gov (United States)

    Barone, A; Di Matteo, A; Carputo, D; Frusciante, L

    2009-01-01

    Tomato (Solanum lycopersicum) is considered a model plant species for a group of economically important crops, such as potato, pepper, eggplant, since it exhibits a reduced genomic size (950 Mb), a short generation time, and routine transformation technologies. Moreover, it shares with the other Solanaceous plants the same haploid chromosome number and a high level of conserved genomic organization. Finally, many genomic and genetic resources are actually available for tomato, and the sequencing of its genome is in progress. These features make tomato an ideal species for theoretical studies and practical applications in the genomics field. The present review describes how structural genomics assist the selection of new varieties resistant to pathogens that cause damage to this crop. Many molecular markers highly linked to resistance genes and cloned resistance genes are available and could be used for a high-throughput screening of multiresistant varieties. Moreover, a new genomics-assisted breeding approach for improving fruit quality is presented and discussed. It relies on the identification of genetic mechanisms controlling the trait of interest through functional genomics tools. Following this approach, polymorphisms in major gene sequences responsible for variability in the expression of the trait under study are then exploited for tracking simultaneously favourable allele combinations in breeding programs using high-throughput genomic technologies. This aims at pyramiding in the genetic background of commercial cultivars alleles that increase their performances. In conclusion, tomato breeding strategies supported by advanced technologies are expected to target increased productivity and lower costs of improved genotypes even for complex traits. PMID:19721805

  7. High-throughput Saccharification assay for lignocellulosic materials.

    Science.gov (United States)

    Gomez, Leonardo D; Whitehead, Caragh; Roberts, Philip; McQueen-Mason, Simon J

    2011-07-03

    Polysaccharides that make up plant lignocellulosic biomass can be broken down to produce a range of sugars that subsequently can be used in establishing a biorefinery. These raw materials would constitute a new industrial platform, which is both sustainable and carbon neutral, to replace the current dependency on fossil fuel. The recalcitrance to deconstruction observed in lignocellulosic materials is produced by several intrinsic properties of plant cell walls. Crystalline cellulose is embedded in matrix polysaccharides such as xylans and arabinoxylans, and the whole structure is encased by the phenolic polymer lignin, that is also difficult to digest (1). In order to improve the digestibility of plant materials we need to discover the main bottlenecks for the saccharification of cell walls and also screen mutant and breeding populations to evaluate the variability in saccharification (2). These tasks require a high throughput approach and here we present an analytical platform that can perform saccharification analysis in a 96-well plate format. This platform has been developed to allow the screening of lignocellulose digestibility of large populations from varied plant species. We have scaled down the reaction volumes for gentle pretreatment, partial enzymatic hydrolysis and sugar determination, to allow large numbers to be assessed rapidly in an automated system. This automated platform works with milligram amounts of biomass, performing ball milling under controlled conditions to reduce the plant materials to a standardised particle size in a reproducible manner. Once the samples are ground, the automated formatting robot dispenses specified and recorded amounts of material into the corresponding wells of 96 deep well plate (Figure 1). Normally, we dispense the same material into 4 wells to have 4 replicates for analysis. Once the plates are filled with the plant material in the desired layout, they are manually moved to a liquid handling station (Figure 2

  8. High throughput modular chambers for rapid evaluation of anesthetic sensitivity

    Directory of Open Access Journals (Sweden)

    Eckmann David M

    2006-11-01

    Full Text Available Abstract Background Anesthetic sensitivity is determined by the interaction of multiple genes. Hence, a dissection of genetic contributors would be aided by precise and high throughput behavioral screens. Traditionally, anesthetic phenotyping has addressed only induction of anesthesia, evaluated with dose-response curves, while ignoring potentially important data on emergence from anesthesia. Methods We designed and built a controlled environment apparatus to permit rapid phenotyping of twenty-four mice simultaneously. We used the loss of righting reflex to indicate anesthetic-induced unconsciousness. After fitting the data to a sigmoidal dose-response curve with variable slope, we calculated the MACLORR (EC50, the Hill coefficient, and the 95% confidence intervals bracketing these values. Upon termination of the anesthetic, Emergence timeRR was determined and expressed as the mean ± standard error for each inhaled anesthetic. Results In agreement with several previously published reports we find that the MACLORR of halothane, isoflurane, and sevoflurane in 8–12 week old C57BL/6J mice is 0.79% (95% confidence interval = 0.78 – 0.79%, 0.91% (95% confidence interval = 0.90 – 0.93%, and 1.96% (95% confidence interval = 1.94 – 1.97%, respectively. Hill coefficients for halothane, isoflurane, and sevoflurane are 24.7 (95% confidence interval = 19.8 – 29.7%, 19.2 (95% confidence interval = 14.0 – 24.3%, and 33.1 (95% confidence interval = 27.3 – 38.8%, respectively. After roughly 2.5 MACLORR • hr exposures, mice take 16.00 ± 1.07, 6.19 ± 0.32, and 2.15 ± 0.12 minutes to emerge from halothane, isoflurane, and sevoflurane, respectively. Conclusion This system enabled assessment of inhaled anesthetic responsiveness with a higher precision than that previously reported. It is broadly adaptable for delivering an inhaled therapeutic (or toxin to a population while monitoring its vital signs, motor reflexes, and providing precise control

  9. Adaptation and validation of DNA synthesis detection by fluorescent dye derivatization for high-throughput screening.

    Science.gov (United States)

    Ranall, Max V; Gabrielli, Brian G; Gonda, Thomas J

    2010-05-01

    Cellular proliferation is fundamental to organism development, tissue renewal, and diverse disease states such as cancer. In vitro measurement of proliferation by high-throughput screening allows rapid characterization of the effects of small-molecule or genetic treatments on primary and established cell lines. Current assays that directly measure the cell cycle are not amenable to high-throughput processing and analysis. Here we report the adaptation of the chemical method for detecting DNA synthesis by 5-ethynyl-2'-deoxyuridine (EdU) incorporation into both high-throughput liquid handling and high-content imaging analysis. We demonstrate that chemical detection of EdU incorporation is effective for high-resolution analysis and quantitation of DNA synthesis by high-content imaging. To validate this assay platform we used treatments of MCF10A cells with media supplements and pharmacological inhibitors that are known to affect cell proliferation. Treatments with specific kinase inhibitors indicate that EGF and serum stimulation employs both the mitogen extracellular kinase (MEK)/extracellular-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K)/AKT signaling networks. As described here, this method is fast, reliable, and inexpensive and yields robust data that can be easily interpreted.

  10. High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique.

    Science.gov (United States)

    Collado, Javier; Platas, Gonzalo; Paulus, Barbara; Bills, Gerald F

    2007-06-01

    High-throughput bacterial cultivation has improved the recovery of slow-growing and previously uncultured bacteria. The most robust high-throughput methods are based on techniques of 'dilution to extinction' or 'extinction culturing'. The low-density partitioning of CFUs in tubes or microwells exploits the fact that the number of culturable species typically increases as inoculum density decreases. Bacterial high-throughput culturing methods were adapted to fungi to generate large numbers of fungal extinction cultures. The efficiency of extinction culturing was assessed by comparing it with particle filtration and automated plate-streaking. Equal volumes of particle suspension from five litter collections of the New Zealand forest tree Elaeocarpus dentatus were compared. Dilute particle suspensions of litter were pipetted into 48-well tissue culture plates containing 1 mL of agar medium per well. Particle volumes from the same samples were applied to continuous agar surfaces in Omnitray plates by automated streaking, and fungal diversity and richness were measured. The spectrum of isolates was assessed by microscopy and sequencing of the ITS or 28S region of the rRNA gene. Estimates of species diversity between the two methods were comparable, but extinction culturing increased species richness. Compared with plating methods using continuous surfaces, extinction culturing distributes fungal propagules over partitioned surfaces. Intercolony interactions are reduced, permitting longer incubation times, and colony initiation and recovery improved. Effort to evaluate and recover colonies from fungal isolation plates was substantially reduced.

  11. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy.

    Science.gov (United States)

    Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred

    2011-10-01

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  12. Miniature high-throughput chemosensing of yield, ee, and absolute configuration from crude reaction mixtures

    Science.gov (United States)

    Bentley, Keith W.; Zhang, Peng; Wolf, Christian

    2016-01-01

    High-throughput experimentation (HTE) has emerged as a widely used technology that accelerates discovery and optimization processes with parallel small-scale reaction setups. A high-throughput screening (HTS) method capable of comprehensive analysis of crude asymmetric reaction mixtures (eliminating product derivatization or isolation) would provide transformative impact by matching the pace of HTE. We report how spontaneous in situ construction of stereodynamic metal probes from readily available, inexpensive starting materials can be applied to chiroptical chemosensing of the total amount, enantiomeric excess (ee), and absolute configuration of a wide variety of amines, diamines, amino alcohols, amino acids, carboxylic acids, α-hydroxy acids, and diols. This advance and HTS potential are highlighted with the analysis of 1 mg of crude reaction mixtures of a catalytic asymmetric reaction. This operationally simple assay uses a robust mix-and-measure protocol, is amenable to microscale platforms and automation, and provides critical time efficiency and sustainability advantages over traditional serial methods. PMID:26933684

  13. A primer on high-throughput computing for genomic selection.

    Science.gov (United States)

    Wu, Xiao-Lin; Beissinger, Timothy M; Bauck, Stewart; Woodward, Brent; Rosa, Guilherme J M; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2011-01-01

    High-throughput computing (HTC) uses computer clusters to solve advanced computational problems, with the goal of accomplishing high-throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long, and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general-purpose computation on a graphics processing unit provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin-Madison, which can be leveraged for genomic selection, in terms of central processing unit capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general-purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of marker panels to realized

  14. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer.

    Science.gov (United States)

    Lim, Jong-Min; Swami, Archana; Gilson, Laura M; Chopra, Sunandini; Choi, Sungyoung; Wu, Jun; Langer, Robert; Karnik, Rohit; Farokhzad, Omid C

    2014-06-24

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production.

  15. High-throughput profiling in the hematopoietic system.

    Science.gov (United States)

    Fabbri, Muller; Spizzo, Riccardo; Calin, George A

    2010-01-01

    The expression profile of microRNAs significantly varies in physiological and pathological conditions. Increasing evidence from the literature shows that abnormalities of the miRNome (defined as the full spectrum of miRNAs expressed in a genome) occur in almost all human diseases and have important pathogenetic, prognostic, and therapeutic implications. The study of the aberrancies of the miRNome has become possible by developing high-throughput profiling techniques that allow the simultaneous detection of differences in miRNA expression between normal and pathologic tissues or simply tissues at different stages of differentiation. These techniques provide the basis for further investigations focused on the miRNAs, which are most frequently and widely differentially expressed under the different investigated conditions.

  16. Interactive Visual Analysis of High Throughput Text Streams

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Potok, Thomas E [ORNL; Patton, Robert M [ORNL; Goodall, John R [ORNL; Maness, Christopher S [ORNL; Senter, James K [ORNL; Potok, Thomas E [ORNL

    2012-01-01

    The scale, velocity, and dynamic nature of large scale social media systems like Twitter demand a new set of visual analytics techniques that support near real-time situational awareness. Social media systems are credited with escalating social protest during recent large scale riots. Virtual communities form rapidly in these online systems, and they occasionally foster violence and unrest which is conveyed in the users language. Techniques for analyzing broad trends over these networks or reconstructing conversations within small groups have been demonstrated in recent years, but state-of- the-art tools are inadequate at supporting near real-time analysis of these high throughput streams of unstructured information. In this paper, we present an adaptive system to discover and interactively explore these virtual networks, as well as detect sentiment, highlight change, and discover spatio- temporal patterns.

  17. Applications of High-Throughput Nucleotide Sequencing (PhD)

    DEFF Research Database (Denmark)

    Waage, Johannes

    The recent advent of high throughput sequencing of nucleic acids (RNA and DNA) has vastly expanded research into the functional and structural biology of the genome of all living organisms (and even a few dead ones). With this enormous and exponential growth in biological data generation come......-sequencing, a study of the effects on alternative RNA splicing of KO of the nonsense mediated RNA decay system in Mus, using digital gene expression and a custom-built exon-exon junction mapping pipeline is presented (article I). Evolved from this work, a Bioconductor package, spliceR, for classifying alternative...... splicing events and coding potential of isoforms from full isoform deconvolution software, such as Cufflinks (article II), is presented. Finally, a study using 5’-end RNA-seq for alternative promoter detection between healthy patients and patients with acute promyelocytic leukemia is presented (article III...

  18. High throughput sequencing reveals a novel fabavirus infecting sweet cherry.

    Science.gov (United States)

    Villamor, D E V; Pillai, S S; Eastwell, K C

    2017-03-01

    The genus Fabavirus currently consists of five species represented by viruses that infect a wide range of hosts but none reported from temperate climate fruit trees. A virus with genomic features resembling fabaviruses (tentatively named Prunus virus F, PrVF) was revealed by high throughput sequencing of extracts from a sweet cherry tree (Prunus avium). PrVF was subsequently shown to be graft transmissible and further identified in three other non-symptomatic Prunus spp. from different geographical locations. Two genetic variants of RNA1 and RNA2 coexisted in the same samples. RNA1 consisted of 6,165 and 6,163 nucleotides, and RNA2 consisted of 3,622 and 3,468 nucleotides.

  19. High throughput heme assay by detection of chemiluminescence of reconstituted horseradish peroxidase.

    Science.gov (United States)

    Takahashi, Shigekazu; Masuda, Tatsuru

    2009-06-01

    In living organisms, heme is an essential molecule for various biological functions. Recent studies also suggest that heme functions as organelle-derived signal that regulates fundamental cell processes. Furthermore, estimation of heme is widely used for studying various blood disorders. In this regard, development of a rapid, sensitive, and high throughput heme assay has been sought. The most frequently used method of measuring heme by pyridine hemochrome is time, labor, and material intensive, and therefore limiting in its utility for large scale, high throughput analysis. Recently, we reported alternative method that is sensitive and specific to heme, which is based on the ability of horseradish peroxidase (HRP) apo-enzyme to reconstitute with heme to form an active holo-enzyme. Here, we developed high throughput heme assay by performing reactions on multi-well plate with highly sensitive chemiluminescence detection reagents. Detection of chemiluminescence in charged coupled device (CCD)-based gel doc apparatus enables simultaneous measurement of multiple samples. Furthermore, the high sensitivity of this assay allowed a direct measurement of heme in solvent extracts after dilution. This assay is sensitive, quick, provides a large dynamic range, and is well suited for large-scale analysis of heme extracted from minute amount of samples.

  20. A bioimage informatics platform for high-throughput embryo phenotyping.

    Science.gov (United States)

    Brown, James M; Horner, Neil R; Lawson, Thomas N; Fiegel, Tanja; Greenaway, Simon; Morgan, Hugh; Ring, Natalie; Santos, Luis; Sneddon, Duncan; Teboul, Lydia; Vibert, Jennifer; Yaikhom, Gagarine; Westerberg, Henrik; Mallon, Ann-Marie

    2016-10-14

    High-throughput phenotyping is a cornerstone of numerous functional genomics projects. In recent years, imaging screens have become increasingly important in understanding gene-phenotype relationships in studies of cells, tissues and whole organisms. Three-dimensional (3D) imaging has risen to prominence in the field of developmental biology for its ability to capture whole embryo morphology and gene expression, as exemplified by the International Mouse Phenotyping Consortium (IMPC). Large volumes of image data are being acquired by multiple institutions around the world that encompass a range of modalities, proprietary software and metadata. To facilitate robust downstream analysis, images and metadata must be standardized to account for these differences. As an open scientific enterprise, making the data readily accessible is essential so that members of biomedical and clinical research communities can study the images for themselves without the need for highly specialized software or technical expertise. In this article, we present a platform of software tools that facilitate the upload, analysis and dissemination of 3D images for the IMPC. Over 750 reconstructions from 80 embryonic lethal and subviable lines have been captured to date, all of which are openly accessible at mousephenotype.org Although designed for the IMPC, all software is available under an open-source licence for others to use and develop further. Ongoing developments aim to increase throughput and improve the analysis and dissemination of image data. Furthermore, we aim to ensure that images are searchable so that users can locate relevant images associated with genes, phenotypes or human diseases of interest. © The Author 2016. Published by Oxford University Press.