WorldWideScience

Sample records for high thermal inertia

  1. Mars Thermal Inertia

    Science.gov (United States)

    2001-01-01

    This image shows the global thermal inertia of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 5000 orbits of the MGS mapping mission. The pattern of inertia variations observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.

  2. Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia

    Science.gov (United States)

    Edwards, C.S.; Bandfield, J.L.; Christensen, P.R.; Fergason, R.L.

    2009-01-01

    We investigate high thermal inertia surfaces using the Mars Odyssey Thermal Emission Imaging System (THEMIS) nighttime temperature images (100 m/pixel spatial sampling). For this study, we interpret any pixel in a THEMIS image with a thermal inertia over 1200 J m-2 K-1 s-1/2 as "bedrock" which represents either in situ rock exposures or rock-dominated surfaces. Three distinct morphologies, ranked from most to least common, are associated with these high thermal inertia surfaces: (1) valley and crater walls associated with mass wasting and high surface slope angles; (2) floors of craters with diameters >25 km and containing melt or volcanics associated with larger, high-energy impacts; and (3) intercrater surfaces with compositions significantly more mafic than the surrounding regolith. In general, bedrock instances on Mars occur as small exposures (less than several square kilometers) situated in lower-albedo (inertia (>350 J m-2 K-1 s-1/2), and relatively dust-free (dust cover index <0.95) regions; however, there are instances that do not follow these generalizations. Most instances are concentrated in the southern highlands, with very few located at high latitudes (poleward of 45oN and 58oS), suggesting enhanced mechanical breakdown probably associated with permafrost. Overall, Mars has very little exposed bedrock with only 960 instances identified from 75oS to 75oN with likely <3500 km2 exposed, representing???1% of the total surface area. These data indicate that Mars has likely undergone large-scale surface processing and reworking, both chemically and mechanically, either destroying or masking a majority of the bedrock exposures on the planet. Copyright 2009 by the American Geophysical Union.

  3. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  4. Thermal inertia and surface heterogeneity on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  5. Observing the variation of asteroid thermal inertia with heliocentric distance

    Science.gov (United States)

    Rozitis, B.; Green, S. F.; MacLennan, E.; Emery, J. P.

    2018-06-01

    Thermal inertia is a useful property to characterize a planetary surface, since it can be used as a qualitative measure of the regolith grain size. It is expected to vary with heliocentric distance because of its dependence on temperature. However, no previous investigation has conclusively observed a change in thermal inertia for any given planetary body. We have addressed this by using NEOWISE data and the Advanced Thermophysical Model to study the thermophysical properties of the near-Earth asteroids (1036) Ganymed, (1580) Betulia, and (276 049) 2002 CE26 as they moved around their highly eccentric orbits. We confirm that the thermal inertia values of Ganymed and 2002 CE26 do vary with heliocentric distance, although the degree of variation observed depends on the spectral emissivity assumed in the thermophysical modelling. We also confirm that the thermal inertia of Betulia did not change for three different observations obtained at the same heliocentric distance. Depending on the spectral emissivity, the variations for Ganymed and 2002 CE26 are potentially more extreme than that implied by theoretical models of heat transfer within asteroidal regoliths, which might be explained by asteroids having thermal properties that also vary with depth. Accounting for this variation reduces a previously observed trend of decreasing asteroid thermal inertia with increasing size, and suggests that the surfaces of small and large asteroids could be much more similar than previously thought. Furthermore, this variation can affect Yarkovsky orbital drift predictions by a few tens of per cent.

  6. Delamination detection in reinforced concrete using thermal inertia

    International Nuclear Information System (INIS)

    Del Grande, N K; Durbin, P F.

    1998-01-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  7. Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia

    Science.gov (United States)

    Putzig, N. E.; Mellon, M. T.

    2005-12-01

    Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.

  8. Coupling diffusion and maximum entropy models to estimate thermal inertia

    Science.gov (United States)

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  9. Thermal mapping of mountain slopes on Mars by application of a Differential Apparent Thermal Inertia technique

    Science.gov (United States)

    Kubiak, Marta; Mège, Daniel; Gurgurewicz, Joanna; Ciazela, Jakub

    2015-04-01

    Thermal inertia (P) is an important property of geologic surfaces that essentially describes the resistance to temperature (T) change as heat is added. Most remote sensing data describe the surface only. P is a volume property that is sensitive to the composition of the subsurface, down to a depth reached by the diurnal heating wave. As direct measurement of P is not possible on Mars, thermal inertia models (Fergason et al., 2006) and deductive methods (the Apparent Thermal Inertia: ATI and Differential Apparent Thermal Inertia: DATI) are used to estimate it. ATI is computed as (1 - A) / (Tday - Tnight), where A is albedo. Due to the lack of the thermal daytime images with maximum land surface temperature (LST) and nighttime images with minimum LST in Valles Marineris region, the ATI method is difficult to apply. Instead, we have explored the DATI technique (Sabol et al., 2006). DATI is calculated based on shorter time (t) intervals with a high |ΔT/Δt| gradient (in the morning or in the afternoon) and is proportional to the day/night temperature difference (ATI), and hence P. Mars, which exhibits exceptionally high |ΔT/Δt| gradients due to the lack of vegetation and thin atmosphere, is especially suitable for the DATI approach. Here we present a new deductive method for high-resolution differential apparent thermal inertia (DATI) mapping for areas of highly contrasted relief (e.g., Valles Marineris). Contrary to the thermal inertia models, our method takes local relief characteristics (slopes and aspects) into account. This is crucial as topography highly influences A and ΔT measurements. In spite of the different approach, DATI values in the flat areas are in the same range as the values obtained by Fergason et al. (2006). They provide, however, more accurate information for geological interpretations of hilly or mountainous terrains. Sabol, D. E., Gillespie, A. R., McDonald, E., and Danilina, I., 2006. Differential Thermal Inertia of Geological Surfaces. In

  10. Apparent thermal inertia and the surface heterogeneity of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.

  11. Thermal inertia mapping of Mars from 60°S to 60°N

    Science.gov (United States)

    Palluconi, Frank Don; Kieffer, Hugh H.

    1981-01-01

    Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is . The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than  being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.

  12. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2012-09-20

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A

  13. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.

    2012-01-01

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer

  14. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  15. Sulfates on Mars: TES Observations and Thermal Inertia Data

    Science.gov (United States)

    Cooper, C. D.; Mustard, J. F.

    2001-05-01

    The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the

  16. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  17. Moments of inertia in 162Yb at very high spins

    International Nuclear Information System (INIS)

    Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.

    1976-01-01

    Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate

  18. Thermal inertia of eclipsing binary asteroids : the role of component shape

    NARCIS (Netherlands)

    Mueller, Michael; van de Weijgaert, Marlies

    2015-01-01

    Thermal inertia controls the temperature distribution on asteroid surfaces. This is of crucial importance to the Yarkovsky effect and for the planning of spacecraft operations on or near the surface. Additionally, thermal inertia is a sensitive indicator for regolith structure.A uniquely direct way

  19. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements.

    Science.gov (United States)

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4  m 2 to ∼10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m -2  K -1  s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  20. Thermal inertia in thermal infrared: porosity and chemical components of rocks; Inercia termica no infravermelho termal: porosidade e componentes quimicos de rochas

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Admilson P.; Ehlers, Ricardo Sandes [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Vitorello, Icaro [Instituto de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    1995-12-31

    The effect of porosity, and the relation between thermal inertia values and chemical components were determined. The thermal inertia values and chemical components were determined. The thermal inertia determinations were performed using radiometric observations, in the range 8 to 14 {mu}, of the surface temperature variations of the sample, induced by an incident heat flux. The results show that the increase in porosity tends to reduce the thermal inertia values, when the rock is in a dry state. In the water saturation state, the inertia also tends to show small values, only for porous rocks with thermal inertia values larger than the water values. The acid rocks show thermal inertia values smaller than those of the basic rocks. The intermediate and basic rocks show strong positive correlation between thermal inertia and Si O{sub 2}. 7 refs., 3 figs

  1. Atmospheric effects on the remote determination of thermal inertia on Mars

    International Nuclear Information System (INIS)

    Haberle, R.M.; Jakosky, B.M.

    1991-01-01

    Measurements of the IR brightness temperature at the Martian surface at many different times of day are presently compared with temperatures predicted by thermal models which allow sunlight to reach the surface unattenuated, in order to determine the thermal inertia of the uppermost 1-10 cm of the Martian surface. The consequences of the assumptions made are assessed in view of results from a different thermal model which invokes radiation-transfer through a dusty CO2 atmosphere, as well as sensible heat-exchange with the surface. Smaller thermal inertias imply smaller particle sizes; the results obtained suggest that low thermal-inertia regions consist of 5-micron, rather than 50-micron, particle sizes. 52 refs

  2. Proactive control for solar energy exploitation: A german high-inertia building case study

    International Nuclear Information System (INIS)

    Michailidis, Iakovos T.; Baldi, Simone; Pichler, Martin F.; Kosmatopoulos, Elias B.; Santiago, Juan R.

    2015-01-01

    Highlights: • Solar gains exploitation by utilizing large glass facades and concrete core thermal energy storing capacity. • Efficient Building Energy Management in a well-insulated modern building construction. • Energy consumption reduction by maintaining user comfort. • High inertia large scale office building test case, located in Germany. - Abstract: Energy efficient passive designs and constructions have been extensively studied in the last decades as a way to improve the ability of a building to store thermal energy, increase its thermal mass, increase passive insulation and reduce heat losses. However, many studies show that passive thermal designs alone are not enough to fully exploit the potential for energy efficiency in buildings: in fact, harmonizing the active elements for indoor thermal comfort with the passive design of the building can lead to further improvements in both energy efficiency and comfort. These improvements can be achieved via the design of appropriate Building Optimization and Control (BOC) systems, a task which is more complex in high-inertia buildings than in conventional ones. This is because high thermal mass implies a high memory, so that wrong control decisions will have negative repercussions over long time horizons. The design of proactive control strategies with the capability of acting in advance of a future situation, rather than just reacting to current conditions, is of crucial importance for a full exploitation of the capabilities of a high-inertia building. This paper applies a simulation-assisted control methodology to a high-inertia building in Kassel, Germany. A simulation model of the building is used to proactively optimize, using both current and future information about the external weather condition and the building state, a combined criterion composed of the energy consumption and the thermal comfort index. Both extensive simulation as well as real-life experiments performed during the unstable German

  3. Thermal Inertia of near-Earth Asteroids and Strength of the Yarkovsky Effect

    NARCIS (Netherlands)

    Delbo, Marco; Dell'Oro, A.; Harris, A. W.; Mottola, S.; Mueller, M.

    2006-01-01

    Thermal inertia is the physical parameter that controls the temperature distribution over the surface of an asteroid. It affects the strength of the Yarkovsky effect, which causes orbital drift of km-sized asteroids and is invoked to explain the delivery of near-Earth asteroids (NEAs) from the main

  4. High-inertia drive motors and their starting characteristics

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The motor for a large reactor coolant pump failed while starting. The motor-application and the motor-failure are discussed in detail. A review of applications of motors for high-inertia drives shows that a motor designed and built to today's industry-standards might be overstressed while experiencing abnormal starting conditions, even though its protection is in accord with accepted practice. The inter-relationship between motor characteristics and characteristics of various types of protection are discussed, briefly. The review concludes that motor specifications and motor standards should be augmented. 1 ref

  5. Analysis of an Attached Sunspace with a Thermal Inertia Floor

    Directory of Open Access Journals (Sweden)

    María José Suárez López

    2018-05-01

    Full Text Available An attached sunspace is a partially or fully glazed enclosure, usually located on the first floor, facing south (in the Northern Hemisphere and adjacent to a conditioned room. Because of the length and orientation of the glazed area, the temperature in the sunspace is usually higher than outside the building. As a Trombe–Mitchel wall, the sunspace has a considerable mass that accumulates thermal energy, but in this case the thermal mass is located in the floor. This capacity to accumulate thermal energy confers the attached sunspace features beyond passive insulation. The sunspace studied in this paper is part of an experimental building located in the North of Spain that was built in the frame of the so-called ARFRISOL project. It consists of a south-facing glazed exterior wall with both clear glass and semi-transparent photovoltaic panels, an intermediate space with a thick layer of sand over a concrete floor, and a partially glazed interior wall. In this paper, a three-dimensional computational model has been implemented to analyse the thermal behaviour inside the sunspace. This analysis takes into account, among other factors, the effects of sun position, incident solar irradiation and temperature both inside and outside.

  6. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  7. AUTONOMOUS HEAT SUPPLY SYSTEM OF CONSUMERS WITH CONSIDERABLE DIFFERENT THERMAL INERTIA

    Directory of Open Access Journals (Sweden)

    Berzan V.P.

    2012-04-01

    Full Text Available There are examined problems occurring at the adoption of the decentralized heat energy supply system of the group of objects, which contains buildings with thermal inertia differed in thousands of times one from the other. It is studied the influence of water volume of hot-water boiler on greenhouse dynamics. It is conducted the comparison between the use ob biomass and natural gas boilers for such as objects.

  8. Application of the voltage biased digital relay for the optimal protection of high inertia drive induction motors

    International Nuclear Information System (INIS)

    Choi, D. B.

    1999-01-01

    This paper describes typical protection schemes for large-size high inertia drive motor that are generally rotor thermal limited. Difficult and variable starting conditions of the large-size high inertia drive motor and compromises in the selection and setting of the protective devices are frequently encountered. The motors that typically encounter severe starting duty and present difficulties in achieving full motor protection are reactor coolant pumps (RCPs), blowers and compressors. For difficult starting conditions that are encountered by the large-size high inertia drive motors, state-of-the-art computer based calculations are capable of providing realistic predictions of the band of margin available for applying the protective relay. Based on the analysis of starting characteristics of large-size high inertia drive motors, this paper recommends that the optimal protection scheme for high inertia drive motors for nuclear power plants can be achieved by using the voltage biased digital relay instead of a speed switch and conventional overcurrent relays. (author)

  9. Modeling the Effect of Grain Size Mixing on Thermal Inertia Values Derived from Diurnal and Seasonal THEMIS Measurements

    Science.gov (United States)

    McCarty, C.; Moersch, J.

    2017-12-01

    Sedimentary processes have slowed over Mars' geologic history. Analysis of the surface today can provide insight into the processes that may have affected it over its history. Sub-resolved checkerboard mixtures of materials with different thermal inertias (and therefore different grain sizes) can lead to differences in thermal inertia values inferred from night and day radiance observations. Information about the grain size distribution of a surface can help determine the degree of sorting it has experienced or it's geologic maturity. Standard methods for deriving thermal inertia from measurements made with THEMIS can give values for the same location that vary by as much as 20% between scenes. Such methods make the assumption that each THEMIS pixel contains material that has uniform thermophysical properties. Here we propose that if a mixture of small and large particles is present within a pixel, the inferred thermal inertia will be strongly dominated by whichever particle is warmer at the time of the measurement because the power radiated by a surface is proportional (by the Stefan-Boltzmann law) to the fourth power of its temperature. This effect will result in a change in thermal inertia values inferred from measurements taken at different times of day and night. Therefore, we expect to see correlation between the magnitude of diurnal variations in inferred thermal inertia values and the degree of grain size mixing for a given pixel location. Preliminary work has shown that the magnitude of such diurnal variation in inferred thermal inertias is sufficient to detect geologically useful differences in grain size distributions. We hypothesize that at least some of the 20% variability in thermal inertias inferred from multiple scenes for a given location could be attributed to sub-pixel grain size mixing rather than uncertainty inherent to the experiment, as previously thought. Mapping the difference in inferred thermal inertias from day and night THEMIS

  10. An inverse method for calculation of thermal inertia and heat gain in air conditioning and refrigeration systems

    International Nuclear Information System (INIS)

    Fayazbakhsh, M.A.; Bagheri, F.; Bahrami, M.

    2015-01-01

    Highlights: • An inverse method is proposed to calculate thermal inertia in HVAC-R systems. • Real-time thermal loads are estimated using the proposed intelligent algorithm. • Calculation algorithm is validated with on-site measurements. • Freezer duty cycle data are extracted only based on temperature measurements. - Abstract: A new inverse method is proposed for estimation of thermal inertia and heat gain in air conditioning and refrigeration systems using on-site temperature measurements. The method is applied on a walk-in freezer room of a restaurant in Surrey, British Columbia, Canada during one week of its regular operation. The thermal inertia and instantaneous heat gain are calculated and the results are validated using actual information of the materials inside the freezer room. The proposed method can be implemented in intelligent control systems designed for new and existing HVAC-R systems to improve their overall energy efficiency and reduce their environmental impacts

  11. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  12. Mapping the Thermal Inertia of Saturn’s Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; PIlorz, S. H.; Showalter, M. R.

    2013-10-01

    We use data from Cassini's Composite Infrared Spectrometer to map out the thermal response of Saturn's ring particles passing through Saturn's shadow and to determine variations in ring thermal inertia. CIRS records far infrared radiation in three separate detectors, each of which covers a distinct wavelength range. In this work, we analyze rings spectra recorded at focal plane 1 (FP1), as its wavelength response (16.7-1000 microns) is well suited to detecting direct thermal emission from Saturn's rings. The thermal budget of the rings is typically dominated by solar radiation. When ring particles enter Saturn’s shadow this source of energy is abruptly cut off with a consequential drop in ring temperature. Likewise, temperatures rebound when particles exit the shadow. To characterize these heating and cooling events, FP1 was repeatedly scanned across the main rings. Each scan was offset from either the ingress or egress shadow boundary by an amount corresponding to a fraction of a Keplerian orbit. By resampling these scans onto a common radial grid, we can map out the rings’ response to the abrupt changes in insolation at shadow ingress and egress. Periods near equinox represent a unique situation. During this time the Sun's disk crosses the ring plane and its rays strike the rings at zero incidence. Solar heating is virtually absent, and thermal radiation from Saturn and sunlight reflected by Saturn dominate the thermal environment. While ring temperature variations at equinox are much more subtle, they represent temperature contrasts that vary at the unique timescale corresponding to variations in Saturn contributions to the rings’ thermal budget. By analyzing CIRS data at a variety of locations and epochs, we will map out thermal inertia across the rings and attempt to tease out structural information about the particles which comprise Saturn’s rings. This presentation will report upon our progress towards these ends. This research was carried out at the

  13. Using Simplified Thermal Inertia to Determine the Theoretical Dry Line in Feature Space for Evapotranspiration Retrieval

    Directory of Open Access Journals (Sweden)

    Sujuan Mi

    2015-08-01

    Full Text Available With the development of quantitative remote sensing, regional evapotranspiration (ET modeling based on the feature space has made substantial progress. Among those feature space based evapotranspiration models, accurate determination of the dry/wet lines remains a challenging task. This paper reports the development of a new model, named DDTI (Determination of Dry line by Thermal Inertia, which determines the theoretical dry line based on the relationship between the thermal inertia and the soil moisture. The Simplified Thermal Inertia value estimated in the North China Plain is consistent with the value measured in the laboratory. Three evaluation methods, which are based on the comparison of the locations of the theoretical dry line determined by two models (DDTI model and the heat energy balance model, the comparison of ET results, and the comparison of the evaporative fraction between the estimates from the two models and the in situ measurements, were used to assess the performance of the new model DDTI. The location of the theoretical dry line determined by DDTI is more reasonable than that determined by the heat energy balance model. ET estimated from DDTI has an RMSE (Root Mean Square Error of 56.77 W/m2 and a bias of 27.17 W/m2; while the heat energy balance model estimated ET with an RMSE of 83.36 W/m2 and a bias of −38.42 W/m2. When comparing the coeffcient of determination for the two models with the observations from Yucheng, DDTI demonstrated ET with an R2 of 0.9065; while the heat energy balance model has an R2 of 0.7729. When compared with the in situ measurements of evaporative fraction (EF at Yucheng Experimental Station, the ET model based on DDTI reproduces the pixel scale EF with an RMSE of 0.149, much lower than that based on the heat energy balance model which has an RMSE of 0.220. Also, the EF bias between the DDTI model and the in situ measurements is 0.064, lower than the EF bias of the heat energy balance model

  14. Correlations Between Olivine Abundance and Thermal Inertia: Implications for Global Weathering and/or Alteration on Mars

    Science.gov (United States)

    Hamilton, V. E.; McDowell, M. L.; Koeppen, W. C.

    2010-03-01

    TES data show no global trend between thermal inertia and olivine abundance. But it is premature to conclude that all dark surfaces were once more mafic OR that olivine is not preferentially removed from olivine-enriched outcrops as they erode.

  15. Newton's second law versus modified-inertia MOND: A test using the high-latitude effect

    International Nuclear Information System (INIS)

    Ignatiev, A. Yu.

    2008-01-01

    The modified-inertia MOND is an approach that proposes a change in Newton's second law at small accelerations as an alternative to dark matter. Recently it was suggested that this approach can be tested in terrestrial laboratory experiments. One way of doing the test is based on the static high-latitude equinox modified-inertia effect: around each equinox date, 2 spots emerge on the Earth where static bodies experience spontaneous displacement due to the violation of Newton's second law required by the modified-inertia MOND. Here, a detailed theory of this effect is developed and estimates of the magnitude of the signal due to the effect are obtained. The expected displacement of a mirror in a gravitational-wave interferometer is found to be about 10 -14 m. Some experimental aspects of the proposal are discussed

  16. Prediction of temperature and thermal inertia effect in the maturation stage and stockpiling of a large composting mass

    OpenAIRE

    Barrena Gómez, Raquel

    2006-01-01

    A macroscopic non-steady state energy balance was developed and solved for a composting pile of source-selected organic fraction of municipal solid waste during the maturation stage (13,500 kg of compost). Simulated temperature profiles correlated well with temperature experimental data (ranging from 50 to 70 °C) obtained during the maturation process for more than 50 days at full scale. Thermal inertia effect usually found in composting plants and associated to the stockpiling of large compo...

  17. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Energy Technology Data Exchange (ETDEWEB)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com [Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India)

    2016-08-15

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  18. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Directory of Open Access Journals (Sweden)

    Sachin Kaothekar

    2016-08-01

    Full Text Available I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  19. Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Thongchart Kerdphol

    2017-05-01

    Full Text Available Renewable energy sources (RESs, such as wind and solar generations, equip inverters to connect to the microgrids. These inverters do not have any rotating mass, thus lowering the overall system inertia. This low system inertia issue could affect the microgrid stability and resiliency in the situation of uncertainties. Today’s microgrids will become unstable if the capacity of RESs become larger and larger, leading to the weakening of microgrid stability and resilience. This paper addresses a new concept of a microgrid control incorporating a virtual inertia system based on the model predictive control (MPC to emulate virtual inertia into the microgrid control loop, thus stabilizing microgrid frequency during high penetration of RESs. The additional controller of virtual inertia is applied to the microgrid, employing MPC with virtual inertia response. System modeling and simulations are carried out using MATLAB/Simulink® software. The simulation results confirm the superior robustness and frequency stabilization effect of the proposed MPC-based virtual inertia control in comparison to the fuzzy logic system and conventional virtual inertia control in a system with high integration of RESs. The proposed MPC-based virtual inertia control is able to improve the robustness and frequency stabilization of the microgrid effectively.

  20. Influence of the Thermal Inertia in the European Simplified Procedures for the Assessment of Buildings’ Energy Performance

    Directory of Open Access Journals (Sweden)

    Luca Evangelisti

    2014-07-01

    Full Text Available This study aims to highlight the importance of thermal inertia in buildings. Nowadays, it is possible to use energy analysis software to simulate the building energy performance. Considering Italian standards, these analyses are based on the UNI TS 11300 that defines the procedures for the national implementation of the UNI EN ISO 13790. These standards require an energy analysis under steady-state condition, underestimating the thermal inertia of the building. In order to understand the inertial behavior of walls, a cubic Test-Cell was modelled through the dynamic calculation code TRNSYS and three different wall types were tested. Different stratigraphies, characterized by the same thermal transmittance value, composed by massive elements and insulating layers in different order, were simulated. Through TRNSYS, it was possible to define maximum surface temperatures and to calculate thermal lag between maximum values, both external and internal. Moreover, the attenuation between external surface temperatures and internal ones during summer (July was calculated. Finally, the comparison between Test-Cell’s annual energy demands, performed by using a commercial code based on the Italian standard UNITS 11300 and the dynamic code, TRNSYS, was carried out.

  1. Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study

    International Nuclear Information System (INIS)

    Aste, Niccolò; Leonforte, Fabrizio; Manfren, Massimiliano; Mazzon, Manlio

    2015-01-01

    Highlights: • We perform a parametric simulation study on a calibrated building energy model. • We introduce adaptive shadings and night free cooling in simulations. • We analyze the effect of thermal capacity on the parametric simulations results. • We recognize that cooling demand and savings scales linearly with thermal capacity. • We assess the advantage of medium-heavy over medium and light configurations. - Abstract: The reduction of energy consumption for heating and cooling services in the existing building stock is a key challenge for global sustainability today and buildings’ envelopes retrofit is one the main issues. Most of the existing buildings’ envelopes have low levels of insulation, high thermal losses due to thermal bridges and cracks, absence of appropriate solar control, etc. Further, in building refurbishment, the importance of a system level approach is often undervalued in favour of simplistic “off the shelf” efficient solutions, focused on the reduction of thermal transmittance and on the enhancement of solar control capabilities. In many cases, the importance of the dynamic thermal properties is often neglected or underestimated and the effective thermal capacity is not properly considered as one of the design parameters. The research presented aims to critically assess the influence of the dynamic thermal properties of the building fabric (roof, walls and floors) on sensible heating and cooling energy demand for a case study. The case study chosen is an existing office building which has been retrofitted in recent years and whose energy model has been calibrated according to the data collected in the monitoring process. The research illustrates the variations of the sensible thermal energy demand of the building in different retrofit scenarios, and relates them to the variations of the dynamic thermal properties of the construction components. A parametric simulation study has been performed, encompassing the use of

  2. Inaction inertia

    NARCIS (Netherlands)

    van Putten, M.; Zeelenberg, M.; van Dijk, E.; Tykocinski, O.E.

    2013-01-01

    Inaction inertia occurs when bypassing an initial action opportunity has the effect of decreasing the likelihood that subsequent similar action opportunities will be taken. This overview of the inaction inertia literature demonstrates the impact of inaction inertia on decision making. Based on

  3. Numerical Analysis of the Impact of Thermal Inertia from the Furniture / Indoor Content and Phase Change Materials on the Building Energy Flexibility

    DEFF Research Database (Denmark)

    Johra, Hicham; Heiselberg, Per Kvols; Le Dréau, Jérôme

    investigating the influence of the different types of thermal inertia on buildings energy flexibility. Although the insulation level and thermal mass of a building envelope are the dominant parameters, it appears that indoor content cannot be neglected for lightweight structure building simulations. Finally...

  4. Dynamic model tracking design for low inertia, high speed permanent magnet ac motors.

    Science.gov (United States)

    Stewart, P; Kadirkamanathan, V

    2004-01-01

    Permanent magnet ac (PMAC) motors have existed in various configurations for many years. The advent of rare-earth magnets and their associated highly elevated levels of magnetic flux makes the permanent magnet motor attractive for many high performance applications from computer disk drives to all electric racing cars. The use of batteries as a prime storage element carries a cost penalty in terms of the unladen weight of the vehicle. Minimizing this cost function requires the minimum electric motor size and weight to be specified, while still retaining acceptable levels of output torque. This tradeoff can be achieved by applying a technique known as flux weakening which will be investigated in this paper. The technique allows the speed range of a PMAC motor to be greatly increased, giving a constant power range of more than 4:1. A dynamic model reference controller is presented which has advantages in ease of implementation, and is particularly suited to dynamic low inertia applications such as clutchless gear changing in high performance electric vehicles. The benefits of this approach are to maximize the torque speed envelope of the motor, particularly advantageous when considering low inertia operation. The controller is examined experimentally, confirming the predicted performance.

  5. EFFECT OF FINITE LARMOR RADIUS CORRECTIONS ON THE THERMAL INSTABILITY OF THERMALLY CONDUCTING VISCOUS PLASMA WITH HALL CURRENT AND ELECTRON INERTIA

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shweta; Sharma, Prerana [Physics Department, Ujjain Engineering College, Ujjain, MP-456010 (India); Kaothekar, Sachin [Physics Department, Mahakal Institute of Technology, Ujjain, MP-456664 (India); Chhajlani, R. K., E-mail: sackaothekar@gmail.com [Retired, School of Studies in Physics, Vikram University Ujjain, MP-456010 (India)

    2016-10-01

    The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modified thermal instability and stability are discussed in the different cases of interest.

  6. Optimal Cable Tension Distribution of the High-Speed Redundant Driven Camera Robots Considering Cable Sag and Inertia Effects

    Directory of Open Access Journals (Sweden)

    Yu Su

    2014-03-01

    Full Text Available Camera robots are high-speed redundantly cable-driven parallel manipulators that realize the aerial panoramic photographing. When long-span cables and high maneuverability are involved, the effects of cable sags and inertias on the dynamics must be carefully dealt with. This paper is devoted to the optimal cable tension distribution (OCTD for short of the camera robots. Firstly, each fast varying-length cable is discretized into some nodes for computing the cable inertias. Secondly, the dynamic equation integrated with the cable inertias is set up regarding the large-span cables as catenaries. Thirdly, an iterative optimization algorithm is introduced for the cable tension distribution by using the dynamic equation and sag-to-span ratios as constraint conditions. Finally, numerical examples are presented to demonstrate the effects of cable sags and inertias on determining tensions. The results justify the convergence and effectiveness of the algorithm. In addition, the results show that it is necessary to take the cable sags and inertias into consideration for the large-span manipulators.

  7. An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques

    Directory of Open Access Journals (Sweden)

    Eriita Jones

    2014-06-01

    Full Text Available Thermal inertia and albedo provide information on the distribution of surface materials on Mars. These parameters have been mapped globally on Mars by the Thermal Emission Spectrometer (TES onboard the Mars Global Surveyor. Two-dimensional clusters of thermal inertia and albedo reflect the thermophysical attributes of the dominant materials on the surface. In this paper three automated, non-deterministic, algorithmic classification methods are employed for defining thermophysical units: Expectation Maximisation of a Gaussian Mixture Model; Iterative Self-Organizing Data Analysis Technique (ISODATA; and Maximum Likelihood. We analyse the behaviour of the thermophysical classes resulting from the three classifiers, operating on the 2007 TES thermal inertia and albedo datasets. Producing a rigorous mapping of thermophysical classes at ~3 km/pixel resolution remains important for constraining the geologic processes that have shaped the Martian surface on a regional scale, and for choosing appropriate landing sites. The results from applying these algorithms are compared to geologic maps, surface data from lander missions, features derived from imaging, and previous classifications of thermophysical units which utilized manual (and potentially more time consuming classification methods. These comparisons comprise data suitable for validation of our classifications. Our work shows that a combination of the algorithms—ISODATA and Maximum Likelihood—optimises the sensitivity to the underlying dataspace, and that new information on Martian surface materials can be obtained by using these methods. We demonstrate that the algorithms used here can be applied to define a finer partitioning of albedo and thermal inertia for a more detailed mapping of surface materials, grain sizes and thermal behaviour of the Martian surface and shallow subsurface, at the ~3 km scale.

  8. On the thermal inertia and time constant of single-family houses

    Energy Technology Data Exchange (ETDEWEB)

    Hedbrant, J.

    2001-08-01

    Since the 1970s, electricity has become a common heating source in Swedish single-family houses. About one million small houses can use electricity for heating, about 600.000 have electricity as the only heating source, A liberalised European electricity market would most likely raise the Swedish electricity prices during daytime on weekdays and lower it at other times. In the long run, electrical heating of houses would be replaced by fuels, but in the shorter perspective, other strategies may be considered. This report evaluates the use of electricity for heating a dwelling, or part of it, at night when both the demand and the price are low. The stored heat is utilised in the daytime some hours later, when the electricity price is high. Essential for heat storage is the thermal time constant. The report gives a simple theoretical framework for the calculation of the time constant for a single-family house with furniture. Furthermore the comfort time constant, that is, the time for a house to cool down from a maximum to a minimum acceptable temperature, is derived. Two theoretical model houses are calculated, and the results are compared to data from empirical studies in three inhabited test houses. The results show that it was possible to store about 8 kWh/K in a house from the seventies and about 5 kWh/K in a house from the eighties. The time constants were 34 h and 53 h, respectively. During winter conditions with 0 deg C outdoor, the 'comfort' time constants with maximum and minimum indoor temperatures of 23 and 20 deg C were 6 h and 10 h. The results indicate that the maximum load-shifting potential of an average single family house is about 1 kw during 16 daytime hours shifted into 2 kw during 8 night hours. Upscaled to the one million Swedish single-family houses that can use electricity as a heating source, the maximum potential is 1000 MW daytime time-shifted into 2000 MW at night.

  9. Prediction of temperature and thermal inertia effect in the maturation stage and stockpiling of a large composting mass

    International Nuclear Information System (INIS)

    Barrena, R.; Canovas, C.; Sanchez, A.

    2006-01-01

    A macroscopic non-steady state energy balance was developed and solved for a composting pile of source-selected organic fraction of municipal solid waste during the maturation stage (13,500 kg of compost). Simulated temperature profiles correlated well with temperature experimental data (ranging from 50 to 70 deg. C) obtained during the maturation process for more than 50 days at full scale. Thermal inertia effect usually found in composting plants and associated to the stockpiling of large composting masses could be predicted by means of this simplified energy balance, which takes into account terms of convective, conductive and radiation heat dissipation. Heat losses in a large composting mass are not significant due to the similar temperatures found at the surroundings and at the surface of the pile (ranging from 15 to 40 deg. C). In contrast, thermophilic temperature in the core of the pile was maintained during the whole maturation process. Heat generation was estimated with the static respiration index, a parameter that is typically used to monitor the biological activity and stability of composting processes. In this study, the static respiration index is presented as a parameter to estimate the metabolic heat that can be generated according to the biodegradable organic matter content of a compost sample, which can be useful in predicting the temperature of the composting process

  10. Thermal inertia and radiating average Temperature. A brief analysis of some causes of discomfort; Inercia Termica y Temperatura media radiante. Un breve analisis de algunas causas de disconfort

    Energy Technology Data Exchange (ETDEWEB)

    Arroba, M.

    2008-07-01

    Radiant average temperature in walls is as important as dry air temperature to achieve thermal comfort of users of a local. An excessive discrepancy between these levels, or an asymmetric distribution of the surface temperature of fences, may cause localized thermal discomfort, an effect impossible to compensate by rising dry air temperature. Thermal inertia and its concentration must be properly studied in order to handle this parameters, inside or outside the building, on both sides of the cladding or none depending on the weather, the bio climatic strategies used, heating and air conditioning systems and planned use of the building. (Author)

  11. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  12. Thermal Inertia Performance Evaluation of Light-Weighted Construction Space Envelopes Using Phase Change Materials in Mexico City’s Climate

    Directory of Open Access Journals (Sweden)

    Adriana Lira-Oliver

    2017-10-01

    Full Text Available The present study’s main objective was to determine the applicability of organic phase change materials (PCMs in a building’s envelope construction system for the passive provision of comfortable indoor thermal conditions over one year based on thermal inertia in Mexico City. Research on PCMs relate mainly to their use in building envelope construction systems to reduce energy consumption for mechanical indoor thermal conditioning—not in passive systems. Computer simulation results of mean indoor temperature variations are presented with the objective of evaluating these construction systems’ thermal inertia properties. In the present study, dynamic thermal simulations (DTS, using EnergyPlus software, of ten 1 m3 test units with envelope construction systems combining organic PCMs of different fusion temperatures with conventional materials were performed. Based on the results, it is concluded that the implementation of organic PCMs with a fusion temperature around 25 °C in combination with aerated concrete in a space envelope results in the highest number of hours the indoor temperatures remain within the comfort range throughout a typical year, due to the decrement of indoor temperature oscillations and, to a large extent, to thermal lag.

  13. High-inertia hermetically sealed main coolant pump for next generation passive nuclear power plants

    International Nuclear Information System (INIS)

    Kujawski, Joseph M.; Nair, Bala R.; Vijuk, Ronald P.

    2003-01-01

    The main coolant pump for the Westinghouse AP1000 advanced passive nuclear power plant represents a significant scale-up in power, flow capacity, and physical size from its predecessor designed for the smaller AP600 power plant. More importantly, the AP1000 pump incorporates several innovative features that contribute to improved efficiency, operational reliability, and plant safety. The features include an internals design which provides the highest hydraulic efficiency achieved in commercial nuclear power plant applications. Another feature is the use of a distributed inertial mass system in the rotating assembly to develop the high rotational inertia to meet the extended system flow coastdown requirement for core heat removal in the event of loss of power to the pumps. This advanced canned motor pump also incorporates the latest development in higher operating voltage, providing plant designers with the ability to eliminate plant transformers and operate directly on the site electrical bus in many cases. The salient features of the pump design and performance data are presented in this paper. (author)

  14. Calculation of concentration fields of high-inertia aerosol particles in the flow past a cylindrical fibre

    Science.gov (United States)

    Zaripov, T. S.; Gilfanov, A. K.; Zaripov, S. K.; Rybdylova, O. D.; Sazhin, S. S.

    2018-01-01

    The behaviour of high-inertia aerosol particles’ concentration fields in stationary gas suspension flows around a cylinder is investigated using a numerical solution to the Navier-Stokes equations and the fully Lagrangian approach for four Stokes numbers (Stk = 0.1, 1, 4, 10) and three Reynolds numbers (Re = 1, 10, 100). It has been shown that the points of maximum particle concentration along each trajectory shift downstream both when Stk and/or Re increase.

  15. WAYS TO MANAGE HEATING INERTIA

    Directory of Open Access Journals (Sweden)

    E. V. Biloshytskyi

    2017-08-01

    Full Text Available Purpose. The research paper proposes to estimate the effect of heat inertia of the water heating system, in transient operation modes, on the temperature condition in the passenger car, as well as to offer technical solutions intended to reduce the heating system inertia effect and to maintain a stable temperature condition in the passenger car premises in transitional modes of the heating system. Methodology. The author developed the method for controlling the heat transfer of heating system pipes with the help of regulating casing. To control the heating system and the heat transfer of heating pipes, two types of temperature control sensors were used in the passenger car: certain sensors interacted with regulatory casings, while the others interacted with high-voltage tubular heating element control devices. To assess the efficiency of heat interchange regulation of heating pipes and the heating system control, with installed regulating casings, the operation of the heating system with regulating casings and two types of sensors was mathematically modelled. Mathematical modelling used the experimental test data. The results of experimental tests and mathematical modelling were compared. Findings. Currently in operated passenger cars, control of heating appliances is not constructively provided. Automatic maintenance of the set temperature in a passenger car is limited to switching on and off of high-voltage tubular heating elements. The use of regulating casings on heating pipes allows reducing the effects of heat inertia and maintaining stable thermal conditions in a passenger car, using the heating system as a heat accumulator, and also provides the opportunity to realize an individual control of air temperature in the compartment. Originality. For the first time, the paper studied the alternative ways of regulating the temperature condition in a passenger car. Using of the heating system as a heat accumulator. Practical value. The

  16. High thermal load component

    International Nuclear Information System (INIS)

    Fuse, Toshiaki; Tachikawa, Nobuo.

    1996-01-01

    A cooling tube made of a pure copper is connected to the inner portion of an armour (heat resistant member) made of an anisotropic carbon/carbon composite (CFC) material. The CFC material has a high heat conductivity in longitudinal direction of fibers and has low conductivity in perpendicular thereto. Fibers extending in the armour from a heat receiving surface just above the cooling tube are directly connected to the cooling tube. A portion of the fibers extending from a heat receiving surface other than portions not just above the cooling tube is directly bonded to the cooling tube. Remaining fibers are disposed so as to surround the cooling tube. The armour and the cooling tube are soldered using an active metal flux. With such procedures, high thermal load components for use in a thermonuclear reactor are formed, which are excellent in a heat removing characteristic and hardly causes defects such as crackings and peeling. (I.N.)

  17. Proactive control for solar energy exploitation : A german high-inertia building case study

    NARCIS (Netherlands)

    Michailidis, IT; Baldi, S.; Pichler, MF; Kosmatopoulos, EB; Santiago, JR

    2015-01-01

    Energy efficient passive designs and constructions have been extensively studied in the last decades as a way to improve the ability of a building to store thermal energy, increase its thermal mass, increase passive insulation and reduce heat losses. However, many studies show that passive thermal

  18. High thermal load structure

    International Nuclear Information System (INIS)

    Tsujimura, Seiichi; Toyota, Masahiko.

    1995-01-01

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.)

  19. High thermal load structure

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Seiichi; Toyota, Masahiko

    1995-06-16

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.).

  20. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft

    Directory of Open Access Journals (Sweden)

    Junhui ZHANG

    2018-01-01

    Full Text Available Electro-hydrostatic actuator (EHA pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies cannot be ignored when analyzing the cylinder block balance. A large tilting inertia moment will make the cylinder block tilt away from the valve plate, resulting in severe wear and significantly increased leakage. This paper presents an analytical expression for the tilting inertia moment on the cylinder block by means of vector analysis. In addition, a high-speed test rig was built up, and experiments on an EHA pump prototype were carried out at high speeds of up to 10,000 r/min. The predicted nature of the cylinder block tilt at high speeds corresponds closely to the witness marks on the dismantled EHA pump prototype. It is suggested that more attention should be given to the tilting inertia moment acting on the cylinder block of an EHA pump since both wear and leakage flow between the cylinder block and the valve plate are very much dependent on this tilting moment.

  1. High Thermal Conductivity Composite Structures

    National Research Council Canada - National Science Library

    Bootle, John

    1999-01-01

    ... applications and space based radiators. The advantage of this material compared to competing materials that it can be used to fabricate high strength, high thermal conductivity, relatively thin structures less than 0.050" thick...

  2. Identifying ephemeral and perennial stream reaches using apparent thermal inertia for an ungauged basin: The Rio Salado, Central New Mexico

    Science.gov (United States)

    Night and day temperature images from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing images are used to identify ephemeral and perennial stream reaches for use in the calibration of an integrated hydrologic model of an ungauged basin. The concept is based on a...

  3. Inertia and Decision Making.

    Science.gov (United States)

    Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Li, Jiahui

    2016-01-01

    Decision inertia is the tendency to repeat previous choices independently of the outcome, which can give rise to perseveration in suboptimal choices. We investigate this tendency in probability-updating tasks. Study 1 shows that, whenever decision inertia conflicts with normatively optimal behavior (Bayesian updating), error rates are larger and decisions are slower. This is consistent with a dual-process view of decision inertia as an automatic process conflicting with a more rational, controlled one. We find evidence of decision inertia in both required and autonomous decisions, but the effect of inertia is more clear in the latter. Study 2 considers more complex decision situations where further conflict arises due to reinforcement processes. We find the same effects of decision inertia when reinforcement is aligned with Bayesian updating, but if the two latter processes conflict, the effects are limited to autonomous choices. Additionally, both studies show that the tendency to rely on decision inertia is positively associated with preference for consistency.

  4. Gross shell structure of moments of inertia

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-01-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits

  5. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  6. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    Science.gov (United States)

    Wood, S. E.; Paige, D. A.

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  7. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems

    DEFF Research Database (Denmark)

    Zhu, Jiebei; Guerrero, Josep M.; Hung, William

    2014-01-01

    A generic Inertia Emulation Controller (INEC) scheme for Multi-Terminal Voltage-Source-Converter based HVDC (VSC-MTDC) systems is proposed and presented in this paper. The proposed INEC can be incorporated in any Grid-side Voltage-Source-Converter (GVSC) station, allowing the MTDC terminal...

  8. High-G Thermal Characterization Centrifuge

    Data.gov (United States)

    Federal Laboratory Consortium — High-G testing of thermal components enables improved understanding of operating behavior under military-relevant environments. The High-G Thermal Characterization...

  9. High thermal conductivity materials for thermal management applications

    Science.gov (United States)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    2018-05-29

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  10. Growth, unemployment and wage inertia

    OpenAIRE

    Raurich, Xavier; Sorolla, Valeri

    2014-01-01

    We introduce wage setting via efficiency wages in the neoclassical one-sector growth model to study the growth effects of wage inertia. We compare the dynamic equilibrium of an economy with wage inertia with the equilibrium of an economy without wage inertia. We show that wage inertia affects the long run employment rate and that the transitional dynamics of the main economic variables will be different because wages are a state variable when wage inertia is introduced. In particular, we show...

  11. Social inertia and diversity in collaboration networks

    Science.gov (United States)

    Ramasco, J. J.

    2007-04-01

    Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.

  12. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  13. High thermal expansion, sealing glass

    Science.gov (United States)

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  14. High thermal load receiving heat plate

    International Nuclear Information System (INIS)

    Shibutani, Jun-ichi; Shibayama, Kazuhito; Yamamoto, Keiichi; Uchida, Takaho.

    1993-01-01

    The present invention concerns a high thermal load heat receiving plate such as a divertor plate of a thermonuclear device. The high thermal load heat receiving plate of the present invention has a cooling performance capable of suppressing the temperature of an armour tile to less than a threshold value of the material against high thermal loads applied from plasmas. Spiral polygonal pipes are inserted in cooling pipes at a portion receiving high thermal loads in the high temperature load heat receiving plate of the present invention. Both ends of the polygonal pipes are sealed by lids. An area of the flow channel in the cooling pipes is thus reduced. Heat conductivity on the cooling surface of the cooling pipes is increased in the high thermal load heat receiving plate having such a structure. Accordingly, temperature elevation of the armour tile can be suppressed. (I.S.)

  15. Kπ=0+ band moment of inertia anomaly

    International Nuclear Information System (INIS)

    Zeng, J.Y.; Wu, C.S.; Cheng, L.; Lin, C.Z.; China Center of Advanced Science and Technology

    1990-01-01

    The moments of inertia of K π =0 + bands in the well-deformed nuclei are calculated by a particle-number-conserving treatment for the cranked shell model. The very accurate solutions to the low-lying K π =0 + bands are obtained by making use of an effective K truncation. Calculations show that the main contribution to the moments of inertia comes from the nucleons in the intruding high-j orbits. Considering the fact that no free parameter is involved in the calculation and no extra inert core contribution is added, the agreement between the calculated and the observed moments of inertia of 0 + bands in 168 Er is very satisfactory

  16. Implementation and validation of synthetic inertia support employing series produced electric vehicles

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Martinenas, Sergejus; Zecchino, Antonio

    2017-01-01

    The high integration of renewable energy resources (inverter connected) replacing conventional generation reduces the available rotational inertia in the power system. This introduces the need for faster regulation services including synthetic inertia services. These services could potentially...... be provided by electric vehicles due to their fast response capability. This work evaluates and experimentally shows the capability and limits of EVs in providing synthetic inertia services. Three series produced EVs are used during the experiment. The results show the performance of the EVs in providing...... synthetic inertia. It shows also that, on the contrary of synchronous inertia, synthetic inertia might lead to unstable frequency behavior....

  17. Moderate resolution thermal mapping of mars: The channel terrain around the Chryse basin

    International Nuclear Information System (INIS)

    Christensen, P.R.; Kieffer, H.H.

    1979-01-01

    Moderate resolution (approx.30 km) thermal inertia estimates have been made for several regions in the northern hemosphere of Mars. Examples of these maps are presented here for the region O 0 -45 0 N, O 0 -90 0 W. The thermal inertia of Kasei Vallis is found to be significantly higher than that of the surrounding terrain. The assumption of a uniform grain size surface gives maximum diameters of 1.0 mm inside and 0.05mm outside Kasei Vallis for the surface materials. high inertia regions are well correlated with low albedo (Aapprox.0.14) regions. Three large channels in the Oxia Palus quandrangle also have high inertia floors. There is some indication that the thermal inertia increases toward the mouth of one of these channels. The Chryse and Acidalia basins have uniform high inertia surfaces with no decrease in inertia as distance increases from the major channels. There are numerous craters in the region which have high inertia-low albedo features on the crater floor. This correlation has been observed for many other craters on Mars, both from Mariner 9 and Viking data. A possible explanation is the accumulation of coarse-grained, windblown material within the craters. Average grain sizes of these materials range from 0.5 to 1.1. mm, corresponding to medium to coarse sand. The Viking 1 landing site is located in the lowest inertia region within the area studied which met the latitude and elevation capabilities of that vehicle

  18. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  19. Treating inertia in passive microbead rheology.

    Science.gov (United States)

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina

    2012-02-01

    The dynamic modulus G(*) of a viscoelastic medium is often measured by following the trajectory of a small bead subject to Brownian motion in a method called "passive microbead rheology." This equivalence between the positional autocorrelation function of the tracer bead and G(*) is assumed via the generalized Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original result of the GSER and what is observed. What is more, the discrepancy from the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD derived by naïvely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be

  20. Thermal conductivity of high purity vanadium

    International Nuclear Information System (INIS)

    Jung, W.D.

    1975-01-01

    The thermal conductivity, Seebeck coefficient, and electrical resistivity of four high-purity vanadium samples were measured over the temperature range 5 to 300 0 K. The highest purity sample had a resistance ratio (rho 273 /rho 4 . 2 ) of 1524. The highest purity sample had a thermal conductivity maximum of 920 W/mK at 9 0 K and had a thermal conductivity of 35 W/mK at room temperature. At low temperatures, the thermal resistivity was limited by the scattering of electrons by impurities and phonons. The thermal resistivity of vanadium departed from Matthiessen's rule at low temperatures. The electrical resistivity and Seebeck coefficient of high purity vanadium showed no anomalous behavior above 130 0 K. The intrinsic electrical resistivity at low temperatures was due primarily to interband scattering of electrons. The Seebeck coefficient was positive from 10 to 240 0 K and had a maximum which was dependent upon sample purity

  1. Mirror benders for high thermal loading

    International Nuclear Information System (INIS)

    Bailey, W.; Vickery, A.P.

    1983-01-01

    The thermal conditions in high power mirrors can be very complex and the exact calculation of their thermal behaviour requires very detailed calculations. However by making some simplifying assumptions it is possible to make an analysis which indicates the sort of performance that can be expected. Further by consideration of the simplifying assumptions it is possible to see how the design may contain features to mitigate the effects that occur in the real world. A simple treatment of thermal perturbations in mirror benders is presented. The design features which can help a bender to operate with a high thermal flux are looked at. In conclusion, the way to proceed to higher thermal loadings when passive methods prove inadequate is suggested. (author)

  2. Free piston inertia compressor

    Science.gov (United States)

    Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  3. Thermal characteristics of highly compressed bentonite

    International Nuclear Information System (INIS)

    Sueoka, Tooru; Kobayashi, Atsushi; Imamura, S.; Ogawa, Terushige; Murata, Shigemi.

    1990-01-01

    In the disposal of high level radioactive wastes in strata, it is planned to protect the canisters enclosing wastes with buffer materials such as overpacks and clay, therefore, the examination of artificial barrier materials is an important problem. The concept of the disposal in strata and the soil mechanics characteristics of highly compressed bentonite as an artificial barrier material were already reported. In this study, the basic experiment on the thermal characteristics of highly compressed bentonite was carried out, therefore, it is reported. The thermal conductivity of buffer materials is important because the possibility that it determines the temperature of solidified bodies and canisters is high, and the buffer materials may cause the thermal degeneration due to high temperature. Thermophysical properties are roughly divided into thermodynamic property, transport property and optical property. The basic principle of measured thermal conductivity and thermal diffusivity, the kinds of the measuring method and so on are explained. As for the measurement of the thermal conductivity of highly compressed bentonite, the experimental setup, the procedure, samples and the results are reported. (K.I.)

  4. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  5. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    International Nuclear Information System (INIS)

    Deng, W.; Killeen, T.L.; Burns, A.G.; Roble, R.G.; Slavin, J.A.; Wharton, L.E.

    1993-01-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere

  6. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Therapeutic Inertia and Treatment Intensification.

    Science.gov (United States)

    Josiah Willock, Robina; Miller, Joseph B; Mohyi, Michelle; Abuzaanona, Ahmed; Muminovic, Meri; Levy, Phillip D

    2018-01-29

    This review aims to emphasize how therapeutic inertia, the failure of clinicians to intensify treatment when blood pressure rises or remains above therapeutic goals, contributes to suboptimal blood pressure control in hypertensive populations. Studies reveal that the therapeutic inertia is quite common and contributes to suboptimal blood pressure control. Quality improvement programs and standardized approaches to support antihypertensive treatment intensification are ways to combat therapeutic inertia. Furthermore, programs that utilize non-physician medical professionals such as pharmacists and nurses demonstrate promise in mitigating the effects of this important problem. Therapeutic inertia impedes antihypertensive management and requires a broad effort to reduce its effects. There is an ongoing need for renewed focus and research in this area to improve hypertension control.

  9. Collective inertia in paired systems

    International Nuclear Information System (INIS)

    Arve, P.O.; Bertsch, G.F.; Michigan State Univ., East Lansing

    1988-01-01

    Two definitions of the collective inertia are examined. One of them was recently proposed and applied in a calculation of exotic radioactivity. The other expression is the Inglis cranking formula. It is shown that the new formula corresponds to rapid collective motion while the cranking corresponds to slow collective motion. It is also seen that the two forms of the inertia differ only in the choice of the collective momentum. (orig.)

  10. High thermal conductivity connector having high electrical isolation

    Science.gov (United States)

    Nieman, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  11. Thermal conductivity of highly porous mullite material

    International Nuclear Information System (INIS)

    Barea, Rafael; Osendi, Maria Isabel; Ferreira, Jose M.F.; Miranzo, Pilar

    2005-01-01

    The thermal diffusivity of highly porous mullite materials (35-60 vol.% porosity) has been measured up to 1000 deg C by the laser flash method. These materials were fabricated by a direct consolidation method based on the swelling properties of starch granules in concentrated aqueous suspensions and showed mainly spherical shaped pores of about 30 μm in diameter. From the point of view of heat conduction, they behave as a bi-phase material of voids dispersed in the continuous mullite matrix. The temperature dependence of thermal conductivity for the different porosities was modeled by a simple equation that considers the contribution to heat conduction of the mullite matrix and the gas inside the pores, as well as the radiation. The thermal conductivity of the matrix was taken from the measurements done in a dense mullite while the conductivity in the voids was assumed to be that of the testing atmosphere

  12. Moments of inertia of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.

  13. Thermal interface pastes nanostructured for high performance

    Science.gov (United States)

    Lin, Chuangang

    Thermal interface materials in the form of pastes are needed to improve thermal contacts, such as that between a microprocessor and a heat sink of a computer. High-performance and low-cost thermal pastes have been developed in this dissertation by using polyol esters as the vehicle and various nanoscale solid components. The proportion of a solid component needs to be optimized, as an excessive amount degrades the performance, due to the increase in the bond line thickness. The optimum solid volume fraction tends to be lower when the mating surfaces are smoother, and higher when the thermal conductivity is higher. Both a low bond line thickness and a high thermal conductivity help the performance. When the surfaces are smooth, a low bond line thickness can be even more important than a high thermal conductivity, as shown by the outstanding performance of the nanoclay paste of low thermal conductivity in the smooth case (0.009 mum), with the bond line thickness less than 1 mum, as enabled by low storage modulus G', low loss modulus G" and high tan delta. However, for rough surfaces, the thermal conductivity is important. The rheology affects the bond line thickness, but it does not correlate well with the performance. This study found that the structure of carbon black is an important parameter that governs the effectiveness of a carbon black for use in a thermal paste. By using a carbon black with a lower structure (i.e., a lower DBP value), a thermal paste that is more effective than the previously reported carbon black paste was obtained. Graphite nanoplatelet (GNP) was found to be comparable in effectiveness to carbon black (CB) pastes for rough surfaces, but it is less effective for smooth surfaces. At the same filler volume fraction, GNP gives higher thermal conductivity than carbon black paste. At the same pressure, GNP gives higher bond line thickness than CB (Tokai or Cabot). The effectiveness of GNP is limited, due to the high bond line thickness. A

  14. Mass and Inertia Parameters for Nuclear Fission

    International Nuclear Information System (INIS)

    Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.

    1969-01-01

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  15. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  16. From resistance to relational inertia

    DEFF Research Database (Denmark)

    Scheuer, John Damm

    -network-theory as a point of departure a new concept – relational inertia – is developed. In this view change agents are theorized as translators who interacts with humans as well as non-humans (objects) in order to construct different types of socio-technical systems which are constructed to perform certain “wished...... inertia that had to be handled in order to succeed with constructing a performative socio-technical risk-management system in practice. Finally it is discussed how this view supplements the resistance to change view and other views with a focus on barriers to change....

  17. Inertia thermonuclear device

    International Nuclear Information System (INIS)

    Madarame, Haruki; Nakamura, Norio; Oomura, Hiroshi.

    1983-01-01

    Purpose: To enable effective recovery of the thermonuclear reaction energy and effective protection of a cylinder metal against thermal destruction by forming a uniform and stable liquid metal wall to the inside of a cylindrical member. Constitution: Cylindrical body having a lateral axis is rotatably supported so that a liquid metal wall for use in the wet wall type thermonuclear device is formed centrifugally. A liquid metal injection port for injecting the liquid metal to the cylindrical member is disposed to the lateral axis and a liquid metal exit for flowing out the injected liquid metal is disposed to the body of the cylindrical member, so as to form a moving liquid metal layer flowing from the injection port through the inner circumferential surface of the cylindrical member to the liquid metal exit port. Then, the liquid metal is centrifugally forced to the inner surface of the cylindrical body to form a uniform and stable liquid metal wall at the inner surface of the cylindrical body, whereby the reaction energy can effectively be recovered and the cylinder metal can effectively be protected against thermal destruction. (Yoshihara, H.)

  18. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which ca...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  19. Moment of Inertia by Differentiation

    Science.gov (United States)

    Rizcallah, Joseph A.

    2015-01-01

    The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…

  20. Frequency Inertia Response Control of SCESS-DFIG under Fluctuating Wind Speeds Based on Extended State Observers

    Directory of Open Access Journals (Sweden)

    Dongyang Sun

    2018-04-01

    Full Text Available Insufficient frequency regulation capability and system inertia reduction are common problems encountered in a power grid with high wind power penetration, mainly due to the reason that the rotor energy in doubly fed induction generators (DFIGs is isolated by the grid side converters (GSCs, and also due to the randomness and intermittence of wind power which are not as stable as traditional thermal power sources. In this paper, the frequency inertia response control of a DFIG system under variable wind speeds was investigated. First, a DFIG system topology with rotor-side supercapacitor energy storage system (SCESS-DFIG was introduced. Then a control strategy for frequency inertia response of SCESS-DFIG power grid under fluctuating wind speed was designed, with two extended state observers (ESOs which estimate the mechanical power captured by the DFIG and the required inertia response power at the grid frequency drops, respectively. Based on one inconstant wind speed model and the SCESS-DFIG system model adopting the control strategy established, one power grid system consisting of three SCESS-DFIGs with different wind speed trends and a synchronous generator was simulated. The simulation results verified the effectiveness of the SCESS-DFIG system structure and the control strategy proposed.

  1. Phylogenetic inertia and Darwin's higher law.

    Science.gov (United States)

    Shanahan, Timothy

    2011-03-01

    The concept of 'phylogenetic inertia' is routinely deployed in evolutionary biology as an alternative to natural selection for explaining the persistence of characteristics that appear sub-optimal from an adaptationist perspective. However, in many of these contexts the precise meaning of 'phylogenetic inertia' and its relationship to selection are far from clear. After tracing the history of the concept of 'inertia' in evolutionary biology, I argue that treating phylogenetic inertia and natural selection as alternative explanations is mistaken because phylogenetic inertia is, from a Darwinian point of view, simply an expected effect of selection. Although Darwin did not discuss 'phylogenetic inertia,' he did assert the explanatory priority of selection over descent. An analysis of 'phylogenetic inertia' provides a perspective from which to assess Darwin's view. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. On the origin of inertia

    International Nuclear Information System (INIS)

    Culetu, H.

    1990-09-01

    A dynamical origin to the Minkowski geometry is suggested in this paper. The Minkowski internal (-x α x α ) 1/2 plays the role of the fifth dimension. We found the energy-momentum vector p μ (associated to a ''motion in scale'') of a ''free'' relativistic particle in position-dependent. When x i and ''t'' are not independent, we are naturally led to the law of inertia. (author). 10 refs

  3. Exploration of porous SiC nanostructures as thermal insulator with high thermal stability and low thermal conductivity

    Institute of Scientific and Technical Information of China (English)

    Peng; WAN; Jingyang; WANG

    2016-01-01

    The crucial challenge for current nanoscale thermal insulation materials,such as Al2O3 and SiO2 aerogel composites,is to solve the trade-off between extremely low thermal conductivity and unsatisfied thermal stability.Typical high-temperature ceramic SiC possesses excellent mechanical properties and

  4. Optical Thermal Characterization Enables High-Performance Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  5. Thermal conductivity in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Castello, D.J.

    1990-01-01

    A measuring procedure to obtain the electrical resistivity, thermal conductivity and thermoelectric power of samples of low conductivity has been developed. The setup was designed to allow the removal of the sample in clean fashion, so that further heat treatments could be performed, and therefore no adhesives were used in the mounting of the thermocouples or heat sinks, etc. The heat equation has been analyzed with time-dependent boundary conditions, with the purpose of developing a dynamic measuring method which avoids the long delays involved in reaching thermal equilibrium above 30K. Based on this analysis, the developed measuring method allows a precise and reliable measurements, in a continuous fashion, for temperatures above 25K. The same setup is used in a stationary mode at low temperatures, so the sample needs to be mounted only once. κ(T) has been measured in two ceramic samples of La 2 CuO 4 : the first semiconducting, the other superconducting (SC) as a consequence of an oxygen annealing. Both exhibit a strong thermal resistivity due to defects, though lower in the SC, where two maxima are observed and are attributed to an AF ordering: T N ' ≅ 40K and T N '' ≅ 240K. The low temperature dependence is T 1 .6 and T 2 .3 respectively. It was interpreted that the former sample presents a greater dispersion due to localized excitations, characteristic of amorphouus materials, 'tunneling two-level systems' (TS). A third syntherized sample of CuO exhibits a typical behaviour of an insulator, with T 2 .6 at low temperatures, a maximum at 40K and a decrease in T -1 at high temperatures. κ(T) in a SC sample of La 1 .85Sr 1 .15CuO 4 with T c =35.5K has also been measured, observing a small increase below T c because of the diminishing of the phonon dispersion due to the condensating electrons. κ(T) is lower than in the previous samples and thus a greater number of defects was inferred. At low temperatures, its dependence is T 1 .4 in agreement with the

  6. Primary uterine inertia in four labrador bitches.

    Science.gov (United States)

    Davidson, Autumn P

    2011-01-01

    Uterine inertia is a common cause of dystocia in the bitch and is designated as primary (i.e., uterine contractions fail to ever be initiated) or secondary (i.e., uterine contractions cease after a period of time but before labor is completed). The etiology of primary uterine inertia is not well understood. The accurate diagnosis of primary uterine inertia requires the use of tocodynamometry (uterine monitoring). Primary uterine inertia has been postulated to result from a failure of luteolysis resulting in persistently elevated progesterone concentrations. In this study, primary uterine inertia was diagnosed in a series of four bitches in which luteolysis was documented suggesting some other etiopathogenesis for primary uterine inertia.

  7. Comparative analysis for low-mass and low-inertia dynamic balancing of mechanisms

    NARCIS (Netherlands)

    van der Wijk, V.; Demeulenaere, B.; Gosselin, C.M.; Herder, Justus Laurens

    2012-01-01

    Dynamic balance is an important feature of high speed mechanisms and robotics that need to minimize vibrations of the base. The main disadvantage of dynamic balancing, however, is that it is accompanied with a considerable increase in mass and inertia. Aiming at low-mass and low-inertia dynamic

  8. Clinical Inertia and Outpatient Medical Errors

    National Research Council Canada - National Science Library

    O'Connor, Patrick J; Sperl-Hillen, JoAnn M; Johnson, Paul E; Rush, William A; Biltz, George

    2005-01-01

    .... Clinical inertia is a major factor that contributes to inadequate chronic disease care in patients with diabetes mellitus, hypertension, dyslipidemias, depression, coronary heart disease, and other conditions...

  9. Foundations of High-Pressure Thermal Plasmas

    Science.gov (United States)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  10. On the metal-rich surfaces of (16) Psyche and other M-type asteroids from interferometric observations in the thermal infrared

    Science.gov (United States)

    Delbo, Marco; Matter, A.; Gundlach, B.; Blum, J.

    2013-10-01

    Asteroids belonging to the spectroscopic M-type exhibit a quasi featureless and moderately red reflectance spectrum and a geometric visible albedo between 0.1 and 0.3. These asteroids were initially thought to be metallic cores of differentiated asteroids that were exposed to space by a catastrophic disruption by impacts. Later, this view has been challenged by the detection of silicates and hydration spectroscopic bands on these bodies. Unveiling the physical properties of the surfaces of these asteroids, and identifying their meteorite analogs is a challenge from remote-sensing observations. Nevertheless, these are crucial problems, important for estimating the number of asteroids that underwent differentiation in the early phases of the formation of our solar system. The thermal inertia is a sensitive indicator for the presence of metal in the regolith on the surfaces of asteroids. We developed a new thermophysical model that allow us to derive the value of the thermal inertia from interferometric observations in the thermal infrared. We report on our investigation of the thermal inertia of M-type asteroids, including the asteroids (16) Psyche, for which we obtained a thermal inertia value anomalously high compared to the thermal inertia values of other asteroids in the same size range. From the thermal inertia and model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles) the regolith grain size is derived.

  11. Hysteretic transitions in the Kuramoto model with inertia.

    Science.gov (United States)

    Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro

    2014-10-01

    We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.

  12. Thermal effects in highly dispersed iron catalysts

    International Nuclear Information System (INIS)

    Alvarez, A.M.; Cagnoli, M.V.; Gallegos, N.G.; Marchetti, S.G.; Yeramian, A.A.; Mercader, R.C.

    1994-01-01

    The Moessbauer spectra of three Fe/SiO 2 catalysts with 5 wt% iron content show the presence of several Fe species and display different magnetic behaviours when the precursors are subjected to various thermal treatments. Based on the Moessbauer parameters and CO chemisorption measurements, the average crystal sizes of the catalysts are estimated and discussed in connection with the thermal pretreatment severity and magnetic properties of the samples. (orig.)

  13. Obstacles to Reasoning about Inertia in Different Contexts

    Science.gov (United States)

    Yerdelen-Damar, Sevda

    2015-01-01

    The present study investigated the underlying reasons for difficulties faced by students when they applied the concept of inertia across varying contexts. The participants of the study included five high school students. Data obtained from interviews were interpreted from the perspectives of the coordination class and epistemological framing…

  14. An Innovative High Thermal Conductivity Fuel Design

    International Nuclear Information System (INIS)

    Khan, Jamil A.

    2009-01-01

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 (97% TD). This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  15. An Innovative High Thermal Conductivity Fuel Design

    Energy Technology Data Exchange (ETDEWEB)

    Jamil A. Khan

    2009-11-21

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  16. On the moment of inertia and surface redshift of neutron star

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Using temperature, density and isospin dependent nuclear equation of state, the authors calculated the moment of inertia and surface redshift of neutron star by resolving Tolman-Oppenheimer-Volkoff equation. It is found that the moment of inertia and surface redshift strongly depend on the nuclear equation of state. The equation of state with high value of un-compressibility and symmetry energy strength coefficient provides a big moment of inertia, while effective mass of nucleon has almost no effect on moment of inertia. Meanwhile, the equation of state with high value of un-compressibility and effective mass of nucleon provides a big surface redshift, while the symmetry energy strength coefficient has almost no effect on surface redshift of neutron star. The relationship between moment of inertia and mass is also given. By comparing the calculated results with the one obtained semi-empirically from astronomy, the authors find that a softer equation of state can provide a more reasonable result

  17. Simultaneous reconstruction of thermal degradation properties for anisotropic scattering fibrous insulation after high temperature thermal exposures

    International Nuclear Information System (INIS)

    Zhao, Shuyuan; Zhang, Wenjiao; He, Xiaodong; Li, Jianjun; Yao, Yongtao; Lin, Xiu

    2015-01-01

    To probe thermal degradation behavior of fibrous insulation for long-term service, an inverse analysis model was developed to simultaneously reconstruct thermal degradation properties of fibers after thermal exposures from the experimental thermal response data, by using the measured infrared spectral transmittance and X-ray phase analysis data as direct inputs. To take into account the possible influence of fibers degradation after thermal exposure on the conduction heat transfer, we introduced a new parameter in the thermal conductivity model. The effect of microstructures on the thermal degradation parameters was evaluated. It was found that after high temperature thermal exposure the decay rate of the radiation intensity passing through the material was weakened, and the probability of being scattered decreased during the photons traveling in the medium. The fibrous medium scattered more radiation into the forward directions. The shortened heat transfer path due to possible mechanical degradation, along with the enhancement of mean free path of phonon scattering as devitrification after severe heat treatment, made the coupled solid/gas thermal conductivities increase with the rise of heat treatment temperature. - Highlights: • A new model is developed to probe conductive and radiative properties degradation of fibers. • To characterize mechanical degradation, a new parameter is introduced in the model. • Thermal degradation properties are reconstructed from experiments by L–M algorithm. • The effect of microstructures on the thermal degradation parameters is evaluated. • The analysis provides a powerful tool to quantify thermal degradation of fiber medium

  18. High sensitivity thermal sensors on insulating diamond

    Energy Technology Data Exchange (ETDEWEB)

    Job, R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Denisenko, A.V. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Zaitsev, A.M. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Melnikov, A.A. [Belarussian State Univ., Minsk (Belarus). HEII and FD; Werner, M. [VDI/VDE-IT, Teltow (Germany); Fahrner, W.R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices

    1996-12-15

    Diamond is a promising material to develop sensors for applications in harsh environments. To increase the sensitivity of diamond temperature sensors the effect of thermionic hole emission (TE) over an energetic barrier formed in the interface between highly boron-doped p-type and intrinsic insulating diamond areas has been suggested. To study the TE of holes a p-i-p diode has been fabricated and analyzed by electrical measurements in the temperature range between 300 K and 700 K. The experimental results have been compared with numerical simulations of its electrical characteristics. Based on a model of the thermionic emission of carriers into an insulator it has been suggested that the temperature sensitivity of the p-i-p diode on diamond is strongly affected by the re-emission of holes from a group of donor-like traps located at a level of 0.7-1.0 eV above the valence band. The mechanism of thermal activation of the current includes a spatial redistribution of the potential, which results in the TE regime from a decrease of the immobilized charge of the ionized traps within the i-zone of the diode and the correspondent lowering of the forward biased barrier. The characteristics of the p-i-p diode were studied with regard to temperature sensor applications. The temperature coefficient of resistance (TCR=-0.05 K{sup -1}) for temperatures above 600 K is about four times larger than the maximal attainable TCR for conventional boron-doped diamond resistors. (orig.)

  19. D-dimensional moments of inertia

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.

    1995-01-01

    We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers

  20. Dynamical moments of inertia for superdeformed nuclei

    International Nuclear Information System (INIS)

    Obikhod, T.V.

    1995-01-01

    The method of quantum groups has been applied for calculation the dynamical moments of inertia for the yrast superdeformed bands in 194 Hg and 192 Hg as well as to calculation of the dynamical moments of inertia of superdeformed bands in 150 Gd and 148 Gd

  1. On the carrier of inertia

    Directory of Open Access Journals (Sweden)

    Patrick Grahn

    2018-03-01

    Full Text Available A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum’s physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism share the similar functional form because both are carried by the vacuum photons as paired and unpaired.

  2. Hydrodynamic interactions of two nearly touching Brownian spheres in a stiff potential: Effect of fluid inertia

    International Nuclear Information System (INIS)

    Radiom, Milad; Ducker, William; Robbins, Brian; Paul, Mark

    2015-01-01

    The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm −1 ) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces

  3. Thermal insulation of high temperature reactors

    International Nuclear Information System (INIS)

    Cornille, Y.

    1975-01-01

    Operating conditions of HTR thermal insulation are given and heat insulators currently developed are described (fibers kept in position by metallic structures). For future applications and higher temperatures, research is directed towards solutions using ceramics or associating fibers and ceramics [fr

  4. Thermal characteristics of rocks for high-level waste repository

    International Nuclear Information System (INIS)

    Shimooka, Kenji; Ishizaki, Kanjiro; Okamoto, Masamichi; Kumata, Masahiro; Araki, Kunio; Amano, Hiroshi

    1980-12-01

    Heat released by the radioactive decay of high-level waste in an underground repository causes a long term thermal disturbance in the surrounding rock mass. Several rocks constituting geological formations in Japan were gathered and specific heat, thermal conductivity, thermal expansion coefficient and compressive strength were measured. Thermal analysis and chemical analysis were also carried out. It was found that volcanic rocks, i.e. Andesite and Basalt had the most favorable thermal characteristics up to around 1000 0 C and plutonic rock, i.e. Granite had also favorable characteristics under 573 0 C, transition temperature of quartz. Other igneous rocks, i.e. Rhyolite and Propylite had a problem of decomposition at around 500 0 C. Sedimentary rocks, i.e. Zeolite, Tuff, Sandstone and Diatomite were less favorable because of their decomposition, low thermal conductivity and large thermal expansion coefficient. (author)

  5. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  6. Minimized thermal conductivity in highly stable thermal barrier W/ZrO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich [University of Goettingen, Institut fuer Materialphysik, Goettingen (Germany)

    2016-10-15

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO{sub 2} in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO{sub 2}, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO{sub 2}. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO{sub 2} multilayers as desired thermally stable, low-conductivity materials. (orig.)

  7. Massive Submucosal Ganglia in Colonic Inertia.

    Science.gov (United States)

    Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng

    2018-02-01

    - Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.

  8. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  9. Diagnostic inertia in dyslipidaemia: results of a preventative programme in Spain.

    Science.gov (United States)

    Palazón-Bru, Antonio; Sepehri, Armina; Ramírez-Prado, Dolores; Navarro-Cremades, Felipe; Cortés, Ernesto; Rizo-Baeza, Mercedes; Gil-Guillén, Vicente Francisco

    2015-01-01

    Others have analysed the relationship between inadequate behaviour by healthcare professionals in the diagnosis of dyslipidaemia (diagnostic inertia) and the history of cardiovascular risk factors. However, since no study has assessed cardiovascular risk scores as associated factors, we carried out a study to quantify diagnostic inertia in dyslipidaemia and to determine if cardiovascular risk scores are associated with this inertia. In the Valencian Community (Spain), a preventive programme (cardiovascular, gynaecologic and vaccination) was started in 2003 inviting persons aged ≥40 years to undergo a health check-up at their health centre. This cross-sectional study examined persons with no known dyslipidaemia seen during the first six months of the programme (n = 16, 905) but whose total cholesterol (TC) was ≥5.17 mmol/L. Diagnostic inertia was defined as lack of follow-up to confirm/discard the dyslipidaemia diagnosis. Other variables included in the analysis were gender, history of cardiovascular risk factors/cardiovascular disease, counselling (diet/exercise), body mass index (BMI), age, blood pressure, fasting blood glucose and lipids. TC was grouped as ≥/Inertia was quantified and the adjusted odds ratios calculated from multivariate models. In the overall sample, the rate of diagnostic inertia was 52% (95% CI [51.2-52.7]); associated factors were TC ≥ 6.20 mmol/L, high or "not measured" BMI, hypertension, smoking and higher values of fasting blood glucose, systolic blood pressure and TC. In the REGICOR sample, the rate of diagnostic inertia was 51.9% (95% CI [51.1-52.7]); associated factors were REGICOR high and high or "not measured" BMI. In the SCORE sample the rate of diagnostic inertia was 51.7% (95% CI [50.9-52.5]); associated factors were SCORE high and high or "not measured" BMI. Diagnostic inertia existed in over half the patients and was associated with a greater cardiovascular risk.

  10. A biomimic thermal fabric with high moisture permeability

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2013-01-01

    Full Text Available Moisture comfort is an essential factor for functional property of thermal cloth, especially for thick thermal cloth, since thick cloth may hinder effective moisture permeation, and high moisture concentration in the micro-climate between skin and fabric would cause cold feeling. Here, we report a biomimic thermal fabric with excellent warm retention and moisture management properties. In this fabric, the warp yarn system constructs many tree-shaped channel nets in the thickness direction of the fabric. Experimental result indicates that the special hierarchic configuration of warp yarns endows the biomimic thermal fabric with a better warm retention and water vapor management properties compared with the traditional fabrics.

  11. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    International Nuclear Information System (INIS)

    Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges; Fleming, Austin; Ban, Heng

    2016-01-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  12. High-performance noncontact thermal diode via asymmetric nanostructures

    Science.gov (United States)

    Shen, Jiadong; Liu, Xianglei; He, Huan; Wu, Weitao; Liu, Baoan

    2018-05-01

    Electric diodes, though laying the foundation of modern electronics and information processing industries, suffer from ineffectiveness and even failure at high temperatures. Thermal diodes are promising alternatives to relieve above limitations, but usually possess low rectification ratios, and how to obtain a high-performance thermal rectification effect is still an open question. This paper proposes an efficient contactless thermal diode based on the near-field thermal radiation of asymmetric doped silicon nanostructures. The rectification ratio computed via exact scattering theories is demonstrated to be as high as 10 at a nanoscale gap distance and period, outperforming the counterpart flat-plate diode by more than one order of magnitude. This extraordinary performance mainly lies in the higher forward and lower reverse radiative heat flux within the low frequency band compared with the counterpart flat-plate diode, which is caused by a lower loss and smaller cut-off wavevector of nanostructures for the forward and reversed scheme, respectively. This work opens new routes to realize high performance thermal diodes, and may have wide applications in efficient thermal computing, thermal information processing, and thermal management.

  13. An investigation into the applicability of thermal infrared scanning for exploration

    International Nuclear Information System (INIS)

    Broicher, H.

    1981-07-01

    PRATT's theory of thermal inertia stripping leads to thermal inertia calculations for the subsurface zones subjected to the diurnal and the annual temperature variations, as well as to temperatures at the zone limits. Thermal inertia mapping after separating these zones gains in importance for exploration. It should be investigated, if orebodies would cause detectable subsurface temperature anomalies. Technical infrastructure problems caused the termination of the project. The realization of thermal inertia stripping should be pursued. (orig.) [de

  14. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  15. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  16. Thermal problems on high flux beam lines

    International Nuclear Information System (INIS)

    Avery, R.T.

    1983-09-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler Beam Line VI now nearing operation will be able to provide up to approx. 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 meters from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2 . Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2 ) and is comparable to that of welding torches. Clearing, cooling and configuration are of critical importance. Configurations for the first fixed mask, the movable mask, and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on heating of crystals and mirrors is also presented

  17. Virtual inertia for variable speed wind turbines

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus

    2013-01-01

    electronic converter and on its impact on the primary frequency response of a power system. An additional control for the power electronics is implemented to give VSWTs a virtual inertia, referring to the kinetic energy stored in the rotating masses, which can be released initially to support the system......’s inertia. A simple Matlab/Simulink model and control of a VSWT and of a generic power system are developed to analyse the primary frequency response following different generation losses in a system comprising VSWTs provided with virtual inertia. The possibility of substituting a 50% share of conventional...... power with wind is also assessed and investigated. The intrinsic problems related to the implementation of virtual inertia are illustrated, addressing their origin in the action of pitch and power control. A solution is proposed, which aims at obtaining the same response as for the system with only...

  18. A Reevaluation of the Attentional Inertia Concept

    NARCIS (Netherlands)

    W.J.M.I. Verbeke (Willem)

    1992-01-01

    textabstractAnderson's (1983) theory about children's attention behavior during television viewing hypothesizes that attention behavior is affected by positive feedback (the inertia hypothesis) and the degree to which a child understands the television program. During an experiment, neither

  19. Moments of inertia in a semiclassical approach

    International Nuclear Information System (INIS)

    Benchein, K.

    1993-01-01

    Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found

  20. Electrohydrodynamics of a viscous drop with inertia.

    Science.gov (United States)

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  1. Comparison between Synthetic Inertia and Fast Frequency Containment Control Based on Single Phase EVs in a Microgrid

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Zecchino, Antonio; Martinenas, Sergejus

    2017-01-01

    The increasing share of distributed and inertia-less resources entails an upsurge in balancing and system stabilisation services. In particular, the displacement of conventional generation reduces the available rotational inertia in the power system, leading to high interest in synthetic inertia....... The interdependency between frequency containment and synthetic inertia control on the transient frequency variation is shown analytically. The capabilities and limits of series produced EVs in providing such services are investigated, first on a simulation based approach and subsequently by using real hardware...

  2. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  3. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.

  4. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  5. High Temperature Fiberoptic Thermal Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  6. High thermal conductivity lossy dielectric using a multi layer configuration

    Science.gov (United States)

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  7. Testing quantised inertia on emdrives with dielectrics

    Science.gov (United States)

    McCulloch, M. E.

    2017-05-01

    Truncated-cone-shaped cavities with microwaves resonating within them (emdrives) move slightly towards their narrow ends, in contradiction to standard physics. This effect has been predicted by a model called quantised inertia (MiHsC) which assumes that the inertia of the microwaves is caused by Unruh radiation, more of which is allowed at the wide end. Therefore, photons going towards the wide end gain inertia, and to conserve momentum the cavity must move towards its narrow end, as observed. A previous analysis with quantised inertia predicted a controversial photon acceleration, which is shown here to be unnecessary. The previous analysis also mispredicted the thrust in those emdrives with dielectrics. It is shown here that having a dielectric at one end of the cavity is equivalent to widening the cavity at that end, and when dielectrics are considered, then quantised inertia predicts these results as well as the others, except for Shawyer's first test where the thrust is predicted to be the right size but in the wrong direction. As a further test, quantised inertia predicts that an emdrive's thrust can be enhanced by using a dielectric at the wide end.

  8. A vacuum--generated inertia reaction force

    International Nuclear Information System (INIS)

    Rueda, Alfonso; Haisch, Bernard

    2001-01-01

    A clear and succinct covariant approach shows that, in principle, there must be a contribution to the inertia reaction force on an accelerated object by the surrounding vacuum electromagnetic field in which the object is embedded. No details of the vacuum to object electromagnetic interaction need to be specified other than the fact that the object is made of electromagnetically interacting particles. Some interesting consequences of this feature are discussed. This analysis strongly supports the concept that inertia is indeed an opposition of the vacuum fields to any attempt to change the uniform state of motion of material bodies. This also definitely shows that inertia should be viewed as extrinsic to mass and that causing agents and/or mechanisms responsible for the inertia reaction force are neither intrinsic to the notion of mass nor to the entities responsible for the existence of mass in elementary particles (as, e.g., the Higgs field). In other words the mechanism that produces the inertia-reaction-force requires an explicit explanation. This explicit explanation is that inertia is an opposition of the vacuum fields to the accelerated motion of any material entities, i.e., of entities that possess mass. It is briefly commented why the existence of a Higgs field responsible for the generation of mass in elementary particles does not contradict the view presented here. It is also briefly discussed why a strict version of Mach's Principle does really contradict this view, though a broad sense version of Mach's Principle may be in agreement

  9. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  10. High Thermal Conductivity Functionally Graded Heat Sinks for High Power Packaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase I program proposes the development of a high thermal conductivity (400 W/mK), low coefficient of thermal expansion (7-10 ppm/?K), and light...

  11. DOES CLINICAL INERTIA VARY BY PERSONALIZED A1C GOAL? A STUDY OF PREDICTORS AND PREVALENCE OF CLINICAL INERTIA IN A U.S. MANAGED-CARE SETTING.

    Science.gov (United States)

    Lin, Jay; Zhou, Steve; Wei, Wenhui; Pan, Chunshen; Lingohr-Smith, Melissa; Levin, Philip

    2016-02-01

    Clinical inertia is defined as failure to initiate or intensify therapy despite an inadequate treatment response. We assessed the prevalence and identified the predictors of clinical inertia among patients with type 2 diabetes (T2DM) based on personalized goals. Three hemoglobin A1c (A1C) targets (American Diabetes Association A1C inertia was defined as no intensification of treatment during the response period. Demographic and clinical characteristics were analyzed to identify predictors of treatment intensification. Irrespective of A1C target, the majority of patients with T2DM (70.4 to 72.8%) experienced clinical inertia in the 6 months following the index event, with 5.3 to 6.2% of patients intensifying treatment with insulin. Patients with a lower likelihood of intensification were older, used >1 oral antidiabetes drug during the baseline period, and had an above-target A1C more recently. Treatment intensification was associated with patients who had point-of-service insurance, mental illness, an endocrinologist visit in the baseline period, or higher index A1C. The prevalence of clinical inertia among patients with T2DM in a U.S. managed-care setting is high and has increased over more recent years. Factors predicting increased risk of clinical inertia may help identify "at-risk" populations and assist in developing strategies to improve their management.

  12. Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression

    International Nuclear Information System (INIS)

    Šarevski, Milan N.; Šarevski, Vasko N.

    2017-01-01

    Highlights: • High pressure ratio, high speed, transonic R718 centrifugal compressors. • High efficient industrial evaporators/concentrators with turbo thermal vapor recompression. • Utilization of waste heat from industrial thermal and processing systems. • R718 is an ideal refrigerant for the novel high-temperature industrial heat pumps. • Application of single-stage R718 centrifugal compressors. - Abstract: Characteristics of R718 centrifugal compressors are analyzed and range of their applications in industrial high-temperature heat pumps, district heating systems and geothermal green house heating systems are estimated. Implementation of turbo compressor thermal vapor recompression in industrial evaporating/concentrating plants for waste heat utilization results in a high energy efficiency and in other technical, economical and environmental benefits. A novel concept of turbo compression R718 heat pumps is proposed and an assessment of their thermal characteristics is presented for utilization of waste heat from industrial thermal plants and systems (boilers, furnaces, various technological and metallurgical cooling processes, etc.), and for applications in district heating and geothermal green house heating systems. R718 is an ideal refrigerant for the novel high-temperature turbo compression industrial heat pumps. Direct evaporation and condensation are advantages of the proposed system which lead to higher COP, and to simplification of the plant and lower cost.

  13. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  14. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  15. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  16. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Science.gov (United States)

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  17. Effects of Brass (Cu3Zn2) as High Thermal Expansion Material on Shrink Disc Performance During High Thermal Loading

    Science.gov (United States)

    Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA

    2018-03-01

    This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.

  18. Analysis of neoclassical edge plasma transport with gyroviscosity and inertia

    International Nuclear Information System (INIS)

    Rogister, A.; Antonov, N.

    1996-01-01

    It is shown that the ambipolarity constraint which results from neoclassical transport theory with gyroviscosity and inertia sets lower limits on the edge density and/or temperature and/or Z eff gradients. Toroidal momentum co, respectively counter, -injection reduces, respectively increases these lower bounds. Generally speaking, co, respectively counter, -injection increases, respectively reduces, the rotation velocities. The theory has so far been developed for the high collisionality regime only. (orig.)

  19. Medicaid program choice, inertia and adverse selection.

    Science.gov (United States)

    Marton, James; Yelowitz, Aaron; Talbert, Jeffery C

    2017-12-01

    In 2012, Kentucky implemented Medicaid managed care statewide, auto-assigned enrollees to three plans, and allowed switching. Using administrative data, we find that the state's auto-assignment algorithm most heavily weighted cost-minimization and plan balancing, and placed little weight on the quality of the enrollee-plan match. Immobility - apparently driven by health plan inertia - contributed to the success of the cost-minimization strategy, as more than half of enrollees auto-assigned to even the lowest quality plans did not opt-out. High-cost enrollees were more likely to opt-out of their auto-assigned plan, creating adverse selection. The plan with arguably the highest quality incurred the largest initial profit margin reduction due to adverse selection prior to risk adjustment, as it attracted a disproportionate share of high-cost enrollees. The presence of such selection, caused by differential degrees of mobility, raises concerns about the long run viability of the Medicaid managed care market without such risk adjustment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  1. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications

    International Nuclear Information System (INIS)

    Sugo, Heber; Kisi, Erich; Cuskelly, Dylan

    2013-01-01

    New high energy-density thermal storage materials are proposed which use miscibility gap binary alloy systems to operate through the latent heat of fusion of one component dispersed in a thermodynamically stable matrix. Using trial systems Al–Sn and Fe–Cu, we demonstrate the development of the required inverse microstructure (low melting point phase embedded in high melting point matrix) and excellent thermal storage potential. Several other candidate systems are discussed. It is argued that such systems offer enhancement over conventional phase change thermal storage by using high thermal conductivity microstructures (50–400 W/m K); minimum volume of storage systems due to high energy density latent heat of fusion materials (0.2–2.2 MJ/L); and technical utility through adaptability to a great variety of end uses. Low (<300 °C), mid (300–400 °C) and high (600–1400 °C) temperature options exist for applications ranging from space heating and process drying to concentrated solar thermal energy conversion and waste heat recovery. -- Highlights: ► Alloys of immiscible metals are proposed as thermal storage systems. ► High latent heat of fusion per unit volume and tunable temperature are advantageous. ► Thermal storage systems with capacities of 0.2–2.2 MJ/L are identified. ► Heat delivery is via a rigid non-reactive high thermal conductivity matrix. ► The required inverse microstructures were developed for Sn–Al and Cu–Fe systems

  2. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  3. Dynamic moments of inertia in Xe, Cs and Ba nuclei

    International Nuclear Information System (INIS)

    El-Samman, H.; Barci, V.; Gizon, A.

    1984-01-01

    The γ-rays following the reactions induced by 12 C ions on 115 In, 112 , 117 , 122 Sn and 123 Sb targets have been investigated using six NaI(Tl) detectors in a two-dimensional arrangement. The collective moment of inertia I( 2 ) /sub band/ of 118 , 122 Xe, 123 Cs and 128 , 130 Ba have been extracted from the energy-correlation spectra. The behaviour of these nuclei and the observed differences are interpreted in terms of high-spin collective properties. Data are also presented on the effective moment of inertia I( 2 )/sub eff/ of 118 Xe and 130 Ba measured by sum-spectrometer techniques. 13 references

  4. Thermal and Hygric Expansion of High Performance Concrete

    OpenAIRE

    J. Toman; R. Černý

    2001-01-01

    The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on th...

  5. Virtual Inertia: Current Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Ujjwol Tamrakar

    2017-06-01

    Full Text Available The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems.

  6. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  7. Cooperation is enhanced by inhomogeneous inertia in spatial prisoner's dilemma game

    Science.gov (United States)

    Chang, Shuhua; Zhang, Zhipeng; Wu, Yu'e.; Xie, Yunya

    2018-01-01

    Inertia is an important factor that cannot be ignored in the real world for some lazy individuals in the process of decision making. In this work, we introduce a simple classification mechanism of strategy changing in evolutionary prisoner's dilemma games on different topologies. In this model, a part of players update their strategies according to not only the payoff difference, but also the inertia factor, which makes nodes heterogeneous and the system inhomogeneous. Moreover, we also study the impact of the number of neighbors on the evolution of cooperation. The results show that the evolution of cooperation will be promoted to a high level when the inertia factor and the inhomogeneous system are combined. In addition, we find that the more neighbors one player has, the higher density of cooperators is sustained in the optimal position. This work could be conducive to understanding the emergence and persistence of cooperative behavior caused by the inertia factor in reality.

  8. An inertia-free filter line-search algorithm for large-scale nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-02-15

    We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.

  9. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature.

  10. Thermal and electrical conductivities of high purity tantalum

    International Nuclear Information System (INIS)

    Archer, S.L.

    1978-01-01

    The electrical resistivity and thermal conductivity of three high purity tantalum samples have been measured as functions of temperature over a temperature range of 5K to 65K. Sample purities ranged up to a resistivity ratio of 1714. The highest purity sample had a residual resistivity of .76 x 10 -10 OMEGA-m. The intrinsic resistivity varied as T 3 . 9 from 10K to 31K. The thermal conductivity of the purest sample had a maximum of 840 W/mK at 9.8K. The intrinsic thermal resistivity varied as T 2 . 4 from 10K to 35K. At low temperatures electrons were scattered primarily by impurities and by phonons with both interband and intraband transitions observed. The electrical and thermal resistivity is departed from Matthiessen's rule at low temperatures

  11. Process for fabricating composite material having high thermal conductivity

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  12. Acquisition of Inertia by a Moving Crack

    Science.gov (United States)

    Goldman, Tamar; Livne, Ariel; Fineberg, Jay

    2010-03-01

    We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].

  13. Filament stretching rheometer: inertia compensation revisited

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...

  14. Design and development of a very high resolution thermal imager

    Science.gov (United States)

    Kuerbitz, Gunther; Duchateau, Ruediger

    1998-10-01

    The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.

  15. Thermal high pressure hydrogenolysis II. The thermal high pressure hydrocracking of fluorene

    NARCIS (Netherlands)

    Oltay, Ernst; Penninger, Johannes M.L.; Konter, Willem A.N.

    1973-01-01

    The thermal hydrocracking of fluorene was investigated in the temperature range of 400 to 480 °C and hydrogen pressures of up to 375 atm. As main reaction products were found 2-methylbiphenyl, biphenyl, toluene and benzene. They account for about 90% of the converted fluorene. Only very low

  16. A new high power thermal battery cathode material

    International Nuclear Information System (INIS)

    Faul, I.

    1986-01-01

    Smaller and lighter thermal batteries are major aims of the battery research programme at RAE Farnborough. Modern designs of thermal batteries, for use as power supplies in weapon systems, almost invariably use the Li:molten salt:FeS/sub 2/ system because of the significant increase in energy density achieved in comparison with the earlier Ca/CaCrO/sub 4/ couple. The disadvantage of the FeS/sub 2/ system is that the working cell voltage, between 1.5 and 2.0 V, is significantly lower so leading to more cells per battery than the earlier system. Further work at RAE and MSA (Britain) Ltd showed that the poor thermal stability of TiS/sub 2/ limited its use in thermal batteries, whilst the more stable V/sub 6/O/sub 13/ oxidised the electrolyte, giving poor efficiencies. However, the resulting reduced vanadium oxide material, subsequently called lithiated vanadium oxide (LVO), was found to be an excellent high voltage thermal battery cathode, being the subject of both UK and US patents. In this study both V/sub 6/O/sub 13/ made by the direct stoichiometric reaction of V/sub 2/O/sub 5/ and V and also by thermal decomposition of NH/sub 4/VO/sub 3/ under argon, have been used with equal success as the starting material for the preparation of LVO

  17. Effects of high thermal neutron fluences on Type 6061 aluminum

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Farrell, K.

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to ∼4 x 10 23 n/cm 2 at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed

  18. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  19. Effectiveness and clinical inertia in the management of hypertension in patients in Colombia.

    Science.gov (United States)

    Machado-Duque, Manuel Enrique; Ramírez-Valencia, Diana Marcela; Medina-Morales, Diego Alejandro; Machado-Alba, Jorge Enrique

    2015-11-01

    Determine the effectiveness of treatment and the frequency of clinical inertia in the management of hypertension in Colombian patients. A retrospective study with prospective follow-up of individuals on antihypertensive medication who were treated on medical consultation for 1 year was conducted in 20 Colombian cities. Clinical inertia was considered when no modification of therapy occurred despite not achieving control goals. A total of 355 hypertensive patients were included. From a total of 1142 consultations, therapy was effective in 81.7% of cases. In 18.3% of the cases, the control goal was not achieved, and of these, 81.8% were considered clinical inertia. A logistic regression showed that the use of antidiabetics (odds ratio: 2.31; 95% confidence interval: 1.290-4.167; P = .008) was statistically associated with an increased risk of clinical inertia. With a determination of the frequency of inertia and the high effectiveness of antihypertensive treatment, valuable information can be provided to understand the predictors of clinical inertia. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  20. Inertia effects in rheometrical flow systems

    NARCIS (Netherlands)

    Waterman, H.A.

    1976-01-01

    The flow field of a linear viscoelastic material in the orthogonal rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian liquid is included in this solution as a special case. The forces on the plates are readily

  1. Nonlinear Inertia Classification Model and Application

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2014-01-01

    Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

  2. Topology optimization of inertia driven dosing units

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2017-01-01

    This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...

  3. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  4. Thermal spike analysis of highly charged ion tracks

    International Nuclear Information System (INIS)

    Karlušić, M.; Jakšić, M.

    2012-01-01

    The irradiation of material using swift heavy ion or highly charged ion causes excitation of the electron subsystem at nanometer scale along the ion trajectory. According to the thermal spike model, energy deposited into the electron subsystem leads to temperature increase due to electron–phonon coupling. If ion-induced excitation is sufficiently intensive, then melting of the material can occur, and permanent damage (i.e., ion track) can be formed upon rapid cooling. We present an extension of the analytical thermal spike model of Szenes for the analysis of surface ion track produced after the impact of highly charged ion. By applying the model to existing experimental data, more than 60% of the potential energy of the highly charged ion was shown to be retained in the material during the impact and transformed into the energy of the thermal spike. This value is much higher than 20–40% of the transferred energy into the thermal spike by swift heavy ion. Thresholds for formation of highly charged ion track in different materials show uniform behavior depending only on few material parameters.

  5. Effects of Inertia on Evolutionary Prisoner's Dilemma Game

    Science.gov (United States)

    Du, Wen-Bo; Cao, Xian-Bin; Liu, Run-Ran; Wang, Zhen

    2012-09-01

    Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society.

  6. Effects of Inertia on Evolutionary Prisoner's Dilemma Game

    International Nuclear Information System (INIS)

    Du Wenbo; Cao Xianbin; Liu Runran; Wang Zhen

    2012-01-01

    Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society. (interdisciplinary physics and related areas of science and technology)

  7. Glass ceramics for sealing to high-thermal-expansion metals

    International Nuclear Information System (INIS)

    Wilder, J.A. Jr.

    1980-10-01

    Glass ceramics were studied, formulated in the Na 2 O CaO.P 2 O 5 , Na 2 O.BaOP 2 O 5 , Na 2 O.Al 2 O 3 .P 2 O 5 , and Li 2 O.BaO.P 2 O 5 systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na 2 O.CaO.P 2 O 5 and Na 2 O.BaO.P 2 O 5 systems have coefficients of thermal expansion in the range 140 x 10 -1 per 0 C less than or equal to α less than or equal to 225 x 10 -7 per 0 C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo 3 , (NaPO 3 ) 3 , NaBa(PO 3 ) 3 , and NaCa(PO 3 ) 3 . Glass ceramics formed in the Na 2 O.Al 2 O 3 .P 2 O 5 systems have coefficients of thermal expansion greater than 240 x 10 -7 per 0 C, but they have extensive microcracking. Due to their low thermal expansion values (α less than or equal to 120 x 10 -7 per 0 C), glass ceramics in the Li 2 O.BaO.P 2 O 5 system are unsuitable for sealing to high thermal expansion metals

  8. Thermal and Hygric Expansion of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on the values of linear hygric expansion coefficients are very significant and cannot be neglected in practical applications.

  9. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  10. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  11. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  12. Experimental study of the moment of inertia of a cone-angular variation and inertia ellipsoid

    International Nuclear Information System (INIS)

    Pintao, Carlos A F; Souza de Filho, Moacir P; Usida, Wesley F; Xavier, Jose A

    2007-01-01

    In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque through electric current or frequency measurement is utilized

  13. High electron thermal conductivity of chiral carbon nanotubes

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, George; Mensah, N.G.

    2003-11-01

    Solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation, the carrier thermal conductivity κ e of a chiral carbon nanotube (CCNT) was determined. The dependence of κ e on temperature T, chiral geometric angle φ h and overlap integrals Δ z and Δ s were obtained. The results were numerically analysed. Unusually high values of κ e were observed suggesting that ne is nontrivial in the calculation of the thermal conductivity κ of CCNT. More interestingly we noted also that at 104 K and for Δ z and Δ s values of 0.020 eV and 0.0150 eV respectively the κ e value is about 41000 W/mK as reported for a 99.9% pure 12 C crystal. We predict that the electron thermal conductivity of CCNT should exceed 200,000 W/mK at ∼ 80 K. (author)

  14. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    International Nuclear Information System (INIS)

    Petrosky, L.J.; Disney, R.K.; Mangus, J.D.; Gunn, S.A.; Zweig, H.R.

    1993-01-01

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements

  15. In situ high-resolution thermal microscopy on integrated circuits.

    Science.gov (United States)

    Zhuo, Guan-Yu; Su, Hai-Ching; Wang, Hsien-Yi; Chan, Ming-Che

    2017-09-04

    The miniaturization of metal tracks in integrated circuits (ICs) can cause abnormal heat dissipation, resulting in electrostatic discharge, overvoltage breakdown, and other unwanted issues. Unfortunately, locating areas of abnormal heat dissipation is limited either by the spatial resolution or imaging acquisition speed of current thermal analytical techniques. A rapid, non-contact approach to the thermal imaging of ICs with sub-μm resolution could help to alleviate this issue. In this work, based on the intensity of the temperature-dependent two-photon fluorescence (TPF) of Rhodamine 6G (R6G) material, we developed a novel fast and non-invasive thermal microscopy with a sub-μm resolution. Its application to the location of hotspots that may evolve into thermally induced defects in ICs was also demonstrated. To the best of our knowledge, this is the first study to present high-resolution 2D thermal microscopic images of ICs, showing the generation, propagation, and distribution of heat during its operation. According to the demonstrated results, this scheme has considerable potential for future in situ hotspot analysis during the optimization stage of IC development.

  16. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  17. Thermal neutron scattering studies of condensed matter under high pressures

    International Nuclear Information System (INIS)

    Carlile, C.J.; Salter, D.C.

    1978-01-01

    Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)

  18. Dependence of nuclear moments of inertia on the triaxial parameter

    International Nuclear Information System (INIS)

    Helgesson, J.; Hamamoto, Ikuko

    1989-01-01

    The dependence of nuclear moments of inertia on the triaxial parameter (γ-variable) is investigated including both the Belyaev term and the Migdal term. The obtained dependence is compared with that of hydrodynamical moments of inertia and other moments of inertia used conventionally. (orig.)

  19. The effect of directional inertias added to pelvis and ankle on gait

    Science.gov (United States)

    2013-01-01

    Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML) direction to the pelvis. Methods We developed an experimental setup to apply inertia in forward backward and or sideways directions. In two experiments nine healthy subjects walked on a treadmill at 1.5 km/h and 4.5 km/h with no load and with AP loads of 0.3, 1.55 and 3.5 kg to the left ankle in the first experiment and combinations of AP and ML loads on the pelvis (AP loads 0.7, 4.3 and 10.2 kg; ML loads 0.6, 2.3 and 5.3 kg). We recorded metabolic rate, EMG of major leg muscles, gait parameters and kinematics. Results & discussion Adding 1.55 kg or more inertia to the ankle in AP direction increases the pelvis acceleration and decreases the foot acceleration in AP direction both at speeds of 4.5 km/h. Adding 3.5 kg of inertia to the ankle also increases the swing time as well as AP motions of the pelvis and head-arms-trunk (HAT) segment. Muscle activity remains largely unchanged. Adding 10.2 kg of inertia to the pelvis in AP direction causes a significant decrease of the pelvis and HAT segment motions, particularly at high speeds. Also the sagittal back flexion increases. Lower values of AP inertia and ML inertias up to 5.3 kg had negligible effect. In general the found effects are larger at high speeds. Conclusions We found that inertia up to 2 kg at the ankle or 6 kg added to the pelvis induced significant changes, but since these changes were all within the normal inter subject variability we considered these changes as negligible for application as rehabilitation robotics and assistive devices. PMID:23597391

  20. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  1. Diagnostic inertia in dyslipidaemia: results of a preventative programme in Spain

    Directory of Open Access Journals (Sweden)

    Antonio Palazón-Bru

    2015-07-01

    Full Text Available Others have analysed the relationship between inadequate behaviour by healthcare professionals in the diagnosis of dyslipidaemia (diagnostic inertia and the history of cardiovascular risk factors. However, since no study has assessed cardiovascular risk scores as associated factors, we carried out a study to quantify diagnostic inertia in dyslipidaemia and to determine if cardiovascular risk scores are associated with this inertia. In the Valencian Community (Spain, a preventive programme (cardiovascular, gynaecologic and vaccination was started in 2003 inviting persons aged ≥40 years to undergo a health check-up at their health centre. This cross-sectional study examined persons with no known dyslipidaemia seen during the first six months of the programme (n = 16, 905 but whose total cholesterol (TC was ≥5.17 mmol/L. Diagnostic inertia was defined as lack of follow-up to confirm/discard the dyslipidaemia diagnosis. Other variables included in the analysis were gender, history of cardiovascular risk factors/cardiovascular disease, counselling (diet/exercise, body mass index (BMI, age, blood pressure, fasting blood glucose and lipids. TC was grouped as ≥/<6.20 mmol/L. In patients without cardiovascular disease and <75/≤65 years (n = 15, 778/13, 597, the REGICOR (REgistre GIroní del COr/SCORE (Systematic COronary Risk Evaluation cardiovascular risk functions were used to classify risk (high/low. Inertia was quantified and the adjusted odds ratios calculated from multivariate models. In the overall sample, the rate of diagnostic inertia was 52% (95% CI [51.2–52.7]; associated factors were TC ≥ 6.20 mmol/L, high or “not measured” BMI, hypertension, smoking and higher values of fasting blood glucose, systolic blood pressure and TC. In the REGICOR sample, the rate of diagnostic inertia was 51.9% (95% CI [51.1–52.7]; associated factors were REGICOR high and high or “not measured” BMI. In the SCORE sample the rate of diagnostic

  2. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    Directory of Open Access Journals (Sweden)

    Jin-sha Wang

    2007-10-01

    Full Text Available This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  3. Nonlinear transient waves in coupled phase oscillators with inertia.

    Science.gov (United States)

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  4. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    Science.gov (United States)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple

  5. An object oriented implementation of the Yeadon human inertia model.

    Science.gov (United States)

    Dembia, Christopher; Moore, Jason K; Hubbard, Mont

    2014-01-01

    We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.

  6. An object oriented implementation of the Yeadon human inertia model

    Science.gov (United States)

    Dembia, Christopher; Moore, Jason K.; Hubbard, Mont

    2015-01-01

    We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input. PMID:25717365

  7. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Cheng Wenlong; Liu Na; Wu Wanfan

    2012-01-01

    In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.

  8. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  9. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  10. Organic transistors with high thermal stability for medical applications.

    Science.gov (United States)

    Kuribara, Kazunori; Wang, He; Uchiyama, Naoya; Fukuda, Kenjiro; Yokota, Tomoyuki; Zschieschang, Ute; Jaye, Cherno; Fischer, Daniel; Klauk, Hagen; Yamamoto, Tatsuya; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Sekitani, Tsuyoshi; Loo, Yueh-Lin; Someya, Takao

    2012-03-06

    The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm(2) V(-1)s(-1) within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

  11. The latent effect of inertia in the modal choice

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Meloni, Italo; Ortúzar, Juan de Dios

    2014-01-01

    The existence of habit (leading to inertia) in the choice process has been approached in the literature in a number of ways. In transport, inertia has been studied mainly using “long panel” data, or mixed revealed and stated preference data. In these studies inertia links the choice made in two...... approaches. We assume that inertia is revealed by past behaviour and affects also the initial condition, but we recognise that past behaviour is only an indicator of habitual behaviour, the true process behind the formation of habitual behaviour being latent. We estimate a hybrid choice model using a set...... of revealed and stated mode choice preferences collected in Cagliari (Italy). We found a significant latent inertia in the revealed preference data, indicating that inertia affects the initial conditions. The latent inertia is revealed by the frequency of past behaviour but the effect of trip frequency...

  12. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity

    Science.gov (United States)

    Oddone, Valerio; Boerner, Benji; Reich, Stephanie

    2017-12-01

    High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.

  13. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  14. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  15. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  16. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Two-fluid turbulence including electron inertia

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)

    2014-12-15

    We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.

  18. Studies of the nuclear inertia in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1978-01-01

    On the basis of the non-self-consistent cranking model the authors study some aspects of the nuclear inertia of interest in fission and heavy-ion reactions. First, the authors consider in the adiabatic limit the inertia for a doubly closed-shell nucleus in a deformed spheroidal harmonic-oscillator single-particle potential plus a small perturbation. When expressed in terms of a coordinate that describes the deformation of the nuclear matter distribution, the inertia for small oscillations about a spherical shape is exactly equal to the incompressible, irrotational value. For large distortions it deviates from the incompressible, irrotational value by up to about +-1% away from level crossings. Second, in order to study the dependence of the inertia upon a level crossing, two levels of the above system are considered. This is done both in the adiabatic limit and for large collective velocities. At level crossings the adiabatic inertia relative to the deformation of the matter distribution diverges as 1/modΔV, where modΔV is the magnitude of the perturbation. However, for large collective velocities the contribution to the inertia from a level crossing is less than 4modΔV(d(rsub(m))/dt) 2 where d(rsub(m))/dt is the collective velocity of the matter distribution. Although the effect of large velocities on the remaining levels of the many-body system or the effect of a statistical ensemble of states has not been considered, some of the results suggest that for high excitation energies and moderately large collective velocities the nuclear inertia approaches approximately the irrotational value. (Auth.)

  19. Exploring inertia in a typical state organisation

    Directory of Open Access Journals (Sweden)

    G. J. Louw

    2004-10-01

    Full Text Available Those organisations which do not change according to environmental pressures, suffer from organisational inertia. The purpose of this study is to explore the manifestation of organisational inertia in the target organisation. The target population for this study was a group of trainees, representing the geographic and demographic levels of a particular state department. In South Africa, surveys of this nature were only executed in the corporate sector. The results indicate that organisational inertia is a phenomenon that affects both corporate and governmental organisations. Opsomming Organisasies wat nie ooreenkomstig omgewingsdruk verander nie, ly aan organisasietraagheid. Die doel van die studie is om organisasietraagheid te konseptualiseer en die manifestasie daarvan in die teikenorganisasie te ondersoek. Die teikenpopulasie bestaan uit ’n groep kursusgangers wat die demografiese en geografiese samestelling van ‘n tipiese staatsdepartement verteenwoordig. In Suid -Afrika is navorsing van hierdie aard nog net in die korporatiewe sektor uitgevoer. Die resultate toon aan dat organisasietraagheid ‘n faktor is wat beide die korporatiewe omgewing en staatsorganisasies beïnvloed.

  20. Molecular Dynamic Simulation of High Thermal Conductivity Synthetic Spider Silk for Thermal Management in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal management is crucial to space technology. Because electronic and other thermally sensitive materials will be located in an essentially airless environment,...

  1. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  2. The thermal management of high power light emitting diodes

    Science.gov (United States)

    Hsu, Ming-Seng; Huang, Jen-Wei; Shyu, Feng-Lin

    2012-10-01

    Thermal management had an important influence not only in the life time but also in the efficiency of high power light emitting diodes (HPLEDs). 30 watts in a single package have become standard to the industrial fabricating of HPLEDs. In this study, we fabricated both of the AlN porous films, by vacuum sputtering, soldered onto the HPLEDs lamp to enhance both of the heat transfer and heat dissipation. In our model, the ceramic enables transfer the heat from electric device to the aluminum plate quickly and the porous increase the quality of the thermal dissipation between the PCB and aluminum plate, as compared to the industrial processing. The ceramic films were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray diffraction (XRD) diagram analysis reveals those ceramic phases were successfully grown onto the individual substrates. The morphology of ceramic films was investigated by the atomic force microscopy (AFM). The results show those porous films have high thermal conduction to the purpose. At the same time, they had transferred heat and limited work temperature, about 70°, of HPLEDs successfully.

  3. High-field thermal transports properties of REBCO coated conductors

    CERN Document Server

    Bonura, M

    2015-01-01

    The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic fields up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the ...

  4. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  5. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  6. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  7. Production for high thermal stability NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.Q. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China)], E-mail: iyy2000@163.com; Zhang, J.; Hu, S.Q.; Han, Z.D. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2008-04-15

    To improve sintered NdFeB magnets' thermal stability and magnetic properties, combined addition of elements Cu and Gd was investigated. It was found that with Gd addition increase to 1.0%, the temperature coefficient {alpha} improved from -0.15 to -0.05%/deg. C (maximum working temperature 120 deg. C), but the remanence and the maximum energy product linearly decreased. With addition of Cu in Gd-containing magnets the intrinsic coercivity increased greatly, and the remanence increased also because of their density improvement, and optimum Cu content was achieved at 0.2%. Microstructure analysis showed that most of the Cu distributed at grain boundaries and led to clear and smooth morphologies. Magnets with high thermal stability {alpha}=-0.05%/deg. C and magnetic properties were obtained with addition of Gd=0.8% and Cu=0.2%.

  8. High-precision thermal and electrical characterization of thermoelectric modules

    Science.gov (United States)

    Kolodner, Paul

    2014-05-01

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0-10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  9. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  10. The Thermal Regime Around Buried Submarine High-Voltage Cables

    Science.gov (United States)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  11. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  12. Inducverters: PLL-Less Converters with Auto-Synchronization and Emulated Inertia Capability

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Freijedo Fernandez, Francisco Daniel; Golestan, Saeed

    2016-01-01

    current information and can track grid frequency, angle and voltage amplitude variations while feeding constant amount of power which is of high interest in frequency varying grids and also in the case of grid voltage angle jump. Another advantage of the inducverter is that it introduces virtual inertia...... impedance. The controller also offers stable and high-performance synchronization and operation under unbalanced and/or distorted grid conditions. The work beside synchronous current converters give a bird’s eye view to research in the new area of PLL-less and virtual inertia-based operation of VSCs...

  13. Inertia in strategy switching transforms the strategy evolution.

    Science.gov (United States)

    Zhang, Yanling; Fu, Feng; Wu, Te; Xie, Guangming; Wang, Long

    2011-12-01

    A recent experimental study [Traulsen et al., Proc. Natl. Acad. Sci. 107, 2962 (2010)] shows that human strategy updating involves both direct payoff comparison and the cost of switching strategy, which is equivalent to inertia. However, it remains largely unclear how such a predisposed inertia affects 2 × 2 games in a well-mixed population of finite size. To address this issue, the "inertia bonus" (strategy switching cost) is added to the learner payoff in the Fermi process. We find how inertia quantitatively shapes the stationary distribution and that stochastic stability under inertia exhibits three regimes, with each covering seven regions in the plane spanned by two inertia parameters. We also obtain the extended "1/3" rule with inertia and the speed criterion with inertia; these two findings hold for a population above two. We illustrate the above results in the framework of the Prisoner's Dilemma game. As inertia varies, two intriguing stationary distributions emerge: the probability of coexistence state is maximized, or those of two full states are simultaneously peaked. Our results may provide useful insights into how the inertia of changing status quo acts on the strategy evolution and, in particular, the evolution of cooperation.

  14. Frequency Stability Enhancement for Low Inertia Systems using Synthetic Inertia of Wind Power

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    stability, this paper proposes supplementary control methods to implement synthetic inertia for doubly-fed induction generator (DFIG) based wind energy system during frequency excursions. Different control strategies and activation schemes are analyzed and implemented on the Western Danish renewable......-based system using-real time digital simulator (RTDS) to propose the best one for the synthetic inertia controller. From the comparative simulation results, it can be concluded that the method using a combination of both the frequency deviation and derivative as input signals, and the under-frequency trigger...

  15. Measurement of thermal conductivity of Bi2Te3 nanowire using high-vacuum scanning thermal wave microscopy

    Science.gov (United States)

    Park, Kyungbae; Hwang, Gwangseok; Kim, Hayeong; Kim, Jungwon; Kim, Woochul; Kim, Sungjin; Kwon, Ohmyoung

    2016-02-01

    With the increasing application of nanomaterials in the development of high-efficiency thermoelectric energy conversion materials and electronic devices, the measurement of the intrinsic thermal conductivity of nanomaterials in the form of nanowires and nanofilms has become very important. However, the current widely used methods for measuring thermal conductivity have difficulties in eliminating the influence of interfacial thermal resistance (ITR) during the measurement. In this study, by using high-vacuum scanning thermal wave microscopy (HV-STWM), we propose a quantitative method for measuring the thermal conductivity of nanomaterials. By measuring the local phase lag of high-frequency (>10 kHz) thermal waves passing through a nanomaterial in a high-vacuum environment, HV-STWM eliminates the measurement errors due to ITR and the distortion due to heat transfer through air. By using HV-STWM, we measure the thermal conductivity of a Bi2Te3 nanowire. Because HV-STWM is quantitatively accurate and its specimen preparation is easier than in the thermal bridge method, we believe that HV-STWM will be widely used for measuring the thermal properties of various types of nanomaterials.

  16. Inertia and compressibility effects on density waves and Ledinegg phenomena in two-phase flow systems

    International Nuclear Information System (INIS)

    Ruspini, L.C.

    2012-01-01

    Highlights: ► The stability influence of piping fluid inertia on two-phase instabilities is studied. ► Inlet inertia stabilizes the system while outlet inertia destabilizes it. ► High-order modes oscillations are found and analyzed. ► The effect of compressible volumes in the system is studied. ► Inlet compressibility destabilizes the system while outlet comp. stabilizes it. - Abstract: The most common kind of static and dynamic two-phase flow instabilities namely Ledinegg and density wave oscillations are studied. A new model to study two-phase flow instabilities taking into account general parameters from real systems is proposed. The stability influence of external parameters such as the fluid inertia and the presence of compressible gases in the system is analyzed. High-order oscillation modes are found to be related with the fluid inertia of external piping. The occurrence of high-order modes in experimental works is analyzed with focus on the results presented in this work. Moreover, both inertia and compressibility are proven to have a high impact on the stability limits of the systems. The performed study is done by modeling the boiling channel using a one dimensional equilibrium model. An incompressible transient model describes the evolution of the flow and pressure in the non-heated regions and an ideal gas model is used to simulate the compressible volumes in the system. The use of wavelet decomposition analysis is proven to be an efficient tool in stability analysis of several frequencies oscillations.

  17. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  18. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  19. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  20. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  1. Fiber Bragg Gratings for High-Temperature Thermal Characterization

    International Nuclear Information System (INIS)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.

    2004-01-01

    Fiber Bragg grating (FBG) sensors were used as a characterization tool to study the SAFE-100 thermal simulator at the Nasa Marshal Space Flight Center. The motivation for this work was to support Nasa space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements, up to 1150 deg. C, were made with FBG temperature sensors. Additionally, FBG strain measurements were taken at elevated temperatures to provide a strain profile of the core during operation. This paper will discuss the contribution of these measurements to meet the goals of Nasa Marshall Space Flight Center's Propulsion Research Center. (authors)

  2. An improved method in the measurement of the moment of inertia

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jun, E-mail: pengjun@cimm.com.cn [Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement (CIMM) Beijing (China); Zhang, Li, E-mail: zhangli@cimm.com.cn [Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement (CIMM) Beijing (China); School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing (China)

    2016-06-28

    The moment of inertia calibration system is developed by Changcheng Institute of Metrology and Measurement (CIMM). Rotation table - torsional spring system is used to generate angular vibration, and laser vibrometer is used to measure rotational angle and the vibration period. The object to be measured is mounted on the top of the rotation table. The air-bearing system is elaborately manufactured which reduce the friction of the angular movement and increase measurement accuracy. Heterodyne laser interferometer collaborates with column diffraction grating is used in the measurement of angular movement. Experiment shows the method of measuring oscillating angle and period introduced in this paper is stable and the time resolution is high. When the air damping effect can’t be neglected in moment of inertia measurement, the periodic waveform area ratio method is introduced to calculate damping ratio and obtain the moment of inertia.

  3. Scaling of rotational inertia of primate mandibles.

    Science.gov (United States)

    Ross, Callum F; Iriarte-Diaz, Jose; Platts, Ellen; Walsh, Treva; Heins, Liam; Gerstner, Geoffrey E; Taylor, Andrea B

    2017-05-01

    The relative importance of pendulum mechanics and muscle mechanics in chewing dynamics has implications for understanding the optimality criteria driving the evolution of primate feeding systems. The Spring Model (Ross et al., 2009b), which modeled the primate chewing system as a forced mass-spring system, predicted that chew cycle time would increase faster than was actually observed. We hypothesized that if mandibular momentum plays an important role in chewing dynamics, more accurate estimates of the rotational inertia of the mandible would improve the accuracy with which the Spring Model predicts the scaling of primate chew cycle period. However, if mass-related momentum effects are of negligible importance in the scaling of primate chew cycle period, this hypothesis would be falsified. We also predicted that greater "robusticity" of anthropoid mandibles compared with prosimians would be associated with higher moments of inertia. From computed tomography scans, we estimated the scaling of the moment of inertia (I j ) of the mandibles of thirty-one species of primates, including 22 anthropoid and nine prosimian species, separating I j into the moment about a transverse axis through the center of mass (I xx ) and the moment of the center of mass about plausible axes of rotation. We found that across primates I j increases with positive allometry relative to jaw length, primarily due to positive allometry of jaw mass and I xx , and that anthropoid mandibles have greater rotational inertia compared with prosimian mandibles of similar length. Positive allometry of I j of primate mandibles actually lowers the predictive ability of the Spring Model, suggesting that scaling of primate chew cycle period, and chewing dynamics in general, are more strongly influenced by factors other than scaling of inertial properties of the mandible, such as the dynamic properties of the jaw muscles and neural control. Differences in cycle period scaling between chewing and locomotion

  4. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  5. On the moment of inertia of a quantum harmonic oscillator

    International Nuclear Information System (INIS)

    Khamzin, A. A.; Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.

    2013-01-01

    An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.

  6. Nuclear inertia for fission in a generalized cranking model

    International Nuclear Information System (INIS)

    Kunz, J.; Nix, J.R.

    1984-01-01

    A time dependent formalism which is appropriate for β vibrations and fission is developed for a generalized cranking model. The formalism leads to additional terms in the density matrix which affect the nuclear inertia. The case of a harmonic oscillator potential is used to demonstrate the contribution of the pairing gap term on the β vibrational inertia for Pu 240. The inertia remains finite and close to the limiting irrotational value

  7. Moment of inertia and the interacting boson model

    International Nuclear Information System (INIS)

    Yoshida, N.; Sagawa, H.; Otsuka, T.; Arima, A.

    1989-01-01

    Mass-number dependence of the moment of inertia is studied in relation with the boson number in the SU(3) limit of the interacting boson model 1 (IBM-1). The analytic formula in the limit indicates the pairing correlation between nucleons is directly related to the moment of inertia in the IBM. It is shown in general that the kink of the moment of inertia coincides with the maximum boson number of each element. (author)

  8. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    Science.gov (United States)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  9. Nuclear moment of inertia and spin distribution of nuclear levels

    International Nuclear Information System (INIS)

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-01-01

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region

  10. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    Science.gov (United States)

    Tagliaferri, Vincenzo; Ucciardello, Nadia

    2017-01-01

    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix. PMID:29068424

  11. Positron annihilation in germanium in thermal equilibrium at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Komuro, Naoyuki; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi

    1996-09-01

    Annihilation characteristics of positrons in Ge in thermal equilibrium at high temperature were studied using a monoenergetic positron beam. Precise measurements of Doppler broadening profiles of annihilation radiation were performed in the temperature range between 300 K and 1211 K. The line shape parameters of Doppler broadening profiles were found to be almost constant at 300-600 K. The changes in these parameters were observed to start above 600 K. This was attributed to both the decrease in the fraction of positrons annihilating with core electrons and the lowering of the crystal symmetry around the region detected by positron-electron pairs. This suggests that behaviors of positrons are dominated by some form of positron-lattice coupling in Ge at high temperatures. The temperature dependence of the diffusion length of positrons was also discussed. (author)

  12. A Rotating Speed Controller Design Method for Power Levelling by Means of Inertia Energy in Wind Power Systems

    DEFF Research Database (Denmark)

    Qin, Zian; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Power fluctuation caused by wind speed variations may be harmful for the stability of the power system as well as the reliability of the wind power converter, since it may induce thermal excursions in the solder joints of the power modules. Using the wind turbine rotor inertia energy for power...... in the frequency domain for power leveling. Moreover, the impact of other parameters on power leveling, including the time constant of maximum power point tracking (MPPT) and the rotor inertia, are also studied. With the proposed optimal design, the power fluctuations are mitigated as much as possible, while...

  13. Microscopic mechanism of moments of inertia and odd-even differences for well-deformed actinide nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Zeng Jinyan

    2004-01-01

    The microscopic mechanism of the variation with rotational frequency of moments of inertia and their odd-even differences for well-deformed actinide nuclei are analyzed by using the particle-number conserving (PNC) method for treating nuclear pairing interaction. The moments of inertia for bands building on high j intruder orbitals in odd-A nuclei, e.g., the 235 U (ν[743]7/2) band, are found to be much larger than those of ground-state bands in neighboring even-even nuclei. Moreover, there exist large odd-even differences in the ω variation of moments of inertia. All these experimental odd-even differences are reproduced quite well in the PNC calculation, in which the effective monopole and quadrupole pairing interaction strengths are determined by the experimental odd-even differences in binding energies and bandhead moments of inertia, and no free parameter is involved in the PNC calculation

  14. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    Science.gov (United States)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  15. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review.

    Science.gov (United States)

    Khunti, Kamlesh; Gomes, Marilia B; Pocock, Stuart; Shestakova, Marina V; Pintat, Stéphane; Fenici, Peter; Hammar, Niklas; Medina, Jesús

    2018-02-01

    Therapeutic inertia, defined as the failure to initiate or intensify therapy in a timely manner according to evidence-based clinical guidelines, is a key reason for uncontrolled hyperglycaemia in patients with type 2 diabetes. The aims of this systematic review were to identify how therapeutic inertia in the management of hyperglycaemia was measured and to assess its extent over the past decade. Systematic searches for articles published from January 1, 2004 to August 1, 2016 were conducted in MEDLINE and Embase. Two researchers independently screened all of the titles and abstracts, and the full texts of publications deemed relevant. Data were extracted by a single researcher using a standardized data extraction form. The final selection for the review included 53 articles. Measurements used to assess therapeutic inertia varied across studies, making comparisons difficult. Data from low- to middle-income countries were scarce. In most studies, the median time to treatment intensification after a glycated haemoglobin (HbA1c) measurement above target was more than 1 year (range 0.3 to >7.2 years). Therapeutic inertia increased as the number of antidiabetic drugs rose and decreased with increasing HbA1c levels. Data were mainly available from Western countries. Diversity of inertia measures precluded meta-analysis. Therapeutic inertia in the management of hyperglycaemia in patients with type 2 diabetes is a major concern. This is well documented in Western countries, but corresponding data are urgently needed in low- and middle-income countries, in view of their high prevalence of type 2 diabetes. © 2017 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  16. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  17. Thermal properties of high-power diode lasers investigated by means of high resolution thermography

    International Nuclear Information System (INIS)

    Kozłowska, Anna; Maląg, Andrzej; Dąbrowska, Elżbieta; Teodorczyk, Marian

    2012-01-01

    In the present work, thermal effects in high-power diode lasers are investigated by means of high resolution thermography. Thermal properties of the devices emitting in the 650 nm and 808 nm wavelength ranges are compared. The different versions of the heterostructure design are analyzed. The results show a lowering of active region temperature for diode lasers with asymmetric heterostructure scheme with reduced quantum well distance from the heterostructure surface (and the heat sink). Optimization of technological processes allowed for the improvement of the device performance, e.g. reduction of solder non-uniformities and local defect sites at the mirrors which was visualized by the thermography.

  18. Thermal expansion behaviour of high performance PEEK matrix composites

    International Nuclear Information System (INIS)

    Goyal, R K; Mulik, U P; Tiwari, A N; Negi, Y S

    2008-01-01

    The thermal expansion behaviour of high performance poly(ether-ether-ketone) (PEEK) composites reinforced with micro- (8 μm) and nano- (39 nm) sized Al 2 O 3 particles was studied. The distribution of Al 2 O 3 in the PEEK matrix was studied by scanning electron microscopy and transmission electron microscopy. The coefficient of thermal expansion (CTE) was reduced from 58 x 10 -6 deg. C -1 for pure PEEK to 22 x 10 -6 deg. C -1 at 43 vol% micro-Al 2 O 3 and to 23 x 10 -6 deg. C -1 at 12 vol% nano-Al 2 O 3 composites. For a given volume fraction, nano-Al 2 O 3 particles are more effective in reducing the CTE of composites than that of micro-Al 2 O 3 particles. This may be attributed to the much higher interfacial area or volume of nanocomposites than that of microcomposites. The upper limit and lower limit of the Schapery model separately fit closely the CTE of the micro- and nano-composites, respectively. Other models such as the rule of mixture and Kerner and Turner models were also correlated with the data

  19. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  20. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  1. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  2. High-temperature turbopump assembly for space nuclear thermal propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  3. High-temperature turbopump assembly for space nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Overholt, D.M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications

  4. Waste canister closure welding using the inertia friction welding process

    International Nuclear Information System (INIS)

    Klein, R.F.; Siemens, D.H.; Kuruzar, D.L.

    1986-02-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it in a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive seal weld, the properties and thickness of which are at least equal to those of the canister material. This paper describes the inertia friction welding process and a proposed equipment design concept that will provide a positive, reliable, inspectable, and full thickness seal weld while providing easily maintainable equipment, even though the weld is made in a highly contaminated hot cell. All studies and tests performed have shown the concept to be highly feasible. 2 refs., 6 figs

  5. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking.

    Science.gov (United States)

    Uetani, Kojiro; Ata, Seisuke; Tomonoh, Shigeki; Yamada, Takeo; Yumura, Motoo; Hata, Kenji

    2014-09-03

    Electrostatic flocking is applied to create an array of aligned carbon fibers from which an elastomeric thermal interface material (TIM) can be fabricated with a high through-plane thermal conductivity of 23.3 W/mK. A high thermal conductivity can be achieved with a significantly low filler level (13.2 wt%). As a result, this material retains the intrinsic properties of the matrix, i.e., elastomeric behavior. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thermally stimulated current method applied to highly irradiated silicon diodes

    CERN Document Server

    Pintilie, I; Pintilie, I; Moll, Michael; Fretwurst, E; Lindström, G

    2002-01-01

    We propose an improved method for the analysis of Thermally Stimulated Currents (TSC) measured on highly irradiated silicon diodes. The proposed TSC formula for the evaluation of a set of TSC spectra obtained with different reverse biases leads not only to the concentration of electron and hole traps visible in the spectra but also gives an estimation for the concentration of defects which not give rise to a peak in the 30-220 K TSC temperature range (very shallow or very deep levels). The method is applied to a diode irradiated with a neutron fluence of phi sub n =1.82x10 sup 1 sup 3 n/cm sup 2.

  7. High temperature ductility of austenitic alloys exposed to thermal neutrons

    International Nuclear Information System (INIS)

    Watanabe, K.; Kondo, T.; Ogawa, Y.

    1982-01-01

    Loss of high temperature ductility due to thermal neutron irradiation was examined by slow strain rate test in vacuum up to 1000 0 C. The results on two heats of Hastelloy alloy X with different boron contents were analyzed with respect to the influence of the temperatures of irradiation and tensile tests, neutron fluence and the associated helium production due to nuclear transmutation reaction. The loss of ductility was enhanced by increasing either temperature or neutron fluence. Simple extrapolations yielded the estimated threshold fluence and the end-of-life ductility values at 900 and 1000 0 C in case where the materials were used in near-core regions of VHTR. The observed relationship between Ni content and the ductility loss has suggested a potential utilization of Fe-based alloys for seathing of the neutron absorber materials

  8. CTE-Matched, Liquid-Cooled, High Thermal Conductivity Heat Sink, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a CTE-matched, liquid-cooled, high thermal conductivity heat sink for use in spacecraft thermal management applications. The material...

  9. The Fuel Performance Analysis of LWR Fuel containing High Thermal Conductivity Reinforcements

    International Nuclear Information System (INIS)

    Kim, Seung Su; Ryu, Ho Jin

    2015-01-01

    The thermal conductivity of fuel affects many performance parameters including the fuel centerline temperature, fission gas release and internal pressure. In addition, enhanced safety margin of fuel might be expected when the thermal conductivity of fuel is improved by the addition of high thermal conductivity reinforcements. Therefore, the effects of thermal conductivity enhancement on the fuel performance of reinforced UO2 fuel with high thermal conductivity compounds should be analyzed. In this study, we analyzed the fuel performance of modified UO2 fuel with high thermal conductivity reinforcements by using the FRAPCON-3.5 code. The fissile density and mechanical properties of the modified fuel are considered the same with the standard UO2 fuel. The fuel performance of modified UO2 with high thermal conductivity reinforcements were analyzed by using the FRAPCON-3.5 code. The thermal conductivity enhancement factors of the modified fuels were obtained from the Maxwell model considering the volume fraction of reinforcements

  10. Dynamic thermal performance of alveolar brick construction system

    International Nuclear Information System (INIS)

    Gracia, A. de; Castell, A.; Medrano, M.; Cabeza, L.F.

    2011-01-01

    Highlights: → Even though U-value does not measure thermal inertia, it is the commonly used parameter. → The thermal performance analysis of buildings must include the evaluation of transient parameters. → Transient parameters of alveolar brick constructive system show good agreement with its low energy consumption. -- Abstract: Alveolar bricks are being introduced in building sector due to the simplicity of their construction system and to the elimination of the insulation material. Nevertheless, it is not clear if this new system is energetically efficient and which is its thermal behaviour. This paper presents an experimental and theoretical study to evaluate the thermal behaviour of the alveolar brick construction system, compared with a traditional Mediterranean brick system with insulation. The experimental study consists of measuring the thermal performance of four real house-like cubicles. The thermal transmittance in steady-state, also known as U-value, is calculated theoretically and experimentally for each cubicle, presenting the insulated cubicles as the best construction system, with differences around 45% in comparison to the alveolar one. On the other hand, experimental results show significantly smaller differences on the energy consumption between the alveolar and insulated construction systems during summer period (around 13% higher for the alveolar cubicle). These values demonstrate the high thermal efficiency of the alveolar system. In addition, the lack of agreement between the measured energy consumption and the calculated U-values, guides the authors to analyze the thermal inertia of the different building components. Therefore, several transient parameters, extracted from the heat transfer matrix and from experimental data, are also evaluated. It can be concluded that the alveolar brick construction system presents higher thermal inertia than the insulated one, justifying the low measured energy consumption.

  11. Moments of Inertia of Disks and Spheres without Integration

    Science.gov (United States)

    Hong, Seok-Cheol; Hong, Seok-In

    2013-01-01

    Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…

  12. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.

    Science.gov (United States)

    Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J

    2016-12-08

    The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    -section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  14. The Early Lunar Orbit and Principal Moments of Inertia

    Science.gov (United States)

    Garrick-Bethell, I.; Zuber, M. T.

    2007-12-01

    If taken at face value, the principal lunar moments of inertia suggest that the Moon froze in a past tidal and rotational state during a high eccentricity orbit [1]. At this time the Moon may have been in either synchronous rotation or in a 3:2 resonance of spin and mean motion. We have performed further investigations of the plausibility of past high eccentricity lunar orbits on the basis of orbital evolution, the dynamics of entry into any past 3:2 resonance, and tidal dissipation. We have found that the requisite permanent (B-A)/C (where A, B, and C are the principal moments of inertia) for a 3:2 resonance can be achieved in a magma ocean if a density anomaly is present shortly after lunar accretion. In a high eccentricity orbit, tidal dissipation will affect the Moon's ability to develop lithospheric strength. The Moon is presently able to support degree-two loads, while Io, which is approximately the same size as the Moon and strongly heated by tidal dissipation, probably cannot [2]. Therefore, somewhere between the present lunar radioactive heating rate (~1012 W), and Io's observed dissipation (~1014 W), the Moon may develop lithospheric strength. We use 1014 W as a loose upper bound on where freeze-in may begin and find that in a 3:2 resonance tidal dissipation [3] can drop below 1014 W at a = 25 RE and e = 0.17, and the present moments of inertia can be approximately reproduced for lunar values of QM = 475 (where a is the lunar semimajor axis, RE is the Earth radius, and Q is the specific dissipation function). This value of QM is somewhat large, but the biggest problem with a 3:2 resonance that lasts until 25 RE is how to achieve the current low eccentricity synchronous orbit. The required damping cannot be easily achieved unless the Moon is knocked out of a 3:2 resonance by an impactor that would produce a crater approximately 800 km in diameter. In sum, there is no single strong constraint that completely rules out a 3:2 resonance, but it would require a

  15. Bounds on the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.; Hartle, J.B.

    1977-01-01

    Upper and lower bounds are placed on the moments of inertia of relativistic, spherical, perfect fluid neutron stars assuming that the pressure p and density p are positive and that (dp/drho) is positive. Bounds are obtained (a) for the moment of inertia of a star with given mass and radius, (b) for the moment of inertia of neutron stars for which the equation of state is known below a given density rho/sub omicron/and (c) for the mass-moment of inertia relation for stars whose equation of state is known below a given density rho/sub omicron/The bounds are optimum ones in the sense that there always exists a configuration consistent with the assumptions having a moment of inertia equal to that of the bound. The implications of the results for the maximum mass of slowly rotating neutron stars are discussed

  16. Development of inertia-increased reactor internal pump

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Matsumura, Seiichi; Kikushima, Jun; Kawamura, Shinichi; Yamashita, Norimichi; Kurosaki, Toshikazu; Kondo, Takahisa

    2000-01-01

    The Reactor Internal Pump (RIP) was adopted for the Reactor Recirculation System (RRS) of Advanced Boiling Water Reactor (ABWR) plants, and ten RIPs are located at the bottom of the reactor pressure vessel. In order to simplify the power supply system for the RIPs, a new inertia-increased RIP was developed, which allows to eliminate the Motor-Generator (M-G) sets. The rotating inertia was increased approximately 2.5 times of current RIP inertia by addition of flywheel on its main shaft. A full scale proving test of the inertia-increased RIP under actual plant operating conditions using full scale test loop was performed to evaluate vibration characteristics and coast down characteristics. From the results of this proving test, the validity of the new inertia-increased RIP and its power supply system (without M-G sets) was confirmed. (author)

  17. Clinical inertia, uncertainty and individualized guidelines.

    Science.gov (United States)

    Reach, G

    2014-09-01

    Doctors often do not follow the guidelines of good practice based on evidence-based medicine, and this "clinical inertia" may represent an impediment to efficient care. The aims of this article are as follows: 1) to demonstrate that this phenomenon is often the consequence of a discrepancy between the technical rationality of evidence-based medicine and the modes of reasoning of physicians practiced in "real-life", which is marked by uncertainty and risk; 2) to investigate in this context the meaning of the recent, somewhat paradoxical, concept of "individualized guidelines"; and 3) to revisit the real, essentially pedagogical, place of guidelines in medical practice. Copyright © 2014. Published by Elsevier Masson SAS.

  18. Characterizing the thermal effects of High Energy Arc Faults

    Energy Technology Data Exchange (ETDEWEB)

    Putorti, Anthony; Bareham, Scott; Praydis, Joseph Jr. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States); Melly, Nicholas B. [U.S. Nuclear Regulatory Commission (NRC), Washington, DC (United States)

    2015-12-15

    International and domestic operating experience involving High Energy Arc Faults (HEAF) in Nuclear Power Plant (NPP) electrical power systems have demonstrated the potential to cause extensive damage to electrical components and distribution systems along with damage to adjacent equipment and cables. An international study by the Committee on the Safety of Nuclear Installations (CSNI) gOECD Fire Project. Topical Report No. 1: Analysis of High Energy Arcing Fault (HEAF) Fire Events h published June 25, 2013 [1], illustrates that HEAF events have the potential to be major risk contributors with significant safety consequences and substantial economic loss. In an effort to better understand and characterize the threats posed by HEAF related phenomena, an international project has been chartered; the Joint Analysis of Arc Faults (Joan of ARC) OECD International Testing Program for High Energy Arc Faults. One of the major challenges of this research is how to properly measure and characterize the risk and influence of these events. Methods are being developed to characterize relevant parameters such as; temperature, heat flux, and heat release rate of fires resulting from HEAF events. Full scale experiments are being performed at low (≤ 1000 V) and medium (≤ 35 kV) voltages in electrical components. This paper introduces the methods being developed to measure thermal effects and discusses preliminary results of full scale HEAF experiments.

  19. The Dynamics of Online Purchase Visits: Inertia or Switching?

    Institute of Scientific and Technical Information of China (English)

    Zelin Zhang; Xia Wang; Peter T.L.Popkowski Leszczyc; Xiao Zuo

    2016-01-01

    This paper studies the dynamics of online purchase patterns,focusing on the impact of the channel used on conversion probability,as well as the transition of channel use over time.A novel data set from a major Chinese online travel agency is used for analysis,consisting of four months of data with 24,337 store visits through three types of channels:direct visit,search advertising and referral.Results of a Bayesian multinomial logit model show that the search channel significantly affects consumers' conversion probability,and show a high degree of inertia in channel use.This finding contrasts sharply with suggestions of previous research that most future purchases will converge to the direct-visit channel.

  20. Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment

    Directory of Open Access Journals (Sweden)

    Yongle Mao

    2016-12-01

    Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

  1. Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, K.; Routray, T.R.; Pattnaik, S.P. [Sambalpur University, School of Physics, Jyotivihar (India); Basu, D.N. [Variable Energy Cyclotron Center, Kolkata (India)

    2017-07-15

    The mass, radius and crustal fraction of moment of inertia in neutron stars are calculated using β-equilibrated nuclear matter obtained from the Skyrme effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions using the KDE0v1 set. The neutron star masses obtained by solving the Tolman-Oppenheimer-Volkoff equations using neutron star matter obtained from this set are able to describe highly massive compact stars ∝ 2M {sub CircleDot}. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar, R ≥ 3.69 + 3.44M/M {sub CircleDot}. Present calculations suggest that the crustal fraction of the total moment of inertia can be ∝ 6.3% due to crustal entrainment caused by the Bragg reflection of unbound neutrons by lattice ions. (orig.)

  2. Uncovering the inertia of dislocation motion and negative mechanical response in crystals.

    Science.gov (United States)

    Tang, Yizhe

    2018-01-09

    Dislocations are linear defects in crystals and their motion controls crystals' mechanical behavior. The dissipative nature of dislocation propagation is generally accepted although the specific mechanisms are still not fully understood. The inertia, which is undoubtedly the nature of motion for particles with mass, seems much less convincing for configuration propagation. We utilize atomistic simulations in conditions that minimize dissipative effects to enable uncovering of the hidden nature of dislocation motion, in three typical model metals Mg, Cu and Ta. We find that, with less/no dissipation, dislocation motion is under-damped and explicitly inertial at both low and high velocities. The inertia of dislocation motion is intrinsic, and more fundamental than the dissipative nature. The inertia originates from the kinetic energy imparted from strain energy and stored in the moving core. Peculiar negative mechanical response associated with the inertia is also discovered. These findings shed light on the fundamental nature of dislocation motion, reveal the underlying physics, and provide a new physical explanation for phenomena relevant to high-velocity dislocations.

  3. Thermal mixing in T-junction piping system concerned with high-cycle thermal fatigue in structure

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Ohshima, Hiroyuki; Monji, Hideaki

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), a numerical simulation code 'MUGTHES' has been developed to investigate thermal striping phenomena caused by turbulence mixing of fluids in different temperature and to provide transient data for an evaluation method of high-cycle thermal fatigue. MUGTHES adopts Large Eddy Simulation (LES) approach to predict unsteady phenomena in thermal mixing and employs boundary fitted coordinate system to be applied to complex geometry in a power reactor. Numerical simulation of thermal striping phenomena in a T-junction piping system (T-pipe) is conducted. Boundary condition for the simulation is chosen from an existing water experiment in JAEA, named as WATLON experiment. In the numerical simulation, standard Smagorinsky model is employed as eddy viscosity model with the model coefficient of 0.14 (=Cs). Numerical results of MUGTHES are verified by the comparisons with experimental results of velocity and temperature. Through the numerical simulation in the T-pipe, applicability of MUGTHES to the thermal striping phenomena is confirmed and the characteristic large-scale eddy structure which dominates thermal mixing and may cause high-cycle thermal fatigue is revealed. (author)

  4. Development and Validation of the Sleep Inertia Questionnaire (SIQ) and Assessment of Sleep Inertia in Analogue and Clinical Depression.

    Science.gov (United States)

    Kanady, Jennifer C; Harvey, Allison G

    2015-10-01

    Sleep inertia is the transitional state from sleep to wake. Research on sleep inertia is important in depression because many people with depression report having difficulty getting out of bed, which contributes to impairment and can impede the implementation of interventions. The first aim was to develop and validate the first self-report measure of sleep inertia, the Sleep Inertia Questionnaire (SIQ). The second aim was to compare reports of sleep inertia across three groups: (1) No-to-Mild-Depression, (2) Analogue-Depression, and (3) Syndromal-Depression. The SIQ demonstrates strong psychometric properties; it has good to excellent internal consistency, strong construct validity, and SIQ severity is associated with less prior sleep duration. Sleep inertia is more severe in the Analogue-Depression and Syndromal-Depression groups compared to the No-to-Mild-Depression group. In conclusion, the SIQ is a reliable measure of sleep inertia and has potential for improving the assessment of sleep inertia in clinical and research settings.

  5. Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding

    Directory of Open Access Journals (Sweden)

    W. Lv

    2018-03-01

    Full Text Available The low thermal conductivity of polymers limits their use in numerous applications, where heat transfer is important. The two primary approaches to overcome this limitation, are to mix in other materials with high thermal conductivity, or mechanically stretch the polymers to increase their intrinsic thermal conductivity. Progress along both of these pathways has been stifled by issues associated with thermal interface resistance and manufacturing scalability respectively. Here, we report a novel polymer composite architecture that is enabled by employing typical composites manufacturing method such as filament winding with the twist that the polymer is in fiber form and the filler in form of sheets. The resulting novel architecture enables accession of the idealized effective medium composite behavior as it minimizes the interfacial resistance. The process results in neat polymer and 50 vol% graphite/polymer plates with thermal conductivity of 42 W·m–1·K–1 (similar to steel and 130 W·m–1·K–1 respectively.

  6. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    International Nuclear Information System (INIS)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-01-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability

  7. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    Science.gov (United States)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  8. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    Doll, Joseph C; Pruitt, Beth L

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm −1 ) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  9. High bandwidth piezoresistive force probes with integrated thermal actuation

    Science.gov (United States)

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  10. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  11. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    HU RuiFeng; CAO BingYang

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  12. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  13. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Science.gov (United States)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  14. Effect of liquid inertia on bubble growth in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Wagner, L.Y.; Lykoudis, P.S.

    1977-01-01

    Liquid metal bubble growth in the presence of a magnetic field has previously been examined by Lykoudis under the assumption that the process is heat transfer controlled. In the present work, the growth of a bubble under the influence of a magnetic field is considered when the effect of the liquid inertia is included. This yields a better description of the phenomena for liquid metals, due to the greater portion of the growth cycle that is dominated by the liquid inertia forces. The results indicate that liquid inertia can significantly affect the growth of a liquid metal bubble when compared with the heat transfer-controlled case. The overall effect of the magnetic field forces the heat transfer-controlled growth to occur earlier in the life of the bubble. Hence, heat transfer effects dominate the growth stage more as the magnetic field is increased. The inertia effects are damped and, in the limit of high magnetic fields, growth is only heat transfer controlled. The heat transfer estimates made in the fashion of Forster and Zuber indicate that the magnetic field reduces the energy transport in nucleate boiling. 5 figures

  15. Lower-hybrid (LH) oscillitons evolved from ion-acoustic (IA)/ion-cyclotron (IC) solitary waves: effect of electron inertia

    Science.gov (United States)

    Ma, J. Z. G.; Hirose, A.

    2010-05-01

    Lower-hybrid (LH) oscillitons reveal one aspect of geocomplexities. They have been observed by rockets and satellites in various regions in geospace. They are extraordinary solitary waves the envelop of which has a relatively longer period, while the amplitude is modulated violently by embedded oscillations of much shorter periods. We employ a two-fluid (electron-ion) slab model in a Cartesian geometry to expose the excitation of LH oscillitons. Relying on a set of self-similar equations, we first produce, as a reference, the well-known three shapes (sinusoidal, sawtooth, and spiky or bipolar) of parallel-propagating ion-acoustic (IA) solitary structures in the absence of electron inertia, along with their Fast Fourier Transform (FFT) power spectra. The study is then expanded to illustrate distorted structures of the IA modes by taking into account all the three components of variables. In this case, the ion-cyclotron (IC) mode comes into play. Furthermore, the electron inertia is incorporated in the equations. It is found that the inertia modulates the coupled IA/IC envelops to produce LH oscillitons. The newly excited structures are characterized by a normal low-frequency IC solitary envelop embedded by high-frequency, small-amplitude LH oscillations which are superimposed upon by higher-frequency but smaller-amplitude IA ingredients. The oscillitons are shown to be sensitive to several input parameters (e.g., the Mach number, the electron-ion mass/temperature ratios, and the electron thermal speed). Interestingly, whenever a LH oscilliton is triggered, there occurs a density cavity the depth of which can reach up to 20% of the background density, along with density humps on both sides of the cavity. Unexpectedly, a mode at much lower frequencies is also found beyond the IC band. Future studies are finally highlighted. The appendices give a general dispersion relation and specific ones of linear modes relevant to all the nonlinear modes encountered in the text.

  16. Thermal fracturing on comets. Applications to 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Attree, N.; Groussin, O.; Jorda, L.; Rodionov, S.; Auger, A.-T.; Thomas, N.; Brouet, Y.; Poch, O.; Kührt, E.; Knapmeyer, M.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hviid, S.; Hartogh, P.

    2018-03-01

    We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet's surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet's complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (≳50 J m-2 K-1 s-1/2) and ice content (≳45% at the equator). In this case, stresses penetrate to a typical depth of 0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs.

  17. Therapeutic inertia amongst general practitioners with interest in diabetes.

    Science.gov (United States)

    Seidu, Samuel; Than, Tun; Kar, Deb; Lamba, Amrit; Brown, Pam; Zafar, Azhar; Hussain, Rizwan; Amjad, Ahmed; Capehorn, Mathew; Martin, Elizabeth; Fernando, Kevin; McMoran, Jim; Millar-Jones, David; Kahn, Shahzada; Campbell, Nigel; Brice, Richard; Mohan, Rahul; Mistry, Mukesh; Kanumilli, Naresh; St John, Joan; Quigley, Richard; Kenny, Colin; Khunti, Kamlesh

    2018-02-01

    As the therapeutic options in the management of type 2 diabetes increase, there is an increase confusion among health care professionals, thus leading to the phenomenon of therapeutic inertia. This is the failure to escalate or de-escalate treatment when the clinical need for this is required. It has been studied extensively in various settings, however, it has never been reported in any studies focusing solely on primary care physicians with an interest in diabetes. This group is increasingly becoming the focus of managing complex diabetes care in the community, albeit with the support from specialists. In this retrospective audit, we assessed the prevalence of the phenomenon of therapeutic inertia amongst primary care physicians with an interest in diabetes in UK. We also assessed the predictive abilities of various patient level characteristics on therapeutic inertia amongst this group of clinicians. Out of the 240 patients reported on, therapeutic inertia was judged to have occurred in 53 (22.1%) of patients. The full model containing all the selected variables was not statistically significant, p=0.59. So the model was not able to distinguish between situations in which therapeutic inertia occurred and when it did not occur. None of the patient level characteristics on its own was predictive of therapeutic inertia. Therapeutic inertia was present only in about a fifth of patient patients with diabetes being managed by primary care physicians with an interest in diabetes. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  18. Selective effects of weight and inertia on maximum lifting.

    Science.gov (United States)

    Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S

    2013-03-01

    A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Emotional inertia contributes to depressive symptoms beyond perseverative thinking.

    Science.gov (United States)

    Brose, Annette; Schmiedek, Florian; Koval, Peter; Kuppens, Peter

    2015-01-01

    The autocorrelation or inertia of negative affect reflects how much negative emotions carry over from moment to moment and has been associated with increased depressive symptoms. In this study, we posed three challenges to this association by examining: (1) whether emotional inertia is relevant for depressive symptoms when assessed on a longer timescale than usual; (2) whether inertia is uniquely related to depressive symptoms after controlling for perseverative thoughts; and (3) whether inertia is related to depressive symptoms over and above the within-person association between affect and perseverative thoughts. Participants (N = 101) provided ratings of affect and perseverative thoughts for 100 days; depressive symptoms were reported before and after the study, and again after 2.5 years. Day-to-day emotional inertia was related to depressive symptoms over and above trait and state perseverative thoughts. Moreover, inertia predicted depressive symptoms when adjusting for its association with perseverative thoughts. These findings establish the relevance of emotional inertia in depressive symptoms independent of perseverative thoughts.

  20. Thermal hydraulics analysis of the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dean, E-mail: Dean_Wang@uml.edu [University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Yoder, Graydon L.; Pointer, David W.; Holcomb, David E. [Oak Ridge National Laboratory, 1 Bethel Valley RD #6167, Oak Ridge, TN 37831 (United States)

    2015-12-01

    Highlights: • The TRACE AHTR model was developed and used to define and size the DRACS and the PHX. • A LOFF transient was simulated to evaluate the reactor performance during the transient. • Some recommendations for modifying FHR reactor system component designs are discussed. - Abstract: The Advanced High Temperature Reactor (AHTR) is a liquid salt-cooled nuclear reactor design concept, featuring low-pressure molten fluoride salt coolant, a carbon composite fuel form with embedded coated particle fuel, passively triggered negative reactivity insertion mechanisms, and fully passive decay heat rejection. This paper describes an AHTR system model developed using the Nuclear Regulatory Commission (NRC) thermal hydraulic transient code TRAC/RELAP Advanced Computational Engine (TRACE). The TRACE model includes all of the primary components: the core, downcomer, hot legs, cold legs, pumps, direct reactor auxiliary cooling system (DRACS), the primary heat exchangers (PHXs), etc. The TRACE model was used to help define and size systems such as the DRACS and the PHX. A loss of flow transient was also simulated to evaluate the performance of the reactor during an anticipated transient event. Some initial recommendations for modifying system component designs are also discussed. The TRACE model will be used as the basis for developing more detailed designs and ultimately will be used to perform transient safety analysis for the reactor.

  1. Glass-ceramic hermetic seals to high thermal expansion metals

    Science.gov (United States)

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  2. Factors affecting thermal infrared images at selected field sites

    International Nuclear Information System (INIS)

    Sisson, J.B.; Ferguson, J.S.

    1993-07-01

    A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL

  3. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  4. Avoiding thermal striping damage: Experimentally-based design procedures for high-cycle thermal fatigue

    International Nuclear Information System (INIS)

    Betts, C.; Judd, A.M.; Lewis, M.W.J.

    1994-01-01

    In the coolant circuits of a liquid metal cooled reactor (LMR), where there is turbulent mixing of coolant streams at different temperatures, there are temperature fluctuations in the fluid. If an item of the reactor structure is immersed in this fluid it will, because of the good heat transfer from the flowing liquid metal, experience surface temperature fluctuations which will induce dynamic surface strains. It is necessary to design the reactor so that these temperature fluctuations do not, over the life of the plant, cause damage. The purpose of this paper is to describe design procedures to prevent damage of this type. Two such procedures are given, one to prevent the initiation of defects in a nominally defect-free structure or to allow initiation only at the end of the component life, and the other to prevent significant growth of undetectable pre-existing defects of the order of 0.2 to 0.4 mm in depth. Experimental validation of these procedures is described, and the way they can be applied in practice is indicated. To set the scene the paper starts with a brief summary of cases in which damage of this type, or the need to avoid such damage, have had important effects on reactor operation. Structural damage caused by high-cycle thermal fatigue has had a significant adverse influence on the operation of LMRs on several occasions. It is necessary to eliminate the risk of such damage at the design stage. In the absence of detailed knowledge of the temperature history to which it will be subject, an LMR structure can be designed so that, if it is initially free of defects more than 0.1 mm deep, no such defects will be initiated by high-cycle fatigue. This can be done by ensuring that the maximum source temperature difference in the liquid metal is less than a limiting value, which depends on temperature. The limit is very low, however, and likely to be restrictive. This method, by virtue of its safety margin, takes into account pre-existing surface crack

  5. The cranking moment of inertia in a static potential

    International Nuclear Information System (INIS)

    Bengtsson, R.; Hamamoto, I.; Ibarra, R.H.

    1978-01-01

    Taking into account the self-consistency condition for the deformation, the authors estimate the cranking moment of inertia in the absence of pair-correlations for the Woods-Saxon potential and various versions of the modified oscillator potential. The authors investigate the expectation that in a static potential the moment of inertia is almost equal to the rigid-body moment of inertia at the self-consistent deformation. They examine especially the consequence of the presence of the l 2 term in the conventional modified oscillator potential. (Auth.)

  6. Moments of inertia for solids of revolution and variational methods

    International Nuclear Information System (INIS)

    Diaz, Rodolfo A; Herrera, William J; Martinez, R

    2006-01-01

    We present some formulae for the moments of inertia of homogeneous solids of revolution in terms of the functions that generate the solids. The development of these expressions exploits the cylindrical symmetry of these objects and avoids the explicit use of multiple integration, providing an easy and pedagogical approach. The explicit use of the functions that generate the solid gives the possibility of writing the moment of inertia as a functional, which in turn allows us to utilize the calculus of variations to obtain new insight into some properties of this fundamental quantity. In particular, minimization of moments of inertia under certain restrictions is possible by using variational methods

  7. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  8. Thermal-mechanical fatigue of high temperature structural materials

    Science.gov (United States)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  9. Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    The increasing focus on better building insulation is important to lower energy consumption. Development of new and improved insulation materials can contribute to solving this problem. Foam glass has a good insulating effect due to its large gas volume (porosity >90 %). It can be produced with o...... the thermal conductivity varies with gas composition. This allows us to determine the contribution of the gas and solid phase to the total thermal conductivity of a foam glass....

  10. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  11. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  12. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  13. Independent particle Schroedinger Fluid: moments of inertia

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1977-10-01

    This philosophy of the Single Particle Schroedinger Fluid, especially as regards the velocity fields which find such a natural role therein, is applied to the study of the moments of inertia of independent Fermion system. It is shown that three simplified systems exhibit the rigid-body rotational velocity field in the limit of large A, and that the leading deviations, both on the average and fluctuating, from this large A limit can be described analytically, and verified numerically. For a single particle in a Hill-Wheeler box the moments are studied numerically, and their large fluctuations identified with the specific energy level degeneracies of its parallelepiped shape. The full assemblage of these new and old results is addressed to the question of the necessary and sufficient condition that the moment have the rigid value. Counterexamples are utilized to reject some conditions, and the conjecture is argued that Unconstrained Shape Equilibrium might be the necessary and sufficient condition. The spheroidal square well problem is identified as a promising test case

  14. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-02-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg's thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg's thermal behavior.

  15. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-01-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg’s thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg’s thermal behavior.

  16. Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials

    Science.gov (United States)

    Piqueux, S.; Christensen, P. R.

    2012-12-01

    Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this

  17. High throughput integrated thermal characterization with non-contact optical calorimetry

    Science.gov (United States)

    Hou, Sichao; Huo, Ruiqing; Su, Ming

    2017-10-01

    Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.

  18. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  19. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    Science.gov (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  20. The effect of inertia, viscous damping, temperature and normal ...

    Indian Academy of Sciences (India)

    Nitish Sinha

    2018-04-16

    Apr 16, 2018 ... physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic ... However, the present study has shown the appearance of chaos for the specific .... Although chaos is a general man-.

  1. Einstein's equivalence principle instead of the inertia forces

    International Nuclear Information System (INIS)

    Herreros Mateos, F.

    1997-01-01

    In this article I intend to show that Einstein's equivalence principle substitutes advantageously the inertia forces in the study and resolution of problems in which non-inertial systems appear. (Author) 13 refs

  2. On the moment of inertia of a proto neutron star

    International Nuclear Information System (INIS)

    Zhao Xianfeng; Zhang Hua; Jia Huanyu

    2010-01-01

    The influences of σ * and Φ mesons,temperature and coupling constants of nucleons on the moment of inertia of the proto neutron star (PNS) are examined in the framework of relativistic mean field theory for the baryon octet {n, p, Λ , Σ - , Σ 0 , Σ + , Ξ - , Ξ 0 } system. It is found that, compared with that without considering σ * and Φ mesons, the moment of inertia decreases. It is also found that the higher the temperature, the larger the incompressibility and symmetry energy coefficient, and the larger the moment of inertia of a PNS. The influence of temperature and coupling constants of the nucleons on the moment of inertia of a PNS is larger than that of the σ * and Φ mesons. (authors)

  3. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  4. A new inertia weight control strategy for particle swarm optimization

    Science.gov (United States)

    Zhu, Xianming; Wang, Hongbo

    2018-04-01

    Particle Swarm Optimization is a member of swarm intelligence algorithms, which is inspired by the behavior of bird flocks. The inertia weight, one of the most important parameters of PSO, is crucial for PSO, for it balances the performance of exploration and exploitation of the algorithm. This paper proposes a new inertia weight control strategy and PSO with this new strategy is tested by four benchmark functions. The results shows that the new strategy provides the PSO with better performance.

  5. Pairing field and moments of inertia of superdeformed nuclei

    International Nuclear Information System (INIS)

    Chen Yongjing; Chen Yongshou; Xu Fuxin

    2002-01-01

    The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model

  6. Sensitivity of the moment of inertia of neutron stars to the equation of state of neutron-rich matter

    International Nuclear Information System (INIS)

    Fattoyev, F. J.; Piekarewicz, J.

    2010-01-01

    The sensitivity of the stellar moment of inertia to the neutron-star matter equation of state is examined using accurately calibrated relativistic mean-field models. We probe this sensitivity by tuning both the density dependence of the symmetry energy and the high-density component of the equation of state, properties that are at present poorly constrained by existing laboratory data. Particularly attractive is the study of the fraction of the moment of inertia contained in the solid crust. Analytic treatments of the crustal moment of inertia reveal a high sensitivity to the transition pressure at the core-crust interface. This may suggest the existence of a strong correlation between the density dependence of the symmetry energy and the crustal moment of inertia. However, no correlation was found. We conclude that constraining the density dependence of the symmetry energy - through, for example, the measurement of the neutron skin thickness in 208 Pb - will place no significant bound on either the transition pressure or the crustal moment of inertia.

  7. Thermal Response to High-Power Holmium Laser Lithotripsy.

    Science.gov (United States)

    Aldoukhi, Ali H; Ghani, Khurshid R; Hall, Timothy L; Roberts, William W

    2017-12-01

    The aim of this study was to investigate "caliceal" fluid temperature changes during holmium laser activation/lithotripsy using settings up to 40 W power output with different irrigation flow rates. The experimental system consisted of a glass test tube (diameter 10 mm/length 75 mm) filled with deionized water, to mimic a calix. Real-time temperature was recorded using a thermocouple (Physitemp, NJ) positioned 5 mm from the bottom of the tube. A 200 μm laser fiber (Flexiva; Boston Scientific, MA) was introduced through the working channel of a disposable ureteroscope (LithoVue; Boston Scientific) and the laser fiber tip was positioned 15 mm above the bottom of the test tube. Deionized water irrigation (room temperature) through the working channel of the ureteroscope was delivered at flow rates of 0, 7-8, 14-15, and 38-40 mL/minute. A 120-W holmium laser (pulse 120; Lumenis, CA) was used. The following settings were explored: 0.5 J × 10 Hz, 1.0 J × 10 Hz, 0.5 J × 20 Hz, 1.0 J × 20 Hz, 0.5 J × 40 Hz, 1.0 J × 40 Hz, and 0.5 J × 80 Hz. During each experiment, the laser was activated continuously for 60 seconds. Temperature increased with increasing laser power output and decreasing irrigation flow rate. The highest temperature, 70.3°C (standard deviation 2.7), occurred with laser setting of 1.0 J × 40 Hz and no irrigation after 60 seconds of continuous laser firing. None of the tested laser settings and irrigation parameters produced temperature exceeding 51°C when activated for only 10 seconds of continuous laser firing. High-power holmium settings fired in long bursts with low irrigation flow rates can generate high fluid temperatures in a laboratory "caliceal" model. Awareness of this risk allows urologist to implement a variety of techniques (higher irrigation flow rates, intermittent laser activation, and potentially cooled irrigation fluid) to control and mitigate thermal

  8. High-efficiency thermal switch based on topological Josephson junctions

    Science.gov (United States)

    Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.

    2017-02-01

    We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.

  9. Effects of microscale inertia on dynamic ductile crack growth

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  10. Effects of moment of inertia on restricted motion swing speed.

    Science.gov (United States)

    Schorah, David; Choppin, Simon; James, David

    2015-06-01

    In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.

  11. Development of an Inertia-Increased ABWR Internal Pump

    International Nuclear Information System (INIS)

    Shirou Takahashi; Kousei Umemori; Kooji Shiina; Tetsuya Totani; Akihiro Sakashita; Norimichi Yamashita; Takahisa Kondo

    2002-01-01

    It is possible to simplify the reactor internal pump power supply system in the ABWR without affecting the core flow supply when a trip of all RIPs event occurs by eliminating the motor-generator sets and increasing the rotating inertia of the RIPs. This inertia increase due to an additional flywheel, which leads to a gain in weight and length, requires a larger diameter nozzle with a thicker sleeve. However, a thicker sleeve nozzle and a longer and heavier motor casing may change the RIP performance. In the present study, the inertia-increased RIP was verified through full-scale tests. The rotating inertia time constant for coast-down characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP was doubled compared with the current RIP. The inertia-increased RIP with the thicker sleeve nozzle maintained good performance and its power supply system without motor-generator sets was judged appropriate for the ABWR. (authors)

  12. Compensations for increased rotational inertia during human cutting turns.

    Science.gov (United States)

    Qiao, Mu; Brown, Brian; Jindrich, Devin L

    2014-02-01

    Locomotion in a complex environment is often not steady state, but unsteady locomotion (stability and maneuverability) is not well understood. We investigated the strategies used by humans to perform sidestep cutting turns when running. Previous studies have argued that because humans have small yaw rotational moments of inertia relative to body mass, deceleratory forces in the initial velocity direction that occur during the turning step, or 'braking' forces, could function to prevent body over-rotation during turns. We tested this hypothesis by increasing body rotational inertia and testing whether braking forces during stance decreased. We recorded ground reaction force and body kinematics from seven participants performing 45 deg sidestep cutting turns and straight running at five levels of body rotational inertia, with increases up to fourfold. Contrary to our prediction, braking forces remained consistent at different rotational inertias, facilitated by anticipatory changes to body rotational speed. Increasing inertia revealed that the opposing effects of several turning parameters, including rotation due to symmetrical anterior-posterior forces, result in a system that can compensate for fourfold changes in rotational inertia with less than 50% changes to rotational velocity. These results suggest that in submaximal effort turning, legged systems may be robust to changes in morphological parameters, and that compensations can involve relatively minor adjustments between steps to change initial stance conditions.

  13. Neural predictors of emotional inertia in daily life.

    Science.gov (United States)

    Waugh, Christian E; Shing, Elaine Z; Avery, Bradley M; Jung, Youngkyoo; Whitlow, Christopher T; Maldjian, Joseph A

    2017-09-01

    Assessing emotional dynamics in the brain offers insight into the fundamental neural and psychological mechanisms underlying emotion. One such dynamic is emotional inertia-the influence of one's emotional state at one time point on one's emotional state at a subsequent time point. Emotion inertia reflects emotional rigidity and poor emotion regulation as evidenced by its relationship to depression and neuroticism. In this study, we assessed changes in cerebral blood flow (CBF) from before to after an emotional task and used these changes to predict stress, positive and negative emotional inertia in daily life events. Cerebral blood flow changes in the lateral prefrontal cortex (lPFC) predicted decreased non-specific emotional inertia, suggesting that the lPFC may feature a general inhibitory mechanism responsible for limiting the impact that an emotional state from one event has on the emotional state of a subsequent event. CBF changes in the ventromedial prefrontal cortex and lateral occipital cortex were associated with positive emotional inertia and negative/stress inertia, respectively. These data advance the blossoming literature on the temporal dynamics of emotion in the brain and on the use of neural indices to predict mental health-relevant behavior in daily life. © The Author (2017). Published by Oxford University Press.

  14. High Temperature Thermal Properties of Bentonite Foundry Sand

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2015-06-01

    Full Text Available The paper presents results of measuring thermal conductivity and heat capacity of bentonite foundry sand in temperature range ambient - 900­­°C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured casting.

  15. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  16. Development of Thermally Actuated, High Temperature Composite Morphing Concepts

    Science.gov (United States)

    2016-03-31

    set of applications exists in gas turbine engines, which stand to benefit greatly from aerodynamic control in their combustors, turbines, and nozzles...Modelling Development 27 3.1 Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.1 Achieving Snap-Through Behaviour ...Fabrication of Hybrid Laminate Shell and Strip Specimens . . . . . . 35 3.3.2 Measurement of Thermal Curvatures and Snap-Through Behaviour of Hybrid

  17. Development of Thermally Actuated, High-Temperature Composite Morphing Concepts

    Science.gov (United States)

    2016-05-11

    set of applications exists in gas turbine engines, which stand to benefit greatly from aerodynamic control in their combustors, turbines, and nozzles...Modelling Development 27 3.1 Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.1 Achieving Snap-Through Behaviour ...Fabrication of Hybrid Laminate Shell and Strip Specimens . . . . . . 35 3.3.2 Measurement of Thermal Curvatures and Snap-Through Behaviour of Hybrid

  18. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  19. High-efficiency thermal ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    Olivares, Jose A.

    1996-01-01

    A version of the thermal ionization cavity (TIC) source developed specifically for use in mass spectrometry is presented. The performance of this ion source has been characterized extensively both with the use of an isotope separator and a quadrupole mass spectrometer. A detailed description of the TIC source for mass spectrometry is given along with the performance characteristics observed

  20. Fused silica thermal conductivity dispersion at high temperature

    International Nuclear Information System (INIS)

    Bouchut, P.; Decruppe, D.; Delrive, L.

    2004-01-01

    A continuous CO 2 laser is focused to locally anneal small fused silica spots. A noncontact radiometry diagnostic enables us to follow surface temperature variation that occurs from site to site. A 'steady state' dispersion of surface temperature is observed across our sample. We show that nonhomogeneous silica thermal conductivity, above 1000 K is responsible for this temperature dispersion

  1. Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools

    Science.gov (United States)

    Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu

    2018-03-01

    Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.

  2. The significance of moment-of-inertia variation in flight manoeuvres of butterflies

    International Nuclear Information System (INIS)

    Lin, T; Zheng, L; Mittal, R; Hedrick, T

    2012-01-01

    The objective of this study is to understand the role that changes in body moment of inertia might play during flight manoeuvres of insects. High-speed, high-resolution videogrammetry is used to quantify the trajectory and body conformation of Painted Lady butterflies during flight manoeuvres; the 3D kinematics of the centre of masses of the various body parts of the insect is determined experimentally. Measurements of the mass properties of the insect are used to parameterize a simple flight dynamics model of the butterfly. Even though the mass of the flapping wings is small compared to the total mass of the insect, these experiments and subsequent analysis indicate that changes in moment of inertia during flight are large enough to influence the manoeuvres of these insects. (communication)

  3. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures

    Science.gov (United States)

    Svehla, Roger A.

    1962-01-01

    Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.

  4. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  5. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  6. Therapeutic inertia in the outpatient management of dyslipidemia in patients with ischemic heart disease. The inertia study.

    Science.gov (United States)

    Lázaro, Pablo; Murga, Nekane; Aguilar, Dolores; Hernández-Presa, Miguel A

    2010-12-01

    Studies indicate that dyslipidemia is undertreated. Numerous systematic reviews have shown that, even when therapeutic targets set by clinical practice guidelines have not been met, treatment remains unchanged despite the availability of alternatives approaches. The result is increased morbidity and mortality. Our aims were to investigate this phenomenon, known as therapeutic inertia, in patients with dyslipidemia and ischemic heart disease, and to determine its possible causes. national, multicenter, observational study of data obtained from physicians by questionnaire and from the clinical records of patients with ischemic heart disease. Main variable: therapeutic inertia during a consultation, defined as treatment remaining the same despite a change being indicated (e.g. low-density lipoprotein cholesterol >100 mg/dl or >70 mg/dl in diabetics). Covariates: physician, patient and consultation characteristics. multivariate logistic regression analysis of factors associated with therapeutic inertia during a consultation. Overall, 43% of consultations involved therapeutic inertia, and an association with coronary risk factors, including diabetes, did not result in a change in treatment. Therapeutic inertia occurred more frequently when there was a long time between the diagnosis and treatment of dyslipidemia and that of ischemic heart disease. Undertreatment was particularly common in women despite a greater overall risk. The more experienced physicians treated younger patients more appropriately. Clinical practice was improved by educational sessions at conferences. Therapeutic inertia was common in patients with chronic ischemic heart disease and dyslipidemia, irrespective of overall cardiovascular risk. Factors associated with the patient, disease and physician had an influence.

  7. The effect of inertia force in water lubricated thrust bearings of canned reactor coolant pump

    International Nuclear Information System (INIS)

    Deng Liping

    1994-01-01

    The water lubricated thrust bearings are analyzed. According to characteristic of low viscosity of water the lubricated equation for design and calculation of water lubricated thrust bearings is established. The calculation and analyses show that the effect of inertia force in water lubricated thrust bearings should not be neglected except the conditions of low speed, high angle of inclination and low radius ratio of pad

  8. Thermal conductivity evaluation of high burnup mixed-oxide (MOX) fuel pellet

    International Nuclear Information System (INIS)

    Amaya, Masaki; Nakamura, Jinichi; Nagase, Fumihisa; Fuketa, Toyoshi

    2011-01-01

    The thermal conductivity formula of fuel pellet which contains the effects of burnup and plutonium (Pu) addition was proposed based on the Klemens' theory and reported thermal conductivities of unirradiated (U, Pu) O 2 and irradiated UO 2 pellets. The thermal conductivity of high burnup MOX pellet was formulated by applying a summation rule between phonon scattering parameters which show the effects of plutonium addition and burnup. Temperature of high burnup MOX fuel was evaluated based on the thermal conductivity integral which was calculated from the above-mentioned thermal conductivity formula. Calculated fuel temperatures were plotted against the linear heat rates of the fuel rods, and were compared with the fuel temperatures measured in a test reactor. Since both values agreed well, it was confirmed that the proposed thermal conductivity formula of MOX pellets is adequate.

  9. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    Directory of Open Access Journals (Sweden)

    Romero Manuel

    2016-01-01

    Full Text Available Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Arab Emirates or Morocco. Prices for electricity produced by today's plants fill the range from 12 to 16 c€/kWh and they are capital intensive with investments above 4000 €/kW, depending on the number of hours of thermal storage. The urgent need to speed up the learning curve, by moving forward to LCOE below 10 c€/kWh and the promotion of sun-to-fuel applications, is driving the R&D programmes. Both, industry and R&D community are accelerating the transformation by approaching high-flux/high-temperature technologies and promoting the integration with high-efficiency conversion systems.

  10. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  11. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  12. A high efficiency thermal ionization source adapted to mass spectrometers

    International Nuclear Information System (INIS)

    Chamberlin, E.P.; Olivares, J.A.

    1996-01-01

    A tungsten crucible thermal ionization source mounted on a quadrupole mass spectrometer is described. The crucible is a disposable rod with a fine hole bored in one end; it is heated by electron bombardment. The schematic design of the assembly, including water cooling, is described and depicted. Historically, the design is derived from that of ion sources used on ion separators at Los Alamos and Dubna, but the crucible is made smaller and simplified. 10 refs., 4 figs

  13. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  14. [The impact of therapeutic inertia and the degree of the medication adherence on the control goals for patients with diabetes].

    Science.gov (United States)

    López-Simarro, F; Moral, I; Aguado-Jodar, A; Cols-Sagarra, C; Mancera-Romero, J; Alonso-Fernández, M; Miravet-Jiménez, S; Brotons, C

    2017-11-21

    The purpose of this study was to analyse both the impact of low therapeutic adherence (TA) and therapeutic inertia (TI) on poor blood glucose control and on risk factors for heart disease in patients with DM2. A cross-sectional study was conducted in a Primary Halth Care centre. A total of 320 patients with DM2 were included and an assessment was made of control goals (HbA1c≤7%, blood pressure ≤130/80mmHg, and LDL-cholesterol≤100mg/dl). A pharmacy retrieval inertia were found in a high percentage of poorly-controlled DM2 patients with bad control. Therapeutic inertia was found to be of great relevance in this study. Copyright © 2017 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka

    Directory of Open Access Journals (Sweden)

    Yuan Jihui

    2017-01-01

    Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.

  16. Development of Mitsubishi high thermal performance grid 1 - CFD applicability for thermal hydraulic design

    International Nuclear Information System (INIS)

    Ikeda, K.; Hoshi, M.

    2001-01-01

    Mitsubishi applied the Computational Fluid Dynamics (CFD) evaluation method for designing of the new lower pressure loss and higher DNB performance grid spacer. Reduction of pressure loss of the grid has been estimated by CFD. Also, CFD has been developed as a design tool to predict the coolant mixing ability of vane structures, that is to compare the relative peak spot temperatures around fuel rods at the same heat flux condition. These evaluations have been reflected to the new grid spacer design. The prototype grid was manufactured and some flow tests were performed to examine the thermal hydraulic performance, which were predicted by CFD. The experimental data of pressure loss was in good agreement with CFD prediction. The CFD prediction of flow behaviors at downstream of the mixing vanes was verified by detail cross-flow measurements at rod gaps by the rod LDV system. It is concluded that the applicability of the CFD evaluation method for the thermal hydraulic design of the grid is confirmed. (authors)

  17. An overview of high thermal conductive hot press forming die material development

    Directory of Open Access Journals (Sweden)

    A.R. Zulhishamuddin

    2015-12-01

    Full Text Available Most of the automotive industries are using high strength steel components, which are produced via hot press forming process. This process requires die material with high thermal conductivity that increases cooling rate during simultaneous quenching and forming stage. Due to the benefit of high quenching rate, thermal conductive die materials were produced by adding carbide former elements. This paper presents an overview of the modification of alloying elements in tool steel for high thermal conductivity properties by transition metal elements addition. Different types of manufacturing processes involved in producing high thermal conductive materials were discussed. Methods reported were powder metallurgy hot press, direct metal deposition, selective laser melting, direct metal laser sintering and spray forming. Elements likes manganese, nickel, molybdenum, tungsten and chromium were proven to increase thermal conductivity properties. Thermal conductivity properties resulted from carbide network presence in the steel microstructure. To develop feasible and low cost hot press forming die material, casting of Fe-based alloy with carbide former composition can be an option. Current thermal conductivity properties of hot press forming die material range between 25 and 66 W/m.K. The wide range of thermal conductivity varies the mechanical properties of the resulting components and lifetime of HPF dies.

  18. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  19. Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors

    International Nuclear Information System (INIS)

    Khalili, Farid; Danilishin, Stefan; Mueller-Ebhardt, Helge; Miao Haixing; Zhao Chunnong; Chen Yanbei

    2011-01-01

    We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a 'negative inertia', which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass standard quantum limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancellation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise-cancellation schemes. We show that it is feasible to demonstrate such an effect with the Gingin High Optical Power Test Facility, and it can eventually be implemented in future advanced GW detectors.

  20. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945

  1. Inertia in nursing care of hospitalised patients with urinary incontinence.

    Science.gov (United States)

    Artero-López, Consuelo; Márquez-Hernández, Verónica V; Estevez-Morales, María Teresa; Granados-Gámez, Genoveva

    2018-04-01

    To assess the existence of therapeutic inertia in the nursing care of patients with urinary incontinence during the patient's time in hospital, together with the sociodemographic and professional variables involved. Inertia in care is a problem which appears in the nursing care process. Actions related to inertia can be attributed to not adhering to protocols, clinical guidelines and the lack of prevention measures which have undesirable effects on the efficiency of care. This was a prospective observational study. A total of 132 nursing professionals participated over two consecutive months. Data were collected randomly through the method of systematic, nonparticipative observation of medical practice units and patients' medical records. The results showed a pattern of severely compromised action in the assessment of the pattern of urinary elimination, in actions related to urinary continence, in therapeutic behaviour and in patient satisfaction and were found to be consistent with professional experience (p inertia exists in nursing care in the hospital environment while the patient is hospitalised, in prevention care, in the treatment of urinary incontinence and in the management of records. Contributing to the understanding of the existence of inertia in nursing care raises questions regarding its causes and interventions to predict or monitor it. © 2018 John Wiley & Sons Ltd.

  2. Inertia and Double Bending of Light from Equivalence

    Science.gov (United States)

    Shuler, Robert L., Jr.

    2010-01-01

    Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.

  3. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.

    Science.gov (United States)

    Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.

  4. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  5. Study on the thermal-hydraulic stability of high burn up STEP III fuel in Japan

    International Nuclear Information System (INIS)

    Ishikawa, M.; Kitamura, H.; Toba, A.; Omoto, A.

    2004-01-01

    Japanese BWR utilities have performed a joint study of the Thermal Hydraulic Stability of High Burn up STEP III Fuel. In this study, the parametric dependency of thermal hydraulic stability threshold was obtained. It was confirmed through experiments that the STEP III Fuel has sufficient stability characteristics. (author)

  6. Thermal insulation of the high-temperature helium-cooled reactors

    International Nuclear Information System (INIS)

    Kharlamov, A.G.; Grebennik, V.N.

    1979-01-01

    Unlike the well-known thermal insulation methods, development of high-temperature helium reactors (HTGR) raises quite new problems. To understand these problems, it is necessary to consider behaviour of thermal insulation inside the helium circuit of HTGR and requirements imposed on it. Substantiation of these requirements is given in the presented paper

  7. Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios

    DEFF Research Database (Denmark)

    Shayesteh, M.; O'Connell, D.; Gity, F.

    2014-01-01

    The authors compared the influence of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical performance of phosphorus and arsenic doped n+/p junction. High carrier concentration above 1020 cm-3 as well as an ION/IOFF ratio of approximately 105 and ide...

  8. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    Science.gov (United States)

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  9. Experimental Preparation and Numerical Simulation of High Thermal Conductive Cu/CNTs Nanocomposites

    Directory of Open Access Journals (Sweden)

    Muhsan Ali Samer

    2014-07-01

    Full Text Available Due to the rapid growth of high performance electronics devices accompanied by overheating problem, heat dissipater nanocomposites material having ultra-high thermal conductivity and low coefficient of thermal expansion was proposed. In this work, a nanocomposite material made of copper (Cu reinforced by multi-walled carbon nanotubes (CNTs up to 10 vol. % was prepared and their thermal behaviour was measured experimentally and evaluated using numerical simulation. In order to numerically predict the thermal behaviour of Cu/CNTs composites, three different prediction methods were performed. The results showed that rules of mixture method records the highest thermal conductivity for all predicted composites. In contrast, the prediction model which takes into account the influence of the interface thermal resistance between CNTs and copper particles, has shown the lowest thermal conductivity which considered as the closest results to the experimental measurement. The experimentally measured thermal conductivities showed remarkable increase after adding 5 vol.% CNTs and higher than the thermal conductivities predicted via Nan models, indicating that the improved fabrication technique of powder injection molding that has been used to produced Cu/CNTs nanocomposites has overcome the challenges assumed in the mathematical models.

  10. Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements....... The thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....

  11. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.

    Science.gov (United States)

    Williams, Jarrod C; Nguyen, Baochau N; McCorkle, Linda; Scheiman, Daniel; Griffin, Justin S; Steiner, Stephen A; Meador, Mary Ann B

    2017-01-18

    We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl 2 ) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm 3 , depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl 2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl 2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is

  12. Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current

    DEFF Research Database (Denmark)

    Shayesteh, Maryam; O' Connell, Dan; Gity, Farzan

    2014-01-01

    In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n +/p junctions. Using LTA, high carrier...... implant conditions. On the other hand, RTA revealed very high I on/I off ratio ∼ 107 and n ∼ 1, at the cost of high dopant diffusion and lower carrier concentrations which would degrade scalability and access resistance....

  13. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  14. Moment of inertia of liquid in a tank

    Directory of Open Access Journals (Sweden)

    Gyeong Joong Lee

    2014-03-01

    Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.

  15. Inertia of rough and vicinal surfaces of helium-4 crystals

    International Nuclear Information System (INIS)

    Amrit, J.; Legros, P.; Poitrenaud, J.

    1995-01-01

    This paper reports a study of the inertia of rough and vicinal of 4 He crystals. We have measured the transmission coefficient of ultrasonic waves at frequencies 10, 30, 50 and 70 MHz, across the liquid-solid interface. The experiments are carried out at temperatures ranging between 0.4 and 1.0 K for four crystallographic orientations. Two important phenomena are put to evidence for the first time. We have found the first experimental evidence that the inertia of rough surfaces depends on temperature. For vicinal surfaces, we have shown the strong increase of the inertia as the tilt angle decreases. Our experimental results agree very well with the theoretical predictions

  16. Temperature-dependent particle-number projected moment of inertia

    International Nuclear Information System (INIS)

    Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2008-01-01

    Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy

  17. Factors associated with clinical inertia: an integrative review

    Science.gov (United States)

    Aujoulat, Isabelle; Jacquemin, Patricia; Rietzschel, Ernst; Scheen, André; Tréfois, Patrick; Wens, Johan; Darras, Elisabeth; Hermans, Michel P

    2014-01-01

    Failure to initiate or intensify therapy according to evidence-based guidelines is increasingly being acknowledged as a phenomenon that contributes to inadequate management of chronic conditions, and is referred to as clinical inertia. However, the number and complexity of factors associated with the clinical reasoning that underlies the decision-making processes in medicine calls for a critical examination of the consistency of the concept. Indeed, in the absence of information on and justification of treatment decisions that were made, clinical inertia may be only apparent, and actually reflect good clinical practice. This integrative review seeks to address the factors generally associated with clinical inaction, in order to better delineate the concept of true clinical inertia. PMID:24868181

  18. Reduction of nuclear moment of inertia due to pairing interaction

    International Nuclear Information System (INIS)

    Zeng, J.Y.; Jin, T.H.; Zhao, Z.J.

    1994-01-01

    The BCS theoretical values of the moments of inertia of even-even nuclei are systematically smaller than the experimental ones by a factor of 10--40%. This long-standing discrepancy disappears in the particle-number-conserving treatment for the cranked shell model, in which the blocking effects are taken into account exactly. The calculated moments of inertia satisfactorily reproduce the experimental data covering a large number of rare-earth even-even nuclei, whose deformations and single-particle states are well characterized (Lund systematics). The pairing interaction strength G is unambiguously determined by the even-odd mass difference. The reduction of the moment of inertia due to the antialignment effect of pairing interaction is discussed and no systematic excessive reduction is found

  19. Electron inertia effects on the planar plasma sheath problem

    International Nuclear Information System (INIS)

    Duarte, V. N.; Clemente, R. A.

    2011-01-01

    The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.

  20. Particle number fluctuations in the moment of inertia

    International Nuclear Information System (INIS)

    Allal, N.H.; Fellah, M.

    1991-01-01

    The nonphysical effects due to the false components introduced by the nonconservation of the particle number in the BCS states are eliminated in the theoretical values of the moment of inertia calculated by the microscopic cranking model. The states of the system are obtained by successive projections of the BCS states in the occupation number space. The moment of inertia appears then as a limit of a rapidly convergent sequence. The errors due to this false component have been numerically estimated and appear to be important both in the BCS states and in the matrix elements of the angular momentum. The predicted values of the moment of inertia satisfactorily reproduce the experimental data over a large number of nuclei within rare-earth and actinide regions with discrepancies ranging from 0.1% to 8%

  1. Moving the Weber Fraction: The Perceptual Precision for Moment of Inertia Increases with Exploration Force

    Science.gov (United States)

    Debats, Nienke B.; Kingma, Idsart; Beek, Peter J.; Smeets, Jeroen B. J.

    2012-01-01

    How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's “angular mass”) under different force conditions, using the Weber fraction to quantify perceptual precision. Participants rotated a rod around a fixed axis and judged its moment of inertia in a two-alternative forced-choice task. We instructed different levels of exploration force, thereby manipulating the magnitude of both the exploration force and the angular acceleration. These are the two signals that are needed by the nervous system to estimate moment of inertia. Importantly, one can assume that the absolute noise on both signals increases with an increase in the signals' magnitudes, while the relative noise (i.e., noise/signal) decreases with an increase in signal magnitude. We examined how the perceptual precision for moment of inertia was affected by this neural noise. In a first experiment we found that a low exploration force caused a higher Weber fraction (22%) than a high exploration force (13%), which suggested that the perceptual precision was constrained by the relative noise. This hypothesis was supported by the result of a second experiment, in which we found that the relationship between exploration force and Weber fraction had a similar shape as the theoretical relationship between signal magnitude and relative noise. The present study thus demonstrated that the amount of force used to explore an object can profoundly influence the precision by which its properties are perceived. PMID:23028437

  2. The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics

    Directory of Open Access Journals (Sweden)

    Esmail Pishbin

    2016-12-01

    Full Text Available The flow of liquids in centrifugal microfluidics is unidirectional and dominated by centrifugal and Coriolis forces (i.e., effective only at T-junctions. Developing mechanisms and discovering efficient techniques to propel liquids in any direction other than the direction of the centrifugal force has been the subject of a large number of studies. The capillary force attained by specific surface treatments, pneumatic energy, active and passive flow reciprocation and Euler force have been previously introduced in order to manipulate the liquid flow and push it against the centrifugal force. Here, as a new method, the moment of inertia of the liquid inside a chamber in a centrifugal microfluidic platform is employed to manipulate the flow and propel the liquid passively towards the disc center. Furthermore, the effect of the moment of inertia on the liquid in a rectangular chamber is evaluated, both in theory and experiments, and the optimum geometry is defined. As an application of the introduced method, the moment of inertia of the liquid is used in order to mix two different dyed deionized (DI waters; the mixing efficiency is evaluated and compared to similar mixing techniques. The results show the potential of the presented method for pumping liquids radially inward with relatively high flow rates (up to 23 mm3/s and also efficient mixing in centrifugal microfluidic platforms.

  3. Low-temperature thermal conductivity of highly porous copper

    International Nuclear Information System (INIS)

    Tomás, G; Bonfait, G; Martins, D; Cooper, A

    2015-01-01

    The development and characterization of new materials is of extreme importance in the design of cryogenic apparatus. Recently Versarien ® PLC developed a technique capable of producing copper foam with controlled porosity and pore size. Such porous materials could be interesting for cryogenic heat exchangers as well as of special interest in some devices used in microgravit.y environments where a cryogenic liquid is confined by capillarity.In the present work, a system was developed to measure the thermal conductivity by the differential steady-state mode of four copper foam samples with porosity between 58% and 73%, within the temperatures range 20 - 260 K, using a 2 W @ 20 K cryocooler. Our measurements were validated using a copper control sample and by the estimation of the Lorenz number obtained from electrical resistivity measurements at room temperature. With these measurements, the Resistivity Residual Ratio and the tortuosity were obtained. (paper)

  4. Moments of inertia and the shapes of Brownian paths

    International Nuclear Information System (INIS)

    Fougere, F.; Desbois, J.

    1993-01-01

    The joint probability law of the principal moments of inertia of Brownian paths (open or closed) is computed, using constrained path integrals and Random Matrix Theory. The case of two-dimensional paths is discussed in detail. In particular, it is shown that the ratio of the average values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 (closed paths). Results of numerical simulations are also presented, which include investigation of the relationships between the moments of inertia and the arithmetic area enclosed by a path. (authors) 28 refs., 2 figs

  5. Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... and reduce the system inertia. Consequently, the frequency stability of the system will be easily jeopardized. To address these issues, the paper studies frequency characteristics of future Western Danish renewable-based system that uses a majority of wind turbine generators. Different scenarios of wind...

  6. Crustal fraction of moment of inertia in pulsars

    International Nuclear Information System (INIS)

    Atta, Debasis; Mukhopadhyay, Somnath; Basu, D.N.

    2015-01-01

    In the present work, stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction, the location of the inner edge of neutron star crusts and core-crust transition density and pressure are calculated and crustal fraction of moment of inertia is determined. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a new limit for the radius of the Vela pulsar

  7. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  8. Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, Van der L.; Grauwet, T.; Verlinde, P.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2012-01-01

    This report describes the first study comparing different high pressure (HP) and thermal treatments at intensities ranging from mild pasteurization to sterilization conditions. To allow a fair comparison, the processing conditions were selected based on the principles of equivalence. Moreover,

  9. Experimental Study of Thermal Crisis in Connection with Tokamak Reactor High Heat Flux Components

    International Nuclear Information System (INIS)

    Gallo, D.; Giardina, M.; Castiglia, F.; Celata, G.P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-01-01

    The results of an experimental research on high heat flux thermal crisis in forced convective subcooled water flow, under operative conditions of interest to the thermal-hydraulic design of TOKAMAK fusion reactors, are here reported. These experiments, carried out in the framework of a collaboration between the Nuclear Engineering Department of Palermo University and the National Institute of Thermal - Fluid Dynamics of the ENEA - Casaccia (Rome), were performed on the STAF (Scambio Termico Alti Flussi) water loop and consisted, essentially, in a high speed photographic study which enabled focusing several information on bubble characteristics and flow patterns taking place during the burnout phenomenology

  10. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.

    Science.gov (United States)

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés

    2012-04-01

    We analyze the appropriate form for the generalized Stokes-Einstein relation (GSER) for viscoelastic solids and fluids when bead inertia and medium inertia are taken into account, which we call the inertial GSER. It was previously shown for Maxwell fluids that the Basset (or Boussinesq) force arising from medium inertia can act purely dissipatively at high frequencies, where elasticity of the medium is dominant. In order to elucidate the cause of this counterintuitive result, we consider Brownian motion in a purely elastic solid where ordinary Stokes-type dissipation is not possible. The fluctuation-dissipation theorem requires the presence of a dissipative mechanism for the particle to experience fluctuating Brownian forces in a purely elastic solid. We show that the mechanism for such dissipation arises from the radiation of elastic waves toward the system boundaries. The frictional force associated with this mechanism is the Basset force, and it exists only when medium inertia is taken into consideration in the analysis of such a system. We consider first a one-dimensional harmonic lattice where all terms in the generalized Langevin equation--i.e., the elastic term, the memory kernel, and Brownian forces-can be found analytically from projection-operator methods. We show that the dissipation is purely from radiation of elastic waves. A similar analysis is made on a particle in a continuum, three-dimensional purely elastic solid, where the memory kernel is determined from continuum mechanics. Again, dissipation arises only from radiation of elastic shear waves toward infinite boundaries when medium inertia is taken into account. If the medium is a viscoelastic solid, Stokes-type dissipation is possible in addition to radiational dissipation so that the wave decays at the penetration depth. Inertial motion of the bead couples with the elasticity of the viscoelastic material, resulting in a possible resonant oscillation of the mean-square displacement (MSD) of the

  11. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2014-01-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt 2 Mo-type, DO 22 and D1 a superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420} fcc planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt 2 Mo-type and DO 22 superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1 a superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries

  12. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  13. Isolated colonic inertia is not usually the cause of chronic constipation.

    Science.gov (United States)

    Ragg, J; McDonald, R; Hompes, R; Jones, O M; Cunningham, C; Lindsey, I

    2011-11-01

    Chronic constipation is classified as outlet obstruction, colonic inertia or both. We aimed to determine the incidence of isolated colonic inertia in chronic constipation and to study symptom pattern in those with prolonged colonic transit time. Chronic constipation patients were classified radiologically by surgeon-reported defaecating proctography and transit study into four groups: isolated outlet obstruction, isolated colonic inertia, outlet obstruction plus colonic inertia, or normal. Symptom patterns were defined as stool infrequency (twice weekly or less) or frequent unsuccessful evacuations (more than twice weekly). Of 541 patients with chronic constipation, 289 (53%) were classified as isolated outlet obstruction, 26 (5%) as isolated colonic inertia, 159 (29%) as outlet obstruction plus colonic inertia and 67 (12%) as normal. Of 448 patients (83%) with outlet obstruction, 35% had additional colonic inertia. Only 14% of those with prolonged colonic transit time had isolated colonic inertia. Frequent unsuccessful evacuations rather than stool infrequency was the commonest symptom pattern in all three disease groups (isolated outlet obstruction 86%, isolated colonic inertia 54% and outlet obstruction plus colonic inertia 63%). Isolated colonic inertia is an unusual cause of chronic constipation. Most patients with colonic inertia have associated outlet obstruction. These data question the clinical significance of isolated colonic inertia. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.

  14. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  15. Development of MHI PWR fuel assembly with high thermal performance

    International Nuclear Information System (INIS)

    Yasushi Makino; Masaya Hoshi; Masaji Mori; Hidetoshi Kido; Kazuo Ikeda

    2005-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been developing a PWR fuel assembly to meet the needs of Japanese fuel market with mainly improving its reliability such as a mechanical strength, a seismic strength and endurance. For burn-up extension of the fuel to 55 GWd/t, MHI has introduced a Zircaloy spacer grid with better neutron economics with retaining the reliability in an operating core. However, for a future power up-rating and a longer cycle operation, a higher thermal performance is required for PWR fuel assembly. To meet the needs of fuel market, MHI has developed an advanced type of Zircaloy spacer grid with a greater DNB performance while retaining the reliability of a fuel and a relatively low pressure drop. For the greater DNB performance, MHI optimized geometrical shape of mixing vane to promote a fluid mixing performance. In this report, higher DNB performance provided by the advanced Zircaloy spacer grid is presented. The results of 3D simulation for the flow behavior in 5 x 5 partial assembly, a mixing test and a water DNB test were compared between the current and the advanced spacer grids. Consequently, it was confirmed that a crossover vane enhanced a fluid mixing and the advanced spacer grid could significantly improve DNB performance compared with the current design of spacer grids. (authors)

  16. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie

    2017-01-01

    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  17. Thermal expansion studies on Inconel-600[reg] by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Raju, S.; Sivasubramanian, K.; Divakar, R.; Panneerselvam, G.; Banerjee, A.; Mohandas, E.; Antony, M.P.

    2004-01-01

    The lattice thermal expansion characteristics of Inconel-600[reg] have been studied by high temperature X-ray diffraction (HT-XRD) technique in the temperature range 298-1200 K. Altogether four experimental runs were conducted on thin foils of about 75-100 μm thickness. The diffraction profiles have been accurately calibrated to offset the shift in 2θ values introduced by sample buckling at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean linear thermal expansion coefficients as a function of temperature. The thermal expansion values estimated in the present study show a fair degree of agreement with other existing dilatometer based bulk thermal expansion estimates. The lattice parameter for this alloy at 300 K is found to be 0.3549(1) nm. The mean linear thermal expansivity is found to be 11.4 x 10 -6 K -1

  18. Data on blueberry peroxidase kinetic characterization and stability towards thermal and high pressure processing

    Directory of Open Access Journals (Sweden)

    Netsanet Shiferaw Terefe

    2017-08-01

    Full Text Available The data presented in this article are related to a research article entitled ‘Thermal and high pressure inactivation kinetics of blueberry peroxidase’ (Terefe et al., 2017 [1]. In this article, we report original data on the activity of partially purified blueberry peroxidase at different concentrations of hydrogen peroxide and phenlylenediamine as substrates and the effects of thermal and high pressure processing on the activity of the enzyme. Data on the stability of the enzyme during thermal (at temperatures ranging from 40 to 80 °C and combined thermal-high pressure processing (100–690 MPa, 30–90 °C are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers and allow statistical analyses and modeling by others in the field.

  19. High performance thermal stress analysis on the earth simulator

    International Nuclear Information System (INIS)

    Noriyuki, Kushida; Hiroshi, Okuda; Genki, Yagawa

    2003-01-01

    In this study, the thermal stress finite element analysis code optimized for the earth simulator was developed. A processor node of which of the earth simulator is the 8-way vector processor, and each processor can communicate using the message passing interface. Thus, there are two ways to parallelize the finite element method on the earth simulator. The first method is to assign one processor for one sub-domain, and the second method is to assign one node (=8 processors) for one sub-domain considering the shared memory type parallelization. Considering that the preconditioned conjugate gradient (PCG) method, which is one of the suitable linear equation solvers for the large-scale parallel finite element methods, shows the better convergence behavior if the number of domains is the smaller, we have determined to employ PCG and the hybrid parallelization, which is based on the shared and distributed memory type parallelization. It has been said that it is hard to obtain the good parallel or vector performance, since the finite element method is based on unstructured grids. In such situation, the reordering is inevitable to improve the computational performance [2]. In this study, we used three reordering methods, i.e. Reverse Cuthil-McKee (RCM), cyclic multicolor (CM) and diagonal jagged descending storage (DJDS)[3]. RCM provides the good convergence of the incomplete lower-upper (ILU) PCG, but causes the load imbalance. On the other hand, CM provides the good load balance, but worsens the convergence of ILU PCG if the vector length is so long. Therefore, we used the combined-method of RCM and CM. DJDS is the method to store the sparse matrices such that longer vector length can be obtained. For attaining the efficient inter-node parallelization, such partitioning methods as the recursive coordinate bisection (RCM) or MeTIS have been used. Computational performance of the practical large-scale engineering problems will be shown at the meeting. (author)

  20. Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

    Science.gov (United States)

    Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.

    2017-12-01

    In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

  1. Evaluation of high temperature superconductive thermal bridges for space borne cryogenic detectors

    Science.gov (United States)

    Scott, Elaine P.

    1996-01-01

    Infrared sensor satellites are used to monitor the conditions in the earth's upper atmosphere. In these systems, the electronic links connecting the cryogenically cooled infrared detectors to the significantly warmer amplification electronics act as thermal bridges and, consequently, the mission lifetimes of the satellites are limited due to cryogenic evaporation. High-temperature superconductor (HTS) materials have been proposed by researchers at the National Aeronautics and Space Administration Langley's Research Center (NASA-LaRC) as an alternative to the currently used manganin wires for electrical connection. The potential for using HTS films as thermal bridges has provided the motivation for the design and the analysis of a spaceflight experiment to evaluate the performance of this superconductive technology in the space environment. The initial efforts were focused on the preliminary design of the experimental system which allows for the quantitative comparison of superconductive leads with manganin leads, and on the thermal conduction modeling of the proposed system. Most of the HTS materials were indicated to be potential replacements for the manganin wires. In the continuation of this multi-year research, the objectives of this study were to evaluate the sources of heat transfer on the thermal bridges that have been neglected in the preliminary conductive model and then to develop a methodology for the estimation of the thermal conductivities of the HTS thermal bridges in space. The Joule heating created by the electrical current through the manganin wires was incorporated as a volumetric heat source into the manganin conductive model. The radiative heat source on the HTS thermal bridges was determined by performing a separate radiant interchange analysis within a high-T(sub c) superconductor housing area. Both heat sources indicated no significant contribution on the cryogenic heat load, which validates the results obtained in the preliminary conduction

  2. System Inertia in the Changing Paradigm for Biodiversity ...

    African Journals Online (AJOL)

    The aim of this paper is to show that while there has been a change, at a policy level, from the old “conservation without a human face” to the new development for sustainable development, inertia in the policy implementation agencies has meant that the provisions of these new policy frameworks have not been translated ...

  3. Organic food consumption in China: the moderating role of inertia

    Directory of Open Access Journals (Sweden)

    Yen Tsai-Fa

    2018-01-01

    Full Text Available Despite the progressive development of the organic food sector across Taiwan Strait, little is known about how consumers’ self congruity will influence organic food decision through various degrees of attitude and whether or not consumers with various degrees of inertia will vary in their intention to buy organic foods. The current study aims to examine the effect of consumption self congruity on behavioral intention related to organic food consumption under the mediating role of attitude as well as the moderating role of inertia. Research data were collected from organic food consumers across Taiwan Strait via a questionnaire survey, eventually obtaining 500 valid questionnaires for analysis. This study tested the overall model fit and hypotheses through structural equation modeling method (SEM. The results show that consumer attitude significantly mediates the effects of self congruity on organic food purchase intention. Moreover, the moderating effect of inertia is statistical significance, indicating that the relationship between attitude and purchase intention becomes weaker in the condition of consumers with higher degree of inertia. Several implications and suggestions are also discussed for organic food providers and marketers.

  4. Role of inertia in the fracture of rock

    International Nuclear Information System (INIS)

    Passman, S.L.; Grady, D.E.; Rundle, J.B.

    1980-01-01

    A theory for the accumulation of damage in one dimension in fast deformation of a brittle material is developed. The theory is consistent with thermodynamics and takes crack inertia into account. The problem of damage accumulation due to a step pulse in strain is solved, and shows good agreement with experimental results

  5. The inertia system coordinate transformation based on the Lobachevsky function

    International Nuclear Information System (INIS)

    Fadeev, N.G.

    2001-01-01

    Based on the interpretation of the Lobachevsky function cosΠ(ρ/k) = thρ/k as the function which expresses the constant light velocity principle at k = c (k is the Lobachevsky constant, c is the light velocity), the inertia system coordinate transformation of two kinds (one of them known as Lorentz transformation) have been obtained

  6. Chimera states in coupled Kuramoto oscillators with inertia

    International Nuclear Information System (INIS)

    Olmi, Simona

    2015-01-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry

  7. Chimera states in coupled Kuramoto oscillators with inertia

    Energy Technology Data Exchange (ETDEWEB)

    Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it [CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino (Italy)

    2015-12-15

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  8. Time to wake up: reactive countermeasures to sleep inertia.

    Science.gov (United States)

    Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan

    2016-12-07

    Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured review summarises current literature on reactive countermeasures to sleep inertia such as caffeine, light, and temperature and discusses evidence for the effectiveness and operational viability of each approach. Current literature does not provide a convincing evidence-base for a reactive countermeasure. Caffeine is perhaps the best option, although it is most effective when administered prior to sleep and is therefore not strictly reactive. Investigations into light and temperature have found promising results for improving subjective alertness; further research is needed to determine whether these countermeasures can also attenuate performance impairment. Future research in this area would benefit from study design features highlighted in this review. In the meantime, it is recommended that proactive sleep inertia countermeasures are used, and that safety-critical tasks are avoided immediately after waking.

  9. Chimera states in coupled Kuramoto oscillators with inertia.

    Science.gov (United States)

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  10. Moment of Inertia of a Ping-Pong Ball

    Science.gov (United States)

    Cao, Xian-Sheng

    2012-01-01

    This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.

  11. Inaction inertia, regret, and valuation : A closer look

    NARCIS (Netherlands)

    Zeelenberg, Marcel; Nijstad, Bernard A.; van Putten, Marijke; van Dijk, Eric

    Inaction inertia is the phenomenon that one is not likely to act on an attractive opportunity after having bypassed an even more attractive opportunity. So far, all published work has assumed a causal role for the emotion regret in this effect. In a series of 5 experiments we found no support for

  12. Determinacy, stock market dynamics and monetary policy inertia

    DEFF Research Database (Denmark)

    Pfajfar, Damjan; Santoro, Emiliano

    2011-01-01

    We study equilibrium determinacy in a New-Keynesian model where the Central Bank responds to asset prices growth. Unlike Taylor-type rules that react to asset prices, the proposed alternative does not harm dynamic stability and in certain cases promotes determinacy by inducing interest-rate inertia....

  13. The Zone of Inertia: Absorptive Capacity and Organizational Change

    Science.gov (United States)

    Godkin, Lynn

    2010-01-01

    Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…

  14. Effects of electron inertia in capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Xiang Nong

    2004-01-01

    The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant

  15. A method for measuring the inertia properties of rigid bodies

    Science.gov (United States)

    Gobbi, M.; Mastinu, G.; Previati, G.

    2011-01-01

    A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.

  16. High Power, Thermally Optimized Blue Laser for Lidar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To enable widespread and rapid airborne bathymetric lidar to adequate depths in many ocean regions a low-cost, rugged, and high energy pulsed laser source must be...

  17. High Power, Thermally Optimized Blue Laser for Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To enable widespread and rapid airborne bathymetric lidar to adequate depths in many ocean regions a low-cost, rugged, and high energy pulsed laser source must be...

  18. Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We...

  19. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  20. Thermal Mechanisms for High Amplitude Aerodynamic Flow Control (YIP 2012)

    Science.gov (United States)

    2016-04-15

    transport aircraft , much less cruise. The search for a perfect actuator continues, but progress has been limited by the often proprietary nature these...wave generation as a mechanism for high amplitude, high bandwidth actuation has been demonstrated, but the fundamental physics of how this...moving forward with such a definition. 15. SUBJECT TERMS active flow control, energy deposition, plasma actuation 16. SECURITY CLASSIFICATION OF: 17

  1. Inércia clínica e controle da hipertensão arterial nas unidades de atenção primária à saúde Therapeutic inertia and control of high blood pressure in primary health care units

    Directory of Open Access Journals (Sweden)

    Clóvis Hoepfner

    2010-08-01

    Full Text Available FUNDAMENTO: A importância do manejo adequado e do controle da hipertensão arterial (HA. OBJETIVO: Estimar a prevalência do controle da hipertensão arterial e da inércia terapêutica em adultos atendidos nas unidades básicas da saúde (UBS do município de Joinville e dos fatores associados. MÉTODOS: Estudo transversal, com amostragem por conglomerados, mediante pesquisa em prontuários, em que foram avaliados 415 portadores de HA. Foram avaliados a pressão arterial (PA, os incrementos terapêuticos, os fatores de risco e as comorbidades associadas. RESULTADOS: Houve predomínio do sexo feminino e de consultas de enfermagem. A idade variou entre 28 e 90 anos (média de 61,5 anos. Observou-se redução das médias da PA (155,8 ± 20,8/95,7 ±10,6 mmHg para 140,3 ± 22/84,1 ± 12,4 mmHg entre o primeiro e o último registro e a PA final normal em 36,6% dos pacientes, semelhante para homens e mulheres. Nos últimos 12 meses, a PA esteve elevada em 1.295 ocasiões, ocorrendo incremento terapêutico em apenas 156 (12,0%. Foram usados 1,85 fármacos por paciente, predominando diuréticos e IECA. Encontrou-se elevada prevalência de obesidade (40%, diabete (41%, LDL elevado (46% e de hipertrofia ventricular esquerda (25,5%. CONCLUSÃO: A elevada inércia clínica, o baixo controle da HA e a elevada presença de comorbidades sugerem a necessidade de programas de educação permanente para os profissionais da saúde e de outras medidas para melhorar o controle da doença nas UBS.BACKGROUND: The importance of adequate management and control of high blood pressure (HBP. OBJECTIVE: To estimate the prevalence of hypertension control and therapeutic inertia among adults treated at primary health care units (PHCU in the city of Joinville, as well as the associated factors. METHODS: A cross-sectional study, which included cluster sampling and analysis of medical records, with the evaluation of 415 patients with high blood pressure. We evaluated the blood

  2. Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin

    2016-01-01

    Highlights: • The highly concentrated PV-TE hybrid system is studied. • The performances of different cooling systems are analyzed and compared. • Sandwiching a copper plate between the PV and TE can improve the efficiency. • Four thermal design principles of the system are proposed. - Abstract: A thermal analysis of a highly concentrated photovoltaic-thermoelectric (PV-TE) hybrid system is carried out in this paper. Both the output power and the temperature distribution in the hybrid system are calculated by means of a three-dimensional numerical model. Three possible approaches for designing the highly concentrated PV-TE hybrid system are presented by analyzing the thermal resistance of the whole system. First, the sensitivity analysis shows that the thermal resistance between the TE module and the environment has a more great effect on the output power than the thermal resistance between the PV and the TE. The influence of the natural convection and the radiation can be ignored for the highly concentrated PV-TE hybrid system. Second, it is necessary to sandwich a copper plate between the PV and the TE for decreasing the thermal resistance between the PV and the TE. The role of the copper plate is to improve the temperature uniformity. Third, decreasing the area of PV cells can improve the efficiency of the highly concentrated PV-TE hybrid system. It should be pointed out that decreasing the area of PV cells also increases the total thermal resistance, but the raise of the efficiency is caused by the reduction of the heat transfer rate of the system. Therefore, the principle of minimizing the total thermal resistance may not be suitable for optimizing the area of PV cells.

  3. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  4. Analyzing Thermal Module Developments and Trends in High-Power LED

    Directory of Open Access Journals (Sweden)

    Jung-Chang Wang

    2014-01-01

    Full Text Available The solid-state light emitting diode (SSLED has been verified as consumer-electronic products and attracts attention to indoor and outdoor lighting lamp, which has a great benefit in saving energy and environmental protection. However, LED junction temperature will influence the luminous efficiency, spectral color, life cycle, and stability. This study utilizes thermal performance experiments with the illumination-analysis method and window program (vapour chamber thermal module, VCTM V1.0 to investigate and analyze the high-power LED (Hi-LED lighting thermal module, in order to achieve the best solution of the fin parameters under the natural convection. The computing core of the VCTM program employs the theoretical thermal resistance analytical approach with iterative convergence stated in this study to obtain a numerical solution. Results showed that the best geometry of thermal module is 4.4 mm fin thickness, 9.4 mm fin pitch, and 37 mm fin height with the LED junction temperature of 58.8°C. And the experimental thermal resistances are in good agreement with the theoretical thermal resistances; calculating error between measured data and simulation results is no more than ±7%. Thus, the Hi-LED illumination lamp has high life cycle and reliability.

  5. Thermal diffusivity of Swedish meatballs, pork meat pate and tomato puree during high pressure processing

    Science.gov (United States)

    Landfeld, Ales; Strohalm, Jan; Stancl, Jaromir; Houska, Milan

    2011-06-01

    Our study is directed at the effects of high pressure on the thermal diffusivity of selected food samples - a fresh meat formulation for Swedish meatballs, pork meat pate and tomato puree. Preheated food samples were placed in a copper cell and tested at nominal pressures of 400 and 500 MPa in a high pressure chamber. The thermal diffusivity was estimated from the recorded time course of temperatures (at the center of the food sample, at the wall of the copper cell, and 7.5 mm from the wall) during the high pressure holding time. Measured time-temperature profiles were compared with predictions using the finite-element model to solve the problem of uneven heat conduction in an infinite, solid, linear cylinder using the linear temperature dependence of apparent thermal conductivity. Optimal parameters of the linear temperature dependence of apparent thermal conductivity were evaluated by comparing measured temperatures and temperatures calculated from the model. To minimize differences between measured and calculated temperatures, at the center of the sample, the Marquardt-Levenberg optimization method was used. The thermal diffusivity values of all food samples were linearly correlated with temperature for two levels of pressure. Thermal diffusivity values increased with increased pressure and temperature. † This paper was presented at the XLVIIIth European High Pressure Research Group (EHPRG 48) Meeting at Uppsala (Sweden), 25-29 July 2010.

  6. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application

    International Nuclear Information System (INIS)

    Snead, L.L.; Balden, M.; Causey, R.A.; Atsumi, H.

    2002-01-01

    The benefits of using CVI SiC/graphite fiber composites as low tritium retaining, high thermal conductivity composites for fusion applications are presented. Three-dimensional woven composites have been chemically vapor infiltrated with SiC and their thermophysical properties measured. One material used an intermediate grade graphite fiber in all directions (Amoco P55) while a second material used very high thermal conductive fiber (Amoco K-1100) in the high fiber density direction. The overall void was less than 20%. Strength as measured by four-point bending was comparable to those of SiC/SiC composite. The room temperature thermal conductivity in the high conductivity direction was impressive for both materials, with values >70 W/m K for the P-55 and >420 W/m K for the K-1100 variant. The thermal conductivity was measured as a function of temperature and exceeds the highest thermal conductivity of CVD SiC currently available at fusion relevant temperatures (>600 deg. C). Limited data on the irradiation-induced degradation in thermal conductivity is consistent with carbon fiber composite literature

  7. Thermal analysis of a ventilated high-level waste repository

    International Nuclear Information System (INIS)

    1977-04-01

    The cooling response of a single ventilated storage room in an unventilated array of rooms is examined. Calculations show that ventilation provides a thermal sink in the heated system inducing temperature gradients in the formation different from the unventilated case. An asymptotic cool-down limit exists for the storage room temperature; this minimum temperature depends on inlet air temperature, ventilation flow rate, and convective heat transfer coefficient. For inlet air at 75 0 F and 50,000 cfm and a heat transfer coefficient of 0.8 Btu h- 0 F-ft 2 , the limit is about 100 0 F. A storage room sealed for 5 years will achieve temperatures of approximately 180 0 F, and approximately 4 months would be required in order to cool the storage room floor to a temperature of 120 0 F with a flow rate of 50,000 cfm at an inlet air temperature of 75 0 F, assuming a convective heat transfer coefficient of 0.8 Btu/h- 0 F-ft 2 . Two months would be needed to cool the exhaust air to 120 0 F. For large air flow rates, the cooling time is independent of the flow rate. Increasing the storage room surface area by 25% over the baseline model depresses the cool-down temperatures by only 4 0 F and decreases cooling times by 20%. Modifications in canister design or width have virtually no effect on the cooling, but placing the waste deeper beneath the storage rooms and/or using longer canisters can lower the operating temperatures and cooling times. Reducing the canisters from 3.5 kW power density for 10-year-old waste (108.5 kW/acre) to 2.0 kW/canister (62 kW/acre) reduces cooling temperatures by more than 20 0 F and reduces cooling times to a few weeks or less. The cooling times are nearly independent of the conductivity of the geologic formation. The temperature increase in the air brought from the surface down the supply shaft to the storage room level is about 5 to 7 F 0 per 1000 feet. Temperature increases in regionsshould not be seriously restricted 30 or more feet away

  8. High energy beam thermal processing of alpha zirconium alloys and the resulting articles

    International Nuclear Information System (INIS)

    Sabol, G.P.; McDonald, S.G.; Nurminen, J.I.

    1983-01-01

    Alpha zirconium alloy fabrication methods and resultant products exhibiting improved high temperature, high pressure steam corrosion resistance. The process, according to one aspect of this invention, utilizes a high energy beam thermal treatment to provide a layer of beta treated microstructure on an alpha zirconium alloy intermediate product. The treated product is then alpha worked to final size. According to another aspect of the invention, high energy beam thermal treatment is used to produce an alpha annealed microstructure in a Zircaloy alloy intermediate size or final size component. The resultant products are suitable for use in pressurized water and boiling water reactors

  9. Spontaneous non-thermal leptogenesis in high-scale inflation models

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.

    2006-11-01

    We argue that a non-thermal leptogenesis occurs spontaneously, without direct couplings of the inflation with right-handed neutrinos, in a wide class of high-scale inflation models such as the chaotic and hybrid inflation. It is only a finite vacuum expectation value of the inflaton, of more precisely, a linear term in the Kaehler potential, that is a prerequisite for the spontaneous non-thermal leptogenesis. To exemplify how it works, we show that a chaotic inflation model in supergravity naturally produces a right amount of baryon asymmetry via the spontaneous non-thermal leptogenesis. We also discuss the gravitino production from the inflation. (orig.)

  10. Effectiveness and clinical inertia in patients with antidiabetic therapy.

    Science.gov (United States)

    Machado-Duque, Manuel Enrique; Ramírez-Riveros, Adriana Carolina; Machado-Alba, Jorge Enrique

    2017-06-01

    To establish the effectiveness of antidiabetic therapy and the frequency of clinical inertia in the management of type 2 diabetes mellitus in Colombia. A cross-sectional study with follow-up of patients who had been treated for at least 1 year and were receiving medical consultation for antidiabetic treatment. Effectiveness was established when haemoglobin-A1c levels were inertia was reached, which was defined as no therapeutic modifications despite not achieving management controls. Sociodemographic, clinical and pharmacological variables were evaluated, and multivariate analyses were performed. In total, 363 patients with type 2 diabetes mellitus were evaluated, with a mean age of 62.0±12.2 years. A total of 1,016 consultations were evaluated, and the therapy was effective at the end of the follow-up in 57.9% of cases. Clinical inertia was found in 56.8% of patients who did not have metabolic control. The most frequently prescribed medications were metformin (84.0%), glibenclamide (23.4%) and insulin glargine (20.7%). Moreover, 57.6% of the patients were treated with two or more antidiabetic medications. Having metabolic control in the first consult of the follow-up was a protective factor against clinical inertia in the subsequent consultations (OR: 0.08; 95%CI: 0.04-0.15; Pinertia was identifiable and quantifiable and found in similar proportions to other countries. Clinical inertia is a relevant condition given that it interferes with the possibility of controlling this pathology. © 2017 John Wiley & Sons Ltd.

  11. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.

    Science.gov (United States)

    Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H

    2018-01-01

    Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.

  12. Smoothelin expression in the gastrointestinal tract: implication in colonic inertia.

    Science.gov (United States)

    Chan, Owen T M; Chiles, Lauren; Levy, Mary; Zhai, Jing; Yerian, Lisa M; Xu, Haodong; Xiao, Shu-Yuan; Soffer, Edy E; Conklin, Jeffrey L; Dhall, Deepti; Kahn, Melissa E; Balzer, Bonnie L; Amin, Mahul B; Wang, Hanlin L

    2013-10-01

    Colonic inertia is a frustrating motility disorder to patients, clinicians, and pathologists. The pathogenesis is largely unknown. The aims of this study were to: (1) characterize the expression of smoothelin, a novel smooth muscle-specific contractile protein expressed only by terminally differentiated smooth muscle cells, in the normal gastrointestinal (GI) tract; and (2) determine whether smoothelin is aberrantly expressed in patients with colonic inertia. A total of 57 resections of the normal GI tract (distal esophagus to left colon) were obtained from patients without GI motor dysfunction. Sixty-one colon resections were obtained from patients with a clinical diagnosis of colonic inertia. Smoothelin immunostaining was conducted on full-thickness tissue sections. In the nondysmotile controls, strong and diffuse cytoplasmic staining for smoothelin was observed in both the inner circular and outer longitudinal layers of the muscularis propria (MP) throughout the entire GI tract. The muscularis mucosae (MM) and muscular vessel walls were either completely negative or only patchily and weakly stained. The 1 exception to this pattern was observed in the distal esophagus, in which the MM was also diffusely and strongly stained. In cases with colonic inertia, a moderate to marked reduction of smoothelin immunoreactivity was observed in 15 of 61 (24.6%) colon resections, selectively seen in the outer layer of the MP. The data demonstrate that smoothelin is differentially expressed in the MP and MM of the normal GI tract and suggest that defective smoothelin expression may play a role in the pathogenesis of colonic inertia in a subset of patients.

  13. Description of the turnover of the dynamical moment of inertia of the superdeformed nuclear state

    International Nuclear Information System (INIS)

    Yuxin Liu; Jiangang Song; Hong-zhou Sun; Jia-jun Wang; En-guang Zhao

    1998-01-01

    We propose in this paper an approach to describe the dynamical moment of inertia of superdeformed nuclear states in the spirit of variable moments of inertia. Both the general changing feature and the turnover of dynamical moments of inertia with rotational frequency are well described in our approach. It indicates that the competition between the angular momentum driving effect and the restraining effect plays a crucial role in determining the dynamical moments of inertia of superdeformed nuclear states. (author)

  14. Measuring technique of super high temperature thermal properties of reactor core materials

    International Nuclear Information System (INIS)

    Ono, Akira; Baba, Tetsuya; Watanabe, Hideo; Matsumoto, Tsuyoshi

    1998-01-01

    In this study, thermal properties of reactor core materials used for water cooled reactors and FBR were tried to develop a technique to measure their melt states at less than 3,000degC in order to contribute more correct evaluation of the reactor core behavior at severe accident. Then, a thermal property measuring method of high temperature melt by using floating method was investigated and its fundamental design was begun to investigate under a base of optimum judgement on the air flow floating throw-down method. And, in order to measure emissivity of melt specimen surface essential for correct temperature measurement using the throw down method, a spectroscopic emissivity measuring unit using an ellipsometer was prepared and induced. On the thermal properties measurement using the holding method, a specimen container to measure thermal diffusiveness of the high temperature melts by using laser flashing method was tried to prepare. (G.K.)

  15. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  16. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  17. Thermally induced coloration of KBr at high pressures

    Science.gov (United States)

    Arveson, Sarah M.; Kiefer, Boris; Deng, Jie; Liu, Zhenxian; Lee, Kanani K. M.

    2018-03-01

    Laser-heated diamond-anvil cell (LHDAC) experiments reveal electronic changes in KBr at pressures between ˜13 -81 GPa when heated to high temperatures that cause runaway heating to temperatures in excess of ˜5000 K . The drastic changes in absorption behavior of KBr are interpreted as rapid formation of high-pressure F-center defects. The defects are localized to the heated region and thus do not change the long-range crystalline order of KBr. The results have significant consequences for temperature measurements in LHDAC experiments and extend the persistence of F centers in alkali halides to at least 81 GPa.

  18. The effects of dune slopes and material heterogeneity on the thermal behavior of dune fields in Mars' Southern Hemisphere

    Science.gov (United States)

    O'Shea, P. M.; Putzig, N. E.; Van Kooten, S.; Fenton, L. K.

    2015-12-01

    We analyzed the effects of slopes on the thermal properties of three dune fields in Mars' southern hemisphere. Although slope has important thermal effects, it is not the main driver of observed apparent thermal inertia (ATI) for these dunes. Comparing the ATI seasonal behavior as derived from Thermal Emission Spectrometer (TES) data with that modeled for compositional heterogeneities, we found that TES results correlate best with models of duricrust overlying and/or horizontally mixing with fines. We measured slopes and aspects in digital terrain models created from High Resolution Imaging Science Experiment (HiRISE) images of dunes within Proctor, Kaiser, and Wirtz craters. Using the MARSTHERM web toolset, we incorporated the slopes and aspects together with TES albedo, TES thermal inertia, surface pressure, and TES dust opacity, into models of seasonal ATI. Models that incorporate sub-pixel slopes show seasonal day and night ATI values that differ from the TES results by 0-300 J m-2 K-1 s-½. In addition, the models' day-night differences are opposite in sign from those of the TES results, indicating that factors other than slope are involved. We therefore compared the TES data to model results for a broad range of horizontally mixed and two-layered surfaces to seek other possible controls on the observed data, finding that a surface layer of higher thermal inertia is a likely contributor. However, it is clear from this study that the overall composition and morphology of the dune fields are more complex than currently available models allow. Future work will combine slopes with other model parameters such as multi-layered surfaces and lateral changes in layer thickness. Coupling these improvements with broader seasonal coverage from the Thermal Emission Imaging System (THEMIS) at more thermally favorable times of day would allow more accurate characterization of dune thermal behavior.

  19. Thermal and rotational effect on giant dipole resonances in rotating nuclei at high temperature

    International Nuclear Information System (INIS)

    Sugawara-Tanabe, Kazuko; Tanabe, Kosai.

    1986-01-01

    Microscopic calculations are carried out for the giant dipole resonances excited on the thermal high spin states in 162 Er and 166 Er based on the thermal linear response theory with realistic forces and large single-particle space. The dynamical strength function is compared with the experimental γ-ray absorption cross section. The general trend that the resonance energy decreases and the resonance width increases with increasing angular momentum and temperature is well reproduced by the calculations. (author)

  20. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  1. Thermal analysis of Yucca Mountain commercial high-level waste packages

    International Nuclear Information System (INIS)

    Altenhofen, M.K.; Eslinger, P.W.

    1992-10-01

    The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system

  2. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  3. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  4. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets

    Science.gov (United States)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei

    2017-07-01

    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  5. 40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... inertia weight class determination. 86.129-00 Section 86.129-00 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. Applicability. Section 86.129-94 (a) applies... testing using paragraphs (e)(1) and (e)(2) of this section. (f)(1) Required test dynamometer inertia...

  6. 40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...

  7. 40 CFR 86.129-80 - Road load power, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... inertia weight class determination. 86.129-80 Section 86.129-80 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. (a) Flywheels, electrical or other means of... weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up to 1,062 1,000 1,000 1...

  8. 40 CFR 86.529-98 - Road load force and inertia weight determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...

  9. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  10. HIGH-ENERGY NON-THERMAL AND THERMAL EMISSION FROM GRB 141207A DETECTED BY FERMI

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Makoto [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo, 169-8555 (Japan); Asano, Katsuaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Ohno, Masanori [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 (Japan); Veres, Péter [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Axelsson, Magnus [KTH Royal Institute of Technology, Department of Physics, SE-106 91 Stockholm (Sweden); Bissaldi, Elisabetta [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Tachibana, Yutaro; Kawai, Nobuyuki, E-mail: m.arimoto@aoni.waseda.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8551 (Japan)

    2016-12-20

    A bright long gamma-ray burst GRB 141207A was observed by the Fermi Gamma-ray Space Telescope and detected by both instruments onboard. The observations show that the spectrum in the prompt phase is not well described by the canonical empirical Band function alone, and that an additional power-law component is needed. In the early phase of the prompt emission, a modified blackbody with a hard low-energy photon index ( α  = +0.2 to +0.4) is detected, which suggests a photospheric origin. In a finely time-resolved analysis, the spectra are also well fitted by the modified blackbody combined with a power-law function. We discuss the physical parameters of the photosphere such as the bulk Lorentz factor of the relativistic flow and the radius. We also discuss the physical origin of the extra power-law component observed during the prompt phase in the context of different models such as leptonic and hadronic scenarios in the internal shock regime and synchrotron emission in the external forward shock. In the afterglow phase, the temporal and spectral behaviors of the temporally extended high-energy emission and the fading X-ray emission detected by the X-Ray Telescope on-board Swift are consistent with synchrotron emission in a radiative external forward shock.

  11. High temperature thermal energy storage in moving sand

    Science.gov (United States)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  12. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M., E-mail: tawancy@kfupm.edu.sa [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 1639, Dhahran 31261 (Saudi Arabia); Aboelfotoh, M.O., E-mail: oaboelfotoh@gmail.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-05-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt{sub 2}Mo-type, DO{sub 22} and D1{sub a} superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420}{sub fcc} planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt{sub 2}Mo-type and DO{sub 22} superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1{sub a} superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries.

  13. Thermal behavior of horizontally mixed surfaces on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  14. Duration of sleep inertia after napping during simulated night work and in extended operations.

    Science.gov (United States)

    Signal, Tracey Leigh; van den Berg, Margo J; Mulrine, Hannah M; Gander, Philippa H

    2012-07-01

    Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n = 12, mean age = 25.1 yrs; Protocol 2: n = 12, mean age = 23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00 h after ∼20 h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00 h after ∼30 h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15 min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45 min post-awakening for naps of 40 min or more. In ANOVAs

  15. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  16. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    Science.gov (United States)

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  17. The design of high-temperature thermal conductivity measurements apparatus for thin sample size

    Directory of Open Access Journals (Sweden)

    Hadi Syamsul

    2017-01-01

    Full Text Available This study presents the designing, constructing and validating processes of thermal conductivity apparatus using steady-state heat-transfer techniques with the capability of testing a material at high temperatures. This design is an improvement from ASTM D5470 standard where meter-bars with the equal cross-sectional area were used to extrapolate surface temperature and measure heat transfer across a sample. There were two meter-bars in apparatus where each was placed three thermocouples. This Apparatus using a heater with a power of 1,000 watts, and cooling water to stable condition. The pressure applied was 3.4 MPa at the cross-sectional area of 113.09 mm2 meter-bar and thermal grease to minimized interfacial thermal contact resistance. To determine the performance, the validating process proceeded by comparing the results with thermal conductivity obtained by THB 500 made by LINSEIS. The tests showed the thermal conductivity of the stainless steel and bronze are 15.28 Wm-1K-1 and 38.01 Wm-1K-1 with a difference of test apparatus THB 500 are −2.55% and 2.49%. Furthermore, this apparatus has the capability to measure the thermal conductivity of the material to a temperature of 400°C where the results for the thermal conductivity of stainless steel is 19.21 Wm-1K-1 and the difference was 7.93%.

  18. Die attach dimension and material on thermal conductivity study for high power COB LED

    Science.gov (United States)

    Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    High power LED began to gain popularity in the semiconductor market due to its efficiency and luminance. Nonetheless, along with the increased in efficiency, there was an increased in the junction temperature too. The alleviating junction temperature is undesirable since the performances and lifetime will be degraded over time. Therefore, it is crucial to solve this thermal problem by maximizing the heat dissipation to the ambience. Improvising the die attach (DA) layer would be the best option because this layer is sandwiched between the chip (heat source) and the substrate (channel to the ambient). In this paper, the impact of thickness and thermal conductivity onto the junction temperature and Von Mises stress is analyzed. Results obtained showed that the junction temperature is directly proportional to the thickness but the stress was inversely proportional to the thickness of the DA. The thermal conductivity of the materials did affect the junction temperature as there was not much changes once the thermal conductivity reached 20W/mK. However, no significant changes were observed on the Von Mises stress caused by the thermal conductivity. Material with the second highest thermal conductivity had the lowest stress, whereas the highest conductivity material had the highest stress value at 20 µm. Overall, silver sinter provided the best thermal dissipation compared to the other materials.

  19. Calorimeter probes for measuring high thermal flux. [in arc jets

    Science.gov (United States)

    Russell, L. D.

    1979-01-01

    Expendable, slug-type calorimeter probes were developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes were constructed with thin tungsten caps mounted on Teflon bodies. The temperature of the back surface of the tungsten cap is measured, and its time rate of change gives the steady-state absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. Design, construction, test, and performance data are presented.

  20. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique.

    Science.gov (United States)

    Kanik, Mehmet; Aktas, Ozan; Sen, Huseyin Sener; Durgun, Engin; Bayindir, Mehmet

    2014-09-23

    We produced kilometer-long, endlessly parallel, spontaneously piezoelectric and thermally stable poly(vinylidene fluoride) (PVDF) micro- and nanoribbons using iterative size reduction technique based on thermal fiber drawing. Because of high stress and temperature used in thermal drawing process, we obtained spontaneously polar γ phase PVDF micro- and nanoribbons without electrical poling process. On the basis of X-ray diffraction (XRD) analysis, we observed that PVDF micro- and nanoribbons are thermally stable and conserve the polar γ phase even after being exposed to heat treatment above the melting point of PVDF. Phase transition mechanism is investigated and explained using ab initio calculations. We measured an average effective piezoelectric constant as -58.5 pm/V from a single PVDF nanoribbon using a piezo evaluation system along with an atomic force microscope. PVDF nanoribbons are promising structures for constructing devices such as highly efficient energy generators, large area pressure sensors, artificial muscle and skin, due to the unique geometry and extended lengths, high polar phase content, high thermal stability and high piezoelectric coefficient. We demonstrated two proof of principle devices for energy harvesting and sensing applications with a 60 V open circuit peak voltage and 10 μA peak short-circuit current output.

  1. Experimental investigation of thermal de-stratification in rock bed TES systems for high temperature applications

    International Nuclear Information System (INIS)

    Okello, Denis; Nydal, Ole J.; Banda, Eldad J.K.

    2014-01-01

    Highlights: • High thermal stratifications exists rock bed TES when charge with high temperature heat. • Faster thermal degradation occurs in highly stratified bed irrespective of the bed length. • Average rate of heat loss as a function of storage time increases with increasing average bed temperature. - Abstract: Solar energy fluctuates so much that it cannot promote continuous use. Integration of Thermal Energy Storage (TES) with solar energy collection devices has the potential of making solar energy available on demand. Thermal energy can be stored in a bed of rocks at temperatures suitable for applications like cooking, boiling space heating, etc. During charging, temperature stratification is observed in the bed. In a stratified system, if the heat is used immediately, then it is possible to extract heat at reasonably high temperature from the top. For cases where the system is to be used after sometime (later at night or the following morning), the high temperature heat at the top is observed to degrade as the system tries to establish thermal equilibrium irrespective of the bed height. The average rate of heat loss from the TES unit to the ambient is found to increase with increasing average bed temperatures

  2. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Palagin, Dennis, E-mail: dennis.palagin@chem.ox.ac.uk; Doye, Jonathan P. K. [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2014-12-07

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni–Al clusters, Ni–Ag clusters preserve high spin states (up to 8 μ{sub B} in case of Ni{sub 13}Ag{sub 32} cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni{sub 7}Ag{sub 27} cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni{sub 13}Ag{sub 38} clusters adsorbed on the Si(111)–(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  3. Gas cooled thermal reactors with high temperatures (VHTR)

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.; Vasile, A.

    2014-01-01

    VHTR is one of the 6 concepts retained for the 4. generation of nuclear reactors, it is an upgraded version of the HTR-type reactor (High Temperature Reactors). 5 HTR reactors were operated in the world in the eighties, now 2 experimental HTR are working in China and Japan and 2 HTR with an output power of 100 MWe are being built in China. The purpose of the VHTR is to provide an helium at very high temperatures around 1000 Celsius degrees that could be used directly in a thermochemical way to produce hydrogen for instance. HTR reactors are interesting in terms of safety but it does not optimise the consumption of uranium and the production of wastes. This article presents a brief historical account of HTR-type reactors and their main design and safety features. The possibility of using HTR to burn plutonium is also presented as well as the possibility of closing the fuel cycle and of using thorium-uranium fuel. (A.C.)

  4. Thermal history of the plasma and high-frequency gravitons

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the $\\Lambda$CDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma is smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three la...

  5. High-performance thermal cutting techniques for underwater use

    International Nuclear Information System (INIS)

    Bach, F.W.

    2002-01-01

    Over the past few years, the Institute for Materials Research of the University of Hanover developed a new product family (Contact-Arc-Metal-X) of electrothermal techniques for underwater cutting of metal structures. This CAMX technology comprises contact arc metal cutting by means of a sword-shaped electrode, contact arc metal grinding with a rotating electrode, and contact arc metal drilling with an integrated interlocking mechanism. CAMC is characterized by its capability to cut components with complex structures. Undercuts and cavities constitute no obstacles in the process. CAMG is a technique for straight cutting characterized by its high cutting speeds. CAMD is able to produce countersunk boreholes and holes of any geometry. The integrated tensioning mechanism allows parts to be gripped and transported which could not be handled by conventional gripper systems. (orig.) [de

  6. Thermal-mechanical behavior of high precision composite mirrors

    Science.gov (United States)

    Kuo, C. P.; Lou, M. C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.

  7. Thermal-mechanical behavior of high precision composite mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.P.; Lou, M.C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors. 4 refs.

  8. Refractory porcelain enamel passive-thermal-control coating for high-temperature superalloys

    Science.gov (United States)

    Levin, H.; Auker, B. H.; Gardos, M. N.

    1973-01-01

    Study was conducted to match thermal expansion coefficients thereby preventing enamels from cracking. Report discusses various enamel coatings that are applied to two different high-temperature superalloys. Study may be of interest to manufacturers of chemical equipment, furnaces, and metal components intended for high-temperature applications.

  9. Analysis of thermal expansivity of iron (Fe) metal at ultra high ...

    Indian Academy of Sciences (India)

    structure are unlikely to be successful for predicting the high temperature properties of transition metals due to the complicated many-body nature of the interactions. Wasserman et al [3] have recently studied the thermal properties of iron at high pressures and temperatures within the framework of shell model [7,8], which is ...

  10. Thermal diffusivity measurements of liquid materials at high temperature with the ''laser flash'' method

    International Nuclear Information System (INIS)

    Otter, Claude; Vandevelde, Jean

    1982-01-01

    Two solutions, one analytical and the other numerical are proposed to solve the thermokinetic problem encountered when measuring the thermal diffusivity of liquid materials at very high temperature (T>3123K). The liquid material is contained in a parallel faced vessel. This liquid is traversed by a short thermal pulse from a relaxed laser. The temperature response of the back face of the measurement cell is analysed. The first model proposed which does not take thermal losses into consideration, is a mathematical model derived from the ''two layer model'' (Larson and Koyama, 1968) extended to ''three layers''. In order to take the possibility of thermal losses to the external environment at high temperature into consideration, a Crank-Nicolson (1947) type numerical model utilizing finite differences is employed. These thermokinetic studies were performed in order to interpret temperature response curves obtained from the back face of a tungsten-liquid UO 2 -tungsten thermal wall, the purpose of the measurements made being to determine the thermal properties of liquid uranium oxide [fr

  11. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  12. Parametric study on thermal-hydraulic characteristics of high conversion light water reactor

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Fujii, Sadao.

    1988-11-01

    To assess the feasibility of high conversion light water reactors (HCLWRs) from the thermal-hydraulic viewpoint, parametric study on thermal-hydraulic characteristics of HCLWR has been carried out by using a unit cell model. It is assumed that a HCLWR core is contained in a current 1000 MWe PWR plant. At the present study, reactor core parameters such as fuel pin diameter, pitch, core height and linear heat rate are widely and parametrically changed to survey the relation between these parameters and the basic thermal-hydraulic characteristics, i.e. maximum fuel temperature, minimum DNBR, reduction of reactor thermal output and so on. The validity of the unit cell model used has been ensured by comparison with the result of a subchannel analysis carried out for a whole core. (author)

  13. High-Temperature Thermal Energy Storage for electrification and district heating

    DEFF Research Database (Denmark)

    Pedersen, A. Schrøder; Engelbrecht, K.; Soprani, S.

    stability upon thermal cycling. The most promising material consists of basalt, diabase, and magnetite, whereas the less suited rocks contain larger proportions of quartz and mica. An HT-TES system, containing 1.5 m3 of rock pieces, was constructed. The rock bed was heated to 600 ˚C using an electric heater......The present work describes development of a High Temperature Thermal Energy Storage (HT-TES) system based on rock bed technology. A selection of rocks was investigated by thermal analysis in the range 20-800 ˚C. Subsequently, a shortlist was defined primarily based on mechanical and chemical...... to simulate thermal charging from wind energy. After complete heating of the rock bed it was left fully charged for hours to simulate actual storage conditions. Subsequently the bed discharging was performed by leading cold air through the rock bed whereby the air was heated and led to an exhaust. The results...

  14. Effect of thermal ageing on mechanical properties of a high-strength ODS alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hoon; Kim, Sung Hwan; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Kyu [Nuclear Materials DivisionKorea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A new high-strength ODS alloy, ARROS, was recently developed for the application as the cladding material of a Sodium-cooled fast reactor (SFR). To assess the long-term integrity under thermal ageing, ARROS was thermally aged in air at 650°C for 1000 h. The degree of thermal ageing was assessed by mechanical tests such as uniaxial tensile, hardness, and small punch tests at from room temperature to 650°C. Tensile strength was slightly decreased but elongation, hardness, and small punch energy were hardly changed at all test temperatures for the specimen aged at 650°C for 1000 h. However, the variation in mechanical properties such as hardness and small punch energy increased after thermal ageing. Using the test results, the correlation between tensile strength and maximum small punch load was established.

  15. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  16. Effects of high thermal and high fast fluences on the mechanical properties of type 6061 aluminum in the HFBR

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Tichler, P.R.

    1988-01-01

    The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is an epithermal, externally moderated (by D 2 O) facility designed to produce neutron beams for research. Type 6061 T-6 aluminum was used for the beam tubes, pressure vessel, fuel cladding, and most other components in the high flux area. The HFBR has operated since 1965. The epithermal, external moderation of the HFBR means that materials irradiated in different areas of the facility receive widely different flux spectra. Thus, specimens from a control rod drive follower tube (CRDF) have received 1.5 /times/ 10 22 n/cm 2 (E > 0.1 MeV) and 3.2 /times/ 10 23 n/cm 2 thermal fluence, while those from a vertical thimble flow shroud received 1.9 /times/ 10 23 n/cm 2 (E > 0.1 MeV) and 1.0 /times/ 10 23 n/cm 2 thermal. These numbers correspond to fast to thermal fluence ratios ranging from 0.05 to 1.9. Irradiations are occurring at approximately 333/degree/K. The data indicate that the increase in tensile strength and decrease in ductility result primarily from the thermal fluence, i.e., the transmutation of aluminum to silicon. These effects appear to be saturating at fluences above approximately 1.8 /times/ 10 23 n/cm 2 thermal at values of 90,000 psi (6700 Kg/mm 2 ) and 9%, respectively. The specimens receiving the highest fluence ratios appear to have less increase in tensile strength and less decrease in ductility than specimens with a lower fast to thermal fluence ratio and the same thermal fluence, suggesting a possible beneficial effect of the high energy neutrons in preventing formation of silicon crystallites. 7 refs., 11 figs., 3 tabs

  17. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    Science.gov (United States)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  18. Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Daniel Joseph [The Ohio State Univ., Columbus, OH (United States); Mahaffey, David [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Senkov, Oleg [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Semiatin, Sheldon [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Zhang, Wei [The Ohio State Univ., Columbus, OH (United States)

    2017-12-01

    Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from an analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.

  19. Synthesis and thermal properties of a novel high temperature alkyl-center-trisphenolic-based phthalonitrile polymer

    International Nuclear Information System (INIS)

    Sheng, Haitong; Peng, Xuegang; Guo, Hui; Yu, Xiaoyan; Tang, Chengchun; Qu, Xiongwei; Zhang, Qingxin

    2013-01-01

    A novel alkyl-center-trisphenolic-based high-temperature phthalonitrile monomer, namely, 1,1,1-tris-[4-(3,4-dicyanophenoxy)phenyl]ethane (TDPE), was synthesized from 1,1,1-tris-(4-hydroxyphenyl)ethane (THPE) via a facile nucleophilic displacement of a nitro-substituent from 4-nitrophthalonitrile (NPN). The structure of TDPE monomer was characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR), elemental analysis (EA). Curing behaviors of TDPE with 4-(aminophenoxy)phthalonitrile (APPH) were recorded by differential scanning calorimetric (DSC) and it showed a large processing window (122 °C) which is favorable to processing TDPE polymers. The structure of TDPE polymer was discussed and the thermal stabilities of TDPE polymer were evaluated by thermogravimetric analysis (TGA). The TDPE polymer exhibits excellent thermal stability, and mechanism of thermal decompositions was explored. Dynamic mechanical analysis (DMA) revealed that the TDPE polymer has high storage modulus and high glass transition temperature (T g > 380 °C). - Highlights: • A novel high-temperature phthalonitrile polymer was synthesized. • Polymerization mechanism was explored. • The polymer shows excellent thermal stability. • Outstanding mechanical properties was achieved: storage modulus = 3.7 GPa, T g > 380 °C. • Thermal decomposition mechanism was discussed

  20. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  1. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shujuan [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Xiao [Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jia, Beibei [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Jing, Xinli, E-mail: xljing@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an, 710049 (China)

    2017-01-15

    Highlights: • PBAB with excellent thermal resistance and high char yield was synthesized. • The chemical reaction of BPA with BA, and chemical structure of PBAB were studied. • PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. • The thermal stability of PBAB is greatly influenced by boron content. • Boron oxide and boron carbide are formed during the pyrolysis of PBAB. - Abstract: In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A{sub 2} + B{sub 3} strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph–O–B and B–O–B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N{sub 2}) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  2. On the influence of microscale inertia on dynamic ductile crack extension

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-08-01

    The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.

  3. Composite material having high thermal conductivity and process for fabricating same

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  4. Multiple superdeformed bands in sup 194 Hg and their dynamical moments of inertia

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.A.; Cullen, D.M.; Alderson, A.; Ali, I.; Fallon, P.; Forsyth, P.D.; Hanna, F.; Mullins, S.M.; Roberts, J.W.; Sharpey-Schafer, J.F.; Twin, P.J. (Liverpool Univ. (UK). Oliver Lodge Lab.); Poynter, R.; Wadsworth, R. (York Univ. (UK). Dept. of Physics); Bentley, M.A.; Bruce, A.M.; Simpson, J. (Science and Engineering Research Council, Daresbury (UK). Daresbury Lab.); Sletten, G. (Niels Bohr Inst., Roskilde (Denmark). Tandem Accelerator Lab.); Nazarewicz, W. (Liverpool Univ. (UK). Oliver Lodge Lab. Politechnika Warszawska (Poland). Inst. Fizyki); Bengtsson, T. (Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics); Wyss, R. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden))

    1990-05-28

    Three superdeformed bands have been observed in {sup 194}Hg. The dynamical moment of inertia J{sup (2)} of all three bands is observed to increase by 30-40% over the frequency range {Dirac h}{omega}=0.1-0.4 MeV. This phenomena can be understood in terms of the gradual alignment of pairs of high-j intruder orbitals within the framework of the cranked Woods-Saxon and Nilsson models including pairing. The calculations together with the observed J{sup (2)} behaviour of the three bands indicate that pairing correlations in the superdeformed minimum are rather weak. (orig.).

  5. Thermal characterizations analysis of high-power ThinGaN cool-white light-emitting diodes

    Science.gov (United States)

    Raypah, Muna E.; Devarajan, Mutharasu; Ahmed, Anas A.; Sulaiman, Fauziah

    2018-03-01

    Analysis of thermal properties plays an important role in the thermal management of high-power (HP) lighting-emitting diodes (LEDs). Thermal resistance, thermal capacitance, and thermal time constant are essential parameters for the optimal design of the LED device and system, particularly for dynamic performance study. In this paper, thermal characterization and thermal time constant of ThinGaN HP LEDs are investigated. Three HP cool-white ThinGaN LEDs from different manufacturers are used in this study. A forward-voltage method using thermal transient tester (T3Ster) system is employed to determine the LEDs' thermal parameters at various operating conditions. The junction temperature transient response is described by a multi-exponential function model to extract thermal time constants. The transient response curve is divided into three layers and expressed by three exponential functions. Each layer is associated with a particular thermal time constant, thermal resistance, and thermal capacitance. It is found that the thermal time constant of LED package is on the order of 22 to 100 ms. Comparison between the experimental results is carried out to show the design effects on thermal performance of the LED package.

  6. Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available High-temperature mechanical properties of high-boron austenitic steels (HBASs were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800°C. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239 (0.19wt.% C to 302 (0.29wt.% C and 312 HV (0.37wt.% C; the tensile yield strength at 850 °C increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests (performed for 300 cycles from room temperature to 800 °C indicate that the degree of thermal fatigue of the HBAS with 0.29wt.% C (rating of 2–3 is superior to those of the alloys with 0.19wt.% (rating of 4–5 and 0.37wt.% (rating of 3–4 carbon. The main cause of this difference is the ready precipitation of M23(C,B6-type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys.

  7. Effects of electron inertia in collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)

    2014-07-15

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.

  8. Effects of additional inertia force on bubble breakup

    International Nuclear Information System (INIS)

    Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping

    2011-01-01

    Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)

  9. Calculations of mass and moment of inertia for neutron stars

    International Nuclear Information System (INIS)

    Moelnvik, T.; Oestgaard, E.

    1985-01-01

    Masses and moments of inertia for slowly-rotating neutron stars are calculated from the Tolman-Oppenheimer-Volkoff equations and various equations of state for neutron-star matter. We have also obtained pressure and density as a function of the distance from the centre of the star. Generally, two different equations of state are applied for particle densities n>0.47 fm -3 and n -3 . The maximum mass is, in our calculations for all equations of state except for the unrealistic non-relativistic ideal Fermi gas, given by 1.50 Msub(sun) 44 gxcm 2 45 gxcm 2 , which also seem to agree very well with 'experimental results'. The radius of the star corresponding to maximum mass and maximum moment of inertia is given by 8.2 km< R<10.0 km, but a smaller central density rhosub(c) will give a larger radius. (orig.)

  10. More about the moment of inertia of Mars

    International Nuclear Information System (INIS)

    Kaula, W.M.; Sleep, N.H.; Phillips, R.J.

    1989-01-01

    The maximum allowable mean moment-of-inertia I of Mars is 0.3650 ·MR 2 because the rate-of-adjustment of the rotation axis is much faster than the rate-of-generation of density heterogeneities, as with any planet. But Mars differs from the other terrestrial planets in that its gravity field is rougher, in the sense of stress-difference implication, and its global tectonics is dominated by one feature, centered on the Tharsis Plateau. Plausible tectonic models of Mars require generation and support that are almost axially symmetric about Tharsis. Hence, unlike other terrestrial planets, Mars likely has two non-hydrostatic components of moments-of-inertia that are nearly equal, and the most probable value of I/MR 2 is slightly less than 0.3650

  11. Motion, inertia and special relativity-a novel perspective

    International Nuclear Information System (INIS)

    Masreliez, C Johan

    2007-01-01

    A recent paper by the author proposes that the phenomenon of inertia may be explained if the four metrical coefficients in the Minkowskian line element were to change as a consequence of acceleration. A certain scale factor multiplying the four metrical coefficients was found, which depends solely on velocity. This dynamic scale factor, which is [1-(v/c) 2 )], models inertia as a gravitational-type phenomenon. With this metric the geodesic of general relativity is an identity, and all accelerating trajectories are geodesics. This paper shows that the same scale factor also agrees with special relativity, but offers a new perspective. A new kind of dynamic process involving four-dimensional scale transition is proposed

  12. Preparation of high critical temperature YBa2Cu3O7 superconducting coatings by thermal spray

    International Nuclear Information System (INIS)

    Lacombe, Jacques

    1991-01-01

    The objective of this research thesis is the elaboration of YBa 2 Cu 3 O 7 superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa 2 Cu 3 O 7 , and their structural and electric characteristics [fr

  13. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  14. Electron-inertia effects on driven magnetic field reconnection

    International Nuclear Information System (INIS)

    Al-Salti, N.; Shivamoggi, B.K.

    2003-01-01

    Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place

  15. Testing for clinical inertia in medication treatment of bipolar disorder.

    Science.gov (United States)

    Hodgkin, Dominic; Merrick, Elizabeth L; O'Brien, Peggy L; McGuire, Thomas G; Lee, Sue; Deckersbach, Thilo; Nierenberg, Andrew A

    2016-11-15

    Clinical inertia has been defined as lack of change in medication treatment at visits where a medication adjustment appears to be indicated. This paper seeks to identify the extent of clinical inertia in medication treatment of bipolar disorder. A second goal is to identify patient characteristics that predict this treatment pattern. Data describe 23,406 visits made by 1815 patients treated for bipolar disorder during the STEP-BD practical clinical trial. Visits were classified in terms of whether a medication adjustment appears to be indicated, and also whether or not one occurred. Multivariable regression analyses were conducted to find which patient characteristics were predictive of whether adjustment occurred. 36% of visits showed at least 1 indication for adjustment. The most common indications were non-response to medication, side effects, and start of a new illness episode. Among visits with an indication for adjustment, no adjustment occurred 19% of the time, which may be suggestive of clinical inertia. In multivariable models, presence of any indication for medication adjustment was a predictor of receiving one (OR=1.125, 95% CI =1.015, 1.246), although not as strong as clinical status measures. The associations observed are not necessarily causal, given the study design. The data also lack information about physician-patient communication. Many patients remained on the same medication regimen despite indications of side effects or non-response to treatment. Although lack of adjustment does not necessarily reflect clinical inertia in all cases, the reasons for this treatment pattern merit further examination. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523 0 K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473 0 K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313 0 K to 2.15 +- 0.25 W/mK at 473 0 K. Thermal diffusivity at 300 0 K was found to be 1.2 +- 0.4 X 10 -6 m 2 /s and shows approximately the same pressure and temperature dependencies as the thermal conductivity

  17. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.

  18. High pulse number thermal shock tests on tungsten with steady state particle background

    Science.gov (United States)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m-2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  19. Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation

    Science.gov (United States)

    Jannot, Y.; Degiovanni, A.; Camus, M.

    2018-04-01

    Standard pore size determination methods like mercury porosimetry, nitrogen sorption, microscopy, or X-ray tomography are not suited to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization has been developed in a previous study. This method has been used with air pressure varying from 10-1 to 105 Pa for materials having a thermal conductivity less than 0.05 W m-1 K-1 at atmospheric pressure. It enables the estimation of pore size distribution between 100 nm and 1 mm. In this paper, we present a new experimental device enabling thermal conductivity measurement under gas pressure up to 106 Pa, enabling the estimation of the volume fraction of pores having a 10 nm diameter. It is also demonstrated that the main thermal conductivity models (parallel, series, Maxwell, Bruggeman, self-consistent) lead to the same estimation of the pore size distribution as the extended parallel model (EPM) presented in this paper and then used to process the experimental data. Three materials with thermal conductivities at atmospheric pressure ranging from 0.014 W m-1 K-1 to 0.04 W m-1 K-1 are studied. The thermal conductivity measurement results obtained with the three materials are presented, and the corresponding pore size distributions between 10 nm and 1 mm are presented and discussed.

  20. Thermal conductivity of beryllium under low temperature high dose neutron irradiation

    International Nuclear Information System (INIS)

    Chakin, V.P.; Latypov, R.N.; Suslov, D.N.; Kupriyanov, I.B.

    2004-01-01

    Thermal conductivity of compact beryllium of several Russian grades such as TE-400, TE-56, TE-30, TIP and DIP differing in the production technology, grain size and impurity content has been investigated. The thermal diffusivity of beryllium was measured on the disks in the initial and irradiated conditions using the pulse method in the range from room temperature to 200degC. The thermal conductivity was calculated using the table values for the beryllium thermal capacity. The specimens and beryllium neutron source fragments were irradiation in the SM reactor at 70degC and 200degC to a neutron fluence of (0.5-11.4)·10 22 cm -2 (E>0.1 MeV) and in the BOR-60 reactor at 400degC to 16·10 22 cm -2 (E>0.1MeV), respectively. The low-temperature irradiation leads to the drop decrease of the beryllium thermal conductivity and the effect depends on the irradiation parameters. The paper analyses the effect of irradiation parameters (temperature, neutron fluence), measurement temperature and structural factors on beryllium conductivity. The experiments have revealed that the short time post-irradiation annealing at high temperature results in partial reduction of the thermal conductivity of irradiated beryllium. (author)