WorldWideScience

Sample records for high thermal inertia

  1. Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia

    Science.gov (United States)

    Edwards, C.S.; Bandfield, J.L.; Christensen, P.R.; Fergason, R.L.

    2009-01-01

    We investigate high thermal inertia surfaces using the Mars Odyssey Thermal Emission Imaging System (THEMIS) nighttime temperature images (100 m/pixel spatial sampling). For this study, we interpret any pixel in a THEMIS image with a thermal inertia over 1200 J m-2 K-1 s-1/2 as "bedrock" which represents either in situ rock exposures or rock-dominated surfaces. Three distinct morphologies, ranked from most to least common, are associated with these high thermal inertia surfaces: (1) valley and crater walls associated with mass wasting and high surface slope angles; (2) floors of craters with diameters >25 km and containing melt or volcanics associated with larger, high-energy impacts; and (3) intercrater surfaces with compositions significantly more mafic than the surrounding regolith. In general, bedrock instances on Mars occur as small exposures (less than several square kilometers) situated in lower-albedo (thermal inertia (>350 J m-2 K-1 s-1/2), and relatively dust-free (dust cover index <0.95) regions; however, there are instances that do not follow these generalizations. Most instances are concentrated in the southern highlands, with very few located at high latitudes (poleward of 45oN and 58oS), suggesting enhanced mechanical breakdown probably associated with permafrost. Overall, Mars has very little exposed bedrock with only 960 instances identified from 75oS to 75oN with likely <3500 km2 exposed, representing???1% of the total surface area. These data indicate that Mars has likely undergone large-scale surface processing and reworking, both chemically and mechanically, either destroying or masking a majority of the bedrock exposures on the planet. Copyright 2009 by the American Geophysical Union.

  2. Microwave brightness temperature and thermal inertia - towards synergistic method of high-resolution soil moisture retrieval

    Science.gov (United States)

    Lukowski, Mateusz; Usowicz, Boguslaw; Sagan, Joanna; Szlazak, Radoslaw; Gluba, Lukasz; Rojek, Edyta

    2017-04-01

    Soil moisture is an important parameter in many environmental studies, as it influences the exchange of water and energy at the interface between the land surface and the atmosphere. Accurate assessment of the soil moisture spatial and temporal variations is crucial for numerous studies; starting from a small scale of single field, then catchment, mesoscale basin, ocean conglomeration, finally ending at the global water cycle. Despite numerous advantages, such as fine accuracy (undisturbed by clouds or daytime conditions) and good temporal resolution, passive microwave remote sensing of soil moisture, e.g. SMOS and SMAP, are not applicable to a small scale - simply because of too coarse spatial resolution. On the contrary, thermal infrared-based methods of soil moisture retrieval have a good spatial resolution, but are often disturbed by clouds and vegetation interferences or night effects. The methods that base on point measurements, collected in situ by monitoring stations or during field campaigns, are sometimes called "ground truth" and may serve as a reference for remote sensing, of course after some up-scaling and approximation procedures that are, unfortunately, potential source of error. Presented research concern attempt to synergistic approach that join two remote sensing methods: passive microwave and thermal infrared, supported by in situ measurements. Microwave brightness temperature of soil was measured by ELBARA, the radiometer at 1.4 GHz frequency, installed at 6 meters high tower at Bubnow test site in Poland. Thermal inertia around the tower was modelled using the statistical-physical model whose inputs were: soil physical properties, its water content, albedo and surface temperatures measured by an infrared pyrometer, directed at the same footprint as ELBARA. The results coming from this method were compared to in situ data obtained during several field campaigns and by the stationary agrometeorological stations. The approach seems to be

  3. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2012-09-20

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A

  4. THE EFFECT OF THE THERMAL INERTIA ON THE TEMPERATURE OF A HEATING SLAB.

    Directory of Open Access Journals (Sweden)

    D ABBAZ

    2015-12-01

    Full Text Available The paper presents the influence of the thermal inertia on the temperature of a heated concrete slab. This is a solar sensor provides a solar heating system floor, which the energy input. The concept of thermal inertia is not easy to grasp. It is defined as the speed that helps a system ((building in our case reacts to the change in operating conditions. The response of the building facing to the stresses is largely depending on the thermal properties of constituent materials. This feature is related to good performance, good use, and comfort of the thermal machine which is called ‘‘habitat’’. The objective of this work aims to study the influence of the inertia on the surface temperature of the floor, to design the future of homes with high inertia and very low energy consumption with satisfactory comfort conditions.

  5. Using Simple Shapes to Constrain Asteroid Thermal Inertia

    Science.gov (United States)

    MacLennan, Eric M.; Emery, Joshua P.

    2015-11-01

    With the use of remote thermal infrared observations and a thermophysical model (TPM), the thermal inertia of an asteroid surface can be determined. The thermal inertia, in turn, can be used to infer physical properties of the surface, specifically to estimate the average regolith grain size. Since asteroids are often non-spherical techniques for incorporating modeled (non-spherical) shapes into calculating thermal inertia have been established. However, using a sphere as input for TPM is beneficial in reducing running time and shape models are not generally available for all (or most) objects that are observed in the thermal-IR. This is particularly true, as the pace of infrared observations has recently dramatically increased, notably due to the WISE mission, while the time to acquire sufficient light curves for accurate shape inversion remains relatively long. Here, we investigate the accuracy of using both a spherical and ellipsoidal TPM, with infrared observations obtained at pre- and post-opposition (hereafter multi-epoch) geometries to constrain the thermal inertias of a large number of asteroids.We test whether using multi-epoch observations combined with a spherical and ellipsoidal shape TPM can constrain the thermal inertia of an object without a priori knowledge of its shape or spin state. The effectiveness of this technique is tested for 16 objects with shape models from DAMIT and WISE multi-epoch observations. For each object, the shape model is used as input for the TPM to generate synthetic fluxes for different values of thermal inertia. The input spherical and ellipsoidal shapes are then stepped through different spin vectors as the TPM is used to generate best-fit thermal inertia and diameter to the synthetically generated fluxes, allowing for a direct test of the approach’s effectiveness. We will discuss whether the precision of the thermal inertia constraints from the spherical TPM analysis of multi- epoch observations is comparable to works

  6. Sedimentary history in Proctor Crater on Mars from TES thermal inertia measurements

    Science.gov (United States)

    Fenton, L. K.

    2002-12-01

    granule ripples. Other places of the floor of Proctor Crater have thermal inertias consistent with gravel or indurated fine material. The lack of dust devil tracks and bright duneforms in these areas suggests that this is a windswept terrain, where all loose material has been deflated by the wind and the surface has been scoured, perhaps exposing a lower layer of material in Proctor Crater. A similarly high thermal inertia in a large deep deflationary pit on the crater floor suggests that such indurated terrains could comprise several sedimentary layers in the crater, now only revealed by erosive wind action. The thermal inertia of the floor of Proctor Crater indicates a terrain dominated by aeolian processes. Sand and dust deposition as well as deflation and abrasion have worked together to form and modify the surface of the crater floor. Additionally, for the first time, the change in thermal inertia across a Martian dunefield is investigated in order to understand its sedimentary history. Jakosky, B. M., et al., JGR, 105, 9643-9652, 2000.; Mellon, M. T., et al., Icarus, 148, 437-455, 2000.

  7. Thermal inertia of eclipsing binary asteroids : the role of component shape

    NARCIS (Netherlands)

    Mueller, Michael; van de Weijgaert, Marlies

    2015-01-01

    Thermal inertia controls the temperature distribution on asteroid surfaces. This is of crucial importance to the Yarkovsky effect and for the planning of spacecraft operations on or near the surface. Additionally, thermal inertia is a sensitive indicator for regolith structure.A uniquely direct way

  8. MGS MARS TES DERIVED THERMAL INERTIA MAPS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains thermal inertia maps derived from Mars Global Surveyor Thermal Emission Spectrometer observations of the surface temperatures of Mars taken...

  9. Thermal inertia as an indicator of rockiness variegation on near-Earth asteroid surfaces

    Science.gov (United States)

    Ali-Lagoa, Victor; Delbo, Marco; Hanus, Josef

    2016-10-01

    Determining key physical properties of asteroids such as sizes and albedos or reflectance spectra is crucial to understand their origins and the processes that they have undergone during their evolution. In particular, one of the aims of NEOShield-2 project, funded by the European Union's Horizon 2020 Research and Innovation programme, is to physically characterize small near Earth asteroids (NEA) in an effort to determine effective mitigation strategies in case of impact with our planet [Harris et al. 2013 2013AcAau,90,80H].We performed thermophysical modelling of NEAs, such as (1685) Toro, and potentially hazardous asteroids (PHAs), such as (33342) 1998 WT24. In addition to size, thermophysical models (TPM) of asteroids can constrain the surface thermal inertia, which is related to the material composition and physical nature, namely its "rockiness" or typical size of the particles on its surface. These have observable effects on the surface temperature distribution as a function of time and thus on the thermal infrared fluxes we observe, to which we can fit our model.In the case of WT24, its thermal inertia has been previously constrained to be in the range 100-300 SI units [Harris et al. 2007, Icarus 188, 414H]. But this was based on a spherical shape model approximation since no shape model was available by the time. Such a low thermal inertia value seems in disagreement with a relatively high metal content of the enstatite chondrites, the meteorite type to which WT24, classified as an E-type [Lazzarin et al. 2004 A&A 425L, 25L], has been spectrally associated. Using a three-dimensional model and spin vector based on radar observations [Busch et al. 2008 Icarus 197, 375B], our TPM produces a higher best-fitting value of the thermal inertia. We also find the intriguing possibility that the hemisphere of WT24 dominated by concave terrains, possibly be the result of an impact crater, has a higher thermal inertia. This would be similar to the case of our Moon

  10. The effect of the thermal inertia on the thermal transfer in building wall

    Science.gov (United States)

    Bellahcene, Lahcene; Cheknane, Ali; Bekkouche, SMA.; Sahel, Djemal

    2017-11-01

    In a hot and dry climate, the design and construction of buildings involve the adoption of combination between shape of building envelope and construction materials. The objective of this work is to study the thermal behavior of a multilayer wall submitted to varying climatic conditions. We have proposed four configurations of an element of an outer wall. A numerical simulation was used to understand the phenomenon of thermal inertia, especially its influence on the resulting temperatures. The study is based on the modeling of heat transfer in a 2D unsteady-state using a computational fluid dynamics (CFD) code. The comparison of numerical results was affected with an available experimental data and shows a satisfactory agreement. In addition, this work highlights the importance of the study of the thermal inertia of the wall in order to ensure a comfortable indoor climate of building located in hot and dry climate.

  11. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements

    Science.gov (United States)

    Martínez, G. M.; Rennó, N.; Fischer, E.; Borlina, C. S.; Hallet, B.; Torre Juárez, M.; Vasavada, A. R.; Ramos, M.; Hamilton, V.; Gomez-Elvira, J.; Haberle, R. M.

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ~104 m2 to ~107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ~102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m-2 K-1 s-1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  12. Thermal inertia in thermal infrared: porosity and chemical components of rocks; Inercia termica no infravermelho termal: porosidade e componentes quimicos de rochas

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Admilson P.; Ehlers, Ricardo Sandes [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Vitorello, Icaro [Instituto de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    1995-12-31

    The effect of porosity, and the relation between thermal inertia values and chemical components were determined. The thermal inertia values and chemical components were determined. The thermal inertia determinations were performed using radiometric observations, in the range 8 to 14 {mu}, of the surface temperature variations of the sample, induced by an incident heat flux. The results show that the increase in porosity tends to reduce the thermal inertia values, when the rock is in a dry state. In the water saturation state, the inertia also tends to show small values, only for porous rocks with thermal inertia values larger than the water values. The acid rocks show thermal inertia values smaller than those of the basic rocks. The intermediate and basic rocks show strong positive correlation between thermal inertia and Si O{sub 2}. 7 refs., 3 figs

  13. Thermal Inertia Variations from Recent Gully and Mass Wasting Activity in Gasa Crater, Mars

    Science.gov (United States)

    Harrison, T. N.; Tornabene, L. L.; Osinski, G. R.; Conway, S. J.

    2016-12-01

    Gasa Crater is the most active gully site observed on Mars to date, making it of particular interest for studying the process(es) behind gully formation and activity. In this study, we investigate whether differences in thermal inertia across different segments of gully systems, combined with morphological and colour observations with HiRISE, can provide some constraints of the physical characteristics associated with recent activity within gullies in Gasa Crater. We also investigate thermophysical differences between slopes in Gasa dominated by gully activity compared to those predominantly modified by dry mass wasting processes. As thermal inertia (TI) can be used as a proxy for grain size and/or induration, utilizing this dataset can help us to better understand the mass movement processes occurring on the slopes within Gasa. We find that Gasa exhibits clear variations in thermal inertia across its walls, controlled by the material properties and the types of dominant mass movement processes occurring on each wall. Analysis of 64 individual gully fan segments show that the average TI values of the youngest apron deposits are systematically 20-40 thermal inertia units (TIU, J m-2 K-1 s-1/2) higher than the older underlying/surrounding deposits. Talus aprons from mass wasting on the southern walls have thermal inertia values 60-80 TIU higher than gully aprons. The highest TI values in the crater correspond with bedrock exposures in the crater walls, particularly along the southwestern (non-gullied) wall and within the gully alcoves of the pole-facing walls. Analysis of thermal inertia differences could aid in selecting or refining sites for gully activity monitoring by the Mars Reconnaissance Orbiter (MRO) CTX and HiRISE cameras and the CaSSIS camera aboard ESA's ExoMars Trace Gas Orbiter. The results of this study also suggest that repeated THEMIS day/night IR imaging coordinated with MRO and ExoMars observations could be used for surface change detection.

  14. Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect

    NARCIS (Netherlands)

    Delbo', Marco; dell'Oro, Aldo; Harris, Alan W.; Mottola, Stefano; Mueller, Michael

    2007-01-01

    Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the

  15. Thermal inertia of near-Earth asteroids and magnitude of the Yarkovsky effect

    NARCIS (Netherlands)

    Delbo, M.; Dell'Oro, A.; Harris, A. W.; Mottola, S.; Mueller, M.

    2006-01-01

    Thermal inertia of near-Earth asteroids and magnitude of the Yarkovsky effect M. Delbo* (1,2), A. Dell'Oro (2), A. W. Harris (3), S. Mottola (3), M. Mueller (3) (1) Observatoire de la Côte d'Azur B.P. 4229, 06034 Nice Cedex 4, France. (2) INAF-Osservatorio Astr. di Torino, via Osservatorio 20, 10025

  16. Thermal Inertia of near-Earth Asteroids and Strength of the Yarkovsky Effect

    NARCIS (Netherlands)

    Delbo, Marco; Dell'Oro, A.; Harris, A. W.; Mottola, S.; Mueller, M.

    2006-01-01

    Thermal inertia is the physical parameter that controls the temperature distribution over the surface of an asteroid. It affects the strength of the Yarkovsky effect, which causes orbital drift of km-sized asteroids and is invoked to explain the delivery of near-Earth asteroids (NEAs) from the main

  17. Thermal inertia and surface roughness of Comet 9P/Tempel 1

    Science.gov (United States)

    Davidsson, Björn J. R.; Gutiérrez, Pedro J.; Groussin, Olivier; A'Hearn, Michael F.; Farnham, Tony; Feaga, Lori M.; Kelley, Michael S.; Klaasen, Kenneth P.; Merlin, Frédéric; Protopapa, Silvia; Rickman, Hans; Sunshine, Jessica M.; Thomas, Peter C.

    2013-05-01

    Re-calibrated near-infrared spectroscopy of the resolved nucleus of Comet 9P/Tempel 1 acquired by the Deep Impact spacecraft has been analyzed by utilizing the post-Stardust-NExT nucleus shape model and spin pole solution, as well as a novel thermophysical model that explicitly accounts for small-scale surface roughness and thermal inertia. We find that the thermal inertia varies measurably across the surface, and that thermal emission from certain regions only can be reproduced satisfactory if surface roughness is accounted for. Particularly, a scarped/pitted terrain that experienced morning sunrise during the flyby is measurably rough (Hapke mean slope angle ˜45°) and has a thermal inertia of at most 50 J m-2 K-1 s-1/2, but probably much lower. However, thick layered terrain and thin layered terrain experiencing local noon during the flyby have a substantially larger thermal inertia, reaching 150 J m-2 K-1 s-1/2 if the surface is as rough as the scarped/pitted terrain, but 200 J m-2 K-1 s-1/2 if the terrain is considered locally flat. Furthermore, the reddening of the nucleus near-infrared 1.5-2.2 μm spectrum varies between morphological units, being reddest for thick layered terrain (median value 3.4% kÅ-1) and most neutral for the smooth terrain known to contain surface water ice (median value 3.1% kÅ-1). Thus, Comet 9P/Tempel 1 is heterogeneous in terms of both thermophysical and optical properties, due to formation conditions and/or post-formation processing.

  18. Thermal Inertia Determination of C-type Asteroid Ryugu from in-situ Surface Brightness Temperature Measurements

    Science.gov (United States)

    Hamm, Maximilian; Grott, Matthias; Knollenberg, Jörg; Kührt, Ekkehard; Pelivan, Ivanka

    2016-10-01

    The Japanese Hayabusa-2 mission is a sample-return mission currently on its way to the C-type asteroid Ryugu. Hayabusa-2 carries the small lander MASCOT (Mobile Asteroid Surface Scout), whose scientific payload includes the infrared radiometer MARA. The primary science goal of MARA is to determine Ryugu's surface brightness temperatures at the landing site for a full asteroid rotation, which will be measured using a long-pass filter, an 8 to 12 µm bandpass, as well as four narrow bandpasses centered at wavelengths between 5 and 15 µm. From these measurements, surface thermal inertia will be derived, but because MARA performs single pixel measurements, heterogeneity in the field of view cannot be resolved. Yet, the surface will likely exhibit different surface textures, and thermal inertia in the field of view could vary from 600 (small rocks) to 50 Jm-2s-0.5K-1 (fine regolith grains). Sub-pixel heterogeneity is a common problem when interpreting radiometer data, since the associated ambiguities cannot be resolved without additional information on surface texture. For MARA, this information will be provided by the MASCOT camera, and in the present paper we have investigated to what extent different thermal inertias can be retrieved from MARA data. To test the applied approach, we generated synthetic MARA data using a thermal model of Ryugu, assuming different thermal inertias for sections of the field of view. We find that sub-pixel heterogeneity systematically deforms the diurnal temperature curve so that it is not possible to fit the data using a single thermal inertia value. However, including the area fractions of the different surface sections enables us to reconstruct the different thermal inertias to within 10% assuming appropriate measurement noise. The presented approach will increase robustness of the Ryugu thermal inertia determination and results will serve as a ground truth for the global measurements performed by the thermal infrared mapper (TIR) on

  19. Instrument for measuring moment of inertia with high precision

    Science.gov (United States)

    Zheng, Yongjun; Lin, Min; Guo, Bin

    2010-08-01

    Accurate calculation of the moment of inertia of an irregular body is made difficult by the large number of quantities. A popular method is to use a trifilar suspension system to measure the period of oscillation of the body in the horizontal plane. In this paper, an instrument for measuring the moment of inertia based on trifilar pendulum is designed; some sources of error are discussed; three metal disks with known moments of inertia are used to calibrate the instrument, the other metal disks with known moments of inertia are used to test the accuracy of the instrument. The results are consistent when compared with calculated moment of inertia of the metal disks. In addition, the instrument could be used to measure the moment of inertia of other irregular objects. The period of oscillation is acquired by the capture mode of MSP430 microprocessor, the mass is obtained by the Electronic Balance and the data is transferred to the MSP430 via serial port.

  20. Remote sensing of the mountain cryosphere using texture filters and apparent thermal inertia

    Science.gov (United States)

    Brenning, A.; Fieguth, P.; Long, S.; Peña, M. A.; Soliman, A. S.

    2011-12-01

    Rock glaciers and debris-covered glaciers on Earth, and analog landforms on Mars, constitute hidden water resources and components of the cryosphere that are difficult to map or characterize using remote sensors. We utilize two innovative approaches in this field, (1) texture filters and (2) thermal features, in particular apparent thermal inertia (ATI), in order to investigate ice-debris landforms and in particular rock glaciers in the semi-arid Andes. Even though the ridge-and-furrow surface patterns are probably the most characteristic morphological features of rock glaciers, our study is the first to apply texture filters to the problem of remotely-sensed rock glacier detection. Gabor filters are designed to detect zebra-like patterns and are therefore an obvious choice for this study. Texture features derived from a Gabor filterbank were calculated from panchromatic IKONOS orthoimagery and used to discriminate rock glacier and other debris surfaces utilizing four classification methods of varying complexity: generalized linear model (GLM), generalized additive model (GAM), support vector machine (SVM), and tree ensembles (Bundling). Bundling outperformed the other methods in most situations studied, achieving an area under the ROC curve (AUROC) of 0.72-0.80 in different spatial cross-validation scenarios. This study focused on a narrow area of interest that cannot be easily identified as non-rock glacier area based on topographic criteria, and therefore significantly better results are expected in practical mapping situations in combination with terrain attributes as predictors. Thermal remote sensing has been of limited use in mountain cryospheric studies. In addition to land surface temperature (LST), ATI is of particular interest in this context. Thermal inertia is a single thermophysical material property that determines the amplitude of temperature variations at the surface of a periodically heated half-space, and shows promise in discriminating different

  1. Assessing the Performance of Thermal Inertia and Hydrus Models to Estimate Surface Soil Water Content

    Directory of Open Access Journals (Sweden)

    Amro Negm

    2017-09-01

    Full Text Available The knowledge of soil water content (SWC dynamics in the upper soil layer is important for several hydrological processes. Due to the difficulty of assessing the spatial and temporal SWC dynamics in the field, some model-based approaches have been proposed during the last decade. The main objective of this work was to assess the performance of two approaches to estimate SWC in the upper soil layer under field conditions: the physically-based thermal inertia and the Hydrus model. Their validity was firstly assessed under controlled laboratory conditions. Thermal inertia was firstly validated in laboratory conditions using the transient line heat source (TLHS method. Then, it was applied in situ to analyze the dynamics of soil thermal properties under two extreme conditions of soil-water status (well-watered and air-dry, using proximity remote-sensed data. The model performance was assessed using sensor-based measurements of soil water content acquired through frequency (FDR and time domain reflectometry (TDR. During the laboratory experiment, the Root Mean Square Error (RMSE was 0.02 m3 m−3 for the Hydrus model and 0.05 m3 m−3 for the TLHS model approach. On the other hand, during the in situ experiment, the temporal variability of SWCs simulated by the Hydrus model and the corresponding values measured by the TDR method evidenced good agreement (RMSE ranging between 0.01 and 0.005 m3 m−3. Similarly, the average of the SWCs derived from the thermal diffusion model was fairly close to those estimated by Hydrus (spatially averaged RMSE ranging between 0.03 and 0.02 m3 m−3.

  2. Flight Test Evaluation of the High Inertia Rotor System

    Science.gov (United States)

    1979-06-01

    by de- creasing the cyclic stick travel required to command full swashplate travel. This increased the control sensitivity and response...control input than with the standard inertia rotor. In order to provide the most favorable control characteristics, a pilot stick-to- swashplate gearing...change was also made as presented in Table 3. This gearing change reduced the amount of pilot cyclic stick travel to produce the full swashplate travel

  3. Using Simplified Thermal Inertia to Determine the Theoretical Dry Line in Feature Space for Evapotranspiration Retrieval

    Directory of Open Access Journals (Sweden)

    Sujuan Mi

    2015-08-01

    Full Text Available With the development of quantitative remote sensing, regional evapotranspiration (ET modeling based on the feature space has made substantial progress. Among those feature space based evapotranspiration models, accurate determination of the dry/wet lines remains a challenging task. This paper reports the development of a new model, named DDTI (Determination of Dry line by Thermal Inertia, which determines the theoretical dry line based on the relationship between the thermal inertia and the soil moisture. The Simplified Thermal Inertia value estimated in the North China Plain is consistent with the value measured in the laboratory. Three evaluation methods, which are based on the comparison of the locations of the theoretical dry line determined by two models (DDTI model and the heat energy balance model, the comparison of ET results, and the comparison of the evaporative fraction between the estimates from the two models and the in situ measurements, were used to assess the performance of the new model DDTI. The location of the theoretical dry line determined by DDTI is more reasonable than that determined by the heat energy balance model. ET estimated from DDTI has an RMSE (Root Mean Square Error of 56.77 W/m2 and a bias of 27.17 W/m2; while the heat energy balance model estimated ET with an RMSE of 83.36 W/m2 and a bias of −38.42 W/m2. When comparing the coeffcient of determination for the two models with the observations from Yucheng, DDTI demonstrated ET with an R2 of 0.9065; while the heat energy balance model has an R2 of 0.7729. When compared with the in situ measurements of evaporative fraction (EF at Yucheng Experimental Station, the ET model based on DDTI reproduces the pixel scale EF with an RMSE of 0.149, much lower than that based on the heat energy balance model which has an RMSE of 0.220. Also, the EF bias between the DDTI model and the in situ measurements is 0.064, lower than the EF bias of the heat energy balance model

  4. Infrared detection of moist areas in monumental buildings based on thermal inertia analysis

    Science.gov (United States)

    Grinzato, Ermanno G.; Mazzoldi, Andrea

    1991-03-01

    This paper presents a technique to detect the moisture conditions of walls supporting frescoes in order to detach its in case and to understand causes of the surface wetting. An important feature of the testing procedure is to be nondestructive and appropriate to analyze large surfaces as it is based on thermographic image processing. The goal is to classify the wall surface on the basis of its moisture condition. We choose the thermal inertia as the most suitable parameter for this purpose, because the heat capacity of a porous body increases to a great extent by varying its water content. The test works modifying the wall inner thermal conditions and detecting temperature variations of the fresco, in time and space domain. For this purpose a convective thermal flux is uniformly applied to the surface while an infrared camera views it. In such a way temperature gradients appear, whose maximum directional variation curves are used to segment the surface and the mean temperature time difference is used to label each area. The key point of the proposed procedure is the freedom from the knowledge of the wall composition and its thermal and hydrologic dynamic status, depending on weather history. Other topics as the environmental radiometric reflection and emission, the 'Narcissus effect' in thermograms mosaic composition and the perspective distortions are considered. Experimental results on a XVI century church at Padua, Italy) are presented.

  5. Thermal Inertia and Surface Roughness of Comet 9P/Tempel 1 Derived from Recalibrated Deep Impact NIR Spectroscopy

    Science.gov (United States)

    Davidsson, B. J. R.; Gutierrez, P. J.; Groussin, O.; A'Hearn, M. F.; Farnham, T.; Feaga, L. M.; Kelley, M. S.; Klaasen, K.; Merlin, F.; Protopapa, S.; Rickman, H.; Sunshine, J. M.

    2011-10-01

    On July 4, 2005, the HRI-IR instrument onboard the Deep Impact spacecraft (NASA/Univ. of Maryland) acquired the first ever near-infrared spectra of a fully resolved comet nucleus, 9P/Tempel 1. Early attempts to estimate the thermal inertia of the surface material were inconclusive, due to negligence of small-scale surface roughness in the thermophysical models used to analyze the spectra. Following a substantial recalibration of the original dataset, we now reconsider the 9P/Tempel 1 spectra, using more realistic thermophysical models. In addition to largescale nucleus irregularity, these models now explicitly consider small-scale roughness and related phenomena such as shadowing and IR self heating. Furthermore, 3D heat conduction can be utilized when topographic features are similar in size to the thermal skin depth, or smaller. Estimates of the thermal inertia, degree of small-scale roughness and their levels of variation across the nucleus are presented.

  6. Beam wavefront control of a thermal inertia laser for inertial confinement fusion application.

    Science.gov (United States)

    Wanjun, Dai; Dongxia, Hu; Wei, Zhou; Junpu, Zhao; Feng, Jing; Zeping, Yang; Kun, Zhang; Xuejun, Jiang; Wu, Deng; Runchang, Zhao; Zhitao, Peng; Bin, Feng

    2009-07-01

    A novel scheme to correct aberration of each beam from the front-end to the target point in a thermal inertia laser (TIL) is presented. Each beam contains a deformable mirror (DM) with an aperture of 70 mm x 70 mm at the injection of the main amplifier and a Hartman-Shack (HS) sensor in a parameter diagnostic unit (PDU). A temporary HS sensor for measuring the static aberration of each beam with 1 Hz source is placed at the target point. The sensor will be removed from the target point during the main single shot, so we transfer the results measured at the target point to the sensors in the PDU. Dynamic aberration can also be measured by the HS sensor in the PDU during the single shot. In this way, we need not calibrate the aberration of the PDU, and aberration of each beam can be corrected by the DM with the HS sensor in the PDU. We demonstrate that with this scheme the divergence angle of the TIL pulses can be improved from 100 to less than 60 murad with a focal length of 2200 mm and beam size of 290 mm x 290 mm, which meets the requirement of a TIL.

  7. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Energy Technology Data Exchange (ETDEWEB)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com [Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India)

    2016-08-15

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  8. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Directory of Open Access Journals (Sweden)

    Sachin Kaothekar

    2016-08-01

    Full Text Available I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  9. Inertia considerations within unit commitment and economic dispatch for systems with high non-synchronous penetrations

    OpenAIRE

    Daly, Pádraig; Flynn, Damian; Cunniffe, Noel

    2015-01-01

    The priority dispatch status of non-synchronous renewable generation (wind, wave, solar), and increasing levels of installed high voltage direct current interconnection between synchronous systems, is fundamentally changing unit commitment and economic dispatch (UCED) schedules. Conventional synchronous plant, the traditional provider of services which ensure frequency stability - synchronising torque, synchronous inertia and governor response - are being displaced by marginally zero cost non...

  10. METHOD FOR DETERMINATION OF THE CHARACTERISTIC CURVE OF THE THERMAL INERTIA OF AIRCRAFT GAS TEMPERATURE SENSORS

    Directory of Open Access Journals (Sweden)

    A. F. Sabitov

    2017-01-01

    Full Text Available The effectiveness of correction of the dynamic characteristics of gas temperature sensors in automatic control systems for the operation of aircraft gas turbine engines depends on the accuracy of the time constants of the sensors used from heat exchange conditions. The aim of this work was to develop a new method for determining the characteristic curves of the thermal inertia of gas temperature sensors.The new technique does not require finding the time constants of gas temperature sensors on the experimental transient characteristics. Characteristic curves for each time constant are defined as hyperbolic dependencies on the heat transfer coefficient of the gas temperature sensors sensing element with the gas flow. Parameters of hyperbolic dependencies are proposed to be established using two-dimensional regression analysis. For this purpose, special software has been developed in the Mathcad 14 and Mathcad 15. The software allows inputting the original data from the transient characteristics to the corresponding vectors or from tables in Excel format. It is shown that the transient characteristics in three-dimensional coordinates«time – heat transfer coefficient – the value of the transition characteristic» form a surface whose parameters are parameters of the desired hyperbolic dependencies.For a specific application of the technique, the regression functions for the dynamic characteristics of gas temperature sensors corresponding to the first and second orders are given. Analysis of the characteristic dependencies suggests that the proposed method more accurately establishes the dependence of the dynamic characteristics of aircraft gas temperature sensors on heat exchange conditions.It is shown that the algorithm of two-dimensional regression analysis realizes finding more accurate values of the parameters of the characteristic dependencies. The found parameters of the characteristic dependencies in a best way reach the surface of the

  11. Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Thongchart Kerdphol

    2017-05-01

    Full Text Available Renewable energy sources (RESs, such as wind and solar generations, equip inverters to connect to the microgrids. These inverters do not have any rotating mass, thus lowering the overall system inertia. This low system inertia issue could affect the microgrid stability and resiliency in the situation of uncertainties. Today’s microgrids will become unstable if the capacity of RESs become larger and larger, leading to the weakening of microgrid stability and resilience. This paper addresses a new concept of a microgrid control incorporating a virtual inertia system based on the model predictive control (MPC to emulate virtual inertia into the microgrid control loop, thus stabilizing microgrid frequency during high penetration of RESs. The additional controller of virtual inertia is applied to the microgrid, employing MPC with virtual inertia response. System modeling and simulations are carried out using MATLAB/Simulink® software. The simulation results confirm the superior robustness and frequency stabilization effect of the proposed MPC-based virtual inertia control in comparison to the fuzzy logic system and conventional virtual inertia control in a system with high integration of RESs. The proposed MPC-based virtual inertia control is able to improve the robustness and frequency stabilization of the microgrid effectively.

  12. Ground-Atmosphere Interactions at Gale: Determination of the Surface Energy Budget, Thermal Inertia and Water Sorption on the Regolith

    Science.gov (United States)

    Martinez, German; Renno, Nilton; Fischer, Erik; Borlina, Caue; Hallet, Bernard; De la Torre Juarez, Manuel; Vasavada, Aswhin; Gomez-Elvira, Javier

    2014-05-01

    The analysis of the Surface Energy Budget (SEB) yields insights into the local climate and the soil-atmosphere interactions, while the analysis of the thermal inertia of the shallow subsurface augments surface observations, providing information about the local geology. The Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System have measured near subsurface thermal inertia from orbit at scales of ~104 m2 to ~10 km2. Here we report analysis of the thermal inertia at a few locations at Gale Crater at scales of 100 m2. The thermal inertia is calculated by solving the heat conduction equation in the soil using hourly measurements by the Rover Environmental Station (REMS) ground temperature sensor as an upper boundary condition. Three Sols representative of different environmental conditions and soil properties, namely, Sol 82 at Rocknest (RCK), Sol 112 at Point Lake (PL) and Sol 139 at Yellowknife Bay (YKB) are analyzed in detail. The largest thermal inertia (I) value is found at YKB, I = 445 J m-2 K-1 s-1/2 or 445 tiu (thermal inertia unit), followed by PL with I= 300 tiu and RCK withI = 280 tiu [1]. These values are consistent with the type of terrain imaged by MastCam and with previous satellite estimates at Gale Crater [2,3]. The SEB is calculated by using all REMS data products as well as dust opacity values derived from MastCam measurements, whereas previously, the SEB has been calculated using numerical models only [4]. At each location and during the daytime, the SEB is dominated by the downwelling shortwave (SW) solar radiation (~450-500 W/m2) and the upwelling longwave (LW) radiation emitted by the surface (~300-400 W/m2). The sum of these two terms accounts for at least 70% of the net surface heating rate between 0900 and 1400 local solar time. At nighttime, the SEB is dominated by the upwelling LW radiation emitted by the surface (~50-100 W/m2) and the downwelling LW radiation from the atmosphere (~50 W/m2

  13. Geologic application of thermal inertia imaging using HCMM data. [Walker Lane, Nevada; San Rafael, Utah; and Death Valley and Pisgah Crater, Lavic Lake Region, California

    Science.gov (United States)

    Kahle, A. B.; Schieldge, J. P.; Abrams, M. J.; Alley, R. E.; Levine, C. J. (Principal Investigator)

    1981-01-01

    Three test sites in the western US were selected to discriminate among surface geologic materials on the basis of their thermal properties as determined from HCMM data. Attempts to determine quantitatively accurate thermal inertia values from HCMM digital data met with only partial success due to the effects of sensor miscalibrations, radiative transfer in the atmosphere, and varying meteorology and elevation across a scene. In most instances, apparent thermal inertia was found to be an excellent qualitative representation of true thermal inertia. Computer processing of digital day and night HCMM data allowed construction of geologically useful images. At some test sites, more information was provided by data than LANDSAT data. Soil moisture effects and differences in spectrally dark materials were more effectively displayed using the thermal data.

  14. Brain thermal inertia, but no evidence for selective brain cooling, in free-ranging western grey kangaroos (Macropus fuliginosus).

    Science.gov (United States)

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2009-04-01

    Marsupials reportedly can implement selective brain cooling despite lacking a carotid rete. We measured brain (hypothalamic) and carotid arterial blood temperatures every 5 min for 5, 17, and 63 days in spring in three free-living western grey kangaroos. Body temperature was highest during the night, and decreased rapidly early in the morning, reaching a nadir at 10:00. The highest body temperatures recorded occurred sporadically in the afternoon, presumably associated with exercise. Hypothalamic temperature consistently exceeded arterial blood temperature, by an average 0.3 degrees C, except during these afternoon events when hypothalamic temperature lagged behind, and was occasionally lower than, the simultaneous arterial blood temperature. The reversal in temperatures resulted from the thermal inertia of the brain; changes in the brain to arterial blood temperature difference were related to the rate of change of arterial blood temperature on both heating and cooling (P kangaroos). We conclude that these data are not evidence for active selective brain cooling in kangaroos. The effect of thermal inertia on brain temperature is larger than might be expected in the grey kangaroo, a discrepancy that we speculate derives from the unique vascular anatomy of the marsupial brain.

  15. Sleep inertia.

    Science.gov (United States)

    Tassi, Patricia; Muzet, Alain

    2000-08-01

    Sleep inertia is a transitional state of lowered arousal occurring immediately after awakening from sleep and producing a temporary decrement in subsequent performance. Many factors are involved in the characteristics of sleep inertia. The duration of prior sleep can influence the severity of subsequent sleep inertia. Although most studies have focused on sleep inertia after short naps, its effects can be shown after a normal 8-h sleep period. One of the most critical factors is the sleep stage prior to awakening. Abrupt awakening during a slow wave sleep (SWS) episode produces more sleep inertia than awakening in stage 1 or 2, REM sleep being intermediate. Therefore, prior sleep deprivation usually enhances sleep inertia since it increases SWS. There is no direct evidence that sleep inertia exhibits a circadian rhythm. However, it seems that sleep inertia is more intense when awakening occurs near the trough of the core body temperature as compared to its circadian peak. A more controversial issue concerns the time course of sleep inertia. Depending on the studies, it can last from 1 min to 4 h. However, in the absence of major sleep deprivation, the duration of sleep inertia rarely exceeds 30 min. But all these results should be analysed as a function of type of task and dependent variables. Different cognitive functions are probably not sensitive to the same degree to sleep inertia and special attention should be provided to dependent variables as a result of the cognitive processes under review. Finally, sleep disorders represent risk factors which deserve new insight in treatment strategies to counteract the adverse effects of sleep inertia.

  16. Theoretical and experimental evaluation of solar chimney with thermal inertia; Evaluacion energetica teorica y experimental de una chimenea solar con enercia termica

    Energy Technology Data Exchange (ETDEWEB)

    Marti Herrero, J.; Heras Celemin, M. R.

    2004-07-01

    A simple study has been realized about the solar chimney built at the LECE, using FLUENNT, a Computational Fluid Dynamics (CFD) software. The more important restrictions imposed to the simulation has bee: stationary state and no interaction between the solar chimney and the atmosphere. The results shows a discrepancy between the theory and experimental data, because the conditions employed on the simulation. The solar chimney has a concrete wall with thermal inertia, that is not represented on the simulation because the stationary state. It is necessary to research on more detailed dynamic studies using CDF, in order to obtain the energetic performance of a solar chimney with thermal inertia. (Author)

  17. Potentiation of sprint cycling performance: the effects of a high-inertia ergometer warm-up.

    Science.gov (United States)

    Munro, Lynne A; Stannard, Stephen R; Fink, Philip W; Foskett, Andrew

    2017-07-01

    Participant and protocol factors affect post-activation potentiation response. Performance enhancement is more consistent in highly-trained participants following multiple sets of a biomechanically similar conditioning activity. Providing optimal conditions, 6 international-level sprint cyclists executed multiple sets of short maximal conditioning contractions on a high-inertia ergometer before metered sprint performance. Three trial conditions were completed on separate days after a standardised warm-up: dynamic (DYN: 4 × 4 crank-cycles), isometric (ISO: 4 × 5-sec maximal voluntary contraction (MVC)), and control (CON: rest). Performance was measured from standing start to maximum velocity on an inertial-load ergometer at baseline (Pre), 4 (Post4), 8 (Post8) and 16 (Post16) min post-conditioning. Performance and biomechanical measures were assessed across 4 sprint segments, with magnitude-based inferences used to assess the likelihood that any affect was beneficial. Performance time only improved in DYN Post4, a 3.9% reduction during the first crank cycle (92% likely). On the ascending limb of the power-cadence relationship, peak torque and average power increased by 6.2% (94% likely) and 4.0% (87% likely), respectively. In ISOPost16, optimal cadence increased (82% likely) and average power improved over the descending limb (76% likely). DYN and ISO potentiated extremities of the torque-cadence relationship at distinct recovery times post-conditioning. This study suggests merit in including a high-inertia warm-up for sprint cycling.

  18. Dynamic model tracking design for low inertia, high speed permanent magnet ac motors.

    Science.gov (United States)

    Stewart, P; Kadirkamanathan, V

    2004-01-01

    Permanent magnet ac (PMAC) motors have existed in various configurations for many years. The advent of rare-earth magnets and their associated highly elevated levels of magnetic flux makes the permanent magnet motor attractive for many high performance applications from computer disk drives to all electric racing cars. The use of batteries as a prime storage element carries a cost penalty in terms of the unladen weight of the vehicle. Minimizing this cost function requires the minimum electric motor size and weight to be specified, while still retaining acceptable levels of output torque. This tradeoff can be achieved by applying a technique known as flux weakening which will be investigated in this paper. The technique allows the speed range of a PMAC motor to be greatly increased, giving a constant power range of more than 4:1. A dynamic model reference controller is presented which has advantages in ease of implementation, and is particularly suited to dynamic low inertia applications such as clutchless gear changing in high performance electric vehicles. The benefits of this approach are to maximize the torque speed envelope of the motor, particularly advantageous when considering low inertia operation. The controller is examined experimentally, confirming the predicted performance.

  19. Observation of high-spin bands with large moments of inertia in 124Xe

    Science.gov (United States)

    Nag, Somnath; Singh, A. K.; Hagemann, G. B.; Sletten, G.; Herskind, B.; Døssing, T.; Ragnarsson, I.; Hübel, H.; Bürger, A.; Chmel, S.; Wilson, A. N.; Rogers, J.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Zhu, S.; Korichi, A.; Stefanova, E. A.; Fallon, P.; Nyakó, B. M.; Timár, J.; Juhász, K.

    2016-09-01

    High-spin states in 124Xe have been populated using the 80Se(48Ca,4 n ) reaction at a beam energy of 207 MeV and high-multiplicity, γ -ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin bands with large moments of inertia, similar to those observed in neighboring nuclei, have been observed. The experimental results are compared with calculations within the framework of the cranked Nilsson-Strutinsky model. It is suggested that the configurations of the bands involve excitations of protons across the Z =50 shell gap coupled to neutrons within the N =50 -82 shell or excited across the N =82 shell closure.

  20. Experimental investigation of thermal inertia properties in hemp-lime concrete walls

    OpenAIRE

    Kinnane, Oliver; McGranaghan, G.; Walker, R; S. Pavia; Byrne, G.; Robinson, A.

    2015-01-01

    Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not ge...

  1. On the thermal inertia and time constant of single-family houses

    Energy Technology Data Exchange (ETDEWEB)

    Hedbrant, J.

    2001-08-01

    Since the 1970s, electricity has become a common heating source in Swedish single-family houses. About one million small houses can use electricity for heating, about 600.000 have electricity as the only heating source, A liberalised European electricity market would most likely raise the Swedish electricity prices during daytime on weekdays and lower it at other times. In the long run, electrical heating of houses would be replaced by fuels, but in the shorter perspective, other strategies may be considered. This report evaluates the use of electricity for heating a dwelling, or part of it, at night when both the demand and the price are low. The stored heat is utilised in the daytime some hours later, when the electricity price is high. Essential for heat storage is the thermal time constant. The report gives a simple theoretical framework for the calculation of the time constant for a single-family house with furniture. Furthermore the comfort time constant, that is, the time for a house to cool down from a maximum to a minimum acceptable temperature, is derived. Two theoretical model houses are calculated, and the results are compared to data from empirical studies in three inhabited test houses. The results show that it was possible to store about 8 kWh/K in a house from the seventies and about 5 kWh/K in a house from the eighties. The time constants were 34 h and 53 h, respectively. During winter conditions with 0 deg C outdoor, the 'comfort' time constants with maximum and minimum indoor temperatures of 23 and 20 deg C were 6 h and 10 h. The results indicate that the maximum load-shifting potential of an average single family house is about 1 kw during 16 daytime hours shifted into 2 kw during 8 night hours. Upscaled to the one million Swedish single-family houses that can use electricity as a heating source, the maximum potential is 1000 MW daytime time-shifted into 2000 MW at night.

  2. Thermal inertia and radiating average Temperature. A brief analysis of some causes of discomfort; Inercia Termica y Temperatura media radiante. Un breve analisis de algunas causas de disconfort

    Energy Technology Data Exchange (ETDEWEB)

    Arroba, M.

    2008-07-01

    Radiant average temperature in walls is as important as dry air temperature to achieve thermal comfort of users of a local. An excessive discrepancy between these levels, or an asymmetric distribution of the surface temperature of fences, may cause localized thermal discomfort, an effect impossible to compensate by rising dry air temperature. Thermal inertia and its concentration must be properly studied in order to handle this parameters, inside or outside the building, on both sides of the cladding or none depending on the weather, the bio climatic strategies used, heating and air conditioning systems and planned use of the building. (Author)

  3. Workspace Limiting Strategy for 6 DOF Force Controlled PKMs Manipulating High Inertia Objects

    Directory of Open Access Journals (Sweden)

    Francesco La Mura

    2018-02-01

    Full Text Available This article describes an efficient and effective strategy for limiting the workspace of a six degrees of freedom parallel manipulator, with challenging motion smoothness requirements due to both the high inertia objects carried by the end effector and the pose references coming from a force feedback loop. Firstly, a suitable formulation of the workspace is studied, distinguishing between different conventions and procedures. Thereafter a discrete and analytical formulation of the workspace is obtained and developed in order to suit this application. Having obtained the limits, a methodology to evaluate the robot pose is discussed, taking into account the reference pose buffering technique and the real time pose estimation through the numeric solution of the nonlinear forward kinematics equations. The safety algorithm designed checks the actual robot pose and future poses to be commanded, and takes control of the reference pose generation process, if an exit of the safety workspace is detected. The result obtained is a soft compliant surface within which the robot is free to move, but outside of which a “force field” pushes the robot end-effector to return smoothly. To reach this objective, the control deflects the end effector trajectory safely and smoothly and moves it back to within the workspace limits. Nevertheless, this preserves the continuity of the velocity and controls the acceleration, to avoid dangerous vibrations and shocks. Simulation and experimental result tests are conducted to verify the algorithm effectiveness and the efficient implementation.

  4. Thermal Inertia Performance Evaluation of Light-Weighted Construction Space Envelopes Using Phase Change Materials in Mexico City’s Climate

    Directory of Open Access Journals (Sweden)

    Adriana Lira-Oliver

    2017-10-01

    Full Text Available The present study’s main objective was to determine the applicability of organic phase change materials (PCMs in a building’s envelope construction system for the passive provision of comfortable indoor thermal conditions over one year based on thermal inertia in Mexico City. Research on PCMs relate mainly to their use in building envelope construction systems to reduce energy consumption for mechanical indoor thermal conditioning—not in passive systems. Computer simulation results of mean indoor temperature variations are presented with the objective of evaluating these construction systems’ thermal inertia properties. In the present study, dynamic thermal simulations (DTS, using EnergyPlus software, of ten 1 m3 test units with envelope construction systems combining organic PCMs of different fusion temperatures with conventional materials were performed. Based on the results, it is concluded that the implementation of organic PCMs with a fusion temperature around 25 °C in combination with aerated concrete in a space envelope results in the highest number of hours the indoor temperatures remain within the comfort range throughout a typical year, due to the decrement of indoor temperature oscillations and, to a large extent, to thermal lag.

  5. Non-compliance and inertia in hypertensive Spaniards at high cardiovascular risk: CUMPLE study.

    Science.gov (United States)

    Márquez-Contreras, Emilio; Gil-Guillén, Vicente F; De La Figuera-Von Wichmann, Mariano; Franch-Nadal, Josep; Llisterri-Caro, Jose Luis; Martell-Claros, Nieves; Martin-De Pablos, José Luis; Casado-Martinez, José Joaquin; Bertomeu-Gonzalez, Vicente; Pertusa Martínez, Salvador; Carratalá-Munuera, Concepción; Orozco-Beltrán, Domingo; Lopez-Pineda, Adriana

    2014-01-01

    To assess non-compliance (NC) and therapeutic inertia (TI) after 6 months of follow-up in hypertensive patients with poorly controlled blood pressure and high cardiovascular risk. Longitudinal, multicentre study; 3900 uncontrolled hypertensive patients were recruited from 585 primary healthcare centres. Tablets were counted during visits at baseline, 1, 3 and 6 months. A tablet count between 80-100% was considered as compliant. Multivariate logistic regression was performed to determine variables associated with NC and TI. A total of 3636 patients completed, mean age was 64.8 (SD 10.8) years, 53.7% being male. After one month, 61.8% (60.2-63.4) had uncontrolled blood pressure, 39.5% (37.9-41.1) were NC and 52.3% (50.2-54.4) had TI. At the end of follow-up, uncontrolled blood pressure was 34.6% (33.1-36.1) (p < 0.05), NC was 46.8% (45.2-48.4) (p < 0.05) and TI was 34.2% (31.6-36.8) (p < 0.05). The variable associated with NC was greatest number of antihypertensive treatments (OR 1.09, 95% CI 1.05-1.13, p < 0.001), and variables associated with TI were least number of antihypertensive drugs (OR 0.88, 95% CI 0.84-0.98, p < 0.001) and least number of diseases suffered (OR 0.95, 95% CI 0.92-0.98, p = 0.002). Due to the complexity of measuring compliance, we have to assume measurement bias. Among uncontrolled hypertensive patients, after completing 6 months follow-up, approximately one out of two patients were NC and one out of three physicians committed TI.

  6. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  7. Highly Thermal Conductive Nanocomposites

    Science.gov (United States)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2017-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  8. Proactive control for solar energy exploitation : A german high-inertia building case study

    NARCIS (Netherlands)

    Michailidis, IT; Baldi, S.; Pichler, MF; Kosmatopoulos, EB; Santiago, JR

    2015-01-01

    Energy efficient passive designs and constructions have been extensively studied in the last decades as a way to improve the ability of a building to store thermal energy, increase its thermal mass, increase passive insulation and reduce heat losses. However, many studies show that passive thermal

  9. The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1

    Science.gov (United States)

    Groussin, O.; Sunshine, J. M.; Feaga, L. M.; Jorda, L.; Thomas, P. C.; Li, J.-Y.; A'Hearn, M. F.; Belton, M. J. S.; Besse, S.; Carcich, B.; Farnham, T. L.; Hampton, D.; Klaasen, K.; Lisse, C.; Merlin, F.; Protopapa, S.

    2013-02-01

    The Deep Impact spacecraft flew by Comet 103P/Hartley 2 on November 4th, 2010 (EPOXI mission) and Comet 9P/Tempel 1 on July 4th, 2005 (Deep Impact mission). During the two flybys, spatially resolved infrared (1.05-4.8 μm) spectra of the surface of the nucleus were acquired by the HRI-IR instrument. The analysis of these two data sets, obtained by the same instrument, offers a unique opportunity to understand, compare and contrast the surface thermal properties of these two comets. For this paper, we use spectral cubes with a spatial resolution of 30 m/pixel to 40 m/pixel for Hartley 2 and 160 m/pixel for Tempel 1. We focus our analysis on the color, temperature, thermal inertia and roughness of the nucleus. The two comets have the same color, moderately red, with an average slope of 3.0 ± 0.9% per kÅ to 3.5 ± 1.1% per kÅ. There are very small variations of the color across the surface, except for regions with water ice that are neutral to blue, and two dark spots with redder (4.5 ± 1.4% per kÅ) materials on Hartley 2. The nucleus thermal emission at all resolved spatial scales differs from that of a gray body with an infrared emissivity of 0.9-1.0, the discrepancy being more important for larger incidence angles. Moreover, the color temperature of Comets Hartley 2 and Tempel 1 is relatively homogeneous across the surface and does not vary strongly with incidence angle. These two effects mainly result from surface roughness and associated projected shadows. From the temperature rise on the morning terminator, we derive a thermal inertia lower than 250 W/K/m2/s1/2 for Hartley 2 and lower than 45 W/K/m2/s1/2 for Tempel 1 (3σ upper limits). For Hartley 2 and Tempel 1, the temperature of the regions with exposed water ice is more than 100 K above the sublimation temperature of water ice (˜200 K). This observation indicates that the thermal emission is dominated by dust, and that water ice is not intimately mixed with dust at the scale of observation, with water

  10. High Performance Flexible Thermal Link

    Science.gov (United States)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  11. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems

    DEFF Research Database (Denmark)

    Zhu, Jiebei; Guerrero, Josep M.; Hung, William

    2014-01-01

    A generic Inertia Emulation Controller (INEC) scheme for Multi-Terminal Voltage-Source-Converter based HVDC (VSC-MTDC) systems is proposed and presented in this paper. The proposed INEC can be incorporated in any Grid-side Voltage-Source-Converter (GVSC) station, allowing the MTDC terminal to con...

  12. Jet propulsion without inertia

    CERN Document Server

    Spagnolie, Saverio E

    2010-01-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increas...

  13. High-G Thermal Characterization Centrifuge

    Data.gov (United States)

    Federal Laboratory Consortium — High-G testing of thermal components enables improved understanding of operating behavior under military-relevant environments. The High-G Thermal Characterization...

  14. High Torque-to-Inertia Servo System for Stabilizing Sensor Systems. Candidate Systems Include Missile Guidance, Surveillance, and Tracking

    Science.gov (United States)

    1980-04-01

    functions and variables in figure 5: T l (s) is Sensor Transfer function *T2 (s) is Torque Source - Servo Drive/Load Inertia transfer function T3 (s...I. BLOCK DIAGRAMS B CURRENT DRIVE VERSION RN KE LS+R T - VOTANER FUNCIONS XR AKT KTN To (JSD(a+ I(a+a+ ~(JSD+ 2 ET~S+) XR T__ AK N/LJ LaJTT raS+ )(DLa...algorithm was implemented in FORTRAN. In the implementation, , , the names of the variables correspond to the variables used in this write- up (eg, ZETA

  15. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  16. Implementation and validation of synthetic inertia support employing series produced electric vehicles

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Martinenas, Sergejus; Zecchino, Antonio

    2017-01-01

    The high integration of renewable energy resources (inverter connected) replacing conventional generation reduces the available rotational inertia in the power system. This introduces the need for faster regulation services including synthetic inertia services. These services could potentially...... be provided by electric vehicles due to their fast response capability. This work evaluates and experimentally shows the capability and limits of EVs in providing synthetic inertia services. Three series produced EVs are used during the experiment. The results show the performance of the EVs in providing...... synthetic inertia. It shows also that, on the contrary of synchronous inertia, synthetic inertia might lead to unstable frequency behavior....

  17. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  18. Experimental investigation and performance analysis of inertia properties measurement for heavy truck cab

    Directory of Open Access Journals (Sweden)

    Tianjun Zhu

    2015-11-01

    Full Text Available An experimental investigation and performance analysis of inertia properties measurement for heavy truck cab is presented. This method is specifically intended for measuring the inertia properties of irregular rigid bodies, and it has the potential to be applied to the measurement of the inertia properties of vehicle bodies, such as the cab, engine, and gearbox. This article, based on CATARC moment of inertia measurement system test rig, develops an accurate measuring method to identify inertia parameters of heavy truck cab. First, corresponding tests are carried out, and the lever principle and moments of inertia parallel theorem are employed to calculate and analyse the test results, which leads to the accurate value of inertia parameters. Second, the performance analysis of the proposed method is verified through the measurement error analysis. As a result, the proposed method shows high accuracy, which provides an experimental basis for accurate inertia parameter measurement of heavy truck cab.

  19. Feasibility of the Application of Moment Of Inertia as a Feature to Study High-Frequency Bands in Brain Signals

    Directory of Open Access Journals (Sweden)

    Seyed Ali Shafiei

    2016-09-01

    Full Text Available Introduction Many features, emerging from mathematical techniques, have been used in the analysis of brain signals. In this study, the physical quantity of “moment of inertia” (MOI was introduced as a feature to enhance high-frequency waves (HFWs in electroencephalography (EEG. Materials and Methods In this research, the recorded EEGs from F3, F4, and Cz points in 20 males were used. A total of 30 noiseless epochs (4 sec with a 1 sec overlap were selected for each eyes-open and eyes-closed state from each brain signal. After averaging the relative power spectrum (RPS of 30 epochs and obtaining an RPS with low fluctuation, the MOIs of the power spectrum and each EEG band were calculated. Results The MOI enhanced the HFWs of brain signals; therefore, HFW fluctuations in the power spectrum of MOI were more evaluable and observable than those of RPS. Paired t-test showed no significant difference in the asymmetry of MOI between the eyes-open and eyes-closed states (P=0.227, while the MOIs of alpha and beta bands between these two states were significantly different [F(1, 38=11.8; P=0.001 and F(1, 38=12.9; P=0.001, respectively]. Conclusion This study demonstrated that the MOI of different frequency bands might be used as a feature for some patients who are different from healthy subjects in terms of high-frequency bands or performance of two hemispheres. Therefore, in order to ensure the applicability of the obtained results, evaluation of MOI for EEG of some disorders, such as attention-deficit hyperactivity disorder, alcoholism, and autism is suggested in future studies.

  20. Dynamic Inertia Measurement Method Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Critically important inertia measurements are complex and expensive to obtain due to the extensive fixturing and custom instrumentation of conventional...

  1. High Temperature Fiberoptic Thermal Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  2. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  3. Measuring nanowire thermal conductivity at high temperatures

    Science.gov (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan

    2018-02-01

    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  4. Thermal conductivity of iron at high pressures

    Science.gov (United States)

    Suehiro, S.; Ohta, K.; Yagi, T.; Hirose, K.

    2016-12-01

    Earth generates and preserves a dipole magnetic field by self-sustained dynamo action in its liquid outer core for geologic timescale. Secular cooling of the core induces growth of the solid inner core that contributes additional buoyant source for the core convection. The electrical and thermal conductivities of core are fundamental physical parameters for knowing the dynamics inside the Earth. Direct measurements of the electrical and thermal conductivities of iron (Fe) at the Earth's core conditions have been recently reported (Konôpková et al., 2016; Ohta et al., 2016). Measurements of Fe thermal conductivity at the core conditions suggested thermal conductivity of the outer core was 18-32 W/m/K (Konôpková et al., 2016). On the other hand, Ohta et al. (2016) experimentally determined electrical conductivity of Fe at the core conditions, and estimated the core conductivity to be 75-117 W/m/K from obtained electrical conductivity and Wiedemann-Franz relation (κ = σLT; κ: thermal conductivity, σ: electrical conductivity, L: Lorenz number, T: absolute temperature) with ideal Lorenz number. Such large discrepancy in the estimated core thermal conductivity throw doubt on the validity of the Wiedemann-Franz relation at extremely high P-T conditions. In this study, we performed thermal conductivity measurements on Fe up to 130 GPa at room temperature in a diamond anvil cell using the pulsed light heating thermoreflectance technique (Ohta et al., 2012). The obtained thermal conductivity of Fe is in good agreement with calculated thermal conductivity via high-P/room-T Fe electrical conductivity and the Wiedemann-Franz law with constant Lorenz number up to around 50 GPa. However, the obtained thermal conductivity deviated downward from the calculated thermal conductivity profile above 50 GPa. Our results suggest pressure-dependent Lorenz number of Fe,which could be due to pressure- induced electronic topological transition in hcp Fe (Glazyrin et al., 2013). Kon

  5. Measuring the Moment of Inertia

    Science.gov (United States)

    Lehmberg, George L.

    1978-01-01

    Two physics experiments are described, One, involving a laboratory cart accelerated along a level surface, examines the concept of inertial mass in translation and the other, using a solid cylinder, measures the moment of inertia of a wheel. Equations and illustrations are included. (MA)

  6. Inertia, Electromagnetism and Fluid Dynamics

    Science.gov (United States)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2008-01-01

    It is shown that the vector potential created by a charged particle in motion acts as an ideal space flow that surrounds the particle. The interaction between the particle and the entrained space flow gives rise to the observed properties of inertia and the relativistic increase of mass. Parallels are made between the inertia property of matter, electromagnetism and the hydrodynamic drag in potential flow. Accordingly, in this framework the non resistance of a particle in uniform motion through an ideal fluid (Paradox of Dirichlet) corresponds to Newton's first law. The law of inertia suggests that the physical vacuum can be modeled as an ideal fluid. It is shown that the force exerted on a particle by an ideal fluid produces two effects: i) resistance to acceleration and, ii) an increase of mass with velocity which is due to the fluid dragged by the particle, where the bare mass of the particle at rest changes when in motion ("dressed" particle). From this theoretical ground, the inertia property of matter appears in a new light representing a promising avenue to create new propulsion concepts.

  7. Thermal studies of Martian channels and valleys using Termoskan data: New results

    Science.gov (United States)

    Betts, B. H.; Murray, B. C.

    1993-01-01

    The Termoskan instrument onboard the Phobos '88 spacecraft acquired the highest-spatial-resolution thermal data ever obtained for Mars. Included in the thermal images are 2 km/pixel midday observations of several major channel and valley systems, including significant portions of Shalbatana Vallis, Ravi Vallis, Al-Qahira Vallis, Ma'adim Vallis, the channel connecting Valles Marineris with Hydraotes Chaos, and channel material in Eos Chasma. Termoskan also observed small portions of the southern beginnings of Simud, Tiu, and Ares Valles and some channel material in Gangis Chasma. Simultaneous broad band visible data were obtained for all but Ma'adim Vallis. We find that most of the channels and valleys have higher inertias than their surroundings, consistent with Viking IRTM-based thermal studies of Martian channels. We see for the first time that thermal inertia boundaries closely match all flat channel floor boundaries. Combining Termoskan thermal data, relative observations from Termoskan visible channel data, Viking absolute bolometric albedos, and a thermal model of the Mars surface, we have derived lower bounds on channel thermal inertias. Lower bounds on typical channel thermal inertias range from 8.4 to 12.5 (10(exp -3) cal cm(exp -2) s(exp -1/2)K(exp -1)) (352 to 523 in SI units). Lower bounds on inertia differences with the surrounding heavily cratered plains range from 1.1 to 3.5 (46 to 147 in SI units). Atmospheric and geometric effects are not sufficient to cause the inertia enhancements. We agree with previous researchers that localized, dark, high inertia areas within channels are likely eolian in nature. However, the Temloskan data show that eolian deposits do not fill the channels, nor are they responsible for the overall thermal inertia enhancement. Thermal homogeneity and strong correlation of thermal boundaries with the channel floor boundaries lead us to favor noneolian overall explanations.

  8. High-Order Thermal Radiative Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Douglas Nelson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cleveland, Mathew Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wollaeger, Ryan Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warsa, James S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this research is to asses the sensitivity of the linearized thermal radiation transport equations to finite element order on unstructured meshes and to investigate the sensitivity of the nonlinear TRT equations due to evaluating the opacities and heat capacity at nodal temperatures in 2-D using high-order finite elements.

  9. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    Science.gov (United States)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  10. Caffeine gum minimizes sleep inertia.

    Science.gov (United States)

    Newman, Rachel A; Kamimori, Gary H; Wesensten, Nancy J; Picchioni, Dante; Balkin, Thomas J

    2013-02-01

    Naps are an effective strategy for maintaining alertness and cognitive performance; however, upon abrupt wakening from naps, sleep inertia (temporary performance degradation) may ensue. In the present study, attenuation of post-nap sleep inertia was attempted by administration of caffeine gum. Using a double-blind, placebo-controlled crossover design, 15 healthy, non-smoking adults were awakened at 1 hr. and again at 6 hr. after lights out (0100 and 0600, respectively) and were immediately administered a gum pellet containing 100 mg of caffeine or placebo. A 5-min. psychomotor vigilance task was administered at 0 min., 6 min., 12 min., and 18 min. post-awakening. At 0100, response speed with caffeine was significantly better at 12 min. and 18 min. post-awakening compared to placebo; at 0600, caffeine's effects were evident at 18 min. post-awakening. Caffeinated gum is a viable means of rapidly attenuating sleep inertia, suggesting that the adenosine receptor system is involved in sleep maintenance.

  11. Thermal fuse for high-temperature batteries

    Science.gov (United States)

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  12. Virtual Inertia: Current Trends and Future Directions

    National Research Council Canada - National Science Library

    Ujjwol Tamrakar; Dipesh Shrestha; Manisha Maharjan; Bishnu P. Bhattarai; Timothy M. Hansen; Reinaldo Tonkoski

    2017-01-01

    .... Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability...

  13. Admittance-type RC-mode Droop Control to Introduce Virtual Inertia in DC Microgrids

    DEFF Research Database (Denmark)

    Jin, Zheming; Meng, Lexuan; Han, Renke

    2017-01-01

    One of the major feature of DC microgrids is its high penetration of power electronic converters, as a result, the system inertia becomes a problem. In this paper, an admittance- type droop control with additional capability of introducing virtual inertia to the system. With the proposed method, ...

  14. High-thermal-gradient Superalloy Crystal Growth

    Science.gov (United States)

    Pearson, D. D.; Anton, D. L.; Giamei, A. F.

    1985-01-01

    Single, (001)-oriented crystals of PWA 1480 were processed in alumina/silica shell molds in a laboratory high gradient furnace. The furnace employs a graphite resistance heated element, a radiation baffle, and a water cooled radiation trap below the baffle. All crystals were grown in vacuum (10 torr) and all heat transfer was radiative. The element is constructed with a variable cross section that is tapered just above the baffle to maximize heat input and therefore thermal gradient. A maximum alloy temperature of 1600 C was used. A thermal gradient of 130 deg C/cm was recorded at 1370 C just above the solidus of the PWA 1480 alloys. Crystal bars with 14.4 and 17.5 mm diameters were grown in alumina/silica shell molds. Each crystal was started from a 1.6 mm pencil seed at a rate of 76 mm/hr and slowly accelerated to a rate of 200 mm/hr under computer control. Volume percent porosity and average pore size were measured as functions of distance in representative bars. Low cycle fatigue behavior and stress rupture properties were determined.

  15. Obstacles to Reasoning about Inertia in Different Contexts

    Science.gov (United States)

    Yerdelen-Damar, Sevda

    2015-01-01

    The present study investigated the underlying reasons for difficulties faced by students when they applied the concept of inertia across varying contexts. The participants of the study included five high school students. Data obtained from interviews were interpreted from the perspectives of the coordination class and epistemological framing…

  16. Optical Thermal Characterization Enables High-Performance Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  17. Thermally induced nonlinear mode coupling in high power fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas T.

    2013-01-01

    Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W.......Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W....

  18. Virtual inertia for variable speed wind turbines

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus

    2013-01-01

    Inertia provision for frequency control is among the ancillary services that different national grid codes will likely require to be provided by future wind turbines. The aim of this paper is analysing how the inertia response support from a variable speed wind turbine (VSWT) to the primary...... frequency control of a power system can be enhanced. Unlike fixed speed wind turbines, VSWTs do not inherently contribute to system inertia, as they are decoupled from the power system through electronic converters. Emphasis in this paper is on how to emulate VSWTs inertia using control of the power...... power with wind is also assessed and investigated. The intrinsic problems related to the implementation of virtual inertia are illustrated, addressing their origin in the action of pitch and power control. A solution is proposed, which aims at obtaining the same response as for the system with only...

  19. Frequency Stability Enhancement for Low Inertia Systems using Synthetic Inertia of Wind Power

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    stability, this paper proposes supplementary control methods to implement synthetic inertia for doubly-fed induction generator (DFIG) based wind energy system during frequency excursions. Different control strategies and activation schemes are analyzed and implemented on the Western Danish renewable......High-level integration of renewable energy sources in power system leads to the displacement of conventional generators and consequently challenges in power system frequency stability are introduced. To mitigate the negative impact of significant wind power penetration in the grid on the frequency...... provides the best dynamic response in term of the system frequency stability improvement....

  20. Enhancing The Extremely High Thermal Conduction of Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Xiuqiang eLi

    2013-10-01

    Full Text Available Graphene and Graphene nanoribbons (GNRs are found to have superior high thermal conductivity favorable for high-performance heat dissipation. In this letter, by using molecular dynamics simulations, we show that constructing specific structure can further enhance high thermal conduction of GNRs. By introducing a small gap at the center, the average heat flux (thermal conductivity can be enhanced by up to 23%, the corresponding increase in total heat current is 16%. This unusual thermal conduction enhancement is achieved by an intriguing physical mechanism of suppress phonon-phonon scattering. Our findings uncover new mechanism to increase thermal conduction of GNRs.

  1. Electroencephalographic sleep inertia of the awakening brain.

    Science.gov (United States)

    Marzano, C; Ferrara, M; Moroni, F; De Gennaro, L

    2011-03-10

    Sleep inertia (SI) denotes a period of hypovigilance, confusion and impaired cognitive and behavioral performance that immediately follows awakening. Based on the observation that the reactivation of some cortical areas is faster than other upon awakening, here we examined regional differences between presleep and postsleep waking period. Moreover, we also compared rapid eye movements (REM) and stage 2 non-rapid eye movements (NREM) awakenings in a within-subject design. Presleep and postsleep waking electroencephalogram (EEG; 5 min with eyes-closed and 5 min with eyes-open) of 18 healthy subjects (12 males, mean age=23.8±2.3 years) were recorded from 19 derivations. Participants slept for two consecutive nights in the laboratory. In one night they were awakened from stage 2 NREM, while in the other from REM sleep. EEG power spectra were calculated across the following bands: delta (1-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta-1 (13-16 Hz) and beta-2 (17-24 Hz). Moreover, a detailed hertz-by-hertz analysis has been repeated in the 2-4 Hz frequency range. Postsleep wakefulness, compared to presleep, is characterized by a generalized decrease of higher beta-1 and beta-2 EEG power over almost all scalp locations. A detailed analysis of topographical modifications in the low-frequency range showed that postsleep wakefulness is characterized by an increased delta activity in the posterior scalp locations, and by a concomitant frontal decrease compared to presleep. Moreover, it was found a prevalence of EEG power in the high frequency ranges (beta-1 and beta-2) upon awakening from stage 2 compared to REM awakenings over the left anterior derivations. Altogether these findings support the hypothesis that a generalized reduction in beta activity and increased delta activity in more posterior areas upon awakening may represent the EEG substratum of the sleep inertia phenomenon. Copyright © 2011 IBRO. All rights reserved.

  2. Emotional inertia prospectively predicts the onset of depressive disorder in adolescence.

    Science.gov (United States)

    Kuppens, Peter; Sheeber, Lisa B; Yap, Marie B H; Whittle, Sarah; Simmons, Julian G; Allen, Nicholas B

    2012-04-01

    Emotional inertia refers to the degree to which a person's current emotional state is predicted by their prior emotional state, reflecting how much it carries over from one moment to the next. Recently, in a cross-sectional study, we showed that high inertia is an important characteristic of the emotion dynamics observed in psychological maladjustment such as depression. In the present study, we examined whether emotional inertia prospectively predicts the onset of first-episode depression during adolescence. Emotional inertia was assessed in a sample of early adolescents (N = 165) based on second-to-second behavioral coding of videotaped naturalistic interactions with a parent. Greater inertia of both negative and positive emotional behaviors predicted the emergence of clinical depression 2.5 years later. The implications of these findings for the understanding of the etiology and early detection of depression are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  3. Moment of inertia in elliptical quantum dots

    Science.gov (United States)

    Serra, Llorenç; Puente, Antonio; Lipparini, Enrico

    The moment of inertia of deformed quantum dots and its experimental relevance in relation to the dot spectroscopic features is theoretically investigated. A strong link to the low-energy orbital current mode that manifests in the magnetic dipole (M1) spectrum is stressed. The moment of inertia is obtained by solving the cranked Kohn-Sham equations within the local-spin-density approximation and the results discussed in comparison with the predictions of an analytical non-interacting model. The results as a function of deformation and size indicate that the existence of spin transitions in the dot ground state has an important effect on the moment of inertia.

  4. A Reevaluation of the Attentional Inertia Concept

    NARCIS (Netherlands)

    W.J.M.I. Verbeke (Willem)

    1992-01-01

    textabstractAnderson's (1983) theory about children's attention behavior during television viewing hypothesizes that attention behavior is affected by positive feedback (the inertia hypothesis) and the degree to which a child understands the television program. During an experiment, neither

  5. Variational approach to the moment of inertia

    Energy Technology Data Exchange (ETDEWEB)

    Stringari, S.; Lipparini, E.

    1980-08-01

    We derive an approximate expression for the moment of inertia theta in the framework of the cranked Hartree-Fock theory. Our method allows for a detailed study of the role of spin-orbit and two-body nuclear potentials. In particular it is shown that in /sup 20/Ne the two-body interaction lowers by 30% the rigid value of theta. The irrotational and rigid values for the moment of inertia are obtained as special cases of the present approach.

  6. Sleep Inertia and On-Call Readiness

    Science.gov (United States)

    2000-03-01

    effects of polyphasic & M.J. Colligan (Eds.), New York, and ultrashort sleep schedules. In: Why Spectrum, pp. 553-580. we nap, Evolution, Chronobiology...and Naitoh, P., Kelly, T., & Babkoff, H. (1993) Functions of Polyphasic and Ultrashort Sleep inertia, best time not to wake up? Sleep , C. Stampi Editor...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010467 TITLE: Sleep Inertia and On-Call Readiness DISTRIBUTION: Approved

  7. Osteopathic manipulative treatment for colonic inertia.

    Science.gov (United States)

    Cohen-Lewe, Adam

    2013-03-01

    Surgical treatment options for patients with colonic inertia are costly and do not always relieve the pain associated with the condition. The author describes a case of a 41-year-old woman with colonic inertia who received osteopathic manipulative treatment targeted at the neuromusculoskeletal and gastrointestinal systems. The patient reported temporary improvement in pain and bowel function without pharmacotherapy or surgical intervention. Osteopathic manipulative treatment should be considered in patients with visceral as well as neuromusculoskeletal symptoms.

  8. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites.

    Science.gov (United States)

    Firkowska, Izabela; Boden, André; Boerner, Benji; Reich, Stephanie

    2015-07-08

    We developed a nanocomposite with highly aligned graphite platelets in a copper matrix. Spark plasma sintering ensured an excellent copper-graphite interface for transmitting heat and stress. The resulting composite has superior thermal conductivity (500 W m(-1) K(-1), 140% of copper), which is in excellent agreement with modeling based on the effective medium approximation. The thermal expansion perpendicular to the graphite platelets drops dramatically from ∼20 ppm K(-1) for graphite and copper separately to 2 ppm K(-1) for the combined structure. We show that this originates from the layered, highly anisotropic structure of graphite combined with residual stress under ambient conditions, that is, strain-engineering of the thermal expansion. Combining excellent thermal conductivity with ultralow thermal expansion results in ideal materials for heat sinks and other devices for thermal management.

  9. DEVELOPMENT OF HIGH THERMAL CONDUCTIVITY ELECTRICAL EMBEDDING COMPOUNDS.

    Science.gov (United States)

    This report describes the development of high thermal conductivity electrical embedding compounds utilizing a technique wherein the mold is first...Contained herein, are the pertinent results of a previously reported study which led to the development of three high thermal conductivity compounds...and the further development of several additional compounds with still higher conductivities. (Author)

  10. High performance UV and thermal cure hybrid epoxy adhesive

    Science.gov (United States)

    Chen, C. F.; Iwasaki, S.; Kanari, M.; Li, B.; Wang, C.; Lu, D. Q.

    2017-06-01

    New type one component UV and thermal curable hybrid epoxy adhesive was successfully developed. The hybrid epoxy adhesive is complete initiator free composition. Neither photo-initiator nor thermal initiator is contained. The hybrid adhesive is mainly composed of special designed liquid bismaleimide, partially acrylated epoxy resin, acrylic monomer, epoxy resin and latent curing agent. Its UV light and thermal cure behavior was studied by FT-IR spectroscopy and FT-Raman spectroscopy. Adhesive samples cured at UV only, thermal only and UV + thermal cure conditions were investigated. By calculated conversion rate of double bond in both acrylic component and maleimide compound, satisfactory light curability of the hybrid epoxy adhesive was confirmed quantitatively. The investigation results also showed that its UV cure components, acrylic and bismalimide, possess good thermal curability too. The initiator free hybrid epoxy adhesive showed satisfactory UV curability, good thermal curability and high adhesion performance.

  11. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  12. Microbial Biosignatures in High Iron Thermal Springs

    Science.gov (United States)

    Parenteau, M. N.; Embaye, T.; Jahnke, L. L.; Cady, S. L.

    2003-12-01

    The emerging anoxic source waters at Chocolate Pots hot springs in Yellowstone National Park contain 2.6 to 11.2 mg/L Fe(II) and are 51-54° C and pH 5.5-6.0. These waters flow down the accumulating iron deposits and over three major phototrophic mat communities: Synechococcus/Chloroflexus at 51-54° C, Pseudanabaena at 51-54° C, and a narrow Oscillatoria at 36-45° C. We are assessing the contribution of the phototrophs to biosignature formation in this high iron system. These biosignatures can be used to assess the biological contribution to ancient iron deposits on Earth (e.g. Precambrian Banded Iron Formations) and, potentially, to those found on Mars. Most studies to date have focused on chemotrophic iron-oxidizing communities; however, recent research has demonstrated that phototrophs have a significant physiological impact on these iron thermal springs (Pierson et al. 1999, Pierson and Parenteau 2000, and Trouwborst et al., 2003). We completed a survey of the microfossils, biominerals, biofabrics, and lipid biomarkers in the phototrophic mats and stromatolitic iron deposits using scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectrometry (EDS), powder X-ray diffraction (XRD), and gas chromatography-mass spectroscopy (GC-MS). The Synechococcus/Chloroflexus mat was heavily encrusted with iron silicates while the narrow Oscillatoria mat was encrusted primarily with iron oxides. Encrustation of the cells increased with depth in the mats. Amorphous 2-line ferrihydrite is the primary precipitate in the spring and the only iron oxide mineral associated with the mats. Goethite, hematite, and siderite were detected in dry sediment samples on the face of the main iron deposit. Analysis of polar lipid fatty acid methyl esters (FAME) generated a suite of lipid biomarkers. The Synechococcus/Chloroflexus mat contained two mono-unsaturated isomers of n-C18:1 with smaller amounts of polyunsaturated n-C18:2, characteristic of cyanobacteria

  13. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-12-01

    This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.

  14. Vesta surface thermal properties map

    Science.gov (United States)

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  15. Thermal-Mechanical and Thermal Behavior of High-Temperature Structural Materials.

    Science.gov (United States)

    1979-12-31

    Physical Constants of Porcelain ," Nagoya Kogyo Gijutsu Shikensko Hokoku, 8 [5] 37-43 (1959); Ceram. Abstracts, 1959, Nov. p. 287a. 6. F. P. Knudsen...engineering materials appropriate for conditions which require high thermal shock resistance in combination with good thermal insulating ability"C. Finally

  16. Extremely High Thermal Conductivity of Graphene: Experimental Study

    OpenAIRE

    Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.

    2008-01-01

    We report on the first measurement of the thermal conductivity of a suspended single layer graphene. The measurements were performed using a non-contact optical technique. The near room-temperature values of the thermal conductivity in the range ~ 4840 to 5300 W/mK were extracted for a single-layer graphene. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction.

  17. A biomimic thermal fabric with high moisture permeability

    OpenAIRE

    Fan Jie; Cheng Qian; Zhao Lian-Ying; Liu Yong; Ma Chong-Qi

    2013-01-01

    Moisture comfort is an essential factor for functional property of thermal cloth, especially for thick thermal cloth, since thick cloth may hinder effective moisture permeation, and high moisture concentration in the micro-climate between skin and fabric would cause cold feeling. Here, we report a biomimic thermal fabric with excellent warm retention and moisture management properties. In this fabric, the warp yarn system constructs many tree-shaped channel...

  18. Heat conductivity of high-temperature thermal insulators

    Science.gov (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  19. Planning thermal radiation experiments at high flux. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Knasel, M.; Houghton, A.J.; Sievers, R.H.; Gordon, B.A.; McDonnell, M.D.

    1981-10-27

    This report covers analyses; experimentation; equipment design and fabrication; instrumentation design, selection, fabrication, and tests; and recording-equipment selection in preparation for high-thermal-flux experiments on soil surfaces. The reported effort is preparatory to a continuing program to obtain empirical data and examine parametric relationships on the response of different surfaces and the formation of an overlying thermal and dust layer resulting from the thermal pulse of a nuclear weapon.

  20. Impact of Low Rotational Inertia on Power System Stability and Operation

    OpenAIRE

    Ulbig, Andreas; Borsche, Theodor S.; Andersson, Göran

    2013-01-01

    Large-scale deployment of RES has led to significant generation shares of variable RES in power systems worldwide. RES units, notably inverter-connected wind turbines and PV that as such do not provide rotational inertia, are effectively displacing conventional generators and their rotating machinery. The traditional assumption that grid inertia is sufficiently high with only small variations over time is thus not valid for power systems with high RES shares. This has implications for frequen...

  1. A biomimic thermal fabric with high moisture permeability

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2013-01-01

    Full Text Available Moisture comfort is an essential factor for functional property of thermal cloth, especially for thick thermal cloth, since thick cloth may hinder effective moisture permeation, and high moisture concentration in the micro-climate between skin and fabric would cause cold feeling. Here, we report a biomimic thermal fabric with excellent warm retention and moisture management properties. In this fabric, the warp yarn system constructs many tree-shaped channel nets in the thickness direction of the fabric. Experimental result indicates that the special hierarchic configuration of warp yarns endows the biomimic thermal fabric with a better warm retention and water vapor management properties compared with the traditional fabrics.

  2. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou

    2015-09-01

    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  3. Virtual Inertia: Current Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Ujjwol Tamrakar

    2017-06-01

    Full Text Available The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems.

  4. Daytime sleep inertia in narcolepsy-cataplexy.

    Science.gov (United States)

    Mullington, J; Broughton, R

    1994-02-01

    Eight volunteers with narcolepsy-cataplexy participated in a study of scheduled naps and performance. Sleep inertia was examined following five "short" naps of 5% and a single "long" nap of 25% of total 24-hour sleep time as determined by prior sleep log data. Contrary to some subjective reports, short naps (mean duration of just under 30 minutes) were accompanied by sleep inertia in narcoleptics. As measured by the descending subtraction task, this sleep inertia was at times quite prolonged and lasted 20 minutes after waking from midday short naps, which ended on average at 1555 hours. In addition, sleep inertia, as measured by both the descending subtraction task and the four-choice reaction-time test, was evident throughout both afternoon and evening short naps; however, it was completely absent from reaction-time test results immediately following the single long nap, which ended on average at 1640 hours. Sleep inertia was maximum after slow-wave sleep arousals and was minimal or absent following the first short nap, which also contained the highest amount of rapid eye movement sleep of all naps.

  5. Development and Validation of the Sleep Inertia Questionnaire (SIQ) and Assessment of Sleep Inertia in Analogue and Clinical Depression

    OpenAIRE

    Kanady, Jennifer C.; Harvey, Allison G.

    2015-01-01

    Sleep inertia is the transitional state from sleep to wake. Research on sleep inertia is important in depression because many people with depression report having difficulty getting out of bed, which contributes to impairment and can impede the implementation of interventions. The first aim was to develop and validate the first self-report measure of sleep inertia, the Sleep Inertia Questionnaire (SIQ). The second aim was to compare reports of sleep inertia across three groups: (1) No-to-Mild...

  6. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  7. Scan Quantum Mechanics: Quantum Inertia Stops Superposition

    CERN Document Server

    Gato-Rivera, Beatriz

    2015-01-01

    A novel interpretation of the quantum mechanical superposition is put forward. Quantum systems scan all possible available states and switch randomly and very rapidly among them. The longer they remain in a given state, the larger the probability of the system to be found in that state during a measurement. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia $I_q$ reaches a critical value $I_{cr}$ for an observable, the switching among the different eigenvalues of that observable stops and the corresponding superposition comes to an end. Consequently, increasing the mass, temperature, gravitational force, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. The process could be reversible decreasing the size, temperature, gravitational force, etc. leading to...

  8. Filament stretching rheometer: inertia compensation revisited

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...

  9. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  10. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel thermal interface material (TIM) that is based on an array of vertical carbon nanotubes (CNTs) for high heat flux applications. For...

  11. Thermal problems on high flux beam lines

    Science.gov (United States)

    Avery, Robert T.

    1984-05-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler beam line VI [1] now nearing operation will be able to provide up to ˜ 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 m from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2. Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2) and is comparable to that if welding torches. Clearly, cooling and configuration are of critical importance. Configurations for the first mask, the movable mask and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on the heating of crystals and mirrors is also presented. For the future, many additional intense wiggler/undulator beam lines are contemplated at several storage rings. The design of these beamlines would be enhanced by faster and more accurate computational techniques. LBL is developing a computer code which will be capable of giving photon power densities onto impinged surfaces for a wide range of source and beam line parameters. These include electron beam energy, current, emittance and orbit deviations; wiggler/undulator length, period and magnetic field; photon energy and angular distribution; reflection/absorption at intermediate impinged surfaces; defining apertures and focusing by mirrors. Three-dimensional computer programs for temperature, stress and strain have been available for some years, but "user friendly" versions are being sought. Other items to pursue are also suggested.

  12. High Thermal Conductivity Functionally Graded Heat Sinks for High Power Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase I program proposes the development of a high thermal conductivity (400 W/mK), low coefficient of thermal expansion (7-10 ppm/?K), and light...

  13. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  14. Experimental measurements of thermal properties of high-temperature refractory materials used for thermal energy storage

    Science.gov (United States)

    El-Leathy, Abdelrahman; Jeter, Sheldon; Al-Ansary, Hany; Abdel-Khalik, Said; Golob, Matthew; Danish, Syed Noman; Saeed, Rageh; Djajadiwinata, Eldwin; Al-Suhaibani, Zeyad

    2016-05-01

    This paper builds on studies conducted on thermal energy storage (TES) systems that were built as a part of the work performed for a DOE-funded SunShot project titled "High Temperature Falling Particle Receiver". In previous studies, two small-scale TES systems were constructed for measuring heat loss at high temperatures that are compatible with the falling particle receiver concept, both of which had shown very limited heat loss. Through the course of those studies, it became evident that there was a lack of information about the thermal performance of some of the insulating refractory materials used in the experiments at high temperatures, especially insulating firebrick and perlite concrete. This work focuses on determining the thermal conductivities of those materials at high temperatures. The apparatus consists of a prototype cylindrical TES bin built with the same wall construction used in previous studies. An electric heater is placed along the centerline of the bin, and thermocouples are used to measure temperature at the interfaces between all layers. Heat loss is measured across one of the layers whose thermal conductivity had already been well established using laboratory experiments. This value is used to deduce the thermal conductivity of other layers. Three interior temperature levels were considered; namely, 300°C, 500°C, and 700°C. Results show that the thermal conductivity of insulating firebrick remains low (approximately 0.22 W/m.K) at an average layer temperature as high as 640°C, but it was evident that the addition of mortar had an impact on its effective thermal conductivity. Results also show that the thermal conductivity of perlite concrete is very low, approximately 0.15 W/m.K at an average layer temperature of 360°C. This is evident by the large temperature drop that occurs across the perlite concrete layer. These results should be useful for future studies, especially those that focus on numerical modeling of TES bins.

  15. Cooperation is enhanced by inhomogeneous inertia in spatial prisoner's dilemma game

    Science.gov (United States)

    Chang, Shuhua; Zhang, Zhipeng; Wu, Yu'e.; Xie, Yunya

    2018-01-01

    Inertia is an important factor that cannot be ignored in the real world for some lazy individuals in the process of decision making. In this work, we introduce a simple classification mechanism of strategy changing in evolutionary prisoner's dilemma games on different topologies. In this model, a part of players update their strategies according to not only the payoff difference, but also the inertia factor, which makes nodes heterogeneous and the system inhomogeneous. Moreover, we also study the impact of the number of neighbors on the evolution of cooperation. The results show that the evolution of cooperation will be promoted to a high level when the inertia factor and the inhomogeneous system are combined. In addition, we find that the more neighbors one player has, the higher density of cooperators is sustained in the optimal position. This work could be conducive to understanding the emergence and persistence of cooperative behavior caused by the inertia factor in reality.

  16. Thermal management methods for compact high power LED arrays

    Science.gov (United States)

    Christensen, Adam; Ha, Minseok; Graham, Samuel

    2007-09-01

    The package and system level temperature distributions of a high power (>1W) light emitting diode (LED) array has been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. An analysis of thermal stresses and residual stresses in the die are also calculated based on power dissipation and convection heat transfer coefficients. Results show that the thermal stress in the GaN layer are compressive which can impact the band gap and performance of the LEDs.

  17. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction

    OpenAIRE

    Yehong Cheng; Shanbao Zhou; Ping Hu; Guangdong Zhao; Yongxia Li; Xinghong Zhang; Wenbo Han

    2017-01-01

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels? applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stab...

  18. Inertia effects in rheometrical flow systems

    NARCIS (Netherlands)

    Waterman, H.A.

    1976-01-01

    The flow field of a linear viscoelastic material in the orthogonal rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian liquid is included in this solution as a special case. The forces on the plates are readily

  19. Nonlinear Inertia Classification Model and Application

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2014-01-01

    Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

  20. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  1. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  2. Lightweight High-Temperature Thermal Insulation

    Science.gov (United States)

    Wagner, W. R.; Fasheh, J. I.

    1985-01-01

    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  3. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which can...

  4. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  5. High temperature latent heat thermal energy storage to augment solar thermal propulsion for microsatellites

    Science.gov (United States)

    Gilpin, Matthew R.

    Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling

  6. Thermal and electronic transport characteristics of highly stretchable graphene kirigami.

    Science.gov (United States)

    Mortazavi, Bohayra; Lherbier, Aurélien; Fan, Zheyong; Harju, Ari; Rabczuk, Timon; Charlier, Jean-Christophe

    2017-10-20

    For centuries, cutting and folding papers with special patterns have been used to build beautiful, flexible and complex three-dimensional structures. Inspired by the old idea of kirigami (paper cutting), and the outstanding properties of graphene, recently graphene kirigami structures were fabricated to enhance the stretchability of graphene. However, the possibility of further tuning the electronic and thermal transport along the 2D kirigami structures has remained original to investigate. We therefore performed extensive atomistic simulations to explore the electronic, heat and load transfer along various graphene kirigami structures. The mechanical response and thermal transport were explored using classical molecular dynamics simulations. We then used a real-space Kubo-Greenwood formalism to investigate the charge transport characteristics in graphene kirigami. Our results reveal that graphene kirigami structures present highly anisotropic thermal and electrical transport. Interestingly, we show the possibility of tuning the thermal conductivity of graphene by four orders of magnitude. Moreover, we discuss the engineering of kirigami patterns to further enhance their stretchability by more than 10 times as compared with pristine graphene. Our study not only provides a general understanding concerning the engineering of electronic, thermal and mechanical response of graphene, but more importantly can also be useful to guide future studies with respect to the synthesis of other 2D material kirigami structures, to reach highly flexible and stretchable nanostructures with finely tunable electronic and thermal properties.

  7. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high.

  8. Thermal modelling of various thermal barrier coatings in a high heat flux rocket engine

    Science.gov (United States)

    Nesbitt, James A.

    1989-01-01

    Traditional Air Plasma Sprayed (APS) ZrO2-Y2O3 Thermal Barrier Coatings (TBC's) and Low Pressure Plasma Sprayed (LPPS) ZrO2-Y2O3/Ni-Cr-Al-Y cermet coatings were tested in a H2/O2 rocked engine. The traditional ZrO2-Y2O3 (TBC's) showed considerable metal temperature reductions during testing in the hydrogen-rich environment. A thermal model was developed to predict the thermal response of the tubes with the various coatings. Good agreement was observed between predicted temperatures and measured temperatures at the inner wall of the tube and in the metal near the coating/metal interface. The thermal model was also used to examine the effect of the differences in the reported values of the thermal conductivity of plasma sprayed ZrO2-Y2O3 ceramic coatings, the effect of 100 micron (0.004 in.) thick metallic bond coat, the effect of tangential heat transfer around the tube, and the effect or radiation from the surface of the ceramic coating. It was shown that for the short duration testing in the rocket engine, the most important of these considerations was the effect of the uncertainty in the thermal conductivity of temperatures (greater than 100 C) predicted in the tube. The thermal model was also used to predict the thermal response of the coated rod in order to quantify the difference in the metal temperatures between the two substrate geometries and to explain the previously-observed increased life of coatings on rods over that on tubes. A thermal model was also developed to predict heat transfer to the leading edge of High Pressure Fuel Turbopump (HPFTP) blades during start-up of the space shuttle main engines. The ability of various TBC's to reduce metal temperatures during the two thermal excursions occurring on start-up was predicted. Temperature reductions of 150 to 470 C were predicted for 165 micron (0.0065 in.) coatings for the greater of the two thermal excursions.

  9. The effect of directional inertias added to pelvis and ankle on gait

    Science.gov (United States)

    2013-01-01

    Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML) direction to the pelvis. Methods We developed an experimental setup to apply inertia in forward backward and or sideways directions. In two experiments nine healthy subjects walked on a treadmill at 1.5 km/h and 4.5 km/h with no load and with AP loads of 0.3, 1.55 and 3.5 kg to the left ankle in the first experiment and combinations of AP and ML loads on the pelvis (AP loads 0.7, 4.3 and 10.2 kg; ML loads 0.6, 2.3 and 5.3 kg). We recorded metabolic rate, EMG of major leg muscles, gait parameters and kinematics. Results & discussion Adding 1.55 kg or more inertia to the ankle in AP direction increases the pelvis acceleration and decreases the foot acceleration in AP direction both at speeds of 4.5 km/h. Adding 3.5 kg of inertia to the ankle also increases the swing time as well as AP motions of the pelvis and head-arms-trunk (HAT) segment. Muscle activity remains largely unchanged. Adding 10.2 kg of inertia to the pelvis in AP direction causes a significant decrease of the pelvis and HAT segment motions, particularly at high speeds. Also the sagittal back flexion increases. Lower values of AP inertia and ML inertias up to 5.3 kg had negligible effect. In general the found effects are larger at high speeds. Conclusions We found that inertia up to 2 kg at the ankle or 6 kg added to the pelvis induced significant changes, but since these changes were all within the normal inter subject variability we considered these changes as negligible for application as rehabilitation robotics and assistive devices. PMID:23597391

  10. High-temperature plasmonic thermal emitter for thermophotovotaics

    DEFF Research Database (Denmark)

    Liu, Jingjing; Guler, Urcan; Li, Wei

    2014-01-01

    We use titanium nitride (TiN) to demonstrate an ultra-thin plasmonic thermal emitter operating at high temperatures (830 K). The spectrally selective emitter exhibits a large emittance at around 2.5 μm and below, and suppresses emission at longer wavelengths.......We use titanium nitride (TiN) to demonstrate an ultra-thin plasmonic thermal emitter operating at high temperatures (830 K). The spectrally selective emitter exhibits a large emittance at around 2.5 μm and below, and suppresses emission at longer wavelengths....

  11. Thermal properties of SFR-HPC exposed to high temperatures

    Science.gov (United States)

    Scheinherrová, Lenka; Pavlík, Zbyšek

    2017-07-01

    In this paper, a non-adiabatic method was used for the assessment of specific heat capacity of steel fibre reinforced high performance concrete in the temperature range 105-1000 °C. The tested SFR-HPC mix was produced from CEM II 42.5 R, ground granulated blast furnace slag, silica sand with maximum particle size of 2 mm, silica fume, brass-coated steel fibres, superplasticizer on polycarboxylate ether basis and batch water. For the studied material, properties after 2 hours thermal treatment at the temperatures of 105 °C, 200 °C, 400 °C, 600 °C, 800 °C, and 1000 °C respectively were tested. Among them, bulk density, matrix density, total open porosity and thermal parameters as thermal conductivity, thermal diffusivity and specific heat capacity were measured. The measured specific heat capacity exhibited high dependence on temperature and pointed to the structural changes that studied material underwent at high temperatures. Accordingly, the obtained residual parameters revealed the thermally induced damage of SFR-HPC and critical temperatures for its functionality.

  12. Two-fluid turbulence including electron inertia

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)

    2014-12-15

    We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.

  13. Investigation of lithium sulphate for high temperature thermal energy storage

    Science.gov (United States)

    Bayon, Alicia; Liu, Ming; Bruno, Frank; Hinkley, Jim

    2017-06-01

    Lithium sulphate (Li2SO4) was evaluated as a solid-solid PCM material to be coupled with concentrated solar power (CSP) technologies. The energy is stored in a cubic crystalline phase that is formed at temperatures above 576°C and can potentially be discharged at temperatures as low as 150°C, providing both sensible and latent thermal energy storage in a hybrid sensible-latent system. These operational conditions are appropriate for current CSP technologies based on subcritical steam Rankine power cycles. Results from thermal cycling experiments in air showed no change in energy storage capacity after 15 cycles. There was up to a 5% reduction in latent thermal capacity and 0.95% in total thermal capacity after 150 cycles in air. In our paper, we evaluate a hybrid sensible-latent thermal energy storage system based on lithium sulphate from an economic and technical performance point of view, demonstrating its potential as a high temperature thermal energy storage material.

  14. Spin-Mechanical Inertia in Antiferromagnet

    Science.gov (United States)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  15. Effects of high thermal neutron fluences on Type 6061 aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, J.R.; Czajkowski, C.J. (Brookhaven National Lab., Upton, NY (United States)); Farrell, K. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to {approximately}4 {times} 10{sup 23} n/cm{sup 2} at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed.

  16. Effects of high thermal neutron fluences on Type 6061 aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, J.R.; Czajkowski, C.J. [Brookhaven National Lab., Upton, NY (United States); Farrell, K. [Oak Ridge National Lab., TN (United States)

    1992-09-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to {approximately}4 {times} 10{sup 23} n/cm{sup 2} at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed.

  17. Determining the Products of Inertia for Small Scale UAVs

    Science.gov (United States)

    Lorenzetti, Joseph S.; Banuelos, Leonel C.; Clarke, Robert; Murillo, Oscar J.; Bowers, Albion H.

    2017-01-01

    Moments of inertia and products of inertia often need to be determined for aircraft. As complex bodies, their mass properties need to be determined experimentally for best accuracy. While several moment of inertia experimental techniques have been developed, there are few to determine the products of inertia. Products of inertia can be easily determined mathematically if the angle between the aircraft x body axis and principal x axis is known. This method finds the principal inclination angle by mathematically correlating the measured moments of inertia about a range of axes of the aircraft. This correlation uses a least squares error minimization of a mathematical model that describes the ellipse of inertia in the aircraft's x-z axes plane. Results from a test conducted on a small scale UAV (Unmanned Aerial Vehicle) at NASA Armstrong Flight Research Center is also presented, which is an example of the intended application of this technique.

  18. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    Science.gov (United States)

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  19. Dynamic Thermal Features of Insulated Blocks: Actual Behavior and Myths

    Directory of Open Access Journals (Sweden)

    Marta Cianfrini

    2017-11-01

    Full Text Available The latest updates in the European directive on energy performance of buildings have introduced the fundamental “nearly zero-energy building (NZEB” concept. Thus, a special focus needs to be addressed to the thermal performance of building envelopes, especially concerning the role played by thermal inertia in the energy requirements for cooling applications. In fact, a high thermal inertia of the outer walls results in a mitigation of the daily heat wave, which reduces the cooling peak load and the related energy demand. The common assumption that high mass means high thermal inertia typically leads to the use of high-mass blocks. Numerical and experimental studies on thermal inertia of hollow envelope components have not confirmed this general assumption, even though no systematic analysis is readily available in the open literature. Yet, the usually employed methods for the calculation of unsteady heat transfer through walls are based on the hypothesis that such walls are composed of homogeneous layers. In this framework, a study of the dynamic thermal performance of insulated blocks is brought forth in the present paper. A finite-volume method is used to solve the two-dimensional equation of conduction heat transfer, using a triangular-pulse temperature excitation to analyze the heat flux response. The effects of both the type of clay and the insulating filler are investigated and discussed at length. The results obtained show that the wall front mass is not the basic independent variable, since clay and insulating filler thermal diffusivities are more important controlling parameters.

  20. DOES CLINICAL INERTIA VARY BY PERSONALIZED A1C GOAL? A STUDY OF PREDICTORS AND PREVALENCE OF CLINICAL INERTIA IN A U.S. MANAGED-CARE SETTING.

    Science.gov (United States)

    Lin, Jay; Zhou, Steve; Wei, Wenhui; Pan, Chunshen; Lingohr-Smith, Melissa; Levin, Philip

    2016-02-01

    Clinical inertia is defined as failure to initiate or intensify therapy despite an inadequate treatment response. We assessed the prevalence and identified the predictors of clinical inertia among patients with type 2 diabetes (T2DM) based on personalized goals. Three hemoglobin A1c (A1C) targets (American Diabetes Association A1C Set) were used when identifying adult patients with T2DM who experienced above-target A1C values during the index period (July 1, 2008 to June 30, 2012) in a U.S. managed-care claims database (IMPACT™). Clinical inertia was defined as no intensification of treatment during the response period. Demographic and clinical characteristics were analyzed to identify predictors of treatment intensification. Irrespective of A1C target, the majority of patients with T2DM (70.4 to 72.8%) experienced clinical inertia in the 6 months following the index event, with 5.3 to 6.2% of patients intensifying treatment with insulin. Patients with a lower likelihood of intensification were older, used >1 oral antidiabetes drug during the baseline period, and had an above-target A1C more recently. Treatment intensification was associated with patients who had point-of-service insurance, mental illness, an endocrinologist visit in the baseline period, or higher index A1C. The prevalence of clinical inertia among patients with T2DM in a U.S. managed-care setting is high and has increased over more recent years. Factors predicting increased risk of clinical inertia may help identify "at-risk" populations and assist in developing strategies to improve their management.

  1. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  2. Glass ceramics for sealing to high-thermal-expansion metals

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, Jr., J. A.

    1980-10-01

    Glass ceramics were studied, formulated in the Na/sub 2/O CaO.P/sub 2/O/sub 5/, Na/sub 2/O.BaOP/sub 2/O/sub 5/, Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/, and Li/sub 2/O.BaO.P/sub 2/O/sub 5/ systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na/sub 2/O.CaO.P/sub 2/O/sub 5/ and Na/sub 2/O.BaO.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion in the range 140 x 10/sup -1/ per /sup 0/C less than or equal to ..cap alpha.. less than or equal to 225 x 10/sup -7/ per /sup 0/C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo/sub 3/, (NaPO/sub 3/)/sub 3/, NaBa(PO/sub 3/)/sub 3/, and NaCa(PO/sub 3/)/sub 3/. Glass ceramics formed in the Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion greater than 240 x 10/sup -7/ per /sup 0/C, but they have extensive microcracking. Due to their low thermal expansion values (..cap alpha.. less than or equal to 120 x 10/sup -7/ per /sup 0/C), glass ceramics in the Li/sub 2/O.BaO.P/sub 2/O/sub 5/ system are unsuitable for sealing to high thermal expansion metals.

  3. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  4. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  5. High-efficiency photonic crystal narrowband thermal emitters

    Science.gov (United States)

    Farfan, G. B.; Su, M. F.; Reda Taha, M. M.; El-Kady, I.

    2010-02-01

    Photonic crystals (PhC) are artificial structures fabricated with a periodicity in the dielectric function. This periodic electromagnetic potential results in creation of energy bandgaps where photon propagation is prohibited. PhC structures have promising use in thermal applications if optimized to operate at specific thermal emission spectrum. Here, novel utilization of optimized PhC's in thermal applications is presented. We demonstrate through numerical simulation the modification of the thermal emission spectrum by a metallic photonic crystal (PhC) to create high-efficiency multispectral thermal emitters. These emitters funnel radiation from a broad emission spectrum associated with a Plancklike distribution into a prescribed narrow emission band. A detailed quantitative evaluation of the spectral and power efficiencies of a PhC thermal emitter and its portability across infrared (IR) spectral bands are provided. We show an optimized tungsten PhC with a predominant narrow-band emission profile with an emitter efficiency that is more than double that of an ideal blackbody and ~65-75% more power-efficiency across the IR spectrum. We also report on using optimal three-dimensional Lincoln log photonic crystal (LL-PhC) emitters for thermophotovoltaic (TPV) generation as opposed to using a passive filtering approach to truncate the broadband thermal source emission to match the bandgap of a photovoltaic (PV) cell. The emitter performance is optimized for the 1-2μm PV band using different PhC materials, specifically copper, silver and gold. The use of the proposed PhC in TPV devices can produce significant energy savings not reported before. The optimal design of the PhC geometry is obtained by implementing a variety of optimization methods integrated with artificial intelligence (AI) algorithms.

  6. Switch on the high thermal conductivity of graphene paper.

    Science.gov (United States)

    Xie, Yangsu; Yuan, Pengyu; Wang, Tianyu; Hashemi, Nastaran; Wang, Xinwei

    2016-10-14

    This work reports on the discovery of a high thermal conductivity (κ) switch-on phenomenon in high purity graphene paper (GP) when its temperature is reduced from room temperature down to 10 K. The κ after switch-on (1732 to 3013 W m(-1) K(-1)) is 4-8 times that before switch-on. The triggering temperature is 245-260 K. The switch-on behavior is attributed to the thermal expansion mismatch between pure graphene flakes and impurity-embedded flakes. This is confirmed by the switch behavior of the temperature coefficient of resistance. Before switch-on, the interactions between pure graphene flakes and surrounding impurity-embedded flakes efficiently suppress phonon transport in GP. After switch-on, the structure separation frees the pure graphene flakes from the impurity-embedded neighbors, leading to a several-fold κ increase. The measured κ before and after switch-on is consistent with the literature reported κ values of supported and suspended graphene. By conducting comparison studies with pyrolytic graphite, graphene oxide paper and partly reduced graphene paper, the whole physical picture is illustrated clearly. The thermal expansion induced switch-on is feasible only for high purity GP materials. This finding points out a novel way to switch on/off the thermal conductivity of graphene paper based on substrate-phonon scattering.

  7. High-field thermal transport properties of REBCO coated conductors

    Science.gov (United States)

    Bonura, Marco; Senatore, Carmine

    2015-02-01

    The use of REBCO coated conductors (CCs) is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (κ) of REBCO CCs in magnetic fields up to 19 T applied both parallel and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field κ of CCs can be calculated with an accuracy of +/- 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field κ in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the thermal stability analysis of high-temperature superconductor-based magnets.

  8. Electrical and Thermal Performance Analysis for a Highly Concentrating Photovoltaic/Thermal System

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2015-01-01

    Full Text Available A 30 kW highly concentrating photovoltaic/thermal (HCPV/T system has been constructed and tested outdoors. The HCPV/T system consists of 32 modules, each of which consists of point-focus Fresnel lens and triple-junction solar cells with a geometric concentrating ratio of 1090x. The modules are connected to produce both electrical and thermal energy. Performance analysis has been conducted from the viewpoint of thermodynamics. The experimental results show that highest photovoltaic efficiency of 30% and instantaneous thermal efficiency of 30% can be achieved at the same time, which means the total solar energy conversion efficiency of the HCPV/T system is higher than 60%. The photovoltaic efficiency increases with direct irradiance when the direct irradiance is below 580 W/m2, but it remains nearly unchanged when the direct irradiation is higher than 580 W/m2. The instantaneous thermal efficiency decreases during water heating process. However, the electrical performance of the system is not affected obviously by water temperature. Highest exergetic efficiency of 35.4% can be produced by the HCPV/T system. The exergetic efficiency is mainly affected by irradiation level, which is similar to the characteristics of photovoltaic performance.

  9. Highly thermally conductive and mechanically strong graphene fibers.

    Science.gov (United States)

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-04

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals. Copyright © 2015, American Association for the Advancement of Science.

  10. Highly thermal-stable ferromagnetism by a natural composite.

    Science.gov (United States)

    Ma, Tianyu; Gou, Junming; Hu, Shanshan; Liu, Xiaolian; Wu, Chen; Ren, Shuai; Zhao, Hui; Xiao, Andong; Jiang, Chengbao; Ren, Xiaobing; Yan, Mi

    2017-01-18

    All ferromagnetic materials show deterioration of magnetism-related properties such as magnetization and magnetostriction with increasing temperature, as the result of gradual loss of magnetic order with approaching Curie temperature TC. However, technologically, it is highly desired to find a magnetic material that can resist such magnetism deterioration and maintain stable magnetism up to its TC, but this seems against the conventional wisdom about ferromagnetism. Here we show that a Fe-Ga alloy exhibits highly thermal-stable magnetization up to the vicinity of its TC, 880 K. Also, the magnetostriction shows nearly no deterioration over a very wide temperature range. Such unusual behaviour stems from dual-magnetic-phase nature of this alloy, in which a gradual structural-magnetic transformation occurs between two magnetic phases so that the magnetism deterioration is compensated by the growth of the ferromagnetic phase with larger magnetization. Our finding may help to develop highly thermal-stable ferromagnetic and magnetostrictive materials.

  11. High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites

    Science.gov (United States)

    2015-08-30

    heat of fusion . In this work, boron is considered a long-term high performance solution and silicon is presented as a near term development target with... conceptual studies. However, there have been no thorough investigations due to the absence of existing research in addition to cost and schedule constraints...driven by a nuclear thermal energy source. Zubrin et al. proposed a “bi-modal” approach which modified an existing 40 kWe nuclear-thermionic reactor

  12. Topology optimization of inertia driven dosing units

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2017-01-01

    This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...... to the Brinkman penalized Navier-Stokes equation the design of the dosing units can be optimized with respect to dosing capability without initial design assumptions. The influence of flow resistance and speed is investigated to assess design performance under varying operating conditions....

  13. Price Asynchronization and Price Level Inertia

    OpenAIRE

    Blanchard, Olivier J.

    1982-01-01

    If price decisions are taken neither continuously nor in perfect synchronization, the process of adjustment of all prices to a new nominal level will imply temporary movements in relative prices. It might then well be that, to avoid these movements in relative prices, each price setter will want to move his own price slowly compared to others. The result will be a slow movement of all prices to their new nominal level, and substantial inertia of the price level. This paper formalizes this int...

  14. High-field electrical and thermal transport in suspended graphene.

    Science.gov (United States)

    Dorgan, Vincent E; Behnam, Ashkan; Conley, Hiram J; Bolotin, Kirill I; Pop, Eric

    2013-10-09

    We study the intrinsic transport properties of suspended graphene devices at high fields (≥1 V/μm) and high temperatures (≥1000 K). Across 15 samples, we find peak (average) saturation velocity of 3.6 × 10(7) cm/s (1.7 × 10(7) cm/s) and peak (average) thermal conductivity of 530 W m(-1) K(-1) (310 W m(-1) K(-1)) at 1000 K. The saturation velocity is 2-4 times and the thermal conductivity 10-17 times greater than in silicon at such elevated temperatures. However, the thermal conductivity shows a steeper decrease at high temperature than in graphite, consistent with stronger effects of second-order three-phonon scattering. Our analysis of sample-to-sample variation suggests the behavior of "cleaner" devices most closely approaches the intrinsic high-field properties of graphene. This study reveals key features of charge and heat flow in graphene up to device breakdown at ~2230 K in vacuum, highlighting remaining unknowns under extreme operating conditions.

  15. High-rise Buildings versus Outdoor Thermal Environment in Chongqing.

    Science.gov (United States)

    Lu, Jun; Chen, Jin-Hua; Tang, Ying; Wang, Jin-Sha

    2007-10-11

    This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  16. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    Directory of Open Access Journals (Sweden)

    Jin-sha Wang

    2007-10-01

    Full Text Available This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  17. The latent effect of inertia in the modal choice

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Meloni, Italo; Ortúzar, Juan de Dios

    2014-01-01

    or more periods, but it does not affect the initial choice. In the psychological literature instead, habit is measured only as the number of times the same trip is made using the same mode, but the transport choice is not related to level of service characteristics. In this paper we combine both...... of revealed and stated mode choice preferences collected in Cagliari (Italy). We found a significant latent inertia in the revealed preference data, indicating that inertia affects the initial conditions. The latent inertia is revealed by the frequency of past behaviour but the effect of trip frequency......The existence of habit (leading to inertia) in the choice process has been approached in the literature in a number of ways. In transport, inertia has been studied mainly using “long panel” data, or mixed revealed and stated preference data. In these studies inertia links the choice made in two...

  18. Damage Assessment of Stress-Thermal Cycled high temperature

    Science.gov (United States)

    Ju, Jae-Hyung; Prochazka, Michael; Ronke, Ben; Morgan, Roger; Shin, Eugence

    2004-01-01

    We report on the characterization of bismaleimide and polyimide carbon fiber composite, microcrack development under stress thermal cycling loading. Such cycles range from cryogenic temperatures associated with cryogenic fuel (LN, LOX) containment to high temperatures of 300 degrees Celsius associated with future hypervelocity aeropropulsion systems. Microcrack development thresholds as a function of temperature range of the thermal cycle; the number of cycles; the applied stress level imposed on the composite are reported. We have conducted stress-thermal cycles on thin bismaleimide-woven carbon fiber foils for three temperature range cycles: 1. Ambient temperature - -196 degrees celsius. 2. Ambient temperature - 150 degrees Celsius; 200 degrees Celsius; 250 degrees Celsius. 3. -196 degrees Celsius - 250 degrees Celsius. The Principle findings are that the full cycles from -196 degrees Celsius to to 250 degrees Celsius cause the most significant microcrack of development. These observations indicate that the high temperature portion of the cycle under load causes fiber-matrix interface failure and subsequent exposure to higher stresses at the cryogenic, low temperature region results in composite matrix microcracking as a result of the additional stresses associate with the fiber-matrix thermal expansion mismatch. Our initial studies for 12 ply PMR-II-50 polyimide/M60JB carbon fabric [0f,90f,90f,0f,0f,90f]ls composites will be presented. The stress-thermal cycle test procedure for these will be described. Moisture absorption characteristics between cycles will be used to monitor interconnected microcrack development. The applied stress level will be 75% of the composite cryogenic (-196 degrees Celsius) ultimate strength.

  19. Synchrony-optimized networks of Kuramoto oscillators with inertia

    Science.gov (United States)

    Pinto, Rafael S.; Saa, Alberto

    2016-12-01

    We investigate synchronization in networks of Kuramoto oscillators with inertia. More specifically, we introduce a rewiring algorithm consisting basically in a hill climb scheme in which the edges of the network are swapped in order to enhance its synchronization capacity. We show that the synchrony-optimized networks generated by our algorithm have some interesting topological and dynamical properties. In particular, they typically exhibit an anticipation of the synchronization onset and are more robust against certain types of perturbations. We consider synthetic random networks and also a network with a topology based on an approximated model of the (high voltage) power grid of Spain, since networks of Kuramoto oscillators with inertia have been used recently as simplified models for power grids, for which synchronization is obviously a crucial issue. Despite the extreme simplifications adopted in these models, our results, among others recently obtained in the literature, may provide interesting principles to guide the future growth and development of real-world grids, specially in the case of a change of the current paradigm of centralized towards distributed generation power grids.

  20. Inertia-driven resonant excitation of a magnetic skyrmion.

    Science.gov (United States)

    Shiino, Takayuki; Kim, Kab-Jin; Lee, Ki-Suk; Park, Byong-Guk

    2017-10-25

    Topological spin structures such as magnetic domain walls, vortices, and skyrmions, have been receiving great interest because of their high potential application in various spintronic devices. To utilize them in the future spintronic devices, it is first necessary to understand the dynamics of the topological spin structures. Since inertial effect plays a crucial role in the dynamics of a particle, understanding the inertial effect of topological spin structures is an important task. Here, we report that a strong inertial effect appears steadily when a skyrmion is driven by an oscillating spin-Hall-spin-torque (SHST). We find that the skyrmion exhibits an inertia-driven hypocycloid-type trajectory when it is excited by the oscillating SHST. This motion has not been achieved by an oscillating magnetic field, which only excites the breathing mode without the inertial effect. The distinct inertial effect can be explained in terms of a spin wave excitation in the skyrmion boundary which is induced by the non-uniform SHST. Furthermore, the inertia-driven resonant excitation provides a way of experimentally estimating the inertial mass of the skyrmion. Our results therefore pave the way for the development of skyrmion-based device applications.

  1. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  2. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  3. Strength of VGCF/Al Composites for High Thermal Conductivity

    Science.gov (United States)

    Fukuchi, Kohei; Sasaki, Katsuhiko; Imanishi, Terumitsu; Katagiri, Kazuaki; Kakitsuji, Atsushi; Shimizu, Akiyuki

    In this paper, the evaluation of the strength of the VGCF/Aluminum composites which have high thermal conductivity is reported. VGCF (Vapor Growth Carbon Fiber) is a kind of the Carbon nanotube (CNT) which has very high thermal conductivity as well as CNT. The composites are made by spark plasma sintering. The stress-strain curves of the composites are obtained by the tensile tests and show that the composites have brittle behavior. The brittleness of the composites increases with increase in the volume fraction of VGCF. A numerical simulation based on the micromechanics is conducted to estimate nonlinear behavior in the elastic deformation and plastic deformation of the stress-strain relations of the composites. The theories of Eshelby, Mori-Tanaka, Weibull, and Ramberg-Osgood are employed for the numerical simulation. The simulations give some information of the microstructural change in the composite related to the volume fraction of VGCF.

  4. Organic transistors with high thermal stability for medical applications.

    Science.gov (United States)

    Kuribara, Kazunori; Wang, He; Uchiyama, Naoya; Fukuda, Kenjiro; Yokota, Tomoyuki; Zschieschang, Ute; Jaye, Cherno; Fischer, Daniel; Klauk, Hagen; Yamamoto, Tatsuya; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Sekitani, Tsuyoshi; Loo, Yueh-Lin; Someya, Takao

    2012-03-06

    The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm(2) V(-1)s(-1) within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

  5. Organic transistors with high thermal stability for medical applications

    Science.gov (United States)

    Kuribara, Kazunori; Wang, He; Uchiyama, Naoya; Fukuda, Kenjiro; Yokota, Tomoyuki; Zschieschang, Ute; Jaye, Cherno; Fischer, Daniel; Klauk, Hagen; Yamamoto, Tatsuya; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Sekitani, Tsuyoshi; Loo, Yueh-Lin; Someya, Takao

    2012-03-01

    The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2‧,3‧-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm2 V-1s-1 within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

  6. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    OpenAIRE

    Lu, Jun; Chen, Jin-hua; Tang, Ying; Wang, Jin-sha

    2007-01-01

    This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temper...

  7. Implementation of napping in industry and the problem of sleep inertia.

    Science.gov (United States)

    Muzet; Nicolas; Tassi; Dewasmes; Bonneau

    1995-12-01

    It seems reasonable to believe that in specific situations napping at the work place would be possible and used if authorized and encouraged. Very short naps could have very positive long-term effects on biological functions. Training someone to sleep for short periods appears feasible if there is a high motivation to do so. Sleep inertia can be considered as one of the main limiting factors in napping strategy. Sleep inertia depends on different factors such as sleep stage preceding the awakening, temporal placement of the nap, duration of nap and wakefulness preceding it, etc. The effects of sleep inertia might be different depending on the type of task, and a reactivation technique applied immediately after awakening may remove it. Despite the fact that its implementation in industry raises some practical issues, napping can be considered as a possible strategy to increase the vigilance level of night workers.

  8. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  10. High-field thermal transports properties of REBCO coated conductors

    CERN Document Server

    Bonura, M

    2015-01-01

    The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic fields up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the ...

  11. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  12. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  13. Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect

    Science.gov (United States)

    Du, Yikang; Mao, Kuanmin; Zhu, Yaming; Wang, Fengyun; Mao, Xiaobo; Li, Bin

    2015-03-01

    Hydrostatic guideways are used as an alternative to contact bearings due to high stiffness and high damping in heavy machine tools. To improve the dynamic characteristic of bearing structure, the dynamic modeling of the hydrostatic guidway should be accurately known. This paper presents a "mass-spring-Maxwell" model considering the effects of inertia, squeeze, compressibility and static bearing. To determine the dynamic model coefficients, numerical simulation of different cases between displacement and dynamic force of oil film are performed with fluent code. Simulation results show that hydrostatic guidway can be taken as a linear system when it is subjected to a small oscillation amplitude. Based on a dynamic model and numerical simulation, every dynamic model's parameters are calculated by the Levenberg-Marquardt algorithm. Identification results show that "mass-spring-damper" model is the most appropriate dynamic model of the hydrostatic guidway. This paper provides a reference and preparation for the analysis of the dynamic model of the similar hydrostatic bearings.

  14. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Science.gov (United States)

    Ma, Zhaoji; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2017-06-01

    Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  15. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  16. Clinical inertia, uncertainty and individualized guidelines.

    Science.gov (United States)

    Reach, G

    2014-09-01

    Doctors often do not follow the guidelines of good practice based on evidence-based medicine, and this "clinical inertia" may represent an impediment to efficient care. The aims of this article are as follows: 1) to demonstrate that this phenomenon is often the consequence of a discrepancy between the technical rationality of evidence-based medicine and the modes of reasoning of physicians practiced in "real-life", which is marked by uncertainty and risk; 2) to investigate in this context the meaning of the recent, somewhat paradoxical, concept of "individualized guidelines"; and 3) to revisit the real, essentially pedagogical, place of guidelines in medical practice. Copyright © 2014. Published by Elsevier Masson SAS.

  17. Moments of Inertia of Disks and Spheres without Integration

    Science.gov (United States)

    Hong, Seok-Cheol; Hong, Seok-In

    2013-01-01

    Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…

  18. Sleep inertia: best time not to wake up?

    Science.gov (United States)

    Naitoh, P; Kelly, T; Babkoff, H

    1993-04-01

    Sleep inertia is a brief period of inferior task performance and/or disorientation immediately after sudden awakening from sleep. Normally sleep inertia lasts sleep inertia. Since the process of falling asleep is strongly influenced by circadian time, the reverse process of awakening could be similarly affected. A group of nine subjects stayed awake for a 64-h continuous work period, except for 20-min sleep periods (naps) every 6 h. Another group of 10 subjects stayed awake for 64 h without any sleep. The differences between these two groups in performance degradation are expected to show sleep inertia on the background of sleep deprivation. Sleep inertia was measured with Baddeley's logical reasoning task, which started within 1 min of awakening and lasted for 5 min. There appeared to be no specific circadian time when sleep inertia is either maximal or minimal. An extreme form of sleep inertia was observed, when the process of waking up during the period of the circadian body temperature trough became so traumatic that it created "sleep (nap) aversion." The findings lead to the conclusion that there are no advantages realized on sleep inertia by waking up from sleep at specific times of day.

  19. Two-Arm Flexible Thermal Strap

    Science.gov (United States)

    Urquiza, Eugenio; Vasquez, Cristal; Rodriquez, Jose I.; Leland, Robert S.; VanGorp, Byron E.

    2011-01-01

    Airborne and space infrared cameras require highly flexible direct cooling of mechanically-sensitive focal planes. A thermal electric cooler is often used together with a thermal strap as a means to transport the thermal energy removed from the infrared detector. While effective, traditional thermal straps are only truly flexible in one direction. In this scenario, a cooling solution must be highly conductive, lightweight, able to operate within a vacuum, and highly flexible in all axes to accommodate adjustment of the focal plane while transmitting minimal force. A two-armed thermal strap using three end pieces and a twisted section offers enhanced elastic movement, significantly beyond the motion permitted by existing thermal straps. This design innovation allows for large elastic displacements in two planes and moderate elasticity in the third plane. By contrast, a more conventional strap of the same conductance offers less flexibility and asymmetrical elasticity. The two-arm configuration reduces the bending moment of inertia for a given conductance by creating the same cross-sectional area for thermal conduction, but with only half the thickness. This reduction in the thickness has a significant effect on the flexibility since there is a cubic relationship between the thickness and the rigidity or bending moment of inertia. The novelty of the technology lies in the mechanical design and manufacturing of the thermal strap. The enhanced flexibility will facilitate cooling of mechanically sensitive components (example: optical focal planes). This development is a significant contribution to the thermal cooling of optics. It is known to be especially important in the thermal control of optical focal planes due to their highly sensitive alignment requirements and mechanical sensitivity; however, many other applications exist including the cooling of gimbal-mounted components.

  20. High throughput thermal conductivity of high temperature solid phases: The case of oxide and fluoride perovskites

    CERN Document Server

    van Roekeghem, Ambroise; Oses, Corey; Curtarolo, Stefano; Mingo, Natalio

    2016-01-01

    Using finite-temperature phonon calculations and machine-learning methods, we calculate the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0 K, 300 K and 1000 K. We find 92 mechanically stable compounds at high temperatures -- including 36 not mentioned in the literature so far -- for which we calculate the thermal conductivity. We demonstrate that the thermal conductivity is generally smaller in fluorides than in oxides, largely due to a lower ionic charge, and describe simple structural descriptors that are correlated with its magnitude. Furthermore, we show that the thermal conductivities of most cubic perovskites decrease more slowly than the usual $T^{-1}$ behavior. Within this set, we also screen for materials exhibiting negative thermal expansion. Finally, we describe a strategy to accelerate the discovery of mechanically stable compounds at high temperatures.

  1. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  2. PLASMA THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE WITH HIGH THERMAL STABILITY

    Directory of Open Access Journals (Sweden)

    O. G. Devoino

    2015-01-01

    Full Text Available The paper presents optimization of  processes for obtaining maximum content of tetragonal phase in the initial material and thermal barrier coatings (TBC based on zirconium dioxide and hafnium oxide.  Results of the investigations on phase composition of oxide HfO2 – ZrO2 – Y2O3  system have been given in the paper. The system represents  a microstructure which is similar to  zirconia dioxide and  transformed for its application at 1300 °C. The paper explains a mechanism of hafnium oxide influence on formation of the given microstructure. The research methodology has been based on complex metallography, X – ray diffraction and electron microscopic investigations of  structural elements of the composite plasma coating HfO2 – ZrO2 – Y2O system.In order to stabilize zirconium dioxide  dopant oxide should not only have an appropriate size of  metal ion, but also form a solid solution with the zirconia. This condition severely limits the number of possible stabilizers. In fact, such stabilization is possible only with the help of rare earth oxides (Y2O3, Yb2O3, CeO2, HfO2. Chemical purity of the applied materials plays a significant role for obtaining high-quality thermal barrier coatings. Hafnium oxide has been selected as powder for thermal barrier coatings instead of zirconium dioxide due to their similarities in structural modification, grating, chemical and physical properties and its high temperature structural transformations. It has been established that plasma thermal barrier HfO2 – ZrO2 – Y2O3 coatings consist of  one tetragonal phase. This phase is equivalent to a non-equilibrium tetragonal t' phase in the “zirconium dioxide stabilized with yttrium oxide” system. Affinity of  Hf+4 and Zr+4 cations leads to the formation of identical metastable phases during rapid quenching.

  3. Thermally ruggedized ITO transparent electrode films for high power optoelectronics.

    Science.gov (United States)

    Yoo, Jae-Hyuck; Matthews, Manyalibo; Ramsey, Phil; Barrios, Antonio Correa; Carter, Austin; Lange, Andrew; Bude, Jeff; Elhadj, Selim

    2017-10-16

    We present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films. Multi-pulse laser damage tests were performed on tin-doped indium oxide (ITO) films configured to improve optical lifetime damage performance. Conditions where improvements were not observed are also described. When bulk heating is not the dominant damage process, discrete defect-induced damage limits damage behavior.

  4. High Power Solid State Retrofit Lamp Thermal Characterization and Modeling

    OpenAIRE

    Jakovenko, J.; Formanek, J.; Janicek, V.; Husak, M.; R. Werkhoven

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED lamp are presented in this paper. Paramount importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D thermal lamp model for further thermal optimization. Simulations are performed with ANSYS and CoventorWare software tools to compere different simulation approaches. Simulated thermal distribution ...

  5. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor.

    Science.gov (United States)

    Liang, Xin M; Sekar, Praveen K; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-20

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  6. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    Science.gov (United States)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  7. Development and Validation of the Sleep Inertia Questionnaire (SIQ) and Assessment of Sleep Inertia in Analogue and Clinical Depression.

    Science.gov (United States)

    Kanady, Jennifer C; Harvey, Allison G

    2015-10-01

    Sleep inertia is the transitional state from sleep to wake. Research on sleep inertia is important in depression because many people with depression report having difficulty getting out of bed, which contributes to impairment and can impede the implementation of interventions. The first aim was to develop and validate the first self-report measure of sleep inertia, the Sleep Inertia Questionnaire (SIQ). The second aim was to compare reports of sleep inertia across three groups: (1) No-to-Mild-Depression, (2) Analogue-Depression, and (3) Syndromal-Depression. The SIQ demonstrates strong psychometric properties; it has good to excellent internal consistency, strong construct validity, and SIQ severity is associated with less prior sleep duration. Sleep inertia is more severe in the Analogue-Depression and Syndromal-Depression groups compared to the No-to-Mild-Depression group. In conclusion, the SIQ is a reliable measure of sleep inertia and has potential for improving the assessment of sleep inertia in clinical and research settings.

  8. Building high-accuracy thermal simulation for evaluation of thermal comfort in real houses

    OpenAIRE

    Nguyen, Hoaison; Makino, Yoshiki; Lim, Azman Osman; Tan, Yasuo; Shinoda, Yoichi

    2013-01-01

    Thermal comfort is an essential aspect for the control and verification of many smart home services. In this research, we design and implement simulation which models thermal environment of a smart house testbed. Our simulation can be used to evaluate thermal comfort in various conditions of home environment. In order to increase the accuracy of the simulation, we measure thermal-related parameters of the house such as temperature, humidity, solar radiation by the use of sensors and perform p...

  9. Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, K.; Routray, T.R.; Pattnaik, S.P. [Sambalpur University, School of Physics, Jyotivihar (India); Basu, D.N. [Variable Energy Cyclotron Center, Kolkata (India)

    2017-07-15

    The mass, radius and crustal fraction of moment of inertia in neutron stars are calculated using β-equilibrated nuclear matter obtained from the Skyrme effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions using the KDE0v1 set. The neutron star masses obtained by solving the Tolman-Oppenheimer-Volkoff equations using neutron star matter obtained from this set are able to describe highly massive compact stars ∝ 2M {sub CircleDot}. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar, R ≥ 3.69 + 3.44M/M {sub CircleDot}. Present calculations suggest that the crustal fraction of the total moment of inertia can be ∝ 6.3% due to crustal entrainment caused by the Bragg reflection of unbound neutrons by lattice ions. (orig.)

  10. Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment

    Directory of Open Access Journals (Sweden)

    Yongle Mao

    2016-12-01

    Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

  11. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets.

    Science.gov (United States)

    Simoncini, Alessandro; Tagliaferri, Vincenzo; Ucciardello, Nadia

    2017-10-25

    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m -1 ·K -1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix.

  12. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Alessandro Simoncini

    2017-10-01

    Full Text Available Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix.

  13. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    OpenAIRE

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acqu...

  14. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    is performing well in spite of the fact that the solar collectors are far from being orientated optimally. The utilization of the solar radiation on the collectors is higher, 46% in the second year of operation, than for any other system earlier investigated in Denmark, 16%-34%. The reason for the good thermal...... performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes.......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...

  15. Actuation of an Inertia-Coupled Rimless Wheel Model across Level Ground

    Science.gov (United States)

    Weeks, Seth Caleb

    The inertia-coupled rimless wheel model is a passive dynamic walking device which is theoretically capable of achieving highly efficient motion with no energy losses. Under non-ideal circumstances, energy losses due to air drag require the use of actuation to maintain stable motions. The Actuated Inertia-coupled Rimless Wheel Across Flat Terrain (AIRWAFT) model provides actuation to an inertia-coupled rimless wheel model across level ground to compensate for energy losses by applying hip-torque between the frame and inertia wheel via a motor. Two methods of defining the open-loop actuation are presented. Position control defines the relative position of the drum relative to the frame. Torque control specifies the amount of torque between the frame and the drum. The performance of the model was evaluated with respect to changes in various geometrical and control parameters and initial conditions. This parameter study led to the discovery of a stable, periodic motion with a cost of transport of 0.33.

  16. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Science.gov (United States)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  17. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking.

    Science.gov (United States)

    Uetani, Kojiro; Ata, Seisuke; Tomonoh, Shigeki; Yamada, Takeo; Yumura, Motoo; Hata, Kenji

    2014-09-03

    Electrostatic flocking is applied to create an array of aligned carbon fibers from which an elastomeric thermal interface material (TIM) can be fabricated with a high through-plane thermal conductivity of 23.3 W/mK. A high thermal conductivity can be achieved with a significantly low filler level (13.2 wt%). As a result, this material retains the intrinsic properties of the matrix, i.e., elastomeric behavior. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermal properties of high-power diode lasers investigated by means of high resolution thermography

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowska, Anna, E-mail: Anna.Kozlowska@itme.edu.pl [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Malag, Andrzej; Dabrowska, Elzbieta; Teodorczyk, Marian [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland)

    2012-09-01

    In the present work, thermal effects in high-power diode lasers are investigated by means of high resolution thermography. Thermal properties of the devices emitting in the 650 nm and 808 nm wavelength ranges are compared. The different versions of the heterostructure design are analyzed. The results show a lowering of active region temperature for diode lasers with asymmetric heterostructure scheme with reduced quantum well distance from the heterostructure surface (and the heat sink). Optimization of technological processes allowed for the improvement of the device performance, e.g. reduction of solder non-uniformities and local defect sites at the mirrors which was visualized by the thermography.

  19. Optical Diagnostics for High-Temperature Thermal Barrier Coatings

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2009-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments, such as in jet turbine engines. Taking advantage of the translucent nature of TBCs, optical diagnostics have been developed that can provide an informed assessment of TBC health that will allow mitigating action to be taken before TBC degradation threatens performance or safety. In particular, rare-earth-doped luminescent sublayers have been integrated into the TBC structure to produce luminescence that monitors TBC erosion, delamination, and temperature gradients. Erosion monitoring of TBC-coated specimens is demonstrated by utilizing visible luminescence that is excited from a sublayer that is exposed by erosion. TBC delamination monitoring is achieved in TBCs with a base rare-earth-doped luminescent sublayer by the reflectance-enhanced increase in luminescence produced in regions containing buried delamination cracks. TBC temperature monitoring is demonstrated using the temperature-dependent decay time for luminescence originating from the specific coating depth associated with a rare-earth-doped luminescent sublayer. The design and implementation of these TBCs with integrated luminescent sublayers is discussed, including co-doping strategies to produce more penetrating near-infrared luminescence. It is demonstrated that integration of the rare-earth-doped sublayers is achieved with no reduction in TBC life. In addition, results for multilayer TBCs designed to also perform as radiation barriers are also presented.

  20. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  1. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  2. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  3. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    Science.gov (United States)

    Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.

    2009-01-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  4. Inertia Identification and PI Parameter Tuning of PMSM Servo Drives

    Science.gov (United States)

    Lei, Huang

    2017-05-01

    The goal of this paper is to improve the performance of permanent magnet synchronous motor(PMSM) servo system by identification of the inertia parameter and auto-tuning of PI parameters. The method relies on the speed acceleration and deceleration response produced by speed ramp signals applied to a speed-controlled servo. The proposed method relies on simple numerical calculations, thus make the proposed scheme more practical. After the knowledge of the inertia parameter, the tuning of the speed control loop can be performed. The experimental results verified that the proposed identification scheme can estimate inertia parameters accurately and effectively and the control system tuned can achieve good dynamic performance.

  5. Estimation of moments of inertia of airplanes from design data

    Science.gov (United States)

    Kirschbaum, H W

    1936-01-01

    A method of determining the moments of inertia of an airplane from design data pertaining to the weights and locations of the component parts is described. The computations required to ascertain the center-of-gravity position are incorporated with the calculations of moments of inertia. A complete set of data and calculations for a modern airplane is given to illustrate the procedure. From a comparison between calculated values and measured values it is believed that the moments of inertia can be estimated within 10 percent by the use of this method.

  6. High-temperature turbopump assembly for space nuclear thermal propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  7. CTE-Matched, Liquid-Cooled, High Thermal Conductivity Heat Sink Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a CTE-matched, liquid-cooled, high thermal conductivity heat sink for use in spacecraft thermal management applications. The material...

  8. Enhanced poling efficiency in highly thermal and photostable nonlinear optical chromophores

    NARCIS (Netherlands)

    Faccini, M.; Balakrishnan, M.; Diemeer, Mart; Hu, Zhi-Peng; Clays, Koen; Asselberghs, Inge; Leinse, Arne; Driessen, A.; Reinhoudt, David; Verboom, Willem

    A series of nonlinear optical chromophores based on the highly thermal and photostable tricyanovinylidenediphenylaminobenzene (TCVDPA) was synthesized and their thermal and optical properties were investigated. Modification of the TCVDPA chromophore with bulky groups provides reduction of

  9. High Power Solid State Retrofit Lamp Thermal Characterization and Modeling

    Directory of Open Access Journals (Sweden)

    J. Jakovenko

    2012-04-01

    Full Text Available Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL retrofit LED lamp are presented in this paper. Paramount importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D thermal lamp model for further thermal optimization. Simulations are performed with ANSYS and CoventorWare software tools to compere different simulation approaches. Simulated thermal distribution has been validated with thermal measurement on a commercial 8W LED lamp. Materials parametric study has been carried out to discover problematic parts for heat transfer from power LEDs to ambient and future solutions are proposed. The objectives are to predict the thermal management by simulation of LED lamp, get more understanding in the effect of lamp shape and used materials in order to design more effective LED lamps and predict light quality, life time and reliability.

  10. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions

    Science.gov (United States)

    Warzoha, Ronald J.; Donovan, Brian F.

    2017-09-01

    Thermal interface materials (TIMs) are meant to reduce the interfacial thermal resistance (RT) across bare metal contacts in commercial electronics packaging systems. However, there is little scientific consensus governing material design for optimized thermal performance. This is principally due to the inability to separate the effects of the intrinsic material thermal properties from the magnitude of heat flow crossing the TIM-substrate junction (RC). To date, efforts to isolate these effects using standard thermal interface material characterization techniques have not been successful. In this work, we develop an infrared thermography-based steady-state heat meter bar apparatus with a novel in situ thickness measurement system having 0.5 nm sensitivity. These in situ thickness measurements allow us to simultaneously determine RT and RC independently across current state-of-the-art TIMs with ±5% uncertainty. In this work, thermal pastes with bond line thicknesses ranging between 5 and 50 μ m are used to illustrate the capability of the apparatus to measure extremely thin materials that are expected to achieve relatively low values of RT. Results suggest that the contribution of the thermal contact resistance to the total thermal resistance can range from 5% to 80% for these materials. This finding highlights the need for appropriate metrology and independent measurements of RC and RT to better optimize thermal interface materials for a number of important electronics applications.

  11. High performance thermal insulation systems - HLWD; Hochleistungs-Waermedaemmung HLWD

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Erb, M. [Eicher und Pauli AG, Liestal (Switzerland); Binz, A.; Moosmann, A. [Fachhochschule beider Basel, Institut fuer Energie, Muttenz (Switzerland)

    2000-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) by the research program concerning the efficient use of energy in buildings takes a look at high-performance thermal insulation systems (HLWD). Work done on three applications - internal insulation used in the refurbishment of buildings, insulation of hot-water storage tanks and outside doors - is reported on. Economic feasibility is discussed and a number of demonstration projects are reported on. Apart from the above mentioned, the insulation of a terrace, the insulation of a roller-blind housing and the insulation of a deep-freeze cubicle are reviewed. The construction of vacuum insulation panels (VIP) and their manufacture are looked at. Economic aspects are looked at and the use of VIP in practice is discussed.

  12. Constraining physical properties of compositionally-distinct Martian bedrock surfaces using overlapping THEMIS observations and the KRC thermal model

    Science.gov (United States)

    Ahern, Alexandra; Deanne Rogers, A.

    2017-10-01

    The physical properties of Martian surface materials (e.g. grain size, cohesion, porosity, amount of induration, rock abundance, etc.) provide clues to the origins of, and processes involved (e.g. sedimentary, effusive volcanic, pyroclastic) in, forming rock outcrops on Mars. Many outcrop surfaces likely possess vertical heterogeneity in the near-surface (Mars Odyssey THEMIS surface temperature observations spanning multiple seasons and local times. We constrain top layer particle sizes from TES and CRISM spectral observations. Currently, we are focusing on chloride-bearing units in Terra Sirenum and Meridiani Planum and spectrally-distinct mafic and feldspathic bedrock units with uncertain origins and histories in Noachis Terra and Nili Fossae. The variations in apparent thermal inertia over local times and seasons suggests that most of these surfaces are consistent with low thermal inertia materials (~200 tiu) overlying moderately-high thermal inertia (600 tiu) surfaces. Work will be ongoing to further constrain top and lower layer thermal inertias for these areas and other spectrally and physically-distinctive outcrops over the surface of Mars.

  13. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.

    Science.gov (United States)

    Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y

    2015-02-24

    Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

  14. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    -section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  15. DETERMINATI>N OF MOMENTS OF INERTIA: A FACILITIES STUDY,

    Science.gov (United States)

    which can be accommodated by the facility. It is concluded that the amount of manual manipulacion required for moment of inertia 4easurements can be reduced by improving che usefulness of present equipment. (Author)

  16. Tip shift in the zero inertia powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Serrarens, A.F.A.; Vroemen, B.G.; Veldpaus, F.E.; Veenhuizen, P.A.

    2002-07-01

    For any transmission type the vehicle's responsiveness during large and/or fast engine speed shifts may appear reluctant or even counteractive. This is caused by unwanted inertial torques stemming from accelerating or decelerating the rotating elements within the engine and transmission. Reminiscent of comparable behaviour seen in aircraft jet-propulsion, this phenomenon is also referred to as 'jet-start'. To overcome this behaviour, a CVT powertrain is augmented with a powersplitting planetary gear stage and compact steel flywheel. The new transmission-coded zero inertia (ZI) powertrain-seamlessly combines two contradictive features: the driveability in terms of the pedal-to-wheel response is greatly improved and a large leap towards optimal fuel economy can be made. The latter is achieved by cruising the vehicle at extremely low engine speeds owing to the large ratio-coverage of the CVT. As for the driveability, the flywheel acts as a peak shaver. During engine speed shifts it delivers power at (semi-) pedal kick down (downshift) and absorbs kinetic energy of the engine sided powertrain elements at pedal back-out (upshift). In this paper, the behaviour of the ZI system is evaluated in 'tip-shift' mode. In field experiments the tip-shift in a VW Bora test vehicle with ZI powertrain is compared with a commercially available Mini One with CVT. A test panel of 10 people drove the vehicles, executed predefined tasks and evaluated their findings. The results of these experiments are also reported in this paper. (orig.)

  17. Time to wake up: reactive countermeasures to sleep inertia

    OpenAIRE

    HILDITCH, Cassie J.; DORRIAN, Jillian; BANKS, Siobhan

    2016-01-01

    Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured r...

  18. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials

    Science.gov (United States)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali

    2008-01-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  19. Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding

    Directory of Open Access Journals (Sweden)

    W. Lv

    2018-03-01

    Full Text Available The low thermal conductivity of polymers limits their use in numerous applications, where heat transfer is important. The two primary approaches to overcome this limitation, are to mix in other materials with high thermal conductivity, or mechanically stretch the polymers to increase their intrinsic thermal conductivity. Progress along both of these pathways has been stifled by issues associated with thermal interface resistance and manufacturing scalability respectively. Here, we report a novel polymer composite architecture that is enabled by employing typical composites manufacturing method such as filament winding with the twist that the polymer is in fiber form and the filler in form of sheets. The resulting novel architecture enables accession of the idealized effective medium composite behavior as it minimizes the interfacial resistance. The process results in neat polymer and 50 vol% graphite/polymer plates with thermal conductivity of 42 W·m–1·K–1 (similar to steel and 130 W·m–1·K–1 respectively.

  20. Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current

    DEFF Research Database (Denmark)

    Shayesteh, Maryam; O' Connell, Dan; Gity, Farzan

    2014-01-01

    In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n +/p junctions. Using LTA, high carrier...

  1. FEM Thermal Modeling and Improvement for High Power IGBT Modules Used in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2014-01-01

    Thermal management of high power IGBT (Insulated Gate Bipolar Transistor) modules is crucial to ensure the reliable operation of power electronic systems especially in wind power applications. The important stage in thermal management of power modules is temperature estimation inside the IGBT...... modules. Generally, thermal information on datasheet is used to estimate transistor and diode chip temperatures, but this information is based on average and rough temperature measurements. In addition this information does not consider thermal coupling impact between the chips and the impact of different...... cooling conditions on thermal behavior of power module. In this paper, a detailed 3D thermal network of high power module is presented based on FEM (Finite Element Method) simulation. The thermal coupling impact between chips will be studied and the transient thermal impedances will be examined under...

  2. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  3. Factors affecting thermal infrared images at selected field sites

    Energy Technology Data Exchange (ETDEWEB)

    Sisson, J.B.; Ferguson, J.S.

    1993-07-01

    A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL.

  4. High latitude hydrological changes during the Eocene Thermal Maximum 2

    NARCIS (Netherlands)

    Krishnan, Srinath; Pagani, Mark; Huber, Matthew; Sluijs, Appy

    2014-01-01

    The Eocene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), represent extreme global warming events ~56 and 54 million years ago associated with rapid increases in atmospheric greenhouse gas concentrations. An initial study on PETM

  5. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  6. High-frequency filtering for low-temperature thermal transport studies in nanostructures

    OpenAIRE

    Torgovkin, Andrii

    2012-01-01

    Filtering of external unwanted RF-noise and thermal noise generated at the high-temperature parts of the measuring circuit is essential for successful measurements of thermal transport of nanostructures at low temperatures. This is because of thermal decoupling of the systems, i.e. the extreme weakness of thermal conduction at sub-Kelvin temperatures, leading easily to overheating even with excess power in sub pW range. We have started to improve the noise filtering in our cryogenic diluti...

  7. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  8. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.

    Science.gov (United States)

    Song, Na; Jiao, Dejin; Cui, Siqi; Hou, Xingshuang; Ding, Peng; Shi, Liyi

    2017-01-25

    An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer (LbL) assembly of graphene oxide (GO) and nanofibrillated cellulose (NFC) on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process. The resulting NFC/reduced graphene oxide (RGO) hybrid film reveals an orderly hierarchical structure in which the RGO nanosheets exhibit a high degree of orientation along the in-plane direction. The assembly cycles dramatically increase the in-plane thermal conductivity (λX) of the hybrid film to 12.6 W·m(-1)·K(-1), while the cross-plane thermal conductivity (λZ) shows a lower value of 0.042 W·m(-1)·K(-1) in the hybrid film with 40 assembly cycles. The thermal conductivity anisotropy reaches up to λX/λZ = 279, which is substantially larger than that of similar polymeric nanocomposites, indicating that the LbL assembly on a flexible NFC substrate is an efficient technique for the preparation of polymeric nanocomposites with improved heat conducting property. Moreover, the layered hybrid film composed of 1D NFC and 2D RGO exhibits synergetic mechnical properties with outstanding flexibility and a high tensile strength (107 MPa). The combination of anisotropic thermal conductivity and superior mechanical performance may facilitate the applications in thermal management.

  9. Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies

    Science.gov (United States)

    Spencer; Tamppari; Martin; Travis

    1999-05-28

    Galileo observations of Europa's thermal emission show low-latitude diurnal brightness temperatures in the range of 86 to 132 kelvin. Nighttime temperatures form an unexpected pattern, with high temperatures on the bright ejecta blanket of the crater Pwyll and an equatorial minimum in temperatures after sunset, uncorrelated with surface albedo or geology. The nighttime anomalies may be due to regional thermal inertia variations of an unknown origin, which are equivalent to a two- to threefold variation in thermal conductivity, or to endogenic heat fluxes locally reaching 1 watt per square meter. Endogenic heat flow at this high level, although consistent with some geological evidence, is theoretically unlikely.

  10. Glass-ceramic hermetic seals to high thermal expansion metals

    Science.gov (United States)

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  11. Thermal fatigue issues in high-gradient particle accelerators

    CERN Document Server

    Heikkinen, Samuli Tapio; Neupert, Holger

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN (European Organization for Nuclear Research) as a possible future high-energy (0.5-5 TeV centre-of-mass) physics facility. The current aim of the CLIC Study Team is to demonstrate the key feasibility issues before 2010. CLIC will be about 33 kilometers long and will be buried 100 meters underground. The main linac of CLIC consists of accelerating structures with the following demanding performance requirements: accelerating gradients of about 150 MV/m, power flows of about 200 MW, 1-2 ìm dimensional tolerances, an optical-quality surface finish and ultimately a low mass production cost. About 80% of CLIC's 33 kilometer length will be filled with main beam accelerating structures, which will require of the order of ten thousand tons of raw material and millions of individual parts. One of the main limiting factors of the main linac accelerating structures is the thermal fatigue due to the pulsed surface heating. The accelerating RFpower pulses heat u...

  12. Thin Thermal-Insulation Blankets for Very High Temperatures

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately.

  13. THERMAL MODELS FOR THE FRESCA2 HIGH FIELD MAGNET

    CERN Document Server

    Pietrowicz, S

    2012-01-01

    This report presents the thermal studies and measurement that have been realized, at CEA Saclay, for the thermal design of the Fresca 2 magnet under development in EuCARD HFM program. The first part of the report is dedicated to the numerical study of the thermal behaviour of the Fresca 2 magnet in He II. The second part of the report concerns the experimental measurement on two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber.

  14. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-01-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg’s thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg’s thermal behavior.

  15. Load Responsive MLI: Thermal Insulation with High In-Atmosphere and On-Orbit Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high performance thermal insulation is critical to NASA's next generation Exploration spacecraft. Zero or low cryogenic propellant boiloff is required...

  16. Radiation Abating Highly Flexible Multifunctional Polyimide Cryogenic and Thermal Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of highly flexible thermal insulation materials with multifunctional properties based in polyimide polymers and designed to provide significant...

  17. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  18. Thermally-Stable High Strain Deployable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is for the development of a thermally-stable composite made of carbon fibers and elastomeric resin. This combination of materials will allow...

  19. Chemically and Thermally Stable High Energy Density Silicone Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed effort...

  20. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The new devices and missions to achieve the aims of the NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and...

  1. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  2. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  3. High throughput integrated thermal characterization with non-contact optical calorimetry

    Science.gov (United States)

    Hou, Sichao; Huo, Ruiqing; Su, Ming

    2017-10-01

    Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.

  4. Thermal Modelling of Various Thermal Barrier Coatings in a High Flux Rocket Engine

    Science.gov (United States)

    Nesbitt, James A.

    1998-01-01

    A thermal model was developed to predict the thermal response of coated and uncoated tubes tested in a H2/O2 rocket engine. Temperatures were predicted for traditional APS ZrO2-Y2O3 thermal barrier coatings, as well as APS and LPPS ZrO2-Y2O3/NiCrAlY cermet coatings. Good agreement was observed between predicted and measured metal temperatures at locations near the tube surface or at the inner tube wall. The thermal model was also used to quantitatively examine the effect of various coating system parameters on the temperatures in the substrate and coating. Accordingly, the effect of the presence a metallic bond coat and the effect of radiation from the surface of the ceramic layer were examined. In addition, the effect of a variation in the values of the thermal conductivity of the ceramic layer was also investigated. It was shown that a variation in the thermal conductivity of the ceramic layer, on the order of that reported in the literature for plasma sprayed ZrO2-Y2O3 coatings, can result in temperature differences in the substrate greater than 100 C, a much greater effect than that due to the presence of a bond coat or radiation from the ceramic layer. The thermal model was also used to predict the thermal response of a coated rod in order to quantify the difference in the metal temperatures between the two substrate geometries in order to explain the previously-observed increased life of coatings on rods over that on tubes. It was shown that for the short duration testing in the rocket engine, the temperature in a tube could exceed that in a rod by more than 100 C. Lastly, a two-dimensional model was developed to evaluate the effect of tangential heat transfer around the tube and its impact on reducing the stagnation point temperature. It was also shown that tangential heat transfer does not significantly reduce the stagnation point temperature, thus allowing application of a simpler, one-dimensional model for comparing measured and predicted stagnation point

  5. Inertia and Double Bending of Light from Equivalence

    Science.gov (United States)

    Shuler, Robert L., Jr.

    2010-01-01

    Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.

  6. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  7. Nondecision making and inertia in Portuguese health policy.

    Science.gov (United States)

    Oliveira, Mónica D; Magone, José M; Pereira, João A

    2005-01-01

    Despite there having been a positive context for initiating health care reforms in Portugal in the past fifteen years (accompanied by political consensus on the nature of the structural problems within the health care system), there has been a lack of reform initiatives. We use a process-based framework to show how institutional arrangements have influenced Portuguese health care reform. Evidence is presented to demonstrate inertia and nondecision making in three critical areas of Portuguese health policy: clarifying the public-private mix in coverage and provision, creating financial incentives and motivation for human resources, and introducing changes in the pharmaceutical market. Several factors seem to explain these processes, namely, problems in the balance of power within the political system, which have contributed to a lack of proper policy discussion; a lack of pluralism in the formation of health care policies (with low participation from citizens and high mobilization among structural interest groups); and the low priority of health care in public sector reforms. Portuguese politicians should be aware of the pitfalls of the current political system that constrain participatory arrangements and pluralism in policy making. In order to pursue health care reform, future governments will need to counterbalance the strong influence of structural interest groups.

  8. High latitude hydrological changes during the Eocene Thermal Maximum 2

    Science.gov (United States)

    Krishnan, Srinath; Pagani, Mark; Huber, Matthew; Sluijs, Appy

    2014-10-01

    The Eocene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), represent extreme global warming events ∼56 and 54 million years ago associated with rapid increases in atmospheric greenhouse gas concentrations. An initial study on PETM characteristics in the Arctic region argued for intensification of the hydrological cycle and a substantial increase in poleward moisture transport during global warming based on compound-specific carbon and hydrogen isotopic (2H/1H) records from sedimentary leaf-wax lipids. In this study, we apply this isotopic and hydrological approach on sediments deposited during ETM2 from the Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302). Our results show similar 2H/1H changes during ETM2 as during the PETM, with a period of 2H-enrichment (∼ 20 ‰) relative to ;pre-event; values just prior to the negative carbon isotope shift (CIE) that is often taken as the onset of the hyperthermal, and more negative lipid δ2H values (∼ - 15 ‰) during peak warming. Notably, lipid 2H-enrichment at the base of the event is coeval with colder TEX86H temperatures. If 2H/1H values of leaf waxes primarily reflect the hydrogen isotopic composition of precipitation, the observed local relationship between temperature and 2H/1H values for the body of ETM2 is precisely the opposite of what would be predicted using a simple Rayleigh isotope distillation model, assuming a meridional vapor trajectory and a reduction in equator-pole temperature gradients. Overall, a negative correlation exists between the average chain length of n-alkanes and 2H/1H suggesting that local changes in ecology could have impacted the hydrogen isotopic compositions of leaf waxes. The negative correlation falls across three separate intervals - the base of the event, the initial CIE, and during the H2 hyperthermal (of which the assignment is not fully certain). Three possible mechanisms potentially explain 2H

  9. Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors

    Science.gov (United States)

    Khalili, Farid; Danilishin, Stefan; Müller-Ebhardt, Helge; Miao, Haixing; Chen, Yanbei; Zhao, Chunnong

    2011-03-01

    We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a “negative inertia,” which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass standard quantum limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancellation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise-cancellation schemes. We show that it is feasible to demonstrate such an effect with the Gingin High Optical Power Test Facility, and it can eventually be implemented in future advanced GW detectors.

  10. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  11. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    Science.gov (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  12. High Energy Advanced Thermal Storage for Spacecraft Solar Thermal Power and Propulsion Systems

    Science.gov (United States)

    2011-10-12

    on the fiberglass dish template failed due to difficulties in controlling extra reactions during chemical spraying . This degraded the clear coat...enough to allow relatively large thermal gradients during the heating process. Pyrolytic BN is favorable material for future crucible designs that

  13. Moment of inertia of liquid in a tank

    Directory of Open Access Journals (Sweden)

    Gyeong Joong Lee

    2014-03-01

    Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.

  14. Factors associated with clinical inertia: an integrative review

    Science.gov (United States)

    Aujoulat, Isabelle; Jacquemin, Patricia; Rietzschel, Ernst; Scheen, André; Tréfois, Patrick; Wens, Johan; Darras, Elisabeth; Hermans, Michel P

    2014-01-01

    Failure to initiate or intensify therapy according to evidence-based guidelines is increasingly being acknowledged as a phenomenon that contributes to inadequate management of chronic conditions, and is referred to as clinical inertia. However, the number and complexity of factors associated with the clinical reasoning that underlies the decision-making processes in medicine calls for a critical examination of the consistency of the concept. Indeed, in the absence of information on and justification of treatment decisions that were made, clinical inertia may be only apparent, and actually reflect good clinical practice. This integrative review seeks to address the factors generally associated with clinical inaction, in order to better delineate the concept of true clinical inertia. PMID:24868181

  15. High-efficiency thermal switch based on topological Josephson junctions

    Science.gov (United States)

    Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.

    2017-02-01

    We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.

  16. Thermal Response to High-Power Holmium Laser Lithotripsy.

    Science.gov (United States)

    Aldoukhi, Ali H; Ghani, Khurshid R; Hall, Timothy L; Roberts, William W

    2017-12-01

    The aim of this study was to investigate "caliceal" fluid temperature changes during holmium laser activation/lithotripsy using settings up to 40 W power output with different irrigation flow rates. The experimental system consisted of a glass test tube (diameter 10 mm/length 75 mm) filled with deionized water, to mimic a calix. Real-time temperature was recorded using a thermocouple (Physitemp, NJ) positioned 5 mm from the bottom of the tube. A 200 μm laser fiber (Flexiva; Boston Scientific, MA) was introduced through the working channel of a disposable ureteroscope (LithoVue; Boston Scientific) and the laser fiber tip was positioned 15 mm above the bottom of the test tube. Deionized water irrigation (room temperature) through the working channel of the ureteroscope was delivered at flow rates of 0, 7-8, 14-15, and 38-40 mL/minute. A 120-W holmium laser (pulse 120; Lumenis, CA) was used. The following settings were explored: 0.5 J × 10 Hz, 1.0 J × 10 Hz, 0.5 J × 20 Hz, 1.0 J × 20 Hz, 0.5 J × 40 Hz, 1.0 J × 40 Hz, and 0.5 J × 80 Hz. During each experiment, the laser was activated continuously for 60 seconds. Temperature increased with increasing laser power output and decreasing irrigation flow rate. The highest temperature, 70.3°C (standard deviation 2.7), occurred with laser setting of 1.0 J × 40 Hz and no irrigation after 60 seconds of continuous laser firing. None of the tested laser settings and irrigation parameters produced temperature exceeding 51°C when activated for only 10 seconds of continuous laser firing. High-power holmium settings fired in long bursts with low irrigation flow rates can generate high fluid temperatures in a laboratory "caliceal" model. Awareness of this risk allows urologist to implement a variety of techniques (higher irrigation flow rates, intermittent laser activation, and potentially cooled irrigation fluid) to control and mitigate thermal

  17. Herschel-PACS high-precision FIR fluxes of NEAs and MBAs

    Science.gov (United States)

    Müller, T.; Kiss, C.; Ali-Lagoa, V.

    2017-09-01

    We present unique and high-precision Herschel-PACS photometer far-IR observations of near-Earth and main-belt asteroids. These measurements are used for radiometric studies of unprecedented accuracy, resulting in sizes, albedos, thermal inertias, emissivities, and surface roughness for six important NEAs and more than 20 large MBAs.

  18. Analysis of thermal expansivity of iron (Fe) metal at ultra high ...

    Indian Academy of Sciences (India)

    Abstract. In the present investigation we have explained the thermal and compression properties of HCP iron (Fe) at high pressure with variable temperature (isobars) and at high temperature with variable pressure (isotherm). The usual Tait equation of state is modified by incorporating the effect of thermal pressure.

  19. High Temperature Thermal Properties of Bentonite Foundry Sand

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2015-06-01

    Full Text Available The paper presents results of measuring thermal conductivity and heat capacity of bentonite foundry sand in temperature range ambient - 900­­°C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured casting.

  20. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  1. Thermal strain of pipes composed with high strength polyethylene fiber reinforced plastics at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kashima, Toshihiro; Yamanaka, Atsuhiko [Toyobo Co., Ltd., Shiga (Japan); Okada, Toichi [Osaka Univ. (Japan)] [and others

    1997-06-01

    High strength polyethylene fiber(Dyneema{reg_sign} fiber; herein after abbreviated to DF) has a large negative thermal expansion coefficient. Several kinds of pipes were prepared by means of filament winding or sheet winding method. The thermal strain or residual stress of those pipes were measured at liquid nitrogen temperature. The thermal strain was also calculated and was compared with the measured values. The circumferential thermal strain of the inner surface was found to be much different from that of outer surface. The circumferential strain changed with the ratio of inner diameter to thickness of pipes. The mean thermal strain of inner and outer surface was found to agree well with that of calculated value. It was confirmed that the negative thermal expansion can be realized even in the pipes. The design methodology of the pipes with negative thermal expansion was discussed.

  2. Sleep Inertia: Is There a Worst Time to Wake Up?

    Science.gov (United States)

    1992-07-07

    deprivation without naps we almost never have had a subject withdraw. Perhaps, long-term training in taking many short naps or polyphasic sleep to replace...AD-A256 602 HhIllllM 111lUIIHflllhE’l’• II SLEEP INERTIA: IS THERE A WORST TIME TO WAKE UP? DTIC Aa ELECTE OCT 2 81992 T. Kelly --A 11. akoff 92...BETHESDA. MARYLAND SLEEP INERTIA: IS THERE A WORST TIME TO WAKE-UP? Paul Naitoh*, Tamsin Kelly* and Harvey Babkoff** *Naval Health Research Center P.O

  3. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  4. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  5. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    but rely on the concentration of hydrogen. The model ... first-order rate law. Lehmhus and Rausch (2004) have annealed TiH2 pow- der in air and argon. In argon, the powder does not develop a surface layer and as a result, a small amount of hydro- gen is lost ... rate effect on the thermal decomposition behaviour of TiH2.

  6. Thin Thermal-Insulation Blankets for Very High Temperatures

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).

  7. The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics

    Directory of Open Access Journals (Sweden)

    Esmail Pishbin

    2016-12-01

    Full Text Available The flow of liquids in centrifugal microfluidics is unidirectional and dominated by centrifugal and Coriolis forces (i.e., effective only at T-junctions. Developing mechanisms and discovering efficient techniques to propel liquids in any direction other than the direction of the centrifugal force has been the subject of a large number of studies. The capillary force attained by specific surface treatments, pneumatic energy, active and passive flow reciprocation and Euler force have been previously introduced in order to manipulate the liquid flow and push it against the centrifugal force. Here, as a new method, the moment of inertia of the liquid inside a chamber in a centrifugal microfluidic platform is employed to manipulate the flow and propel the liquid passively towards the disc center. Furthermore, the effect of the moment of inertia on the liquid in a rectangular chamber is evaluated, both in theory and experiments, and the optimum geometry is defined. As an application of the introduced method, the moment of inertia of the liquid is used in order to mix two different dyed deionized (DI waters; the mixing efficiency is evaluated and compared to similar mixing techniques. The results show the potential of the presented method for pumping liquids radially inward with relatively high flow rates (up to 23 mm3/s and also efficient mixing in centrifugal microfluidic platforms.

  8. A High Heat Flux Facility Design for Testing of Advanced Hydrocarbon Fuel Thermal Stability

    National Research Council Canada - National Science Library

    Maas, E; Irvine, S; Bates, R; Auyeung, T

    2004-01-01

    .... Of the existing thermal stability test rigs, none have the ability to accurately simulate the high heat flux conditions that will exist in the cooling channels of these new high-pressure hydrocarbon engines...

  9. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  10. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    Directory of Open Access Journals (Sweden)

    Romero Manuel

    2016-01-01

    Full Text Available Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Arab Emirates or Morocco. Prices for electricity produced by today's plants fill the range from 12 to 16 c€/kWh and they are capital intensive with investments above 4000 €/kW, depending on the number of hours of thermal storage. The urgent need to speed up the learning curve, by moving forward to LCOE below 10 c€/kWh and the promotion of sun-to-fuel applications, is driving the R&D programmes. Both, industry and R&D community are accelerating the transformation by approaching high-flux/high-temperature technologies and promoting the integration with high-efficiency conversion systems.

  11. High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites

    Science.gov (United States)

    2014-03-01

    assumptions of  iso thermal test sections  were inaccurate • Demonstrated shielding efficiency of approx.  55% with hand polished aluminum shields • Must...Calculations TWO IMPULSE ONE PERIGEE BURN ONE APOGEE BURN TIW > 0.01 .. ’• ’ \\ ’ ’ ’ • (!),/ LEO TO GEO 14000 ~ I!N < 17000 FPS TRIP TIME < DAY...I MULTI I MPU SE MORE THAN ONf PER I GEE BURNS AND PWRE THAN ON£ nlNSERTJON" BURNS NEAR FINAL APOGEE LEO TO GEO 14000 ~ /lV ~ 19200 FPS TRIP

  12. Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka

    Directory of Open Access Journals (Sweden)

    Yuan Jihui

    2017-01-01

    Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.

  13. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  14. Negative thermal expansion and its relation to high pressures

    Science.gov (United States)

    Sikka, S. K.

    2004-04-01

    Most materials expand when heated. However, many exceptions are now known. Recently, interest in this has been revived with the discovery of isotropic negative thermal expansion (NTE) in ZrW2O8. From equation of state considerations, one can relate NTE to negative Grüneisen parameters (thermal or electronic). Under pressure, these lead to equation of state anomalies with the pressure derivative of the bulk modules being small or negative. Many of these materials undergo pressure-induced amorphization. This in some of them can be understood on the steric constraint model. It is also argued that NTE in most materials may be understood from the fact that these materials have two degenerate or nearly degenerate energy states. On increase of temperature, the material then samples the lower volume state, leading to NTE.

  15. An overview of high thermal conductive hot press forming die material development

    Directory of Open Access Journals (Sweden)

    A.R. Zulhishamuddin

    2015-12-01

    Full Text Available Most of the automotive industries are using high strength steel components, which are produced via hot press forming process. This process requires die material with high thermal conductivity that increases cooling rate during simultaneous quenching and forming stage. Due to the benefit of high quenching rate, thermal conductive die materials were produced by adding carbide former elements. This paper presents an overview of the modification of alloying elements in tool steel for high thermal conductivity properties by transition metal elements addition. Different types of manufacturing processes involved in producing high thermal conductive materials were discussed. Methods reported were powder metallurgy hot press, direct metal deposition, selective laser melting, direct metal laser sintering and spray forming. Elements likes manganese, nickel, molybdenum, tungsten and chromium were proven to increase thermal conductivity properties. Thermal conductivity properties resulted from carbide network presence in the steel microstructure. To develop feasible and low cost hot press forming die material, casting of Fe-based alloy with carbide former composition can be an option. Current thermal conductivity properties of hot press forming die material range between 25 and 66 W/m.K. The wide range of thermal conductivity varies the mechanical properties of the resulting components and lifetime of HPF dies.

  16. Novel high refractive index, thermally conductive additives for high brightness white LEDs

    Science.gov (United States)

    Hutchison, Richard Stephen

    In prior works the inclusion of nanoparticle fillers has typically been shown to increase the thermal conductivity or refractive index of polymer nanocomposites separately. High refractive index zirconia nanoparticles have already proved their merit in increasing the optical efficiency of encapsulated light emitting diodes. However, the thermal properties of zirconia-silicone nanocomposites have yet to be investigated. While phosphor-converted light emitting diodes are at the forefront of solid-state lighting technologies for producing white light, they are plagued by efficiency losses due to excessive heating at the semiconductor die and in and around the phosphor particles, as well as photon scattering losses in the phosphor layer. It would then be of great interest if the high refractive index nanoparticles were found to both be capable of increasing the refractive index, thus reducing the optical scattering, and also the thermal conductivity, channeling more heat away from the LED die and phosphors, mitigating efficiency losses from heat. Thermal conductance measurements on unfilled and nanoparticle loaded silicone samples were conducted to quantify the effect of the zirconia nanoparticle loading on silicone nanocomposite thermal conductivity. An increase in thermal conductivity from 0.27 W/mK to 0.49 W/mK from base silicone to silicone with 33.5 wt% zirconia nanoparticles was observed. This trend closely mirrored a basic rule of mixtures prediction, implying a further enhancement in thermal conductivity could be achieved at higher nanoparticle loadings. The optical properties of transparency and light extraction efficiency of these composites were also investigated. While overall the zirconia nanocomposite showed good transparency, there was a slight decrease at the shorter wavelengths with increasing zirconia content. For longer wavelength LEDs, such as green or red, this might not matter, but phosphor-converted white LEDs use a blue LED as the photon source

  17. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  18. Application of inertia-induced excitation theory for nonlinear acoustic ...

    Indian Academy of Sciences (India)

    Application of inertia-induced acoustic excitation theory offers a new resonant excitation source channel of acoustic turbulence in the transonic domain of plasma flow. In bi-ion plasmas like colloidal plasma, two well-defined transonic points exist corresponding to the parent ion and the dust grain-associated acoustic modes.

  19. Determinacy, stock market dynamics and monetary policy inertia

    DEFF Research Database (Denmark)

    Pfajfar, Damjan; Santoro, Emiliano

    2011-01-01

    We study equilibrium determinacy in a New-Keynesian model where the Central Bank responds to asset prices growth. Unlike Taylor-type rules that react to asset prices, the proposed alternative does not harm dynamic stability and in certain cases promotes determinacy by inducing interest-rate inertia....

  20. Caffeine eliminates psychomotor vigilance deficits from sleep inertia.

    Science.gov (United States)

    Van Dongen, H P; Price, N J; Mullington, J M; Szuba, M P; Kapoor, S C; Dinges, D F

    2001-11-01

    This study sought to establish the effects of caffeine on sleep inertia, which is the ubiquitous phenomenon of cognitive performance impairment, grogginess and tendency to return to sleep immediately after awakening. 28 normal adult volunteers were administered sustained low-dose caffeine or placebo (randomized double-blind) during the last 66 hours of an 88-hour period of extended wakefulness that included seven 2-hour naps during which polysomnographical recordings were made. Every 2 hours of wakefulness, and immediately after abrupt awakening from the naps, psychomotor vigilance performance was tested. N/A. N/A. N/A. In the placebo condition, sleep inertia was manifested as significantly impaired psychomotor vigilance upon awakening from the naps. This impairment was absent in the caffeine condition. Caffeine had only modest effects on nap sleep. Caffeine was efficacious in overcoming sleep inertia. This suggests a reason for the popularity of caffeine-containing beverages after awakening. Caffeine's main mechanism of action on the central nervous system is antagonism of adenosine receptors. Thus, increased adenosine in the brain upon awakening may be the cause of sleep inertia.

  1. The effects of sleep inertia on decision-making performance.

    Science.gov (United States)

    Bruck, D; Pisani, D L

    1999-06-01

    Sleep inertia, the performance impairment that occurs immediately after awakening, has not been studied previously in relation to decision-making performance. Twelve subjects were monitored in the sleep laboratory for one night and twice awoken by a fire alarm (slow wave sleep, SWS and REM sleep). Decision making was measured over 10 3-min trials using the 'Fire Chief' computer task under conditions of baseline. SWS and REM arousal. The most important finding was that sleep inertia reduces decision-making performance for at least 30 min with the greatest impairments (in terms of both performance and subjective ratings) being found within 3 min after abrupt nocturnal awakening. Decision-making performance was as little as 51% of optimum (i.e. baseline) during these first few minutes. However, after 30 min. performance may still be as much as 20% below optimum. The initial effects of sleep inertia during the first 9 min are significantly greater after SWS arousal than after REM arousal, but this difference is not sustained. Decision-making performance after REM arousal showed more variability than after SWS arousal. Subjects reported being significantly sleepier and less clear-headed following both SWS and REM awakenings compared with baseline and this was sustained across the full 30 min. In order to generalize this finding to real-life situations, further research is required on the effects of continuous noise, emotional arousal and physical activity on the severity and duration of sleep inertia.

  2. More about the moment of inertia of Mars

    Science.gov (United States)

    Kaula, William M.; Sleep, Norman H.; Phillips, Roger J.

    1989-01-01

    Differences between Mars and other terrestrial planets are discussed. Unlike other terrestrial planets, Mars has two nonhydrostatic components of moments of inertia that are nearly equal. The most probable value of I/MR-squared is slightly less than 0.3650.

  3. Time to wake up: reactive countermeasures to sleep inertia.

    Science.gov (United States)

    Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan

    2016-12-07

    Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured review summarises current literature on reactive countermeasures to sleep inertia such as caffeine, light, and temperature and discusses evidence for the effectiveness and operational viability of each approach. Current literature does not provide a convincing evidence-base for a reactive countermeasure. Caffeine is perhaps the best option, although it is most effective when administered prior to sleep and is therefore not strictly reactive. Investigations into light and temperature have found promising results for improving subjective alertness; further research is needed to determine whether these countermeasures can also attenuate performance impairment. Future research in this area would benefit from study design features highlighted in this review. In the meantime, it is recommended that proactive sleep inertia countermeasures are used, and that safety-critical tasks are avoided immediately after waking.

  4. Chimera states in coupled Kuramoto oscillators with inertia

    Energy Technology Data Exchange (ETDEWEB)

    Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it [CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino (Italy)

    2015-12-15

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  5. Thermal properties of high temperature vacuum receivers used for parabolic trough solar thermal power system

    Directory of Open Access Journals (Sweden)

    Qinghe Yu

    2017-08-01

    Full Text Available The receiver's emittance and vacuum pressure are the two of great significance issues on the heat-loss which is the main factor reducing the efficiency of the parabolic though systems. In this paper, the thermal steady-state equilibrium method was used to test the receivers’ heat-loss. The receivers with increasing emittance were tested to study the variation of heat-loss. Meanwhile, the variable vacuum pressure in the annulus that affects the efficiency of the system was investigated. The influence of vacuumizing rate and getters on the vacuum pressure and heat-loss were discussed. The result shows that the emittance and vacuum pressure affect the receiver's heat-loss dramatically, and the emittance is the major influence factor on the thermal properties. The receiver with 0.08 emittance and 10−3 Pa vacuum pressure has a satisfactory heat-loss of 215.6 W/m at 400 °C. The analysis further reveals that the synergistic effect of both emittance and vacuum pressure on the heat-loss can be reflected by the packaging temperature of the glass tube, and a fitting formula has been established to estimate the receivers’ heat-loss according to the packaging temperature of the glass tube.

  6. The Aristotelian definition of motion and the principle of inertia

    Science.gov (United States)

    McLaughlin, Thomas J.

    2001-07-01

    This dissertation argues that Newton's First Law of Motion, also known as the principle of inertia, is compatible with the Aristotelian definition of motion accepted by St. Thomas Aquinas and with the mover causality principle, which follows from that definition. The argument distinguishes Aquinas' general principles of natural philosophy from his more specific principles of nature. Thus, one can abandon Aquinas' geocentric cosmology without rejecting his entire philosophy of nature, which includes principles such as the four causes, the mover causality principle, and the definitions of motion and time. That is, the Aristotelian conception of what motion is as such does not depend upon Aquinas' accounts of gravitational, projectile, and celestial motion. After explaining what Aquinas means by the definition of motion, "the act of a being in potency insofar as it is in potency," I argue that Aquinas' view of the mover causality principle, "whatever is moved is moved by another," has been frequently misunderstood. Aquinas did not hold that the mover causality principle requires a continuously acting mover to sustain a body's motion. I then show, using Newton's examples of the First Law of Motion, his conception of inertia, the common practice of physicists and astronomers, and other arguments, that the principle of inertia requires a version of the mover causality principle that is compatible with Aquinas' own understanding. I then argue that the principle of inertia is distinct from the philosophical framework within which it has been commonly and historically conceived. In this framework, motion is no longer thought of as a coming to be but is considered a first principle or an unchanging primary quality, a view that the principle of inertia seemingly instantiates through the notion of a "state." This philosophical framework distorts the understanding of the principle of inertia. I argue that the principle of inertia is more intelligibly understood in light of the

  7. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  8. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  9. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available The development of high temperature thermal storage systems is required to increase the solar share of solar-hybrid gas turbine cycles. This paper proposes a pressurised packed bed of Encapsulated Phase Change Materials (EPCM) as a thermal storage...

  10. Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios

    DEFF Research Database (Denmark)

    Shayesteh, M.; O'Connell, D.; Gity, F.

    2014-01-01

    The authors compared the influence of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical performance of phosphorus and arsenic doped n+/p junction. High carrier concentration above 1020 cm-3 as well as an ION/IOFF ratio of approximately 105 and ide...

  11. Experimental Preparation and Numerical Simulation of High Thermal Conductive Cu/CNTs Nanocomposites

    Directory of Open Access Journals (Sweden)

    Muhsan Ali Samer

    2014-07-01

    Full Text Available Due to the rapid growth of high performance electronics devices accompanied by overheating problem, heat dissipater nanocomposites material having ultra-high thermal conductivity and low coefficient of thermal expansion was proposed. In this work, a nanocomposite material made of copper (Cu reinforced by multi-walled carbon nanotubes (CNTs up to 10 vol. % was prepared and their thermal behaviour was measured experimentally and evaluated using numerical simulation. In order to numerically predict the thermal behaviour of Cu/CNTs composites, three different prediction methods were performed. The results showed that rules of mixture method records the highest thermal conductivity for all predicted composites. In contrast, the prediction model which takes into account the influence of the interface thermal resistance between CNTs and copper particles, has shown the lowest thermal conductivity which considered as the closest results to the experimental measurement. The experimentally measured thermal conductivities showed remarkable increase after adding 5 vol.% CNTs and higher than the thermal conductivities predicted via Nan models, indicating that the improved fabrication technique of powder injection molding that has been used to produced Cu/CNTs nanocomposites has overcome the challenges assumed in the mathematical models.

  12. Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements....... The thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....

  13. High-Flux, High-Temperature Thermal Vacuum Qualification Testing of a Solar Receiver Aperture Shield

    Science.gov (United States)

    Kerslake, Thomas W.; Mason, Lee S.; Strumpf, Hal J.

    1997-01-01

    As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LERC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world's first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal Multi-Foil Insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near

  14. Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation

    Science.gov (United States)

    Evans, Owen; Rhine, Wendell; Coutinho, Decio

    2010-01-01

    This work has shown that the use of SOC-A35 leads to aerogel materials containing a significant concentration of carbidic species and limited amorphous free carbon. Substitution of the divalent oxide species in silica with tetravalent carbidic carbon has directly led to materials that exhibit increased network viscosity, reduced sintering, and limited densification. The SiOC aerogels produced in this work have the highest carbide content of any dense or porous SiOC glass reported in the literature at that time, and exhibit tremendous long-term thermal stability.

  15. Inércia clínica e controle da hipertensão arterial nas unidades de atenção primária à saúde Therapeutic inertia and control of high blood pressure in primary health care units

    Directory of Open Access Journals (Sweden)

    Clóvis Hoepfner

    2010-08-01

    Full Text Available FUNDAMENTO: A importância do manejo adequado e do controle da hipertensão arterial (HA. OBJETIVO: Estimar a prevalência do controle da hipertensão arterial e da inércia terapêutica em adultos atendidos nas unidades básicas da saúde (UBS do município de Joinville e dos fatores associados. MÉTODOS: Estudo transversal, com amostragem por conglomerados, mediante pesquisa em prontuários, em que foram avaliados 415 portadores de HA. Foram avaliados a pressão arterial (PA, os incrementos terapêuticos, os fatores de risco e as comorbidades associadas. RESULTADOS: Houve predomínio do sexo feminino e de consultas de enfermagem. A idade variou entre 28 e 90 anos (média de 61,5 anos. Observou-se redução das médias da PA (155,8 ± 20,8/95,7 ±10,6 mmHg para 140,3 ± 22/84,1 ± 12,4 mmHg entre o primeiro e o último registro e a PA final normal em 36,6% dos pacientes, semelhante para homens e mulheres. Nos últimos 12 meses, a PA esteve elevada em 1.295 ocasiões, ocorrendo incremento terapêutico em apenas 156 (12,0%. Foram usados 1,85 fármacos por paciente, predominando diuréticos e IECA. Encontrou-se elevada prevalência de obesidade (40%, diabete (41%, LDL elevado (46% e de hipertrofia ventricular esquerda (25,5%. CONCLUSÃO: A elevada inércia clínica, o baixo controle da HA e a elevada presença de comorbidades sugerem a necessidade de programas de educação permanente para os profissionais da saúde e de outras medidas para melhorar o controle da doença nas UBS.BACKGROUND: The importance of adequate management and control of high blood pressure (HBP. OBJECTIVE: To estimate the prevalence of hypertension control and therapeutic inertia among adults treated at primary health care units (PHCU in the city of Joinville, as well as the associated factors. METHODS: A cross-sectional study, which included cluster sampling and analysis of medical records, with the evaluation of 415 patients with high blood pressure. We evaluated the blood

  16. High-resolution texturing of building facades with thermal images

    Science.gov (United States)

    Scaioni, Marco; Rosina, Elisabetta; Barazzetti, Luigi; Previtali, Mattia; Redaelli, Veronica

    2012-06-01

    This paper presents two methodologies able to map a block of IR thermal and RGB images on 3D models derived from terrestrial laser scanning surveying. Proposed methods stand out from other traditional approaches that are mainly based on the projection of single images through approximate models. The first method is a rigorous photogrammetric orientation through a bundle adjustment integrating both RGB and thermal data. Then, another complementary solution based on the use of a calibrated 'bi-camera' system is illustrated. Both methods allows one to texture building facades (reconstructed with 3D models) with their temperature values. Finally, several products can be extracted and managed in different data processing environments: triangulated models to visualize 3D spatial information and to analyze 3D heating diffusion on the surface; raster datasets (e.g. orthophotos or rectified images) with temperature as radiometric value. Both approaches were tested on different buildings of Politecnico di Milano University, where a restoration project of historical and modern facades is currently work in progress.

  17. The effect of directional inertias added to pelvis and ankle on gait

    NARCIS (Netherlands)

    Meuleman, J.H.; Van Asseldonk, E.H.F.; Van der Kooij, H.

    2013-01-01

    Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML)

  18. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...... the multi-layer thermal coupling among chips is proposed. The impacts to the thermal impedance by various cooling and heating conditions are also studied. It is concluded that the heating and cooling conditions will have influence on the junction to case thermal impedances and need to be carefully...

  19. Duration of sleep inertia after napping during simulated night work and in extended operations.

    Science.gov (United States)

    Signal, Tracey Leigh; van den Berg, Margo J; Mulrine, Hannah M; Gander, Philippa H

    2012-07-01

    Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n = 12, mean age = 25.1 yrs; Protocol 2: n = 12, mean age = 23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00 h after ∼20 h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00 h after ∼30 h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15 min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45 min post-awakening for naps of 40 min or more. In ANOVAs

  20. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  1. Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, Van der L.; Grauwet, T.; Verlinde, P.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2012-01-01

    This report describes the first study comparing different high pressure (HP) and thermal treatments at intensities ranging from mild pasteurization to sterilization conditions. To allow a fair comparison, the processing conditions were selected based on the principles of equivalence. Moreover,

  2. High-resolution nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using gas permeable mold

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto

    2017-03-01

    We report high-resolution (150 nm) nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using dichloromethane as a volatile solvent for improving the liquidity and a porous cyclodextrin-based gas-permeable mold. This study demonstrates the high-resolution patterning of polylactic acid and other non-liquid functional materials with poor fluidity by thermal nanoimprinting. Such a patterning is expected to expand the utility of thermal nanoimprint lithography and fabricate non-liquid functional materials suitable for eco-friendly and biomedical applications.

  3. Highly Thermally Conductive Composite Papers Prepared Based on the Thought of Bioinspired Engineering.

    Science.gov (United States)

    Yao, Yimin; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2016-06-22

    The rapid development of modern electronics and three-dimensional integration sets stringent requirements for efficient heat removal of thermal-management materials to ensure the long lifetime of the electronics. However, conventional polymer composites that have been used widely as thermal-management materials suffer from undesired thermal conductivity lower than 10 W m(-1) K(-1). In this work, we report a novel thermally conductive composite paper based on the thought of bioinspired engineering. The advantage of the bioinspired papers over conventional composites lies in that they possess a very high in-plane thermal conductivity up to 21.7 W m(-1) K(-1) along with good mechanical properties and high electrical insulation. We attribute the high thermal conductivity to the improved interfacial interaction between assembled components through the introduction of silver nanoparticles and the oriented structure based on boron nitride nanosheets and silicon carbide nanowires. This thought based on bioinspired engineering provides a creative opportunity for design and fabrication of novel thermally conductive materials, and this kind of composite paper has potential applications in powerful integrated microelectronics.

  4. Thermal comfort and clothing insulation of resting tent occupants at high altitude.

    Science.gov (United States)

    Cena, Krzysztof; Davey, Nicole; Erlandson, Tamara

    2003-11-01

    Thirty-nine males and 18 females, in six groups, participated in six high altitude treks (each lasting 3-4 weeks and climbing up to 5500m) in the Himalaya and Karakoram. Inverse relationships between mean overnight total insulation (sleeping bag plus clothing) and air temperature in tents were recorded for all treks. Average overnight thermal sensations varied little with air temperature as the subjects modified their clothing insulation to maintain thermal sensations warmer than 'neutral' for all treks. For combined treks, subjects adjusted their mean overnight total insulation up to 7clo for thermal sensations of between 0 ('neutral') and +1 ('slightly warm') on average, measured on the standard seven-point thermal sensation scale developed for everyday low-altitude conditions. Very few subjects (3% of all daily responses, on average) reported 'cool' or 'cold' sensations. General tent discomfort increased with altitude suggesting that subjects interpreted tent comfort predominantly in terms of thermal outdoor conditions.

  5. Thermal Impedance Model of High Power IGBT Modules Considering Heat Coupling Effects

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2014-01-01

    Thermal loading of Insulated Gate Bipolar Transistor (IGBT) modules is important for the reliability performance of power electronic systems, thus the thermal information of critical points inside module like junction temperature must be accurately modeled and predicted. Usually in the existing...... thermal models, only the self-heating effects of the chips are taken into account, while the thermal coupling effects among chips are less considered. This could result in inaccurate temperature estimation, especially in the high power IGBT modules where the chips are allocated closely to each other...... with large amount of heat generated. In this paper, both the self-heating and heat-coupling effects in the of IGBT module are investigated based on Finite Element Method (FEM) simulation, a new thermal impedance model is thereby proposed to better describe the temperature distribution inside IGBT modules...

  6. Thermally stable conformal encapsulation material for high-power ultraviolet light-emitting diodes

    Science.gov (United States)

    Huang, Shun-Yuan; Wang, Jau-Sheng

    2017-07-01

    A conformal encapsulation material for use in high-power, thermally stable ultraviolet (UV) light-emitting diodes was successfully developed. For silicone, thermal degradation started at ˜200°C, and the transmittance was 85.5% at 365 nm. The transmittance decreased by 55% after thermal aging at 250°C for 72 h and it decreased further by 2.5%, even at room temperature, under continuous exposure to UV light at 365 nm for 72 h. By contrast, for the sol-gel material, thermal degradation started at ˜300°C, and the transmittance was 90% at 365 nm. The transmittance decreased negligibly after thermal aging at 250°C for 72 h and it did not decrease further even at 75°C under continuous exposure to UV light at 365 nm for 72 h.

  7. Simulation of thermal ablation by high-intensity focused ultrasound with temperature-dependent properties.

    Science.gov (United States)

    Huang, C W; Sun, M K; Chen, B T; Shieh, J; Chen, C S; Chen, W S

    2015-11-01

    An integrated computational framework was developed in this study for modeling high-intensity focused ultrasound (HIFU) thermal ablation. The temperature field was obtained by solving the bioheat transfer equation (BHTE) through the finite element method; while, the thermal lesion was considered as a denatured material experiencing phase transformation and modeled with the latent heat. An equivalent attenuation coefficient, which considers the temperature-dependent properties of the target material and the ultrasound diffraction due to bubbles, was proposed in the nonlinear thermal transient analysis. Finally, a modified thermal dose formulation was proposed to predict the lesion size, shape and location. In-vitro thermal ablation experiments on transparent tissue phantoms at different energy levels were carried out to validate this computational framework. The temperature histories and lesion areas from the proposed model show good correlation with those from the in-vitro experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thermal analysis method of high capacity communications satellite with heat pipes

    Science.gov (United States)

    Tsunoda, Hiroaki; Nakajima, Katsuhiko; Miyasaka, Akihiro

    Thermal analysis method for heat pipe embedded communications equipment panel is treated in this paper. The main problem of the thermal analysis is how to construct the mathematical model under the limitation of computer CPU memory size. The mathematical model for the heat pipe embedded panel is first established based on the experiments. The essence of this method is to divide panel area into several small regions and perform thermal analysis independently using the fact of low thermal conductivity of honeycomb sandwich panel. To check the correctness of this method, the experiment using the test panel which thermally simulates the north communications equipment panel of two-ton class high capacity communications satellite has been conducted. The experiment shows the method works well.

  9. Modified Particle Swarm Optimization using Nonlinear Decreased Inertia Weight

    Directory of Open Access Journals (Sweden)

    Alrijadjis .

    2016-04-01

    Full Text Available Particle Swarm Optimization (PSO has demonstrated great performance in various optimization problems. However, PSO has weaknesses, namely premature convergence and easy to get stuck or fall into local optima for complex multimodal problems. One of the causes of these weaknesses is unbalance between exploration and exploitation ability in PSO. This paper proposes a Modified Particle Swarm Optimization (MPSO using nonlinearly decreased inertia weight called MPSO-NDW to improve the balance. The key idea of the proposed method is to control the period and decreasing rate of exploration-exploitation ability. The investigation with three famous benchmark functions shows that the accuracy, success rate, and convergence speed of the proposed MPSO-NDW is better than the common used PSO with linearly decreased inertia weight or called PSO-LDW Keywords: particle swarm optimization (PSO, premature convergence, local optima, exploration ability, exploitation ability.

  10. Effects of electron inertia in collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)

    2014-07-15

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.

  11. Data on blueberry peroxidase kinetic characterization and stability towards thermal and high pressure processing

    Directory of Open Access Journals (Sweden)

    Netsanet Shiferaw Terefe

    2017-08-01

    Full Text Available The data presented in this article are related to a research article entitled ‘Thermal and high pressure inactivation kinetics of blueberry peroxidase’ (Terefe et al., 2017 [1]. In this article, we report original data on the activity of partially purified blueberry peroxidase at different concentrations of hydrogen peroxide and phenlylenediamine as substrates and the effects of thermal and high pressure processing on the activity of the enzyme. Data on the stability of the enzyme during thermal (at temperatures ranging from 40 to 80 °C and combined thermal-high pressure processing (100–690 MPa, 30–90 °C are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers and allow statistical analyses and modeling by others in the field.

  12. Factors associated with clinical inertia: an integrative review

    Directory of Open Access Journals (Sweden)

    Aujoulat I

    2014-05-01

    Full Text Available Isabelle Aujoulat,1 Patricia Jacquemin,1 Ernst Rietzschel,2 André Scheen,3 Patrick Tréfois,4 Johan Wens,5 Elisabeth Darras,1 Michel P Hermans6 1Université Catholique de Louvain, Institute of Health and Society, Brussels, 2Ghent University, Department of Cardiovascular Diseases and Department of Public Health, Faculty of Medicine and Health Sciences, Ghent, 3University of Liège, Division of Diabetes, Nutrition and Metabolic Disorders and Clinical Pharmacology Unit, CHU Liège, Liège, 4Société Scientifique de Médecine Générale, Brussels, 5University of Antwerp, Faculty of Medicine and Health Sciences, Primary and Interdisciplinary Care Antwerp, 6Université Catholique de Louvain, Institute of Experimental and Clinical Research and Cliniques Universitaires Saint-Luc, Department of Endocrinology and Nutrition, Brussels, Belgium Abstract: Failure to initiate or intensify therapy according to evidence-based guidelines is increasingly being acknowledged as a phenomenon that contributes to inadequate management of chronic conditions, and is referred to as clinical inertia. However, the number and complexity of factors associated with the clinical reasoning that underlies the decision-making processes in medicine calls for a critical examination of the consistency of the concept. Indeed, in the absence of information on and justification of treatment decisions that were made, clinical inertia may be only apparent, and actually reflect good clinical practice. This integrative review seeks to address the factors generally associated with clinical inaction, in order to better delineate the concept of true clinical inertia. Keywords: clinical inertia, evidence-based medicine, clinical decision, integrative review, concept clarification, physician adherence to guidelines

  13. Computational simulations of thermally activated magnetisation dynamics at high frequencies

    CERN Document Server

    Hannay, J D

    2001-01-01

    short time scale breakdown of the Arrhenius-Neel law for a single magnetic moment is demonstrated and explained in terms of the dynamics of the precessional motion. The variation in response as a function of the damping parameter is found to be an important factor determining the remanent magnetisation for a given pulse width. The effects of interactions between moments are described, including the apparent increase in effective damping. It is shown that interactions between grains can be described in terms of thermally excited spin waves. The most important device for today's large scale information storage is the magnetic hard disk drive. This is because it can store vast amounts of data and also provides the fastest way of accessing this valuable information. A current state of the art commercially available hard disk has data rates in excess of 1 GHz which means the magnetic bits are required to reverse in less than one nanosecond. The areal density is greater than 10 Gbits/in sup 2 which requires extreme...

  14. Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

    Science.gov (United States)

    Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.

    2017-12-01

    In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

  15. Moment of inertia of liquid in a tank

    Directory of Open Access Journals (Sweden)

    Lee Gyeong Joong

    2014-03-01

    Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green’s 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solu¬tions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.

  16. Explicit expression for effective moment of inertia of RC beams

    Directory of Open Access Journals (Sweden)

    K.A. Patel

    Full Text Available AbstractDeflection is an important design parameter for structures subjected to service load. This paper provides an explicit expression for effective moment of inertia considering cracking, for uniformly distributed loaded reinforced concrete (RC beams. The proposed explicit expression can be used for rapid prediction of short-term deflection at service load. The explicit expression has been obtained from the trained neural network considering concrete cracking, tension stiffening and entire practical range of reinforcement. Three significant structural parameters have been identified that govern the change in effective moment of inertia and therefore deflection. These three parameters are chosen as inputs to train neural network. The training data sets for neural network are generated using finite element software ABAQUS. The explicit expression has been validated for a number of simply supported and continuous beams and it is shown that the predicted deflections have reasonable accuracy for practical purpose. A sensitivity analysis has been performed, which indicates substantial dependence of effective moment of inertia on the selected input parameters.

  17. Thermal Mechanisms for High Amplitude Aerodynamic Flow Control (YIP 2012)

    Science.gov (United States)

    2016-04-15

    high speed, high Reynolds number jets (see Samimy et al. 2010 and references therein). In this case, localized arc filament plasma actuators (LAFPAs...fundamentally different from the widely studied ac-DBD plasma actuator which functions through momentum transfer between ionized and neutral species... arc plasmas has been demonstrated in high-speed flows having turbulent boundary layers and negligible pressure gradient (Lazar et al. 2008; Kearney

  18. Analyzing Thermal Module Developments and Trends in High-Power LED

    Directory of Open Access Journals (Sweden)

    Jung-Chang Wang

    2014-01-01

    Full Text Available The solid-state light emitting diode (SSLED has been verified as consumer-electronic products and attracts attention to indoor and outdoor lighting lamp, which has a great benefit in saving energy and environmental protection. However, LED junction temperature will influence the luminous efficiency, spectral color, life cycle, and stability. This study utilizes thermal performance experiments with the illumination-analysis method and window program (vapour chamber thermal module, VCTM V1.0 to investigate and analyze the high-power LED (Hi-LED lighting thermal module, in order to achieve the best solution of the fin parameters under the natural convection. The computing core of the VCTM program employs the theoretical thermal resistance analytical approach with iterative convergence stated in this study to obtain a numerical solution. Results showed that the best geometry of thermal module is 4.4 mm fin thickness, 9.4 mm fin pitch, and 37 mm fin height with the LED junction temperature of 58.8°C. And the experimental thermal resistances are in good agreement with the theoretical thermal resistances; calculating error between measured data and simulation results is no more than ±7%. Thus, the Hi-LED illumination lamp has high life cycle and reliability.

  19. Thermal diffusivity of Swedish meatballs, pork meat pate and tomato puree during high pressure processing

    Science.gov (United States)

    Landfeld, Ales; Strohalm, Jan; Stancl, Jaromir; Houska, Milan

    2011-06-01

    Our study is directed at the effects of high pressure on the thermal diffusivity of selected food samples - a fresh meat formulation for Swedish meatballs, pork meat pate and tomato puree. Preheated food samples were placed in a copper cell and tested at nominal pressures of 400 and 500 MPa in a high pressure chamber. The thermal diffusivity was estimated from the recorded time course of temperatures (at the center of the food sample, at the wall of the copper cell, and 7.5 mm from the wall) during the high pressure holding time. Measured time-temperature profiles were compared with predictions using the finite-element model to solve the problem of uneven heat conduction in an infinite, solid, linear cylinder using the linear temperature dependence of apparent thermal conductivity. Optimal parameters of the linear temperature dependence of apparent thermal conductivity were evaluated by comparing measured temperatures and temperatures calculated from the model. To minimize differences between measured and calculated temperatures, at the center of the sample, the Marquardt-Levenberg optimization method was used. The thermal diffusivity values of all food samples were linearly correlated with temperature for two levels of pressure. Thermal diffusivity values increased with increased pressure and temperature. † This paper was presented at the XLVIIIth European High Pressure Research Group (EHPRG 48) Meeting at Uppsala (Sweden), 25-29 July 2010.

  20. High pressure behavior of ZrW2O8: Gruneisen parameter and thermal properties

    Science.gov (United States)

    Ravindran; Arora; Mary

    2000-04-24

    High pressure Raman spectroscopic studies are carried out on negative thermal expansion material ZrW2O8. The system exhibits amorphization at 2.2+/-0.3 GPa via an intermediate orthorhombic phase. In the cubic phase most modes below 50 meV are found to have negative Gruneisen parameter. Using the reported phonon density of states thermal properties are calculated and compared with the reported results. In contrast to the earlier belief, the present results show that modes of energies much higher than 10 meV also contribute substantially to the negative thermal expansion.

  1. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  2. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  3. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets

    Science.gov (United States)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei

    2017-07-01

    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  4. Thermal Behavior of High-Speed Helical Gear Trains Investigated

    Science.gov (United States)

    Handschuh, Robert F.

    2003-01-01

    High-speed and heavily loaded gearing are commonplace in the rotorcraft systems employed in helicopter and tiltrotor transmissions. The components are expected to deliver high power from the gas turbine engines to the high-torque, low-speed rotor, reducing the shaft rotational speed in the range of 25:1 to 100:1. These components are designed for high power-to-weight ratios, thus the components are fabricated as light as possible with the best materials and processing to transmit the required torque and carry the resultant loads without compromising the reliability of the drive system. This is a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to being applied on a new or redesigned aircraft.

  5. High-Speed Thermal Characterization of Cryogenic Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  6. Highly Effective Thermal Regenerator for Low Temperature Cryocoolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We...

  7. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  8. Evaluation of High Temperature Composites Thermal Properties under Different Heat Flux Conditions

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Bahramian

    2014-06-01

    Full Text Available The thermal protection of structures in vehicles, at instantaneous high thermal shocks, would be more effective and economically feasible among other thermal protection methods using the passive heat shields especially charring the ablative composites. The most important limitations reported are lack of compiled knowledge on designing heat shield with optimal thickness under real conditions and high surface erosion rate and low mechanical strength of char layer of a composite created by ablation process. In this paper SiAlON ceramic composites, reinforced with short carbon fiber, are identified as high performance heat shields for challenging these limitations. Ablation rate and effective thermal diffusivity at different external heat fluxes are determined and calculated using oxyacetylene flame test and modeling of temperature distributions in ablation process for evaluation of thermal protection performance and effective thermal diffusivity of this composite, as a thermal protection system. The results of this work have indicated that the carbon fiber reinforced SiAlON ceramic composite can be considered as a high ablation heat shield. Under the same condition of ablation test, SiAlON ceramic composites reinforced by carbon fiber show higher ablation performance relative to other commercial carbon fiber reinforced composite heat shields. At 8500 and 5000 kWm-2 external heat flux the ablation rates of this composite are 0.075 and 0.026 mms-1, respectively. Also, at 2500 kWm-2 external heat flux and test duration time of less than 25 s, this composite displays an adequate thermal shock protection with maximum flexural strength loss of about 23.4 %.

  9. Rocks, Clays, Water, and Salts: Highly Durable, Infinitely Rechargeable, Eminently Controllable Thermal Batteries for Buildings

    OpenAIRE

    Rempel, Alan W.; Alexandra R. Rempel

    2013-01-01

    Materials that store the energy of warm days, to return that heat during cool nights, have been fundamental to vernacular building since ancient times. Although building with thermally rechargeable materials became a niche pursuit with the advent of fossil fuel-based heating and cooling, energy and climate change concerns have sparked new enthusiasm for these substances of high heat capacity and moderate thermal conductivity: stone, adobe, rammed earth, brick, water, concrete, and more recent...

  10. High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties

    OpenAIRE

    Preiner, Johannes; Horner, Andreas; Karner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter; Hinterdorfer, Peter

    2014-01-01

    The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels ...

  11. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  12. Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances.

    Science.gov (United States)

    Ouyang, Zhongliang; Li, Dawen

    2016-04-07

    In this study, segmented thermoelectric generators (TEGs) have been simulated with various state-of-the-art TE materials spanning a wide temperature range, from 300 K up to 1000 K. The results reveal that by combining the current best p-type TE materials, BiSbTe, MgAgSb, K-doped PbTeS and SnSe with the strongest n-type TE materials, Cu-Doped BiTeSe, AgPbSbTe and SiGe to build segmented legs, TE modules could achieve efficiencies of up to 17.0% and 20.9% at ΔT = 500 K and ΔT = 700 K, respectively, and a high output power densities of over 2.1 Watt cm(-2) at the temperature difference of 700 K. Moreover, we demonstrate that successful segmentation requires a smooth change of compatibility factor s from one end of the TEG leg to the other, even if s values of two ends differ by more than a factor of 2. The influence of the thermal radiation, electrical and thermal contact effects have also been studied. Although considered potentially detrimental to the TEG performance, these effects, if well-regulated, do not prevent segmentation of the current best TE materials from being a prospective way to construct high performance TEGs with greatly enhanced efficiency and output power density.

  13. The design of high-temperature thermal conductivity measurements apparatus for thin sample size

    Directory of Open Access Journals (Sweden)

    Hadi Syamsul

    2017-01-01

    Full Text Available This study presents the designing, constructing and validating processes of thermal conductivity apparatus using steady-state heat-transfer techniques with the capability of testing a material at high temperatures. This design is an improvement from ASTM D5470 standard where meter-bars with the equal cross-sectional area were used to extrapolate surface temperature and measure heat transfer across a sample. There were two meter-bars in apparatus where each was placed three thermocouples. This Apparatus using a heater with a power of 1,000 watts, and cooling water to stable condition. The pressure applied was 3.4 MPa at the cross-sectional area of 113.09 mm2 meter-bar and thermal grease to minimized interfacial thermal contact resistance. To determine the performance, the validating process proceeded by comparing the results with thermal conductivity obtained by THB 500 made by LINSEIS. The tests showed the thermal conductivity of the stainless steel and bronze are 15.28 Wm-1K-1 and 38.01 Wm-1K-1 with a difference of test apparatus THB 500 are −2.55% and 2.49%. Furthermore, this apparatus has the capability to measure the thermal conductivity of the material to a temperature of 400°C where the results for the thermal conductivity of stainless steel is 19.21 Wm-1K-1 and the difference was 7.93%.

  14. Die attach dimension and material on thermal conductivity study for high power COB LED

    Science.gov (United States)

    Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    High power LED began to gain popularity in the semiconductor market due to its efficiency and luminance. Nonetheless, along with the increased in efficiency, there was an increased in the junction temperature too. The alleviating junction temperature is undesirable since the performances and lifetime will be degraded over time. Therefore, it is crucial to solve this thermal problem by maximizing the heat dissipation to the ambience. Improvising the die attach (DA) layer would be the best option because this layer is sandwiched between the chip (heat source) and the substrate (channel to the ambient). In this paper, the impact of thickness and thermal conductivity onto the junction temperature and Von Mises stress is analyzed. Results obtained showed that the junction temperature is directly proportional to the thickness but the stress was inversely proportional to the thickness of the DA. The thermal conductivity of the materials did affect the junction temperature as there was not much changes once the thermal conductivity reached 20W/mK. However, no significant changes were observed on the Von Mises stress caused by the thermal conductivity. Material with the second highest thermal conductivity had the lowest stress, whereas the highest conductivity material had the highest stress value at 20 µm. Overall, silver sinter provided the best thermal dissipation compared to the other materials.

  15. Thermal analysis of high pressure micro plasma discharge

    Science.gov (United States)

    Mobli, Mostafa

    High pressure micro plasma discharge has been at the center of interest in recent years, because of their vast applications, ease of access and cost efficiency. This attributes to atmospheric discharges that are generated in ambient conditions and therefore can be readily applicable to everyday use. The absence of vacuum makes these high pressure discharges to be inexpensive to operate. Despite the ease of operation, the high pressure is a source of enhanced gas heating as the gas temperature cannot be controlled by diffusion alone. Gas heating is therefore an important factor when it comes to the simulation of high pressure micro plasma discharge, unlike their low pressure counterpart where the heat generation is almost negligible. Low pressure discharge due to their low degree of collisionality generates ionic species and electrons at small concentrations, whereas high pressure discharge due to their higher gas density produces ions and electrons at higher concentrations which is a direct consequence of increase collision. The higher gas density and consequential large concentration of ionic species and electron contributes directly to higher heat generation rates. . In this thesis the gas temperature transport of high pressure micro plasma discharge has been studied with a special focus on the heat source terms, temperature boundary conditions, temperature distribution in the solid phase electrodes and the gas phase and their overall influence on the plasma characteristics. For this purpose a multi-physics mathematical model has been developed that comprised of a plasma module, neutral gas temperature module, external circuit module and conjugate heat transfer module. The plasma module consisted of conservation of the different ionic, electronically excited species, radicals, neutrals and electrons, conservation of the electron temperature, and electric field. The external circuit module resolved the coupled driving circuit comprised of a voltage source, ballast

  16. Sound velocity of high-strength polymer with negative thermal expansion coefficient

    Science.gov (United States)

    Nomura, R.; Ueno, M.; Okuda, Y.; Burmistrov, S.; Yamanaka, A.

    2003-05-01

    Sound velocities of fiber reinforced plastics (FRPs) were measured along the fiber axis at temperatures between 360 and 77 K. We used two kinds of the high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which have negative thermal expansion coefficients. They also have high thermal conductivities and high resistances for flash over voltage, and are expected as new materials for coil bobbins or spacers at cryogenic temperatures. They have very large sound velocities of about 9000 (m/s) at 77 K, which are 4.5 times larger than that of the ordinary polyethylene fiber.

  17. Inertia: the discrepancy between individual and common good in dispersal and prospecting behaviour.

    Science.gov (United States)

    Delgado, María del Mar; Ratikainen, Irja I; Kokko, Hanna

    2011-08-01

    The group selection debate of the 1960s made it clear that evolution does not necessarily increase population performance. Individuals can be selected to have traits that diminish a common good and make population persistence difficult. At the extreme, the discrepancy between levels of selection is predicted to make traits evolve towards values at which a population can no longer persist (evolutionary suicide). Dispersal and prospecting are prime examples of traits that have a strong influence on population persistence under environmental and demographic stochasticity. Theory predicts that an 'optimal' dispersal strategy from a population point of view can differ considerably from that produced by individual-level selection. Because dispersal is frequently risky or otherwise costly, individuals are often predicted to disperse less than would be ideal for population performance (persistence or size). We define this discrepancy as 'inertia' and examine current knowledge of its occurrence and effects on population dynamics in nature. We argue that inertia is potentially widespread but that a framework is currently lacking for predicting precisely the extent to which it has a real influence on population persistence. The opposite of inertia, 'hypermobility' (more dispersal by individuals than would maximize population performance) remains a possibility: it is known that highest dispersal rates do not lead to best expected population performance, and examples of such high dispersal evolving exist at least in the theoretical literature. We also show, by considering prospecting behaviour, that similar issues arise in species with advanced cognitive and learning abilities. Individual prospecting strategies and the information acquired during dispersal are known to influence the decisions and therefore the fate of individuals and, as a corollary, populations. Again, the willingness of individuals to sample environments might evolve to levels that are not optimal for

  18. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.

    Science.gov (United States)

    Kazem, Navid; Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel

    Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrains thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E) . This is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with a dielectric composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (E 600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a 25x increase in thermal conductivity (4.7 +/-0.2 W/mK) over the base polymer (0.20 +/-0.01 W/mK) under stress-free conditions and a 50x increase (9.8 +/-0.8 W/mK) when strained. This exceptional combination of thermal and mechanical properties is through the deformation of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer new possibilities for passive heat exchange in stretchable electronics and bio-inspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high power LED lamp and a swimming soft robot. AFOSR Young Investigator Program (Mechanics of Multifunctional Materials and Microsystems; Dr. Les Lee; FA9550-13-1-0123), NASA Early Career Faculty Award (NNX14AO49G), Army Research Office Grant W911NF-14-0350.

  19. Effect of thermal ageing on mechanical properties of a high-strength ODS alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hoon; Kim, Sung Hwan; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Kyu [Nuclear Materials DivisionKorea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A new high-strength ODS alloy, ARROS, was recently developed for the application as the cladding material of a Sodium-cooled fast reactor (SFR). To assess the long-term integrity under thermal ageing, ARROS was thermally aged in air at 650°C for 1000 h. The degree of thermal ageing was assessed by mechanical tests such as uniaxial tensile, hardness, and small punch tests at from room temperature to 650°C. Tensile strength was slightly decreased but elongation, hardness, and small punch energy were hardly changed at all test temperatures for the specimen aged at 650°C for 1000 h. However, the variation in mechanical properties such as hardness and small punch energy increased after thermal ageing. Using the test results, the correlation between tensile strength and maximum small punch load was established.

  20. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    Science.gov (United States)

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J.L.; Shearing, Paul R.

    2015-01-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features. PMID:25919582

  1. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  2. Problematics of high employee turnover in hotel Thermal

    OpenAIRE

    Gistinger, Petr

    2016-01-01

    Bachelor´s thesis is focused on high employee turnover in a specific company. Thesis is divided into two parts. The first part consists of definitions, theoretical starting-points and methods connected with employee turnover. In the beginning of the second part the hotel is briefly introduced. In the main body of second part I have analysed the situation in the hotel based on internal documents, hotel´s official web page, official statistics and an interview with company´s manager. Using the ...

  3. Numerical simulations of thermal convection at high Prandtl numbers

    OpenAIRE

    Silano, Gabriella

    2009-01-01

    2007/2008 In this thesis we present the results of an extensive campaign of direct numerical simulations of Rayleigh-B\\'enard convection at high Prandtl numbers ($10^{-1}\\leq Pr \\leq 10^4$) and moderate Rayleigh numbers ($10^{5}\\leq Pr \\leq 10^9$). The computational domain is a cylindrical cell of aspect-ratio (diameter over cell height) $\\Gamma=1/2$, with the no-slip condition imposed to the boundaries. By scaling the results, we find a $1/\\sqrt{Pr}$ correction to apply to the free-...

  4. Parametric analysis of a high temperature packed bed thermal storage design for a solar gas turbine

    CSIR Research Space (South Africa)

    Klein, P

    2015-08-01

    Full Text Available The development of a high temperature Thermal Energy Storage (TES) system will allow for high solar shares in Solar Gas Turbine (SGT) plants. In this research a pressurised storage solution is proposed that utilises a packed bed of alumina spheres...

  5. Refractory porcelain enamel passive-thermal-control coating for high-temperature superalloys

    Science.gov (United States)

    Levin, H.; Auker, B. H.; Gardos, M. N.

    1973-01-01

    Study was conducted to match thermal expansion coefficients thereby preventing enamels from cracking. Report discusses various enamel coatings that are applied to two different high-temperature superalloys. Study may be of interest to manufacturers of chemical equipment, furnaces, and metal components intended for high-temperature applications.

  6. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shujuan [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Xiao [Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jia, Beibei [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Jing, Xinli, E-mail: xljing@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an, 710049 (China)

    2017-01-15

    Highlights: • PBAB with excellent thermal resistance and high char yield was synthesized. • The chemical reaction of BPA with BA, and chemical structure of PBAB were studied. • PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. • The thermal stability of PBAB is greatly influenced by boron content. • Boron oxide and boron carbide are formed during the pyrolysis of PBAB. - Abstract: In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A{sub 2} + B{sub 3} strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph–O–B and B–O–B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N{sub 2}) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  7. EMOTIONAL BURNOUT SYNDROME: EFFECT ON CLINICAL INERTIA AND MEDICAL PRACTICE STEREOTYPES

    Directory of Open Access Journals (Sweden)

    R. A. Khokhlov

    2009-01-01

    Full Text Available Aim. To estimate the prevalence of burnout in primary care physicians and its influence on medical practice stereotypes and on clinical inertia.Material and Methods. The anonymous single-stage poll was carried out among 184 primary care physicians. The questionnaire included information about sex, age, period and conditions of work, established stereotypes of practices. Burnout was evaluated by Russian analog of Maslach Burnout Inventory. It was defined in high level of emotional exhaustion and depersonalization and low level of personal accomplishment 11 questions were developed to reveal of suboptimal medical practice (for example, “I do not discuss treatment options with patient and do not give full answers to his questions” or “I make diagnostic and treatment errors despite of my professional knowledge and inexperience”.Results. The burnout syndrome (or extreme grade of emotional burnout occurs in 13,1% and high level of emotional burnout – in 49,7% of primary care physicians. Features of suboptimal medical practice are usually found in 24,2% of primary care physicians at least monthly. It expresses more often in improper attitude to paqtients and their problems associated with a disease. Thus, burnout contributes to improper attitude to patients. Professional burnout affects established work stereotypes and can promote development of physician’s clinical inertia.Conclusion. As the burnout is common among primary care physicians, an adequate monitoring and prevention of this state is necessary in medical labour management.

  8. EMOTIONAL BURNOUT SYNDROME: EFFECT ON CLINICAL INERTIA AND MEDICAL PRACTICE STEREOTYPES

    Directory of Open Access Journals (Sweden)

    R. A. Khokhlov

    2016-01-01

    Full Text Available Aim. To estimate the prevalence of burnout in primary care physicians and its influence on medical practice stereotypes and on clinical inertia.Material and Methods. The anonymous single-stage poll was carried out among 184 primary care physicians. The questionnaire included information about sex, age, period and conditions of work, established stereotypes of practices. Burnout was evaluated by Russian analog of Maslach Burnout Inventory. It was defined in high level of emotional exhaustion and depersonalization and low level of personal accomplishment 11 questions were developed to reveal of suboptimal medical practice (for example, “I do not discuss treatment options with patient and do not give full answers to his questions” or “I make diagnostic and treatment errors despite of my professional knowledge and inexperience”.Results. The burnout syndrome (or extreme grade of emotional burnout occurs in 13,1% and high level of emotional burnout – in 49,7% of primary care physicians. Features of suboptimal medical practice are usually found in 24,2% of primary care physicians at least monthly. It expresses more often in improper attitude to paqtients and their problems associated with a disease. Thus, burnout contributes to improper attitude to patients. Professional burnout affects established work stereotypes and can promote development of physician’s clinical inertia.Conclusion. As the burnout is common among primary care physicians, an adequate monitoring and prevention of this state is necessary in medical labour management.

  9. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  10. Development of Thermally Stable and Highly Fluorescent IR Dyes

    Science.gov (United States)

    Bu, Xiu R.

    2004-01-01

    Fluorophores are the core component in various optical applications such as sensors and probes. Fluorphores with low-energy or long wavelength emission, in particular, in NIR region, possess advantages of low interference and high sensitivity. In this study, we has explored several classes of imidazole-based compounds for NIR fluorescent properties and concluded: (1) thiazole-based imidazole compounds are fluorescent; (2) emission energy is tunable by additional donor groups; (3) they also possess impressive two- photon absorption properties; and (4) fluorescence emission can be induced by two- photon input. This report summarizes (1) synthesis of new series of fluorophore; (2) impact of electron-withdrawing groups on fluorescent property; (3) unique property of two-photon absorption; and (4) on-going development.

  11. Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    The increasing focus on better building insulation is important to lower energy consumption. Development of new and improved insulation materials can contribute to solving this problem. Foam glass has a good insulating effect due to its large gas volume (porosity >90 %). It can be produced...... with open or closed pores. If only open pores exist, air is the dominating medium for the insulating effect. However, closed pores make it possible to trap gases inside the foam. The gas can be introduced either chemically, through foaming agents, or physically, by gas compression-decompression at high...... temperatures. By introducing the gas physically it is possible to control composition of both the gas phase and the solid phase of the foam glass. In this work we have prepared foam glasses by physical foaming. Panel glass powder from obsolete televisions was first sintered under a gas pressure of 5-25 MPa...

  12. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    Science.gov (United States)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  13. Sleep inertia: performance changes after sleep, rest and active waking.

    Science.gov (United States)

    Hofer-Tinguely, Gilberte; Achermann, Peter; Landolt, Hans-Peter; Regel, Sabine J; Rétey, Julia V; Dürr, Roland; Borbély, Alexander A; Gottselig, Julie M

    2005-03-01

    Napping benefits and sustains subsequent performance. Prophylactic naps have been recommended as a means to maintain performance during extended wakefulness, as required during shiftwork. However, napping may cause short-term performance impairments, because awakening from sleep is followed by sleep inertia, a period of hypovigilance and impaired cognitive and behavioral performance. We investigated sleep inertia after an afternoon nap. Healthy 18-28 year-olds (n=50, not sleep deprived) were assigned to sleep, active wake or rest groups for a 2-h experimental phase with polysomnography starting either at 14:00 or 16:00 for half of each group. Before (baseline, 12:30 or 14:30) and in five sessions during the hour after the experimental phase (16:00-17:00 or 18:00-19:00), subjects completed an addition task, an auditory reaction time task, and the Stanford Sleepiness Scale. In session one, addition speed in the sleep group was reduced compared with baseline and with active wake controls, whereas calculation accuracy did not change. Addition speed in the sleep and rest groups increased substantially from session one to session two and reached a level similar to that of the active wake group by the fifth session. In the first session, auditory reaction speed of the sleep group was reduced compared with baseline and with rest controls but did not differ from the active wake group. The slowest reaction times showed significant recovery after 20 min. The groups reported similar increases in subjective sleepiness after the experimental period. These findings provide evidence for performance slowing and recovery during the hour following a 2-h nap opportunity. They highlight the importance of employing multiple control groups and various objective and subjective measures to assess sleep inertia.

  14. 21 Lutetia and other M-types: Their sizes, albedos, and thermal properties from new IRTF measurements

    Science.gov (United States)

    Mueller, M.; Harris, A. W.; Delbo, M.; MIRSI Team

    2005-08-01

    The M-type taxonomic group, introduced by Tholen (1989), contains asteroids with generally featureless spectra and IRAS albedos of around 0.2. M-type asteroids were originally believed to have a metallic surface composition. However, it now seems that other types of surface composition may also give rise to M-type spectra (e.g. Rivkin et al., 2000). One of the Rosetta fly-by targets, M-type asteroid 21 Lutetia, was recently found by several authors to display spectral features indicative of a more primitive surface composition, which is usually associated with a C-type classification and a low albedo incompatible with the IRAS albedo for Lutetia. We report results from new thermal-infrared observations of Lutetia and other M-type asteroids performed at the NASA IRTF. The radiometric sizes and albedos of the targets have been determined and information on thermal properties such as thermal inertia has been derived from the apparent color temperatures of their thermal continua. One might expect metallic surfaces to have higher thermal conductivities and therefore to be associated with higher values of thermal inertia. The diameter and albedo derived for Lutetia are 98.3 +/- 5.9 km and pv = 0.208 +/- 0.025, in excellent agreement with the IRAS values. A C-type albedo (pv up to 0.1) is therefore ruled out but our results are not indicative of an unusually high thermal inertia. We also report on the analysis of observations of the M-type asteroids (129) Antigone and (785) Zwetana, both of which appear to have patches of very high and low radar albedo (M. Shepard, private communication) consistent with (but not restricted to) a metal and non-metal surface composition, respectively.

  15. On Topology Optimization of Inertia Driven Dosing Units

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2016-01-01

    This paper describes how topology optimization can be used to design inertia driven dosing units for the continuous dosage ofone fluid into another. These components often referred to as eductors, utilize the low static pressure in a venturi-type nozzle to drive thedosing flow. The fluids...... are modeled using the steady state incompressible Navier-Stokes equations and the two fluids are considered havingthe same properties. A Brinkman penalization term is added to the governing equations such that a control problem of the flow topologyis obtained. Optimized component geometries for a range...

  16. Inertia and chiral edge modes of a Skyrmion magnetic bubble.

    Science.gov (United States)

    Makhfudz, Imam; Krüger, Benjamin; Tchernyshyov, Oleg

    2012-11-21

    The dynamics of a vortex in a thin-film ferromagnet resembles the motion of a charged massless particle in a uniform magnetic field. Similar dynamics is expected for other magnetic textures with a nonzero Skyrmion number. However, recent numerical simulations reveal that Skyrmion magnetic bubbles show significant deviations from this model. We show that a Skyrmion bubble possesses inertia and derive its mass from the standard theory of a thin-film ferromagnet. In addition to center-of-mass motion, other low energy modes are waves on the edge of the bubble traveling with different speeds in opposite directions.

  17. Modified Newtonian Dynamics (MOND) as a Modification of Newtonian Inertia

    Science.gov (United States)

    Alzain, Mohammed

    2017-12-01

    We present a modified inertia formulation of Modified Newtonian dynamics (MOND) without retaining Galilean invariance. Assuming that the existence of a universal upper bound, predicted by MOND, to the acceleration produced by a dark halo is equivalent to a violation of the hypothesis of locality (which states that an accelerated observer is pointwise inertial), we demonstrate that Milgrom's law is invariant under a new space-time coordinate transformation. In light of the new coordinate symmetry, we address the deficiency of MOND in resolving the mass discrepancy problem in clusters of galaxies.

  18. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.

    Science.gov (United States)

    Liang, Xin M; Ding, Weiping; Chen, Hsiu-hung; Shu, Zhiquan; Zhao, Gang; Zhang, Hai-feng; Gao, Dayong

    2011-10-01

    Obtaining accurate thermal properties of biomaterials plays an important role in the field of cryobiology. Currently, thermal needle, which is constructed by enclosing a manually winded thin metal wire with an insulation coating in a metallic sheath, is the only available device that is capable of measuring thermal conductivity of biomaterials. Major drawbacks, such as macroscale sensor size, lack of versatile format to accommodate samples with various shapes and sizes, neglected effects of heat transfer inside the probe and thermal contact resistance between the sensing element and the probe body, difficult to mass produce, poor data repeatability and reliability and labor-intense sensor calibration, have significantly reduced their potential to be an essential measurement tool to provide key thermal property information of biological specimens. In this study, we describe the development of an approach to measure thermal conductivity of liquids and soft bio-tissues using a proof-of-concept MEMS based thermal probe. By employing a microfabricated closely-packed gold wire to function as the heater and the thermistor, the presented thermal sensor can be used to measure thermal conductivities of fluids and natural soft biomaterials (particularly, the sensor may be directly inserted into soft tissues in living animal/plant bodies or into tissues isolated from the animal/plant bodies), where other more standard approaches cannot be used. Thermal standard materials have been used to calibrate two randomly selected thermal probes at room temperature. Variation between the obtained system calibration constants is less than 10%. By incorporating the previously obtained system calibration constant, three randomly selected thermal probes have been successfully utilized to measure the thermal conductivities of various solutions and tissue samples under different temperatures. Overall, the measurements are in agreement with the recommended values (percentage error less than 5

  19. Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available High-temperature mechanical properties of high-boron austenitic steels (HBASs were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800°C. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239 (0.19wt.% C to 302 (0.29wt.% C and 312 HV (0.37wt.% C; the tensile yield strength at 850 °C increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests (performed for 300 cycles from room temperature to 800 °C indicate that the degree of thermal fatigue of the HBAS with 0.29wt.% C (rating of 2–3 is superior to those of the alloys with 0.19wt.% (rating of 4–5 and 0.37wt.% (rating of 3–4 carbon. The main cause of this difference is the ready precipitation of M23(C,B6-type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys.

  20. The Influence of Non-Uniform High Heat Flux on Thermal Stress of Thermoelectric Power Generator

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2015-11-01

    Full Text Available A thermoelectric generator (TEG device which uses solar energy as heat source would achieve higher efficiency if there is a higher temperature difference between the hot-cold ends. However, higher temperature or higher heat flux being imposed upon the hot end will cause strong thermal stress, which will have a negative influence on the life cycle of the thermoelectric module. Meanwhile, in order to get high heat flux, a Fresnel lens is required to concentrate solar energy, which will cause non-uniformity of heat flux on the hot end of the TEG and further influence the thermal stress of the device. This phenomenon is very common in solar TEG devices but seldom research work has been reported. In this paper, numerical analysis on the heat transfer and thermal stress performance of a TEG module has been performed considering the variation on the power of the heat flux being imposed upon the hot-end; the influence of non-uniform high heat flux on thermal stress has also been analyzed. It is found that non-uniformity of high heat flux being imposed upon the hot end has a significant effect on the thermal stress of TEG and life expectation of the device. Taking the uniformity of 100% as standard, when the heating uniformity is 70%, 50%, 30%, and 10%, respectively, the maximum thermal stress of TEG module increased by 3%, 6%, 12%, and 22% respectively. If we increase the heat flux on the hot end, the influence of non-uniformity on the thermal stress will be more remarkable.

  1. Using high pressure to study thermal transport and phonon scattering mechanisms

    Science.gov (United States)

    Hohensee, Gregory Thomas

    The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine

  2. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow.

    Science.gov (United States)

    Hu, Juejun; Feng, Ning-Ning; Carlie, Nathan; Petit, Laeticia; Agarwal, Anu; Richardson, Kathleen; Kimerling, Lionel

    2010-01-18

    A thermal reflow technique is applied to high-index-contrast, sub-micron waveguides in As(2)S(3) chalcogenide glass to reduce the sidewall roughness and associated optical scattering loss. We show that the reflow process effectively decreases sidewall roughness of chalcogenide glass waveguides. A kinetic model is presented to quantitatively explain the sidewall roughness evolution during thermal reflow. Further, we develop a technique to calculate waveguide optical loss using the roughness evolution model, and predict the ultimate low loss limit in reflowed high-index-contrast glass waveguides. Up to 50% optical loss reduction after reflow treatment is experimentally observed, and the practical loss limiting factors are discussed.

  3. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien

    2008-11-01

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  4. Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications

    Science.gov (United States)

    Hu, Enyuan

    Safety is one of the most critical issues facing lithium-ion battery application in vehicles. Addressing this issue requires the integration of several aspects, especially the material chemistry and the battery thermal management. First, thermal stability investigation was carried out on an attractive high energy density material LiNi0.5Mn1.5O4. New findings on the thermal-stability and thermal-decomposition-pathways related to the oxygen-release are discovered for the high-voltage spinel Li xNi0.5Mn1.5O4 (LNMO) with ordered (o-) and disordered (d-) structures at fully delithiated (charged) state using a combination of in situ time-resolved x-ray diffraction (TR-XRD) coupled with mass spectroscopy (MS) and x-ray absorption spectroscopy (XAS). Both fully charged o--LixNi0.5Mn1.5O 4 and d-LixNi0.5Mn1.5O 4 start oxygen-releasing structural changes at temperatures below 300 °C, which is in sharp contrast to the good thermal stability of the 4V-spinel LixMn2O4 with no oxygen being released up to 375 °C. This is mainly caused by the presence of Ni4+ in LNMO, which undergoes dramatic reduction during the thermal decomposition. In addition, charged o-LNMO shows better thermal stability than the d-LNMO counterpart, due to the Ni/Mn ordering and smaller amount of the rock-salt impurity phase in o-LNMO. Newly identified two thermal-decomposition-pathways from the initial LixNi0.5Mn1.5O 4 spinel to the final NiMn2O4-type spinel structure with and without the intermediate phases (NiMnO3 and alpha-Mn 2O3) are found to play key roles in thermal stability and oxygen release of LNMO during thermal decomposition. In addressing the safety issue associated with LNMO, Fe is selected to partially substitute Ni and Mn simultaneously utilizing the electrochemical activity and structure-stabilizing high spin Fe3+. The synthesized LiNi1/3Mn4/3Fe1/3O4 showed superior thermal stability and satisfactory electrochemical performance. At charged state, it is able to withstand the temperature as

  5. Transient Thermal Tensile Behaviour of Novel Pitch-Based Ultra-High Modulus CFRP Tendons

    Directory of Open Access Journals (Sweden)

    Giovanni Pietro Terrasi

    2016-12-01

    Full Text Available A novel ultra-high modulus carbon fibre reinforced polymer (CFRP prestressing tendon made from coal tar pitch-based carbon fibres was characterized in terms of high temperature tensile strength (up to 570 °C with a series of transient thermal and steady state temperature tensile tests. Digital image correlation was used to capture the high temperature strain development during thermal and mechanical loading. Complementary thermogravimetric (TGA and dynamic mechanical thermal (DMTA experiments were performed on the tendons to elucidate their high temperature thermal and mechanical behaviour. The novel CFRP tendons investigated in the present study showed an ambient temperature design tensile strength of 1400 MPa. Their failure temperature at a sustained prestress level of 50% of the design tensile strength was 409 °C, which is higher than the failure temperature of most fibre reinforced polymer rebars used in civil engineering applications at similar utilisation levels. This high-temperature tensile strength shows that there is potential to use the novel high modulus CFRP tendons in CFRP pretensioned concrete elements for building applications that fulfill the fire resistance criteria typically applied within the construction industry.

  6. The Role of Alloy Composition and T7 Heat Treatment in Enhancing Thermal Conductivity of Aluminum High Pressure Diecastings

    Science.gov (United States)

    Lumley, Roger N.; Deeva, Natalia; Larsen, Robert; Gembarovic, Jozef; Freeman, Joe

    2013-02-01

    The thermal conductivity of some common and experimental high pressure diecasting (HPDC) Al-Si-Cu alloys is evaluated. It is shown that the thermal conductivity of some compositions may be increased by more than 60 pct by utilizing T7 heat treatments. This may have substantial performance and cost benefits for applications where thermal management is a key design parameter.

  7. Multisensor Fusion of Landsat Images for High-Resolution Thermal Infrared Images Using Sparse Representations

    Directory of Open Access Journals (Sweden)

    Hong Sung Jin

    2017-01-01

    Full Text Available Land surface temperature (LST is an important parameter in the analysis of climate and human-environment interactions. Landsat Earth observation satellite data including a thermal band have been used for environmental research and applications; however, the spatial resolution of this thermal band is relatively low. This study investigates an efficient method of fusing Landsat panchromatic and thermal infrared images using a sparse representation (SR technique. The application of SR is used for the estimation of missing details of the available thermal infrared (TIR image to enhance its spatial features. First, we propose a method of building a proper dictionary considering the spatial resolution of the original thermal image. Second, a sparse representation relation between low- and high-resolution images is constructed in terms of the Landsat spectral response. We then compare the fused images created with different sampling factors and patch sizes. The results of both qualitative and quantitative evaluation show that the proposed method improves spatial resolution and preserves the thermal properties of basic LST data for use with environmental problems.

  8. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.

  9. High pulse number thermal shock tests on tungsten with steady state particle background

    Science.gov (United States)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m‑2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  10. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies.

    Science.gov (United States)

    Wilson, Adam A; Muñoz Rojo, Miguel; Abad, Begoña; Perez, Jaime Andrés; Maiz, Jon; Schomacker, Jason; Martín-Gonzalez, Marisol; Borca-Tasciuc, Diana-Andra; Borca-Tasciuc, Theodorian

    2015-10-07

    This work discusses measurement of thermal conductivity (k) of films using a scanning hot probe method in the 3ω mode and investigates the calibration of thermal contact parameters, specifically the thermal contact resistance (R(th)C) and thermal exchange radius (b) using reference samples with different thermal conductivities. R(th)C and b were found to have constant values (with b = 2.8 ± 0.3 μm and R(th)C = 44,927 ± 7820 K W(-1)) for samples with thermal conductivity values ranging from 0.36 W K(-1) m(-1) to 1.1 W K(-1) m(-1). An independent strategy for the calibration of contact parameters was developed and validated for samples in this range of thermal conductivity, using a reference sample with a previously measured Seebeck coefficient and thermal conductivity. The results were found to agree with the calibration performed using multiple samples of known thermal conductivity between 0.36 and 1.1 W K(-1) m(-1). However, for samples in the range between 16.2 W K(-1) m(-1) and 53.7 W K(-1) m(-1), calibration experiments showed the contact parameters to have considerably different values: R(th)C = 40,191 ± 1532 K W(-1) and b = 428 ± 24 nm. Finally, this work demonstrates that using these calibration procedures, measurements of both highly conductive and thermally insulating films on substrates can be performed, as the measured values obtained were within 1-20% (for low k) and 5-31% (for high k) of independent measurements and/or literature reports. Thermal conductivity results are presented for a SiGe film on a glass substrate, Te film on a glass substrate, polymer films (doped with Fe nano-particles and undoped) on a glass substrate, and Au film on a Si substrate.

  11. Efficiency of the Inertia Friction Welding Process and Its Dependence on Process Parameters

    Science.gov (United States)

    Senkov, O. N.; Mahaffey, D. W.; Tung, D. J.; Zhang, W.; Semiatin, S. L.

    2017-07-01

    It has been widely assumed, but never proven, that the efficiency of the inertia friction welding (IFW) process is independent of process parameters and is relatively high, i.e., 70 to 95 pct. In the present work, the effect of IFW parameters on process efficiency was established. For this purpose, a series of IFW trials was conducted for the solid-state joining of two dissimilar nickel-base superalloys (LSHR and Mar-M247) using various combinations of initial kinetic energy ( i.e., the total weld energy, E o), initial flywheel angular velocity ( ω o), flywheel moment of inertia ( I), and axial compression force ( P). The kinetics of the conversion of the welding energy to heating of the faying sample surfaces ( i.e., the sample energy) vs parasitic losses to the welding machine itself were determined by measuring the friction torque on the sample surfaces ( M S) and in the machine bearings ( M M). It was found that the rotating parts of the welding machine can consume a significant fraction of the total energy. Specifically, the parasitic losses ranged from 28 to 80 pct of the total weld energy. The losses increased (and the corresponding IFW process efficiency decreased) as P increased (at constant I and E o), I decreased (at constant P and E o), and E o (or ω o) increased (at constant P and I). The results of this work thus provide guidelines for selecting process parameters which minimize energy losses and increase process efficiency during IFW.

  12. A Vision/Inertia Integrated Positioning Method Using Position and Orientation Matching

    Directory of Open Access Journals (Sweden)

    Xiaoyue Zhang

    2017-01-01

    Full Text Available A vision/inertia integrated positioning method using position and orientation matching which can be adopted on intelligent vehicle such as automated guided vehicle (AGV and mobile robot is proposed in this work. The method is introduced firstly. Landmarks are placed into the navigation field and camera and inertial measurement unit (IMU are installed on the vehicle. Vision processor calculates the azimuth and position information from the pictures which include artificial landmarks with the known direction and position. Inertial navigation system (INS calculates the azimuth and position of vehicle in real time and the calculated pixel position of landmark can be computed from the INS output position. Then the needed mathematical models are established and integrated navigation is implemented by Kalman filter with the observation of azimuth and the calculated pixel position of landmark. Navigation errors and IMU errors are estimated and compensated in real time so that high precision navigation results can be got. Finally, simulation and test are performed, respectively. Both simulation and test results prove that this vision/inertia integrated positioning method using position and orientation matching has feasibility and it can achieve centimeter-level autonomic continuous navigation.

  13. The Impact of Convective Fluid Inertia Forces on Operation of Tilting-Pad Journal Bearings

    Directory of Open Access Journals (Sweden)

    Thomas Hagemann

    2017-01-01

    Full Text Available This paper presents a combination of experimental data, CFD analyses, and bearing code predictions on emergence of convective inertia fluid forces within the lube oil flow of tilting-pad journal bearings. Concordantly, experimental data and CFD analyses show a significant rise of local pressure at the transition between inlet and leading edge of tilting-pad, especially for high-speed applications with surface speeds up to 100 m/s. This effect can be related to convective inertia forces within fluid flow as cross-sections and flow character rapidly change at the pad entrance. An energy-based approach is implemented in the bearing code in order to provide enhanced boundary conditions for Reynolds equation considering this effect. As a result, predictions of bearing code achieved significant improved correlation with measured pressure distributions and CFD-data. Further, beside the local influence, a nonnegligible impact on characteristic parameters of bearing operation such as maximum temperature and stiffness and damping coefficients is observed. Finally, the results are critically analyzed and requirements to gain more distinct and reliable data are specified.

  14. [Beat therapeutic inertia in dyslipidemic patient management: A challenge in daily clinical practice] [corrected].

    Science.gov (United States)

    Morales, Clotilde; Mauri, Marta; Vila, Lluís

    2014-01-01

    Beat therapeutic inertia in dyslipidemic patient management: a challenge in daily clinical practice. In patients with dyslipidemia, there is the need to reach the therapeutic goals in order to get the maximum benefit in the cardiovascular events risk reduction, especially myocardial infarction. Even having guidelines and some powerful hypolipidemic drugs, the goals of low-density lipoprotein-cholesterol (LDL-c) are often not reached, being of special in patients with a high cardiovascular risk. One of the causes is the therapeutic inertia. There are tools to plan the treatment and make the decisions easier. One of the challenges in everyday clinical practice is to know the needed percentage of reduction in LDL-c. Moreover: it is hard to know which one is the treatment we should use in the beginning of the treatment but also when the desired objective is not reached. This article proposes a practical method that can help solving these questions. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  15. Thermal Conductivity of High Performance Concrete in Wide Temperature and Moisture Ranges

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The thermal conductivity of two types of high performance concrete was measured in the temperature range from 100 °C to 800 °C and in the moisture range from dry material to saturation water content. A transient measuring method based on analysis of the measured temperature fields was chosen for the high temperature measurements, and a commercial hot wire device was employed in room temperature measurements of the effect of moisture on thermal conductivity. The measured results reveal that both temperature and moisture exhibit significant effects on the values of thermal conductivity, and these effects are quite comparable from the point of view of the magnitude of the observed variations.

  16. First-principles calculation of thermal conductivity of silicate perovskite at high pressures and high temperatures

    Science.gov (United States)

    Dong, Jianjun; Tang, Xiaoli; Kavner, Abby; Ntam, Moses

    2011-03-01

    The lattice thermal conductivity of silicate perovskite, the most abundant mineral in the Earth's lower mantle, is calculated by combining the first-principles electronic structure theory and Peierls-Boltzmann transport theory. The phonon scattering rate due to lattice anharmonicity and Mg/Fe mass disorder is evaluated for each mode at the extreme P-T conditions of the lower mantle. The predicted thermal conductivity of single crystal MgSiO3 perovskite at ambient condition, about 5.7 W/m/K, is in excellent agreement with experiment. Adding about 6% Fe will lower the thermal conductivity by nearly 40%. Our calculation also reveals an unique pressure dependence for the thermal conductivity of perovskite, and the calculated thermal conductivity of iron bearing perovskite is almost an order of magnitude lower than the previously estimates based on long extrapolation of single crystal data. Including a re-evaluation of radiative contribution, we discuss the implications of our results for the heat flow in deep Earth. Funded by NSF (EAR-0757847).

  17. Real-Time Measurement of Process Efficiency during Inertia Friction Welding (Preprint)

    Science.gov (United States)

    2017-12-20

    AFRL-RX-WP-JA-2017-0532 REAL-TIME MEASUREMENT OF PROCESS EFFICIENCY DURING INERTIA FRICTION WELDING (PREPRINT...4. TITLE AND SUBTITLE REAL-TIME MEASUREMENT OF PROCESS EFFICIENCY DURING INERTIA FRICTION WELDING (PREPRINT) 5a. CONTRACT NUMBER IN-HOUSE...200 words) Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method

  18. Evaluating the impact of investments in information technology on structural inertia in health organizations.

    Science.gov (United States)

    Bewley, Lee W

    2010-01-01

    Structural inertia is the overall capacity of an organization to adapt within a market environment. This paper reviews the impact of healthcare investments in information management/information technology (IM/IT) on the strategic management concept of structural inertia. Research indicates that healthcare executives should consider the relative state of structural inertia for their firms and match them with potential IM/IT solutions. Additionally, organizations should favorably consider IM/IT solutions that are comparatively less complex.

  19. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  20. Thermal decomposition and kinetics of 2,4-dinitroimidazole: An insensitive high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Anniyappan, M., E-mail: anniorganic@rediffmail.com; Sonawane, S.H.; Pawar, S.J.; Sikder, A.K.

    2015-08-20

    Highlights: • Pure 2,4-dinitroimidazole was prepared by re-crystallization from hot methanol. • A detailed thermal analysis of 2,4-DNI by DSC, TGA, GC–MS and ignition temperature. • Activation energy was calculated for thermal decomposition of 2,4-DNI • Effect of polymeric binder on thermal decomposition of 2,4-DNI were also studied. • Decomposition mechanisms of 2,4-DNI based on EI mass spectra were also described. - Abstract: 2,4-Dinitroimidazole (2,4-DNI) is a novel energetic material with much less sensitive and potential for use as a propellant/insensitive munition (IM) formulations. 2,4-DNI possess high thermal stability and less sensitivity as compared to RDX and HMX which are high explosives extensively used at present. This paper reports a detailed thermal study of 2,4-DNI using various instrumental techniques. The activation energy (E = 205 ± 15 kJ/mol) was calculated from thermal decomposition of 2,4-DNI using DSC at different heating rate. The ignition temperature of pure 2,4-DNI was measured and showed at 285 °C. The TGA experiments demonstrate that 2,4-DNI decomposes in three steps with 92% total weight lose. Moreover, the effect of thermal energy on decomposition of 2,4-DNI in presence of polymeric binders like GAP and HTPB were investigated. Further, decomposition mechanisms of 2,4-DNI based on Electron Impact mass spectra analysis were also reported along with its explosive properties.

  1. The thermal conductivity of high modulus Zylon fibers between 400 mK and 4 K

    Science.gov (United States)

    Wikus, Patrick; Figueroa-Feliciano, Enectalí; Hertel, Scott A.; Leman, Steven W.; McCarthy, Kevin A.; Rutherford, John M.

    2008-11-01

    Zylon is a synthetic polyurethane polymer fiber featuring very high mechanical strength. Measurements of the thermal conductivity λZ(T) of high modulus Zylon fibers at temperatures between 400 mK and 4 K were performed to assess if they can be successfully employed in the design of high performance suspension systems for cold stages of adiabatic demagnetization refrigerators. The linear mass density of the yarn used in these measurements amounts to 3270 dtex, which is also a measure for the yarn's cross section. The experimental data for the thermal conductivity was fitted to a function of the form λZ=(1010±30)·TpWmmdtexK. This result was normalized to the breaking strength of the fibers and compared with Kevlar. It shows that Kevlar outperforms Zylon in the investigated temperature range. At 1.5 K, the thermal conductivity integral of Zylon yarn is twice as high as the thermal conductivity integral of Kevlar yarn with the same breaking strength. A linear mass density of 1 tex is equivalent to a yarn mass of 1 g/km. High modulus Zylon has a density of 1.56 g/cm 3.

  2. Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications

    Science.gov (United States)

    Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.

    2003-01-01

    The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.

  3. A 3D Lumped Thermal Network Model for Long-term Load Profiles Analysis in High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Ghimire, Pramod

    2016-01-01

    three-dimensional RC lumped thermal network for the high power IGBT modules. The thermal-coupling effects among the chips and among the critical layers are modelled, and boundary conditions including the cooling conditions are also taken into account. It is concluded that, the proposed thermal model......The conventional RC lumped thermal networks are widely used to estimate the temperature of power devices, but they are lack of accuracy in addressing detailed thermal behaviors/couplings in different locations and layers of the high power IGBT modules. On the other hand, Finite Element (FE...

  4. The development of an instrument for measuring organisational inertia

    Directory of Open Access Journals (Sweden)

    C. Kinnear

    1998-06-01

    Full Text Available This study had a dual purpose: firstly, to integrate the wide variety of seemingly diverse theoretical perspectives of various theorists with respect to organisational inertia into a single umbrella theoretical model. Secondly, to develop a measuring instrument that is based on the aforesaid theoretical model. The instrument was completed by 617 respondents in various industrial sectors undergoing transformation. Responses obtained on the 109 items were then subjected to a factor analysis and the two scales obtained were subjected to further iterative item analyses. Results indicate that organisational inertia is a oneimensional construct. The implications of these findings are further discussed. Opsomming Die doel van hierdie studie was tweeledig, naamlik om in die eerste plek, die groot verskeidenheid van oënskynlik ulteenlopende teoretiese perspektiewe van verskillende teoretici rakende organisatoriese traagheid in 'n enkele sambreelmodel te integreer. Tweedens om 'n meetinstrument te ontwikkel wat op die voorgenoemde teoretiese model gebaseer is. Die instrument is deur 617 proefpersone ingevul/ in verskeie bedryfsektore wat tans transformasie ondergaan. Response op 109 items is hierna aan 'n faktorontledmg onderwerp en die twee verkree skale is aan verdere iteratiewe-itemontledings onderwerp. Resultate dui daarop dat organisatoriese traagheid 'n eendimensionele konstruk is. Die implikasies van die bevindinge word verder bespreek.

  5. Cage model of polar fluids: Finite cage inertia generalization.

    Science.gov (United States)

    Coffey, W T; Zarifakis, M; Kalmykov, Y P; Titov, S V; Dowling, W J; Titov, A S

    2017-07-21

    The itinerant oscillator model describing rotation of a dipole about a fixed axis inside a cage formed by its surrounding polar molecules is revisited in the context of modeling the dielectric relaxation of a polar fluid via the Langevin equation. The dynamical properties of the model are studied by averaging the Langevin equations describing the complex orientational dynamics of two bodies (molecule-cage) over their realizations in phase space so that the problem reduces to solving a system of three index linear differential-recurrence relations for the statistical moments. These are then solved in the frequency domain using matrix continued fractions. The linear dielectric response is then evaluated for extensive ranges of damping, dipole moment ratio, and cage-dipole inertia ratio and along with the usual inertia corrected microwave Debye absorption gives rise to significant far-infrared absorption with a comb-like structure of harmonic peaks. The model may be also regarded as an extension of Budó's [J. Chem. Phys. 17, 686 (1949)] treatment of molecules containing rotating polar groups to include inertial effects.

  6. Fabrication of thermal-resistant gratings for high-temperature measurements using geometric phase analysis.

    Science.gov (United States)

    Zhang, Q; Liu, Z; Xie, H; Ma, K; Wu, L

    2016-12-01

    Grating fabrication techniques are crucial to the success of grating-based deformation measurement methods because the quality of the grating will directly affect the measurement results. Deformation measurements at high temperatures entail heating and, perhaps, oxidize the grating. The contrast of the grating lines may change during the heating process. Thus, the thermal-resistant capability of the grating becomes a point of great concern before taking measurements. This study proposes a method that combines a laser-engraving technique with the processes of particle spraying and sintering for fabricating thermal-resistant gratings. The grating fabrication technique is introduced and discussed in detail. A numerical simulation with a geometric phase analysis (GPA) is performed for a homogeneous deformation case. Then, the selection scheme of the grating pitch is suggested. The validity of the proposed technique is verified by fabricating a thermal-resistant grating on a ZrO2 specimen and measuring its thermal strain at high temperatures (up to 1300 °C). Images of the grating before and after deformation are used to obtain the thermal-strain field by GPA and to compare the results with well-established reference data. The experimental results indicate that this proposed technique is feasible and will offer good prospects for further applications.

  7. The role played by thermal feedback in heated Farley-Buneman waves at high latitudes

    Directory of Open Access Journals (Sweden)

    J.-P. St.-Maurice

    Full Text Available It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle Farley-Buneman modes. We show that destabilization can arise from a combination of (1 a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2 thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0×B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of `Type IV' waves in the high-latitude ionosphere.

    Key words: Ionosphere (auroral ionosphere; iono- spheric irregularities; plasma waves and instabilities

  8. Fabrication of thermal-resistant gratings for high-temperature measurements using geometric phase analysis

    Science.gov (United States)

    Zhang, Q.; Liu, Z.; Xie, H.; Ma, K.; Wu, L.

    2016-12-01

    Grating fabrication techniques are crucial to the success of grating-based deformation measurement methods because the quality of the grating will directly affect the measurement results. Deformation measurements at high temperatures entail heating and, perhaps, oxidize the grating. The contrast of the grating lines may change during the heating process. Thus, the thermal-resistant capability of the grating becomes a point of great concern before taking measurements. This study proposes a method that combines a laser-engraving technique with the processes of particle spraying and sintering for fabricating thermal-resistant gratings. The grating fabrication technique is introduced and discussed in detail. A numerical simulation with a geometric phase analysis (GPA) is performed for a homogeneous deformation case. Then, the selection scheme of the grating pitch is suggested. The validity of the proposed technique is verified by fabricating a thermal-resistant grating on a ZrO2 specimen and measuring its thermal strain at high temperatures (up to 1300 °C). Images of the grating before and after deformation are used to obtain the thermal-strain field by GPA and to compare the results with well-established reference data. The experimental results indicate that this proposed technique is feasible and will offer good prospects for further applications.

  9. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    Science.gov (United States)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  10. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity.

    Science.gov (United States)

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-02-02

    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The role played by thermal feedback in heated Farley-Buneman waves at high latitudes

    Directory of Open Access Journals (Sweden)

    J.-P. St.-Maurice

    2000-05-01

    Full Text Available It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle Farley-Buneman modes. We show that destabilization can arise from a combination of (1 a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2 thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0×B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of `Type IV' waves in the high-latitude ionosphere.Key words: Ionosphere (auroral ionosphere; iono- spheric irregularities; plasma waves and instabilities

  12. How consumers respond to the behavior of missing a free gift promotion: inaction inertia effect on products offered as free gifts.

    Science.gov (United States)

    Liu, Tsung-Chi; Cheng, Ti; Ni, Feng-Yu

    2011-01-01

    Inaction inertia describes the phenomenon that an individual is unlikely to act on an attractive opportunity after having bypassed an even more attractive one. The results of two experiments indicate that after missing an initial opportunity to obtain a product as a free gift during a promotional period, the inaction inertia effect reduces the likelihood of consumers buying the product at a discounted price (second, inferior opportunity), particularly if the free gift has a high regular price. Additionally, according to the results of Experiment 2, those consumers are less likely to buy a product that has been offered previously as a free gift when a greater total quantity of the free gift is offered during a promotional period. Moreover, the mediation analysis results indicate that anticipated regret and valuation significantly impact the mediating role of inaction inertia.

  13. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    Science.gov (United States)

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion.

  14. Accounting for inertia in modal choices: some new evidence using a RP/SP dataset

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Manca, Francesco

    2011-01-01

    effect is stable along the SP experiments. Inertia has been studied more extensively with panel datasets, but few investigations have used RP/SP datasets. In this paper we extend previous work in several ways. We test and compare several ways of measuring inertia, including measures that have been...... is used that allows us to account for both systematic and random taste variations in the inertia effect and for correlations among RP and SP observations. Finally we explore the relation between the utility specification (especially in the SP dataset) and the role of inertia in explaining current choices....

  15. A Two-Dimensional Analytic Thermal Model for a High-Speed PMSM Magnet

    CSIR Research Space (South Africa)

    Grobler, AJ

    2015-11-01

    Full Text Available . The temperature-dependent properties of permanent magnets necessitate high-detail thermal models. This paper presents a 2-D analytical model for a HS PMSM magnet. The diffusion equation is solved where three of the PM boundaries experience convection heat flow...

  16. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  17. Thermal loss and soldering effect study of high-Q antennas in handheld devices

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Pedersen, Gert Frølund

    2013-01-01

    High-Q antennas are attractive because, besides being narrow-band, they have the advantage of being more compact and therefore occupy less volume in a mobile device. However, they can become very lossy especially at lower frequencies. In this paper it is investigated how low a thermal loss...

  18. Electro-thermal modeling of high power IGBT module short-circuits with experimental validation

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2015-01-01

    A novel Insulated Gate Bipolar Transistor (IGBT) electro-thermal modeling approach involving PSpice and ANSYS/Icepak with both high accuracy and simulation speed has been presented to study short-circuit of a 1.7 kV/1 kA commercial IGBT module. The approach successfully predicts the current...

  19. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  20. AC Losses and Their Thermal Effect in High Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2015-01-01

    In transient operations or fault conditions, high temperature superconducting (HTS) machines suffer AC losses which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate AC losses and their thermal effect in HTS machines is presented....... The method consists of three sub-models that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an AC loss model which has...... an HTS machine and its cooling system....

  1. Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP systems

    CSIR Research Space (South Africa)

    Nuru, ZY

    2015-10-01

    Full Text Available B), 115-120 Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP systems Z.Y. Nuru a, b, *, L. Kotsedi a, b, C.J. Arendse c, D. Motaung d, B. Mwakikunga d, K. Roro d, e, M. Maaza a, b a UNESCO-UNISA Africa Chair... Pretoria, South Africa e R&D Core-Energy, Council for Scientific and Industrial Research, P O Box 395, 0001 Pretoria, South Africa Abstract This contribution reports on the effect of thermal annealing on sputtered Pt–Al(sub2)O(sub3) multilayered...

  2. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  3. Using High-Resolution Hand-Held Radiometers To Measure In-Situ Thermal Resistance

    Science.gov (United States)

    Burch, Douglas M.; Krintz, Donald F.

    1984-03-01

    A field study was carried out to investigate the accuracy of using high-resolution radiometers to determine the in situ thermal resistance of building components having conventional residential construction. Two different types of radiometers were used to determine the thermal resistances of the walls of six test buildings located at the National Bureau of Standards. These radiometer thermal resistance measurements were compared to reference thermal resistance values determined from steady-state series resistance predictions, time-averaged heat-flow-sensor measurements, and guarded-hot-box measurements. When measurements were carried out 5 hours after sunset when the outdoor temperature was relatively steady and the heating plant was operated in a typical cyclic fashion, the following results were obtained: for lightweight wood-frame cavity walls, the radiometer procedures were found to distinguish wall thermal resistance 4.4 h.ft2- °F/Btu (0.77 m2•K/W) systematically higher than corresponding reference values. Such a discrimination will per-mit insulated and uninsulated walls to be distinguished. However, in the case of walls having large heat capacity (e.g., masonry and log), thermal storage effects produced large time lags between the outdoor diurnal temperature variation and the heat-flow response at the inside surface. This phenomenon caused radiometer thermal resistances to deviate substantially from corresponding reference values. This study recommends that the ANSI/ASHRAE Standard 101-1981 be modified requiring the heating plant to be operated in a typical cyclic fashion instead of being turned off prior to and during radiometer measurements.

  4. Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage

    Science.gov (United States)

    Nath, Rupa

    Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization of high latent heat storage capability of phase change materials is one of the keys to an efficient way to store thermal energy. However, some of the limitations of the existing technology are the high volumetric expansion and low thermal conductivity of phase change materials (PCMs), low energy density, low operation temperatures and high cost. The present work deals with encapsulated PCM system, which operates at temperatures above 500°C and takes advantage of the heat transfer modes at such high temperatures to overcome the aforementioned limitations of PCMs. Encapsulation with sodium silicate coating on preformed PCM pellets were investigated. A low cost, high temperature metal, carbon steel has been used as a capsule for PCMs with a melting point above 500° C. Sodium silicate and high temperature paints were used for oxidation protection of steel at high temperatures. The emissivity of the coatings to enhance heat transfer was investigated.

  5. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity.

    Science.gov (United States)

    Hayase, Gen; Kanamori, Kazuyoshi; Abe, Kentaro; Yano, Hiroyuki; Maeno, Ayaka; Kaji, Hironori; Nakanishi, Kazuki

    2014-06-25

    Polymethylsilsesquioxane-cellulose nanofiber (PMSQ-CNF) composite aerogels have been prepared through sol-gel in a solvent containing a small amount of CNFs as suspension. Since these composite aerogels do not show excessive aggregation of PMSQ and CNF, the original PMSQ networks are not disturbed. Composite aerogels with low density (0.020 g cm(-3) at lowest), low thermal conductivity (15 mW m(-1) K(-1)), visible light translucency, bending flexibility, and superhydrophobicity thus have been successfully obtained. In particular, the lowest density and bending flexibility have been achieved with the aid of the physical supporting effect of CNFs, and the lowest thermal conductivity is comparable with the original PMSQ aerogels and standard silica aerogels. The PMSQ-CNF composite aerogels would be a candidate to practical high-performance thermal insulating materials.

  6. Thermal conductivity changes across a structural phase transition: The case of high-pressure silica

    Science.gov (United States)

    Aramberri, Hugo; Rurali, Riccardo; Íñiguez, Jorge

    2017-11-01

    By means of first-principles calculations, we investigate the thermal properties of silica as it evolves, under hydrostatic compression, from a stishovite phase into a CaCl2-type structure. We compute the thermal conductivity tensor by solving the linearized Boltzmann transport equation iteratively in a wide temperature range, using for this the pressure-dependent harmonic and anharmonic interatomic couplings obtained from first principles. Most remarkably, we find that, at low temperatures, SiO2 displays a large peak in the in-plane thermal conductivity and a highly anisotropic behavior close to the structural transformation. We trace back the origin of these features by analyzing the phonon contributions to the conductivity. We discuss the implications of our results in the general context of continuous structural transformations in solids, as well as the potential geological interest of our results for silica.

  7. Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing.

    Science.gov (United States)

    Gong, Yongkang; Wang, Zuobin; Li, Kang; Uggalla, Leshan; Huang, Jungang; Copner, Nigel; Zhou, Yang; Qiao, Dun; Zhu, Jiuyuan

    2017-11-01

    Development of a novel, cost-effective, and highly efficient mid-infrared light source has been identified as a major scientific and technological goal within the area of optical gas sensing. We have proposed and investigated a mid-infrared metamaterial thermal emitter based on micro-structured chromium thin film. The results demonstrate that the proposed thermal light source supports broadband and wide angular absorption of both TE- and TM-polarized light, giving rise to broadband thermal radiation with averaged emissivity of ∼0.94 in a mid-infrared atmospheric window of 8-14 μm. The proposed microphotonic concept provides a promising alternative mid-infrared source and paves the way towards novel optical gas sensing platforms for many applications.

  8. Thermal insulation for high temperature microwave sintering operations and method thereof

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  9. Method of preparing thermal insulation for high temperature microwave sintering operations

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  10. Thermal properties of silica-filled high density polyethylene composites compatibilized with glut palmitate

    Science.gov (United States)

    Samsudin, Dalina; Ismail, Hanafi; Othman, Nadras; Hamid, Zuratul Ain Abdul

    2017-07-01

    A study of thermal properties resulting from the utilization of Glut Palmitate (GP) on the silica filled high density polyethylene (HDPE) composites was carried out. The composites with the incorporation of GP at 0.5, 1.0, 2.0 and 3.0 phr were prepared by using an internal mixer at the temperature 180 °C and the rotor speed of 50 rpm. The thermal behaviours of the composites were then investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the crystallinity and the thermal stability of the composites increased with the incorporation of GP. The highest crystallinity contents and decomposition temperatures were observed at the 1 phr GP loading.

  11. Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

    Energy Technology Data Exchange (ETDEWEB)

    Yoh, J J; McClelland, M A

    2003-07-16

    We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

  12. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider.

    Science.gov (United States)

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S; Jeon, Sangyong; Gale, Charles

    2016-02-19

    The collective behavior of hadronic particles has been observed in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In this work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. The thermal photons can thus shine over the prompt background, and increase the low p_{T} direct photon spectrum by a factor of 2-3 in 0%-1% p+Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.

  13. High-temperature thermal storage systems for advanced solar receivers materials selections

    Science.gov (United States)

    Wilson, D. F.; Devan, J. H.; Howell, M.

    1990-01-01

    Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented.

  14. Increased thermal pain sensitivity in animals exposed to chronic high dose Vicodin but not pure hydrocodone.

    Science.gov (United States)

    O'Connell, Thomas F; Carpenter, Patrick S; Caballero, Nadia; Putnam, Andrew J; Steere, Joshua T; Matz, Gregory J; Foecking, Eileen M

    2014-01-01

    Vicodin, the combination drug of acetaminophen and the opioid hydrocodone, is one of the most prescribed drugs on the market today. Opioids have demonstrated the ability to paradoxically cause increased pain sensitivity to users in a phenomena called opioid-induced hyperalgesia (OIH). While selected opioids have been shown to produce OIH symptoms in an animal model, hydrocodone and the combination drug Vicodin have yet to be studied. The purpose of this study was to explore the effect of exposure to chronic high dose Vicodin or its components on the sensitivity to both thermal and mechanical pain. Animals were randomly divided into 4 groups, Vicodin, acetaminophen, hydrocodone, or vehicle control, and administered the drug daily for 120 days. Rats were subsequently tested for thermal and mechanical sensitivity. The rats in the Vicodin group displayed a significant decrease in withdrawal time to thermal pain. The rats receiving acetaminophen, hydrocodone, and vehicle showed no statistically significant hypersensitivity in thermal testing. None of the groups demonstrated statistically significant hypersensitivity to mechanical testing. The data suggests Vicodin produces signs of OIH in a rodent model. However, increased pain sensitivity was only noted in the thermal pathway and the hypersensitivity was only seen with the opioid combination drug, not the opioid alone. The results of this study both support the results of previous rodent opioid studies while generating further questions about the specific properties of Vicodin that contribute to pain hypersensitivity. The growing use of Vicodin to treat chronic pain necessitates further research looking into this paradoxical pain response.

  15. Thin-layer thermal insulation coatings based on high-filled spheroplastics with polyorganosiloxane binder

    Science.gov (United States)

    Chukhlanov, V. Yu; Selivanov, O. G.; Trifonova, T. A.; Ilina, M. E.; Chukhlanova, N. V.

    2017-10-01

    Thermal insulation coatings, based on polyorganosiloxane as a binder and hollow glass microspheres, have been studied in this research. The developed materials are widely applied in various branches of science and engineering basically in construction. Components interaction processes are comprehensively studied. Spraying production methods of thin layer thermal insulation coatings have been researched. Ideal technological parameters for polyorganosiloxane coatings hardening depending on components ratio, ambient temperature, solvent and curative concentration have been determined. Stress related characteristics of constructional energy saving materials containing polyorganosiloxane have been researched. Components structure and ratio concerning compound extension strength properties have been revealed. Substantiation of Danneberg model application for the strength characteristics enhancing, when hollow microspheres are introduced, has been suggested. Thermal properties of coating thermal insulation have been studied. To research these characteristics standard methods applying devices IT-S-400 and IT-λ-400 have been chosen. Filler concentration increase was stated to decrease the composition heat conductivity coefficient and to the reduction of temperature dependence of this index. The authors suggested to employ the developed thermal insulation materials for construction and power engineering facilities operating under high temperature and other unfavorable environment.

  16. Thermal effects on clay rocks for deep disposal of high-level radioactive waste

    Directory of Open Access Journals (Sweden)

    Chun-Liang Zhang

    2017-06-01

    Full Text Available Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions: (1 stresses covering the range from the initial lithostatic state to redistributed levels after excavation, (2 hydraulic drained and undrained boundaries, and (3 heating from ambient temperature up to 90 °C–120 °C and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.

  17. High Temperature Exposure of HPC – Experimental Analysis of Residual Properties and Thermal Response

    Directory of Open Access Journals (Sweden)

    Pavlík Zbyšek

    2016-01-01

    Full Text Available The effect of high temperature exposure on properties of a newly designed High Performance Concrete (HPC is studied in the paper. The HPC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000°C respectively. Among the basic physical properties, bulk density, matrix density and total open porosity are measured. The mechanical resistivity against disruptive temperature action is characterised by compressive strength, flexural strength and dynamic modulus of elasticity. To study the chemical and physical processes in HPC during its high-temperature exposure, Simultaneous Thermal Analysis (STA is performed. Linear thermal expansion coefficient is determined as function of temperature using thermodilatometry (TDA. In order to describe the changes in microstructure of HPC induced by high temperature loading, MIP measurement of pore size distribution is done. Increase of the total open porosity and connected decrease of the mechanical parameters for temperatures higher than 200 °C were identified.

  18. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding.

    Science.gov (United States)

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin

    2017-06-28

    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  19. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    Science.gov (United States)

    Wang, Shujuan; Wang, Xiao; Jia, Beibei; Jing, Xinli

    2017-01-01

    In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A2 + B3 strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph-O-B and B-O-B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N2) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N2 and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  20. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials.

    Science.gov (United States)

    Shahil, Khan M F; Balandin, Alexander A

    2012-02-08

    We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = 10 vol %. It was determined that the relatively high concentration of the single-layer and bilayer graphene flakes (~10-15%) present simultaneously with the thicker multilayers of large lateral size (~1 μm) were essential for the observed unusual K enhancement. The thermal conductivity of the commercial thermal grease was increased from an initial value of ~5.8 W/mK to K = 14 W/mK at the small loading f = 2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene-matrix interface. © 2012 American Chemical Society

  1. A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils

    Science.gov (United States)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface

  2. Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging

    Science.gov (United States)

    Cho, Youngjun; Julier, Simon J.; Marquardt, Nicolai; Bianchi-Berthouze, Nadia

    2017-01-01

    The ability to monitor the respiratory rate, one of the vital signs, is extremely important for the medical treatment, healthcare and fitness sectors. In many situations, mobile methods, which allow users to undertake everyday activities, are required. However, current monitoring systems can be obtrusive, requiring users to wear respiration belts or nasal probes. Alternatively, contactless digital image sensor based remote-photoplethysmography (PPG) can be used. However, remote PPG requires an ambient source of light, and does not work properly in dark places or under varying lighting conditions. Recent advances in thermographic systems have shrunk their size, weight and cost, to the point where it is possible to create smart-phone based respiration rate monitoring devices that are not affected by lighting conditions. However, mobile thermal imaging is challenged in scenes with high thermal dynamic ranges (e.g. due to the different environmental temperature distributions indoors and outdoors). This challenge is further amplified by general problems such as motion artifacts and low spatial resolution, leading to unreliable breathing signals. In this paper, we propose a novel and robust approach for respiration tracking which compensates for the negative effects of variations in the ambient temperature and motion artifacts and can accurately extract breathing rates in highly dynamic thermal scenes. The approach is based on tracking the nostril of the user and using local temperature variations to infer inhalation and exhalation cycles. It has three main contributions. The first is a novel Optimal Quantization technique which adaptively constructs a color mapping of absolute temperature to improve segmentation, classification and tracking. The second is the Thermal Gradient Flow method that computes thermal gradient magnitude maps to enhance the accuracy of the nostril region tracking. Finally, we introduce the Thermal Voxel method to increase the reliability of the

  3. Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging.

    Science.gov (United States)

    Cho, Youngjun; Julier, Simon J; Marquardt, Nicolai; Bianchi-Berthouze, Nadia

    2017-10-01

    The ability to monitor the respiratory rate, one of the vital signs, is extremely important for the medical treatment, healthcare and fitness sectors. In many situations, mobile methods, which allow users to undertake everyday activities, are required. However, current monitoring systems can be obtrusive, requiring users to wear respiration belts or nasal probes. Alternatively, contactless digital image sensor based remote-photoplethysmography (PPG) can be used. However, remote PPG requires an ambient source of light, and does not work properly in dark places or under varying lighting conditions. Recent advances in thermographic systems have shrunk their size, weight and cost, to the point where it is possible to create smart-phone based respiration rate monitoring devices that are not affected by lighting conditions. However, mobile thermal imaging is challenged in scenes with high thermal dynamic ranges (e.g. due to the different environmental temperature distributions indoors and outdoors). This challenge is further amplified by general problems such as motion artifacts and low spatial resolution, leading to unreliable breathing signals. In this paper, we propose a novel and robust approach for respiration tracking which compensates for the negative effects of variations in the ambient temperature and motion artifacts and can accurately extract breathing rates in highly dynamic thermal scenes. The approach is based on tracking the nostril of the user and using local temperature variations to infer inhalation and exhalation cycles. It has three main contributions. The first is a novel Optimal Quantization technique which adaptively constructs a color mapping of absolute temperature to improve segmentation, classification and tracking. The second is the Thermal Gradient Flow method that computes thermal gradient magnitude maps to enhance the accuracy of the nostril region tracking. Finally, we introduce the Thermal Voxel method to increase the reliability of the

  4. Independent effects of adding weight and inertia on balance during quiet standing

    Directory of Open Access Journals (Sweden)

    Costello Kerry

    2012-04-01

    Full Text Available Abstract Background Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Methods Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Results Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible and backboard movement (indicating a poorer ability of the body to stand as still as possible. Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Conclusions Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.

  5. Diesel crankshaft failures in marine industry— A variable inertia aspect

    Science.gov (United States)

    Pasricha, M. S.; Carnegie, W. D.

    1981-10-01

    In recent years several cases of failures of engineering systems in practice have been attributed to the effect of variable inertia or to the periodic pulsation in the spring constant. Violent torsional vibrations in the systems have been observed in several speed ranges resulting in failure and only a partial explanation of the behaviour of the systems has been worked out. It is impossible to avoid these instabilities by changes in the design, unless of course the variations in mass and spring constant can be made zero. The problem becomes more acute in the case of modern marine diesel engine systems in which not only the size is increasing but also the output required per cylinder. There are certain critical speeds of running at which the torsional vibrations in the crankshaft become large in amplitude and introduce an element of danger into the system. Fairly simple methods have been devised for practical calculations to predict the torsional vibration characteristics from the constants of the machinery, but these have led more to confusion than to offering a remedy to engineers in practice, particularly in the field of marine diesel engine systems. When account is taken of the variations in spring constant and inertia the equation of motion that results is one with variable coefficients. The fact that very few equations with variable coefficients have known solutions has resulted in the lack of understanding of the behaviour of these systems in the past. Allowing for the effect of variable inertia Draminsky derived an equation of motion representing the motion of a single cylinder engine. Draminsky treated the equation as non-linear and obtained partial information from its solution to form the basis of his method of calculation for predicting otherwise inexplicable failures in crankshafts of marine diesel engine systems. In the present paper a critical appraisal of the regions of instability as determined by using different considerations is given, also for a

  6. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity.

    Science.gov (United States)

    Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-05-23

    With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m-1 K-1) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m-1 K-1) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.

  7. Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    In order to meet the energy demand and at the same time to achieve sustainable development objectives on a global scale, the Danish government has set a long-term strategy of fossil fuel free country by the year 2050. However, the decline of conventional power generation units and a rising amount...... turbine penetration, governor responsibility of synchronous generators, and disturbance are simulated to examine the impact of highlevel renewable energy integration on the system frequency characteristics. The effect of synchronous condensers for the frequency stability enhancement is investigated...... of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...

  8. The Problem of Inertia in a Friedmann Universe

    Science.gov (United States)

    Kazanas, Demosthenes

    2012-01-01

    In this talk I will discuss the origin of inertia in a curved spacetime, particularly the spatially flat, open and closed Friedmann universes. This is done using Sciama's law of inertial induction, which is based on Mach's principle, and expresses the analogy between the retarded far fields of electrodynamics and those of gravitation. After obtaining covariant expressions for electromagnetic fields due to an accelerating point charge in Friedmann models, we adopt Sciama's law to obtain the inertial force on an accelerating mass $m$ by integrating over the contributions from all the matter in the universe. The resulting inertial force has the form $F = -kma$ where the constant $k < 1 $ depends on the choice of the cosmological parameters such as $\\Omega_{M},\\ \\Omega_{\\Lambda}, $ and $\\Omega_{R}$. The values of $k$ obtained suggest that inertial contribution from dark matter can be the source for the missing part of the inertial force.

  9. Effects of Roughness and Inertia on Precursors to Frictional Sliding

    Science.gov (United States)

    Robbins, Mark O.; Salerno, K. Michael

    2012-02-01

    Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)

  10. Temperature-Dependent Thermal Conductivity of High Strength Lightweight Raw Perlite Aggregate Concrete

    Science.gov (United States)

    Tandiroglu, Ahmet

    2010-06-01

    Twenty-four types of high strength lightweight concrete have been designed with raw perlite aggregate (PA) from the Erzincan Mollaköy region as new low-temperature insulation material. The effects of the water/cement ratio, the amount of raw PA, and the temperature on high strength lightweight raw perlite aggregate concrete (HSLWPAC) have been investigated. Three empirical equations were derived to correlate the thermal conductivity of HSLWPAC as a function of PA percentage and temperature depending on the water/cement ratio. Experimentally observed thermal conductivities of concrete samples were predicted 92 % of the time for each set of concrete matrices within 97 % accuracy and over the range from 1.457 W · m-1 · K-1 to 1.777 W · m-1 · K-1. The experimental investigation revealed that the usage of raw PA from the Erzincan Mollaköy region in concrete production reduces the concrete unit mass, increases the concrete strength, and furthermore, the thermal conductivity of the concrete has been improved. The proposed empirical correlations of thermal conductivity were considered to be applicable within the range of temperatures 203.15 K ≤ T ≤ 303.15 K in the form of λ = a( PAP b ) + c( T d ).

  11. Inertia and advance in the organic sector: food education in Denmark

    DEFF Research Database (Denmark)

    Dahl, Astrid; Kristensen, Niels Heine

    2005-01-01

    Dahl A, & Kristensen NH (2005): Inertia and advance in the organic sector: food education in Denmark. Chapter in Sociological Perspectives of Organic Agriculture. (Edt.: G. Holt and M. Reed). CABI, UK......Dahl A, & Kristensen NH (2005): Inertia and advance in the organic sector: food education in Denmark. Chapter in Sociological Perspectives of Organic Agriculture. (Edt.: G. Holt and M. Reed). CABI, UK...

  12. Constraints on the Moment of Inertia of a Proto Neutron Star from the ...

    Indian Academy of Sciences (India)

    The influence of the hyperon coupling constants on the moment of inertia of a proto neutron star has been investigated within the framework of relativistic mean field theory for the baryon octet {, , , -, 0, +, Ξ-, Ξ0} system. It is found that for a proto neutron star, the mass, the moment of inertia and their own maximum ...

  13. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing.

    Science.gov (United States)

    Evelyn; Silva, F V M

    2015-12-02

    Byssochlamys nivea is a mold that can spoil processed fruit products and produce mycotoxins. In this work, high pressure processing (HPP, 600 MPa) and power ultrasound (24 kHz, 0.33 W/mL; TS) in combination with 75°C for the inactivation of four week old B. nivea ascospores in strawberry puree for up to 30 min was investigated and compared with 75°C thermal processing alone. TS and thermal processing can activate the mold ascospores, but HPP-75°C resulted in 2.0 log reductions after a 20 min process. For a 10 min process, HPP-75°C was better than 85°C alone in reducing B. nivea spores (1.4 vs. 0.2 log reduction), demonstrating that a lower temperature in combination with HPP is more effective for spore inactivation than heat alone at a higher temperature. The ascospore inactivation by HPP-thermal, TS and thermal processing was studied at different temperatures and modeled. Faster inactivation was achieved at higher temperatures for all the technologies tested, indicating the significant role of temperature in spore inactivation, alone or combined with other physical processes. The Weibull model described the spore inactivation by 600 MPa HPP-thermal (38, 50, 60, 75°C) and thermal (85, 90°C) processing, whereas the Lorentzian model was more appropriate for TS treatment (65, 70, 75°C). The models obtained provide a useful tool to design and predict pasteurization processes targeting B. nivea ascospores. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Thermal Cycling Behavior of Thermal Barrier Coatings with MCrAlY Bond Coat Irradiated by High-Current Pulsed Electron Beam.

    Science.gov (United States)

    Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong

    2016-11-30

    Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al2O3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.

  15. Influence of high flux hydrogen-plasma exposure on the thermal shock induced crack formation in tungsten

    NARCIS (Netherlands)

    Wirtz, M.; Linke, J.; Pintsuk, G.; Rapp, J.; Wright, G. M.

    2012-01-01

    The influence of high flux hydrogen-plasma on the thermal shock behaviour of tungsten was investigated in a combined experiment using the linear plasma device Pilot-PSI and the electron beam facility JUDITH 1. Tungsten targets were exposed to high flux hydrogen plasma, cyclic thermal shock tests and

  16. High-Thermal-Conductivity Densified Graphitic Foams as Novel Bearing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Klett, James William [ORNL; Jolly, Brian C [ORNL

    2006-01-01

    The high-thermal-conductivity graphitic foams (foam-reinforced carbon-carbon composites) developed at ORNL have been mainly used for thermal management, as in heat sinks for electronic circuit boards and highly-efficient automotive radiators. However, recent studies in our laboratory have rather unexpectedly revealed their potential as novel bearing materials. In addition to their low density and potential for weight savings, there are three primary tribological advantages of the graphitic foam materials: (1) their graphitic structures provide self-lubricating qualities, (2) their extraordinarily high thermal conductivity aids in the efficient removal of frictionally-generated heat, and (3) the pores in the foam serve both as wear debris traps and lubricant reservoirs. Previous studies on the densified graphitic foam (DGF) sliding against steel and alumina at relatively low speed (1 m/s) and low load (10 N), revealed their encouraging self-lubricating behavior, comparable to solid graphite while much better than bronze and polytetrafluoroethylene (Teflon{trademark}). In this study, pin-on-disk tests with higher speeds (2, 6, and 10 m/s) and higher loads (322 N) were conducted on DGF and graphite disks sliding against a DGF pin. The surface temperature on the graphite disk increased rapidly due to frictional heating and the friction coefficient increased proportionally with surface temperature when it was higher than 40 C. The DGF disk, however, ran much cooler due to the higher thermal conductivity, and more impressively, the friction coefficient remained low and constant even at elevated disk temperatures. This suggests high potential for the graphitic foam material in weight-sensitive, high-speed, and elevated temperature bearing applications.

  17. High thermal robustness of molecularly thin perovskite nanosheets and implications for superior dielectric properties.

    Science.gov (United States)

    Li, Bao-Wen; Osada, Minoru; Ebina, Yasuo; Akatsuka, Kosho; Fukuda, Katsutoshi; Sasaki, Takayoshi

    2014-06-24

    A systematic study has been conducted to examine the thermal stability of layer-by-layer assembled films of perovskite-type nanosheets, (Ca2Nb3O10(-))n (n = 1-10), which exhibit superior dielectric and insulating properties. In-plane and out-of-plane X-ray diffraction data as well as observations by atomic force microscopy and transmission electron microscopy indicated the high thermal robustness of the nanosheet films. In a monolayer film with an extremely small thickness of ∼2 nm, the nanosheet was stable up to 800 °C, the temperature above which segregation into CaNb2O6 and Ca2Nb2O7 began. The critical temperature moderately decreased as the film thickness, or the number of nanosheet layers, increased, and reached 700 °C for seven- and 10-layer films, which is comparable to the phase transformation temperature for a bulk phase of the protonic layered oxide of HCa2Nb3O10·1.5H2O as a precursor of the nanosheet. This thermal stabilization of perovskite-type nanosheets should be associated with restricted nucleation and crystal growth peculiar to such ultrathin 2D bound systems. The stable high-k dielectric response (εr = 210) and highly insulating nature (J niobate nanosheets in terms of structure and dielectric properties, which suggests promising potential for future high-k devices operable over a wide temperature range.

  18. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    Science.gov (United States)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  19. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    Science.gov (United States)

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  20. Titer plate formatted continuous flow thermal reactors for high throughput applications: fabrication and testing

    Science.gov (United States)

    Sang-Won Park, Daniel; Chen, Pin-Chuan; You, Byoung Hee; Kim, Namwon; Park, Taehyun; Lee, Tae Yoon; Datta, Proyag; Desta, Yohannes; Soper, Steven A.; Nikitopoulos, Dimitris E.; Murphy, Michael C.

    2010-05-01

    A high throughput, multi-well (96) polymerase chain reaction (PCR) platform, based on a continuous flow (CF) mode of operation, was developed. Each CFPCR device was confined to a footprint of 8 × 8 mm2, matching the footprint of a well on a standard micro-titer plate. While several CFPCR devices have been demonstrated, this is the first example of a high-throughput multi-well continuous flow thermal reactor configuration. Verification of the feasibility of the multi-well CFPCR device was carried out at each stage of development from manufacturing to demonstrating sample amplification. The multi-well CFPCR devices were fabricated by micro-replication in polymers, polycarbonate to accommodate the peak temperatures during thermal cycling in this case, using double-sided hot embossing. One side of the substrate contained the thermal reactors and the opposite side was patterned with structures to enhance thermal isolation of the closely packed constant temperature zones. A 99 bp target from a λ-DNA template was successfully amplified in a prototype multi-well CFPCR device with a total reaction time as low as ~5 min at a flow velocity of 3 mm s-1 (15.3 s cycle-1) and a relatively low amplification efficiency compared to a bench-top thermal cycler for a 20-cycle device; reducing the flow velocity to 1 mm s-1 (46.2 s cycle-1) gave a seven-fold improvement in amplification efficiency. Amplification efficiencies increased at all flow velocities for 25-cycle devices with the same configuration.

  1. Thermal regime of a highly regulated Italian river (Ticino River and implications for aquatic communities

    Directory of Open Access Journals (Sweden)

    Francesca Salmaso

    2016-08-01

    Full Text Available Thermal alteration is one of the adverse effects of flow regulation sharpened in recent years due to climate changes. In this work, we characterize the thermal regime of a highly regulated river located in Northern Italy, which is the emissary of Lake Maggiore. The thermal characteristics of the study reach are influenced by the presence of two dams and by climate warming. In the 15-year monitored period (1999-2013 a significant increase of the mean annual river temperature (i.e., +1.8°C was indeed recorded. Minimum and maximum water temperatures were detected in correspondence of low-flow periods in February and August, respectively. During August the temperature reached a maximum of 27°C, that is a value below the upper thermal limit of tolerance for most of the aquatic taxa collected in the study area. Moreover, the local presence of seeps and the interaction with groundwater play an important ecological role by guaranteeing patches of cool water to the aquatic communities. Nevertheless, the sensitive early life stages of fish species that spawn in spring/summer may be affected by the high summer temperatures and the expected future climate warming. The wider range of temperatures preferred by alien fish species could result into a competitive disadvantage for autochthonous species. The current minimum flows established by local laws as environmental flows appeared to be able to guarantee an acceptable thermal alteration in morphologically heterogeneous reaches where river/groundwater interaction occurred, at least within the current climatic conditions.

  2. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  3. Study of improving the thermal response of a construction material containing a phase change material

    Science.gov (United States)

    Laaouatni, A.; Martaj, N.; Bennacer, R.; Elomari, M.; El Ganaoui, M.

    2016-09-01

    The use of phase change materials (PCMs) for improving the thermal comfort in buildings has become an attractive application. This solution contributes to increasing the thermal inertia of the building envelope and reducing power consumption. A building element filled with a PCM and equipped with ventilation tubes is proposed, both for increasing inertia and contributing to refreshing building envelope. A numerical simulation is conducted by the finite element method in COMSOL Multiphysics, which aims to test the thermal behaviour of the developed solution. An experimental study is carried out on a concrete block containing a PCM with ventilation tubes. The objective is to see the effect of PCM coupled with ventilation on increasing the inertia of the block. The results show the ability of this new solution to ensure an important thermal inertia of a building.

  4. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  5. Research of thermal conditions over high-temperature gas-fired infrared emitters

    Directory of Open Access Journals (Sweden)

    Ermolaev Anton N.

    2017-01-01

    Full Text Available The paper presents the study results of the thermal conditions in the area above high-temperature gas-fired infrared emitter. A number of bench tests and experiments were made on the basis of production facilities to control the distribution of temperatures above emitter in different heating system operating modes. Impact of the thermal characteristics in the area above high-temperature gas-fired infrared emitter on the heating system performance was estimated. Comparison of the bench tests results with existing experimental data has shown a good result convergence for both efficiency and accuracy. The obtained results can be used in the emitter development phase and in the construction phase of modern gas-fired radiant heating systems.

  6. Fabrication of Al2O3/glass/Cf Composite Substrate with High Thermal Conductivity

    Science.gov (United States)

    Wang, S. X.; Liu, G. S.; Ouyang, X. Q.; Wang, Y. D.; Zhang, D.

    2016-02-01

    In this paper, carbon fiber with high thermal conductivity was introduced into the alumina-based composites. To avoid oriented alignment of carbon fibers (Cf) and carbothermal reactions during the sintering process, the Al2O3/glass/Cf substrate was hot-pressed under a segmental-pressure procedure at 1123 K. Experimental results show that carbon fibers randomly distribute and form a bridging structure in the matrix. The three-dimensional network of Cf in Al2O3/glass/Cf substrate brings excellent heat conducting performance due to the heat conduction by electrons. The thermal conductivity of Al2O3/30%glass/30%Cf is as high as 28.98 W mK-1, which is 4.56 times larger than that of Al2O3/30%glass.

  7. High-temperature selective solar thermal absorber based on Fabry-Perot resonance cavity

    Science.gov (United States)

    Wang, Hao; Wang, Liping

    2015-09-01

    In this work, we investigate the design, fabrication and characterization of a multilayer selective solar absorber made of metallic and dielectric thin films. The investigated selective absorber exhibits theoretical spectral absorptance higher than 95% within solar spectrum and infrared emittance lower than 5%, due to the Fabry-Perot resonance and antireflection effect. In terms of fabrication, different materials are tested under high temperatures in order to obtain the structure with best thermal stability. Structures with different materials are fabricated with sputtering, chemical vapor deposition and electron beam evaporation techniques. The near normal reflectance is characterized with a Fourier Transform Infrared spectrometer for these structures before and after heat treatment. Meanwhile, Rutherford backscattering Spectroscopy is employed to analyze the diffusion and oxidation conditions during the heating process. Moreover, better material choice and fabrication techniques are considered to construct solar absorber sample with better high temperature thermal stability.

  8. Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation

    Science.gov (United States)

    Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran

    2007-01-01

    Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.

  9. Efficient, high rep rate, large-bore kinetically enhanced copper vapor laser with low (thermal assembly.

    Science.gov (United States)

    Singh, Bijendra; Subramaniam, V V; Daultabad, S R; Chakraborty, Ashim

    2009-10-01

    Large-bore kinetically enhanced copper vapor laser (CVL) based on new thermal assembly consisting of different density zones of insulation material (alumina fiber) around the discharge tube is demonstrated for the first time with efficiency eta > or = 1% at extremely low specific input power (SIP) of insulation material, efficiency of approximately 1.2% was achieved at lowest SIP of approximately 0.75 kW/l. Net reduction in the input power of approximately 1 kW was observed on using this thermal assembly as compared to nonprofiled thermal assembly. These results show significant improvement (25%-30%) at low input requirements of the laser on using new thermal assembly around the discharge tube with overall electro-optical efficiency eta > or = 1%. Maximum laser power achieved from the laser was approximately 78 W at approximately 9.8 kHz rep rate with efficiency of approximately 1.4%. This large-bore CVL is also capable of operating efficiently (eta approximately 1%) at high rep rate of -17 kHz with maximum laser power of approximately 50 W. Performance of the laser under various operating conditions is also presented in this short paper.

  10. Rocks, Clays, Water, and Salts: Highly Durable, Infinitely Rechargeable, Eminently Controllable Thermal Batteries for Buildings

    Directory of Open Access Journals (Sweden)

    Alan W. Rempel

    2013-01-01

    Full Text Available Materials that store the energy of warm days, to return that heat during cool nights, have been fundamental to vernacular building since ancient times. Although building with thermally rechargeable materials became a niche pursuit with the advent of fossil fuel-based heating and cooling, energy and climate change concerns have sparked new enthusiasm for these substances of high heat capacity and moderate thermal conductivity: stone, adobe, rammed earth, brick, water, concrete, and more recently, phase-change materials. While broadly similar, these substances absorb and release heat in unique patterns characteristic of their mineralogies, densities, fluidities, emissivities, and latent heats of fusion. Current architectural practice, however, shows little awareness of these differences and the resulting potential to match materials to desired thermal performance. This investigation explores that potential, illustrating the correspondence between physical parameters and thermal storage-and-release patterns in direct-, indirect-, and isolated-gain passive solar configurations. Focusing on heating applications, results demonstrate the superiority of water walls for daytime warmth, the tunability of granite and concrete for evening warmth, and the exceptional ability of phase-change materials to sustain near-constant heat delivery throughout the night.

  11. Thermal stability of quadruplex primers for highly versatile isothermal DNA amplification.

    Science.gov (United States)

    Mathias, Jordan; Okyere, Robert; Lomidze, Levan; Gvarjaladze, David; Musier-Forsyth, Karin; Kankia, Besik

    2014-01-01

    Quadruplex priming amplification (QPA) allows isothermal amplification of nucleic acids with improved yield and simplified detection. This assay is based on a DNA quadruplex, GGGTGGGTGGGTGGG (G3T), which in the presence of specific cations possesses unusually high thermal stability. QPA employs truncated G3T sequences as primers, which upon polymerase elongation, self-dissociate from the binding site and allow the next round of priming without thermal unfolding of amplicons. The rate of amplification strongly depends on the thermal stability of the primer/primer binding site (PBS) complex and to date QPA has been demonstrated to work over a narrow temperature range. To expand the capabilities of QPA, in the present study, we studied the fold and thermodynamic properties of the wild-type G3T and variants containing sequence modifications or extensions at the 5'-end. Circular dichroism studies demonstrate that the substitution of thymidines by other nucleotides or GC addition at the 5'-end does not change the parallel fold of G3T. Thermal unfolding experiments revealed that purine bases incorporated at loop positions and 5'-end dinucleotide extension significantly destabilize the quadruplex, while loop pyrimidines have almost no effect. Overall, the results of these studies suggest that linear isothermal QPA can be performed over a wide temperature range to accommodate both thermophilic and mesophilic DNA polymerases. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Thermal Treatment of Melt-Spun Fibers Based on High Density PolyEthylene and Lignin

    Directory of Open Access Journals (Sweden)

    Panagiotis Goulis

    2017-11-01

    Full Text Available The purpose of this study was the synthesis of novel low-cost carbon fibers along with the investigation of the optimal parameters of temperature and time for the stabilization of hybrid high-density polyethylene (HDPE and lignin melt-spun fibers. These fibers were manufactured by physical compounding of HDPE and chemically-modified softwood kraft lignin (SKL in order to produce green fiber precursors for carbon fiber synthesis. Stabilization tests were performed with respect to thermal treatment (physical method and sulfonation treatment (chemical method. The results revealed that only chemical methods induce the desired thermal process-ability to the composite fibers in order to manufacture carbon fibers by using a simple method. This investigation shed light on the stabilization techniques of polymeric fibers in the absence of any cyclic groups in terms of environmentally-friendly mass production of carbon fibers using low-cost and green raw materials. This study facilitates incorporation of softwood lignin in homegrown polymeric fibers by a low-cost production process via melt-spinning of composite fibers, which were successfully stabilized using a facile chemical method and carbonized. Additionally, a comprehensive investigation of the thermal behavior of the samples was accomplished, by examining several ways and aspects of fiber thermal treating. The properties of all studied fibers are presented, compared, and discussed.

  13. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  14. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  15. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    Science.gov (United States)

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  16. Influence of coating on nanocrystalline magnetic properties during high temperature thermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Lekdim, Atef, E-mail: atef.lekdim@univ-lyon1.fr; Morel, Laurent; Raulet, Marie-Ange

    2017-05-15

    Since their birth or mergence the late 1980s, the nanocrystalline ultrasoft magnetic materials are taking a great importance in power electronic systems conception. One of the main advantages that make them more attractive nowadays is their ability to be packaged since the reduction of the magnetostrictive constant to almost zero. In aircraft applications, due to the high component compactness and to their location (for example near the jet engine), the operating temperature increases and may reach easily 200 °C and more. Consequently, the magnetic thermal ageing may occur but is, unfortunately, weakly studied. This paper focuses on the influence of the coating (packaging type) on the magnetic nanocrystalline performances during a thermal ageing. This study is based on monitoring the magnetic characteristics of two types of nanocrystalline cores (naked and coated) during a thermal activated ageing (100, 150 and 200 °C). Based on a dedicated monitoring protocol, a large magnetic characterization has been done and analyzed. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena. - Highlights: • The coating impacts drastically the magnetic properties during thermal ageing. • Irreversible ageing phenomena after the total coating breakage. • The deteriorations are related to the storage of the magnetoelastic anisotropy.

  17. Final Report for Project titled High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Thibaud-Erkey, Catherine [United Technologies reserach Center, East Hartford, CT (United States); Alahyari, Abbas [United Technologies reserach Center, East Hartford, CT (United States)

    2016-12-28

    Heat exchangers (HXs) are critical components in a wide range of heat transfer applications, from HVAC (Heating Ventilation and Cooling) to automobiles to manufacturing plants. They require materials capable of transferring heat at high rates while also minimizing thermal expansion over the usage temperature range. Conventionally, metals are used for applications where effective and efficient heat exchange is required, since many metals exhibit thermal conductivity over 100 W/m K. While metal HXs are constantly being improved, they still have some inherent drawbacks due to their metal construction, in particular corrosion. Polymeric material can offer solution to such durability issues and allow designs that cannot be afforded by metal construction either due to complexity or cost. A major drawback of polymeric material is their low thermal conductivity (0.1-0.5? W/mK) that would lead to large system size. Recent improvements in the area of filled polymers have highlighted the possibility to greatly improve the thermal conductivity of polymeric materials while retaining their inherent manufacturing advantage, and have been applied to heat sink applications. Therefore, the objective of this project was to develop a robust review of materials for the manufacturing of industrial and commercial non-metallic heat exchangers. This review consisted of material identification, literature evaluation, as well as empirical and model characterization, resulting in a database of relevant material properties and characteristics to provide guidance for future heat exchanger development.

  18. Geometry dependence of temperature coefficient of resonant frequency in highly sensitive resonant thermal sensors

    Science.gov (United States)

    Inomata, Naoki; Ono, Takahito

    2017-08-01

    In this paper, the geometry dependence of the temperature coefficient of resonant frequency (TCRF) is investigated and compared with a theoretical thermal stress change using Si mechanical microresonators. The used resonators have Y, T, I (conventional double-supported type) and arrow shapes, and in each shape the resonant frequency change of the resonator is measured in relation to changes in the amount of heat input to the resonator. The change trend in the experimental resonant frequency and the theoretical thermal stress in changing the temperature are consist. The TCRF in each resonator is Y: -653, T: -162, I: -417, and the arrow is 174 ppm/K. These absolute values are much higher than those of conventional cantilevered Si resonators (-34.9 ppm/K). In addition, the frequency fluctuations based on Allan deviation are experimentally evaluated considering the theoretical thermal fluctuation noise. It is considered that use of this technique to improve the TCRF of resonators by changing the geometry has the possibility of creating a sensor with highly sensitive thermal detection.

  19. High efficiency thermal storage system for solar plants (HELSOLAR). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Villarroel, Eduardo; Fernandez-Pello, Carlos; Lenartz, Jeff; Parysek, Karen

    2013-02-27

    The project objective was to develop a high temperature Thermal Storage System (TES) based on graphite and able to provide both economical and technical advantages with respect to existing solutions contributing to increase the share of Concentrated Solar Plants (CSP). One of the main disadvantages of most of the renewable energy systems is their dependence to instantaneous irradiation and, thus, lack of predictability. CSP plants with thermal storage have proved to offer a good solution to this problem although still at an elevated price. The identification of alternative concepts able to work more efficiently would help to speed up the convergence of CSP towards grid parity. One way to reduce costs is to work in a range of temperatures higher than those allowed by the actual molten salt systems, currently the benchmark for TES in CSP. This requires the use of alternative energy storage materials such as graphite, as well as the utilization of Heat Transfer Fluids (HTF) other than molten salts or organic oils. The main technical challenges identified are derived from the high temperatures and significant high pressures, which pose risks such as potential graphite and insulation oxidation, creep, fatigue, corrosion and stress-corrosion in the pipes, leakages in the joints, high blower drivers’ electrical power consumption, thermal compatibility or relative deformations of the different materials. At the end, the main challenge of the project, is to identify a technical solution able to overcome all these problems but still at a competitive cost when compared to already existing thermal storage solutions. Special attention is given to all these issues during this project.

  20. Mechanical and thermal properties of high density polyethylene - dried distillers grains with solubles composites

    OpenAIRE

    Brent Tisserat; Louis Reifschneider; Rogers Harry O’Kuru; Victoria L. Finkenstadt

    2013-01-01

    Dried Distillers Grain with Solubles (DDGS) was evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE) composed of 25% by weight DDGS and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection molding. An improved DDGS bio-filler was produced by solvent treating DDGS (STDDGS). Injection-molded test specimens were evaluated for their tensile, flexural, impact, and thermal properties. Composite blends...

  1. Thermal expansion in UO 2 determined by high-energy X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, M.; Benmore, C. J.; Skinner, L. B.; Alderman, O. L. G.; Weber, J. K. R.; Parise, J. B.; Williamson, M.

    2016-10-01

    Here we present crystallographic analyses of high-energy X-ray diffraction data on polycrystalline UO2 up to the melting temperature. The Rietveld refinements of our X-ray data are in agreement with previous measurements, but are systematically located around the upper bound of their uncertainty, indicating a slightly steeper trend of thermal expansion compared to established values. This observation is consistent with recent first principles calculations.

  2. The modeling of thermal fields in high power multi-disk cryogenic laser amplifier

    Science.gov (United States)

    Petrov, V. A.; Kuptsov, G. V.; Petrov, V. V.; Kirpichnikov, A. V.; Laptev, A. V.; Pestryakov, E. V.

    2017-10-01

    In this paper we focus on the second unit of multipass amplification of the cryogenic diode-pumped high power laser system operating at 1 kHz repetition rate. Thermal fields in the cooling system of the amplifier were calculated and compared with experimental data. Numerical algorithm based on 3+1D heat transfer equation is proposed. The results of modeling are discussed and analyzed.

  3. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    Science.gov (United States)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial

  4. Evaluation of Synthesis & Processing Routes for the High K- Boron Nitride Nano Tubes (BNNTS) for Thermal Management Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this proposal is to develop and demonstrate the feasibility of processing the High Thermal Conductivity Boron Nitride Nano Tubes (High-K BNNTs) that...

  5. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  6. High-spatial-resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data

    Science.gov (United States)

    Flynn, Luke P.; Harris, Andrew J. L.; Rothery, David A.; Oppenheimer, Clive

    After the initial observation in 1987 that high spatial resolution data could be used to acquire thermal information for active volcanoes, satellite technology and its applications have leapt forward in possibilities and complexity. Since 1972, the Landsat series of satellites has provided the longest continuous high spatial resolution (Landsat 4 and 5 (launched in 1982 and 1984, respectively) featuring the Thematic Mapper system have made it possible to detect, map, and model high temperature features such as lava bodies and fires. Landsat 7 was launched in April, 1999, carrying an enhanced instrument package that includes a higher spatial resolution thermal band and a 15-m panchromatic band that will greatly aid detailed mapping of volcanic features. Current planning for the future Landsat 8 instrument includes a fundamental shift towards a lighter, more energy efficient instrument having a greater number of spectral bands. Hyperspectral sensors, such as that of Earth Orbiter-1, that have been planned for launch as part of the New Millennium Program, are being considered as Landsat 8 prototypes. Initial studies of lava flows and lava lakes using field spectrometers afford a glimpse of the capabilities offered by the next generation of satellites to model lava flow temperatures. Hyperspectral measurements of lava flows allow for the solution of numerous thermal components, which can then be used for much more detailed modeling than can be supported by broad band radiometry.

  7. Assessment and optimization of thermal and fluidity properties of high strength concrete via genetic algorithm

    Directory of Open Access Journals (Sweden)

    Barış Şimşek

    2016-12-01

    Full Text Available This paper proposes a Response Surface Methodology (RSM based Genetic Algorithm (GA using MATLAB® to assess and optimize the thermal and fluidity of high strength concrete (HSC. The overall heat transfer coefficient, slump-spread flow and T50 time was defined as thermal and fluidity properties of high strength concrete. In addition to above mentioned properties, a 28-day compressive strength of HSC was also determined. Water to binder ratio, fine aggregate to total aggregate ratio and the percentage of super-plasticizer content was determined as effective factors on thermal and fluidity properties of HSC. GA based multi-objective optimization method was carried out by obtaining quadratic models using RSM. Having excessive or low ratio of water to binder provides lower overall heat transfer coefficient. Moreover, T50 time of high strength concrete decreased with the increasing of water to binder ratio and the percentage of superplasticizer content. Results show that RSM based GA is effective in determining optimal mixture ratios of HSC.

  8. Enhancement of thermal imagery using a low-cost high-resolution visual spectrum camera for scene understanding

    Science.gov (United States)

    Smith, Ryan E.; Anderson, Derek T.; Bethel, Cindy L.; Archibald, Chris

    2017-05-01

    Thermal-infrared cameras are used for signal/image processing and computer vision in numerous military and civilian applications. However, the cost of high quality (e.g., low noise, accurate temperature measurement, etc.) and high resolution thermal sensors is often a limiting factor. On the other hand, high resolution visual spectrum cameras are readily available and typically inexpensive. Herein, we outline a way to upsample thermal imagery with respect to a high resolution visual spectrum camera using Markov random field theory. This paper also explores the tradeoffs and impact of upsampling, both qualitatively and quantitatively. Our preliminary results demonstrate the successful use of this approach for human detection and accurate propagation of thermal measurements in an image for more general tasks like scene understanding. A tradeoff analysis of the cost-to-performance as the resolution of the thermal camera decreases is provided.

  9. High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar; Greene, Sandra

    2015-01-01

    NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.

  10. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  11. Enhancing the thermal stability of inulin fructotransferase with high hydrostatic pressure.

    Science.gov (United States)

    Li, Yungao; Miao, Ming; Liu, Miao; Chen, Xiangyin; Jiang, Bo; Feng, Biao

    2015-03-01

    The thermal stability of inulin fructotransferase (IFTase) subjected to high hydrostatic pressure (HHP) was studied. The value of inactivation rate of IFTase in the range of 70-80°C decreased under the pressure of 100 or 200 MPa, indicating that the thermostability of IFTase under high temperature was enhanced by HHP. Far-UV CD and fluorescence spectra showed that HHP impeded the unfolding of the conformation of IFTase under high temperature, reflecting the antagonistic effect between temperature and pressure on IFTase. The new intramolecular disulfide bonds in IFTase were formed under a combination of HHP and high temperature. These bonds might be related to the stabilization of IFTase at high temperature. All the above results suggested that HHP had the protective effect on IFTase against high temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Event-related potentials during forced awakening: a tool for the study of acute sleep inertia.

    Science.gov (United States)

    Bastuji, Hélène; Perrin, Fabien; Garcia-Larrea, Luis

    2003-09-01

    Sleep propensity and sleep inertia were assessed in 43 patients with excessive daytime sleepiness (EDS) and 21 sleep-deprived controls, using a forced awakening test under continuous electroencephalographic (EEG) recording. Event-related potentials (ERPs) were first obtained in waking, while participants performed a target detection auditory task. Subjects were then allowed to take a nap with lights off and sleep latency was calculated. After 3 min of continuous sleep, frequent and rare tones were suddenly presented again (and ERPs recorded) in a forced awakening condition, which was repeated a second time if patients fell asleep. ERPs in pre-nap wakefulness did not differ in patients and controls. On forced awakening, almost half (48%) of EDS patients retained morphologically normal ERPs, but showed a significant delay of P300 relative to waking. In the other half of the patients (and none of the controls), the N200/P300 complex to targets was replaced on forced awakening by high-amplitude negative waves ('sleep negativities'). Single subject analysis showed that 65% of patients had abnormal responses during forced awakening (significant P3 delay or sleep negativities), while only three of them (7%) had abnormal ERPs on wakefulness. The presence of sleep negativities was associated with shorter sleep latencies and increased target detection errors on forced awakening. Sleep negativities were more prevalent in narcolepsy and idiopathic hypersomnia than in EDS associated to psychiatric disorders. By combining sleep latency and ERP measures, the forced awakening test provided a robust and relatively rapid tool (45-60 min) to evaluate both sleep propensity and sleep inertia within a single recording session. The test allows each subject to act as his/her own control, thus increasing sensitivity. In the present series, it proved to be much more discriminative than waking ERPs alone to demonstrate specific abnormalities in patients complaining of excessive daytime

  13. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  14. Liquid Crystalline Epoxies with Lateral Substituents Showing a Low Dielectric Constant and High Thermal Conductivity

    Science.gov (United States)

    Guo, Huilong; Lu, Mangeng; Liang, Liyan; Wu, Kun; Ma, Dong; Xue, Wei

    2017-02-01

    In this work, liquid crystalline epoxies with lateral substituents were synthesized and cured with aromatic amines or anhydride. The liquid crystalline phase structure of liquid crystalline epoxies with lateral substituents was determined by polarized optical microscopy. The relationship between thermal conductivity and dielectric properties and liquid crystalline domain structure was discussed in the paper. The samples show high thermal conductivity up to 0.29 W/(m × K), due to the orientation of mesogenic units in epoxies. The sample's low dielectric constant of 2.29 is associated with the oriented mesogenic units and long nonpolar lateral substituents. This indicates a new way to obtain materials with high thermal conductivity and a low dielectric constant by introducing oriented mesogenic units into cross-linked epoxy systems. The water repellency is reflected in the contact angles of 92-98°, which are apparently higher than that of conventional epoxy systems. It was also found that the better toughness of liquid crystalline epoxies with lateral substituents was attributed to the existence of long flexible alkyl lateral substituents.

  15. Steam gasification of a thermally pretreated high lignin corn stover simultaneous saccharification and fermentation digester residue

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Taasevigen, Danny; Garcia-Perez, Manuel; McDonald, Armando G.; Li, Guosheng; Wolcott, Michael

    2017-01-01

    Efficient conversion of all components in lignocellulosic biomass is essential to realizing economic feasibility of biorefineries. However, when utilizing biochemical pathways, lignin cannot be fermented. Furthermore, the high lignin and high ash residue resulting from simultaneous saccharification and fermentation (SSF) reactors is difficult to thermochemically process due to feed line plugging and bed agglomeration. In this study a corn stover SSF digester residue was thermally pretreated at 300°C for 22.5 minutes (min) and then gasified in a bubbling fluidized bed gasifier to study the effect of thermal pretreatment on its processing behavior. Untreated, pelletized SSF residue was gasified at the same conditions to establish the baseline processing behavior. Results indicate that the thermal pretreatment process removes a substantial portion of the polar and non-polar extractives, with a resultant increase in the concentration of lignin, cellulose, and ash. Feed line plugging was not observed, although bed agglomeration was occurring at similar rates for both feedstocks, suggesting that overall ash content is the most important factor affecting bed agglomeration. Benzene, phenol, and polyaromatic hydrocarbons in the tar were present at higher concentrations in the treated material, with higher tar loading in the product gas. Total product gas generation is lower for the treated material, although the overall gas composition does not change.

  16. Development of Mitsubishi high thermal performance grid 2 - overview of the development and Dnb test results

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, M.; Imaizumi, M.; Mori, M. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Hori, K. [Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan); Ikeda, K. [Nuclear Development Corp., Tokai, Ibaraki (Japan)

    2001-07-01

    Spacer grid plays fundamental role in thermal performance of PWR fuel assembly. Grid spacer with higher thermal performance gives greater DNB (Departure from Nucleate Boiling) margin for the core. Mitsubishi has developed a prototype Zircaloy grid with higher thermal performance. In this paper, process of the development and DNB test results of the grid is presented. To achieve a goal to design grid with higher DNB performance, CFD (Computational Fluid Dynamics) and Freon DNB test are employed in the development. It is also concerned that the grid should be hydraulically compatible to existing grid. CFD is used in examining mixing capability and pressure drop for early stage of the development. Freon DNB test is used for preliminary checking of DNB performance for several design of the grids. After the final design is fixed, DNB test has been carried out at a high pressure / high temperature water test loop to verify the DNB performance. Also, hydraulic test has been done in a water test loop. The test results show that the grid has higher DNB performance and lower pressure loss coefficient compared with existing grid. It is also concluded that a combination of CFD and Freon DNB testing is successful tool for designing and development of grid. (authors)

  17. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  18. Preliminary Investigation of the Thermal Behavior of High-Speed Helical Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Kilmain, Charles J.

    2002-01-01

    A preliminary experimental investigation of the thermal behavior of high-speed helical gears will be presented. A full-scale torque regenerative test stand has been built to test a representative helical gear train as that used in tiltrotor aircraft. Power loss and temperature data from a wide range of operating conditions were measured. Loop power ranged up to 3730 kW (5000 hp). Drive system components representative of flight quality hardware were used in the test program. The results attained in this initial study indicated that windage losses due to the high rotational speeds that were tested were far more important than the losses due to the gear meshing losses.

  19. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    Energy Technology Data Exchange (ETDEWEB)

    Ridouane, El Hassan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The objective of the study outlined in this report is to resolve the issue that the flow rates that are required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space.and maintain uniform temperatures within future homes. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes.

  20. Investigation of Thermal Instability of Additive-Based High-Efficiency Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    En-Ping Yao

    2014-01-01

    Full Text Available Most photovoltaics operate at high temperature under sunlight. In this work, the thermal instability of diiodooctane-based high-efficiency bulk heterojunction (BHJ organic photovoltaics (OPVs is studied. The BHJ layers were heated to various temperatures to investigate the changes in their physical properties using atomic force microscopy phase images. The mobilities of the carriers were characterized at various temperatures using the space-charge-limited current method, and the carrier lifetime was calculated by applying impedance spectroscopy to the simulated equivalent circuit of the OPV devices.

  1. Thermalization in a small hadron gas system and high-multiplicity p p events

    Science.gov (United States)

    Sarkar, Nachiketa; Ghosh, Premomoy

    2017-10-01

    We study the system-size dependence of Knudsen number, a measure of degree of thermalization, for hadron resonance gas that follows the lattice quantum chromodynamics equation of state at zero chemical potential. A comparison between Knudsen numbers for the AuAu collisions at RHIC and the hadron gas of size similar to the size of high-multiplicity p p events at LHC, reassures the applicability of hydrodynamics in interpreting the features of particle production in high-multiplicity p p events.

  2. Emotional Inertia is Associated with Lower Well-Being when Controlling for Differences in Emotional Context.

    Science.gov (United States)

    Koval, Peter; Sütterlin, Stefan; Kuppens, Peter

    2015-01-01

    Previous studies have linked higher emotional inertia (i.e., a stronger autoregressive slope of emotions) with lower well-being. We aimed to replicate these findings, while extending upon previous research by addressing a number of unresolved issues and controlling for potential confounds. Specifically, we report results from two studies (Ns = 100 and 202) examining how emotional inertia, assessed in response to a standardized sequence of emotional stimuli in the lab, correlates with several measures of well-being. The current studies build on previous research by examining how inertia of both positive emotions (PE) and negative emotions (NE) relates to positive (e.g., life satisfaction) and negative (e.g., depressive symptoms) indicators of well-being, while controlling for between-person differences in the mean level and variability of emotions. Our findings replicated previous research and further revealed that (a) NE inertia was more strongly associated with lower well-being than PE inertia; (b) emotional inertia correlated more consistently with negative indicators (e.g., depressive symptoms) than positive indicators (e.g., life satisfaction) of well-being; and (c) these relationships were independent of individual differences in mean level and variability of emotions. We conclude, in line with recent findings, that higher emotional inertia, particularly of NE, may be an indicator of increased vulnerability to depression.

  3. Emotional Inertia is Associated with Lower Well-Being Controlling for Differences in Emotional Context

    Directory of Open Access Journals (Sweden)

    Peter eKoval

    2016-01-01

    Full Text Available Previous studies have linked higher emotional inertia (i.e., a stronger autoregressive slope of emotions with lower well-being. We aimed to replicate these findings, while extending upon previous research by addressing a number of unresolved issues and controlling for potential confounds. Specifically, we report results from two studies (Ns = 100 & 202 examining how emotional inertia, assessed in response to a standardized sequence of emotional stimuli in the lab, correlates with several measures of well-being. The current studies build on previous research by examining how inertia of both positive emotions (PE and negative emotions (NE are related to both positive (e.g., life satisfaction and negative (e.g., depressive symptoms indicators of well-being, while controlling for between-person differences in the mean level and variability of emotions. Our findings replicated previous research and further revealed that a NE inertia was more strongly associated with lower well-being than PE inertia; b emotional inertia correlated more consistently with negative indicators (e.g., depressive symptoms than positive indicators (e.g., life satisfaction of well-being; and c these relationships were independent of individual differences in mean level and variability of emotions. We conclude, in line with recent findings, that higher emotional inertia, particularly of NE, may indicate increased vulnerability to depression.

  4. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  5. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  6. Probing whole cell currents in high-frequency electrical fields: identification of thermal effects.

    Science.gov (United States)

    Olapinski, Michael; Manus, Stephan; Fertig, Niels; Simmel, Friedrich C

    2008-01-18

    An open-end coaxial probe is combined with a planar patch-clamp system to apply electric fields with GHz frequencies during conventional patch-clamp measurements. The combination of pulsed microwave irradiation and lock-in detection allows for the separation of fast and slow effects and hence facilitates the identification of thermal effects. The setup and the influence of radiation on the patch-clamp current are thoroughly characterized. For the independent optical verification of heating effects, a temperature microscopy technique is applied with high spatial, temporal and temperature resolution. It is shown that the effect of radiation at GHz frequencies on whole cell currents is predominantly thermal in nature in the case of RBL cells with an endogenous K(ir) 2.1 channel.

  7. Effect of high pressure on rheological and thermal properties of quinoa and maize starches.

    Science.gov (United States)

    Li, Guantian; Zhu, Fan

    2018-02-15

    Quinoa starch has small granules with relatively low gelatinization temperatures and amylose content. High hydrostatic pressure (HHP) is a non-thermal technique for food processing. In this study, effects of HHP up to 600MPa on physical properties of quinoa starch were studied and compared with those of a normal maize starch. Both starches gelatinized at 500 and 600MPa. The pressure of 600MPa completely gelatinized quinoa starch as revealed by thermal analysis. Dynamic rheological analysis showed that HHP improved the gel stability of both starches during cooling. HHP had little effects on amylopectin recrystallization and gel textural properties of starch. Overall, quinoa starch was more susceptible to HHP than maize starch. The effects of HHP on some rheological properties such as frequency dependence were different between these two types of starches. The differences could be attributed to the different composition, granular and chemical structures of starch, and the presence of granule remnants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Study of a Thermal Annealing Approach for Very High Total Dose Environments

    Science.gov (United States)

    Dhombres, S.; Michez, A.; Boch, J.; Saigné, F.; Beauvivre, S.; Kraehenbuehl, D.; Vaillé, J.-R.; Adell, P. C.; Lorfèvre, E.; Ecoffet, R.; Roig, F.

    2014-12-01

    Total dose effect remains one challenging issue for electronics systems intended to space applications. For high total dose missions, like Jupiter missions, or for scientific instruments for which functionality and precision must be guaranteed, dose effect is one of the main drawbacks. So, new solutions must be found in order to ensure the reliability of the mission. In this paper, an analysis of a thermal annealing approach is done. This approach consists of applying isothermal annealing cycles to a device such that its electrical characteristics can be regenerated after being degraded by total ionizing dose. The analysis is based on experimental results obtained on Power MOSFET and CMOS APS imager. The impact of electric field during annealing is also investigated. It is shown that thermal annealing can be applied to electronic devices in order to extend their lifetime.

  9. Control of Nanoplane Orientation in voBN for High Thermal Anisotropy in a Dielectric Thin Film: A New Solution for Thermal Hotspot Mitigation in Electronics.

    Science.gov (United States)

    Cometto, Olivier; Samani, Majid K; Liu, Bo; Sun, Shuangxi; Tsang, Siu Hon; Liu, Johan; Zhou, Kun; Teo, Edwin H T

    2017-03-01

    High anisotropic thermal materials, which allow heat to dissipate in a preferential direction, are of interest as a prospective material for electronics as an effective thermal management solution for hot spots. However, due to their preferential heat propagation in the in-plane direction, the heat spreads laterally instead of vertically. This limitation makes these materials ineffective as the density of hot spots increases. Here, we produce a new dielectric thin film material at room temperature, named vertically ordered nanocrystalline h-BN (voBN). It is produced such that its preferential thermally conductive direction is aligned in the vertical axis, which facilitates direct thermal extraction, thereby addressing the increasing challenge of thermal crosstalk. The uniqueness of voBN comes from its h-BN nanocrystals where all their basal planes are aligned in the direction normal to the substrate plane. Using the 3ω method, we show that voBN exhibits high anisotropic thermal conductivity (TC) with a 16-fold difference between through-film TC and in-plane TC (respectively 4.26 and 0.26 W·m-1·K-1). Molecular dynamics simulations also concurred with the experimental data, showing that the origin of this anisotropic behavior is due to the nature of voBN's plane ordering. While the consistent vertical ordering provides an uninterrupted and preferred propagation path for phonons in the through-film direction, discontinuity in the lateral direction leads to a reduced in-plane TC. In addition, we also use COMSOL to simulate how the dielectric and thermal properties of voBN enable an increase in hot spot density up to 295% compared with SiO2, without any temperature increase.

  10. Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity

    Science.gov (United States)

    Wieg, A. T.; Kodera, Y.; Wang, Z.; Imai, T.; Dames, C.; Garay, J. E.

    2012-09-01

    Thermal management continues to be one of the major challenges in the development of high powered light sources such as solid state lasers. In particular, the relatively low thermal conductivity of standard photoluminescent (PL) materials limits the overall power output and/or duty cycle. We present a method based on current activated pressure assisted densification for the fabrication of high thermal conductivity PL materials: rare earth doped polycrystalline bulk aluminum nitride. Specifically, the ceramics are translucent and are doped with Tb3+, allowing for emission in the visible. Remarkably, the ceramics have a room temperature thermal conductivity of 94 W/(m K) which is almost seven times higher than that of the state of the art host material, Nd-doped yttrium aluminum garnet. These light emitting properties coupled with very high thermal conductivity should enable the development of a wide variety of more powerful light sources.

  11. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring.

    Science.gov (United States)

    Tsai, Wei-Yu; Huang, Guan-Rong; Wang, Kuang-Kuo; Chen, Chin-Fu; Huang, J C

    2017-04-26

    Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.

  12. State of the art on high temperature thermal energy storage for power generation. Part 1. Concepts, materials and modellization

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Antoni; Medrano, Marc; Martorell, Ingrid; Cabeza, Luisa F. [GREA Innovacio Concurrent, Universitat de Lleida, Pere de Cabrera s/n, 25001-Lleida (Spain); Lazaro, Ana; Dolado, Pablo; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' Agustin de Betancourt' , Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-01-15

    Concentrated solar thermal power generation is becoming a very attractive renewable energy production system among all the different renewable options, as it has have a better potential for dispatchability. This dispatchability is inevitably linked with an efficient and cost-effective thermal storage system. Thus, of all components, thermal storage is a key one. However, it is also one of the less developed. Only a few plants in the world have tested high temperature thermal energy storage systems. In this paper, the different storage concepts are reviewed and classified. All materials considered in literature or plants are listed. And finally, modellization of such systems is reviewed. (author)

  13. Thermal behavior of Nickel deformed to ultra-high strain by high pressure torsion

    DEFF Research Database (Denmark)

    Zhang, Hongwang; Huang, Xiaoxu; Pippan, Richard

    2012-01-01

    Polycrystalline Ni (99.5 %) has been deformed to an ultra-high strain of εvM=100 (εvM, von Mises strain) by high pressure torsion (HPT) at room temperature. The deformed sample is nanostructured with an average boundary spacing of 90 nm, a high density of dislocations of >1015m-2 and a large...

  14. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers.

    Science.gov (United States)

    Drachenberg, Derrek R; Andrusyak, Oleksiy; Venus, George; Smirnov, Vadim; Glebov, Leonid B

    2014-02-20

    High-radiance lasers are desired for many applications in defense and manufacturing. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for high-radiance lasers that need to achieve 100 kW level power. Laser-induced heating of VBGs under high-power radiation presents a challenge for maintaining Bragg resonance at various power levels without mechanical realignment. A novel thermal tuning technique and apparatus is presented that enables maintaining peak efficiency operation of the SBC system at various power levels without any mechanical adjustment. The method is demonstrated by combining two high-power ytterbium fiber lasers with high efficiency from low power to full combined power of 300 W (1.5 kW effective power), while maintaining peak combining efficiency within 0.5%.

  15. Design and Analysis of a High Force, Low Voltage and High Flow Rate Electro-Thermal Micropump

    Directory of Open Access Journals (Sweden)

    Ghader Yosefi

    2014-12-01

    Full Text Available This paper presents the design and simulation of an improved electro-thermal micromachined pump for drug delivery applications. Thermal actuators, which are a type of Micro Electro Mechanical system (MEMS device, are highly useful because of their ability to deliver with great force and displacement. Thus, our structure is based on a thermal actuator that exploits the Joule heating effect and has been improved using the springy length properties of MEMS chevron beams. The Joule heating effect results in a difference in temperature and therefore displacement in the beams (actuators. Simulation results show that a maximum force of 4.4 mN and a maximum flow rate of 16 μL/min can be obtained by applying an AC voltage as low as 8 V at different frequencies ranging from 1 to 32 Hz. The maximum temperature was a problem at the chevron beams and the center shaft. Thus, to locally increase the temperature of the chevron beams alone and not that of the pumping diaphragm: (1 The air gaps 2 μm underneath and above the device layer were optimized for heat transfer. (2 Release holes and providing fins were created at the center shaft and actuator, respectively, to decrease the temperature by approximately 10 °C. (3 We inserted and used a polymer tube to serve as an insulator and eliminate leakage problems in the fluidic channel.

  16. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    Energy Technology Data Exchange (ETDEWEB)

    Ridouane, E. H.

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The higher the supply flow rates the easier to reach good mixing in the space. In high performance homes, however, the flow rates required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space. The objective of this study is to resolve this issue and maintain uniform temperatures within future homes. We used computational fluid dynamics modeling to evaluate the performance of high sidewall air supply for residential applications in heating and cooling modes. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions, and room dimensions. Laboratory experiments supported the study of thermal mixing in heating mode; we used the results to develop a correlation to predict high sidewall diffuser performance. For cooling mode, numerical analysis is presented. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes. It is proven that these systems can achieve good mixing and provide acceptable comfort levels. Recommendations are given on the operating conditions to guarantee occupant comfort.

  17. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability

    Science.gov (United States)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.

  18. Study on the Thermal Resistance of Multi-chip Module High Power LED Packaging Heat Dissipation System

    Directory of Open Access Journals (Sweden)

    Kailin Pan

    2014-10-01

    Full Text Available Thermal resistance is a key technical index which indicates the thermal management of multi-chip module high power LED (MCM-LED packaging heat dissipation system. In this paper, the prototype structure of MCM-LED packaging heat dissipation system is proposed to study the reliable thermal resistance calculation method. In order to analyze the total thermal resistance of the MCM-LED packaging heat dissipation system, three kinds of thermal resistance calculation method including theoretical calculation, experimental testing and finite element simulation are developed respectively. Firstly, based on the thermal resistance network model and the principle of steady state heat transfer, the theoretical value of total thermal resistance is 6.111 K/W through sum of the thermal resistance of every material layer in the major direction of heat flow. Secondly, the thermal resistance experiment is carried out by T3Ster to obtain the experimental result of total thermal resistance, and the value is 6.729 K/W. Thirdly, a three-dimensional finite element model of MCM-LED packaging heat dissipation system is established, and the junction temperature experiment is also performed to calculated the finite element simulated result of total thermal resistance, the value is 6.99 K/W. Finally, by comparing the error of all the three kinds of result, the error of total thermal resistance between the theoretical value and experimental result is 9.2 %, and the error of total thermal resistance between the experimental result and finite element simulation is only about -3.9 %, meanwhile, the main reason of each error is discussed respectively.

  19. Can the Emdrive Be Explained by Quantised Inertia?

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.

    2015-01-01

    Full Text Available It has been shown that cone-shaped cavities with microwaves resonating within them move slightly towards their narrow ends (the emdrive. There is no accepted explanation for this. Here it is shown that this effect can be predicted by assuming that the inertial mass of the photons in the cavity is caused by Unruh radiation whose wavelengths must fit exactly within the cavity, using a theory already applied with some success to astrophysical anomalies where the cavity is the Hubble volume. For the emdrive this means that more Unruh waves are “allowed” at the wide end, lea ding to a greater inertial mass for the photons there. The gain of inertia of the photons when they move from the narrow to the wide end, and the conservation of momentum, predicts that the cavity must then move towards the narrow end, as observed. This mode l predicts the available observations quite well, although the observational uncertainties are not well known.

  20. Optimal excitation design for identifying inertia parameters of spacecraft

    Science.gov (United States)

    Zhai, Kun; Wang, Tianshu; Meng, Dongbo

    2017-11-01

    Excitation design is one of the important contents in the identification of inertia parameters and the form of excitation has a great influence on the identification result. This paper presents a new method to design and calculate the optimal excitation. Firstly for a spacecraft equipped with momentum wheels, the identification problem is established based on conversation of angular momentum and an inverse operating. A performance index which is similar to but not the condition number is first defined as the benchmark for designing the optimal excitation. Because the performance index only depends on performances of the actuator, such as the angular momentum of the wheel, a simple direct-search method is applied to calculate the optimal excitation for the case without terminal angular velocity constraints and a two-step direct-search method for the case with terminal angular velocity constraints. While the initial angular momentum of spacecraft system is considered, the optimal excitation is obtained based on the difference of two successive measurements. Finally, the optimal excitation for a spacecraft using thrusters is designed according to the same design process. Simulation results show that the calculated optimal excitation has the good performance index and can produce accurate identification results even when some perturbations are considered.